
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Benchmarking optimization algorithms for
auto-tuning GPU kernels

Richard Schoonhoven1,3 Ben van Werkhoven1,2 K. Joost Batenburg1,3

1Computational Imaging Group, Centrum Wiskunde & Informatica, Amsterdam, Netherlands
2Netherlands eScience Center, Amsterdam, Netherlands

3Leiden Institute of Advanced Computer Science, Leiden, Netherlands
{richard.schoonhoven, ben.van.werkhoven, k.j.batenburg}@cwi.nl

Abstract—Recent years have witnessed phenomenal growth
in the application, and capabilities of Graphical Processing
Units (GPUs) due to their high parallel computation power at
relatively low cost. However, writing a computationally efficient
GPU program (kernel) is challenging, and generally only cer-
tain specific kernel configurations lead to significant increases
in performance. Auto-tuning is the process of automatically
optimizing software for highly-efficient execution on a target
hardware platform. Auto-tuning is particularly useful for GPU
programming, as a single kernel requires re-tuning after code
changes, for different input data, and for different architectures.
However, the discrete, and non-convex nature of the search
space creates a challenging optimization problem. In this work,
we investigate which algorithm produces the fastest kernels if
the time-budget for the tuning task is varied. We conduct a
survey by performing experiments on 26 different kernel spaces,
from 9 different GPUs, for 16 different evolutionary black-
box optimization algorithms. We then analyze these results and
introduce a novel metric based on the PageRank centrality
concept as a tool for gaining insight into the difficulty of the
optimization problem. We demonstrate that our metric correlates
strongly with observed tuning performance.

Index Terms—GPU computing, Auto-tuning, Performance op-
timization, Evolutionary computing, Fitness landscape analysis

I. INTRODUCTION

GRAPHICS Processing Units (GPUs) have revolutionized
the HPC landscape in the past decade [13], and are

seen as one of enabling factors in recent breakthroughs in
Artificial Intelligence (AI) [23]. GPUs originated as processors
for gaming and then adapted to more general workloads as
co-processors in many HPC systems. Over the past decade,
GPUs have started to again penetrate new markets such as IoT
devices [35] and autonomous vehicles [28]. The range of appli-
cations of GPUs as such continues to expand. Because of their
relatively low cost with respect to their parallel processing
power, more and more supercomputers come equipped with
GPUs, and in 2020, the majority of modern supercomputers
use GPUs [59] as the major source of compute power.

The sections of code that run on a GPU, called kernels, can
be challenging to configure such that they run efficiently for a
varying combinations of datasets and GPU architectures [63].
The kernel parameters can be split into those defined by the
program, and those that are a consequence of the underlying

Manuscript received September 13, 2021; revised June 10, 2022.

architecture and models behind the GPU. The hardware-
specific parameters define how the thousands of threads in
a GPU are grouped. An ineffective layout can cause under-
utilization of GPU resources. In general, the computational
efficiency can drop by an order of magnitude depending on
certain implementation choices. Typically, only a small subset
of the possible configurations lead to a large increase in
performance [53]. Therefore, it is vital to be able to select
an efficient kernel configuration.

The search space for this problem is formed by all feasible
combinations of GPU kernel parameters. This space is discrete
and non-convex [45], making it hard to carry out the optimiza-
tion. For most GPU kernels used in practice, the size of this
search space is such that traversing the options by hand or
brute-force is infeasible. An additional complication in opti-
mizing kernel parameters is that evaluating the performance of
each configuration requires costly recompilation and test runs.
Furthermore, the same GPU kernel often requires re-tuning
for different input data, hardware, or after changes to the
code [18], [24], [40], [41]. Large throughput pipelines often
rely on computationally expensive GPU kernels that consume
large amount of resources [54], [55], and cannot be tuned
exhaustively due to the aforementioned reasons.

Automatic performance tuning (auto-tuning) techniques rely
on empirical results and feedback to optimize the kernel
parameters with respect to desired performance metrics. These
techniques aim to be widely applicable across architectures.
For this reason, auto-tuning can be used to find configurations
with increased performance for GPU programs. As the search
space for the auto-tuning task depends on various aspects
(kernel source, code layout, input data, GPU-architecture), the
optimization framework must deal with a broad variety of
search spaces and constraints. We, therefore, treat the problem
as a black-box optimization task. This raises the question of
which optimization algorithm is best suited to find highly
efficient settings for GPU kernels, and how these optimization
algorithms need to be configured to tune GPU kernels.

The main contribution of this work is to determine which
optimization algorithms produce the fastest GPU kernels for
different tuning-time ranges. To do so, we conduct a survey of
16 evolutionary optimization algorithms for 9 different NVidia
and AMD GPUs, and run 3 real-world applicable benchmark
kernels. We select our benchmark problems such that we are
able (given ample time) to compute the entire search space,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

and make these spaces publicly available. To benchmark the
GPU kernels we use the Kernel Tuner package [61]. We use
the wide range of optimization algorithms present in Kernel
Tuner for a large-scale comparison, and provide favourable
default hyperparameters for GPU tuning for each algorithm. In
addition, we extend Kernel Tuner with several highly-efficient
optimization algorithms, including iterative local search (ILS)
and dual annealing that cannot be found in any other generic
auto-tuning framework.

Secondly, we aim to quantify tuning difficulty for these
seemingly challenging and capricious search spaces. To do so,
we introduce the fitness flow graph (FFG), which is a network
of the points in the search space, with directed edges between
neighbours with a better fitness. By computing the likelihood
of local search walks terminating in good local minima, we
use FFGs to better understand the discrepancies between opti-
mization algorithms, and subsequently tailor them to better suit
GPU tuning. In addition, FFGs can help explain the differences
across GPU manufactures, architectures, and kernel programs,
and such knowledge can help steer future development. To
quantify tuning difficulty per kernel, we introduce a novel
metric based on Google’s PageRank algorithm [3], [43].

This work is structured as follows. In section II we discuss
existing GPU kernel tuning approaches. In section III we
introduce the preliminaries on GPU kernels, and describe the
optimization algorithms that are considered in this survey.
In section IV, we describe certain implementation details of
Kernel Tuner and our Python optimization package BlooPy.
We discuss the setup of our experiments in section V. In
section VI we tune the hyperparameters of the algorithms, and
present our findings on optimization algorithm performance.
In section VII we introduce fitness flow graphs (FFGs) and
quantify tuning difficulty for kernel search spaces. Finally, we
present our conclusions in section VIII.

II. RELATED WORK

A. Automated performance tuning

It is well-known that GPU tuning can yield considerable
gains in computational efficiency and utilization for large-
scale, high-throughput pipelines that run on compute clusters.
As an example, we mention the AMBER pipeline [54], [55],
which is used to detect Fast Radio Bursts (FRBs) and other
single pulse radio transients in astronomy. The pipeline has a
throughput of 2 TB/s, and uses a large amount of resources.
Benchmarking a single configuration is expensive, and the
search space consists of millions of configurations, meaning
that sophisticated tuning approaches have to be developed.

Research in automated performance tuning (auto-tuning)
can be grouped into two main categories: (1) auto-tuning
compiler-generated code optimizations [20], [44], [48], [57],
and (2) software auto-tuning [24], [68]. Ashouri et al. [2]
wrote an excellent survey on machine-learning methods for
compiler-based auto-tuning. In this paper, we limit our scope
to (2), i.e., optimizations methods for software auto-tuning,
which is sometimes referred to as automated design space
exploration [36]. Software auto-tuning allows developers to
automatically optimize individual functions and allows, for

example, to tune for entirely different implementations and
parallelizations that solve the same problem.

As such, auto-tuning techniques are often employed to
optimize the source code of high-performance libraries and
applications for the CPU, e.g. ATLAS [66] or FFTW [8], as
well as for GPUs [12], [24], [33], [53], [58], [62], [68].

A number of generic auto-tuning frameworks have been
introduced in recent years. OpenTuner [1] was one of the
first generic software auto-tuning frameworks, supporting a
number of different search optimization algorithms, but with
no support for tuning individual GPU kernels. GPTune [29]
and HyperMapper [36] are recently proposed frameworks that
both use Bayesian Optimization for auto-tuning on different
platforms, but do not target GPUs.

Grauer-Gray et al. [11] have applied auto-tuning to the high-
level directive-based HMPP framework, which can compile
to CUDA or OpenCL code. They demonstrate significant
performance improvements using auto-tuning over unopti-
mized HMPP kernels in the PolyBench benchmark suite.
Wang et al. [65] take a similar compiler-based approach to
automatically convert shared memory OpenMP applications
into OpenCL code for GPUs. They use a machine-learning ap-
proach, which based on the number of compute operations and
memory accesses in the kernels, predicts the best performing
hardware platform to execute the kernels either the multi-core
CPU using OpenMP, or on the GPU using OpenCL. Hou et
al. [16] proposed a data-sensitive auto-tuning framework for
sparse matrix vector (SpMV) multiplication that automatically
finds the best parallelization strategy. They use a two-step
machine learning approach in which they first determine the
optimal way to group data into bins and then select the most
suitable kernel to process the rows in each bin.

CLTune [40] was the first generic auto-tuning framework
with specific support for directly tuning GPU kernels written in
the OpenCL programming language. CLTune supports several
optimization algorithms, including simulated annealing and
particle swarm optimization, but these do not outperform
random search [40]. Kernel Tuning Toolkit (KTT) [7] is de-
veloped specifically to support online auto-tuning and pipeline
tuning, which allows for the exploration of combinations
of tunable parameters over multiple kernels. An interesting
feature of KTT is the support to keep track of hardware
performance counters, such as L2 cache utilization, during
benchmarking, which can also be used in advanced search
strategies [6]. Auto-Tuning Framework (ATF) [49] implements
an innovative way to generate auto-tuning search spaces, for
efficient storage and fast exploration of constrained search
spaces, but does not focus on introducing new optimization
algorithms.

In earlier work, we have introduced Kernel Tuner [61],
a generic auto-tuning framework specifically designed to be
an easy-to-use and easy to extend tool for researching auto-
tuning optimization algorithms. Kernel Tuner is a state-of-the-
art framework that implements the largest range of search opti-
mization strategies of all generic auto-tuning frameworks, and
was the first generic framework to implement multiple search
strategies that consistently outperformed random search [61].

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

B. Analyzing auto-tuning search spaces

In this paper, we do not only compare the performance
of different optimization algorithms on the GPU auto-tuning
problem, but we also investigate the properties of the search
spaces to understand why certain optimization algorithms
outperform others, and gain insight into the difficulty of the
optimization problem.

Ryoo et al. [50] were one of the first to study the properties
of optimization spaces for GPU applications. They defined two
performance metrics to model the efficiency and utilization of
a CUDA kernel and used these to find kernel configurations on
the pareto curve that maximizes the two metrics. A downside
of this approach is that the performance metrics have to be
constructed for each kernel individually and require manual
inspection and counting instructions in assembly code. Lim
et al. [25] also look into search space properties to preselect
certain parameter values using static code analysis in order to
try to limit exploration of the search space by an auto-tuner.

In [42], Ochoa et al introduce the concept of Local Optima
Networks (LONs). When constructing LONs the search space
is partitioned into basins of attraction, i.e., sets of points
where a local search algorithm will terminate in the same
local minimum. A LON is a graph with the local optima as
vertices, and a directed edge between nodes if a local search
step transforms a solution from one basin of attraction to
another. We build upon this idea to define fitness flow graphs
(FFGs), which as opposed to LONs contain all the points
in the search space. Due to the large number of points with
“failure fitnesses” (when a configuration fails to compile) in
GPU kernel spaces, defining the basin of attraction is difficult.
Instead, we simplify the ideas behind LONs to the entire
search space, and quantify how likely local search algorithms
terminate in good local optima. To do so, we look at PageRank
centrality of local optima. In [15] the idea of using PageRank
centrality for LONs as predictor of performance for local-
seach based heuristics was proposed, and in [14] the PageRank
was used to rank space difficulty. We extend this idea to FFGs
to determine GPU tuning difficulty.

III. METHOD: OPTIMIZATION PROBLEM

In this section, we define the performance optimization of
GPU kernels as a mathematical optimization problem, and
we present the optimization algorithms that are part of our
experiments.

A. GPU kernels

GPU kernels are executed by millions of threads in parallel
to perform data-parallel computations on the GPU. However,
the compute performance of a GPU kernel depends on how
the software has been optimized for the hardware.

There are various different design choices that have an
impact on the performance of GPU kernels, and this impact
is challenging to accurately predict. For example, the way
that a computation is parallelized and mapped on the thread
blocks and individual threads affects the utilization of the GPU
cores. Other design choices include what data types and data
layouts to use in the various memory spaces available to GPU

applications. There may also be entirely different algorithms
to choose from to implement certain parts of the computation.

Other tunable parameters are introduced through code op-
timizations that can be enabled and may in turn introduce
new parameters, such as tiling factors, vector data types, or
partial loop unrolling factors. GPU kernels also have a number
inherent parameters in terms of the number of thread blocks
and the number of threads per block that are used to execute
the kernel. The multitude of implementation choices for GPU
kernels result in sizeable, non-convex, and discontinuous ker-
nel design spaces.

To automate the kernel design space exploration process,
GPU code can be parameterized, either using a kernel tem-
plate or a code generator. An auto-tuner can take such a
kernel template or code generator and empirically benchmark
different kernel configurations, until it has found an efficient
implementation. The search performed by the auto-tuner can
be treated as a mathematical optimization problem of the form:

x∗ = arg min
x∈X

f(x) (1)

where f(x) is the performance metric to be minimized, for
kernel configuration x for a combination of kernel, GPU
device, and input settings. In this work the performance metric
to be minimized will be the runtime of the kernel.

B. GPU kernel search spaces

The search space of possible settings for a GPU kernel can
be characterized as a finite subset X ⊂ Zn for n different
parameters. Specifically, for each dimension 1 ≤ i ≤ n, every
entry xi of a point x ∈ X takes values from a finite set
Si ⊂ Z. For example, the block dimension might allow values
in {16, 32, 64, 128}. The total search space is the Cartesian
product of these finite sets

X = S1 × S2 × · · · × Sn.

The local structure of a search space depends on the
definition of neighbouring points. A common definition of the
neighbours of a point are the points which differ only in one
dimension, and are equal for all other dimensions. Mathemat-
ically, according to this definition the set of neighbours N(x)
of a point x is

N(x) :=

n⋃
i=1

{
y ∈ X \ {x}

∣∣ yj = xj , ∀j 6= i
}
. (2)

Here, we will consider a more restrictive type of neighbour-
hood concept where we place the additional requirement that
the parameter that differs from xi should have a value adjacent
to xi in the list Si. For example, if the block dimension is
allowed to be [16, 32, 64, 128], then neighbours of xi = 64
would be 32 and 128, and the neighbour of 128 would only
be 64. We consider this restriction because this definition gives
information on whether closely related parameter values are
related in performance.

Points of special interest in the search space are local
minima. A point is a local minimum if all neighbouring points

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

have a worse fitness. In other words, there are no improve-
ments to be found in the local neighbourhood. Algorithms
that scan local neighbourhoods can get stuck in local minima
as there are no close points with better fitness.

C. Black-box optimization algorithms

As the search space is typically too large to iterate over
all feasible points, a range of more sophisticated optimization
algorithms are used in practice. In this section we describe
the optimization algorithms that are considered in the experi-
ments. As a categorization of these algorithms, we distinguish
continuous, and discrete algorithms, and algorithms that learn
about the stochasticity of the problem.

1) Optimization - discrete algorithms: Since tuning GPU
kernels involves choosing the best from a finite set of pos-
sibilities, it makes sense to consider discrete optimization
algorithms. These algorithms are considered in this work:

• Random sampling randomly generates solutions and
records the highest scoring one. This strategy serves
as a baseline comparison to determine if optimization
algorithms offer significant benefits.

We consider several local search (or hill climb) algorithms
which iteratively check for a neighbouring solution of lower
fitness to visit, until a local minimum is reached. For all local
search algorithms we distinguish between best-improvement
search, where we move to the best neighbour next, and first-
improvement, where we examine neighbours in a random order
and move to one when we encounter an improvement.

Local search algorithms can vary the neighbourhood func-
tion that they use to generate new candidates. The algorithms
can use both the version outlined in equation 2 (called Ham-
ming), and the more restrictive neighbourhood definition in
section III-B (called adjacent). First-improvement variants can
decide whether they continue checking the remaining variables
first after finding an improvement, or if they restart the search
(hyperparameter restart search).

• Multi-start local search (MLS) repeatedly generates
random starting solutions, and hill climbs them until a
local minimum is reached.
Hyperparameters: neighbourhood, restart.

• Iterative local search (ILS) [31] is similar to MLS but
inherits part of the original local minimum when gener-
ating a new starting solution. After reaching a minimum,
ILS performs several random permutations to generate a
new starting solution. This perturbation size is a tunable
parameter. In addition, a tunable exit after no improve
hyperparameter randomly restarts if no improvement is
found after a that many iterations, which helps to escape
basins of attraction for small perturbation sizes.
Hyperparameters: perturbation size, exit after no im-
prove, neighbourhood, restart.

• Tabu search [9] maintains a queue of previously visited
solutions which the algorithm is not allowed to visit. The
tunable hyperparameter tabu size defines the queue size,
and ensures that the new solution has not been visited

for tabu size iterations. Tabu search always picks a new
solution, whether it is an improvement or not.
Hyperparameters: tabu size, neighbourhood.

• Simulated annealing (SA) [21] maintains a temperature
parameter that, together with the fitness values, deter-
mines the probability that we move to a (potentially
worse) neighbouring solution. The temperature parameter
is decreased each iteration to mimic the behaviour of
cooling processes in material physics. A tunable explo-
ration parameter determines the size of the mutation of
the current solution that is performed at each iteration.
A hill climber subsequently optimizes the new solution,
which is accepted with a certain probability.
Hyperparameters: exploration, hill climber, neighbour-
hood

We also consider two discrete population-based algorithms,
which require a population size parameter to determine the
number of solutions they maintain. Population-based methods
iteratively create a next generation of solutions by mixing
solutions from the previous generation. A reproduction op-
erator creates new initial solutions from existing ones, e.g.,
with two-point crossover a section of the solution vector is
swapped between two solutions. After new solutions have been
created, and their fitnesses determined, a selection mechanism
determines which solutions are kept for this generation. For
example, in tournament selection a number of randomly picked
solutions compete for a spot in the next generation.

• Genetic local search (GLS) [17] (or memetic algorithm)
is a population-based method where every solution in
a generation is subsequently hill climbed. The initial
population is made up of randomly generated solutions,
which after hill climbing are all local minima. Next, a
number of children is created by reproduction, and a
new initial starting population is selected from the batch.
These solutions are subsequently hill climbed and the
procedure is repeated.
Hyperparameters: hill climber, population size, reproduc-
tion, selection.

• Genetic algorithm (GA) [34] is similar to GLS, but
instead of hill climbing each solution, it performs a
single mutation only, e.g., permuting a single parameter.
Instead of a hill climbing algorithm, GA has a tunable
hyperparamter mutation that determines the fraction of
variables of a solution that are mutated each generation.
Hyperparameters: mutation, population size, reproduc-
tion, selection.

2) Optimization - continuous algorithms: As an alternative
to discrete algorithms, we can consider continuous optimiza-
tion algorithms which operate on real-valued solutions. In
order to apply algorithms which assume continuous variables
to a discrete problem such as GPU kernel tuning, we need
to define a mapping between a real-valued vector, and the
discrete values in the search space. Suppose the search space
allows values x1, x2, . . . , xn for a particular variable, then a
continuous variable y ∈ [0, 1] gets mapped to the closest grid

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

GPU Specifications
CUDA cores/ Device Bandwidth Peak compute

GPU model Year Stream processors memory Boost clock (GB/s) (GFLOP/s)
NVidia Tesla K20 2012 2496 5 GB 0.76 GHz 208 3524
NVidia GTX Titan X 2015 3072 12 GB 1.08 GHz 336 6605
NVidia Tesla P100 PCIe 2016 3584 12 GB 1.30 GHz 549 9340
NVidia GTX 1080 Ti 2017 3584 11 GB 1.58 GHz 484 11340
NVidia Tesla V100 PCIe 2017 5120 32 GB 1.37 GHz 900 14899
AMD Radeon Instinct MI50 2018 3840 16 GB 1.73 GHz 1024 13300
NVidia Titan RTX 2018 4608 24 GB 1.77 GHz 672 16312
NVidia RTX 2070 Super 2019 2560 8 GB 1.77 GHz 448 9060
NVidia A100 PCIe 2020 6912 40GB 1.41 GHz 1555 19500

TABLE I: Specifications of graphical processing unints (GPUs) used to create experimental data.

point ȳ:

B = { 1

2n
,

3

2n
, . . . ,

2n− 1

2n
}

j∗ = arg min
i=1,...,n

{|Bi − y|}

ȳ = xj∗ .

Effectively, this ensures that all possible discrete values are
equally spaced across the interval [0, 1], and the continu-
ous variable is mapped to the closest one. The continuous
optimization algorithms operate on real-valued vectors with
dimensions equal to the number of parameters that are to be
optimized. Each entry is bounded to the unit interval.

The mapping ensures that points close together in real-
valued space can get mapped to the same point in the GPU tun-
ing space. While this can negatively impact the performance
of continuous algorithms, it does not automatically lead to
poor performance, as illustrated by the strong performance of
continuous algorithms in Kernel Tuner [61]. Furthermore, this
mapping allows us to explore a new class of algorithms. Here,
we consider two local search algorithms.

• Basin hopping [64] is a global stepping algorithm that
chooses new starting positions for local minimization. It
requires the local minimizer method and a temperature
parameter to be chosen. The temperature parameter de-
termines the accept–reject criterion. Currently supported
minimization methods are the nonlinear conjugate gra-
dient (CG) [38], simplex (Nelder-Mead) [37], conjugate
direction (Powell) [46], L-BFGS-B [4], Constrained Opti-
mization BY Linear Approximation (COBYLA) [47], and
Sequential Least Squares Programming (SLSQP) [22]
methods.
Hyperparameters: minimizer method, temperature.

• Dual annealing [60] is an extension of generalized
simulated annealing, paired with a local minimization
method. It combines global and local search procedures,
and it requires users to choose a local minimization
method.
Hyperparameters: minimizer method.

Lastly, we consider two population-based algorithms.

• Particle swarm optimization (PSO) [19] initializes a
number of particles at random in the search space. Each
iteration, these particles update their position and veloc-
ity. Particles transmit information to a certain number

of neighbours, thereby influencing the movement of the
other particles.
Hyperparameters: #particles, neighbours evaluated.

• Differential evolution [56] is similar to a genetic al-
gorithm, but mixing strategies are based on real-valued
solutions. Typically they involve mixing the best solution
with a random candidate, and accepting the result with a
certain probability.
Hyperparameters: mixing method, population size, muta-
tion size, recombination probability.

3) Optimization - tuning algorithms for stochastic optimiza-
tion: In this survey we consider two state-of-the-art parameter
tuning algorithms;
• Sequential Model Algorithm Configuration (SMAC)

[27] is a random forest-based Bayesian optimization
method that is designed for optimization of stochastic
problems. However, it can also be used to optimize
deterministic problems. SMAC requires the model type
of its Bayesian optimizer to be chosen. The gp-mcmc
model was significantly slower and worse than gp in the
preliminary experiments. We therefore use the gp model
type in this work. The acquisition function of the BO is
another tunable hyperparameter.
Hyperparameters: acquisition function.

• Iterated racing (irace) [30] is a statistical approach for
selecting the best configuration out of a set of candidates
for stochastic optimization problems. After consulting the
authors [30], we set firstTest and nbConfigurations as
tunable hyperparameters for irace.
Hyperparameters: firstTest, nbConfigurations.

IV. IMPLEMENTATION

In this section we comment on certain implementation de-
tails for the software developed for this work. The algorithms
and analysis tools are implemented in the BlooPy Python
package, and the tuning of the GPU kernels is performed by
Kernel Tuner.

A. BlooPy and SOTA packages

The algorithms evaluated in this work are implemented in
the discrete optimization package BlooPy (BLackbOx Opti-
mization Python) [51]. The package implements the algorithms
by encoding solutions as bitstrings. BlooPy implements several

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

#local #variables #failed
Kernel #points minima to tune points
Convolution∗ 18432 89 6 12656∗

GEMM 82944 64 5 64988
Point-in-polygon 8184 220 10 335

TABLE II: Statistics (averaged across GPU models) of kernel spaces.
Number of failed points refers to the average number of configurations in
the kernel space that failed to compile.
∗Convolution has 864 points for AMD MI50, and 450 fail points.

functions for converting discrete solutions that are encoded
as lists or arrays to bitstrings. Similarly, continuous solutions
are mapped to discrete solution vectors using the mapping
outlined in section III-C2. BlooPy requires the search space
to be finite. Using the bitstring encodings, BlooPy’s algorithms
can make use of the computationally efficient Python module
bitarray which implements fast low-level bitstrings in
C. In addition, the algorithms are automatically applicable
to benchmark bitstring-based optimization problems such as
randomized Nk-landscapes [67].

Optimization algorithms in BlooPy maintain a cache of
previously visited solutions. This means that a solution that has
been visited before does not count as a function evaluation, and
instead the cached value is returned. In addition to a variety
of optimization algorithms, BlooPy implements several search
space analysis tools. For example, it implements functions to
determine the type of points in the search space, e.g., local
minima and saddle points. Furthermore, BlooPy implements
functions to compute the fitness flow graphs outlined in section
VII-B. BlooPy can be installed from the GitHub source repos-
itory [51], or by package manager. To perform experiments
with SMAC we used the Python package [26], and for irace
we used the R package [32].

B. Kernel Tuner

Kernel Tuner [61] implements a wide range of optimiza-
tion algorithms, and builds on top of various backends (e.g.
PyOpenCL, PyCUDA, Cupy, GCC) that take care of the
compilation process.

Kernel Tuner runs Python code, provided by the user, which
calls the tuner function. In addition, the user needs to provide
a code generator or parameterized template for the kernel
they wish to optimize. An optimization algorithm then selects
different kernel configurations for benchmarking.

V. EXPERIMENTAL SETUP

To analyze the structure of different kernel spaces, and find
the optimization algorithm best suited to finding strong kernel
settings, we run experiments on 9 different GPUs, for 3 real-
world applicable kernel programs (26 kernels in total).
• Convolution [62] operations are an essential tool in

image processing, and are often used for tasks such
as edge detection, blurring, or sharpening. They also
feature prominently in deep learning methods for image
processing as they form the backbone of the convolutional
neural network (CNN).

• GEMM (Generalized dense matrix–matrix multiplica-
tion) [39] is one of the most widely-used kernels across

many application domains, including neural networks.
Here we perform the calculation C = αA · B + βC for
4096× 4096 matrices A,B,C, and constants α and β.

• PnPoly (Point-in-Polygon) kernel is used by Goncalves
et al. [10] as part of a geospatial database management
system to, for example, return all objects within the
outline of a specific area.

Some statistics on the kernel spaces is given in Table II.
For convolution and GEMM the majority of the points in the
kernel space fail to compile, 68% and 78% respectively. In
the case of a failed compilation we attribute a “fail” fitness of
1010 to this point. The exact kernel spaces can be found in
the table of tunable parameters (Table V) in Appendix IX-A.

We selected these kernels programs since they are tunable
common subroutines in real-world applications, but also have
a compact parameter space which can be fully explored, given
ample computation time. Note that this is not feasible for
many other kernels used in practice (see section II-A). We
have generated cache files of the entire search space for each
kernel by brute-force calculation. This allows us to know
the optimal settings for each problem, and therefore score
solutions returned by algorithms. It also allows us to develop
analysis metrics on the entire search space, which could at
a later stage be adapted to work when sampling only small
parts of the space. We supply our cache files for benchmarking
optimization algorithms [52], similar to other computationally
expensive applications such as neural architecture search [5].

The 9 GPUs that are used for testing are given in Table I.
The convolution kernel is implemented in CUDA, GEMM in
OpenCL, and PnPoly is a heterogeneous kernel that runs partly
on the CPU, and partly on the GPU using CUDA. The PnPoly
kernel uses CUDA-specific features that are not available on
AMD GPUs. We have used CUDA Version 11.2, OpenCL
1.2, Python 3.8.5, PyCUDA v2021.1, PyOpenCL v2020.3.1,
and BlooPy version 0.4.2.

Experimental setup: The GPU kernels are tuned with
respect to runtime (ms). The runtime of a GPU kernel is
stochastic, and can vary slightly per execution. Kernel Tuner
automatically benchmarks a given configuration 32 times to
acquire a mean runtime per configuration. In most cases, the
compilation time for a given kernel configuration significantly
exceeds the time needed to benchmark 32 runs. Therefore,
most of our experiments are performed in a deterministic set-
ting where the fitness of a configuration is the mean runtime.
However, we also perform a stochastic experiment where a
single kernel runtime is returned for every evaluation. This
means that the fitness for the same point in the search space
can vary, and algorithms that learn stochastic information, such
as irace and SMAC, can potentially benefit.

After discussion with the authors [30] we decided to
benchmark irace only for the stochastic experiment. This was
decided as it was deemed inappropriate for the deterministic
setting since the point of using irace is to dynamically handle
stochasticity in expensive problems.

The algorithms are evaluated based on the fraction of the
optimal runtime they can find within a limited budget of
evaluations. For each algorithm, we run experiments with a

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

Maximum number of function evaluations (budget)
Basin hopping 25 50 100 200 400 800 1600

method Powell COBYLA SLSQP
temperature 0.1 1.0

Dual annealing 25 50 100 200 400 800 1600
method COBYLA Powell

Differential evolution 25 50 100 200 400 800 1600
population size 1 2 4 8 16 32

method best1bin best2bin best1exp
recombination 0.5 0.7

mutation (0.2, 0.7)

Particle swarm optimization 25 50 100 200 400 800 1600
Number of particles 25 10 20 40 80 160
neighbours evaluated 5 10 20 26 32

FirstILS 25 50 100 200 400 800 1600
perturbation size 1.0 0.05

Exit after no improve 25 10
neighbour method Hamming adjacent

restart search False True

BestILS 25 50 100 200 400 800 1600
perturbation size 1.0 0.05

Exit after no improve 25
neighbour method adjacent Hamming adjacent

FirstTabu 25 50 100 200 400 800 1600
tabu size 4 2000

neighbour method Hamming

BestTabu 25 50 100 200 400 800 1600
tabu size 2000

neighbour method Hamming

FirstMLS 25 50 100 200 400 800 1600
restart search True False True

neighbour method Hamming

BestMLS 25 50 100 200 400 800 1600
neighbour method adjacent Hamming

Simulated annealing 25 50 100 200 400 800 1600
explore (p) 1.0 0.7 0.1
hill climber None RandomFirst

neighbour method Hamming

Genetic local search 25 50 100 200 400 800 1600
hill climber RandomFirst

population size 2 2 4 16 20 40 80
reproductor uniform 2point uniform

selector RTS
neighbour method Hamming

Genetic algorithm 25 50 100 200 400 800 1600
mutation 0.02 0.05 0.02

population size 8 10 20 40 80 128 320
reproductor 1point 2point

selector tour8 tour4

SMAC 25 50 100 200 400 800 1600
model type gp NA

acquisition function LCB NA

irace 25 50 100 200 400 800 1600
firstTest NA 2

nbConfigurations NA 0

TABLE III: Selected hyperparameters across different budgets (50 to 2000) for the optimization algorithms used in this work. The budgets columns are given in red. These
hyperparameters were optimized using the convolution, GEMM, and PnPoly kernels on the NVidia P100 GPU.

maximum function evaluation limit (budget) of 25, 50, 100,
200, 400, 800, 1600. The goal of our experiments is to
benchmark algorithms when traversing only a fraction of the
search space. Therefore, we set the highest budget limit at
1600 since it is already approximately 20% of the Point-in-
polygon search space. Every run is performed 50 times in
order to get an indication of the spread. Due to computational
demand, SMAC and irace experiments are ran 20 times.
SMAC is only run up to a budget of 400 evaluations due
to the high tuning time. Data and scripts for the experiments
and figures can be found in the GitHub repository [52].

VI. RESULTS: BENCHMARKING OPTIMIZATION
ALGORITHMS ON RUNTIME

In this section, we first discuss how to initialize each
algorithm with favourable hyperparameters. Next, we discuss
which algorithms are best suited to tuning GPU kernels.

A. Setting hyperparameters

In order to compare the optimization algorithms fairly
for the GPU tuning problem, we need to choose sensible
hyperparameters. Which hyperparameters can be varied per
algorithm is outlined in italics in section III-C. We test
different combinations of hyperparameters on the P100, RTX

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

2070 Super, and GTX 1080Ti, for all three kernels (9 out of
26 kernels). This way we select reasonable hyperparameters
across various architectures and kernels, which users can use
as defaults for new GPU tuning problems. We performed a
bruteforce search over all combinations of parameter values,
and ran each set 20 times for each algorithm. For PSO we
kept the w, c1, c2, p parameters constant as these appeared
to have little effect on algorithm performance. Note that the
time required to tune hyperparameters varies greatly between
algorithms due to this exhaustive search. The hyperparameters
chosen are in Table III.

To choose hyperparameters, we first group settings which
perform similarly statistically, and attempt to find one set of
hyperparameters that performs well across all 9 kernels. For a
budget p, let fp,best be the lowest average fitness achieved for
a set of hyperparameters, and σp,best the standard deviation.
We perform the following selection approach:

1) For every kernel, we create a set of hyperparameter
settings whose average found fitness is within k ·σp,best
of fp,best.

2) For each budget, intersect the acceptable settings for
convolution, GEMM, and PnPoly, across the 3 GPUs.

3) For each budget, if this intersection is non-empty, reduce
k and repeat. If the intersection is empty, increase k
and repeat. Repeat until only one set of hyperparameters
remains in the intersection.

B. Kernel tuning algorithm comparison

To quantify which kernel tuning algorithms perform best
for certain budgets, we can check whether an algorithm
provided statistically significantly better results than others
for a certain experiment. To do so, we use a two-sample
independent t-test with α = 0.05. For each GPU, kernel,
and budget combination, we perform the t-test to see if an
algorithm A performed significantly better than algorithm B.
We subsequently combine the total number of “wins” for
algorithm A across all GPUs (excluding those that were used
for tuning).

We split the competitions into low-range (200 evaluations
or fewer), and medium-range budgets. The competition tables
at different splits can be found in the Appendix IX-B. The full
plots per GPU and algorithm can be found in Appendix IX-C.
The results of these inter-algorithm competitions are given in
the heatmaps displayed in Figure 1. The competition heatmaps
display how often the column algorithm found a statistically
better solution than the row algorithm in that budget range.

1) Kernel tuning: deterministic fitness: In this section we
present the results of our deterministic experiments, i.e., the
algorithms have to minimize the runtime of a GPU kernel
where the runtime is fixed at the mean of 32 runs.

Low-range budget: For 200 function evaluations or fewer,
for convolution dual annealing was statistically better than
all other algorithms for all GPU models (see column with
“DualAnnealing” for convolution ≤ 200 function evaluations),
with simulated annealing as second. For GEMM, basin hop-
ping and dual annealing perform equally with dual annealing

Low budget Medium budget
total wins total losses total wins total losses

Basin hopping 403 204 131 393
Dual annealing 680 65 227 233

Differential evolution 426 192 150 347
PSO 290 327 136 368

FirstILS 352 233 361 77
BestILS 125 472 257 126

FirstTabu 148 430 255 183
BestTabu 35 677 220 185
FirstMLS 317 205 341 64
BestMLS 143 466 226 174

Simulated annealing 412 150 360 59
Genetic local search 320 216 329 59
Genetic algorithm 376 162 201 207

SMAC 356 344 48 145
Random sampling 222 463 7 629

TABLE IV: Total number of wins: sum of occurrences when the algorithm found
statistically better solutions than other algorithms (summed over all kernels). A win (and
corresponding loss for the other algorithm) is counted when 50 runs for a budget are
statistically significantly better according to a two-sample independent t-test (α = 0.05).
Low budget is for ≤ 200 budgets, i.e., 25, 50, 100, and 200. Medium budget is for
> 200 budgets, i.e., 400, 800, 1600. The top 3 cells are coloured green.

beating basin hopping 5 times, and basin hopping beating dual
annealing 6 times. For PnPoly dual annealing was again best,
followed by SMAC. We show the total number of wins and
losses across all kernels and GPUs in Table IV. Here we see
that for low budgets dual annealing has significantly more
wins, and fewer losses than all other algorithms.

Interestingly, SMAC was second for PnPoly, in the best half
of algorithms for convolution, but did not even beat random
sampling for GEMM. We hypothesize this is either due to
the number of variables to optimize for each of the three
kernels (see Table II), or the increasing fraction of fail fitnesses
for these kernels. We hypothesize that the Bayesian optimizer
could not fit a proper surrogate for GEMM with a low budget,
and many failed compilations.

Medium budget: For more than 200 function evaluations,
FirstMLS and GLS performed best for convolution, followed
by FirstILS. For GEMM, FirstILS and simulated annealing
performed best, followed by GLS. For PnPoly, FirstMLS is
the strongest algorithm, followed by simulated annealing and
GLS. As can be seen from Table IV, FirstILS and simulated
annealing have the most number of total wins, and simulated
annealing and genetic local search have the least number of
losses.

Additional remarks: In general, best-improvement local
search algorithms performed significantly worse than the first-
improvement variants. In fact, for the low range, they proved
statistically worse than random sampling for PnPoly, and
in general have fewer wins and more losses. This can be
explained due to the fact that exploring all the neighbours
before taking a step costs many evaluations, and leads to
only exploring a single neighbourhood for low budgets. For
the population-based methods, GLS is the best performing
algorithm for medium budgets, but does worse than differential
evolution and GA for low budgets. PSO performed signifi-
cantly worse.

Interestingly, dual annealing, which works on real-valued
solution vectors, performs well for low budgets. It seems that
the mapping from [0, 1]n to discrete space does not prevent

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 4 5 5 13 19 9 8 4 9 9 10 4 6 10
6 0 2 2 13 19 5 7 3 7 7 9 6 8 12
6 2 0 1 12 16 10 8 5 6 10 11 7 11 11

10 9 12 0 16 21 14 16 5 15 18 13 12 14 20
3 4 4 1 0 17 7 9 3 5 4 1 1 8 8
1 0 0 0 1 0 4 2 0 0 1 0 0 1 3
4 1 1 1 7 16 0 3 1 2 6 8 5 9 7
5 0 0 0 10 14 5 0 1 3 8 8 6 8 7
7 6 8 2 13 20 12 10 0 9 14 13 7 11 14
5 0 0 1 8 15 5 3 0 0 6 6 4 7 6
2 0 2 0 3 17 7 6 1 4 0 1 0 6 3
5 7 5 3 6 19 10 8 2 8 8 0 1 8 9
9 11 11 7 16 24 13 12 7 13 13 16 0 14 11
1 5 6 4 11 20 9 7 2 8 8 7 1 0 9
3 0 0 0 6 16 5 2 0 1 3 3 1 6 0

Algorithm Column beats Row - convolution feval <= 200

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 10 10 6 7 11 13 13 5 13 10 7 3 3 12
1 0 0 1 0 2 4 6 1 3 0 2 0 0 5
1 1 0 2 0 2 5 6 1 3 1 0 0 0 5
4 10 10 0 4 9 13 13 1 14 8 5 0 2 13
5 11 9 4 0 10 13 14 3 14 8 2 0 0 14
1 5 3 3 1 0 8 9 3 10 1 1 0 1 7
2 1 0 1 0 3 0 4 1 2 0 0 0 0 0
0 1 0 1 0 1 2 0 1 1 0 0 0 0 0
5 10 11 1 4 7 12 15 0 13 8 5 0 1 12
0 0 0 1 0 1 2 0 1 0 0 0 0 0 1
2 4 5 3 0 3 9 10 2 7 0 0 0 0 9
5 10 11 5 8 10 15 13 5 14 9 0 0 2 14

12 16 17 16 14 15 17 17 16 17 14 17 0 5 17
1 3 3 2 2 3 4 5 2 5 2 1 0 0 4
2 2 2 2 0 4 3 4 1 5 0 0 0 0 0

Algorithm Column beats Row - convolution feval > 200

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 1 1 0 2 5 3 3 0 3 1 1 0 0 4
16 0 5 0 17 20 18 17 1 13 14 12 11 9 19
17 1 0 0 17 19 11 6 1 8 13 11 7 7 16
20 12 18 0 22 22 21 22 6 17 22 18 14 16 23
13 1 2 0 0 11 7 3 0 4 1 0 0 0 5
6 0 3 0 1 0 4 4 0 3 0 1 0 0 3

11 0 0 0 8 13 0 0 0 0 5 8 6 5 7
14 0 0 0 11 15 2 0 0 1 6 9 7 5 8
20 7 13 0 20 21 17 15 0 14 19 15 14 13 21
15 0 2 0 12 15 6 1 0 0 8 10 9 5 12
14 0 1 0 8 16 7 7 0 5 0 2 1 0 7
18 5 6 0 15 18 11 11 0 9 10 0 1 1 10
23 11 11 1 21 22 14 12 2 11 15 11 0 5 14
23 9 10 1 23 23 15 12 3 12 17 14 10 0 18
13 0 1 0 9 12 4 1 0 2 2 2 2 1 0

Algorithm Column beats Row - GEMM feval <= 200

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 15 16 11 12 15 16 17 14 17 12 12 0 0 17
1 0 0 6 0 1 12 4 6 3 0 1 0 0 9
1 6 0 7 0 2 11 7 9 8 0 1 0 0 15
0 3 3 0 2 3 5 5 3 4 3 2 0 0 5
2 15 16 9 0 12 18 18 13 18 12 11 0 0 18
1 14 12 10 0 0 16 13 12 14 5 5 0 0 17
0 1 0 2 0 0 0 2 4 2 0 1 0 0 5
0 6 2 5 0 0 9 0 7 2 0 0 0 0 10
1 3 2 2 1 4 9 5 0 5 3 2 0 0 5
0 3 0 5 0 0 8 0 7 0 0 0 0 0 8
1 13 12 9 0 4 16 15 11 14 0 4 0 0 17
1 13 13 8 0 6 16 16 11 16 4 0 0 0 15

18 18 18 17 18 18 18 18 17 18 18 18 0 4 18
5 6 6 5 6 6 6 6 4 6 6 6 0 0 6
0 0 0 3 0 0 6 0 5 0 0 0 0 0 0

Algorithm Column beats Row - GEMM feval > 200

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 2 2 1 2 10 6 4 5 7 8 1 2 10 5
13 0 2 0 17 18 12 16 16 18 19 14 15 17 17
17 8 0 0 17 18 16 17 18 19 17 16 17 17 19
17 10 2 0 17 20 19 20 19 20 19 14 16 17 19
6 1 1 0 0 15 6 5 6 6 7 1 1 11 4
1 0 0 0 0 0 5 2 3 5 1 0 0 5 5

10 2 0 0 11 12 0 8 6 8 7 5 11 12 7
5 0 0 0 6 13 2 0 2 4 4 4 5 11 6
7 0 0 0 7 12 3 4 0 6 6 5 7 12 6
7 0 0 0 5 12 1 1 1 0 5 3 7 10 3
5 0 0 0 1 11 4 1 3 4 0 0 2 8 3
7 1 1 0 8 17 8 11 9 8 14 0 6 15 8

11 3 3 3 7 17 8 7 7 8 11 5 0 16 7
3 2 3 2 3 8 6 5 5 6 5 2 0 0 6
4 0 0 0 4 12 1 1 1 0 5 0 6 11 0

Algorithm Column beats Row - pnpoly feval <= 200

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 7 7 7 9 8 8 8 8 8 9 6 0 2 9
5 0 0 5 4 5 5 5 6 6 6 3 0 3 5
7 5 0 6 5 7 6 9 8 8 6 3 0 3 7
3 2 2 0 4 3 4 4 2 3 3 3 2 3 3
4 6 5 8 0 8 6 9 8 8 6 0 0 1 9
3 3 2 7 5 0 7 6 9 7 5 0 0 1 6
5 4 2 3 3 5 0 5 3 4 5 1 0 2 4
2 0 0 2 1 1 1 0 3 1 2 0 0 2 1
4 3 3 1 3 3 2 3 0 3 3 2 2 2 3
2 1 0 2 3 2 2 1 5 0 1 0 0 2 1
3 2 0 5 2 2 4 3 7 3 0 0 0 1 5
6 8 9 11 10 10 12 14 12 12 11 0 0 1 12

12 13 13 13 15 15 14 14 13 14 15 13 0 5 14
0 2 2 2 4 4 3 3 3 3 3 2 0 0 3
3 1 0 1 3 2 1 2 2 1 2 0 0 2 0

Algorithm Column beats Row - pnpoly feval > 200

Fig. 1: Heatmaps counting the occurrences when the column algorithm found statistically better solutions than the row algorithm for the (top) convolution, (middle) GEMM,
and (botttom) PnPoly kernels. An occurrence is counted when 50 runs for a budget are statistically significantly better according to a two-sample independent t-test (α = 0.05).
(Left): Heatmap for low ≤ 200 budgets, i.e., 25, 50, 100, and 200. (Right): Heatmap for mid and high > 200 budgets, i.e., 400, 800, 1600. Algorithms with low values (blue) in
their rows were not often beaten for those budgets, and algorithms with high values in their column (red) often beat other algorithms.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

25 50 100 200 400 800 1600 3200 6400
Max budget

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

Fraction of optimal fitness (stochastic) for convolution

FirstILS
DualAnnealing
GeneticAlgorithm
SMAC4BB
irace

25 50 100 200 400 800 1600 3200 6400
Max budget

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

Fraction of optimal fitness (stochastic) for GEMM

FirstILS
DualAnnealing
GeneticAlgorithm
SMAC4BB
irace

25 50 100 200 400 800 1600 3200 6400
Max budget

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

Fraction of optimal fitness (stochastic) for pnpoly

FirstILS
DualAnnealing
GeneticAlgorithm
SMAC4BB
irace

Fig. 2: Fraction of optimal runtime for max budget supplied over all GPUs. Each point is the mean fraction of optimal runtime found (y-axis) for each budget limit (x-axis)
over all GPUs, with the shaded region indicating 95% confidence interval. Left: convolution kernel. Middle: GEMM kernel. Right: PnPoly kernel (logarithmic x-axis).

dual annealing from finding strong solutions quickly. One of
the main drawbacks of using continuous algorithms is that if
a continuous algorithm updates its real-valued solution vector,
it could mean that it does not actually update the discrete
solution vector it is mapped to. However, since our algorithms
cache previously visited solutions (only for the deterministic
experiments), such redundant optimization steps do not cost
any budget. We think this may negatively impact gradient-
based algorithms as the subroutines Powell and COBYLA,
which do not require derivatives to be known, are the selected
solvers for dual annealing during hyperparameter tuning.

As a final remark, we notice that SMAC performs poorly in
the medium budgets. Note that SMAC only has 1/3 as many
data points in the medium budget since we do not perform
the 800 and 1600 budget experiments for SMAC. Nevertheless
the algorithm performs poorly on the 400 budget compared to
other methods. It seems that SMAC is unsuccessful in fitting
a meaningful surrogate model for kernel tuning. This could
be due to the deterministic setup of this experiment, or due to
the high number of fail configurations with “infinite” fitness.

2) Kernel tuning: stochastic fitness: For the stochastic
experiments the algorithms have to minimize the runtime of
a GPU kernel where the runtime is a random draw from
the 32 timings. In addition to running SMAC and irace, we
also run FirstILS, GA and dual annealing which did well for
deterministic fitnesses. We remark that irace throws an error if
the budget is too small with respect to the number of variables,
and therefore starts at a budget of 200 for convolution and
PnPoly, and 400 for GEMM.

The experimental results are shown in Figure 2. Here we
aggregate the results per kernel for all GPU models by showing
the mean fraction of optimum (and 95% confidence interval)
for a given max budget. We see that GA and dual annealing
are best for low budgets in the stochastic experiments. FirstILS
does well for budgets ≥ 100. Irace is the best method for
GEMM with budgets ≥ 800, but for convolution and pnpoly
irace is not as good as GA, dual annealing, and FirstILS.

SMAC consistently achieves a lower fraction of optimality
than the competing algorithms across kernels and budgets.
Again, we hypothesize that this is because of the high number
of fail fitnesses in the search spaces (see Table II). This makes
it hard for the Bayesian optimizer to fit a meaningful surrogate.

Stochastic or deterministic: Overall, we notice that higher

budgets are necessary to find good solutions for the stochastic
experiments than in the deterministic case. This leads to a
higher overall tuning time. We therefore recommend to treat
GPU kernel tuning as a deterministic optimization problem,
with the mean runtime as fitness. The added stochastic infor-
mation does not appear to allow SMAC or irace to consistently
outperform conventional black-box algorithms. This could
be because the runtime does not vary much; the average
(normalized) runtime and standard deviation is 1.000±0.011.
Second, the high number of failure configurations could con-
fuse models that try to learn stochastic information.

VII. QUANTIFYING GPU TUNING DIFFICULTY

In this section we want to gain insight into the difficulty
of the GPU kernel tuning optimization problem, and quantify
kernel spaces according to tuning difficulty. When attempting
to understand why certain GPU kernel spaces appear difficult
to optimize we found that relatively simple metrics do not
coincide with our experimental results. We outline discrepan-
cies between an intuitive simple metric and our experimental
results, and introduce a novel refined approach that does
correlate with our results.

A. Naive metric: fraction of optimal fitness of local minima

Method: As an example of a simple metric that intuitively
could explain the results, we consider the fraction of optimal
fitness of local minima. For a minimum xi, and optimal
fitness fopt, we can consider the fraction of optimal fitness
of the minimum fopt/f(xi). In this case, we divide the global
minimal runtime by the runtime of the minima.

Results: In Figure 3 we show a scatter plot of the fraction
of optimal fitness for the local minima for the convolution
kernel (per GPU model). According to this distribution, the
V100 and A100 GPUs have the closest to optimal median
fitness for local minima. This means that an algorithm that
randomly explores local minima with equal probability will
obtain the closest to optimal runtime for these kernels.

Analysis: To empirically check how difficult the GPU
kernels are to tune, we can plot the fraction of optimal fitness
that optimization algorithms managed to achieve for certain
budgets. If fj is the lowest fitness found for a single run for
some budget p, a point in the plot is the average over 50 runs
computed as f̃p := (1/50) ·

∑50
j=1(fopt/fj,p). In Figures 4

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

V100 A100 P100 GTX_1080Ti GTX_Titan_X MI50 RTX_2070_SUPER K20 TITAN_RTX
GPU

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 g

lo
ba

l f
itn

es

Fraction of global optimal fitness for minima (convolution)

Fig. 3: Fraction of optimal fitness of local minima for each GPU model, for the convolution kernel. The box plots shows the median line, the box designates the quartiles, and
the whiskers the full extend of the distribution. Additionally, a scatter plot of the fitness for each local minimum is shown. The GPUs are ordered in descending median fraction of
optimal fitness from left to right.

0 200 400 600 800 1000 1200 1400
Average function evaluations used

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
 o

pt
im

um

DualAnnealing performance for convolution per GPU

A100
GTX_Titan_X
K20
TITAN_RTX
V100
MI50

0 200 400 600 800 1000 1200 1400
Average function evaluations used

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
 o

pt
im

um

DualAnnealing performance for GEMM per GPU

A100
GTX_Titan_X
K20
TITAN_RTX
V100
MI50

102

Average function evaluations used

0.90

0.92

0.94

0.96

0.98

1.00

Fr
ac

tio
n

of
 o

pt
im

um

DualAnnealing performance for pnpoly per GPU

A100
GTX_Titan_X
K20
TITAN_RTX
V100

Fig. 4: Dual annealing: Fraction of optimal runtime for different budgets (per GPU). Each point is the average fraction of optimal runtime found (y-axis) for each budget, with
respect to the average number of evaluations actually used (x-axis) for that budget. Function evaluations used counts only the unique settings that were visited. Left: convolution
kernel. Middle: GEMM kernel. Right: PnPoly kernel (logarithmic x-axis).

0 200 400 600 800
Average function evaluations used

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

um

FirstILS performance for convolution per GPU

A100
GTX_Titan_X
K20
TITAN_RTX
V100
MI50

0 200 400 600 800 1000
Average function evaluations used

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

um

FirstILS performance for GEMM per GPU

A100
GTX_Titan_X
K20
TITAN_RTX
V100
MI50

102 103

Average function evaluations used

0.75

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
 o

pt
im

um

FirstILS performance for pnpoly per GPU

A100
GTX_Titan_X
K20
TITAN_RTX
V100

Fig. 5: FirstILS: Fraction of optimal runtime for different budgets (per GPU). Each point is the average fraction of optimal runtime found (y-axis) for each budget, with respect
to the average number of evaluations actually used (x-axis) for that budget. Function evaluations used counts only the unique settings that were visited. Left: convolution kernel.
Middle: GEMM kernel. Right: PnPoly kernel (logarithmic x-axis).

and 5 we plot f̃p for dual annealing and FirstILS. We chose
dual annealing and FirstILS as they represent the strongest
algorithms for low, and medium budgets respectively.

We see that for convolution on the A100 GPU both al-
gorithms returned solutions which were furthest away from
the optimum, while for the V100 both optimizers return
close to optimal solutions for few function evaluations. These
observations are opposite to what would be expected on the
basis of Figure 3. Hence, the distribution of fitness of the local
optima does not properly explain tuning difficulty.

B. Refined approach: Fitness flow graphs and PageRank

Method: A more refined metric to quantify GPU tuning dif-
ficulty may be to compute how likely local search algorithms

terminate in local minima. For this purpose, we introduce the
fitness flow graph (FFG), which contains all points in the
search space, and creates a directed edge to a neighbouring
point if the neighbour has lower fitness. This means that
a random walk across the FFG mimics the behaviour of
a randomized first-improvement local search algorithm. The
expected proportion of arrivals of each minimum then gives a
metric for weighting reachability of each minimum. We show
two example FFGs in Figure 6.

To compute the likelihood of arrival per local minima, we
compute the PageRank node centrality, which was originally
used to determine the relevance of a webpage [3], [43]. Let AG
be the adjacency matrix of a directed graph G, rescaled such
that each column adds up to 1. Essentially, this means that
for every node, the column is a probability vector of visiting

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

0.75

0.80

0.85

0.90

0.95

1.00

Fraction of optim
al fitness

Fig. 6: Fitness flow graphs of PnPoly kernel search spaces of the (left) NVidia Titan RTX, and (right) NVidia GTX 1080Ti. Each node is a point in the search space. There is
a directed edge between neighbouring points from higher to lower fitness. Points are coloured within a fitness range of +25% with respect to the global minimal fitness (global
minimum in green), i.e., each point is coloured by its fraction of optimal fitness, and points with a fraction below 0.75 are given the same colour. Local minima are represented as
larger nodes.

adjacent nodes with equal likelihood. The PageRank values
are then the values of the dominant right eigenvector of AG.
For an FFG, this means that the PageRank value of a local
minimum is the probability of arriving in that minimum after
a long random walk through the graph.

As a measure of difficulty we consider how likely a certain
subset of “suitably good” local minima are to be visited by a
local search algorithm relative to the rest. Suppose that fopt is
the optimal fitness, and let L(X) be the set of local minima
of X . Given a proportion p, we take the set of nodes Lp(X)
consisting of local minima with fitness less than (1 + p)fopt
(for minimization problems, otherwise (1 − p)fopt). For a
centrality function cG, we define the p-proportion of centrality

Cp(G,X) =

∑
x∈Lp(X) cG(x)∑
x∈L(X) cG(x)

. (3)

Results: The proportion of centrality for strong local min-
ima for each FFG is shown in Figure 7. We calculate the
proportion of centrality for different acceptance percentages
with respect to the global minimum of p = 0, 1, 2, . . . , 15%.

Revisiting the A100 and V100 convolution kernel compar-
ison, we see that the proportion of centrality matches the
experimental observations for dual annealing and FirstILS.
Figure 7 shows that the NVidia V100 has the most central local
minima, whereas the A100 has the least central local minima.
For the GEMM and PnPoly kernels, Figures 4 and 5 align
with the expectations based on the proportion of centrality. For
example, the group of PnPoly kernels with lowest proportion
of centrality (P100, GTX Titan X, K20, GTX 1080Ti) are
indeed the hardest to tune for both algorithms.

One exception is the K20 GEMM kernel, where proportion
of centrality does not entirely reflect the perceived difficulty
for dual annealing. This suggests that the proportion of cen-
trality may correlate with GPU tuning difficulty better for
certain optimization algorithms. This is to be expected since
the PageRank centrality on the FFG in expectation mim-
ics the performance of randomized first-improvement local
search. Algorithms that are substantially different than first-
improvement local search will therefore also correlate less with
the expected difficulty on the basis of proportion of centrality.

Analysis: Overall, the experimental results suggest that the
proportion of centrality is a suitable metric for estimating
tuning difficulty for GPU kernels. By using FFGs and the
PageRank algorithm, we are able to observe kernel differences
that were otherwise unknown. For example, both the A100 and
V100 convolution kernels have few outlier minima with a close
to optimal fitness. In fact, the existence of only a few kernel
configurations that lead to large increases in performance is
a general property of certain GPU kernels [61]. Crucially
however, the likelihood of local search algorithms arriving
in such minima differs greatly between the A100 and V100.
The proportion of centrality of an FFG gives us a tool to
quantify this likelihood. However, further research is necessary
to quantitatively determine how well our proposed metric
correlates with GPU tuning difficulty.

As a final remark on kernel differences, the experimental
results shows that the difficulty of tuning a particular kernel
can greatly differ from one GPU to the next, and that these
changes do not appear to be correlated with release time of the
models. The A100 is the most recent GPU in our set, while
the K20 is the oldest. For GEMM and PnPoly, we can say that
it has become easier to tune these kernels with more recent
GPUs, but the convolution kernel has become more difficult
to tune, except on the V100.

VIII. CONCLUSION

In this paper, we have investigated which optimization
algorithms produce the fastest GPU kernel configurations
across different tuning-time ranges. To do so, we analyzed
26 GPU kernel spaces for 9 GPUs. We computed sets of
optimal hyperparameters for GPU tuning for each optimization
algorithm. From among the tested algorithms in this set of
experiments, we conclude that dual annealing performs best
as GPU kernel tuner when a limited amount of function evalu-
ations is desirable. When more evaluations are possible, first-
improvement local searchers such as FirstILS proved the best
GPU kernel tuners. Using these algorithms, we are convinced
that GPU programmers can reliably auto-tune GPU kernels
to close to optimal runtime while requiring relatively few
re-compilations of the code. Furthermore, we conclude that

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Percentage acceptable minima

10 2

10 1

100

Pr
op

or
tio

n
of

 c
en

tra
lit

y
Proportion of centrality for convolution per GPU

P100
MI50
GTX_1080Ti
K20
RTX_2070_SUPER
GTX_Titan_X
V100
TITAN_RTX
A100

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Percentage acceptable minima

10 1

100

Pr
op

or
tio

n
of

 c
en

tra
lit

y

Proportion of centrality for GEMM per GPU

K20
GTX_1080Ti
P100
RTX_2070_SUPER
GTX_Titan_X
V100
TITAN_RTX
A100
MI50

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Percentage acceptable minima

10 2

10 1

100

Pr
op

or
tio

n
of

 c
en

tra
lit

y

Proportion of centrality for pnpoly per GPU

TITAN_RTX
GTX_Titan_X
RTX_2070_SUPER
V100
A100
K20
P100
GTX_1080Ti

Fig. 7: Proportion of centrality for fitness flow graphs for each GPU. The proportion
of centrality is computed by taking the sum of PageRank centrality for local minima
within p% of the optimal fitness, divided by the total PageRank centrality of all local
minima. From top to bottom are convolution, GEMM, and PnPoly kernel.

treating GPU tuning as a deterministic optimization problem
is preferred over treating the runtime as a stochastic variable.

We showed that the basic metric of fraction of optimality of
local minima is not suitable for explaining the results observed
in the experimental benchmarks. To make steps towards a
metric for tuning difficulty, we introduced the concept of
fitness flow graphs, and proportion of centrality. Our results
suggest that the proportion of centrality can be used to quantify
tuning difficulty. For future work, in cases where exhaustive
exploration is infeasible, perhaps a procedure to dynamically
update the proportion of centrality of FFGs can be used.
Such dynamic estimates of tuning difficulty could be used

for automatic algorithm selection within frameworks such as
Kernel Tuner. Furthermore, the pagerank centrality of strong
local minima within FFGs can be used to investigate why
certain minima are unlikely to be visited, for example because
neighbouring configurations fail to compile. Lastly, in this
work we fully computed 26 kernel spaces, and made these
publicly available. We aim to extend this to a benchmark
dataset for evolutionary computation algorithms.

ACKNOWLEDGEMENTS

This work has made use of the experimental systems on the
Dutch national e-infrastructure with the support of the SURF
Cooperative. The CORTEX project has received funding from
the Dutch Research Council (NWO) in the framework of the
NWA-ORC Call (file number NWA.1160.18.316). This work
is also financially supported by the Netherlands Organization
for Scientific Research (NWO), project number 639.073.506.

REFERENCES

[1] J. Ansel, S. Kamil, K. Veeramachaneni, et al. OpenTuner: An extensible
framework for program autotuning. In Proceedings of the 23rd interna-
tional conference on Parallel architectures and compilation, 2014.

[2] A. H. Ashouri, W. Killian, J. Cavazos, et al. A survey on compiler
autotuning using machine learning. ACM Comput. Surv., 51(5), 2018.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. Computer networks and ISDN systems, 30(1-7):107–117,
1998.

[4] R. H. Byrd, P. Lu, J. Nocedal, et al. A limited memory algorithm for
bound constrained optimization. SIAM Journal on scientific computing,
16(5):1190–1208, 1995.

[5] Xuanyi Dong, Lu Liu, Katarzyna Musial, and Bogdan Gabrys. Nats-
bench: Benchmarking nas algorithms for architecture topology and
size. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(7):3634–3646, 2022.

[6] J. Filipovič, J. Hozzová, A. Nezarat, et al. Using hardware performance
counters to speed up autotuning convergence on GPUs. arXiv preprint
arXiv:2102.05297, 2021.

[7] J. Filipovič, F. Petrovič, and S. Benkner. Autotuning of OpenCL kernels
with global optimizations. In Proceedings of the 1st workshop on
autotuning and adaptivity approaches for energy efficient HPC systems,
2017.

[8] M. Frigo and S. G. Johnson. The design and implementation of FFTW3.
Proc. IEEE, 93(2):216–231, 2005.

[9] F. Glover. Tabu search—part i. ORSA Journal on computing, 1(3):190–
206, 1989.

[10] R. Goncalves, T. van Tilburg, K. Kyzirakos, et al. A spatial column-
store to triangulate the Netherlands on the fly. In Proceedings of the 24th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, GIS ’16, pages 80:1–80:4, New York, NY, USA,
2016. ACM.

[11] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula,
and John Cavazos. Auto-tuning a high-level language targeted to gpu
codes. In 2012 innovative parallel computing (InPar), pages 1–10. Ieee,
2012.

[12] D. Grewe and A. Lokhmotov. Automatically generating and tuning
GPU code for sparse matrix-vector multiplication from a high-level
representation. In Proceedings of the Fourth Workshop on General
Purpose Processing on Graphics Processing Units, page 12. ACM, 2011.

[13] S. Heldens, P. Hijma, B. van Werkhoven, et al. The landscape of exascale
research: a data-driven literature analysis. ACM Computing Surveys
(CSUR), 53(2):1–43, 2020.

[14] S. Herrmann. Determining the difficulty of landscapes by PageRank
centrality in local optima networks. In Evolutionary Computation in
Combinatorial Optimization, pages 74–87. Springer, 2016.

[15] S. Herrmann and F. Rothlauf. Predicting heuristic search performance
with PageRank centrality in local optima networks. In Proceedings of
the 2015 Annual Conference on Genetic and Evolutionary Computation,
pages 401–408, 2015.

[16] Kaixi Hou, Wu-chun Feng, and Shuai Che. Auto-tuning strategies
for parallelizing sparse matrix-vector (spmv) multiplication on multi-
and many-core processors. In 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pages 713–
722. IEEE, 2017.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

[17] H. Ishibuchi and T. Murata. A multi-objective genetic local search
algorithm and its application to flowshop scheduling. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
28(3):392–403, 1998.

[18] S. Kamil, C. Chan, L. Oliker, et al. An auto-tuning framework for
parallel multicore stencil computations. In 2010 IEEE international
symposium on parallel & distributed processing (IPDPS), pages 1–12.
IEEE, 2010.

[19] J. Kennedy and R. Eberhart. Particle swarm optimization. In Pro-
ceedings of ICNN’95-International Conference on Neural Networks,
volume 4, pages 1942–1948. IEEE, 1995.

[20] Nesrine Khouzami, Friedrich Michel, Pietro Incardona, Jeronimo Cas-
trillon, and Ivo F. Sbalzarini. Model-based autotuning of discretization
methods in numerical simulations of partial differential equations. Jour-
nal of Computational Science, 57:101489, 2022.

[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. science, 220(4598):671–680, 1983.

[22] D. Kraft. A software package for sequential quadratic programming.
Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt
Köln: Forschungsbericht. Wiss. Berichtswesen d. DFVLR, 1988.

[23] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[24] Y. Li, J. Dongarra, and S. Tomov. A note on auto-tuning GEMM for
GPUs. In International Conference on Computational Science, pages
884–892. Springer, 2009.

[25] R. Lim, B. Norris, and A. Malony. Autotuning GPU kernels via static
and predictive analysis. In 2017 46th International Conference on
Parallel Processing (ICPP), pages 523–532. IEEE, 2017.

[26] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André
Biedenkapp, Difan Deng, Carolin Benjamins, René Sass, and Frank
Hutter. Sequential Model Algorithm Configuration (SMAC). https:
//github.com/automl/SMAC3, 2021.

[27] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André
Biedenkapp, Difan Deng, Carolin Benjamins, René Sass, and Frank
Hutter. Smac3: A versatile bayesian optimization package for hyper-
parameter optimization, 2021.

[28] Shaoshan Liu, Jie Tang, Zhe Zhang, and Jean-Luc Gaudiot. Computer
architectures for autonomous driving. Computer, 50(8):18–25, 2017.

[29] Y. Liu, W. M. Sid-Lakhdar, O. Marques, et al. GPTune: Multitask
learning for autotuning exascale applications. In Proceedings of the
26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’21, page 234–246, New York, NY, USA, 2021.
Association for Computing Machinery.

[30] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres,
Mauro Birattari, and Thomas Stützle. The irace package: Iterated
racing for automatic algorithm configuration. Operations Research
Perspectives, 3:43–58, 2016.

[31] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In
Handbook of metaheuristics, pages 320–353. Springer, 2003.

[32] Manuel López-Ibáñez, Leslie Pérez Cáceres, and Jérémie Dubois-
Lacoste. irace: Iterated Racing for Automatic Algorithm Configuration.
https://github.com/MLopez-Ibanez/irace, 2021.

[33] A. Mametjanov, D. Lowell, C. Ma, et al. Autotuning stencil-based
computations on GPUs. In Cluster Computing (CLUSTER), 2012 IEEE
International Conference on, pages 266–274. IEEE, 2012.

[34] M. Mitchell. An introduction to genetic algorithms. MIT press, 1998.
[35] Sparsh Mittal. A survey on optimized implementation of deep learning

models on the nvidia jetson platform. Journal of Systems Architecture,
97:428–442, 2019.

[36] L. Nardi, A. Souza, D. Koeplinger, et al. Hypermapper: a practical
design space exploration framework. In 2019 IEEE 27th International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 2019.

[37] J. A. Nelder and R. Mead. A simplex method for function minimization.
The computer journal, 7(4):308–313, 1965.

[38] J. Nocedal and S. J. Wright. Conjugate gradient methods. Numerical
optimization, pages 101–134, 2006.

[39] C. Nugteren. CLBlast: A tuned OpenCL BLAS library. In Proceedings
of the International Workshop on OpenCL, IWOCL ’18, pages 5:1–5:10.
ACM, 2018.

[40] C. Nugteren and V. Codreanu. CLTune: A generic auto-tuner for
OpenCL kernels. In 2015 IEEE 9th International Symposium on Em-
bedded Multicore/Many-core Systems-on-Chip, pages 195–202. IEEE,
2015.

[41] A. Nukada and S. Matsuoka. Auto-tuning 3-D FFT library for CUDA
GPUs. In Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, page 30. ACM, 2009.

[42] G. Ochoa, M. Tomassini, S. Vérel, et al. A study of NK landscapes’
basins and local optima networks. In Proceedings of the 10th annual

conference on Genetic and evolutionary computation, pages 555–562,
2008.

[43] L. Page, S. Brin, R. Motwani, et al. The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[44] Sunghyun Park, Salar Latifi, Yongjun Park, Armand Behroozi, Byungsoo
Jeon, and Scott Mahlke. Srtuner: Effective compiler optimization
customization by exposing synergistic relations. In 2022 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),
pages 118–130, 2022.

[45] F. Petrovič, D. Střelák, J. Hozzová, et al. A benchmark set of highly-
efficient CUDA and OpenCL kernels and its dynamic autotuning with
Kernel Tuning Toolkit. Future Gener. Comput. Syst., 108:161–177, 2020.

[46] M. J. Powell. An efficient method for finding the minimum of a function
of several variables without calculating derivatives. The computer
journal, 7(2):155–162, 1964.

[47] M. J. Powell. A direct search optimization method that models the
objective and constraint functions by linear interpolation. In Advances
in optimization and numerical analysis, pages 51–67. Springer, 1994.

[48] M. Puschel, J. M. Moura, J. R. Johnson, et al. SPIRAL: Code generation
for DSP transforms. Proc. IEEE, 93(2):232–275, 2005.

[49] A. Rasch, R. Schulze, M. Steuwer, et al. Efficient Auto-Tuning of
Parallel Programs with Interdependent Tuning Parameters via Auto-
Tuning Framework (ATF). ACM Trans. Archit. Code Optim., 18(1),
2021.

[50] S. Ryoo, C. I. Rodrigues, S. S. Stone, et al. Program optimization
space pruning for a multithreaded GPU. In Proceedings of the 6th
annual IEEE/ACM international symposium on Code generation and
optimization, pages 195–204, 2008.

[51] Richard A. Schoonhoven. BlooPy: Black-box optimization Python for
bitstring, categorical, and numerical discrete problems with local, and
population-based algorithms. https://github.com/schoonhovenrichard/
BlooPy, 2021.

[52] Richard A. Schoonhoven. Data and plotting scripts for GPU bench-
marking 2021 paper. https://github.com/schoonhovenrichard/GPU
benchmarking paper, 2021.

[53] A. Sclocco, H. E. Bal, J. Hessels, et al. Auto-tuning dedispersion for
many-core accelerators. In 2014 IEEE 28th International Parallel and
Distributed Processing Symposium, pages 952–961. IEEE, 2014.

[54] A. Sclocco, S. Heldens, and B. van Werkhoven. AMBER: A real-
time pipeline for the detection of single pulse astronomical transients.
SoftwareX, 12:100549, 2020.

[55] A. Sclocco, J. Van Leeuwen, H. E. Bal, et al. A real-time radio transient
pipeline for arts. In 2015 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), pages 468–472. IEEE, 2015.

[56] R. Storn and K. Price. Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. Journal of
global optimization, 11(4):341–359, 1997.

[57] A. Tiwari, C. Chen, J. Chame, et al. A scalable auto-tuning framework
for compiler optimization. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1–12. IEEE,
2009.

[58] S. Tomov, R. Nath, H. Ltaief, et al. Dense linear algebra solvers for
multicore with gpu accelerators. In Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010 IEEE International Sym-
posium on, pages 1–8. IEEE, 2010.

[59] Top500. List–november 2020. https://top500.org/lists/top500/2020/11/,
(accessed November 27, 2020).

[60] C. Tsallis and D. A. Stariolo. Generalized simulated annealing. Physica
A, 233(1-2):395–406, 1996.

[61] B. van Werkhoven. Kernel Tuner: A search-optimizing GPU code auto-
tuner. Future Gener. Comput. Syst., 90, 2018.

[62] B. Van Werkhoven, J. Maassen, H. E. Bal, et al. Optimizing convolution
operations on gpus using adaptive tiling. Future Gener. Comput. Syst.,
30:14–26, 2014.

[63] B. van Werkhoven, W. J. Palenstijn, and A. Sclocco. Lessons learned
in a decade of research software engineering gpu applications. In
International Conference on Computational Science, pages 399–412.
Springer, 2020.

[64] D. J. Wales and J. P. Doye. Global optimization by basin-hopping and
the lowest energy structures of lennard-jones clusters containing up to
110 atoms. The Journal of Physical Chemistry A, 101(28):5111–5116,
1997.

[65] Zheng Wang, Dominik Grewe, and Michael FP O’boyle. Automatic
and portable mapping of data parallel programs to opencl for gpu-based
heterogeneous systems. ACM Transactions on Architecture and Code
Optimization (TACO), 11(4):1–26, 2014.

[66] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra
software. In Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing, 1998.

https://github.com/automl/SMAC3
https://github.com/automl/SMAC3
https://github.com/MLopez-Ibanez/irace
https://github.com/schoonhovenrichard/BlooPy
https://github.com/schoonhovenrichard/BlooPy
https://github.com/schoonhovenrichard/GPU_benchmarking_paper
https://github.com/schoonhovenrichard/GPU_benchmarking_paper
https://top500.org/lists/top500/2020/11/

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

[67] A. H. Wright, R. K. Thompson, and J. Zhang. The computational
complexity of N-K fitness functions. Trans. Evol. Comp, 4(4):373–379,
2000.

[68] Y. Zhang and F. Mueller. Auto-generation and auto-tuning of 3d stencil
codes on gpu clusters. In Proceedings of the Tenth International
Symposium on Code Generation and Optimization, pages 155–164,
2012.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 16

Kernel parameter to tune list of values number of possible values
Convolution block_size_x {1, 2, 4, 8, 16, 32, 48, 64, 80, 96, 112, 128} 12
(except MI50) block_size_y {1, 2, 4, 8, 16, 32} 6

tile_size_x {1, 2, 3, 4, 5, 6, 7, 8} 8
tile_size_y {1, 2, 3, 4, 5, 6, 7, 8} 8
use_padding {0, 1} 2
read_only {0, 1} 2

Convolution (MI50) block_size_x {16, 32, 48, 64, 80, 96, 112, 128} 8
block_size_y {1, 2, 4, 8, 16, 32} 6
tile_size_x {1, 2, 4} 3
tile_size_y {1, 2, 4} 3
use_padding {0, 1} 2

GEMM MWG {16, 32, 64, 128} 4
NWG {16, 32, 64, 128} 4
MDIMC {8, 16, 32} 3
NDIMC {8, 16, 32} 3
MDIMA {8, 16, 32} 3
NDIMB {8, 16, 32} 3
VWM {1, 2, 4, 8} 4
VWN {1, 2, 4, 8} 4
SA {0, 1} 2
SB {0, 1} 2

Point-in-polygon block_size_x {32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 31
384, 416, 448, 480, 512, 544, 576, 608, 640, 672,
704, 736, 768, 800, 832, 864, 896, 928, 960, 992}

tile_size {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20} 11
between_method {0, 1, 2, 3} 4

use_precomputed_slopes {0, 1} 2
use_method {0, 1, 2} 3

TABLE V: Tunable parameters per kernel, and list of possible values for each parameter.

IX. APPENDIX

A. Appendix: Tunable parameters per GPU kernel

In Table V we show the tunable parameters per kernel, and
the values each parameter could take. For the convolution
kernel, the MI50 GPU (the only AMD model) required a
different problem setup due to hardware constraints.

B. Appendix: Alternative splits for competition heatmaps

In Figures 8 and 9 we show the algorithm competition
heatmaps such as in Figure 1 but when split at 100 and 400
budgets instead of 200.

C. Appendix: Per kernel graphs of experimental results

In Figures 10 to 18 we show plots of algorithm performance
in terms of fraction of optimal fitness found for certain budget
used (per GPU).

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 17

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 2 3 3 11 16 6 5 2 6 7 9 3 5 6
5 0 1 2 12 16 4 5 2 6 7 9 6 7 9
6 2 0 1 11 15 8 7 5 5 10 10 7 11 10
8 7 7 0 15 17 11 11 4 12 16 13 11 12 15
1 1 0 0 0 13 4 4 1 2 1 0 0 5 3
1 0 0 0 0 0 2 0 0 0 0 0 0 1 0
3 1 0 1 7 14 0 1 1 2 6 8 5 8 6
5 0 0 0 10 13 3 0 0 2 7 8 6 8 5
5 2 4 1 12 16 8 5 0 5 11 12 7 9 9
4 0 0 1 8 13 4 2 0 0 6 6 4 6 5
1 0 0 0 2 14 5 2 0 2 0 1 0 5 0
3 3 1 0 4 15 6 4 1 4 4 0 1 6 4
5 5 5 2 11 18 7 7 3 7 7 11 0 10 5
0 1 2 1 8 15 5 3 1 4 4 4 1 0 5
2 0 0 0 6 14 4 1 0 1 3 3 1 5 0

Algorithm Column beats Row - convolution feval <= 100

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 12 12 8 9 14 16 16 7 16 12 8 4 4 16
2 0 1 1 1 5 5 8 2 4 0 2 0 1 8
1 1 0 2 1 3 7 7 1 4 1 1 0 0 6
6 12 15 0 5 13 16 18 2 17 10 5 1 4 18
7 14 13 5 0 14 16 19 5 17 11 3 1 3 19
1 5 3 3 2 0 10 11 3 10 2 1 0 1 10
3 1 1 1 0 5 0 6 1 2 0 0 0 1 1
0 1 0 1 0 2 4 0 2 2 1 0 0 0 2
7 14 15 2 5 11 16 20 0 17 11 6 0 3 17
1 0 0 1 0 3 3 1 1 0 0 0 0 1 2
3 4 7 3 1 6 11 14 3 9 0 0 0 1 12
7 14 15 8 10 14 19 17 6 18 13 0 0 4 19

16 22 23 21 19 21 23 22 20 23 20 22 0 9 23
2 7 7 5 5 8 8 9 3 9 6 4 0 0 8
3 2 2 2 0 6 4 5 1 5 0 0 0 1 0

Algorithm Column beats Row - convolution feval > 100

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 0 0 0 1 4 1 2 0 2 0 0 0 0 1
15 0 4 0 16 18 14 12 1 10 14 12 11 9 15
15 1 0 0 15 16 8 4 1 7 12 11 7 7 12
18 8 13 0 18 18 16 16 4 13 18 15 14 16 17
12 0 0 0 0 10 3 1 0 1 0 0 0 0 2
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0

11 0 0 0 8 13 0 0 0 0 5 8 6 5 6
13 0 0 0 11 14 2 0 0 1 6 9 7 5 7
17 5 9 0 17 18 12 11 0 11 16 13 14 13 16
14 0 2 0 12 14 4 0 0 0 8 10 9 5 9
13 0 0 0 7 14 3 2 0 2 0 2 1 0 2
15 1 2 0 12 15 6 6 0 5 5 0 1 1 5
17 5 5 0 15 16 8 6 0 5 9 6 0 3 8
17 3 4 0 17 17 9 6 0 6 11 9 8 0 12
13 0 1 0 9 12 3 1 0 1 2 2 2 1 0

Algorithm Column beats Row - GEMM feval <= 100

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 16 17 11 13 16 18 18 14 18 13 13 0 0 20
2 0 1 6 1 3 16 9 6 6 0 1 0 0 13
3 6 0 7 2 5 14 9 9 9 1 1 0 0 19
2 7 8 0 6 7 10 11 5 8 7 5 0 0 11
3 16 18 9 0 13 22 20 13 21 13 11 0 0 21
1 14 15 10 1 0 19 17 12 17 5 6 0 0 20
0 1 0 2 0 0 0 2 4 2 0 1 0 0 6
1 6 2 5 0 1 9 0 7 2 0 0 0 0 11
4 5 6 2 4 7 14 9 0 8 6 4 0 0 10
1 3 0 5 0 1 10 1 7 0 0 0 0 0 11
2 13 13 9 1 6 20 20 11 17 0 4 0 0 22
4 17 17 8 3 9 21 21 11 20 9 0 0 0 20

24 24 24 18 24 24 24 24 19 24 24 23 0 6 24
11 12 12 6 12 12 12 12 7 12 12 11 2 0 12
0 0 0 3 0 0 7 0 5 1 0 0 0 0 0

Algorithm Column beats Row - GEMM feval > 100

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 0 0 0 2 8 4 2 3 5 6 1 2 10 3
11 0 0 0 14 15 9 12 12 14 15 13 13 15 13
15 8 0 0 15 15 13 15 14 14 15 14 15 15 14
15 9 0 0 14 15 15 15 15 15 15 13 14 15 14
5 0 0 0 0 12 4 3 4 4 4 1 1 10 2
0 0 0 0 0 0 3 1 1 2 1 0 0 4 2
8 2 0 0 9 10 0 6 4 5 5 5 9 10 5
4 0 0 0 4 11 1 0 0 1 3 4 4 9 4
6 0 0 0 5 10 1 2 0 3 5 4 6 10 4
6 0 0 0 4 11 1 1 0 0 4 3 6 9 3
4 0 0 0 1 10 2 0 0 1 0 0 2 7 0
6 0 0 0 6 13 5 7 5 4 9 0 4 13 4
7 0 0 0 3 12 5 4 4 4 6 2 0 12 4
2 0 0 0 1 5 3 2 2 3 2 0 0 0 3
3 0 0 0 3 10 1 1 0 0 4 0 5 9 0

Algorithm Column beats Row - pnpoly feval <= 100

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 9 9 8 9 10 10 10 10 10 11 6 0 2 11
7 0 2 5 7 8 8 9 10 10 10 4 2 5 9
9 5 0 6 7 10 9 11 12 13 8 5 2 5 12
5 3 4 0 7 8 8 9 6 8 7 4 4 5 8
5 7 6 8 0 11 8 11 10 10 9 0 0 2 11
4 3 2 7 5 0 9 7 11 10 5 0 0 2 9
7 4 2 3 5 7 0 7 5 7 7 1 2 4 6
3 0 0 2 3 3 2 0 5 4 3 0 1 4 3
5 3 3 1 5 5 4 5 0 6 4 3 3 4 5
3 1 0 2 4 3 2 1 6 0 2 0 1 3 1
4 2 0 5 2 3 6 4 10 6 0 0 0 2 8
7 9 10 11 12 14 15 18 16 16 16 0 2 3 16

16 16 16 16 19 20 17 17 16 18 20 16 0 9 17
1 4 5 4 6 7 6 6 6 6 6 4 0 0 6
4 1 0 1 4 4 1 2 3 1 3 0 1 4 0

Algorithm Column beats Row - pnpoly feval > 100

Fig. 8: Heatmaps counting the occurrences when the column algorithm found statistically better solutions than the row algorithm for the (top) convolution, (middle) GEMM,
and (botttom) PnPoly kernels. An occurrence is counted when 50 runs for a budget are statistically significantly better according to a two-sample independent t-test (α = 0.05).
(Left): Heatmap for low ≤ 100 budgets, i.e., 25, 50, and 100. (Right): Heatmap for mid and high > 100 budgets, i.e., 200, 400, 800, 1600. Algorithms with low values (blue) in
their rows were not often beaten for those budgets, and algorithms with high values in their column (red) often beat other algorithms.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 18

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 8 9 8 16 24 14 14 6 15 13 12 5 9 15
6 0 2 3 13 20 7 10 4 7 7 9 6 8 14
6 3 0 3 12 17 13 13 6 7 10 11 7 11 14

10 13 15 0 17 24 18 20 6 19 21 14 12 16 24
3 8 7 3 0 20 11 15 4 10 6 1 1 8 14
1 2 1 2 2 0 7 6 2 3 2 0 0 2 6
4 1 1 2 7 17 0 4 2 3 6 8 5 9 7
5 1 0 1 10 15 5 0 2 4 8 8 6 8 7
7 8 9 2 14 21 15 15 0 12 14 13 7 12 17
5 0 0 2 8 16 5 3 1 0 6 6 4 7 7
2 2 4 2 3 19 11 12 2 7 0 1 0 6 8
6 11 9 6 9 23 16 14 4 14 11 0 1 10 15

12 17 17 13 21 30 19 18 13 19 18 22 0 19 17
2 8 9 6 13 23 13 12 4 13 10 8 1 0 13
3 1 1 2 6 18 5 4 1 3 3 3 1 6 0

Algorithm Column beats Row - convolution feval <= 400

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 6 6 3 4 6 8 7 3 7 6 5 2 0 7
1 0 0 0 0 1 2 3 0 3 0 2 0 0 3
1 0 0 0 0 1 2 1 0 2 1 0 0 0 2
4 6 7 0 3 6 9 9 0 10 5 4 0 0 9
5 7 6 2 0 7 9 8 2 9 6 2 0 0 8
1 3 2 1 0 0 5 5 1 7 0 1 0 0 4
2 1 0 0 0 2 0 3 0 1 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
5 8 10 1 3 6 9 10 0 10 8 5 0 0 9
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
2 2 3 1 0 1 5 4 1 4 0 0 0 0 4
4 6 7 2 5 6 9 7 3 8 6 0 0 0 8
9 10 11 10 9 9 11 11 10 11 9 11 0 0 11
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 2 3 2 0 3 0 0 0 0 0

Algorithm Column beats Row - convolution feval > 400

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 4 5 3 3 8 7 8 2 8 2 2 0 0 9
17 0 5 2 17 21 22 20 2 15 14 13 11 9 23
18 2 0 1 17 21 12 10 2 11 13 12 7 7 21
20 13 19 0 23 24 22 25 7 19 23 19 14 16 26
15 5 7 2 0 15 13 9 2 10 5 2 0 0 11
7 3 6 2 1 0 8 7 1 6 1 3 0 0 8

11 0 0 1 8 13 0 2 1 1 5 9 6 5 10
14 0 0 1 11 15 2 0 0 1 6 9 7 5 10
21 9 14 0 21 24 20 19 0 18 21 16 14 13 25
15 0 2 1 12 15 6 1 0 0 8 10 9 5 13
15 3 4 2 8 18 12 12 1 10 0 3 1 0 12
19 8 10 2 15 21 15 16 1 14 11 0 1 1 15
29 17 17 7 27 28 20 18 7 17 21 17 0 9 20
28 15 16 6 29 29 21 18 7 18 23 20 10 0 24
13 0 1 1 9 12 4 1 1 2 2 2 2 1 0

Algorithm Column beats Row - GEMM feval <= 400

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 12 12 8 11 12 12 12 12 12 11 11 0 0 12
0 0 0 4 0 0 8 1 5 1 0 0 0 0 5
0 5 0 6 0 0 10 3 8 5 0 0 0 0 10
0 2 2 0 1 1 4 2 2 2 2 1 0 0 2
0 11 11 7 0 8 12 12 11 12 8 9 0 0 12
0 11 9 8 0 0 12 10 11 11 4 3 0 0 12
0 1 0 1 0 0 0 0 3 1 0 0 0 0 2
0 6 2 4 0 0 9 0 7 2 0 0 0 0 8
0 1 1 2 0 1 6 1 0 1 1 1 0 0 1
0 3 0 4 0 0 8 0 7 0 0 0 0 0 7
0 10 9 7 0 2 11 10 10 9 0 3 0 0 12
0 10 9 6 0 3 12 11 10 11 3 0 0 0 10

12 12 12 11 12 12 12 12 12 12 12 12 0 0 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 6 0 4 0 0 0 0 0 0

Algorithm Column beats Row - GEMM feval > 400

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 4 4 3 6 13 9 7 8 10 11 3 2 12 8
14 0 2 2 20 22 15 19 19 21 23 17 15 20 20
19 9 0 2 20 21 20 21 22 23 20 18 17 20 22
18 11 3 0 20 22 22 23 21 22 21 16 17 20 21
6 2 2 2 0 17 8 7 8 8 8 1 1 12 6
1 1 0 2 2 0 8 4 7 7 1 0 0 6 7

11 2 0 0 12 13 0 8 6 8 8 6 11 14 7
5 0 0 0 7 14 2 0 3 4 5 4 5 13 6
8 1 1 0 8 13 4 5 0 7 7 6 8 14 7
7 0 0 0 8 13 2 1 3 0 6 3 7 12 3
5 1 0 2 3 12 7 3 7 6 0 0 2 9 6
7 2 3 2 11 20 12 15 13 10 16 0 6 16 11

15 6 6 7 12 22 12 11 11 12 16 10 0 21 11
3 4 5 4 7 12 9 8 8 9 8 4 0 0 9
4 0 0 0 6 13 2 1 2 0 6 0 6 13 0

Algorithm Column beats Row - pnpoly feval <= 400

Ba
sin

Ho
pp

in
g

Be
st

IL
S

Be
st

M
LS

Be
st

Ta
bu

Di
ffe

re
nt

ia
lE

vo
lu

tio
n

Du
al

An
ne

al
in

g

Fir
st

IL
S

Fir
st

M
LS

Fir
st

Ta
bu GL

S

Ge
ne

tic
Al

go
rit

hm

Pa
rti

cle
Sw

ar
m

Ra
nd

om
Sa

m
pl

in
g

SM
AC

4B
B

Si
m

ul
at

ed
An

ne
al

in
g

BasinHopping
BestILS

BestMLS
BestTabu

DifferentialEvolution
DualAnnealing

FirstILS
FirstMLS
FirstTabu

GLS
GeneticAlgorithm

ParticleSwarm
RandomSampling

SMAC4BB
SimulatedAnnealing

0 5 5 5 5 5 5 5 5 5 6 4 0 0 6
4 0 0 3 1 1 2 2 3 3 2 0 0 0 2
5 4 0 4 2 4 2 5 4 4 3 1 0 0 4
2 1 1 0 1 1 1 1 0 1 1 1 1 0 1
4 5 4 6 0 6 4 7 6 6 5 0 0 0 7
3 2 2 5 3 0 4 4 5 5 5 0 0 0 4
4 4 2 3 2 4 0 5 3 4 4 0 0 0 4
2 0 0 2 0 0 1 0 2 1 1 0 0 0 1
3 2 2 1 2 2 1 2 0 2 2 1 1 0 2
2 1 0 2 0 1 1 1 3 0 0 0 0 0 1
3 1 0 3 0 1 1 1 3 1 0 0 0 0 2
6 7 7 9 7 7 8 10 8 10 9 0 0 0 9
8 10 10 9 10 10 10 10 9 10 10 8 0 0 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 1 1 1 0 2 1 1 1 0 0 0 0

Algorithm Column beats Row - pnpoly feval > 400

Fig. 9: Heatmaps counting the occurrences when the column algorithm found statistically better solutions than the row algorithm for the (top) convolution, (middle) GEMM,
and (botttom) PnPoly kernels. An occurrence is counted when 50 runs for a budget are statistically significantly better according to a two-sample independent t-test (α = 0.05).
(Left): Heatmap for low ≤ 400 budgets, i.e., 25, 50, 100, 200, and 400. (Right): Heatmap for mid and high > 400 budgets, i.e., 800, 1600. Algorithms with low values (blue) in
their rows were not often beaten for those budgets, and algorithms with high values in their column (red) often beat other algorithms.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 19

102 103

Max budget

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102

Max budget

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s
K20

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

FirstILS
FirstMLS
DualAnnealing
SimulatedAnnealing
GLS

Algorithm fraction of optimum per GPU for convolution

Fig. 10: Convolution: Fraction of optimal runtime per GPU for FirstILS, FirstMLS, dual annealing, simulated annealing, and GLS over 50 runs. Each point is the mean fraction
of optimal runtime found (y-axis) for mean budget used (logarithmic x-axis), with error bars indicating the standard deviation in fraction of optimum.

102 103

Max budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

101 102

Max budget

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

GeneticAlgorithm
BestMLS
BestILS
BasinHopping
DifferentialEvolution

Algorithm fraction of optimum per GPU for convolution

Fig. 11: Convolution: Fraction of optimal runtime per GPU for GA, BestMLS, BestILS, basin hopping, and differential evolution over 50 runs. Each point is the mean fraction
of optimal runtime found (y-axis) for mean budget used (logarithmic x-axis), with error bars indicating the standard deviation in fraction of optimum.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 20

102 103

Max budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102 103

Max budget

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s
K20

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

SMAC4BB
FirstTabu
BestTabu
ParticleSwarm
RandomSampling

Algorithm fraction of optimum per GPU for convolution

Fig. 12: Convolution: Fraction of optimal runtime per GPU for SMAC, FirstTabu, BestTabu, PSO, and random sampling over 50 runs. Each point is the mean fraction of
optimal runtime found (y-axis) for mean budget used (logarithmic x-axis), with error bars indicating the standard deviation in fraction of optimum.

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

FirstILS
FirstMLS
DualAnnealing
SimulatedAnnealing
GLS

Algorithm fraction of optimum per GPU for GEMM

Fig. 13: GEMM: Fraction of optimal runtime per GPU for FirstILS, FirstMLS, dual annealing, simulated annealing, and GLS over 50 runs. Each point is the mean fraction of
optimal runtime found (y-axis) for mean budget used (logarithmic x-axis), with error bars indicating the standard deviation in fraction of optimum.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 21

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102 103

Max budget

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 o
pt

im
al

 fi
tn

es
s

K20

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

GeneticAlgorithm
BestMLS
BestILS
BasinHopping
DifferentialEvolution

Algorithm fraction of optimum per GPU for GEMM

Fig. 14: GEMM: Fraction of optimal runtime per GPU for GA, BestMLS, BestILS, basin hopping, and differential evolution over 50 runs. Each point is the mean fraction of
optimal runtime found (y-axis) for mean budget used (logarithmic x-axis), with error bars indicating the standard deviation in fraction of optimum.

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102 103

Max budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

MI50

102 103

Max budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

SMAC4BB
FirstTabu
BestTabu
ParticleSwarm
RandomSampling

Algorithm fraction of optimum per GPU for GEMM

Fig. 15: GEMM: Fraction of optimal runtime per GPU for SMAC, FirstTabu, BestTabu, PSO, and random sampling over 50 runs. Each point is the mean fraction of optimal
runtime found (y-axis) for mean budget used (logarithmic x-axis), with error bars indicating the standard deviation in fraction of optimum.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 22

102 103

Max budget

0.92

0.94

0.96

0.98

1.00

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102 103

Max budget

0.90

0.92

0.94

0.96

0.98

1.00

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.6

0.7

0.8

0.9

1.0
Fr

ac
tio

n
of

 o
pt

im
al

 fi
tn

es
s

K20

102 103

Max budget

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

FirstILS
FirstMLS
DualAnnealing
SimulatedAnnealing
GLS

Algorithm fraction of optimum per GPU for pnpoly

Fig. 16: Point-in-polygon: Fraction of optimal runtime per GPU for FirstILS, FirstMLS, dual annealing, simulated annealing, and GLS over 50 runs. Each point is the mean
fraction of optimal runtime found (y-axis) for mean budget used (logarithmic x-axis), with error bars indicating the standard deviation in fraction of optimum. The point-in-polygon
kernel was not implemented for the MI50 GPU.

102 103

Max budget

0.80

0.85

0.90

0.95

1.00

1.05

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102 103

Max budget

0.75

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

GTX_Titan_X

GeneticAlgorithm
BestMLS
BestILS
BasinHopping
DifferentialEvolution

Algorithm fraction of optimum per GPU for pnpoly

Fig. 17: Point-in-polygon: Fraction of optimal runtime per GPU for GA, BestMLS, BestILS, basin hopping, and differential evolution over 50 runs. Each point is the mean
fraction of optimal runtime found (y-axis) for mean budget used (logarithmic x-axis), with error bars indicating the standard deviation in fraction of optimum. The point-in-polygon
kernel was not implemented for the MI50 GPU.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 23

102 103

Max budget

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

A100

102 103

Max budget

0.80

0.85

0.90

0.95

1.00

1.05

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

TITAN_RTX

102 103

Max budget

0.80

0.85

0.90

0.95

1.00

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

V100

102 103

Max budget

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 o

pt
im

al
 fi

tn
es

s

K20

102 103

Max budget

0.5

0.6

0.7

0.8

0.9

1.0
Fr

ac
tio

n
of

 o
pt

im
al

 fi
tn

es
s

GTX_Titan_X

SMAC4BB
FirstTabu
BestTabu
ParticleSwarm
RandomSampling

Algorithm fraction of optimum per GPU for pnpoly

Fig. 18: Point-in-polygon: Fraction of optimal runtime per GPU for SMAC, FirstTabu, BestTabu, PSO, and random sampling over 50 runs. Each point is the mean fraction of
optimal runtime found (y-axis) for mean budget used (logarithmic x-axis), with error bars indicating the standard deviation in fraction of optimum. The point-in-polygon kernel
was not implemented for the MI50 GPU.

