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1. Introduction

The Dyck language of balanced parentheses is a textbook example of a context-

free language. Its typical generalization to multiple types of parentheses, Parenn,

is central in characterizing the class of context-free languages, as shown by the

Chomsky-Schützenberger theorem [1]. Many other generalizations of the Dyck lan-

guage have been studied over the years. The unrestricted Dyck language requires

only that the number of left parentheses equals the number of right parentheses,

1

https://dx.doi.org/10.1142/S0129054122440026


February 15, 2023 17:44 WSPC/INSTRUCTION FILE dlt2021-extended

2 L. Edixhoven and S.-S. Jongmans

with no restriction on their ordering. Prodinger [15] generalizes this unrestricted

Dyck language by considering factorizations with arbitrary words instead of with

single parentheses. Labelle and Yeh [7] allow a larger alphabet where every alpha-

bet symbol is associated with some rational number. A word is then balanced if

the value of its letters sums to 0 and if it has no prefix with a negative value. The

Dyck language is then the special case with a binary alphabet, where the opening

bracket has value 1 and the closing bracket value −1. This generalization is further

studied by Duchon [3]. Moortgat [12] also considers a larger alphabet, in which the

symbols are ordered. A word is balanced if every prefix of it contains symbol σi at

least as many times as symbol σi+1. Finally, Liebehenschel [8] considers a general-

ization with multiple types of parentheses where the parentheses are not paired by

type but by some similarity relation. Depending on this relation some type of left

parenthesis may match multiple types of right parentheses and vice-versa.

In this paper we consider a generalization with multiple types of parentheses.

The parentheses are paired by type and for each type a balanced word must contain

the same number of opening and closing parentheses, with no prefix containing

more closing than opening parentheses. The difference with Parenn is that, while

Parenn requires parentheses of different types to be properly nested, we impose no

such restriction: parentheses of different types may freely commute. For example,

Parenn allows [1[2]2]1 but rejects [1[2]1]2. We consider both to be balanced.

This notion of balancedness is of particular interest in the context of distributed

computing, where different components communicate by exchanging messages: if we

assign a unique type of parentheses to every communication channel between two

participants and interpret opening (resp. closing) parentheses as sending (resp. re-

ceiving) messages, then balancedness characterizes precisely all sequences of commu-

nication with no lost or orphan messages. Specifically, we are interested in specifying

languages that are balanced by construction, which correspond to communication

protocols that are free of lost messages and orphan messages. More precisely, we

aim to answer the question: can we define balanced atoms and a set of balancedness-

preserving operators with which one can express all balanced languages?

Our main result is that we answer this question positively for the classes of

regular and ω-regular languages. Our contributions are as follows:

• In Section 2 we show how balancedness of regular languages corresponds

to syntactic properties of finite automata and regular expressions.

• In Section 3 we show that, by using a parameterized shuffle operator, we

can define an infinite grammar of balanced-by-construction expressions with

which one can express all balanced regular languages.

• In Section 4 we extend these results to ω-regular languages, ω-automata

and ω-regular expressions.

• In Section 5 we discuss the questions of whether an infinite grammar of

balanced-by-construction expressions exists for balanced context-free lan-

guages, and whether a finite grammar of balanced-by-construction expres-
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sions exists for regular languages. Both of these questions appear not to

have a straightforward answer.

Detailed proofs appear in a technical report [5].

This paper is an extended version of the paper presented at DLT 2021 [4]. Most

notably, we have made an effort to increase the clarity and accessibility of the proofs

and the general line of thought throughout the paper. We also discuss a couple of

topics for future work, which did not appear in the original paper. In particular:

• We use significantly more examples throughout the paper.

• Sections 2 and 4 now use automata as a didactic stepping stone from bal-

anced languages to balanced expressions.

• The proofs in Sections 3 and 4 have been made more accessible by adding

an analogy using jigsaw pieces.

• Section 5 is new altogether.

Notation N = {1, 2, . . .}, N0 = {0, 1, . . .}, Z is the set of integers and ℵ0 = |N|.
Let Σn be the alphabet {[1, ]1, . . . , [n, ]n}. Its size is typically either clear from

the context or irrelevant; in both cases we omit the subscript. We write λ for the

empty word. We write Σ∗ for the set of finite words over Σ. We write Σω for the

set of infinite words {w | w : N→ Σ} over Σ. We write Σ∞ = Σ∗ ∪ Σω. We write

w(i) to refer to the symbol at position i in w. We write w(i, . . . , j) for the substring

of w beginning at position i and ending at position j. Let v, w ∈ Σ∞. Then v is a

prefix of w, denoted v � w, if v = w or if there exists v′ ∈ Σ∞ such that vv′ = w.

We write |w|, |w|σ ∈ N0 ∪ {ℵ0} respectively for the length of w and for the number

of occurrences of symbol σ in w. Let E be the set of all regular expressions over⋃
n≥1 Σn. We write L(e) (resp. L(M)) for the language of a regular expression e

(resp. an automaton M). For e1, e2 ∈ E, we write e1 ≡ e2 iff L(e1) = L(e2).

2. Balanced regular languages

In this section, we formally define our notion of balancedness and characterize bal-

anced regular languages in terms of finite automata and regular expressions.

Balancedness

A word w ∈ Σ∗ is i-balanced if |w|[i = |w|]i and if, for all prefixes v of w, |v|[i ≥ |v|]i .
It is balanced if it is i-balanced for all i. We extend this terminology to languages,

automata and expressions in the expected way: a language is (i-)balanced if all of

its words are; an automaton or expression is (i-)balanced if its language is.
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Language: {[1]1[1[1]1, [1]1[1, ]1[1[1[1]1, ]1[1[1}

Finite automaton:

[ 1

]
1

]
1

[ 1

[1 [1 ]1
no certificate

Regular expression: e = ([1]1 + ]1[1)[1([1]1 + λ) ∇(e, 1) = 1 ∇min(e, 1) = −1

(a) Unbalanced.

Language: {[1[2]1[3]3]2}

Finite automaton: q r s t u v w
[1 [2 ]1 [3 ]3 ]2

∇(q, 1) = 0
∇(q, 2) = 0
∇(q, 3) = 0

∇(r, 1) = 1
∇(r, 2) = 0
∇(r, 3) = 0

∇(s, 1) = 1
∇(s, 2) = 1
∇(s, 3) = 0

∇(t, 1) = 0
∇(t, 2) = 1
∇(t, 3) = 0

· · ·

Regular expression: e = [1[2]1[3]3]2

∇(e, 1) = ∇(e, 2) = ∇(e, 3) = 0

∇min(e, 1) = ∇min(e, 2) = ∇min(e, 3) = 0

(b) Balanced.

Language: {[1]1, ]1[1}

Finite automaton:

[ 1

]
1

]
1

[ 1

no certificate

Regular expression: e = [1]1 + ]1[1

∇(e, 1) = 0

∇min(e, 1) = −1

(c) Unbalanced.

Language: {[1[2]1]2,
[1[2]1]2[1[2]1]2,
. . .}

Finite automaton: q

r

t

s

[ 1
[
2

] 1
]
2

∇(q, 1) = ∇(t, 1) = 0
∇(r, 1) = ∇(s, 1) = 1
∇(q, 2) = ∇(r, 2) = 0
∇(s, 2) = ∇(t, 2) = 1

Regular expression: e = ([1[2]1]2)∗

∇(e, 1) = ∇(e, 2) = 0

∇min(e, 1) = 0

∇min(e, 2) = 0

(d) Balanced.

Language: {[1[1]1]1, [1]1[1]1, [1[1]1]1[1]1, [1]1[1]1[1]1, . . .}

Finite automaton: q r

s

t

u v
[1

[ 1

]
1

]
1

[ 1

]1

[1

∇(q, 1) = ∇(t, 1) = ∇(v, 1) = 0
∇(r, 1) = ∇(u, 1) = 1

∇(s, 1) = 2

Regular expression: e = [1([1]1 + ]1[1)(]1[1)∗]1 ∇(e, 1) = 0 ∇min(e, 1) = 0

(e) Balanced.

Fig. 1: Examples of (un)balancedness.
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Example 1. Figure 1 shows examples of balanced and unbalanced languages. The

finite automata and regular expressions in the figure can be ignored for now; we

discuss them shortly.

The languages in Figures 1b, 1d, and 1e are balanced because, informally, in

every word of those languages, every ]i is preceded by a corresponding [i for every

i ∈ {1, 2, 3}. In contrast, the language in Figure 1a is unbalanced because each of

its words w violates requirement |w|[1 = |w|]1 , while the language in Figure 1c is

unbalanced because word ]1[1 violates requirement |v|[1 ≥ |v|]1 for prefix v = ]1.

Finite automata

For a (nondeterministic) finite automaton to be balanced, all words leading to a final

state must be balanced: for every i, they must contain equally many opening and

closing i-parentheses and the number of closing i-parentheses may never exceed the

number of opening i-parentheses in any prefix. It follows that, for any state with a

]i-transition to a final state, all words leading to this state must contain exactly one

unmatched opening i-parenthesis—along with the previous condition on prefixes.

Following this line of thought, a similar condition must hold for every state in the

automatona: for every state and for every i, there must exist some n ∈ N0 such

that |w|[i − |w|]i = n for every word w leading to that state. We will call this n

a state’s i-balance (i.e., the number of unmatched opening i-parentheses), denoted

∇(q, i) for a state q. Additionally, the i-balances of the automaton’s states must

be consistent with its transitions: if ∇(p, 1) = 1 and p
[1−→ q then ∇(q, 1) = 2 and

∇(q, i) = ∇(p, i) for all i 6= 1.

Formally, we can prove the following theorem:

Theorem 2. Let M = (Q,Σ, δ, q0, F ) be a finite automaton. Then M is balanced

iff there exists a certificate ∇ : Q× N 7→ Z such that, for all i:

• ∇(q, i) ≥ 0 for all q;

• ∇(q, i) = 0 for q = q0 and for all q ∈ F ; and

• if (p, σ, q) ∈ δ then ∇(q, i) = ∇(p, i) +∇(σ, i), where ∇(σ, i) = 1 if σ = [i,

∇(σ, i) = −1 if σ = ]i and ∇(σ, i) = 0 otherwise.

Example 3. Figure 1 shows examples of balanced and unbalanced finite automata.

The regular expressions in the figure can be ignored for now; we discuss them shortly.

For the automata in Figures 1b, 1d, and 1e, a certificate exists, so they are

balanced. In contrast, for the automata in Figures 1a and 1c, a certificate does not

exist because it is impossible to assign a non-negative number to the bottom state of

the diamond.

aTechnically such a condition only needs to hold for every state from which a final state can be

reached. However, we may assume without loss of generality that a finite automaton contains no
states from which no final state can be reached — unless its language is empty, in which case we

may assume that it has exactly one state and no transitions.
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−1

0

1

2

i-balance: 1

minimum i-balance: −1

Fig. 2: The i-balance and minimum i-balance of ([i]i + ]i[i)[i([i]i + λ). The i-

balance points at the final height of the four words in the expression’s language,

which is the same in every case. The minimum i-balance points at the lowest height

encountered by any word at any point.

Regular expressions

We can apply the same notion of i-balance to regular expressions: to every i-

balanced regular expression e, we assign a value ∇(e, i), which we show to cor-

respond to the number n of unmatched opening i-parentheses in every word in its

language. In general, for an arbitrary regular expression (e.g., λ+ [i and [∗i ), n does

not necessarily exist. In such cases we leave ∇(e, i) undefined. Shortly, we show that

∇(e, i) is defined for all e for which n exists.

Besides keeping track of the number of unmatched opening i-parentheses, ad-

ditionally, we need to differentiate between, for example, [i]i and ]i[i. They have

the same i-balance but the former is balanced while the latter is not. To do this

we assign a second value which we call the minimum i-balance, denoted ∇min(e, i),

which we show to correspond to the smallest i-balance among every prefix of every

word in its language. Both are illustrated with a simple example in Figure 2. An

expression is balanced if its i-balance and minimum i-balance equal 0 for every i.

Example 4. Figure 1 shows examples of balanced and unbalanced regular expres-

sions, including their balances and minimum balances.

Formally, we define partial functions ∇,∇min : E × N 7→ Z as in Figure 3. We

show in Lemma 5 that ∇ and ∇min have the intended properties we described, and

in Lemma 6 that they are defined when they should be.

As stated before, these functions are partial. In particular,∇(e1 + e2, i) is defined

only if ∇(e1, i) = ∇(e2, i), while ∇(e∗, i) is defined only if ∇(e, i) = 0. The definition

of∇min(e1 ·e2, i) relies on∇ and may thus be undefined as well. The empty language

∅ is a special case: we choose to leave ∇(∅, i) and ∇min(∅, i) undefined. Using

standard algebraic rules, we can rewrite any regular expression representing a non-

empty language into an equivalent expression that does not contain ∅. To avoid

overcomplicating our definitions and proofs, we assume for any regular expression

e that e does not contain ∅, unless e = ∅.
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∇([i, j) =

{
1 if i = j

0 if i 6= j

∇(]i, j) =

{
−1 if i = j

0 if i 6= j

∇(λ, i) = 0

∇(e1 · e2, i) = ∇(e1, i) +∇(e2, i)

∇(e1 + e2, i) = ∇(e1, i) if ∇(e1, i) = ∇(e2, i)

∇(e∗, i) = 0 if ∇(e, i) = 0

(a) i-balance.

∇min([i, j) = 0

∇min(]i, i) = −1

∇min(]i, j) = 0 if i 6= j

∇min(λ, i) = 0

∇min(e1 · e2, i) = min(∇min(e1, i),∇(e1, i) +∇min(e2, i))

∇min(e1 + e2, i) = min(∇min(e1, i),∇min(e2, i))

∇min(e∗, i) = ∇min(e, i)

(b) Minimum i-balance.

Fig. 3: The i-balance and minimum i-balance of regular expressions.

Let e ∈ E. If ∇(e, i) and ∇min(e, i) are defined, then:

(i) |w|[i − |w|]i = ∇(e, i) for every w ∈ L(e);

(ii) |v|[i − |v|]i ≥ ∇min(e, i) for every prefix v of every w ∈ L(e); and

(iii) |v|[i − |v|]i = ∇min(e, i) for some prefix v of some w ∈ L(e).

Lemma 6. Let e ∈ E. If |v|[i − |v|]i = |w|[i − |w|]i for every v, w ∈ L(e) and

L(e) 6= ∅, then ∇(e, i) and ∇min(e, i) are defined.

The proofs are straightforward by structural induction on e. Applying them

gives us the following characterization:

Theorem 7. Let e ∈ E. e is balanced iff e = ∅ or ∇(e, i) = ∇min(e, i) = 0, for

every i.
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e ::= ∅ | λ | [1 · ]1 | [2 · ]2 | . . . | e1 + e2 | e1 · e2 | e∗ | �1
θ (e1) | �2

θ (e1, e2) | . . .
θ ::= ∅ | λ | 1 | 2 | . . . | θ1 + θ2 | θ1 · θ1 | θ∗

Fig. 4: A grammar E� for expressing balanced regular languages.

1

2

b a n a n a

p

e

a

r

Fig. 5: The shuffle of ‘banana’ and ‘pear’ over a trajectory 1221112112: ‘bpeanaanar’.

3. Balanced-by-construction regular languages

The main contribution of this section is a grammar of balanced-by-construction

expressions, E� in Figure 4. We show that it can express all and only all balanced

regular languages. It uses regular expressions as a basis and differs in two ways:

• Parentheses can syntactically occur only in ordered pairs instead of sepa-

rately, so the atoms are all balanced.

• We add a family of operators �n
θ (e1, . . . , en), called shuffle on trajectories,

in order to interleave words of subexpressions.

The shuffle on trajectories operator is a powerful variation of the traditional

shuffle operator, which adds a control trajectory (or a set thereof) to restrict the

permitted orders of interleaving. This allows for fine-grained control over orderings

when shuffling words or languages. The binary operator was defined—and its prop-

erties thoroughly studied—by Mateescu et al. [10]; we use the multiary variant,

which was introduced slightly later [11].

When defined on words, the shuffle on trajectories takes n words and a trajectory,

which is a word over the alphabet {1, . . . , n}. This trajectory specifies the exact

order of interleaving of the shuffled words: in Figure 5 the trajectory 1221112112

specifies that the result should first take a symbol from the first word, then from

the second, then again from the second and so on.
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Formally, let w1, . . . , wn ∈ Σ∗ and let t ∈ {1, . . . , n}∗. Then:

�
n
t (w1, . . . , wn) =

{
σ�n

t′ (w1, . . . , w
′
i, . . . , wn) if t = it′ ∧ wi = σw′i,

λ if t = w1 = . . . = wn = λ.

We note that �n
t (w1, . . . , wn) is only defined if the number of occurrences of i

in t precisely matches the length of wi, i.e., if |t|i = |wi|, for every i. If |t|i = |wi|,
we say that t fits wi.

Example 8.

• �121332([1]1, [2]2, [3]3) = [1[2]1[3]3]2 since 121332 fits every word.

• �2
121([1]1, [2]2) is undefined since 121 does not fit [2]2.

The shuffle on trajectories operator naturally generalizes to languages and ex-

pressions: the shuffle of a number of languages on a set (i.e., language) of trajectories

is defined as the set of all valid shuffles of words in the languages for which the tra-

jectory fits all the words. The language of a shuffle of expressions is the shuffle of

the corresponding languages. Formally:

�
n
T (L1, . . . , Ln) = {�n

t (w1, . . . , wn) | t ∈ T,w1 ∈ L1, . . . , wn ∈ Ln} .
L(�n

θ (e1, . . . , en)) = �n
L(θ)(L(e1), . . . , L(en)).

Example 9.

• �2
12 + 21([1 + [2]2, ]1) ≡ [1]1 + ]1[1. Note that [2]2 in the first operand is

never used since no trajectory fits it.

• �2
12 + 22([1, ]1) ≡ [1]1. Note that the trajectory 22 is never used since it

does not fit a word in either operand.

• �2
(12)∗(([1]1)∗, ([2]2)∗) ≡ ([1[2]1]2)∗.

• �2
12 + 11([1, λ) ≡ ∅ since neither trajectory fits words in both operands si-

multaneously.

• �2
(12)∗([1]1, [2(]2[2)∗) ≡ ∅ since no trajectory fits words in both operands

simultaneously (due to a parity issue).

We say that a set of trajectories T fits Li if every t ∈ T fits some wi ∈ Li and

that θ fits ei if L(θ) fits L(ei). We note that the grammar E� allows any regular

set of trajectories.

As the operator’s arity is clear from its operands, we will omit it from now on.

In the remainder of this section, we show that the grammar E� can express only

(soundness) and all (completeness) balanced regular languages.

Soundness

Showing that every expression in E� represents a balanced regular language is

straightforward. The base cases all comply and both balanced and regular lan-

guages are closed under choice, concatenation and finite repetition. The shuffle on
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k
i = ([i]i)

k([i]i)
∗

λ
k
i = ( k

i )∗ ω
i = ([i]i)

ω

+ k
i = k

i [i − k
i = ]i

k
i ± k

i = ]i
k
i [i ? ki = ( ± k

i )∗ ± ω
i = (]i[i)

ω

Fig. 6: Factors, with i ∈ N and k ∈ N0. The factors in the top row are balanced,

those in the bottom row are not. We omit the superscript when it is not relevant.

The ω-factors will be used in Section 4.

trajectories operator yields an interleaving of its operands: a simple inductive proof

will show closure of balanced languages under the operation. Mateescu et al. show

that regular languages are closed under binary shuffle on regular trajectory lan-

guages by constructing an equivalent finite automaton [10]; their construction can

be generalized in a straightforward way to fit the multiary operator, which shows:

Theorem 10. {L(e) | e ∈ E�} ⊆ {L | L is a balanced and regular language}.

Completeness

To show that E� can express any balanced regular language, we take an arbitrary

balanced regular expression e and show that there exists an equivalent expression

in E�. We cannot use a simple inductive proof, as not every subexpression of a

balanced regular expression is necessarily balanced; [i and ]i are the most obvious

offenders. Instead, we show the more general result that, in fact, any regular expres-

sion whose every (minimum) i-balance is defined (but does not necessarily equal 0)

can be written as the shuffle of a particular set of expressions, i.e., those in Figure 6,

which we call factors. Some of these factors are balanced and some are not; we show

that the number of unbalanced factors can be limited by the expression’s i-balance

and minimum i-balance. In other words: if e is balanced then the resulting shuffle

expression only uses balanced factors and is thus in E�.

To simplify matters, we only consider regular expressions that do not contain

+. After all, we can rewrite any regular expression into a disjunctive normal form

e1 + . . .+ en such that all ei contain no +; since E� contains +, we can then ig-

nore it. Additionally, we only consider regular expressions that do not contain ∅.

Again, we can rewrite any regular expression representing a nonempty language into

an equivalent one that does not contain ∅. Since E� contains ∅, all expressions

representing the empty language are trivially covered and can thus be ignored.

For the remaining expressions we construct an equivalent expression

�θ(e1, . . . , en), in such a way that the ei are among the factors in Figure 6 and

that the number of unbalanced factors depends on the original expression’s (mini-

mum) i-balances. We will use jigsaw pieces as a visual representation of the factors,

where trailing opening parentheses and preceding closing parentheses are visualized

with tabs and blanks, to make the construction and its proof more tangible. These

are pictured in Figure 7.
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k
i → λ

k
i → ω

i →

+ k
i → − k

i → ± k
i → ? ki → ± ω

i →

Fig. 7: Factors as jigsaw pieces. A trailing opening parenthesis is visualized with a

tab on the right side. A preceding closing parenthesis is visualized with a blank on

the left side. Possible emptiness (in the case of repetition) is visualized by shading

the piece. Infinite repetition is visualized by not finishing the piece on the right side.

( + k
i , −

`
i)→ k+`+1

i ( − k
i , + `

i)→ ± k+`
i

( + k
i , ±

`
i)→ + k+`+1

i ( ± k
i , −

`
i)→ − k+`+1

i

( + k
i , ? `i)→ + k

i ( ? ki , −
`
i)→ − `

i ( ± k
i , ±

`
i)→ ± k+`+1

i

( ± k
i , ? `i)→ ± k

i ( ? `i , ±
k
i )→ ± k

i ( ? ki , ? `i)→ ?
min(k,`)
i

( + k
i , ±

ω
i )→ ω

i ( ± k
i , ±

ω
i )→ ± ω

i ( ? ki , ±
ω
i )→ ± ω

i

Fig. 8: Merging common pairs of factors, with i ∈ N and k, ` ∈ N0.

→ →

→ →

→ → →

→ → →

→ → →

Fig. 9: Merging pairs of factors as jigsaw pieces.

Specifically, the jigsaw pieces help to understand a crucial step in our construc-

tion: we show that, under certain conditions, we can merge two operands of a shuffle,

i.e., �T (L1, . . . , Ln−1, Ln) = �T ′(L1, . . . , Ln−1Ln) for some T ′. The formal details

can be found in Lemma 11, where we define T ′ using morphisms, similarly to previ-

ous work [10, 2]. In particular, we later use this lemma to merge the pairs of factors

in Figure 8. In terms of jigsaw pieces, this merging operation may be thought of

as fitting two pieces together; the aforementioned pairs of factors are shown using

jigsaw pieces in Figure 9. In this visualization, two factors can be merged if their

pieces fit nicely together; typically, this consists of fitting a tab with a blank, which

corresponds to matching a trailing opening parenthesis with a preceding closing one.

The resulting pieces have the expected shape and are shaded only if both original

pieces were. One notable exception is the second pair of pieces in the top row of
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·

Fig. 10: The concatenation (and merging) of two

shuffles of factors as groups of jigsaw pieces.

Fig. 11: The finite repetition of

a shuffle of factors as a group

of jigsaw pieces.

Figure 9: these two are put back-to-back. There are more pieces that can be nicely

put back-to-back: for example, → . However, since these other pairs are

unnecessary for our later proof—unlike the ones in Figure 9—they are omitted.

Lemma 11 (Merge) Let L = �T (L1, . . . , Ln). If

(a) T fits every Li,

(b) for every t ∈ T , if t(i) = n− 1 and t(j) = n then i < j, and

(c) for all v, w ∈ Ln−1Ln, if |v| = |w| then v = w,

then L = �T ′(L1, . . . , Ln−1Ln) for some T ′ such that T ′ fits L1, . . . , Ln−1Ln.

Proof. Let ψ be a homomorphism such that ψ(n) = n − 1 and ψ(i) = i for all

other i. We proceed to show that L = �ψ(T )(L1, . . . , Ln−1Ln). Since T fits every

Li, ψ(T ) also fits L1, . . . , Ln−1Ln.

Equipped with this merging lemma, we proceed with the construction. Recall

that the result should be a single shuffle of factors, i.e., �θ(e1, . . . , en) for some

factors e1, . . . , en, with a minimal number of unbalanced factors. The construction

is by structural induction. The base cases are straightforward: for λ, [i and ]i we

can use respectively �λ( 0
i ), �1( + 0

i ) and �1( − 0
i ). In jigsaw pieces these are ,

and . Since we can ignore both ∅ and +, we are left with just two inductive

cases: · (concatenation) and ∗ (finite repetition).

• For concatenation, we use that �T1
(L1, . . . , Ln) ·�T2

(Ln+1, . . . , Ln+m) =

�T3
(L1, . . . , Ln+m) for some T3. Having combined the two into a single

shuffle, we then apply Lemma 11 as needed to merge suitable pairs of factors

to minimize the number of unbalanced factors. This is illustrated using

jigsaw pieces in Figure 10. To understand the figure, suppose that we start

with two expressions: the first with balance 1 and minimum balance −2—

for the sake of simplicity, there is only one type of parentheses—and the

second with balance 0 and minimum balance −2. In the figure, these two
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expressions are represented on the top row as two groups of jigsaw pieces;

the number of blanks equals the minimum balance of the corresponding

expression, while the number of tabs minus the number of blanks equals its

balance. The first step is to combine the two groups into one. The other step

is then to fit pairs of pieces from the first and the second group. Recall from

Figure 3 that the balance of the resulting expression is 1 and its minimum

balance is −2; indeed, the resulting group of pieces contains three tabs and

two blanks. In other words, the resulting group of factors is minimal.

• For finite repetition, we show that, under our assumed conditions,

(�T (L1, . . . , Ln))∗ = �T∗(L
∗
1, . . . , L

∗
n). In jigsaw pieces, this simply means

shading every non-shaded piece, as illustrated in Figure 11—note that

(e∗)∗ ≡ e∗. The ∗-operator, visualized as an extra shaded container, does

not change an expression’s balance or minimum balance, and since the num-

ber of tabs and blanks does not change either, the resulting group of factors

remains minimal.

This construction and its proof are formalized in Lemma 12.

Lemma 12 (Rewrite) Let posi(e1, . . . , en), negi(e1, . . . , en), neuti(e1, . . . , en) be

the number of + i, − i and [ ± i or ?
i] among e1, . . . , en.

Let e ∈ E such that e contains no + and that its (minimum) i-balance is defined

for every i. Then there exist θ and factors e1, . . . , en such that e ≡ �θ(e1, . . . , en)

and, additionally,

(a) posi(e1, . . . , en)− negi(e1, . . . , en) = ∇(e, i) for every i,

(b) −negi(e1, . . . , en)− neuti(e1, . . . , en) = ∇min(e, i) for every i,

(c) there are not both + i and − i among e1, . . . , en for some i, and

(d) θ fits every ei.

Proof. This is a proof by induction on the structure of e.

The base cases λ, [i and ]i are covered by �1
λ( 0

i ), �
1
1( + 0

i ) and �1
1( − 0

i ).

Since e contains no +, this leaves us with two inductive cases:

• Let e = ê∗. The induction hypothesis gives us some ê1, . . . , ên and θ̂ sat-

isfying all conditions for ê. It should be clear that L((�θ̂(ê1, . . . , ên))∗) ⊆
L((�θ̂(ê

∗
1, . . . , ê

∗
n))∗) ⊆ L(�θ̂∗(ê

∗
1, . . . , ê

∗
n)). Since ∇(e, i) is defined for all i,

∇(ê, i) = 0 for all i. It then follows from (a) and (c) that ê1, . . . , ên contain

no + i or − i, so all ê∗i are also factors.

To prove inclusion in the other direction, we show in two steps that

L(�θ̂∗(ê
∗
1, . . . , ê

∗
n)) ⊆ L((�θ̂(ê

∗
1, . . . , ê

∗
n))∗) ⊆ L((�θ̂(ê1, . . . , ên))∗).

The balances, minimum balances and factor counts are unchanged, so

(a–c) are satisfied. Finally, since θ̂ fits every êi, θ̂
∗ fits every ê∗i , so (d) also

holds.
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· · · · ·

· · · ·

· · ·

· ·

· ·

·

Fig. 12: Construction of Example 14 as groups of jigsaw pieces.

• Let e = ê1 · ê2. The induction hypothesis gives us some e1,1, . . . , e1,n1
and θ1

satisfying all conditions for ê1, and similarly for ê2. Let ϕ be a homomor-

phism such that ϕ(i) = i + n1. Then e′ = �θ1ϕ(θ2)(e1,1, . . . , e1,n1
, e2,1, . . . ,

e2,n2) ≡ e and e′ satisfies (d), but not necessarily (a–c). We resolve the

latter by merging operands e1,j , e2,k where applicable by Lemma 11. We

merge pairs of factors from Figure 8, taking care to prioritize pairs con-

taining both + i and − i over pairs containing only one of these, and pairs

containing only one over pairs containing none. By Lemma 11, the resulting

expression is equivalent to e′ and satisfies (d). It also satisfies (a–c).

Since a balanced regular expression has an i-balance and minimum i-balance of

0 for every i (Theorem 7), the following theorem follows directly from Lemma 12.

Theorem 13. {L(e) | e ∈ E�} ⊇ {L | L is a balanced and regular language}.

Example 14. Consider e = [1([1]1 + ]1[1)(]1[1)∗]1 (see also Figure 1e). We

first rewrite e as [1[1]1(]1[1)∗]1 + [1]1[1(]1[1)∗]1. We proceed to show how to
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Fig. 13: From left to right: w1 = ([i]i)
ω, w2 = ([i[i]i)

ω and w3 = [i([i]i)
ω.

construct an expression in E� for the first part of the disjunction:

[1[1]1(]1[1)∗]1 ≡ �1( + 0
1)�1 ( + 0

1)�1 ( − 0
1)(�1( − 0

1)�1 ( + 0
1))∗ �1 ( − 0

1)

≡ �12( + 0
1, + 0

1)�1 ( − 0
1)(�1( − 0

1)�1 ( + 0
1))∗ �1 ( − 0

1)

≡ �121( 1
1, + 0

1)(�1( − 0
1)�1 ( + 0

1))∗ �1 ( − 0
1)

≡ �121( 1
1, + 0

1)(�11( ± 0
1))∗ �1 ( − 0

1)

≡ �121( 1
1, + 0

1)�(11)∗ ( ? 0
1)�1 ( − 0

1)

≡ �121(22)∗(
1
1, + 0

1)�1 ( − 0
1)

≡ �121(22)∗2( 1
1,

1
1).

Figure 12 illustrates this construction using groups of jigsaw pieces, line by line.

4. Balanced-by-construction ω-regular languages

ω-Languages are languages of infinite words. To define balancedness of infinite words

and languages, consider the three words in Figure 13.

In all three cases, the number of opening parentheses equals the number of

closing parentheses (since 2 × ℵ0 = ℵ0 and ℵ0 + 1 = ℵ0) and every (finite) prefix

has at least as many opening as closing parentheses. However, successive prefixes

of w2 contain an ever-increasing number of unmatched opening parentheses. As

stated in Section 1, our study of balanced languages stems from our interest in

communication protocols. Channels in such protocols often require buffers of finite

size. As such, we do not consider w2 to be balanced as it can cause an unbounded

number of messages to be in transit. At the same time, we consider w3 to be fine:

it will be perpetually at least one message ahead, but never more than two. To this

end, we define a notion of boundedness and use it as an additional constraint on

balancedness.

Boundedness

A (finite or infinite) word w ∈ Σ∞ is i-bounded by n ∈ N0 if |v|[i − |v|]i ≤ n for all

finite prefixes v of w. A language is i-bounded by n if all of its words are. A word

or language is i-bounded if it is i-bounded by n for some n. A word or language is

bounded if it is i-bounded for all i. The minimal i-bound of a word or language is

the smallest n for which it is i-bounded. We extend these definitions to expressions
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q0

q1q2 q3

[1[1

]1 [2

]2

Fig. 14: A Muller automaton with ac-

ceptance condition {{q1, q2} , {q1, q3} ,
{q1, q2, q3}}, accepting the (unbal-

anced) language [1([1]1 + [2]2)ω.

q0 q1 q2

]1

[1

[1

[1

Fig. 15: A Muller automaton with

acceptance condition {{q1, q2}}, ac-

cepting the (balanced) language (λ +

[1)([1]1)ω.

and automata in the expected way: they are (i-)bounded if their corresponding

languages are.

We note that the boundedness of words does not necessarily imply the bound-

edness of a language: all of the words in [∗i ([i]i)
ω are bounded but the language

itself is not.

Balancedness

A word w ∈ Σ∞ is i-balanced if |w|[i = |w|]i , |v|[i ≥ |v|]i for all (finite) prefixes v of

w, and w is i-bounded. A language L ⊆ Σ∞ is i-balanced if all of its words are and if

it is i-bounded. These are extended to balancedness and automata and expressions

in the expected way: words and languages are balanced if they are i-balanced for all

i, automata and expressions are (i-)balanced if their corresponding languages are.

We note that all finite words are bounded by default, and that any regular language

whose i-balance is defined is i-bounded as well. In other words: boundedness is only

a restriction on infinite words and on languages containing infinite words.

4.1. Balanced ω-automata

ω-Automata are automata accepting ω-languages. As with finite automata, there

are multiple classes of ω-automata. In this paper we will use Muller automata [13].

A Muller automaton differs from a finite automaton only in its acceptance condi-

tion: instead of a set of final states, a Muller automaton has a set of sets of states F ,

and it accepts exactly those runs in which the set of states that are visited infinitely

often is member of F . Muller automata, both deterministic and non-deterministic,

characterize the class of ω-regular languages.

Our characterization of balanced ω-automata follows the same approach as for

balanced finite automata: we define a balance function and use this to specify bal-

ancedness conditions. We use two examples to illustrate the differences with finite

automata.

• Consider the automaton in Figure 14. With acceptance condition

{{q1, q2} , {q1, q3} , {q1, q2, q3}} it accepts the language [1([1]1 + [2]2)ω.



February 15, 2023 17:44 WSPC/INSTRUCTION FILE dlt2021-extended

Balanced-by-Construction Regular and Ω-Regular Languages 17

The elements {q1, q2} and {q1, q2, q3} both lead to the acceptance of bal-

anced words, but {q1, q3} yields unbalanced words: since q2 is only visited

finitely often, all resulting words have finite and unequal numbers of open-

ing and closing 1-parentheses.

To classify this automaton as unbalanced, we thus require for every i and

for every set of states in the acceptance condition either that there is some

[i- or ]i-transition between two states in the set (violated in Figure 14), in

which case all corresponding words contain infinitely many i-parentheses, or

that the i-balance of all states in the set equals 0 (also violated in Figure 14),

in which case all corresponding words contain finitely many i-parentheses

and equally many opening and closing ones.

• Consider the automaton in Figure 15. Its language, (λ + [1)([1]1)ω, is

balanced, but no unique 1-balance can be assigned to states q1 and q2: they

can be either 1 and 2 if the first transition taken is that from q0 to q1, or

0 and 1 if the first transition taken is that from q0 to q2.

To remedy this, instead of assigning a single value as a state’s i-balance,

we now assign a range of values by giving an upper and lower bound on its

i-balance. For the automaton in Figure 15, the lower and upper bound of

the 1-balance of q1 are respectively 0 and 1, and those of q2 are respectively

1 and 2—those of q0 are both 0.

Formally, and combining these changes, we can prove the following theorem:

Theorem 15. Let M = (Q,Σ, δ, Q0, F ) be a Muller automaton. M is balanced iff

there exist lower and upper bounds on the i-balance of every state in Q (respectively

∇L(q, i) and ∇U (q, i) for a state q) such that, for every i,

(i) ∇L(q, i) = ∇U (q, i) = 0 for every q ∈ Q0;

(ii) ∇L(q, i) ≥ 0 for every q ∈ Q;

(iii) ∇L(q, i) ≤ ∇L(p, i) + ∇(σ, i) ≤ ∇U (p, i) + ∇(σ, i) ≤ ∇U (q, i) for every

(p, σ, q) ∈ δ; and

(iv) for every {f1, . . . , f`} ∈ F (representing a nonempty language), either there

exist some j, k such that
(
∇L(fj , i),∇U (fj , i)

)
6=
(
∇L(fk, i),∇U (fk, i)

)
, or

∇L(fj , i) = ∇U (fj , i) = 0 for every j.

4.2. Balanced ω-regular expressions

We use Ω for the set of all ω-regular expressions over
⋃
n≥1 Σn, defined as follows:

∅ ∈ Ω

e ∈ E λ /∈ L(e)

eω ∈ Ω

e1 ∈ E e2 ∈ Ω

e1 · e2 ∈ Ω

e1, e2 ∈ Ω

e1 + e2 ∈ Ω
(1)

As before, we assume without loss of generality that an ω-regular expression e does

not contain ∅, unless e = ∅, to simplify our definitions and proofs.

Our characterization of balanced ω-regular expressions is a generalization of that

of balanced regular expressions, adapted to deal with the complications noted with
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ξ([i, i) ξ(]i, i)

ξ(e1, i) ∨ ξ(e2, i)

ξ(e1 · e2, i)

ξ(e1, i) ξ(e2, i)

ξ(e1 + e2, i)

ξ(e, i)

ξ(eω, i)

ξ(e, i)

ξω(eω, i)

ξω(e2, i)

ξω(e1 · e2, i)

ξω(e1, i) ξω(e2, i)

ξω(e1 + e2, i)

Fig. 16: The i-occurrence of regular and ω-regular expressions.

∇†([i, j) =

{
1 if i = j

0 if i 6= j

∇†(]i, j) =

{
−1 if i = j

0 if i 6= j

∇†(λ, i) = 0

∇†(e1 · e2, i) =

{
∇†(e2, i) if ξω(e2, i)

∇†(e1, i) +∇†(e2, i) otherwise

∇L(e1 + e2, i) = min(∇L(e1, i),∇L(e2, i))

∇U (e1 + e2, i) = max(∇L(e1, i),∇L(e2, i))

∇†(e∗, i) = 0 if ∇†(e, i) = 0

∇†(eω, i) = 0 if ∇†(e, i) = 0

Fig. 17: The i-balance lower and upper bounds of regular and ω-regular expressions,

where † ∈ {L,U}.

ω-automata:

• We introduce two predicates for expressions: ξ(e, i) and ξω(e, i). Intuitively,

ξ(e, i) iff every word in L(e) contains at least one i-parenthesis, while ξω(e, i)

iff every word in L(e) contains infinitely many. The predicates are for-

mally defined in Figure 16, while the corresponding properties are shown

in Lemma 16.

• As with ω-automata, we swap single i-balances for pairs of lower and up-

per bounds ∇L(e, i) and ∇U (e, i). These bounds are formally defined in

Figure 17. The changes to minimum i-balance are as expected: we add

∇min(eω, i) = ∇min(e, i) and we redefine ∇min(e1 · e2, i) to use ∇L(e1, i)

instead of ∇(e1, i). The other equations remain as in Figure 3. The corre-

sponding properties are shown in Lemmas 17 and 18. We note that, for any

regular expression e ∈ E, ∇L(e, i) = ∇U (e, i) = ∇(e, i).

Lemma 16. Let e ∈ E ∪ Ω. If e 6= ∅, then:

(i) ξ(e, i) iff |w|[i + |w|]i > 0 for every w ∈ L(e);

(ii) ξω(e, i) iff |w|[i + |w|]i = ℵ0 for every w ∈ L(e).

Lemma 17 (cf. Lemma 5) Let e ∈ E∪Ω. If ∇L(e, i), ∇U (e, i) and ∇min(e, i) are

defined, then:

(i) For every w ∈ L(e), |w|[i and |w|]i are either both finite or both infinite;
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(ii) For every w ∈ L(e), if |w|[i , |w|]i are finite, then ∇L(e, i) ≤ |w|[i −|w|]i ≤
∇U (e, i);

(iii) If e ∈ E, then there exist w1, w2 ∈ L(e) such that |w1|[i − |w1|]i = ∇L(e, i)

and |w2|[i − |w2|]i = ∇U (e, i);

(iv) If ξω(e, i), then ∇L(e, i) = ∇U (e, i) = 0;

(v) |v|[i − |v|]i ≥ ∇min(e, i) for every finite prefix v of every w ∈ L(e);

(vi) |v|[i − |v|]i = ∇min(e, i) for some finite prefix v of some w ∈ L(e);

(vii) L(e) is i-bounded.

Lemma 18 (cf. Lemma 6) Let e ∈ E∪Ω. If e 6= ∅, e is i-bounded, if there exists

some n such that |(|v|[i − |v|]i)− (|w|[i − |w|]i)| ≤ n for all v, w ∈ L(e) with finite

i-parenthesis counts, then ∇L(e, i), ∇U (e, i) and ∇min(e, i) are defined.

The proofs of these lemmas are straightforward by structural induction on e.

Applying these lemmas gives us the following characterization:

Theorem 19. Let e ∈ E ∪ Ω. Then e is balanced iff ∇L(e, i) = ∇U (e, i) =

∇min(e, i) = 0 for every i or if e = ∅.

Example 20. In this example, we further illustrate the role of lower and upper

bounds on i-balances in the presence of ω.

• Let e1 = [1 + [1[1[1. We have:

∇L([1 + [1[1[1, 1) = min(∇L([1, 1),∇L([1[1[1, 1)) = min(1, 3) = 1

∇U ([1 + [1[1[1, 1) = max(∇U ([1, 1),∇U ([1[1[1, 1)) = max(1, 3) = 3

Thus, e1 is unbalanced. Intuitively, the problem is that there are unmatched

opening 1-parentheses.

• Let e2 = e1 · (]1[1)∗. Since ¬ξω((]1[1)∗, 1), we have:

∇L(e1 · (]1[1)∗, 1) = ∇L(e1, 1) +∇L((]1[1)∗, 1) = 1 + 0 = 1

∇U (e1 · (]1[1)∗, 1) = ∇U (e1, 1) +∇U ((]1[1)∗, 1) = 3 + 0 = 3

Thus, e2 is unbalanced. Intuitively, the problem remains that there are un-

matched opening 1-parentheses.

• Let e3 = e1 · (]1[1)ω. Since ξω((]1[1)ω, 1), we have:

∇L(e1 · (]1[1)ω, 1) = ∇L((]1[1)ω, 1) = 0

∇U (e1 · (]1[1)ω, 1) = ∇U ((]1[1)ω, 1) = 0

Thus, e3 is balanced, even though its prefix e1 is unbalanced. Intuitively,

the solution is that even though, infinitely often, there are more opening

parentheses than closing parentheses, every opening parenthesis is even-

tually matched and the number of unmatched opening parentheses never

exceeds three. This precisely coincides with the notion of balancedness for

infinite words that we adopted, as motivated at the beginning of this section.
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e ::= ∅ | e+ e | E · e | Eω+ | �Tω
(C, . . . , C) (ω-regular)

E ::= ∅ | λ | P | E + E | E · E | E∗ | �T (E, . . . , E) (regular)

E+ ::= ∅ | P | E+ + E+ | E · E+ · E | �T+ (E, . . . , E) (non-empty)

P ::= [1 · ]1 | [2 · ]2 | . . . (parentheses)

C ::= e | E (ω-shuffle operand)

T ::= ∅ | λ | 1 | 2 | . . . | T + T | T · T | T ∗ (trajectory)

T+ ::= ∅ | 1 | 2 | . . . | T+ + T+ | T · T+ · T (non-empty)

Tω ::= ∅ | Tω + Tω | T · Tω | Tω+ (ω-trajectory)

Fig. 18: A grammar Ω� for expressing balanced regular languages.

4.3. Balanced-by-construction ω-regular languages

To construct balanced ω-regular expressions, we extend the grammar in Figure 4

with ω as in (1) to obtain the expression grammar Ω� in Figure 18.

Since the inductive definition of the shuffle on trajectories operator does not

support words of infinite length, we formally redefine it as follows. The definition

is adapted from the definition given by Mateescu et al. for the binary case [10].

Let w1, . . . , wn ∈ Σ∞ and let t ∈ {1, . . . , n}∞. If t fits w1, . . . , wn, i.e., if |t|i =

|wi| for every i, then �t(w1, . . . , wn) = w(1)w(2) . . . w(|t|) if t has finite length

and w(1)w(2) . . . if t has infinite length, where w(i) = wj(k) for j = t(i) and

k = |t(1, . . . , i)|j . The result is as expected. As before, this naturally extends to

languages and expressions.

Soundness

Balanced languages are closed under shuffle; this follows immediately from its defi-

nition. Mateescu et al. show that ω-regular languages are closed under binary shuffle

on ω-regular trajectory languages [10]. We extend their result to multiary shuffles by

constructing a Muller automaton M for �T (L1, . . . , Ln) out of a Muller automaton

MT for T and finite/Muller automata M1, . . . ,Mn for L1, . . . , Ln, where L1, . . . , Ln
are all either regular or ω-regular.

The construction of M is analogous to the construction of a finite automaton for

a shuffle of regular languages and differs only in the construction of the acceptance

criterion F . To define it, let Fi be the acceptance criterion of Mi: if Mi is a finite

automaton, then Fi is a set of states, and we may assume without loss of generality

that no state in Fi has any outgoing transition (otherwise, we can construct an

equivalent automaton which does have this property); if Mi is a Muller automaton,

then Fi is a set of sets of states. We also assume, without loss of generality, that

every i such that Li is ω-regular occurs infinitely often in every trajectory in T .
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We now define F as the cross product of all the Fi: F is the set of sets

of states such that, if Li is ω-regular, then the projection of these states on

i is an element of Fi, and if Li is regular, then the projection of these states

on i is a single state in Fi. Formally, let ϕi((qt, q1, . . . , qn)) = qi and ϕi(S) =

{ϕi(q) | q ∈ S} be the projection of a state or set of states on i. Then F =

{S | S ⊆ Q ∧ ∀i ∈ [1, n] : (ϕi(S) ∈ Fi ∨ (ϕi(S) ⊆ Fi ∧ |ϕi(S)| = 1))}, where Q is the

set of states of M . The automaton for T forces that every Muller automaton for

some Li takes infinitely many steps. By our assumption that the final states of finite

automata have no outgoing transitions, all finite automata only take a finite number

of steps. It follows that our constructed Muller automaton accepts the language of

�T (L1, . . . , Ln), which then must be ω-regular. In other words:

Theorem 21. {L(e) | e ∈ Ω�} ⊆ {L | L is a balanced ω-regular language}.

Completeness

Our approach to showing that every balanced ω-regular expression has an equivalent

expression in Ω� mirrors that of Section 3: we first rewrite an expression into a

disjunctive normal form and then recursively construct an expression in Ω� for

every term of the disjunction by merging pairs of factors.

Let e 6= ∅ be a balanced ω-regular expression. Without loss of generality, we

may assume that e = e1e
ω
2 + . . .+ e2m−1e

ω
2m, where every ei is a regular expression

containing no + or ∅. Otherwise, we can rewrite it accordingly. We show how to

construct an expression in Ω� for e1e
ω
2 .

Since ∇L(e, i) = ∇U (e, i) = ∇min(e, i) = 0 by Theorem 19, it follows that

∇min(e1, i) = ∇L(e2, i) = ∇U (e2, i) = 0. Then, by Lemma 12, we can write e1 as a

shuffle of factors i, λ i, + i and e2 as a shuffle of factors i, λ i, ± i, ?
i. The

idea is then to: (a) rewrite eω2 in terms of factors i, λ i,
ω
i , ±

ω
i and then; (b)

merge every + i in e1 with a ± ω
i in eω2 into ω

i , using Lemma 11. We run into two

complications:

• In step (a), eω2 may not necessarily be expressible as a single shuffle of

factors. Consider e2 = [1]1([2]2)∗ ≡ �11(22)∗( 1, λ 2): then eω2 contains

both words with finite and infinite numbers of 2-parentheses. The latter

requires a factor ω
2 , while the former requires its absence.

To remedy this, we write eω2 as a disjunction of shuffles of factors; one

for every combination of finite and infinite versions of i, λ i. In this case:

eω2 ≡�(11(22)∗)ω ( 1, λ 2)

+�(11(22)∗)ω ( ω
1 , λ 2)

+�(11(22)∗)ω ( 1,
ω
2 )

+�(11(22)∗)ω ( ω
1 ,

ω
2 )

The second term of the disjunction contains all words with finitely many

2-parentheses and the fourth term contains all those with infinitely many.
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Note that the first and third terms yield empty languages, but this does

not affect the resulting language. It is thus unnecessary to exclude these.

This is further detailed in Lemma 22.

• In step (b), the number of ± ω
i in a term of eω2 may not necessarily match

the number of + i in e1: if e1 = [1 and e2 = [1]1, then e1 contains one + 1

and e2 contains one factor 1. To solve this, we use two observations:

– We can apply Lemma 11 to split a i into + i and − i, inverting the

direction in which we have used the lemma so far.

– Since eω2 ≡ (e2 · e2)ω, we can produce arbitrarily many copies of the

factors in e2.

Combining the above, we can always split a i into + i and − i, then

create copies of them and merge them back into one i and one ± i. Since

we can merge all other factors with their own copy, this effectively adds one
± i. Now that we have at least one, we can create more: we create a copy

of every factor, then merge every factor with its own copy except for some

number of ± i. This is further detailed in Lemma 23.

Lemma 22. Let e = �θ(e1, . . . , en) ∈ E� be a shuffle of factors i, λ i, ± i

such that θ fits every ej and contains no +. Then eω ≡ ê1 + . . . + êm, where

êk = �θk(ek,1, . . . , ek,n) is a shuffle of factors i, λ i,
ω
i , ±

ω
i for every k such

that the number of ± i in e is the same as the number of ± ω
i in êk for every i, and

θk fits every ek,j.

Proof. Let ϕ : E 7→ 2E∪Ω such that ϕ( k
i ) =

{
k
i ,

ω
i

}
, ϕ( λ

k
i ) =

{
λ
k
i ,

ω
i

}
and ϕ( ± k

i ) = { ± ω
i }. We can then show that eω ≡ ê1 + . . . + êm, where

{ê1, . . . , êm} = {�θω (e′1, . . . , e
′
n) | e′1 ∈ ϕ(e1), . . . , e′n ∈ ϕ(en)}.

Moreover, since ϕ maps ± i to ± ω
i , the number of factors ± ω

i in every êk
matches the number of factors ± i in e. However, if êk = �θω (e′1, . . . , e

′
n), then θω

may not necessarily fit every e′j : if e′j is one of i, λ i, then there are t ∈ L(θω)

with infinitely many j, while every word in L(e′j) is finite. Instead of θω, we can use

the trajectory θ∗ · ψ(θ)ω, where ψ is a homomorphism such that ψ(j) = λ if e′j is

one of i, λ i and ψ(j) = j otherwise. This covers exactly the part of θω that fits

every e′j .

Lemma 23. Let �θ(e1, . . . , en) ≡ e ∈ E be a shuffle of factors i, λ i, ± i, ?
i

such that θ fits every ej and contains no +, and ξ(e, i). If there are ` factors ± i, ?
i

among e1, . . . , en, then for every k ≥ ` (such that k > 0), there exists some shuffle

of factors ê = �θ̂(ê1, . . . , êm) such that eω ≡ êω, ê contains k factors ± i and no
?
i and θ̂ fits every êj.

Proof. This proof consists of three steps. First, we need to make sure that we have

at least one ± i. Second, we replace any remaining factors ?
i with ± i. Third, we

create additional copies of ± i as needed.



February 15, 2023 17:44 WSPC/INSTRUCTION FILE dlt2021-extended

Balanced-by-Construction Regular and Ω-Regular Languages 23

(1) Suppose that there are no ± i among e1, . . . , en. Then our first step con-

sists of creating one. Since ξ(e, i) and θ contains no +, there exists some

ej ∈ { i, λ i, ?
i} such that |t|j > 0 for every t ∈ L(θ). Without loss of

generality, we may assume that j = n.

If en = ? k
i , since |t|n > 0 for every t then e ≡ �θ(e1, . . . , ±

k
i ) and we

can proceed with step 2. Otherwise, if en = λ
k
i , then e ≡ �θ(e1, . . . ,

k
i )

and if en = 0
i , then e ≡ �θ(e1, . . . ,

1
i ). Going forward, we may thus

assume that en = k
i with k ≥ 1. Since |t|n > 0 for every t ∈ L(θ)

and θ contains no +, it follows that θ = θ1 · θ2 such that both θ1 and θ2

only contain trajectories with odd numbers of n. We can then apply the

proof of Lemma 11 to show that e ≡ �θ3(e1, . . . , en−1, +
k1
i , −

k2
i ) for some

θ3, k1, k2.

If e1, . . . , en−1 contain a ?
i, then without loss of generality we may

assume that en−1 = ?
k3
i . We may assume that there exists some t ∈

L(θ) such that |θ|n−1 = 0; otherwise we would have selected this factor as

en earlier in this step and then proceeded with step 2. It follows that all

trajectories in θ1 and θ2, and therefore in θ3, contain even numbers of n.

Then, in the same way that we split k
i into +

k1
i and − k2

i before, we can

show that e ≡ �θ4(e1, . . . , en−2, ?
k4
i , ?

k5
i , +

k1
i , −

k2
i ) for some θ4, k4, k5.

As seen in Figure 8, we can then merge ?
k4
i with − k2

i and ?
k5
i with +

k1
i

to obtain e ≡ �θ5(e1, . . . , en−2, +
k1
i , −

k2
i ) for some θ5. This covers the

case where k = ` > 0 but there are no factors ± i. We may thus assume

without loss of generality that e ≡ �θ6(e1, . . . , +
k1
i , −

k2
i ) for some θ6.

Since we still lack a ± i, we use that eω ≡ (e · e)ω to construct e′ =

�θ6(e1, . . . , +
k1
i , −

k2
i ) ·�θ6(e1, . . . , +

k1
i , −

k2
i ) ≡ �θ7(e1, . . . , +

k1
i , −

k2
i ,

e1, . . . , +
k1
i , −

k2
i ) for some θ7. We can then merge the first +

k1
i with the

second − k2
i into k1+k2+1

i and merge the second +
k1
i with the first − k2

i

into ± k1+k2
i . We can merge every other factor with its own copy, which

gives us e′ ≡ �θ8(e′1, . . . ,
k1+k2+1
i , ± k1+k2

i ) and e′ω1 ≡ eω.

Not including corner cases, this step can be visualized as follows:

·
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(2) Now that we have at least one ± i, we can reuse methods applied in the

first step to replace any remaining ?
i: create a copy of every factor using

eω ≡ (e · e)ω, then merge the two copies of ?
i with the copies of some

± i as in Figure 8. By merging every other factor with its own copy, we

effectively replace one ?
i with one ± i. We repeat this step until there are

no ?
i left.

This step can be visualized as follows:

·

(3) Finally, by copying every factor and then merging every factor with its

own copy except for a number of ± i, we can create any additional number

of ± i, until we have some ê = �θ̂(ê1, . . . , êm) with k ± i. Since every

rewriting step preserves equivalence of the ω-closures and the fitting of the

trajectories, it follows that êω ≡ eω and that θ̂ fits every êj .

This step can be visualized as follows:

·

Summarizing, given e1 · eω2 , by applying Lemmas 23 and 22 we can rewrite e1

as a shuffle of factors i, λ i, + i, and eω2 as a disjunction of shuffles of factors

i, λ i,
ω
i , ±

ω
i , such that the number of ± ω

i in every term of the disjunction

equals the number of + i in e1. By applying the laws of distributivity, we can then

rewrite e1 ·eω2 as a disjunction of concatenations of shuffles. Since the numbers of + i

and ± ω
i match in every term of this disjunction, we can apply Lemma 11 to merge

every pair into ω
i . Since all factors are now balanced, every balanced ω-regular

language has a corresponding expression in Ω�:

Theorem 24. {L(e) | e ∈ Ω�} ⊇ {L | L is a balanced ω-regular language}.
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·

· ·

· · · ·

· · ·

·

·

Fig. 19: Construction of Example 25 as groups of jigsaw pieces.

Example 25. We show how to construct an expression in Ω� for e = [1([1]1)ω.

[1([1]1)ω ≡ �1( + 0
1)(�11( 1

1))ω

≡ �1( + 0
1)(�1( + 0

1)�1 ( − 0
1))ω

≡ �1( + 0
1)(�1( + 0

1)�1( − 0
1)�1 ( + 0

1)�1 ( − 0
1))ω

≡ �1( + 0
1)(�1( + 0

1)�11 ( ± 0
1)�1 ( − 0

1))ω

≡ �1( + 0
1)(�1221( 1

1, ±
0
1))ω

≡ �1( + 0
1)�(1221)ω ( ω

1 , ±
ω
1 )

≡ �1(2112)ω ( ω
1 ,

ω
1 ).

Figure 19 illustrates this construction using groups of jigsaw pieces, line by line.

The ω-operator is visualized as an extra hatched container.
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5. Discussion

We end this paper with a discussion on two topics for future work.

5.1. Balanced context-free languages

Having dealt with balanced regular and ω-regular languages, the natural next step is

to consider balanced context-free languages. As these are languages of finite words,

we can reuse the definition of balancedness as in Section 2.

In the same way we characterized balanced regular languages in terms of syntac-

tic constraints on finite automata and regular expressions, it is possible to character-

ize balanced context-free languages in terms of syntactic constraints on pushdown

automata and context-free grammars. In both cases, we add a certificate ∇, just as

for finite automata. For pushdown automata, this certificate does not only consider

the state but also the content of the stack; for context-free grammars, the certificate

assigns a value to the grammar’s variables and terminals.

However, developing a balanced-by-construction grammar for context-free lan-

guages is not as straightforward as adding the shuffle on trajectories operator to a

context-free grammar, such as the regular-like expressions described by Gruska [6].

The main complication is that context-free languages are not closed under the shuf-

fle on trajectories operator, i.e., the shuffle of a set of context-free languages on

a context-free language of trajectories is not necessarily context-free. In fact, Ma-

teescu et al. show that �T (L1, L2) is guaranteed to be context-free only if at most

one of T , L1 and L2 is context-free [10].

This holds even for seemingly simple sets of trajectories. For instance,

the context-free language [n1[2]
n
1]2 can be straightforwardly expressed as

�1m21m2([n1]
n
1 , [2]2). However, when we use the same context-free set of trajec-

tories to shuffle the context-free language L1 = anbnc∗ with the regular language

L2 = d∗, the result is not context-free. To see this, note that �1m21m2(anbnc∗, d∗)∩
a+b+d+c+d+ = anbndc2nd, which is not context-free; as context-free languages are

known to be closed under intersection with regular languages, �1m21m2(anbnc∗, d∗)

cannot be context-free.

Developing a balanced-by-construction grammar for context-free languages thus

is a non-trivial open problem. We note that there exists further research on gram-

mars with trajectories [9, 14], which may inspire future efforts towards this goal.

5.2. Binary shuffles

Another non-trivial question is whether the grammar E� in Figure 4 is equally

expressive if we restrict the shuffle on trajectories operator to its form with two

operands: is it possible to rewrite any n-ary shuffle to (nested) binary ones?

As a simple first example, take �123123([1]1, [2]2, [3]3) ≡ [1[2[3]1]2]3. This

ternary shuffle can straightforwardly be rewritten with nested binary shuffles as

�122122([1]1,�1212([2]2, [3]3)). The reason this example is easy, is because dif-
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ferent types of parentheses can be neatly isolated into separate operands of the

(nested) binary shuffles.

As a more complicated second example, take:

�1(2112)∗(3131)∗1(([1]1)∗, ([2]2)∗, ([3]3)∗) ≡ [1([2]1[1]2)∗([3]1]3[1)∗]1

The first difficulty is that different types of parentheses cannot be neatly isolated

as in the previous example. Moreover, a second difficulty is that the two loops

in the trajectory expression mix the loops of the operands; as a result, neither

one of those loops can be neatly isolated. To overcome these difficulties, a “trick”

that we can use is to decompose the expression based on the number of times

that the second loop (in the trajectory expression) is repeated: 0 times or at

least once. In the former case, the expression simplifies to [1([2]1[1]2)∗]1; this

one is straightforward to rewrite. In the latter case, the expression simplifies to

[1([2]1[1]2)∗[3]1]3[1([3]1]3[1)∗]1, which can be broken down as the concatena-

tion of [1([2]1[1]2)∗[3]1]3 and [1([3]1]3[1)∗]1, both of which are straightforward

to write with binary shuffles by extracting single pairs of parentheses at a time.

We believe it is possible to prove that this “trick” can be generalized to deal with

any number of concatenated loops, i.e., any expression v0w
∗
1v1w

∗
2 . . . w

∗
nvn where

all vi and wi are words. Consequently, the generalized “trick” can deal with any

balanced regular expression without nested loops.

However, the generalized “trick” does not seem to work for nested loops. As

a counterexample, consider [1([2]1([3[3]2[2]3]3)∗[1]2)∗]1. A straightforward at-

tempt would be to isolate the inner loop (and the parentheses that occur in it):

�1(21(222222)∗12)∗1(([1]1)∗, ([2([3[3]2[2]3]3)∗]2)∗). However, the shuffle operator

has no way to distinguish, e.g., [2]2[2]2[2]2[2]2 (four iterations of the outer loop

and none of the inner) and [2[3[3]2[2]3]3]2 (one iteration of both), as both have

length 8. As a result, it also accepts the word [1[2]1]2[2]2[2]2[2[1]2]1, which is

not in the original language. We have as of yet found no way to avoid this ambiguity

and to express this and expressions with nested loops in general using only binary

shuffle on trajectories operators.
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