

King’s Research Portal

DOI:
10.1109/TKDE.2022.3231780

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Loukidis, G., Pissis, S., & Sweering, M. (2023). Bidirectional String Anchors for Improved Text Indexing and Top-
K Similarity Search. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1-18.
https://doi.org/10.1109/TKDE.2022.3231780

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 30. Jun. 2023

https://doi.org/10.1109/TKDE.2022.3231780
https://kclpure.kcl.ac.uk/en/publications/8e9eea59-4fc5-4ca5-a8c5-fd74a6991bec
https://doi.org/10.1109/TKDE.2022.3231780

1

Bidirectional String Anchors for Improved Text
Indexing and Top-K Similarity Search
Grigorios Loukides Senior Member, IEEE , Solon P. Pissis, and Michelle Sweering

Abstract—The minimizers sampling mechanism is a popular mechanism for string sampling. However, minimizers sampling mechanisms
lack good guarantees on the expected size of their samples for different combinations of their input parameters. Furthermore, indexes
constructed over minimizers samples lack good worst-case guarantees for on-line pattern searches. In response, we propose
bidirectional string anchors (bd-anchors), a new string sampling mechanism. Given an integer `, our mechanism selects the
lexicographically smallest rotation in every length-` fragment. We show that, like minimizers samples, bd-anchors samples are
approximately uniform, locally consistent, and computable in linear time. Furthermore, our experiments demonstrate that the bd-anchors
sample sizes decrease proportionally to `; and that these sizes are competitive to or smaller than the minimizers sample sizes. We
theoretically justify these results by analyzing the expected size of bd-anchors samples. We also prove that computing a total order on the
input alphabet which minimizes the bd-anchors sample size is NP-hard. We next highlight the benefits of bd-anchors in two important
applications: text indexing and top-K similarity search. For the first application, we develop an index for performing on-line pattern
searches in near-optimal time, and show experimentally that a simple implementation of our index is consistently faster for on-line pattern
searches than an analogous implementation of a minimizers-based index; we also show that it is substantially faster than two classic text
indexes. For the second application, we develop a heuristic for top-K similarity search under edit distance, and show experimentally that
it is generally as accurate as the state-of-the-art tool for the same purpose but more than one order of magnitude faster.

Index Terms—string algorithms, string sampling, text indexing, top-K string similarity search

F

1 INTRODUCTION

A large number of information systems are fueled by string
(sequential) data. A string T is a sequence of letters over
some alphabet Σ. For example, when Σ is a set of items,
T can represent a user’s purchasing history [1]; when Σ
is a set of locations, T can represent a user’s location
profile [82]; and when T is the set of DNA bases, T can
represent a genome sequence [51]. With the increasing size
of string datasets that require processing, traditional string-
processing tools, like suffix trees [79] or suffix arrays [62],
have become prohibitive to use. These traditional tools
are thus progressively being replaced or adapted by string
sampling mechanisms [73], [71], [28], [37], [50], [33]. Such
mechanisms can be fundamentally different from each other
depending on their objectives or the intended application.

In this paper, we focus on minimizers, a popular mecha-
nism for string sampling (also known as winnowing), which
was introduced independently by Schleimer et al. [73] and
by Roberts et al. [71]. The minimizers mechanism samples a
set of positions over an input string. In particular, the goal
of this sampling mechanism is, given a string T of length n
over an alphabet Σ of size σ, to simultaneously satisfy the
following properties:

• Property 1 (approximately uniform sampling): Every
sufficiently long fragment of T has a representative

• G. Loukides is with King’s College London, United Kingdom.
Email: grigorios.loukides@kcl.ac.uk

• S. P. Pissis is with CWI and the Vrije Universiteit, The Netherlands.
Email: solon.pissis@cwi.nl

• M. Sweering is with CWI, The Netherlands.
Email:michelle.sweering@cwi.nl

Manuscript received...

position sampled by the mechanism. This ensures that
a sufficiently long pattern will not be missed during
search.

• Property 2 (local consistency): Exact matches between
sufficiently long fragments of T are preserved uncon-
ditionally by having the same (relative) representa-
tive positions sampled by the mechanism. This en-
sures that similarity between sufficiently long similar
strings will be preserved during search.

In most practical scenarios, sampling the smallest number
of positions is desirable, as long as Properties 1 and 2 are
satisfied. This is because it leads to small data structures
or fewer computations. Indeed, the minimizers sampling
mechanism satisfies the property of approximately uniform
sampling: given two positive integers w and k, it selects
at least one length-k substring in every fragment of w
consecutive length-k substrings (Property 1). Specifically, this
is achieved by selecting the starting positions of the smallest
length-k substrings in every (w + k − 1)-long fragment,
where smallest is defined by a choice of a total order on the
universe of length-k strings. These positions are called the
“minimizers”. Thus from similar fragments, similar length-k
substrings are sampled (Property 2). In particular, if two
strings have a fragment of length w + k − 1 in common,
then they have at least one minimizer corresponding to the
same length-k substring. Let us denote byMw,k(T) the set
of minimizers of string T . The following example illustrates
the sampling.

Example 1. The set Mw,k of minimizers for w = k = 3
for string T = aabaaabcbda (using a 1-based index) is
M3,3(T) = {1, 4, 5, 6, 7} and for string Q = abaaa is
M3,3(Q) = {3}. Indeed Q occurs at position 2 in T ; and

2

Q and T [2 . . 6] have the minimizers 3 and 4, respectively,
which both correspond to string aaa of length k = 3.

The minimizers sampling mechanism is very versatile,
and it has been employed in various ways in many different
applications [57], [80], [22], [14], [36], [42], [43], [58], [44], [67],
[31]. Since its inception, the minimizers sampling mechanism
has undergone numerous theoretical and practical improve-
ments [68], [14], [65], [64], [18], [26], [86], [44], [89], [25], [39]
with a particular focus on minimizing the size of the residual
sample; see Section 6 for a summary on this line of research.

1.1 Our Motivation
Although minimizers have been extensively and success-
fully used, especially in bioinformatics, we observe several
inherent problems with setting the parameters w and k. In
particular, although the notion of length-k substrings (known
as k-mers or k-grams) is a widely-used string processing tool,
we argue that, in the context of minimizers, it may be causing
many more problems than it solves: it is not clear to us why
one should use an extra sampling parameter k to effectively
characterize a fragment of length ` = w+k−1 of T . In what
follows, we describe some problems that may arise when
setting the parameters w and k.

• Indexing: The most widely-used approach is to index
the selected minimizers using a hash table. The key
is the selected length-k substring and the value is
the list of positions it occurs. If one would like to
use length-k′ substrings for the minimizers with ` =
w + k − 1 = w′ + k′ − 1, for some w′ 6= w and
k′ 6= k, they should compute the new setMw′,k′(T)
of minimizers and construct their new index based
onMw′,k′ from scratch.

• Querying: To the best of our knowledge, no index
based on minimizers can return in optimal or near-
optimal time all occurrences of a pattern Q of length
|Q| ≥ ` = w + k − 1 in T .

• Sample Size: If one would like to minimize the number
of selected minimizers, they should consider different
total orders on the universe of length-k strings, which
may complicate practical implementations, often scal-
ing only up to a small k value, e.g. k = 16 [26]. On
the other hand, when k is fixed and w increases, the
length-k substrings in a fragment become increasingly
decoupled from each other, and that regardless of
the total order we may choose. Unfortunately, this
interplay phenomenon is inherent in minimizers. It
is known that k ≥ logσ(w) + c, for a fixed constant c,
is a necessary condition for the existence of minimizers
samples with expected size in O(n/w) [86]; see
Section 6.

We propose the notion of bidirectional string anchors (bd-
anchors) to alleviate these disadvantages. The bd-anchors
is a mechanism that drops the sampling parameter k and
its corresponding disadvantages. We only fix a parameter `,
which can be viewed as the length w+k−1 of the fragments
in the minimizers sampling mechanism. The bd-anchor of
a string X of length ` is the lexicographically smallest
rotation (cyclic shift) of X . We unambiguously characterize
this rotation by its leftmost starting position in string XX .

The set A`(T) of the order-` bd-anchors of string T is the set
of bd-anchors of all length-` fragments of T . It can be readily
verified that bd-anchors satisfy Properties 1 and 2.

Example 2. The set A`(T) of bd-anchors for ` = 5 for string
T = aabaaabcbda (using a 1-based index) is A5(T) =
{4, 5, 6, 11} and for string Q = abaaa, A5(Q) = {3}.
Indeed, Q occurs at position 2 in T ; and Q and T [2 . . 6] have
the bd-anchors 3 and 4, respectively, which both correspond
to the rotation aaaab.

Let us remark that string synchronizing sets, recently
introduced by Kempa and Kociumaka [50], is a string
sampling mechanism which may also be employed to resolve
the disadvantages of minimizers. Yet, it appears to be quite
complicated to be efficient in practice. For instance, in [23],
the authors used a simplified and specific definition of string
synchronizing sets to design a space-efficient data structure
for answering longest common extension queries.

1.2 Our Contributions
We provide theoretical and experimental justification of
the benefits of bd-anchors. In particular, we show these
benefits in the context of two important string-processing
tasks: text indexing and top-K similarity search. We consider
the word RAM model of computations with w-bit machine
words, where w = Ω(log n), for stating our results. We
also assume throughout that string T is over alphabet
Σ = {1, 2, . . . , nO(1)}, which captures virtually any real-
world scenario. We measure space in terms of w-bit machine
words. We next provide a summary of our contributions:

1) Construction and Sample Size (Section 3): First, we provide
upper bounds on the time and space required to con-
struct the set A`(T). We show that A`(T), for any ` > 0
and any T of length n, can be constructed in O(n) time.
We generalize this result showing that for any constant
ε ∈ (0, 1], A`(T) can be constructed in O(n + n1−ε`)
time usingO(nε+`+ |A`|) space. Second, we show that
the expected size of A` for strings of length n, randomly
generated by a memoryless source with identical letter
probabilities, is in O(n/`), for any integer ` > 0. The
latter is in contrast to minimizers which achieve the
expected bound of O(n/w) only when k ≥ logσ w + c,
for some constant c [86]. Third, we show a negative
result using a reduction from minimum feedback arc
set: computing a total order ≤ on Σ which minimizes
|A`(T)| is NP-hard. Finally, we compare the size of bd-
anchors samples to the size of minimizers samples. We
show, using five real datasets, that indeed the size of
A` decreases proportionally to `; that it is competitive
to or smaller thanMw,k, when ` = w + k − 1; and that
it is much smaller thanMw,k for small w values, which
is practically important, as widely-used aligners that
are based on minimizers will require less space and
computation time if bd-anchors are used instead.

2) Text Indexing (Section 4): We start by showing how bd-
anchors can be used to construct an efficient index for
on-line pattern searches. Text indexing is a fundamental
and extensively studied problem [79], [62], [27], [46], [28],
[37], [40], [7], [16], [66], [50], [33] with numerous applica-
tions in information retrieval [5] and bioinformatics [38].

3

We show an index based on A`(T), for any string T of
length n and any integer ` > 0, which answers on-line
pattern searches in near-optimal time. In particular, for
any constant ε > 0, we show that our index supports
the following space/query-time trade-offs:

• it occupies O(|A`(T)|) extra space and reports all
k occurrences of any pattern Q of length |Q| ≥ `
given on-line in O(|Q| + (k + 1) logε(|A`(T)|))
time; or

• it occupies O(|A`(T)| logε(|A`(T)|)) extra space
and reports all k occurrences of any pattern
Q of length |Q| ≥ ` given on-line in O(|Q| +
log log(|A`(T)|) + k) time.

We also show that our index can be constructed in
O(n+|A`(T)|

√
log(|A`(T)|)) time. We then show, using

five real datasets, that a simple implementation of our
index is consistently faster in on-line pattern searches than
an analogous implementation of the minimizers-based
index proposed by Grabowski and Raniszewski in [36].
Notably, we also show that our index is substantially
faster than two classic text indexes [62], [28] that are
commonly employed in widely-used software [54], [59].

3) Top-K Similarity Search (Section 5): We highlight the
applicability of bd-anchors by developing an efficient
and effective heuristic for top-K similarity search under
edit distance. This is also a fundamental and extensively
studied problem [45], [13], [15], [56], [81], [85], [69], [78],
[77], [20], [41], [83], [84] with numerous applications in
databases and data mining [70] and in other areas in-
cluding information retrieval [5] and bioinformatics [53].
We show, using both synthetic and real datasets, that
while our heuristic is generally as accurate as the state-
of-the-art tool for top-K similarity searches, proposed
by Zhang and Zhang [84], it is more than one order of
magnitude faster.

In Section 2, we provide some necessary preliminaries;
and, in Section 6, we discuss related work with a special
focus on minimizers. Let us stress that, although other works
may be related to our contributions, we focus on comparing
mostly to minimizers because these are extensively used in
applications. Section 7 concludes the paper.

A preliminary version of this paper was announced at
ESA 2021 [60]. The current version contains the following
additional material: (1) full proofs regarding the construction
of bd-anchors; (2) a new algorithm allowing to compute
bd-anchors efficiently using (strongly) sublinear space; (3)
a theoretical analysis of the expected size of bd-anchors; (4)
a new version of bd-anchors, referred to as “reduced bd-
anchors”; (5) a non-trivial NP-hardness proof for finding
a total order on the input alphabet that minimizes the
number of bd-anchors; (6) a new algorithm allowing to query
multiple fragments; and (7) additional experimental results.

1.3 Our Techniques

We begin by providing an informal overview of our tech-
niques in Figure 1. In order to arrive at these results several
technical challenges had to be addressed. We give a brief
description of each challenge next:

. . .

. . .
Sample suffixes

based on an integer `

Text T of length n

n suffixes of T

O(n/`) sampled suffixes of T

O(n/`) sampled reversed suffixes of T

Indexing the sample

bd-anchor

Pattern Q of length |Q| ≥ `

bd-anchor

suffixes

suffixes
reversed

Query

Query

All (merged)

occurrences ofIndex

Q in T

Answer for Q

Fig. 1: An informal overview of our techniques: Given a text
T of length n, we consider all of its n positions and sample
them for a given integer ` using the bd-anchors mechanism.
The selected positions (bd-anchors) imply a set of O(n/`)
suffixes and a set of O(n/`) reversed suffixes of T . We then
index these strings, so as to answer pattern matching queries
for patterns of length at least `. When such a pattern Q
is given, we find any of its bd-anchors, which implies a
suffix and a reversed suffix of Q, and query those using our
index. Our index efficiently merges the partial results (i.e.,
occurrences of suffixes and reversed suffixes), and returns all
occurrences of Q in T in nearly-optimal time.

• Sample Size: Proving the existence of minimizers
samples with expected size in O(n/w) is relatively
simple (see the proofs in [73] and [71]). The additional
technical difficulty with bd-anchors comes from the
fact that bd-anchors “wrap-around” and so the rota-
tions always change as we move from one window
to another. By analyzing and treating separately the
cases log ` ≤ log σ and log ` > log σ, we show that
the expected size of bd-anchors samples is in O(n/`).

• Constructing the Sample: Constructing minimizers
samples in linear time is also relatively simple using
hashing (see [73]). Again, the additional technical
difficulty with bd-anchors comes from the fact that ro-
tations always change as we move from one window
to another, and so it is not trivial to find lexicograph-
ically smallest rotations in O(1) time per window.
To achieve this, we employ the data structure of
Kociumaka [52] and some combinatorial observations.

• Indexing with Guarantees: Grabowski and
Raniszewski [36] show how minimizers samples
can be used to improve text indexing both in space
and query time. Although their approach shows
improved query times for on-line pattern searches
in practice, it lacks good worst-case guarantees. To
achieve near-optimal time for on-line pattern searches
we exploit a connection between string algorithms
and computational geometry (2D range reporting) [3].

2 PRELIMINARIES

We start with some basic definitions and notation follow-
ing [17]. An alphabet Σ is a finite nonempty set of elements
called letters. A string X = X[1] . . . X[n] is a sequence of

4

length |X| = n of letters from Σ. The empty string, denoted
by ε, is the string of length 0. The fragment X[i . . j] of X is
an occurrence of the underlying substring S = X[i] . . . X[j].
We also say that S occurs at position i in X . A prefix of X
is a fragment of X of the form X[1 . . j] and a suffix of X is
a fragment of X of the form X[i . . n]. The set of all strings
over Σ (including ε) is denoted by Σ∗. The set of all length-
k strings over Σ is denoted by Σk. Given two strings X
and Y , the edit distance dE(X,Y) is the minimum number
of edit operations (letter insertion, deletion, or substitution)
transforming one string into the other.

Let M be a finite nonempty set of strings over Σ of total
length m. We define the trie of M , denoted by TR(M), as a
deterministic finite automaton that recognizes M . Its set of
states (nodes) is the set of prefixes of the elements of M ; the
initial state (root node) is ε; the set of terminal states (leaf
nodes) is M ; and edges are of the form (u, α, uα), where u
and uα are nodes and α ∈ Σ. The size of TR(M) is thus
O(m). The compacted trie of M , denoted by CT(M), contains
the root node, the branching nodes, and the leaf nodes of
TR(M). The term compacted refers to the fact that CT(M)
reduces the number of nodes by replacing each maximal
branchless path segment with a single edge, and that it uses
a fragment of a string s ∈ M to represent the label of this
edge in O(1) machine words. The size of CT(M) is thus
O(|M |). When M is the set of suffixes of a string Y , then
CT(M) is called the suffix tree of Y , and we denote it by
ST(Y). The suffix array of Y is the lexicographically sorted
array of the set of suffixes of Y , and we denote it by SA(Y).
(We will often drop (Y) when it is clear from the context.)
The suffix tree and the suffix array of a string of length n over
an alphabet Σ = {1, . . . , nO(1)} can be constructed in O(n)
time [27]. We next present an example of these structures.

Example 3. Let Y = CAGAGA$ and assume that $ is a
terminal letter, which is the lexicographically smallest letter
occurring in Y . SA(Y) is on the left and ST(Y) on the right.

i SA[i] Suffix
1 7 $
2 6 A$
3 4 AGA$
4 2 AGAGA$
5 1 CAGAGA$
6 5 GA$
7 3 GAGA$

$

GA

A$

$

GA$

GA

CAGAGA$

$

GA$

1

2

4

6

7

3

5

Fig. 2: SA(Y) and SF(Y).

Let us fix throughout a string T = T [1 . . n] of length
|T | = n over an ordered alphabet Σ. Recall that we
make the standard assumption of an integer alphabet
Σ = {1, 2, . . . , nO(1)}.

We start by defining the notion of minimizers of T
from [71] (the definition in [73] is slightly different). Given
an integer k > 0, an integer w > 0, and the ith length-
(w+k−1) fragment F = T [i . . i+w+k−2] of T , we define
the (w, k)-minimizers of F as the positions j ∈ [i, i+w) where
a lexicographically minimal length-k substring of F occurs.
The set Mw,k(T) of (w, k)-minimizers of T is defined as
the set of (w, k)-minimizers of T [i . . i + w + k − 2], for all

i ∈ [1, n−w−k+2]. The density ofMw,k(T) is defined as the
quantity |Mw,k(T)|/n. The following bounds are obtained
trivially. The density of any minimizer scheme is at least
1/w, since at least one (w, k)-minimizer is selected in each
fragment, and at most 1, when every (w, k)-minimizer is
selected.

If we waive the lexicographic order assumption, the set
Mw,k(T) can be computed on-line in O(n) time, and if we
further assume a constant-time computable function that
gives us an arbitrary rank for each length-k substring in Σk

in constant amortized time [44]. This can be implemented,
for instance, using a rolling hash function (e.g. Karp-Rabin
fingerprints [48]), and the rank (total order) is defined by this
function. We also provide here, for completeness, a simple
off-line O(n)-time algorithm that uses a lexicographic order.

Theorem 1. The set Mw,k(T), for any integers w, k > 0 and
any string T of length n, can be constructed in O(n) time.

Proof. The underlying algorithm has two main steps. In the
first step, we construct ST(T), the suffix tree of T in O(n)
time [27]. Using a depth-first search traversal of ST(T) we
assign at every position of T in [1, n−k+1] the lexicographic
rank of T [i . . i + k − 1] among all the length-k strings
occurring in T . This process clearly takesO(n) time as ST(T)
is an ordered structure; it yields an array R of size n− k + 1
with lexicographic ranks. In the second step, we apply a
folklore algorithm, which computes the minimum elements
in a sliding window of size w (cf. [44]) over R. The set of
reported indices isMw,k(T).

3 BIDIRECTIONAL STRING ANCHORS

In Section 3.1, we examine the construction and the expected
size of bd-anchors samples from a theoretical perspective,
providing upper bounds as well as a non-trivial hardness
result. In Section 3.2, we experimentally evaluate the size of
bd-anchors samples and compare it to the respective size of
minimizers samples.

3.1 Construction and Sample Size

We introduce the notion of bidirectional string anchors (bd-
anchors). Given a string W , a string R is a rotation (or
cyclic shift or conjugate) of W if and only if there exists
a decomposition W = UV such that R = V U , for a string
U and a nonempty string V . We often characterize R by
its starting position |U | + 1 in WW = UV UV . We use the
term rotation interchangeably to refer to string R or to its
identifier (|U |+ 1).

Definition 1 (Bidirectional anchor). Given a string X of
length ` > 0, the bidirectional anchor (bd-anchor) of X is
the lexicographically minimal rotation j ∈ [1, `] of X with
minimal j. The set of order-` bd-anchors of a string T of
length n > `, for some integer ` > 0, is defined as the set
A`(T) of bd-anchors of T [i . . i+`−1], for all i ∈ [1, n−`+1].

The density of A`(T) is defined as the quantity |A`(T)|/n.
It can be readily verified that the bd-anchors sampling
mechanism satisfies Properties 1 (approximately uniform
sampling) and 2 (local consistency).

5

Example 4. Let ` = 5, T = aabaaabcbda, and T ′ =
aacaaaccbda. Strings T and T ′ (are at Hamming dis-
tance 2 but) have the same set of bd-anchors of order 5:
A5(T) = A5(T ′) = {4, 5, 6, 11}. The reader can probably
share the intuition that the bd-anchors sampling mechanism
is suitable for sequence comparison due to Properties 1 and
2, in particular, when the parameter ` is set accordingly.

3.1.1 Linear-Time Construction of A`
Importantly, we show that A` admits an efficient construc-

tion. One can use the linear-time algorithm by Booth [10]
to compute the lexicographically minimal rotation for each
length-` fragment of T , resulting in anO(n`)-time algorithm,
which is reasonably fast for modest `. (Booth’s algorithm
gives the leftmost minimal rotation by construction.) We
instead give an optimal O(n)-time algorithm for the con-
struction of A`, which is mostly of theoretical interest.

For every string X and every natural number m, we
define the mth power of the string X , denoted by Xm , by
X0 = ε and Xk = Xk−1X for k = 1, 2, . . . ,m. A nonempty
string is primitive, if it is not the power of any other string.
Let us state two well-known combinatorial lemmas.

Lemma 1 ([17]). A nonempty string X is primitive if and only
if it occurs as a substring in XX only as a prefix and as a suffix.

Example 5 (Illustration of Lemma 1). String X = abb is
primitive because abb occurs only as a prefix and as a suffix
in XX = abb · abb. String Y = aa is not primitive because
aa occurs not only as a prefix and as a suffix in Y Y = aaaa.

Lemma 2 ([74]). Let X = UV and R = V U , for two strings
U, V . If X is primitive, then R is also primitive.

Example 6 (Illustration of Lemma 2). Let U = ab and V =
bb. Then X = UV = abbb is primitive because abbb occurs
only as a prefix and as a suffix in XX = abbb · abbb. Then
R = V U = bbab is also primitive because bbab occurs only
as a prefix and as a suffix in RR = bbab · bbab.

A substring U of a string X is called an infix of X if and
only if U = X[i . . j] with i > 1 and j < n.

Lemma 3. A string X has more than one minimal lexicographic
rotation if and only if X is a power of some string.

Proof. (⇒) Let X = U1V1, and R = V1U1 be the leftmost
minimal lexicographic rotation of X . Suppose towards a
contradiction that X has another minimal lexicographic
rotation but X is primitive. In particular, there exists
H = V2U2 = R, with X = U2V2 and |U1| < |U2|. If X is
primitive, then R is also primitive by Lemma 2 but then
RR = V1U1V1U1 has H occurring as infix. In particular,
in RR, V2 is a suffix of the first occurrence of V1 and U2

is a prefix of U1V1 and thus H = R occurs as infix. By
Lemma 1 we obtain a contradiction.

(⇐) Let X = UU · · ·U and a minimal lexicographic rotation
of X be i ∈ [1, |X|]. Then either i + |U | or i − |U | is a
minimal lexicographic rotation of X .

Example 7 (Illustration of Lemma 3). Let X = cbacbacba,
R = acbacba · cb with U1 = acbacba and V1 = cb, and
H = acba · cbacb = R with U2 = acba and V2 = cbacb.
Observe that, in RR = acbacbacbacbacbacb, H occurs

as infix (shown as underlined) hence X is a power of some
string.

Lemma 4. Let X be a string of length n and set Y = XX#,
for some letter # not occurring in X that is the lexicographically
maximal letter occurring in Y . Further, let Y [i . . 2n+ 1] be the
lexicographically minimal suffix of Y , for some i ∈ [1, 2n]. The
leftmost lexicographically minimal rotation of X is i.

Proof. First note that i ∈ [1, n] because # is the lexicographi-
cally maximal letter occurring in Y .

We consider two cases: (i) X is primitive; and (ii) X is
power of some string. In the first case, X has one lexico-
graphically minimal rotation by Lemma 3, and thus this is i.
In the second case, X has more than one lexicographically
minimal rotations, but because X is power of some string
and # is the lexicographically maximal letter occurring in Y ,
i is the leftmost lexicographically minimal rotation of X .

We employ the data structure of Kociumaka [52, Theorem
20] to obtain the following result.

Theorem 2. The set A`(T), for any ` > 0 and any T of length
n, can be constructed in O(n) time.

Proof. The data structure of Kociumaka [52, Theorem 20]
gives the minimal lexicographic suffix for any concatenation
Y of k arbitrary fragments of a string S in O(k2) time after
an O(|S|) time preprocessing.

We set S = T#, for some letter # that does not occur in
T and is the lexicographically maximal letter occurring in S.
For each fragment T [i . . i+ `− 1], we compute the minimal
lexicographic suffix of string

Y =S[i . . i+ `− 1] · S[i . . i+ `− 1] · S[n+ 1]

=T [i . . i+ `− 1] · T [i . . i+ `− 1] ·#,

where k = 3 in O(k2) = O(1) time. This suffix of Y is the
minimal lexicographic rotation by Lemma 4.

3.1.2 Space-Efficient Construction of A`
It should be clear that, in the best case, the size of A`
is in O(n/`) and this bound is tight. The construction of
Theorem 2 requires O(n) space. Ideally, we would thus like
to compute A` efficiently using (strongly) sublinear space.
We generalize Theorem 2 to the following result.

Theorem 3. The set A`(T), for any ` > 0, any T of length n,
and any constant ε ∈ (0, 1], can be constructed in O(n+ n1−ε`)
time using O(nε + `+ |A`|) space.

Proof. We computeA`(T [dnε(i−1)e+1 . .max(dnεie+`, n)])
for all i ∈ [1, dn1−εe] using the algorithm from Theorem 2
and output their union. For any constant ε ∈ (0, 1], the
alphabet size |Σ| = nO(1) = (nε + `)O(1) is still polynomial
in the length nε + ` of the fragments, so computing one such
anchor set takes O(nε + `) time and space by Theorem 2.
We delete each fragment (and the associated data structure)
before processing the subsequent anchor set: it takes O(n+
n1−ε`) time and O(nε + `) additional space to construct
A`(T).

6

3.1.3 Expected Size of A`
We next analyze the expected size of A`(T). We first show

that if log ` grows no faster than log σ, where σ is the size
of the alphabet Σ, then the expected size of A` is in O(n/`).
Otherwise, we slightly amend the sampling process to ensure
that the expected size of the sample is again in O(n/`).

Lemma 5. If T is a string of length n, randomly generated by a
memoryless source over an alphabet of size σ ≥ 2 with identical
letter probabilities, then, for any integer ` > 0, the expected size of
A`(T) is in O(n log `

` log σ + n
`).

Proof. If ` = 1, then A`(T) = n. If ` = 2, then A`(T) =
1 + (n − 2)(2σ2 + 1)/3σ2. Now suppose ` ≥ 3. We say
that T [i . . i + ` − 1] introduces a new bd-anchor if there
exists j ∈ [1, `] such that j is the bd-anchor of T [i . . i +
` − 1], but j + k is not the bd-anchor of T [i − k . . i − k +
` − 1] for all k ∈ [1,max(` − j, i − 1)]. Let Ni(T) denote
the event that T [i . . i + ` − 1] introduces a new bd-anchor.
Since the letters are independent identically distributed, the
probability P[Ni(T)] only depends on and is non-increasing
in the number of preceding overlapping length-k substrings.
Therefore, the following holds for the expected size of A`(T):

E[|A`(T)|] =P[N1(T)] + · · ·+ P[Nn−`+1(T)]

≤1 + (n− `)P[N2(T)].

Let p be the length of the shortest prefix of the lexico-
graphically minimal rotation of T [2 . . `+ 1] which is strictly
smaller than the same length prefix of any other rotation of
T [2 . . `+ 1].

Note that P[N2(T)] is at most equal to the sum of the
following probabilities:

P[T [1 . . `] or T [2 . . `+ 1] is a power of some string] (1)
P[T [1 . . `] is primitive with bd-anchor 1] (2)

P[T [2 . . `+ 1] is primitive with bd-anchor > `− 3 log `

log σ
] (3)

P[T [2 . . `+ 1] is primitive and p ≥ 3 log `/ log σ]. (4)

To bound the probability in (1), note that

P[length-` string is a power of some string] ≤
∑

d<`,d|`

σ−(`−d)

≤
∑
d≤`/2

σ−(`−d)

= σ1−`/2/(σ − 1).

The probability in (2) is bounded by 1/` since each
letter of a primitive length-` string is equally likely to be
the anchor. Similarly, the probability in (3) is bounded by
(3 log `/ log σ+1)/`. Finally, the probability in (4) is bounded
by the probability that two prefixes of length d3 log `/ log σe
of rotations of T [2 . . ` + 1] are equal, which is at most
`2 · σ−3 log `/ log σ = 1/`. It follows that

P[N2(T)] ≤ 2σ1−`/2

(σ − 1)
+ 1/`+ (3 log `/ log σ + 1)/`+ 1/`

= O
(

log `

` log σ
+

1

`

)
.

We conclude that for any ` > 0 the expected size of A`(T) is
in O(n log `

` log σ + n
`).

We define a reduced version of bd-anchors to ensure that
the expected size of the sample is in O(n/`).

Definition 2 (Reduced bidirectional anchor). Given a string
X of length ` > 0 and an integer 0 ≤ r ≤ ` − 1, we define
the reduced bidirectional anchor of X as the lexicographically
minimal rotation j ∈ [1, ` − r] of X with minimal j. The
set of order-` reduced bd-anchors of a string T of length
n > ` is defined as the set Ared

` (T) of reduced bd-anchors of
T [i . . i+ `− 1], for all i ∈ [1, n− `+ 1].

Lemma 6. If T is a string of length n, randomly generated by a
memoryless source over an alphabet of size σ ≥ 2 with identical
letter probabilities, then, for any integer ` > 0, the expected size of
Ared
` (T) with r = d4 log `/ log σe is in O(n/`).

Proof. If ` ∈ {1, 2}, then Ared
` (T) ≤ n. Now suppose ` ≥ 3.

Analogously to Ni(T) in Lemma 5, we denote the event
that T [i . . i+ `− 1] introduces a new reduced bd-anchor by
N red
i (T). Again we find

E
[∣∣∣Ared

` (T)
∣∣∣] = P[N red

1 (T)] + · · ·+ P[N red
n−`+1(T)]

≤ 1 + (n− `)P[N red
2 (T)].

Let pred be the length of the shortest prefix of the lexico-
graphically minimal rotation j1 ∈ [1, ` − r] of T [2 . . ` + 1]
which is strictly smaller than the same length prefix of any
other rotation j2 ∈ [1, `− r] \ {j1}. Using a similar proof to
that of Lemma 5 we find that P[N red

2 (T)] is at most equal to
the sum of the following probabilities:

P[T [1 . . `] or T [2 . . `+ 1] is a power of some string] (5)
P[T [1 . . `] is primitive with bd-anchor 1] (6)
P[T [2 . . `+ 1] is primitive with bd-anchor `− r + 1] (7)

P[T [2 . . `+ 1] is primitive and pred. (8)

Thus, P[N red
2 (T)] ≤ 2σ1−`/2/(σ − 1) + 1/(` − r) + 1/(` −

r) + `2/σr = 2/`+ o (1/`) . We conclude that for any ` > 0
the expected size of Ared

` (T) is in O(n/`).

In particular, if log ` = O(log σ), we employ the sampling
mechanism underlying A`(T), otherwise (when log ` =
Ω(log σ)) we employ the sampling mechanism underlying
Ared
` (T) with r = d4 log `/ log σe. This ensures that the

expected size of the residual sampling is always in O(n/`).
We summarize our main result in the following theorem.

Theorem 4. If T is a string of length n, randomly generated by a
memoryless source with identical letter probabilities, then, for any
integer ` > 0, the expected size of A`(T) or Ared

` (T) is O(n/`).

Constructing Ared
` (T) in O(n) time requires a trivial

modification in the construction underlying Theorem 2. For
each fragment T [i . . i + ` − 1], instead of computing the
minimal lexicographic suffix of string

Y = S[i . . i+ `− 1] · S[i . . i+ `− 1] · S[n+ 1]

= T [i . . i+ `− 1] · T [i . . i+ `− 1] ·#,
we compute the minimal lexicographic suffix of string

Y red = S[i . . i+ `− 1] · S[i . . i+ `− 1− r] · S[n+ 1]

= T [i . . i+ `− 1] · T [i . . i+ `− 1− r] ·#,

7

in O(1) time. We also directly obtain the trade-off in Theo-
rem 3 for constructing Ared

` (T).

3.1.4 Minimizing the Size of A` is NP-hard
The number of bd-anchors depends on the lexicographic

total order defined on Σ. We now prove that finding the total
order which minimizes the number of bd-anchors is NP-hard
using a reduction from minimum feedback arc set [47]. Let
us start be defining this problem. Given a directed graph
G(V,E), a feedback arc set inG is a subset ofE that contains at
least one edge from every cycle in G. Removing these edges
from G breaks all of the cycles, producing a directed acyclic
graph. In the minimum feedback arc set problem, we are given
G(V,E), and we are asked to compute a smallest feedback
arc set in G. The decision version of the problem takes an
additional parameter k as input, and it asks whether all cycles
can be broken by removing at most k edges from E. The
decision version is NP-complete [47] and the optimization
version is APX-hard [24].

Theorem 5. Let T be a string of length n over alphabet Σ. Further,
let ` > 0 be an integer. Computing a total order ≤ on Σ which
minimizes |A`(T)| is NP-hard.

Proof. Let G = (Σ, A) be any instance of the minimum
feedback arc set problem. We will construct a string S ∈ Σ∗

in polynomial time in the size of G such that finding a total
order≤ on Σ which minimizesA4(S) corresponds to finding
a minimum feedback arc set in G.

We start with an empty string S. For each edge (a, b) ∈ A,
we append (aabab)2|A|+1 to S. Observe that, if a < b, all
the a’s of (aabab)2|A|+1 and none of its b’s are order-4 bd-
anchors, except possibly the first a and last b depending on
the preceding and subsequent letters in S. Thus there are
6|A|+ 2 to 6|A|+ 4 order-4 bd-anchors in (aabab)2|A|+1. If
on the other hand a > b, we analogously find that there will
be 4|A|+ 1 to 4|A|+ 3 order-4 bd-anchors in (aabab)2|A|+1.

Let d≤ be the number of edges (a, b) ∈ A such that a < b.
The total number of order-4 bd-anchors in S is

|A4(S)| = |A| · 2 · (2|A|+ 1) + d≤ · (2|A|+ 1) + ε,

with ε ∈ [−|A|, |A|]. Therefore, minimizing the total number
of order-4 bd-anchors in S is equivalent to finding an order
≤ on the set Σ of vertices of G which minimizes d≤.

Note that if we delete all edges (a, b) ∈ A such that a < b,
then the residual graph is acyclic. Moreover, for each acyclic
graph there exists an order on the vertices such that a > b
for all (a, b) ∈ A. Therefore the minimal d≤ equals the size
of the minimum feedback arc set.

We conclude that, since finding the size of the minimum
feedback arc set is NP-hard, so is finding a total order ≤ on Σ
which minimizes the total number of order-4 bd-anchors.

3.2 Density Evaluation
We compare the density of bd-anchors and reduced bd-
anchors, denoted by BDA and rBDA, respectively, to the
density of minimizers, for different values of w and k such
that ` = w + k − 1. This is a fair comparison because
` = w + k − 1 is the length of the fragments considered
by both mechanisms. We implemented bd-anchors, the stan-
dard minimizers mechanism from [71], and the minimizers

TABLE 1: Datasets characteristics.

Dataset Length Alphabet
n size |Σ|

DNA 200,000,000 4
XML 200,000,000 95

ENGLISH 200,000,000 224
PROTEINS 200,000,000 27
SOURCES 200,000,000 229

TABLE 2: Summary of competitors.

Competitor Comment
STD [71] Standard minimizers mechanism.
WIN [73] Minimizers mechanism

based on robust winnowing.
Miniception [86] It works for DNA alphabet and

is based on minimizers.
PASHA [26] It works for DNA alphabet and

is based on Universal Hitting Sets [68].

mechanism with robust winnowing from [73]. The standard
minimizers and those with robust winnowing are referred
to as STD and WIN, respectively. There exists a long line of
research on improving the density of minimizers in special
regimes (see Section 6 for details). We stress that most of
these algorithms are designed, implemented, or optimized,
only for the DNA alphabet. We have tested against two state-of-
the-art tools employing such algorithms: Miniception [86] and
PASHA [26]. The former did not give better results than STD
or WIN for the tested (w, k) values; and the latter does not
scale beyond k = 16 or with large alphabets. We have thus
omitted these results. Table 2 summarizes our competitors.

For bd-anchors, we used Booth’s algorithm, which is
easy to implement and reasonably fast. For minimizers, we
used Karp-Rabin fingerprints [48]. (Note that such “random”
minimizers tend to perform even better than the ones based
on lexicographic total order in terms of density [86].) For the
reduced version of bd-anchors, we used r = d3 log `/ log σe,
because the r value suggested by Lemma 6 is relatively large
for the small ` values tested; e.g. for ` = w+ k− 1 = 15 and
σ = 4, d4 log `/ log σe = 8. Throughout, we do not evaluate
construction times, as all implementations are reasonably fast,
and we make the standard assumption that preprocessing
is only required once. We used five string datasets from the
popular Pizza & Chili corpus [29] (see Table 1 for the datasets
characteristics).

All implementations referred to in this paper have been
written in C++ and compiled at optimization level -O3. The
source code of our implementations is available at https:
//github.com/solonas13/bd-anchors.

All experiments reported in this paper were conducted
using a single core of an AMD Opteron 6386 SE 2.8GHz CPU
and 252GB RAM running GNU/Linux.

As can be seen by the results depicted in Figure 3, the
density of both BDA and rBDA in the case of DNA, XML, and
ENGLISH is either significantly smaller than or competitive
to the STD and WIN minimizers density, especially for small
w. Similar results for PROTEINS and SOURCES can be found
in Supplemental Material. This is useful because a lower
density results in smaller indexes and less computation (see
Section 4), and because small w is of practical interest (see
Section 5). For instance, the widely-used long-read aligner

https://github.com/solonas13/bd-anchors
https://github.com/solonas13/bd-anchors

8

0.00

0.05

0.10

0.15

0.20

8
,8

8
,1

6
8
,3

2
8
,6

4
8
,1

2
8

1
6
,8

1
6
,1

6
1
6
,3

2
1
6
,6

4
1
6
,1

2
8

3
2
,8

3
2
,1

6
3
2
,3

2
3
2
,6

4
3
2
,1

2
8

6
4
,8

6
4
,1

6
6
4
,3

2
6
4
,6

4
6
4
,1

2
8

1
2
8
,8

1
2
8
,1

6
1
2
8
,3

2
1
2
8
,6

4
1
2
8
,1

2
8

w,k

D
e
n
s
it
y

BDA

rBDA

STD

WIN

(a) DNA

0.00

0.05

0.10

0.15

0.20

8
,8

8
,1

6
8
,3

2
8
,6

4
8
,1

2
8

1
6
,8

1
6
,1

6
1
6
,3

2
1
6
,6

4
1
6
,1

2
8

3
2
,8

3
2
,1

6
3
2
,3

2
3
2
,6

4
3
2
,1

2
8

6
4
,8

6
4
,1

6
6
4
,3

2
6
4
,6

4
6
4
,1

2
8

1
2
8
,8

1
2
8
,1

6
1
2
8
,3

2
1
2
8
,6

4
1
2
8
,1

2
8

w,k

D
e
n
s
it
y

BDA

rBDA

STD

WIN

(b) XML

0.00

0.05

0.10

0.15

0.20

8
,8

8
,1

6
8
,3

2
8
,6

4
8
,1

2
8

1
6
,8

1
6
,1

6
1
6
,3

2
1
6
,6

4
1
6
,1

2
8

3
2
,8

3
2
,1

6
3
2
,3

2
3
2
,6

4
3
2
,1

2
8

6
4
,8

6
4
,1

6
6
4
,3

2
6
4
,6

4
6
4
,1

2
8

1
2
8
,8

1
2
8
,1

6
1
2
8
,3

2
1
2
8
,6

4
1
2
8
,1

2
8

w,k

D
e
n
s
it
y

BDA

rBDA

STD

WIN

(c) ENGLISH

Fig. 3: Density vs. w, k for ` = w + k − 1 and the first three
datasets of Table 1.

Minimap2 [58] stores the selected minimizers of a reference
genome in a hash table to find exact matches as anchors
for seed-and-extend alignment. The parameters w and k are
set based on the required sensitivity of the alignment, and
thus w and k cannot be too large for high sensitivity. Thus,
a lower sampling density reduces the size of the hash table,
as well as the computation time, by lowering the average
number of selected minimizers to consider when performing
an alignment. Furthermore, although the datasets are not
uniformly random, rBDA performs (often, significantly)
better than BDA as ` grows, as suggested by Lemmas 5
and 6.

We next report the average number (AVG) of bd-anchors
of order ` ∈ {4, 8, 12, 16} over all strings of length n = 20
(see Table 3a) and over all strings of length n = 32 (see
Table 3b), both over a binary alphabet. Notably, the results
show that AVG always lies in [n/`, 2n/`] even if not using the
reduced version of bd-anchors (see Lemma 6). As expected
by Lemma 5, the analogous AVG values using a ternary
alphabet (not reported here) were always lower than the
corresponding ones with a binary alphabet.

TABLE 3: Average number of bd-anchors for varying ` and:
(a) n = 20 and (b) n = 32.

(n, `) (20, 4) (20, 8) (20, 12) (20, 16)

n/` 5 2.5 1.66 1.25
AVG 8.53 4.37 2.77 1.76
2n/` 16 8 5.33 4

(a)

(n, `) (32, 4) (32, 8) (32, 12) (32, 16)

n/` 8 4 2,66 2
AVG 14.16 7.67 5.26 3.85
2n/` 16 8 5.33 4

(b)

4 TEXT INDEXING

We show how bd-anchors can be applied to speed up on-line
pattern searches. Let T be a string. We focus, in particular,
on indexing T for answering the following type of on-line
pattern search queries: Given a query string Q, return all
occurrences of Q in T . In Section 4.1, we present our index
and in Section 4.2 its experimental evaluation.

4.1 Index Construction and Querying
Before presenting our index, let us start with a basic defini-
tion that is central to our querying process.

Definition 3 ((α, β)-hit). Given an order-` bd-anchor jQ ∈
A`(Q), for some integer ` > 0, of a query string Q, two
integers α > 0, β > 0, with α + β ≥ ` + 1, and an order-
` bd-anchor jT ∈ A`(T) of a target string T , the ordered
pair (jQ, jT) is called an (α, β)-hit if and only if T [jT −
α+ 1 . . jT] = Q[jQ − α+ 1 . . jQ] and T [jT . . jT + β − 1] =
Q[jQ . . jQ + β − 1].

Intuitively, the parameters α and β let us choose a
fragment of Q that is anchored at jQ.

Example 8. Let T = aabaaabcbda, Q = aacabaaaae,
and ` = 5. Consider that we would like to find the common
fragment Q[4 . . 8] = T [2 . . 6] = abaaa. We know that the
bd-anchor of order 5 corresponding to Q[4 . . 8] is 6 ∈ A5(Q),
and thus to find it we set α = 3 and β = 3. The ordered
pair (6, 4) is a (3, 3)-hit because for 4 ∈ A5(T), we have:
T [4−3+1 . . 4] = Q[6−3+1 . . 6] = aba and T [4 . . 4+3−1] =
Q[6 . . 6 + 3− 1] = aaa.

We would like to construct a data structure over T , which
is based on A`(T), such that, when we are given an order-
` bd-anchor jQ over Q as an on-line query, together with
parameters α and β, we can report all (α, β)-hits efficiently.
To this end, we present an efficient data structure, denoted by
I`(T), which is constructed on top of T , and answers (α, β)-
hit queries in near-optimal time. We prove the following
result.

Theorem 6. Given a string T of length n and an inte-
ger ` > 0, the I`(T) index can be constructed in O(n +
|A`(T)|

√
log(|A`(T)|)) time. For any constant ε > 0, I`(T):

• occupies O(|A`(T)|) extra space and reports all k (α, β)-
hits in O(α+ β + (k + 1) logε(|A`(T)|)) time; or

• occupies O(|A`(T)| logε(|A`(T)|)) extra space and re-
ports all k (α, β)-hits inO(α+β+log log(|A`(T)|)+k)
time.

9

Let us denote by
←−
X = X[|X|] . . . X[1] the reversal of

string X . We now describe our data structure.

4.1.1 Construction of I`(T)

Given A`(T), we construct two sets SL` (T) and SR` (T) of
strings; conceptually, the reversed suffixes going left from
j to 1, and the suffixes going right from j to n, for all j in
A`(T). In particular, for the bd-anchor j, we construct two
strings:

←−−−−−
T [1 . . j] ∈ SL` (T) and T [j . . n] ∈ SR` (T). Note that,

|SL` (T)| = |SR` (T)| = |A`(T)|, since for every bd-anchor in
A`(T) we have a distinct string in SL` (T) and in SR` (T).

We construct two compacted tries T L` (T) and T R` (T)
over SL` (T) and SR` (T), respectively, to index all strings.
Every string is concatenated with some special letter $
not occurring in T , which is lexicographically minimal, to
make SL` (T) and SR` (T) prefix-free (this is standard for
conceptual convenience). The leaf nodes of the compacted
tries are labeled with the corresponding j: there is a one-to-
one correspondence between a leaf node and a bd-anchor j.
In O(|A`(T)|) time, we also enhance the nodes of the tries
with a perfect static dictionary [32] to ensure constant-time
retrieval of edges by the first letter of their label. Let LL` (T)
denote the list of the leaf labels of T L` (T) as they are visited
using a depth-first search traversal. LL` (T) corresponds to
the (labels of the) lexicographically sorted list of SL` (T) in
increasing order. For each node u in T L` (T), we also store
the corresponding interval [xu, yu] over LL` (T). Analogously
for R, LR` (T) denotes the list of the leaf labels of T R` (T)
as they are visited using a depth-first search traversal and
corresponds to the (labels of the) lexicographically sorted list
of SR` (T) in increasing order. For each node v in T R` (T), we
also store the corresponding interval [xv, yv] over LR` (T).

The total size occupied by the tries is Θ(|A`(T)|) because
they are compacted: we label the edges with intervals over
[1, n] from T .

We also construct a 2D range reporting data structure
over the following points in set R`(T):

(x, y) ∈ R`(T) ⇐⇒ LL` (T)[x] = LR` (T)[y].

Note that |R`(T)| = |A`(T)| because the set of leaf labels
stored in both tries is precisely the set A`(T). Let us
remark that the idea of employing 2D range reporting for
bidirectional pattern searches has been introduced by Amir
et al. [3] for text indexing and dictionary matching with one
error; see also [61].

This completes the construction of I`(T). We next explain
how we can query I`(T).

4.1.2 Querying
Given a bd-anchor jQ over a stringQ as an on-line query and
parameters α, β > 0, we spell

←−−−−−−−−−−−−−
Q[jQ − α+ 1 . . jQ] in T L` (T)

and Q[jQ . . jQ + β − 1] in T R` (T) starting from the root
nodes. If any of the two strings is not spelled fully, we return
no (α, β)-hits. If both strings are fully spelled, we arrive
at node u in T L` (T) (resp. v in T R` (T)), which corresponds
to an interval over LL` (T) stored in u (resp. LR` (T) in v).
We obtain the two intervals [xu, yu] and [xv, yv] forming
a rectangle and ask the corresponding 2D range reporting
query. It can be readily verified that this query returns all
(α, β)-hits.

Example 9. Let T = aabaaabcbda and A5(T) =
{4, 5, 6, 11}. We have the following strings in SL(T):←−−−−−
T [1 . . 4] = abaa;

←−−−−−
T [1 . . 5] = aabaa;

←−−−−−
T [1 . . 6] = aaabaa;

and
←−−−−−−
T [1 . . 11] = adbcbaaabaa. We have the following

strings in SR(T): T [4 . . 11] = aaabcbda; T [5 . . 11] =
aabcbda; T [6 . . 11] = abcbda; T [11 . . 11] = a. Inspect
Figure 4.

Proof of Theorem 6. We use the O(n)-time algorithm under-
lying Theorem 2 to construct A`(T). We use the O(n)-time
algorithm from [6], [12] to construct the compacted tries from
A`(T). We extract the |A`(T)| points (x, y) ∈ R`(T) using
the compacted tries inO(|A`(T)|) time. For the first trade-off
of the statement, we use the O(|A`(T)|

√
log(|A`(T)|))-time

algorithm from [8] to construct the 2D range reporting data
structure over R`(T) from [11]. For the second trade-off, we
use the O(|A`(T)|

√
log(|A`(T)|))-time algorithm from [34]

to construct the 2D range reporting data structure overR`(T)
from the same paper.

We obtain the following corollary for the fundamental
problem of text indexing.

Corollary 7. Given I`(T) constructed for some integer ` > 0
and some constant ε > 0 over string T , we can report all k
occurrences of any pattern Q, |Q| ≥ `, in T in time:

• O(|Q| + (k + 1) logε(|A`(T)|)) when I`(T) occupies
O(|A`(T)|) extra space; or

• O(|Q| + log log(|A`(T)|) + k) when I`(T) occupies
O(|A`(T)| logε(|A`(T)|)) extra space.

Proof. Every occurrence of Q in T is prefixed by string P =
Q[1 . . `]. We first compute the bd-anchor of P in O(`) time
using Booth’s algorithm. Let this bd-anchor be j. We set
α = j and β = |Q| − j + 1. The result follows by applying
Theorem 6.

4.1.3 Querying Multiple Fragments
In the case of approximate pattern matching, we may want
to query multiple length-` fragments of a string Q given
as an on-line query, and not only its length-` prefix. We
show that such an operation can be done efficiently using
the bd-anchors of Q and the I`(T) index.

Corollary 8. Given I`(T) constructed for some ` > 0 and
some constant ε > 0 over T , for any sequence (not necessarily
consecutive) of d > 0 length-` fragments of a pattern Q, |Q| ≥ `,
corresponding to the same order-` bd-anchor of Q, we can report
all kd occurrences of all d fragments in T in time:

• O(` + (d + kd) logε(|A`(T)|)) when I`(T) occupies
O(|A`(T)|) space; or

• O(` + d log log(|A`(T)|) + kd) when I`(T) occupies
O(|A`(T)| logε(|A`(T)|)) space.

Proof. Let the order-` bd-anchor over Q be jQ and the
corresponding parameters be (α1, β1), · · · , (αd, βd), with
αi + βi = ` + 1. Observe that αi > αi+1 and βi < βi+1.
Starting from jQ, the string

←−−−−−−−−−−−−−−
Q[jQ − αi + 1 . . jQ] we spell

for fragment i is the prefix of
←−−−−−−−−−−−−−−−−
Q[jQ − αi−1 + 1 . . jQ] for

fragment i− 1. The analogous property holds for the other
direction: the string Q[jQ . . jQ + βi] we spell for fragment i

10

a

b$ a

a b
.

. . .

411 5 6

11

4

6

5

a
d

b
a baa$

a

1 2 3 4

1

2

3

4

. . .

. . .

a a $

T R
` (T)

T L
` (T)

(a) The I`(T) index

a

b$ a

a b
.

. . .

411 5 6

11

4

6

5

a
d

b
a baa$

a

1 2 3 4

1

2

3

4

. . .

. . .

a a $

T R
` (T)

T L
` (T)

(b) Querying abaaa

Fig. 4: Let T = aabaaabcbda and ` = 5. Further let Q = aacabaaaae, the bd-anchor 6 ∈ A5(Q) of order 5 corresponding
to Q[4 . . 8], α = 3 and β = 3. The figure illustrates the I`(T) index and how we find that Q[4 . . 8] = T [2 . . 5] = abaaa: the
fragment T [2 . . 5] is anchored at position 4.

is the prefix of Q[jQ . . jQ + βi+1] for fragment i+ 1. Thus it
takes only O(`) time to construct all d rectangles. Finally, we
ask the d corresponding 2D range reporting queries to obtain
all kd occurrences in the claimed time complexities.

Example 10. Let ` = 5, T = aacaaabcbda, and Q =
aacaaaccbda. Strings T and Q have the same set of bd-
anchors of order 5: A5(T) = A5(Q) = {4, 5, 6, 11}. Say we
want to query Q[1 . . 5] = aacaa and Q[3 . . 7] = caaac at
the same time, which both share 4 as their order-5 bd-anchor.
The corresponding parameters are (4, 2) (for Q[1 . . 5]) and
(2, 4) (for Q[3 . . 7]). Starting from position 4 of Q, the string←−−−−−−−−−−−
Q[4− 2 + 1 . . 4] =

←−−−−−
Q[3 . . 4] = ac we spell for the second

fragment is the prefix of
←−−−−−−−−−−−
Q[4− 4 + 1 . . 4] =

←−−−−−
Q[1 . . 4] = acaa

for the first fragment. Thus we process both fragments at
the same time. The analogous property holds for the other
direction showing that O(`) time suffices for processing.

4.2 Index Evaluation
Consider a hash table with the following (key, value) pairs:
the key is the hash value h(S) of a length-k string S; and the
value (satellite data) is a list of occurrences of S in T . It should
be clear that such a hash table indexing the minimizers of
T does not perform well for on-line pattern searches of
arbitrary length because it would need to verify the remaining
prefix and suffix of the pattern using letter comparisons
for all occurrences of a minimizer in T . We thus opted for
comparing our index to the one of [36], which addresses
this specific problem by sampling the suffix array [62] with
minimizers to reduce the number of letter comparisons
during verification. We also compared against two classic
text indexes: FM Index [28] and the suffix array (SA) [62].
Our implementations of these text indexes are based on
SDSL [35], a mature library for succinct data structures.
Table 4 summarizes the indexes we compared against.

To ensure a fair comparison, we have implemented the
basic index from [36]; we denote it by GR Index. We used
Karp-Rabin [48] fingerprints for computing the minimizers
of T . We also used the array-based version of the suffix tree
that consists of the suffix array (SA) and the longest common

TABLE 4: Summary of competitors.

Competitor Comment
GR Index [36] Suffix array sampled with minimizers.

SA [62] Suffix array.
FM Index [28] Compressed text index based on

the Burrows-Wheeler transform.

prefix (LCP) array [62]; SA was constructed using SDSL [35]
and the LCP array using the Kasai et al. [49] algorithm.

We sampled the SA using the minimizers. Given a pattern
Q, we searched Q[j . . |Q|] starting with the minimizer
Q[j . . j + k − 1] using the Manber and Myers [62] algorithm
on the sampled SA. For verifying the remaining prefix
Q[1 . . j − 1] of Q, we used letter comparisons, as described
in [36]. The space complexity of this implementation is O(n)
and the extra space for the index isO(|Mw,k(T)|). The query
time is not bounded. We have implemented two versions
of our index. We used Booth’s algorithm for computing
the bd-anchors of T . We used SDSL for SA construction
and the Kasai et al. algorithm for LCP array construction.
We sampled the SA using the bd-anchors thus constructing
LL` (T) and LR` (T). Then, the two versions of our index are:

1) BDA Index v1: Let j be the bd-anchor of Q[1 . . `]. For←−−−−−
Q[1 . . j] (resp. Q[j . . |Q|]) we used the Manber and My-
ers algorithm for searching over LL` (T) (resp. LR` (T)).
We used range trees [9] implemented in CGAL [76]
for 2D range reporting as per the described querying
process. The space complexity of this implementation
is O(n + |A`(T)| log(|A`(T)|)) and the extra space for
the index is O(|A`(T)| log(|A`(T)|)). The query time is
O(|Q|+ log2(|A`(T)|) + k), where k is the total number
of occurrences of Q in T .

2) BDA Index v2: Let j be the bd-anchor of Q[1 . . `]. If
|Q| − j + 1 ≥ j (resp. |Q| − j + 1 < j), we search for
Q[j . . |Q|] (resp.

←−−−−−
Q[1 . . j]) using the Manber and Myers

algorithm on LR` (T) (resp. LL` (T)). For verifying the
remaining part of the pattern we used letter comparisons.
The space complexity of this implementation is O(n)
and the extra space for the index is O(|A`(T)|). The

11

query time is not bounded.

(a) DNA

(b) XML

(c) ENGLISH

Fig. 5: Average query time (ms) vs. w, k for ` = w + k − 1
and the first three datasets of Table 1.

For each of the five real datasets of Table 1 and each
query string length `, we randomly extracted 500,000 sub-
strings from the text and treated each substring as a query,
following [36]. We plot the average query time in Figure 5
for the first three datasets of Table 1 (similar results for the
other two datasets are in Supplemental Material). As can
be seen, BDA Index v2 consistently outperforms GR Index
across all datasets and all ` values. The better performance
of BDA Index v2 is due to two theoretical reasons. First,
the verification strategy exploits the fact that the index is
bidirectional to apply the Manber and Myers algorithm to
the largest part of the pattern, which results in fewer letter
comparisons. Second, bd-anchors generally have smaller
density compared to minimizers; see Figure 6 for the first
three datasets of Table 1 and Supplemental Material for the
rest. We also plot the peak memory usage; see Figure 7 for
the first three datasets of Table 1 and Supplemental Material
for the rest. As can be seen, BDA Index v2 requires a similar
amount of memory to GR Index.

BDA Index v1 was slower than GR Index for small `
but faster for large ` in one of the two datasets used and

Index

(a) DNA

Index

(b) XML

Index

(c) ENGLISH

Fig. 6: Density vs. w, k for ` = w + k − 1 and the first three
datasets of Table 1.

had by far the highest memory usage. Let us stress that the
inefficiency of BDA Index v1 is not due to inefficiency in the
query time or space of our algorithm. It is merely because
the range tree implementation of CGAL, which is a standard
off-the-shelf library, is unfortunately inefficient in terms of
both query time and memory usage; see also [75], [30].

We now establish that BDA Index v2 offers much faster
query time than the FM Index and the SA (see Figure 8).
Specifically, BDA Index v2 outperformed the FM Index by
up to 2 orders of magnitude, in the case of DNA that has a
small alphabet (see Figure 8a), and by up to 3 to 4 orders of
magnitude, in the case of PROTEINS and ENGLISH that
have larger alphabets (see Figures 8b and 8c). BDA Index
v2 was also faster than SA. This is remarkable since BDA
Index v2 is a sampled version of SA; namely, we sample the
suffix array using bd-anchors. Similar results for the other
two datasets are in Supplemental Material. Our results are
extremely encouraging, because both the FM Index and the
SA are commonly used for text indexing and have also been
incorporated into widely-used software [54], [59].

12

(a) DNA

(b) XML

(c) ENGLISH

Fig. 7: Peak memory usage (GB) vs. w, k for ` = w + k − 1
and the first three datasets of Table 1.

4.2.1 Discussion
The proposed I`(T) index, which is based on bd-anchors,

has the following attributes:
1) Construction: A`(T) is constructed in O(n) worst-

case time and I`(T) is constructed in O(n +
|A`(T)|

√
log(|A`(T)|)) worst-case time. These time

complexities are near-linear in n and do not depend
on the alphabet Σ as long as |Σ| = nO(1), which is true
for virtually any real scenario.

2) Index Size: By Theorem 6, I`(T) can occupyO(|A`(T)|)
space. By Theorem 4, the size of A`(T) (or Ared

` (T))
is O(n/`) in expectation and so I`(T) can also be of
size O(n/`). In practice this depends on T and on the
implementation of the 2D range reporting data structure.

3) Querying: The I`(T) index answers on-line pattern
searches in near-optimal time.

4) Flexibility: Note that one would have to reconstruct
a (hash-based) index, which indexes the set of (w, k)-
minimizers, to increase specificity or sensitivity: in-
creasing k increases the specificity and decreases the
sensitivity. Our I`(T) index, conceptually truncated at

(a) DNA

(b) XML

(c) ENGLISH

Fig. 8: Average query time (ms) vs. ` for the first three
datasets of Table 1.

string depth k, is essentially an index based on (w, k)-
minimizers, which additionally wrap around. We can
thus increase specificity by considering larger values for
α and β or increase sensitivity by considering smaller
values for α and β. This effect can be realized without
reconstructing our I`(T) index: we just adapt α and β
upon querying accordingly.

5 TOP-K SIMILARITY SEARCH UNDER EDIT DIS-
TANCE

We show how bd-anchors can be applied to speed up
similarity search under edit distance. Let D be a collection of
strings called dictionary. We focus, in particular, on indexing
D for answering the following type of top-K queries: Given
a query string Q and an integer K , return K strings from the
dictionary that are closest to Q with respect to edit distance.
In Section 5.1, we present our index and in Section 5.2 its
experimental evaluation.

13

5.1 Index Construction and Querying

We follow a typical seed-chain-align approach as used by
several bioinformatics applications [2], [19], [57], [58]. The
main new ingredients we inject, with respect to this classic
approach, is that we use: (1) bd-anchors as seeds; and (2) I`
to index the dictionary D, for some integer parameter ` > 0.

5.1.1 Construction

We require an integer parameter ` > 0 defining the order
of the bd-anchors. We set T = S1 . . . S|D|, where Si ∈ D,
compute the bd-anchors of order ` of T , and construct the
I`(T) index (see Section 4) using the bd-anchors.

5.1.2 Querying

We require two parameters τ ≥ 0 and δ ≥ 0. The former
parameter controls the sensitivity of our filtering step (Step 2
below); and the latter one controls the sensitivity of our
verification step (Step 3 below). Both parameters trade
accuracy for speed.

1) For each query string Q, we compute the bd-anchors of
order `. For every bd-anchor jQ, we take an arbitrary
fragment (e.g. the leftmost) of length ` anchored at jQ as
the seed. Let this fragment start at position iQ. This im-
plies a value for α and β, with α+β = `+1; specifically
for Q[iQ . . iQ+ `− 1] we have Q[iQ . . jQ] = Q[jQ−α+
1 . . jQ] and Q[jQ . . iQ + ` − 1] = Q[jQ . . jQ + β − 1].
For every bd-anchor jQ, we query

←−−−−−−−−−−−−−
Q[jQ − α+ 1 . . jQ]

in T L` (T) and Q[jQ . . jQ + β − 1] in T R` (T) and collect
all (α, β)-hits.

2) Let τ ≥ 0 be an input parameter and let LQ,S =
(q1, s1), . . . , (qk, sh) be the list of all (α, β)-hits between
the queried fragments of string Q and fragments of a
string S ∈ D. If h < τ , we consider string S as not found.
The intuition here is that if Q and S are sufficiently
close with respect to edit distance, they would have a
relatively long LQ,S [19]. If h ≥ τ , we sort the elements
of LQ,S with respect to their first component. (This
comes for free because we process Q from left to right.)
We then compute a longest increasing subsequence (LIS)
in LQ,S with respect to the second component, which
chains the (α, β)-hits, in O(h log h) time [72] per LQ,S
list. We use the LIS of LQ,S to estimate the identity score
(total number of matching letters in a fixed alignment)
for Q and S, which we denote by EQ,S , based on the
occurrences of the (α, β)-hits in the LIS.

3) Let δ ≥ 0 be an input parameter and let EK be the
Kth largest estimated identity score. We extract, as
candidates, the ones whose estimated identity score is at
least EK − δ. For every candidate string S, we close the
gaps between the occurrences of the (α, β)-hits in the
LIS using dynamic programming [55], thus computing
an upper bound on the edit distance between Q and
S (UB score). In particular, closing the gaps consists
in summing up the exact edit distance for all pairs of
fragments (one from S and one from Q) that lie in
between the (α, β)-hits. We return K strings from the
list of candidates with the lowest UB score. If δ = 0, we
return K strings with the highest EQ,S score.

5.2 Index Evaluation
We compared our algorithm, called BDA Search, to Min
Search, the state-of-the-art tool for top-K similarity search
under edit distance proposed by Zhang and Zhang in [84].
The main concept used in Min Search is the rank of a letter in
a string, defined as the size of the neighborhood of the string
in which the letter has the minimum hash value. Based
on this concept, Min Search partitions each string in the
dictionary D into a hierarchy of substrings and then builds
an index comprised of a set of hash tables, so that strings
having common substrings and thus small edit distance are
grouped into the same hash table. To find the top-K closest
strings to a query string, Min Search partitions the query
string based on the ranks of its letters and then traverses the
hash tables comprising the index. Thanks to the index and
the use of several filtering tricks, Min Search is at least one
order of magnitude faster with respect to query time than
popular alternatives [83], [85], [21].

We implemented two versions of BDA Search: BDA
Search v1 which is based on BDA Index v1; and BDA
Search v2 which is based on BDA Index v2. For Min
Search, we used the C++ implementation that is available
in https://github.com/kedayuge/Search.

In the following, we present experiments on synthetic
and on real data.

5.2.1 Synthetic Datasets
We constructed synthetic datasets, referred to as SYN, in
a way that enables us to study the impact of different
parameters and efficiently identify the ground truth (top-
K closest strings to a query string with respect to edit
distance). Specifically, we first generated 50 query strings
and then constructed a cluster of K strings around each
query string. To generate the query strings, we started from
an arbitrary string Q of length |Q| = 1000 from a real
dataset of protein sequences, used in [84], and generated
a string Q′ that is at edit distance e from Q, by performing
e edit distance operations, each with equal probability.
Then, we treated Q′ as Q and repeated the process to
generate the next query string. To create the clusters, we
first added each query string into an initially empty cluster
and then added K − 1 strings, each at edit distance at most
e′ < e from the query string. The strings were generated by
performing at most e′ edit distance operations, each with
equal probability. Thus, each cluster contains the top-K
closest strings to the query string of the cluster. We used
K ∈ {5, 10, 15, 20, 25}, d = e

|Q| ∈ {0.1, 0.15, 0.2, 0.25, 0.3},
and d′ = e′

|Q| = d − 0.05. We evaluated query answering
accuracy using the F1 score [63], expressed as the harmonic
mean of precision and recall1. For BDA Search, we report
results for τ = 0 (full sensitivity during filtering) and δ = 0
(no sensitivity during verification), as it was empirically
determined to be a reasonable trade-off between accuracy
and speed. For Min Search, we report results using its default
parameters from [84].

1. Precision is the ratio between the number of returned strings that
are among the top-K closest strings to a query string and the number of
all returned strings. Recall is the ratio between the number of returned
strings that are among the top-K closest strings to a query string and
K. Since all tested algorithms return K strings, the F1 score in our
experiments is equal to precision and equal to recall.

https://github.com/kedayuge/Search

14

(a) SYN

(b) SYN

Fig. 9: F1 score vs. (a) d, d′, `, for K = 20, and (b) `, K, for
d = 0.15 and d′ = 0.1.

We plot the F1 scores and average query time in Figures 9
and 10, respectively. All methods achieved almost perfect ac-
curacy, in all tested cases. BDA Search slightly outperformed
Min Search (by up to 1.1%), remaining accurate even for
large `; the changes to F1 score for Min Search as ` varies
are because the underlying method is randomized. However,
both versions of BDA Search were more than one order of
magnitude faster than Min Search on average (over all results
of Figure 10), with BDA Search v1 being 2.9 times slower
than BDA Search v2 on average, due to the inefficiency of
the range tree implementation of CGAL. Furthermore, both
versions of BDA Search scaled better with respect to K.
For example, the average query time for BDA Search v1
became 2 times larger when K increased from 5 to 25 (on
average over ` values), while that for Min Search became
5.4 times larger on average. The reason is that verification
in Min Search, which increases the accuracy of this method,
becomes increasingly expensive as K gets larger. The peak
memory usage for these experiments is reported in Figure 11.
Although Min Search outperforms BDA Search in terms of
memory usage, BDA Search v2 still required a very small
amount of memory (less than 1GB). BDA Search v1 required
more memory for the reasons mentioned in Section 4.

5.2.2 Real Datasets

We used two real datasets containing genomic sequences.
The first of these datasets, referred to as VIR, was obtained
from [4] and contains: 116 Human rhinovirus genomes; 59
Ebola virus genomes; and 38 Influenza A virus genomes. The
second dataset, referred to as GEN, was obtained from [84]
and contains genomic sequences obtained by randomly

(a) SYN

(b) SYN

Fig. 10: Average query time (ms) vs. (a) d, d′, `, for K = 20,
and (b) `, K , for d = 0.15 and d′ = 0.1.

(a) SYN

(b) SYN

Fig. 11: Peak memory usage (GB) vs. (a) d, d′, `, for K = 20,
and (b) `, K , for d = 0.15 and d′ = 0.1.

sampling substrings from Chromosome 20 of 50 Homo
Sapiens individuals, and it was used in the evaluation of

15

TABLE 5: Datasets characteristics.

Dataset Dictionary Alphabet Avg dictionary Max dictionary
size |D| size |Σ| string length string length

VIR 213 11 9,391 18,961
GEN 50,000 4 5,000 5,152

Min Search [84]. In the experiments with VIR, we used each
string in this dataset as a query string. In the experiments
with GEN, we used the first 10 queries from the query
workload of [84] as query strings. Table 5 summarizes the
characteristics of VIR and GEN. We compared BDA Search
v2 to Min Search, since BDA Search v2 was equally effective
but much faster than BDA Search v1. In our experiments, we
specified a “normalized” δ per query string Q, dividing the
input parameter δ of our method with the query length
|Q|, to account for the different query lengths. We also
fixed the order ` of bd-anchors to 12 and set parameter
τ to 0; these values were empirically determined to offer an
excellent trade-off between accuracy and efficiency, as it is
demonstrated below.

We plot the average query time for varying K in Fig-
ure 12. BDA Search v2 outperformed Min Search for all K
values and all datasets. The difference is in fact substantial.
Specifically, our method was two to six times faster in VIR
and more than one order of magnitude faster in GEN, which
is a much larger dataset. These results are due to the use of
bd-anchors; our method does not use any further filtering
tricks unlike Min Search. Note also that increasing δ led to
an increase in the average query time, since an edit distance
upper bound is computed for more strings. However, the
increase in the average query time was very small.

Figure 13 shows the total edit distance for all query
answers in the experiment of Figure 12, for varying K.
This measure simply sums up the edit distance between the
query string and each of the K strings returned. It was used
as a simple indicator of accuracy; it was computationally
infeasible to compute the ground truth. As can be seen,
our method was comparable to Min Search in terms of
accuracy. In particular, the relative error between the total
edit distance for all query answers for our method and that
for Min Search was never larger than 0.5% in VIR and 0.9%
in GEN (see Figure 14). Note that increasing δ helps accuracy
but up to one point, since our method first finds a good set
of candidates and then computes an upper bound of edit
distance (Step 3) instead of the actual edit distance, which
may introduce some error.

5.2.3 Discussion

BDA Search offers comparable accuracy to that of Min
Search but is faster by an order of magnitude or more in
query time, especially for large dictionaries of long query
strings. These results are very encouraging because the effi-
ciency of BDA Search is entirely due to injecting bd-anchors
and not due to any further filtering tricks such as those
employed by Min Search. Min Search clearly outperforms
BDA Search in memory usage, albeit the memory usage of
BDA Search v2 is still quite modest.

Min Search

(a) VIR

Min Search

(b) GEN

Fig. 12: Average query time (ms) vs. K and δ for ` = 12.

Min Search

(a) VIR

Min Search

(b) GEN

Fig. 13: Total edit distance vs. K and δ for ` = 12.

6 RELATED WORK

Although every sampling mechanism based on minimizers
primarily aims at satisfying Properties 1 and 2, different
mechanisms employ total orders that lead to substantially
different total numbers of selected minimizers. Thus, research
on minimizers has focused on determining total orders which
lead to the lowest possible density (recall that the density
is defined as the number of selected length-k substrings

16

(a) VIR

(b) GEN

Fig. 14: Average relative error of total edit distance (%) vs. K
and δ for ` = 12.

over the length of the input string). In fact, much of the
literature focuses on the average case [68], [65], [64], [26], [86];
namely, the lowest expected density when the input string is
random. In practice, many works use a “random minimizer”
where the order is defined by choosing a permutation of
all the length-k strings at random (e.g. by using a hash
function, such as the Karp-Rabin fingerprints [48], on the
length-k strings). Such a randomized mechanism has the
benefit of being easy to implement and providing good
expected performance in practice.

6.1 Minimizers and Universal Hitting Sets
A universal hitting set (UHS) is an unavoidable set of length-k
strings, i.e., it is a set of length-k strings that “hits” every
(w + k − 1)-long fragment of every possible string. The
theory of universal hitting sets [68], [64], [50], [87] plays an
important role in the current theory for minimizers with low
density on average. In particular, if a UHS has small size, it
generates minimizers with a provable upper-bound on their
density. However, UHSs are less useful in the string-specific
case for two reasons [89]: (1) the requirement that a UHS
has to hit every (w + k − 1)-long fragment of every possible
string is too strong; and (2) UHSs are too large to provide a
meaningful upper-bound on the density in the string-specific
case. Therefore, since in many practical scenarios the input
string is known and does not change frequently, we try to
optimize the density for one particular string instead of
optimizing the average density over a random input.

In a recent work [88], Zheng et al. link UHSs to minimiz-
ers (as well as to other sampling schemes) with the motiva-
tion of designing sampling mechanisms with lower density
and improving the algorithms that use such mechanisms.

6.2 String-Specific Minimizers
In the string-specific case, minimizers sampling mechanisms

may employ frequency-based orders [14], [44]. In these

orders, length-k strings occurring less frequently in the string
compare less than the ones occurring more frequently. The
intuition [89] is to obtain a sparse sampling by selecting
infrequent length-k strings which should be spread apart in
the string. However, there is no theoretical guarantee that a
frequency-based order gives low density minimizers (there
are many counter-examples). Furthermore, frequency-based
orders do not always give minimizers with lower density
in practice. For instance, the two-tier classification (very
frequent vs. less frequent length-k strings) in the work of
[44] outperforms an order that strictly follows frequency of
occurrence.

A different approach to constructing string-specific mini-
mizers is to start from a UHS and to remove elements from
it, as long as it still hits every (w + k − 1)-long fragment
of the input string [18]. Since this approach starts with a
UHS that is not related to the string, the improvement in
density may not be significant [89]. Additionally, current
methods [26] employing this approach are computationally
limited to using k ≤ 16, as the size of the UHS increases
exponentially with k. Using such small k values may not be
appropriate in some applications.

In a recent work [39], Hoang et al. propose a deep-
learning framework for learning string-specific minimizers.

6.3 Other Improvements

When k ≈ w, minimizers with expected density of 1.67/w+
o(1/w) on a random string can be constructed using the
approach of [86]. Such minimizers have guaranteed expected
density less than 2/(w + 1) and work for infinitely many w
and k. The approach of [86] also does not require the use of
expensive heuristics to precompute and store a large set of
length-k strings, unlike some methods [68], [18], [26] with
low density in practice.

The notion of polar set, which can be seen as complemen-
tary to that of UHS, was recently introduced in [89]. While
a UHS is a set of length-k strings that intersect with every
(w + k − 1)-long fragment at least once, a polar set is a set
of length-k strings that intersect with any fragment at most
once. The construction of a polar set builds upon sets of
length-k strings that are sparse in the input string. Thus, the
minimizers derived from these polar sets have provably tight
bounds on their density. Unfortunately, computing optimal
polar sets is NP-hard, as shown in [89]. Thus, the work
of [89] also proposed a heuristic for computing feasible “good
enough” polar sets. A main disadvantage of this approach
is that when each length-k string occurs frequently in the
input string, it becomes hard to select many length-k strings
without violating the polar set condition.

Another notion related to minimizers is syncmers, intro-
duced by Edgar in [25]. Syncmers are not string-specific
and have been introduced as an alternative (more sensitive)
sampling to minimizers, which is beneficial in DNA analysis.

7 CONCLUSION

We introduced bidirectional string anchors (bd-anchors,
in short), a new string sampling mechanism. We showed
that bd-anchors samples are approximately uniform, locally
consistent, and computable in linear time. In addition, as we

17

demonstrated experimentally, the bd-anchors sample sizes
decrease proportionally to `; and these sizes are competitive
to or smaller than the corresponding minimizers sample
sizes. These results were theoretically justified by analyzing
the expected size of bd-anchors samples. We also proved
that computing a total order on the input alphabet which
minimizes the bd-anchors sample size is NP-hard. Last, we
highlighted the benefits of bd-anchors in two important
applications: text indexing and top-K similarity search. For
text indexing, we developed an index for performing on-
line pattern searches in near-optimal time and showed
experimentally that it is consistently faster for on-line pattern
searches than commonly used indexes and an analogous
implementation of a minimizers-based index. For top-K sim-
ilarity search under edit distance, we developed a heuristic
that is based on bd-anchors, and showed experimentally that
it is generally as accurate as the state-of-the-art tool for the
same purpose but more than one order of magnitude faster.

ACKNOWLEDGMENTS

We would like to thank Tomasz Kociumaka for pointing us
to [52, Theorem 20].

Michelle Sweering is supported by the Netherlands
Organisation for Scientific Research (NWO) through
Gravitation-grant NETWORKS-024.002.003. This paper is
part of the Leverhulme Trust RPG-2019-399 project.

This paper is also part of the PANGAIA
project that has received funding from
the European Union’s Horizon 2020 re-
search and innovation programme under
the Marie Skłodowska-Curie grant agree-
ment no. 872539. This paper is also part of
the ALPACA project that has received fund-
ing from the European Union’s Horizon
2020 research and innovation programme
under the Marie Skłodowska-Curie grant
agreement no. 956229.

Grigorios Loukides is an Associate Professor at King’s College London.
His research interests are in data privacy, data mining, and biomedical
informatics.

Solon P. Pissis is a Senior Researcher at CWI and an Associate
Professor at the Vrije Universiteit, both in Amsterdam. His research
focuses on theory of algorithms and their application in data mining.

Michelle Sweering is a PhD student at CWI. Her research focuses on
combinatorial algorithms on strings and graphs.

REFERENCES

[1] Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE, pp.
3–14 (1995)

[2] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic
local alignment search tool. Journal of Molecular Biology 215(3),
403–410 (1990)

[3] Amir, A., Keselman, D., Landau, G.M., Lewenstein, M., Lewenstein,
N., Rodeh, M.: Text indexing and dictionary matching with one
error. J. Algorithms 37(2), 309–325 (2000)

[4] Anjum, N., Nabil, R., Rafi, R., Bayzid, S., Rahman, M.: CD-MAWS:
An alignment-free phylogeny estimation method using cosine
distance on minimal absent word sets. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (2021)

[5] Baeza-Yates, R., Ribeiro-Neto, B.A.: Modern Information Retrieval -
the concepts and technology behind search, Second edition. Pearson
Education Ltd (2011)

[6] Barton, C., Kociumaka, T., Liu, C., Pissis, S.P., Radoszewski, J.:
Indexing weighted sequences: Neat and efficient. Inf. Comput. 270
(2020)

[7] Belazzougui, D.: Linear time construction of compressed text
indices in compact space. In: STOC, pp. 148–193 (2014)

[8] Belazzougui, D., Puglisi, S.J.: Range predecessor and lempel-ziv
parsing. In: SODA, pp. 2053–2071 (2016)

[9] de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.:
Computational geometry: algorithms and applications, 3rd Edition.
Springer (2008)

[10] Booth, K.S.: Lexicographically least circular substrings. Inf. Process.
Lett. 10(4/5), 240–242 (1980)

[11] Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching
on the RAM, revisited. In: SoCG, pp. 1–10 (2011)

[12] Charalampopoulos, P., Iliopoulos, C.S., Liu, C., Pissis, S.P.: Property
suffix array with applications in indexing weighted sequences.
ACM J. Exp. Algorithmics 25, 1–16 (2020)

[13] Chaudhuri, S., Ganjam, K., Ganti, V., Motwani, R.: Robust and
efficient fuzzy match for online data cleaning. In: SIGMOD, pp.
313–324 (2003)

[14] Chikhi, R., Limasset, A., Medvedev, P.: Compacting de Bruijn
graphs from sequencing data quickly and in low memory. Bioin-
form. 32(12), 201–208 (2016)

[15] Cole, R., Gottlieb, L., Lewenstein, M.: Dictionary matching and
indexing with errors and don’t cares. In: STOC, pp. 91–100. ACM
(2004)

[16] Cole, R., Kopelowitz, T., Lewenstein, M.: Suffix trays and suffix
trists: Structures for faster text indexing. Algorithmica 72(2), 450–
466 (2015)

[17] Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings.
Cambridge University Press (2007)

[18] DeBlasio, D.F., Gbosibo, F., Kingsford, C., Marçais, G.: Practical
universal k-mer sets for minimizer schemes. In: BCB, pp. 167–176
(2019)

[19] Delcher, A.L., Kasif, S., Fleischmann, R.D., Peterson, J., White,
O., Salzberg, S.L.: Alignment of whole genomes. Nucleic Acids
Research 27(11), 2369–2376 (1999)

[20] Deng, D., Li, G., Feng, J.: A pivotal prefix based filtering algorithm
for string similarity search. In: SIGMOD, pp. 673–684 (2014)

[21] Deng, D., Li, G., Feng, J., Li, W.: Top-k string similarity search with
edit-distance constraints. In: ICDE, pp. 925–936 (2013)

[22] Deorowicz, S., Kokot, M., Grabowski, S., Debudaj-Grabysz, A.:
KMC 2: fast and resource-frugal k-mer counting. Bioinform. 31(10),
1569–1576 (2015)

[23] Dinklage, P., Fischer, J., Herlez, A., Kociumaka, T., Kurpicz, F.:
Practical Performance of Space Efficient Data Structures for Longest
Common Extensions. In: ESA 2020, pp. 39:1–39:20 (2020)

[24] Dinur, I., Safra, S.: The importance of being biased. In: STOC, pp.
33–42 (2002)

[25] Edgar, R.: Syncmers are more sensitive than minimizers for
selecting conserved k-mers in biological sequences. PeerJ 9, e10,805
(2021)

[26] Ekim, B., Berger, B., Orenstein, Y.: A randomized parallel algorithm
for efficiently finding near-optimal universal hitting sets. In:
RECOMB, pp. 37–53 (2020)

[27] Farach, M.: Optimal suffix tree construction with large alphabets.
In: FOCS, pp. 137–143 (1997)

[28] Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4),
552–581 (2005)

[29] Ferragina, P., Navarro, G.: Pizza&Chili corpus – compressed in-
dexes and their testbeds. http://pizzachili.dcc.uchile.cl/texts.html

http://pizzachili.dcc.uchile.cl/texts.html

18

[30] Fisikopoulos, V.: An implementation of range trees with fractional
cascading in C++. CoRR abs/1103.4521 (2011)

[31] Flomin, D., Pellow, D., Shamir, R.: Data set-adaptive minimizer
order reduces memory usage in k-mer counting. J. Comput. Biol.
29(8), 825–838 (2022)

[32] Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table
with O(1) worst case access time. J. ACM 31(3), 538–544 (1984)

[33] Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and
optimal text searching in BWT-runs bounded space. J. ACM 67(1),
2:1–2:54 (2020)

[34] Gao, Y., He, M., Nekrich, Y.: Fast preprocessing for optimal
orthogonal range reporting and range successor with applications
to text indexing. In: ESA, pp. 54:1–54:18 (2020)

[35] Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice:
Plug and play with succinct data structures. In: SEA, pp. 326–337
(2014)

[36] Grabowski, S., Raniszewski, M.: Sampled suffix array with mini-
mizers. Softw. Pract. Exp. 47(11), 1755–1771 (2017)

[37] Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. SIAM J.
Comput. 35(2), 378–407 (2005)

[38] Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Com-
puter Science and Computational Biology. Cambridge University
Press (1997)

[39] Hoang, M., Zheng, H., Kingsford, C.: Deepminimizer: A differ-
entiable framework for optimizing sequence-specific minimizer
schemes. In: RECOMB, pp. 52–69 (2022)

[40] Hon, W., Sadakane, K., Sung, W.: Breaking a time-and-space barrier
in constructing full-text indices. SIAM J. Comput. 38(6), 2162–2178
(2009)

[41] Hu, H., Li, G., Bao, Z., Feng, J., Wu, Y., Gong, Z., Xu, Y.: Top-k
spatio-textual similarity join. IEEE TKDE 28(2), 551–565 (2016)

[42] Jain, C., Dilthey, A.T., Koren, S., Aluru, S., Phillippy, A.M.: A fast
approximate algorithm for mapping long reads to large reference
databases. J. Comput. Biol. 25(7), 766–779 (2018)

[43] Jain, C., Koren, S., Dilthey, A.T., Phillippy, A.M., Aluru, S.: A fast
adaptive algorithm for computing whole-genome homology maps.
Bioinform. 34(17), i748–i756 (2018)

[44] Jain, C., Rhie, A., Zhang, H., Chu, C., Walenz, B., Koren, S., Phillippy,
A.M.: Weighted minimizer sampling improves long read mapping.
Bioinform. 36(Supplement-1), i111–i118 (2020)

[45] Kahveci, T., Singh, A.K.: Efficient index structures for string
databases. In: VLDB, pp. 351–360 (2001)

[46] Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array
construction. J. ACM 53(6), 918–936 (2006)

[47] Karp, R.M.: Reducibility among combinatorial problems. In:
Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J.
Watson Research Center, Yorktown Heights, New York, USA, The
IBM Research Symposia Series, pp. 85–103 (1972)

[48] Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching
algorithms. IBM J. Res. Dev. 31(2), 249–260 (1987)

[49] Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-
time longest-common-prefix computation in suffix arrays and its
applications. In: CPM, pp. 181–192 (2001)

[50] Kempa, D., Kociumaka, T.: String synchronizing sets: sublinear-
time BWT construction and optimal LCE data structure. In: STOC,
pp. 756–767 (2019)

[51] Koboldt, D.C., Steinberg, K.M., Larson, D.E., Wilson, R.K., Mardis,
E.R.: The next-generation sequencing revolution and its impact on
genomics. Cell 155(1), 27–38 (2013)

[52] Kociumaka, T.: Minimal suffix and rotation of a substring in optimal
time. In: CPM, pp. 28:1–28:12 (2016)

[53] Korf, I., Yandell, M., Bedell, J.A.: BLAST - an essential guide to the
basic local alignment search tool. O’Reilly (2003)

[54] Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and
memory-efficient alignment of short dna sequences to the human
genome. Genome Biology 10(3), R25 (2009)

[55] Levenshtein, V.I.: Binary codes capable of correcting deletions,
insertions and reversals. Soviet Physics Doklady 10, 707 (1966)

[56] Li, C., Wang, B., Yang, X.: VGRAM: improving performance of
approximate queries on string collections using variable-length
grams. In: PVLDB, pp. 303–314 (2007)

[57] Li, H.: Minimap and miniasm: fast mapping and de novo assembly
for noisy long sequences. Bioinformatics 32(14), 2103–2110 (2016)

[58] Li, H.: Minimap2: pairwise alignment for nucleotide sequences.
Bioinform. 34(18), 3094–3100 (2018)

[59] Li, H., Durbin, R.: Fast and accurate short read alignment with
burrows-wheeler transform. Bioinform. 25(14), 1754–1760 (2009)

[60] Loukides, G., Pissis, S.P.: Bidirectional string anchors: A new string
sampling mechanism. In: ESA, pp. 64:1–64:21 (2021)

[61] Mäkinen, V., Navarro, G.: Position-restricted substring searching.
In: LATIN, pp. 703–714 (2006)

[62] Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line
string searches. SIAM J. Comput. 22(5), 935–948 (1993)

[63] Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Informa-
tion Retrieval. Cambridge University Press (2008)

[64] Marçais, G., DeBlasio, D.F., Kingsford, C.: Asymptotically optimal
minimizers schemes. Bioinform. 34(13), i13–i22 (2018)

[65] Marçais, G., Pellow, D., Bork, D., Orenstein, Y., Shamir, R., Kings-
ford, C.: Improving the performance of minimizers and winnowing
schemes. Bioinform. 33(14), i110–i117 (2017)

[66] Munro, J.I., Navarro, G., Nekrich, Y.: Space-efficient construction
of compressed indexes in deterministic linear time. In: SODA, pp.
408–424 (2017)

[67] Nyström-Persson, J., Keeble-Gagnère, G., Zawad, N.: Compact and
evenly distributed k-mer binning for genomic sequences. Bioinform.
37(17), 2563–2569 (2021)

[68] Orenstein, Y., Pellow, D., Marçais, G., Shamir, R., Kingsford, C.:
Compact universal k-mer hitting sets. In: WABI, pp. 257–268 (2016)

[69] Qin, J., Wang, W., Xiao, C., Lu, Y., Lin, X., Wang, H.: Asymmetric sig-
nature schemes for efficient exact edit similarity query processing.
ACM Trans. Database Syst. 38(3), 16:1–16:44 (2013)

[70] Ramakrishnan, R., Gehrke, J.: Database management systems (3.
ed.). McGraw-Hill (2003)

[71] Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., Yorke, J.A.:
Reducing storage requirements for biological sequence comparison.
Bioinform. 20(18), 3363–3369 (2004)

[72] Schensted, C.: Longest increasing and decreasing subsequences.
Canadian Journal of Mathematics 13, 179–191 (1961)

[73] Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing: Local al-
gorithms for document fingerprinting. In: SIGMOD, pp. 76–85
(2003)

[74] Shyr, H., Thierrin, G.: Disjunctive languages and codes. In: FCT,
pp. 171–176 (1977)

[75] Sun, Y., Blelloch, G.E.: Parallel range, segment and rectangle queries
with augmented maps. In: ALENEX, pp. 159–173 (2019)

[76] The CGAL Project: CGAL User and Reference Manual, 5.2.1 edn.
CGAL Editorial Board (2021). URL https://doc.cgal.org/5.2.1/
Manual/packages.html

[77] Wang, J., Li, G., Feng, J.: Can we beat the prefix filtering?: an
adaptive framework for similarity join and search. In: SIGMOD,
pp. 85–96 (2012)

[78] Wang, X., Ding, X., Tung, A.K.H., Zhang, Z.: Efficient and effective
KNN sequence search with approximate n-grams. Proc. VLDB
Endow. 7(1), 1–12 (2013)

[79] Weiner, P.: Linear pattern matching algorithms. In: SWAT, pp. 1–11
(1973)

[80] Wood, D., Salzberg, S.: Kraken: Ultrafast metagenomic sequence
classification using exact alignments. Genome Biology 15(3) (2014)

[81] Yang, Z., Yu, J., Kitsuregawa, M.: Fast algorithms for top-k
approximate string matching. In: AAAI, pp. 1467–1473 (2010)

[82] Ying, J.J., Lee, W., Weng, T., Tseng, V.S.: Semantic trajectory mining
for location prediction. In: ACM SIGSPATIAL, pp. 34–43 (2011)

[83] Yu, M., Wang, J., Li, G., Zhang, Y., Deng, D., Feng, J.: A unified
framework for string similarity search with edit-distance constraint.
VLDB J. 26(2), 249–274 (2017)

[84] Zhang, H., Zhang, Q.: Minsearch: An efficient algorithm for
similarity search under edit distance. In: KDD, pp. 566–576 (2020)

[85] Zhang, Z., Hadjieleftheriou, M., Ooi, B.C., Srivastava, D.: Bed-tree:
an all-purpose index structure for string similarity search based on
edit distance. In: SIGMOD, pp. 915–926 (2010)

[86] Zheng, H., Kingsford, C., Marçais, G.: Improved design and
analysis of practical minimizers. Bioinform. 36(Supplement-1),
i119–i127 (2020)

[87] Zheng, H., Kingsford, C., Marçais, G.: Lower density selection
schemes via small universal hitting sets with short remaining path
length. In: RECOMB, pp. 202–217 (2020)

[88] Zheng, H., Kingsford, C., Marçais, G.: Lower density selection
schemes via small universal hitting sets with short remaining path
length. J. Comput. Biol. 28(4), 395–409 (2021)

[89] Zheng, H., Kingsford, C., Marçais, G.: Sequence-specific minimizers
via polar sets. Bioinform. 37(Supplement), 187–195 (2021)

https://doc.cgal.org/5.2.1/Manual/packages.html
https://doc.cgal.org/5.2.1/Manual/packages.html

	Introduction
	Our Motivation
	Our Contributions
	Our Techniques

	Preliminaries
	Bidirectional String Anchors
	Construction and Sample Size
	Linear-Time Construction of A
	Space-Efficient Construction of A
	Expected Size of A
	Minimizing the Size of A is NP-hard

	Density Evaluation

	Text Indexing
	Index Construction and Querying
	Construction of I(T)
	Querying
	Querying Multiple Fragments

	Index Evaluation
	Discussion

	Top-K Similarity Search under Edit Distance
	Index Construction and Querying
	Construction
	Querying

	Index Evaluation
	Synthetic Datasets
	Real Datasets
	Discussion

	Related Work
	Minimizers and Universal Hitting Sets
	String-Specific Minimizers
	Other Improvements

	Conclusion
	Biographies
	Grigorios Loukides
	Solon P. Pissis
	Michelle Sweering

	References

