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Abstract

The OSSS inequality (O’Donnell, Saks, Schramm and Servedio [16])
gives an upper bound for the variance of a function f of independent
0-1 valued random variables in terms of the influences of these ran-
dom variables and the computational complexity of a (randomised)
algorithm for determining the value of f .

Duminil-Copin, Raoufi and Tassion [6] obtained a generalization to
monotonic measures and used it to prove new results for Potts models
and random-cluster models. Their generalization of the OSSS inequal-
ity raises the question if there are still other measures for which a
version of that inequality holds.

We derive a version of the OSSS inequality for a family of mea-
sures that are far from monotonic, namely the k-out-of-n measures
(these measures correspond with drawing k elements from a set of size
n uniformly). We illustrate the inequality by studying the event that
there is an occupied horizontal crossing of an R × R box on the tri-
angular lattice in the site percolation model where exactly half of the
vertices in the box are occupied.

Key words and phrases: OSSS inequality, percolation, randomized algo-
rithm.

1 Introduction

1.1 Background and main results of the paper

The OSSS inequality [16] gives an upper bound for the variance of a function
f of independent 0-1 valued random variables in terms of their influences
on f and their revealment probabilities with respect to an algorithm to de-
termine the value of f . Since the break-through work by Duminil-Copin,
Raoufi and Tassion around 2017 it has become one of the main tools to
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prove sharp phase transition in a number of important models from sta-
tistical mechanics. In particular, in [5] they applied the OSSS inequality
to Voronoi percolation on R

d, and in [6] they extended the inequality to
monotonic measures (measures satisfying the FKG lattice condition) and
used that extension to prove sharp phase transition for random-cluster and
Potts models. That version of OSSS was further extended, but still under
the condition that the measure is monotonic, by Hutchcroft [11] (who de-
veloped a two-function form and used it to obtain new critical exponent
inequalities) and by Dereudre and Houdebert [4] (who gave a generalization
in a continuum setting and used it to prove sharp phase transition for the
Widom-Rowlinson model).

The above raises the natural question whether the OSSS inequality can
be extended beyond the class of monotonic measures. Our main result,
Theorem 1.1 below, is a version of the OSSS inequality for a family of
measures which are clearly non-monotonic, namely k-out-of-n measures.

Before stating the theorem, we will introduce the necessary definitions
and notation. Let E be a finite set and let k ≤ |E|, where |E| denotes the
size (i.e. cardinality) of |E|. If ω ∈ {0, 1}E , we will use the notation |ω| for
∑

e∈E ωe.
Informally, the k-out-of-E distribution (notation Pk,E) is the uniform dis-
tribution on the set of all subsets of E of size k. Formally, we define Pk,E

as the following distribution on {0, 1}E : For each ω ∈ {0, 1}E ,

Pk,E(ω) =







0, if |ω| 6= k
1

(|E|
k )

, if |ω| = k,
(1)

Often, when the set E is clear from the context, or only its size |E|
matters, we will simply write Pk,n instead of Pk,E, with n = |E| (and call it
a k-out-of-n distribution).

An increasing event is a set A ⊂ {0, 1}E with the property that, for all
pairs ω, σ with ω ∈ A and σ ∈ {0, 1}E , ω ≤ σ implies that σ ∈ A. Here, as
usual, ω ≤ σ means that ωe ≤ σe for all e ∈ E.

Let ω ∈ {0, 1}E and A ⊂ {0, 1}E . An element e ∈ E is said to be pivotal
(w.r.t. ω and A) if exactly one of ω and ω(e) is in A. Here ω(e) denotes the
element of {0, 1}E obtained from ω by replacing ωe by 1− ωe. We say that
e is 1-pivotal (respectively 0-pivotal) if e is pivotal and ωe = 1 (respectively
0). The probability (w.r.t. the measure Pk,E) that e is pivotal, also called
the (absolute) influence of e (on the event A), will be denoted by IAk,E(e). In
cases where the event A is clear from the context, we simply write Ik,E(e).
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In addition, we will use the notation IA,1
k,E(e), and IA,0

k,E(e), for the probability
that e is 1- pivotal, and the probability that e is 0-pivotal respectively.

Somewhat informally, a decision tree is (in the present context) an algo-
rithm to check whether an ‘input string’ ω is in A, by ‘examining’ one by
one the elements of E (i.e. querying their ω-value ωe), where at each step
the next element of E to be examined depends on the already examined
elements of E and their ω-values. Note that if, after some step, the up to
then revealed ω-values already determine whether the input string is in A
or not, the algorithm may stop. That step wil be denoted by τ .

We will use the formal definition of a decision tree used in [6]: A decision
tree is a pair T = (e1, φ), with e1 ∈ E and φ of the form ((φ2, · · · , φn), where
each φt is a function which assigns, to each pair

(

(e1, · · · , et−1), ω(e1,··· ,et−1)

)

an element of E \ {e1, · · · , et−1}.
The corresponding algorithm is then as follows: First e1 is examined, i.e.

its value ωe1 is queried (and revealed). Depending on that value the next
element of E, namely the element e2 = φ2(e1, ωe1) is selected and exam-
ined. After the value ωe2 of e2 has been revealed, the next element, namely
e3 = φ3((e1, e2), (ωe1 , ωe2) is examined etcetera.

The time τ mentioned before is then formally defined as

τ(ω) := min{t ≥ 1 : for all ω′ ∈ {0, 1}E with ω′
e[t]

= ωe[t], IA(ω
′) = IA(ω)}.

(2)
Note that τ depends on A and T although, this is not visible in the notation.

If the string ω is generated according to a probability distribution P un-
der which some elements of {0, 1}E have probability 0 (which is the case with
the k-out-of-n measures studied in the current paper), we slightly change
the above definition of τ by replacing ‘all’ by ‘P-almost all’.

One could say that a given decision tree is ‘efficient’ (w.r.t. the proba-
bility distribution on the set of input strings) if ‘typically’, or ‘on average’,
the number τ is ‘small’.

In this paper we focus on the case where P = Pk,E , and we will denote
the probability that the value at a given ‘site’ e ∈ E is revealed (for the
decision tree T ) by δe = δe(A,T ). So, formally,

δe(A,T ) = Pk,E(et = e for some t ≤ τ(ω)).

Our main result, Theorem 1.1 below, is a version of the OSSS inequality
for k-out-of-n measures.

3



Theorem 1.1. Let E be a finite set with |E| ≥ 2, and let A ⊂ {0, 1}E be
an increasing event. For every k ≤ |E| and every decision tree T ,

Pk,E(A)(1 − Pk,E(A)) (3)

≤
∑

e∈E

IA,0
k,E(e) δe(A,T ) + log(|E|)

∑

e∈E

IA,0
k,E(e)

1

|E| − 1

∑

e′∈E

δe′(A,T ).

Observing that 1/(|E| − 1) ≤ 2/|E| if |E| ≥ 2, it is clear that the
following, more compact form of the upper bound for Pk,E(A)(1−Pk,E(A))
also holds (and is at most a constant factor 2 larger than the upper bound
in (3)).

Corollary 1.2. With E, A, k and T as in Theorem 1.1,

Pk,E(A)(1− Pk,E(A)) (4)

≤
∑

e∈E

IA,0
k,E(e) δe(A,T ) + 2 log(|E|)

∑

e∈E

IA,0
k,E(e) δ̄(A,T ),

where δ̄(A,T ) = 1
|E|

∑

e∈E δe(A,T ), the ‘average revealment per vertex’.

We also obtained the following version of Theorem 1.1, where, roughly
speaking, the factor log(|E|) has been replaced by 1

ε , and where an extra
term of order Pk,E(τ ≥ (1− ε)n) has been added.

Theorem 1.3. Let E be a finite set and let A ⊂ {0, 1}E be an increasing
event. Let n = |E| and let ε ∈ (0, 1). For every k ≤ |E| and every decision
tree T , we have

Pk,E(A)(1 − Pk,E(A)) (5)

≤
∑

e∈E

IA,0
k,E(e) δe(A,T ) +

1

ε

∑

e∈E

IA,0
k,E(e) δ̄(A,T )

+
1

2
Pk,E(τ ≥ (1− ε)n),

with δ̄(A,T ) as in (4).

Remark 1.4. (a) As mentioned before, the OSSS inequality in [6] gives an
upper bound for the variance of a function. In many applications in that
and other papers, the corresponding function is the indicator function of an
event. In our theorem we restrict to such functions.
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(b) The term with the logarithmic factor in (3) is not present in the OSSS
inequality for monotonic measures in [6]. This logarithmic factor seems to be
quite harmless for many applications, for instance those in Section 5 of our
paper. However, since it may disturb other potential applications, we also
stated Theorem 1.3 which does not have the logarithmic factor. It does have
an extra term Pk,E(τ ≥ (1− ε)n). In most percolation applications concern-
ing connection events in a large box (with, say, n vertices), that term is (if
ε is sufficiently small) typically very small for large n. In such applications
the decision tree usually corresponds with a so-called exploration procedure
(or path), where roughly speaking an occupied cluster or its boundary is ex-
plored step-by-step. Sites in the interior of the box that are vacant and whose
neigbours are also vacant, are typically not inspected by such a procedure.
By standard arguments one can easily see that then (if k/n is bounded away
from 1, which is a natural condition in percolation studies, and ǫ is suffi-
ciently small, depending on k/n) the probability (under the measure Pk,E)
of the event that there are less than ǫn such vertices (and hence the extra
term in Theorem 1.3) tends to 0 exponentially fast as n tends to ∞.

In Section 5 we illustrate Theorem 1.1 by studying the event that there
is a horizontal crossing of an R×R box on the triangular lattice in the site
percolation model where exactly k of the n := R2 vertices are occupied. We
show there that the expected number of pivotal sites (and, consequently, the
‘discrete derivative’ of the crossing probability with respect to the fraction of
occupied sites) at the value k = R2/2 is larger than some positive power of
R, see Theorem 5.2. The proof uses, besides Theorem 1.1, only a minimum
of preliminaries from Bernoulli percolation (i.e. the usual percolation model
where the states of the vertices are independent of each other). It can be
proved without using Theorem 1.1, but I don’t know a proof which neither
uses Theorem 1.1, nor quite heavy results from Bernoulli percolation; see
the comments and discussion in Section 5.2.

1.2 Other related work

The OSSS inequality, seen from right to left, gives a lower bound for the ex-
pectation of the number of pivotals, and that is how it has been successfully
used in percolation theory and related fields, for instance in [6] and other
papers mentioned above. A different well-known inequality for product mea-
sures, which does not involve decision trees but also provides a lower bound
for that expectation, is the KKL inequality [12] (and a related inequality by
Talagrand)[20]).
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The KKL inequality (or, rather, a consequence of it) and Talagrand’s
inequality say, roughly speaking, that, for product measures, the expected
number of pivotals for the event A is at least some constant times the prob-
ability of A, times (1 minus the probability of A) times log(1/M), where
M is the maximum over all e of the probability that e is pivotal. In situ-
ations where no suitable decision tree exists (or is known) but where some
upper bound on the quantity M is known, the OSSS inequality is often
useless while KKL (and Talagrand’s) inequalities still give a useful result.
On the other hand, in specific situations, where some suitable decision tree
does exist, OSSS can be substantially stronger than KKL and Talagrand’s
inequality.

While the proof of KKL has an analytic/algebraic flavour (Fourier ex-
pansion, hypercontractivity), the OSSS inequality is, essentially, proved from
suitable coupling arguments which are more ‘probabilistic’ in nature.

The KKL inequality was generalised to k-out-of-n measures (and sim-
ilar measures on state spaces with a larger ‘alpahbet’, e.g. {0, 1, 2}n) by
O’Donnell and Wimmer [17] (see also [7]).

Finally, we remark here that the paper [1] extends yet another inequality
from product measures to k-out-of-n measures. However, that inequality
(and its proof) are very different in nature from OSSS.

1.3 Organization of the paper

In Section 2 we give ingredients for the proof of our main result, Theorem
1.1: general ingredients (mainly from the first part of Section 2 of [6]) in
Section 2.1, and specific ingredients for k-out-of-n measures in Section 2.2.
In Section 3 we will then, usung these ingredients, present the proof of
Theorem 1.1. Most of the proof of Theorem 1.3 is the same as that of
Theorem 1.1. The differences will be stated and explained in Section 4.

In Section 5 we illustrate Theorem 1.1 by applying it to box-crossing
probabilities for a percolation model on a box in the triangular lattice where
a fixed number of vertices is occupied: see Theorem 5.2 in that section.
Section 5.2 gives several remarks concerning, among other things, other
(potential) ways to prove Theorem 5.2.
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2 Ingredients for the proof of the main theorem

2.1 General ingredients

In this subsection we present some results which hold for all distributions,
not only for k-out-of-n. These results come mainly from [6]. For convenience
we use the same notation as in that paper.
The following lemma in [6] about ‘encoding’ a random string with an ar-
bitrary distribution in terms of independent random variables uniformly
distributed on [0, 1], is intuitively appealing and has been used implicitly
and in different contexts in the literature before. We follow quite closely
its formulation in Lemma 2.1 of [6]. (The lemma is stated there only for
monotonic measures, although it is true for general probability measures).

Let, as before, E be a finite set and let n = |E|. Let µ be a probability
measure on {0, 1}E . For u ∈ [0, 1]n and e = (e1, · · · , en) a permutation of
E, define the element Fe(u) = x ∈ {0, 1}n as follows:

xe1 :=

{

1, if u1 ≥ µ(ωe1 = 0),

0, otherwise.
(6)

and, inductively, for 2 ≤ t ≤ n,

xet :=

{

1, if ut ≥ µ[ωet = 0 |ωe[t−1]
= xe[t−1]

],

0, otherwise.
(7)

We will often write Fµ
e (u), instead of just Fe(u), to emphasize the de-

pendence on µ.

Lemma 2.1. [[6], Lemma 2.1] Let U = (U1, · · · ,Un) be a sequence of
independent uniformly on [0, 1] distributed random variables, and let e =
(e1, · · · , en) be a random (not necessarily uniform) permutation of the ele-
ments of E. If, for every 1 ≤ t ≤ n, Ut is independent of (e[t],U[t−1]), then
Fµ
e (U) has distribution µ.

Let, as in Theorem 1.1, A ⊂ {0, 1}n be an increasing event and let IA

denote its indicator function.
We will use the construction in the first part of Section 2 of [6] of a sequence
of suitably coupled random strings Y0, · · · ,Yn, each with distribution µ,
with the property that each pair of consecutive strings is ‘highly correlated’
and where IA(Y

0) and IA(Y
n) are independent. To make our paper self-

contained, we describe their construction here in detail. Again we remark
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that although [6] presents the construction for monotonic measures µ, the
same construction works for general µ.

Let U = (U1, · · · ,Un) and V = (V1, · · · ,Vn) be independent strings
of iid random variables, all uniformly distributed on the interval [0, 1]. The
idea is, loosely speaking, to define first, using the Ui’s only, a triple e, X, τ ,
corresponding to the decision tree in the statement of Theorem 1.1. Then,
with the same e, but with some Ui’s suitably (depending on the value of τ)
replaced by Vi’s, the strings Yk, k = 0, · · · , n are defined in a way similar
to (6) and (7). Here are the details, with the same notation as in [6].

Define inductively, for t ≥ 1, (with φ and e1 as in the definition of a
decision tree T in the paragraphs preceding Theorem 1.1),

et =

{

e1 if t = 1,

φt(e[t−1],Xe[t−1]
) if t > 1,

(8)

and Xet =

{

1 if Ut ≥ µ(ωet = 0 |ωe[t−1]
= Xe[t−1]

,

0 otherwise.
(9)

Further define (equivalently to the stopping time in (2)),

τ := min{t ≥ 1 : ∀x ∈ {0, 1}E with µ(x) > 0 and xe[t] = Xe[t]
, IA(x) = IA(X)}.

(10)
The strings Yt, 0 ≤ t ≤ n, are then definined by

Yt = Fµ
e (W

t), where (11)

Wt := (V1, · · · ,Vt,Ut+1, · · · ,Uτ ,Vτ+1, · · · ,Vn). (12)

Remark 2.2. For all clarity we remark, as done in [6], that in particular
Wt = V if t ≥ τ .

We still follow (a straightforward suitable adaptation of) the first part
of Section 2 of [6]: From its definition it is clear that X is U-measurable.
By Lemma 2.1, it is easy to see that X, and each Yt, has distribution µ.
Note that Yn is not in general independent of Y0. Also note that, although
Wn = V, Yn is not necessarily V-measurable (because via e it involves
U). However, Lemma 2.1 says that, no matter what the outcome of e
is, the conditional distribution of Yn is always µ. Hence X and Yn are
independent, so 2µ(A)(1 − µ(A)) = E[|IA(X)− IA(Y

n)|]. Hence, since (by
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the definition of τ) IA(X) = IA(Y
0), it holds that (in spite of the fact that,

as mentioned above, Y0 and Yn are not necessarily independent)

2µ(A)(1 − µ(A)) = E[|IA(Y0)− IA(Y
n)|] (13)

≤
n
∑

t=1

E[|IA(Yt)− IA(Y
t−1)|]

=
n
∑

t=1

E[|IA(Yt)− IA(Y
t−1)| It≤τ ].

The above equation will be the starting point of the proof of Theorem
1.1 in Section 3. We emphasize again that the equation is very general: it
followed immediately from the generally valid coupling construction from
Section 2 of [6] and is, essentially, the variance upper bound on the bottom
of page 84 in that paper (recall that the function f there is, in our case, an
indicator function). To really make use of that equation for our situation we
will first, in the next subsection, develop specific ingredients for k-out-of-n
measures. The key result presented in that subsection is Proposition 2.6,
the proof of which uses Lemma 2.5.

2.2 Specific ingredients for k-out-of-n measures

In this subsection we introduce some results which are quite specific for k-
out-of-n measures, and which will be used in Section 3 to prove Theorem
1.1. We use the notation and terminology (adopted from [6]) of the previous
subsection. In particular, Fµ

e was defined in the paragraph containing (6)
and (7).

Lemma 2.3. Let 1 ≤ k ≤ n − 1. Let E be a finite set with |E| = n, and
let e ∈ E. Let U = (U1, · · · ,Un) be i.i.d. random variables, uniformly
distributed on [0, 1]. Let e = (e1, · · · , en) be a random (not necessarily uni-
formly drawn) permutation of the elements of E, with the following proper-
ties: e1 = e and, for each t ≥ 2, et is U[t−1]-measurable.

Let Z = F
Pk,E
e (U) and Z′ = F

Pk+1,E
e (U).

Then the pair (Z,Z′) has the following distribution:

P(Z = α,Z′ = β) =

{

1
n−kPk,E(α), if |α| = k, |β| = k + 1 and β ≥ α

0, otherwise

(14)
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Remark: Informally, the lemma says that, given that Z = α, Z′ is
‘obtained’ by randomly and uniformly choosing one of the 0’s in the string α
and replacing it by 1. So the pair (Z,Z′) represents the intuitively simplest
monotone coupling of Pk,E and Pk+1,E.

Proof. We give a proof by induction in n. The case n = 1 is trivial. Now
suppose n ≥ 2. It is easy to see from the definitions and Lemma 2.1 that
Z′ ≥ Z and that Z has distribution Pk,E and Z′ has distribution Pk+1,E.
So we assume that α and β satisfy the conditions in the first line of (14).
We distinguish three cases: (i): αe = βe = 1. (ii): αe = 0, βe = 1. (iii):
αe = βe = 0.
We will treat case (i) here; the other two cases can be treated analogously.
Note that, by the definitions, the event that Ze = Z′

e = 1 is U1-measurable

and has probability k/n. Also note that (in case (i)) ZE\{e} = F
Pk−1,E\{e}

(e2,··· ,en)
(U2, · · · ,Un)

and Z′
E\{e} = F

Pk,E\{e}

(e2,··· ,en)
(U2, · · · ,Un). Hence the induction hypothesis gives

that

P(Z = α,Z′ = β) =
k

n

1

(n− 1)− (k − 1)
Pk−1,E\{e}(αE\{e}).

Further, evidently, (recall that we are in case(i)),

Pk,E(α) =
k

n
Pk−1,E\{e}(αE\{e}).

These two equations together immediately give P(Z = α,Z′ = β) = 1
n−kPk,E(α),

as desired.

Lemma 2.4. Let E, U = (U1, · · · ,Un), and e be as in Lemma 2.3. Fur-
ther, let V1 be uniformly distributed on [0, 1], independently of U. Let

Z := F
Pk,E
e (U) and Z′ := F

Pk,E
e (V1,U2, · · · ,Un).

Let α and β be two different elements of {0, 1}E . Then

P(Z = α,Z′ = β) =

{

1
nPk,E(α), if |α| = |β| = k and ∃f 6= e s.t. β = α(e,f)

0, otherwise

(15)
where α(e,f) is the string obtained from α by swopping αe and αf .

Proof. If n = 1, then P(Z 6= Z′) = 0, so that statement of the lemma
obviously holds. So we may assume that n ≥ 2. It is easy to see from the
definitions that if the pair α, β does not satisfy the conditions in the first

10



line of (15), then P(Z = α,Z′ = β) = 0. So we assume that |α| = k and
that β = α(e,f) for some f 6= e. Note that then (since β 6= α) αf 6= αe. We
distinguish two cases: (i): αe = 1 (and hence βe = 0, αf = 0 and βf = 1).
(ii): αe = 0 (and hence βe = 1, αf = 1 and βf = 0).

Here we treat case (i) (the proof of the other case is similar). In this
case we have that Ze = 1 and Z′

e = 0. The former event is U1-measurable
and has probability k/n, and the latter isV1-measurable and has probability

(n−k)/n. Also note that, in case (i), ZE\{e} = F
Pk−1,E\{e}

(e2,··· ,en)
(U2, · · · ,Un) and

Z′
E\{e} = F

Pk,E\{e}

(e2,··· ,en)
(U2, · · · ,Un). Finally, note that βE\{e} = (αE\{e})

(f)

So, by independence and application of Lemma 2.3, we get

P(Z = α,Z′ = β) =
k

n

n− k

n

1

(n− 1)− (k − 1)
Pk−1,E\{e}(αE\{e}) =

k

n2
Pk−1,E\{e}(αE\{e}).

Combined with the obvious equation Pk,E(α) = k
nPk−1,E\{e}(αE\{e}), this

gives that P(Z = α,Z′ = β) = 1
nPk,E(α), as desired.

In fact, we need the following, more general form, with a stopping time,
of the previous lemma.

Lemma 2.5. Let e, e and U be as in Lemma 2.3, and let σ be a stop-
ping time w.r.t. U. (So, for each 1 ≤ m ≤ n, the event {σ = m} is
U[m]-measurable). Further, let V = (V1, · · · ,Vn) be iid random variables
uniformly distributed on [0, 1] independent of U.

Let Z := F
Pk,E
e (U1,U2, · · · ,Uσ,Vσ+1, · · · ,Vn)

and Z′ := F
Pk,E
e (V1,U2, · · · ,Uσ ,Vσ+1, · · · ,Vn).

(In particular, if σ = 1, then Z = F
Pk,E
e (U1,V2, · · · ,Vn) and

Z′ = F
Pk,E
e (V1,V2, · · · ,Vn)).

Then the pair (Z,Z′) satisfies (15) for all α, β ∈ {0, 1}E with α 6= β.

Proof. of Lemma 2.5 from Lemma 2.4:
First some terminology: We say that a pair of random strings of length
n of 0’s and 1’s “satisfies (15)” if, for all α, β ∈ {0, 1}E with α 6= β, the
probability that the first string has outcome α and the second string has
outcome β, is equal to the r.h.s. of (15).

Let ẽ be a ‘modification’ of e with the following properties: ẽt = et for
all t ≤ σ+ 1, and ẽ[σ+2,n] is a U[σ]-measurable permutation of the elements
of E \ {e1, · · · , eσ+1}.
In particular, ẽ1 = e and ẽt is U[t−1]-measurable for each t ≥ 2. Hence, by
Lemma 2.4, the pair

(F
Pk,E

ẽ
(U1, · · · ,Un), (F

Pk,E

ẽ
(V1,U2, · · · ,Un)) (16)
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satisfies (15). Hence, since now Uσ+1, · · · ,Un are no longer used for de-
termining the order in which edges are chosen, we can replace them in the
expression (16) by Vσ+1, · · · ,Vn, respectively, without changing the joint
distribution of the pair of random strings. In other words, the pair

(F
Pk,E

ẽ
(U1, · · · ,Uσ ,Vσ+1, · · · ,Vn), (F

Pk,E

ẽ
(V1,U2, · · · ,Uσ ,Vσ+1, · · · ,Vn))

(17)
has the same distribution as the pair in (16) and hence satisfies (15). How-
ever, since this is true for any such modification ẽ of e, it remains true if,
after time σ we use additional randomness, independent of U1, · · · ,Uσ and
V, to determine the order in which edges are chosen. In particular the pair
in (17) still satisfies (15) if we replace ẽ back by e. Noting that that replace-
ment gives exactly the pair of strings (Z,Z′) in the statement of Lemma 2.5,
completes the proof of this lemma.

Recall the notation IA,0
k,E(·) from Section 1 for the probability of being

pivotal and having value 0.

Proposition 2.6. Let Z and Z′ be as in Lemma 2.5 (and recall that e = e1
is a deterministic element of E). Let A ⊂ {0, 1}E be an increasing event.
Then

P( exactly one of Z and Z′ is in A) ≤ 2

n

∑

f∈E\{e}

(

IA,0
k,E(e) + IA,0

k,E(f)
)

. (18)

Further, (18) also holds with the superscript 0 replaced by 1.
Moreover, (18) also holds without the superscript 0 and the prefactor 2, i.e.,:

P( exactly one of Z and Z′ is in A) ≤ 1

n

∑

f∈E\{e}

(

IAk,E(e) + IAk,E(f)
)

. (19)

Proof.

P(exactly one of Zand Z′is in A) =
∑

α

(∗)
∑

f

1

n
Pk,n(α) (20)

=
1

n

∑

f∈E\{e}

(∗∗)
∑

α

Pk,n(α)

=
1

n

∑

f∈E\{e}

( SUM(I) + SUM(II) + SUM(III) + SUM(IV) ),
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where the first equality follows from Lemma 2.5, the superscript (∗) means
that the summation is over all f such that exactly one of α and α(e,f) is in
A, the superscript (∗∗) means that the summation is over all α such that
exactly one of α and α(e,f) is in A, and where:

SUM(I) =
∑

α:α∈A, α(e,f) /∈A,αe=0

Pk,n(α); SUM(II) =
∑

α:α/∈A,α(e,f)∈A, αe=0

Pk,n(α);

SUM(III) =
∑

α:α∈A,α(e,f) /∈A,αf=0

Pk,n(α); SUM(IV) =
∑

α:α/∈A,α(e,f)∈A,αf=0

Pk,n(α).

By symmetry (using, for fixed e and f , the 1-1 map α ↔ α(e,f ), SUM(I) =
SUM(IV) and SUM(II) = SUM(III), and hence the r.h.s. of (20) is equal to
2
n

∑

f 6=e(SUM(II) + SUM(IV)). Finally, by the observation that the restric-
tion on α in the definition of SUM(II) implies (since A is increasing) that e
is 0-pivotal, and the restriction on α in the definition of SUM(III) implies
that f is 0-pivotal, we get (18). The version of (18) with superscript 1, and
the result (19), are obtained in (practically) the same way.

3 Proof of Theorem 1.1

See the notation and terminology given in Section 2.1. The strategy of the
proof is roughly as follows. Our starting point is the general equation (13),
which came from [6] and holds for all measures (not only monotone ones).
We will see below that, after some general manipulations (suitable summing
and conditioning) the proof deviates crucially from that in [6], since we
(have to) invoke special properties of k-out-of-n measures. Applying such
a property, namely Proposition 2.6, to the situation where we condition on
the first t− 1 selected ‘posisitions’ and their 0-1 values, and then summing
over all possibilities (and using a simple standard inequality) will give the
required result.

Now we start with the proof in detail: We have (recall that we take
n = |E|),

13



2Pk,E(A)(1 − Pk,E(A)) (21)

≤
n
∑

t=1

E[ |IA(Yt)− IA(Y
t−1)| It≤τ ]

=

n
∑

t=1

∑

e∈E

∑

Ẽ⊂E\{e}

∑

β∈Ω
Ẽ

E

[

|IA(Yt)− IA(Y
t−1)| I

et=e, e[t−1]=Ẽ,Yt−1

Ẽ
=β, t≤τ

]

=

n
∑

t=1

∑

e∈E

∑

Ẽ⊂E\{e}

∑

β∈Ω
Ẽ

E

[

P
[

!(Yt−1,Yt, A) | U[t−1],V[t−1]

]

I
et=e, e[t−1]=Ẽ,Yt−1

Ẽ
=β, t≤τ

]

,

where the inequality comes from (13), the notation !(Yt−1,Yt, A) is used
for the event that exactly one of Yt−1 and Yt is in A, and where, with some
abuse of notation, we wrote e[t−1] = Ẽ for {e1, · · · , et−1} = Ẽ. Note that
the last equality in (21) holds because, for each t, the event {et = e, e[t−1] =

Ẽ,Yt−1
Ẽ

= β, t ≤ τ} is measurable w.r.t. the collection of random variables
(U[t−1],V[t−1]). Also note that, in the last two lines of equation (21) we

may, in fact, replace Yt−1
Ẽ

= β by Yt−1
Ẽ

= Yt
Ẽ
= β.

Now observe that, while we are conditioning on U[t−1],V[t−1] with et =

e, e[t−1] = Ẽ,Yt−1
Ẽ

(= Yt
Ẽ
) = β and t ≤ τ , we have

Yt−1
E\Ẽ

= F
P
k−|β|,E\Ẽ

(e,et+1,··· ,en)
(Ut,Ut+1, · · · ,Uτ ,Vτ+1, · · · ,Vn),

Yt
E\Ẽ

= F
P
k−|β|,E\Ẽ

(e,et+1,··· ,en)
(Vt,Ut+1, · · · ,Uτ ,Vτ+1, · · · ,Vn),

and the event !(Yt−1,Yt, A) in (21) is the event that exactly one of Yt−1
E\Ẽ

and Yt
E\Ẽ

is in A(β), where A(β) is the set of all ω ∈ {0, 1}E\Ẽ for which

ω × β (the element of {0, 1}E which coincides with β on Ẽ and with ω on
E \ Ẽ) is in A.

So, for fixed t, and with the above mentioned conditioning onU[t−1],V[t−1],
we are in the context of Proposition 2.6, with proper adaptations (e.g. the
U1 and V1 in that proposition correspond, in the current situation, with Ut

and Vt respectively; and the n and k in that proposition are, in the current
situation, n − t+ 1 and k − |β| respectively). Hence, applying Proposition
2.6, we obtain from (21) that

14



2Pk,E(A)(1 − Pk,E(A)) (22)

≤
n
∑

t=1

∑

e∈E

∑

Ẽ⊂E\{e}

∑

β∈Ω
Ẽ

P(et = e, e[t−1] = Ẽ,Yt−1
Ẽ

= β, t ≤ τ)

× 2

n− t+ 1

∑

f∈E\(Ẽ∪{e})

(

I
A(β),0

k−|β|,E\Ẽ
(e) + I

A(β),0

k−|β|,E\Ẽ
(f)

)

= TERM(I) + TERM(II),

where

TERM(I) (23)

= 2

n
∑

t=1

∑

e∈E

∑

Ẽ⊂E\{e}

∑

β∈Ω
Ẽ

P

(

et = e, e[t−1] = Ẽ,Yt−1
Ẽ

= β, t ≤ τ
)

I
A(β),0

k−|β|,E\Ẽ
(e)

and

TERM(II) (24)

=
n
∑

t=1

∑

e∈E

∑

Ẽ⊂E\{e}

∑

β∈Ω
Ẽ

P(et = e, e[t−1] = Ẽ,Yt−1
Ẽ

= β, t ≤ τ)

× 2

n− t+ 1

∑

f∈E\(Ẽ∪{e})

I
A(β),0

k−|β|,E\Ẽ
(f).

We first rewrite TERM(I): By the definition of Yt−1 (and using a version
of Lemma 2.1), we have that, given the event that et = e, e[t−1] = Ẽ and
t ≤ τ (which is a U[t−1] measurable event), the conditional probability that

Yt−1
Ẽ

= β is equal to Pk,E(ωẼ = β). Also note that I
A(β),0

k−|β|,E\Ẽ
(e) is equal to

Pk,E(e is 0− pivotal w.r.t.A |ωẼ = β). Hence we get

15



TERM(I) (25)

= 2
n
∑

t=1

∑

e∈E

∑

Ẽ⊂E\{e}

P(et = e, e[t−1] = Ẽ, t ≤ τ)

×
∑

β∈{0,1}Ẽ

Pk,E(ωẼ = β) I
A(β),0

k−|β|, E\Ẽ
(e)

= 2

n
∑

t=1

∑

e∈E

P(et = e, t ≤ τ) IA,0
k,E(e)

= 2
∑

e∈E

δe(A,T ) I
A,0
k,E(e).

Note that this is similar to the upper bound in the OSSS inequality for
independent random variables. The treatment of TERM(II) takes a little
more work and will give a somewhat different contribution which does not
appear in the ‘classical’ OSSS. First, with practically the same arguments
as used in (25), we get

TERM(II) (26)

=

n
∑

t=1

2

n− t+ 1

∑

e∈E

∑

Ẽ⊂E\{e}

P(et = e, e[t−1] = Ẽ, t ≤ τ)
∑

f∈E\(Ẽ∪{e})

IA,0
k,E(f).

Next, summing over Ẽ (and using the trivial observation that the sum over
f in the expression (26) does not decrease if the restriction on f in that sum
is omitted), gives

TERM(II) (27)

≤
n
∑

t=1

2

n− t+ 1

∑

e∈E

P(et = e, t ≤ τ)
∑

f∈E

IA,0
k,E(f)

=

n
∑

t=1

2

n− t+ 1
P(t ≤ τ)

∑

f∈E

IA,0
k,E(f).

Note that, in the first sum in the r.h.s. of (27), the factor 1/(n − t+ 1)
is increasing in t while the other factor, P(t ≤ τ), is decreasing. Because
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of this (and also using that, since under Pk,E the number of 1’s and 0’s is
fixed, τ is a.s. at most n− 1) that first sum in the r.h.s. of (27) is less than
or equal to

n−1
∑

t=1

2

n− t+ 1
× 1

n− 1

n−1
∑

t=1

P(τ ≥ t) ≤ 2 log n
1

n− 1
E[τ ].

Hence, since E[τ ] =
∑

e∈E δe(A,T ), we have that

TERM(II) ≤ 2 log n
∑

e∈E

IA,0
k,E(e)

1

n− 1

∑

e∈E

δe(A,T ). (28)

Theorem 1.1 now follows immediately from (22), (25) and (28).

4 Proof of Theorem 1.3

The proof of Theorem 1.3 is essentially the same as that of Theorem 1.1.
Here we present and explain the differences. First, by the same arguments
used for the general result (13) (which came essentially from [6]), it is clear
that the l.h.s. of that equation array is also less than or equal to

(1−ε)n
∑

t=1

E[|IA(Yt)− IA(Y
t−1)| It≤τ ] + P(τ ≥ ((1− ε)n),

where, for brevity, we write (1− ε)n for ⌊(1− ε)n⌋. Hence, in Section 3, the
first inequality in (21) becomes

2Pk,E(A)(1−Pk,E(A)) ≤
(1−ε)n
∑

t=1

E[|IA(Yt)−IA(Y
t−1)| It≤τ ]+P(τ ≥ ((1−ε)n).

(29)
To the summation in the r.h.s. of (29) we can then apply the same

specific (for k-out-of-n measures) arguments and computations which led
from (21) to (22) in Section 3. Instead of (22) we thus get

2Pk,E(A)(1 − Pk,E(A)) ≤ TERM(I’) + TERM(II’) + P(τ ≥ (1− ε)n), (30)

where TERM(I’) and TERM(II’) are as TERM(I) and TERM(II) in (25)
and (26), respectively, except that the summation over t is now from 1 to
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⌊n(1 − ε)⌋. For TERM(I’) we can thus trivially use the same upperbound
(25) we had for TERM(I), i.e.,

TERM(I’) ≤ 2
∑

e∈E

δe(A,T ) I
A,0
k,E(e), (31)

Getting a suitable upper bound for TERM(II’) requires a bit more attention
(recall that we wanted to get rid of the logarithmic factor in (28)) and is
done as follows. Instead of (27) we get

TERM(II’) (32)

≤
(1−ε)n
∑

t=1

2

n− t+ 1

∑

e∈E

P(et = e, t ≤ τ)
∑

f∈E

IA,0
k,E(f)

≤
n
∑

t=1

2

n− (1− ε)n
P(t ≤ τ)

∑

f∈E

IA,0
k,E(f)

≤ 2

εn

n
∑

t=1

P(t ≤ τ)
∑

f∈E

IA,0
k,E(f)

=
2

εn
E(τ)

∑

f∈E

IA,0
k,E(f).

Finally, combining (30), (31) and (32) (and using that E(τ) =
∑

e∈E δe)
immediately gives Theorem 1.3.

5 Box crossing probabilities in a percolation model

with a fixed number of occupied vertices

Now we illustrate our main result, Theorem 1.1, by using it in the study of a
percolation model on a box where the number of occupied vertices is fixed.
We will also use a few basic results from the literature on the ‘standard’
percolation model (Bernoulli percolation), where the states of the vertices
(or edges) are independent of each other. See e.g. [8] and [9] for a general
introduction to Bernoulli percolation, and many results and references.

Consider an R×R box in the triangular lattice. More precisely, in terms
of the standard embedding of this lattice in the plane (which we identify
with the set of complex numbers C), the box we consider is the graph with
vertex set VR := {x+ y exp(iπ/3) : x, y ∈ Z, 0 ≤ x, y ≤ R− 1}, and where
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two vertices v and w share an edge iff |v−w| = 1. Each vertex can be vacant
(which corresponds with value 0) or occupied (value 1).

Let AR denote the event that there is an occupied path which crosses
the box horizontally. In ordinary (Bernoulli) percolation, where the vertices
are independently occupied with probability p and vacant with probability
1−p (the corresponding distribution will be denoted by Pp), it is well-known
that P 1

2
(AR) = 1/2 (which follows from a simple symmetry argument), and

that the expected number of pivotal vertices (and hence, by the well-known
Margulis-Russo formula, also d

dpPp(AR) |p=1/2) grows at least as a power of
R. In fact, very sharp versions of this result are known, see [19].

We will study the same event AR but now for the model where a fixed
number, denoted by k, of the vertices is occupied. So the probability measure
is now Pk,R2 = Pk,VR

. In particular we will study the case where R is even
and k = R2/2 (i.e. exactly half of the vertices is occupied).

Again, from symmetry, PR2

2
,R2(AR) = 1/2. We will show an analog

of the Bernoulli percolation result mentioned above, namely that (roughly
speaking) the ‘discrete derivative’ (with respect to the fraction of 1′s) of the
above probability is again larger than a constant times a power of R. More
precisely we will, using Theorem 1.1, prove Theorem 5.2 below, from which
Corollary 5.4 below follows easily. (Analogs of this theorem and its corollary
for bond percolation on the square lattice can be proved in practically the
same way).

Recall the definitions of ”pivotal” and ”0-pivotal” from Section 1 (a few
paragraphs below (1)).

Remark 5.1. Although we don’t use this in the proof of Theorem 5.2, we
note that (as is well-known), for this specific event AR, a vertex v ∈ VR is
pivotal iff there are four disjoint paths, each starting from a neighbour of
v to the boundary of the box: two occupied paths to the left and the right
side, respectively, and two vacant paths to the top and and the bottom side,
respectively.

Theorem 5.2. Let N0
R denote the number of vertices that are 0-pivotal for

the event AR, and let ER2

2
,R2(N

0
R) denote its expectation w.r.t. the distribu-

tion PR2

2
,R2 . There are α > 0 and C > 0 such that, for all even R ≥ 2,

ER2

2
,R2(N

0
R) ≥ CRα. (33)

Remark 5.3. (a) The proof (in Section 5.1) of Theorem 5.2 uses our OSSS-
type result Theorem 1.1 and a minimal amount of knowledge of Bernoulli
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percolation: essentially only RSW (and FKG), which are pre-1979 results.
(b) Theorem 5.2 (and a stronger version) can also be proved without using
Theorem 1.1, but such a proof would (as far as I know) require much heavier
results from Bernoulli percolation, see Section 5.2.1.
(c) I am not aware of earlier mathematically rigorous work on percolation
with a fixed number of occupied vertices or edges. In the physics literature,
such models have been studied and compared with Bernoulli percolation: see
the paper [10] where (heuristic) predictions are given for finite-size correc-
tions of various quantities.

Corollary 5.4. For all even R,

(PR2

2
+1,R2(AR)− PR2

2
,R2(AR))

1/R2
≥ 2CRα, (34)

with C and α as in Theorem 5.2.

Note that the denominator in the l.h.s. of (34) is the increase of the frac-
tion of occupied vertices when the parameter changes from R2/2 to R2/2+1;
so the l.h.s. of (34) can indeed be interpreted as a ‘discrete derivative’.

The proof of Theorem 5.2 will be given in the next subsection. We will
now first show how Corollary 5.4 follows from that theorem. For that we
use and state Observation 5.5 below, which holds for all increasing events.
This observation is an analog of the well-known Margulis-Russo formula
for product measures. Its proof (which we omit), uses a straightforward
coupling of Pk+1,n and Pk,n, is simpler than that of the Margulis-Russo
formula, and is probably, implicitly or explicitly, already in the litereature.

Observation 5.5. Let n ≥ 1 and let A ⊂ {0, 1}n be an increasing event.
Let N0

A denote the number of vertices that are 0-pivotal for A, and Ek,n(N
0
A)

its expectation w.r.t. the distribution Pk,n. For all k ≤ n− 1,

Pk+1,n(A)− Pk,n(A) =
1

n− k
Ek,n(N

0
A). (35)

Proof. (of Corollary 5.4 from Theorem 5.2). The corollary follows imme-
diately from Theorem 5.2 by applying Observation 5.5, with n = R2 and
k = R2/2, to the event AR.

For the proof of Theorem 5.2 we will use the following almost trivial
inequality relating Pn

2
,n and P1/2:
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Observation 5.6. For all even n ≥ 2 and all increasing events A ⊂ {0, 1}n,

Pn
2
,n(A) ≤ 2P 1

2
(A).

(This Observation follows immediately from the obvious facts that the event
B that there are at least n

2 1′s has, under P1/2, probability larger than 1/2,
and that P1/2(A |B) ≥ Pn

2
,n(A).)

As said in Remark 5.3, the proof of Theorem 5.2 uses only a minimal
amount of knowledge from Bernoulli percolation, namely, FKG-Harris (the
result that, for product measures, increasing events are positively correlated)
and RSW. The form of RSW we will use is that there is a c1 > 0 such that
for all R ≥ 1,

P 1
2
(∃ an occupied vertical crossing of a given 3R×R box ) < c1. (36)

As is well-known, this (combined with FKG) easily implies that there is a
c2 < 1 such that, for all R ≥ 1, the probablity (under P 1

2
) that there is an

occupied path crossing the annulus between two concentric boxes, one of
size R × R and the other of size 3R × 3R, is smaller than c2. Since a path
from 0 to a point at distance m from 0 has to cross of order logm specific
annuli of the above shape, it follows immediately (and is a classical result)
that there are c3, c4 > 0 such that, for all m ≥ 1,

π(m) < c3m
−c4 , (37)

where π(m) = P 1
2
(∃ a path from 0 to a point at distance m from 0).

Remark 5.7. Since the 1980’s the result (37) has been dramatically sharp-
ened ([14]), but it is, together with Theorem 1.1, sufficient for our purpose:
to prove Theorem 5.2.

5.1 Proof of Theorem 5.2

To obtain a lower bound for the expected number of pivotal vertices we will
use our main result, Theorem 1.1, and the existence of a suitable algorithm
(decision tree) for checking the existence of an occupied horizontal crossing
in the box, where ‘suitable’ means that the revealment probabilities, under
the measure PR2

2
,R2 are in some sense small. (As in many applications of

OSSS in the literature, we will average over a number of decision trees to
obtain a desired ‘average’ smallness of revealments).
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For discovering a crossing from the left to the right side of a box, there
is a well-known algorithm involving a so-called exploration path. The con-
struction of such a path is best explained in terms of the graph obtained by
representing each vertex of the triangular lattice as (the midpoint of) a small
hexagon in the hexagonal lattice (which is the dual of the triangular lattice).
We colour a hexagon ‘white’ if its corresponding vertex in the triangular lat-
tice is occupied, and ‘black’ otherwise. The most common exploration path
is a path (in the box) on the mentioned hexagonal lattice, which starts in
a corner of the box, say the lower-right corner, and, informally speaking,
develops step-by-step in such a way that at each step there is white on the
left and black on the right. There is an occupied horizontal crossing of the
box if and only if the exploration path reaches the left side of the box before
the top side. So, to discover whether the event AR holds, only the colours
of those vertices that are reached by the exploration path before it hits the
left or top side of the box, have to be revealed.

This algorithm in itself is not ‘suitable’ yet, beacuse vertices close to the
mentioned corner have a ‘high’ probability to be examined. To take care of
this, Schramm and Steif [18] (see Section 4 of their paper) presented, in the
context of Bernoulli percolation, an adaptation of the algorithm, which is
informally as follows. For each point v0 (denoted by p0 in their paper) on the
right side of the box, consider a straightforward modification β = βv0 of the
above exploration path to discover if there is a horizontal occupied path from
the left side of the box to the part of the right side above v0. And, similarly,
a modification β′

v0 to determine the existence of a horizontal occupied path
from the left side of the box to the part of the right side below v0. Together,
these two exploration paths determine whether the event AR occurs. So,
for each v0 one now has a decision tree for the event AR. Schramm and
Steif showed that, for each vertex w in the box, the average over all the
above mentioned v0’s of the corresponding revealment probabilities for w, is
‘small’.

As said, the above mentioned work by Schramm and Steif concerns
Bernoulli percolation. For the percolation model with fixed number of oc-
cupied vertices we can, and will, consider the same decision trees (with
exactly the same definition of βv0 and β′

v0). The revealment probabilities
will of course differ from those in the Bernoulli case. Below is a somewhat
informal outline of the computation leading to an upper bound on these
revealment probabilities, where we focus on the differences and adaptations
compared to that for Bernoulli percolation in [18]. See Section 4 of [18]
for more precise (deterministic) properties (and pictures) of the exploration
paths.
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Let Tv0 denote the ‘decision tree’ corresponding to v0 (i.e., with explo-
ration paths βv0 and β′

v0). For brevity we will write P for PR2

2
,R2 . We have,

for each hexagon H,

P(H examined under Tv0) ≤ P(H on βv0) + P(H on β′
v0), (38)

where “H on β” means that at least one of the sides of H is on β.
It is easy to see that if H touches βv0 then there is a black or a white

path from (a neighbour of) H to distance at least |z0(H) − v0| − K from
H, where z0(H) is the closest point to H on the right side of the box, and
K is a (universal) constant. (Schramm and Steif obtained a considerably
stronger statement, but for our purpose the one above is sufficient).
Hence

P(H on βv0) (39)

≤ P(∃ a white or a black path from H to distance |z0(H)− v0| −K from H)

= 2P(∃ a white path from H to distance |z0(H)− v0| −K from H).

The same inequality also holds for β′
v0 , so together with (38) this gives

P(H examined under Tv0)

≤ 4P(∃ white path from H to distance |z0(H)− v0| −K from H)).

Summing this over all v0 on the r.h.s. of the box (there are roughly R of
these) and using Observation 5.6 and (37), gives, for every H,

∑

v0

P(H examined under Tv0) (40)

≤ c5

R
∑

m=1

P(∃ white path from H to distance m from H)

≤ 2c5

R
∑

m=1

c3m
−c4 ≤ c6R

1−c4 ,

where c5 and c6 are constants > 0. Hence, for some constant c7 > 0,

[The average over all v0 of P(H examined under Tv0)] ≤ c7R
−c4 . (41)

Now for each v0 we apply our main result, Theorem 1.1 (with E the set
of vertices in the R×R box, A the above mentioned crossing event AR, and
T = Tv0 ). So for each v0 this gives an inequality of the form (3). Note that
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the l.h.s. of each of these inequalities is 1/4. ‘Averaging’ these inequalities
and using (41) yields

1/4 ≤ (1 + logR)
∑

w

P(w is 0− pivotal for AR) c7 R
−c4 ,

(where the sum is over all vertices w in the R×R box) and hence that the
l.h.s. of (33) is ≥ c8

logRR
c4 , where c8 is a universal constant. This completes

the proof of Theorem 5.2.

Remark 5.8. We emphasize again that Schramm and Steif [18] worked
on Bernoulli percolation (not on the percolation model with fixed number of
occupied vertices). We also remark that it was not the goal of their paper
to obtain lower bounds for the expected number of pivotals but to prove a
form of quantitative noise sensitivity (and use that to prove the existence
of exceptional times in a dynamical percolation model). For their purpose
they used, apart from the above mentioned exploration paths, not OSSS but
a different inequality (Theorem 1.8 in their paper), which involves discrete
Fourier analysis. In fact, roughly speaking, the special case where a param-
eter in their Theorem 1.8 is equal to 1, produces an upper bound for the
expected number of pivotals.

5.2 Further comments on Theorem 5.2 and its proof

5.2.1 Sketch of an alternative proof

As said, the proof of Theorem 5.2 in the previous subsection uses, besides
our OSSS-like result (Theorem 1.1), only a minimal amount of (Bernoulli)
percolation theory: essentially only RSW. I don’t know a proof of Theorem
5.2 which neither uses the OSSS-like result, nor more than only mild results
from Bernoulli percolation.

One can prove Theorem 5.2 (and even a stronger version) without using
OSSS, but instead using quite heavy results from Bernoulli percolation. I
am not aware of such a proof in the literature, and will give an informal
sketch how to do it:

First, recall that one step (namely, the last inequality but one in (40))
in the proof of Theorem 5.2 uses an obvious comparison (Observation 5.6)
between P 1

2
and P (= PR2

2
,R2). That comparison was used to bound the

probability (under P) that there is an occupied path from a given vertex to
a region at a certain distance from that vertex. Also recall (see Remark 5.1)
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that the event that a given vertex v is pivotal for AR is the event that there
are four distinct ‘arms’ with certain properties from neighbours of v to the
boundary of the R × R box. It is natural to ask if the probability of that
event under the probability measure P can also be suitably ‘compared’ with
that under the measure P 1

2
(which would then yield another way to obtain

Theorem 5.2).
Such comparison can indeed be made, but it involves, roughly speak-

ing, a change of the parameter (which was 1/2) of the Bernoulli process.
Such change is needed to ‘control’ the effect of the typical fluctuation of the
number of occupied vertices in the R×R box in the Bernoulli model. This
fluctuation is of course of order of the square root of the number of vertices

in the box, i.e. of order
√
R

2
= R. This can be controlled (‘compensated’)

by a change of the Bernoulli parameter by roughly 1
R2 × the mentioned typ-

ical fluctiation, i.e., roughly R/R2 = 1/R. The characteristic length scale of
Bernoulli percolation at parameter 1/2+ δ, denoted by L(1/2+ δ), is known
to be of order at least 1/δ. (Another way to say this, is that the correlation
length critical exponent is at least 1. Much more is known but not needed
here).

At length scales below that characteristic length, the Bernoulli model
with the new parameter (1/2 + δ) behaves typically like the critical model,
i.e. the Bernoulli model with parameter 1/2). That is essentially the main,
and technically complicated, result in the celebrated paper [13] by Kesten,
see also [15]. (Also see, for a slightly more subtle version of Kesten’s result,
which is actually needed in the argument above, with an extra state of the
vertices, the paper [3] by Damron et al, in particular Lemma 6.3).

Since in our case δ ≍ 1/R, the characteristic length is at least of order
R (the length of the box). Hence, the mentioned four-arm event has, under
the measure P roughly the same probability as under P 1

2
. Summing that

probability over all vertices in the ‘bulk’ of the box then yields Theorem 5.2
from its (well-known) analog for Bernoulli percolation.

5.2.2 Ideas concerning yet another proof

Another proof of Theorem 5.2 may be obtained by mimicking a classical
proof for the Bernoulli percolation analog of that theorem: By first showing
that with ‘reasonable’ probability there is a vertex in the bulk of the box
with ‘five armes’, namely, besides the mentioned four arms an additional
occupied arm to the boundary of the box (see e.g. Section 5.2 in [15] how to
do this for Bernoulli percolation). And, next, showing that this extra path
‘costs’ at least a probability R−ε for some ε > 0. Finally, by summing over
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all vertices in the bulk of the box, this would then give (33) with α = ε.
However, the analog for the k-out-of-n model of the first part of this proof
(i.e. showing that there is with reasonable probability a vertex ‘with five
arms’) would again require a comparison with near-critical Bernoulli perco-
lation and use of the above mentioned heavy work by Kesten [13].

5.2.3 Comparison with KKL in this box-crossing situation

We also briefly return to the k-out-of-n version of KKL from [17], mentioned
in Section 1.2. Since each vertex v in the box has distance at least R/2− 1
to the left or to the right side of the box, the probability that v is pivotal is
at most

P(∃ occupied path from a neighbour of v to distance
R

2
− 1 from v),

which by Observation 5.6 and (37) is at most 2c3(R/2 − 1)−c4 . Since this
holds for each v in the box, application of the above mentioned version of
KKL then gives that the expected number of pivotal vertices is at least of
order logR, which is much weaker than (33).

5.2.4 Final Remark

The main purpose of this paper is to present Theorem 1.1 (and Theorem
1.3), a version of OSSS for k-out-of-n measures. Theorem 5.2 and its prac-
tically self-contained proof (without using Bernoulli percolation results be-
yond RSW) are meant as an illustration of how that version of OSSS can
be used, not as a major application.

Acknowledgments

I thank Jeff Kahn and Gabor Pete for some valuable comments and ques-
tions on the first version of this paper. In particular, JK brought the paper
[17] by O’Donnell and Wimmer to my attention, and GP asked stimulating
questions about the logarithmic factor in Theorem 1.1.

Further, I thank Pierre Nolin for helpful information concerning near-
critical Bernoulli percolation.

26



References

[1] J. van den Berg and J. Jonasson, A BK inequality for randomly drawn
subsets of fixed size, Probab. Theory Relat. Fields 154, 835-844 (2012).

[2] S. Boucheron, G. Lugosi and P. Massart, Concentration Inequalities,
Oxford University Press (2013).

[3] M. Damron, A. Sapozhnikov and B. Vágvölgyi, Relations between in-
vasion percolation and critical percolation in two dimensions, Ann.
Probab. 37, 2297-2331 (2009).

[4] D. Dereudre and P. Houdebert, Sharp phase transition for the contin-
uum Widom-Rowlinson model, Ann. Inst. H. Poincaré Probab. Statist.
57, 387-407 (2021).

[5] H. Duminil-Copin, A. Raoufi and V. Tassion, Exponential decay of con-
nection probabilities for subcritical Voronoi percolation in R

d, Probab.
Theory Relat. Fields 173, 479-490 (2019).

[6] H. Duminil-Copin, A. Raoufi, and V. Tassion, Sharp phase transition
for the random-cluster and Potts models via decision trees, Annals of
Mathematics 189, 75-99 (2019).

[7] Y. Filmus, R. O’Donnell and X. Wu, Log-Sobolev inequality for the
multislice, with applications, Electron. J. Probab. 27, article no. 33,
1-30 (2022).

[8] G.R. Grimmett. Percolation, second edition, Springer (1999).

[9] G.R. Grimmett. Probability on graphs, Second Edition, IMS Textbooks
8, Cambridge University Press (2018).
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