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1 | INTRODUCTION

Inference for point processes on the real line has been dominated by a dynamic approach based on
the stochastic intensity or hazard function (Brémaud, 1972; Karr, 1991; Last & Brandt, 1995). Such
an approach is quite natural, is amenable to likelihood-based inference and allows the utilization
of powerful tools from martingale theory. However, it breaks down completely when censoring
breaks the orderly progression of time. In such cases, state estimation techniques are needed that
are able to fill in the gaps (Brix & Diggle, 2001; Lieshout, 2016).

In this article, we concentrate on aoristic data (Ratcliffe & McCullagh, 1998) in which the
points may not be observed directly but upper and lower bounds exist. Such data are common-
place in criminology. Suppose, for example, that a working person leaves his place of residence
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early in the morning and returns late in the afternoon to discover that the residence has been bur-
gled. Then the exact time of the break-in cannot be determined, but it must have happened during
the absence of the resident. In certain cases, a burglar may also be caught in the act, in which case
the time of break-in coincides with the bounds. The actual break-in times tend to be estimated
by ad hoc, naive approaches, for example, the mid-point of the reported interval (Helms, 2008) or
the length-weighted empirical probability mass function of the interval lengths. An obvious dis-
advantage of such methods is that dependencies between offence times, such as the near-repeat
effect (Bernasco, 2009), are ignored.

The focus of this research is to develop a Bayesian inference framework for aoristic data that is
able to infer missing information and takes into account expert knowledge and interaction. Specif-
ically, in Section 2 we formalise aoristic censoring as a marked point process in time in which the
points cannot be observed directly but are known to lie in observable intervals, the marks. Upon
employing a Markov point process prior (Lieshout, 2000), the posterior distribution of the point
locations is derived in Section 3. In Section 4 we turn to Monte Carlo-based inference. The article
is concluded by simulated examples that demonstrate the influence of the prior (Section 5), an
application of the model to a criminological dataset (Section 6), and some reflections on future
research.

2 | MARKED POINT PROCESS FORMULATION

We are interested in developing statistical inference methods for aoristic crime data. To do this,
we require models that describe the underlying behavior of the victims as well as the times at
which crimes occur. We assume that residents leave and return to their properties independently
of each other. To model this coming and going behavior, we will be using a stochastic process to
generate time intervals within which residents alternate between being home and away from their
residencies. Since burglaries can occur while the resident is home as well as when they are away,
we have chosen an alternating renewal process to model these two distinct states. The sojourn
times follow typical length distributions, such as the Gamma and Weibull. It is assumed that every
resident has their own alternating renewal process, and burglars will very occasionally turn up
at the victim’s place of residence to commit property crimes. Time intervals in which burglaries
occur are then noted and form part of the dataset, if the resident is not home or the exact time of
burglary cannot be determined. Otherwise, the exact burglary time is recorded.

Note that the underlying behavior of the burglar is not modeled directly. Instead, we draw
relationships between possible burglary times in a given neighborhood or city. Given n reported
intervals, we can be sure that n burglaries occurred. However, we do not know when exactly
within a given interval the crime occurred. Using Bayesian methods, we can impose a certain
structure on the burglary times that may correspond to expert knowledge or wisdom. For example,
one might have a good reason to believe that in a given region, criminals often burgle at very
similar times, when they know that victims will not be home. Additionally, the near-repeat
effect, which also would assume a dependence between burglary times, can be accounted for
(Bernasco (2009)). By modeling these potential burglary times using a point process prior, this
information can be embedded in the complete model. This complete model is a mixture of
two classes: the proposed or tentative burglary times along with their corresponding intervals,
as well as fully observed atoms when there is no uncertainty relating to the time of occur-
rence. In the following subsections, we introduce the mathematical concepts required to build
this model.

85UB017 SUOWILIOD BA 81D 8(eal|dde 8y} Aq peusenof a1e a1 O ‘SN J0 S8IN1 10} A%iq 1 8UIUO /1A UO (SUOIIPUOD-PUe-SWLIBIALID A8 | IM"ARIG 1 [BU|UO//STNY) SUOIPUOD PUe SIS 1 8U1 885 *[£202/TT/02] U0 ARIqITauIuO A8]IM ‘Spue|eUiN aueIya0D Aq 6T9ZT SO/ TTTT OT/I0p/wW0d A Im Afeiqpuljuo//sdny Wwoly papeojumod ‘€ ‘€20 ‘69v6.9%T



1070 L. L. LIESHOUT AND MARKWITZ
Scandinavian Journal of Statistics

SN A(t) t B SNy 11
(1 : e M f
@ YN (t)+1 a+tl Zywm
—Ai(t) : Bi(t)
—Aa(t) Ba(t)
(2) N
—As(t) IoB3(b)

FIGURE 1 Diagram (1) shows an alternating renewal process where ¢ falls in a Y-phase. The age A(t) and
excess B(t) distributions describe the elapsed and remaining time, a and a + I the two ends of the interval.
Diagram (2) shows the parameterization of a number of intervals after shifting to the origin.

2.1 | Alternating renewal processes for censoring

In this article, we consider a censoring mechanism based on an alternating renewal process.
Let C;, C,, ... be a sequence of random 2-vectors such that C; = (Y3, Z;), i € N, are independent
and identically distributed (Asmussen, 2003; Ross, 1996). Furthermore, assume that C; has joint
probability density function f on (R*)2. Introduce T; = Y; + Z;, set Sp = 0 and let, for n € N,
Sp = Y, Ti be the time of the nth renewal. Note that no renewal occurs at the end of a Y-phase,
and that Y; occurs before the corresponding Z;. Furthermore, assume that 0 < ET; < o0. Then,
by the strong law of large numbers,

N(@) =sup{neNy:S,<t},t>0, ®

is well-defined and the supremum is attained with probability one, where N, denotes N U {0}.
Furthermore, the renewal function

M(t) = EN@t) = ZIP’(Sn <0),t>0,

n=1

is finite and absolutely continuous with respect to Lebesgue measure (Ross, 1996, chapter 3).

An alternating renewal process can be used for censoring in the following way. Consider a
point ¢ € R*. If ¢t happens to fall in some Z-phase, t is observed perfectly, whereas ¢ is observed
aoristically if it falls in a Y-phase, that is, only the beginning and end of the phase are recorded.
The censoring mechanism is illustrated in Figure 1. In terms of the criminology context that moti-
vates this work, Y; and Z; are the away and home phases of a resident, respectively. The point ¢ is
the time of a break-in.

2.2 | Age and excess distribution
Aoristic data generated by the censoring mechanism described in Section 2.1 can be expressed

formally in terms of the age and excess (also referred to as residual lifetime) with respect to the
Y-process. Recall that for an alternating renewal process, the age with respect to the Y-process is
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defined as
A(t) = (t = Snyw)U{Sney + YN+ > £}, 20,
the excess with respect to the Y-process as
B(t) = (Snwy+1 — Znaw+ — DU SN + YN+ >t} 62 0.

Let the pair (a, 1) € R x R* correspond to the closed interval [a, a + []. In this way, an interval on
the real line is parameterized by its left-most point and length. A recorded interval [a,a + [] in
which a given latent point ¢ > 0fallsis then written as t + [—A(¢), B(t)], seeing thata = ¢t — A(¢) and
a + 1= t+ B(t). The closed interval [-A(t), B(t)] is called the mark attached to ¢ and corresponds
to the two-dimensional parameter vector I(t) = (=A(t), A(t) + B(t)) € R x R*. Note that the mark
always contains the origin 0. For a visualization see Figure 1.

We would like to derive the form and nature of the mark distribution. To achieve this, the joint
distribution of age and excess with respect to the Y-process is first considered.

Proposition 1. Let N be an alternating renewal process as in (1). Assume that T, is absolutely
continuous with respect to Lebesgue measure and that 0 < ET, < co. Then, for t > 0, the joint
distribution of (A(t), B(t)) has an atom at (0, 0) of size

t
c(t) = Fy(b) — / [1 = Fy(t —5)] dM(s),
0
and, for0 <u <t,v>0,

P(A(t) < u; B(t) < V) = c(t) + [Fy(t +v) — Fy ()] 1{u = t}

t
+ / [Fy(t+v—s5)— Fy(t —s)] dM(s).
t—u

Here Fy denotes the cumulative distribution function of Y; and M is the renewal function.

Proof. Write F,, for the cumulative distribution function of S,, n € N. By partitioning over the
number of renewals up to time ¢ and upon noting that N(¢t) = n if and only if S, <t and S, +
Yu+1 + Zy11 > t, one obtains that

PA®) < u; B(t) <v) = c(t) + P(t = Sngy S ust < Sney + Yy <E+V)
=c(t) + ZP(t — U < Syt < Sy + YN S E+VN(@) =n)
n=0

=c() + Pt —u < Syys t < Sney + Y+ < £+ V;N(t) = 0)

0 t
+ Z/ P(t— 5 < Ynp1 < £+ — 5)dFu(s).
n=171

—u

The claim follows by an application of Fubini’s theorem for the last term, the observation that

Pt —u < Snw:t < Snw + Yno+1 SE+FN@O) =0)=PEt <Y <t+v)
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if u = t and zero otherwise, and because
c(t) =1 —=P(Snp + Ynp+1 > D

(e t t
=1-P(Y;>1)— Z / P(Yps1 > t — S)dF,(s) = Fy(t) — / [1 — Fy(t — s)] dM(s).
n=170 0

The long-run behavior as time goes to infinity can be obtained by appealing to the key renewal
theorem. Recall that this theorem applies to functions & : R* — R such that h(t) > O forall ¢t > 0,
h is monotonically nonincreasing and integrable. For such functions, it states that

t [
. 1
lim [ h(t — s)dM(s) = —— / h(s)ds
t>oo [ E[T;] 0
(Ross, 1996, theorem 3.4.2).
Specialising to the parameter vector I(¢), the following theorem holds.

Theorem 1. Let N be an alternating renewal process as in (1). Assume that Y, and T, are abso-
lutely continuous with respect to Lebesgue measure with probability density functions fy and f and
that 0 < ET; < o0. As t— oo, the joint probability distribution of (—A(t), A(t) + B(t)) tends in dis-
tribution to v, the mixture of an atom at (0,0) and an absolutely continuous component that has
probability density function fy(l)/EY7 on {(a,]) e RxR* : a <0 < a+1}. The mixture weights
are, respectively, EZ, /ET; and EY; /ET;.

Proof. First, let us consider the limit behavior of the joint cumulative distribution function of A(¢)
and B(t) as t — oo. With the notation of Proposition 1, by theorem 3.4.4 in Ross (1996) or the key
renewal theorem applied to 1 — Fy, c(t) converges to EZ; /ET;. Also, for t > u, the second term in
the joint cumulative distribution function of A(f) and B(¢) is zero. For the last term, note that for
v > 0 the function h, : R* — R defined by h,(s) = 1 — Fy(v + s) is nonnegative, monotonically
nonincreasing and integrable. Hence the key renewal theorem implies that

t

lim [ [1—-Fy(t+v—25)]dM(s) = L/ [1—-Fy(v+s)]ds.
t—o0 0 ETI 0

Analogously, for fixed u > 0,t — u —» oo ifand only if t - co. Writings =t — u,

lim [1-Fy(s+u+v—r)]dM() = L [1-Fy(u+v+r)dr
s—oo [ ETI 0

t—u
= lim [1—-Fy(t+v—r)]dM().

t—o0 0

We conclude that Q(u,v) = lim;_, ., P(A(t) < u; B(t) < v) exists and equals

_Ez 1 [* _
Q(u,v) = ET, + ETI/() [Fy(v + s) — Fy(s)] ds.

Note that Q is a cumulative distribution function, corresponding to the mixture of an atom at
(0,0) and an absolutely continuous component with probability density function fy(u + v)/EY;
on (R*)2. By Helly’s continuity theorem, (A(t), B(t)) converges in distribution.
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Turning to the parameterization I(¢) = (—A(), A(t) + B(?)), its limit distribution inherits an
atom at (0, 0) from Q of size EZ; /ET;. By the change of variables bijection & : (R*)? -» R~ x R*
defined by h(u,v) = (—u, u + v), since h is differentiable, the absolutely continuous part has prob-
ability density function fy(h='(a,D))| detJp-1(a, )|/EY; = fy(—a + a + I)/EY;, where Jp-1 is the
Jacobian of h™1. n

2.3 | Complete model formulation

We are now ready to formulate a model. Let X be an open subset of the positive half-line R*. The
state space of X, denoted by Ny, consists of finite sets {t1,...,t,} C X, n € Ny, which we equip
with the Borel o-algebra of the weak topology (Daley & Vere-Jones, 2003). Note that the {¢1, ..., t;,}
represent the burglary times. We will assume that the distribution of X is specified in terms of a
probability density function px with respect to the distribution of a unit rate Poisson process on
X (Lieshout, 2000).

Recall that we want to model two occurrences—partial and total observation. Returning to
the criminological context, these correspond to knowing a time span within which a burglary
occurred (¢ falls in a Y-phase) and knowing the exact time (¢ falls in a Z-phase), respectively. Using
the alternating renewal process in equilibrium to simulate the behavior of the victim, the points
of X are independently marked according to the mixture distribution of Theorem 1. In this way,
the complete model W is obtained. Its realisations are sets {(t, 1), ..., (ts, In)} C X X (R x RY),
where I; = (a;, ;) is the jth mark parameterization. The pair (¢, ;) thus defines an interval [¢; +
a;, i + a; + ;1. The ensemble of all realisations is denoted by Nax@xr+) and equipped with the
Borel o-algebra of the weak topology. Note that W has probability density function px with respect
to the distribution of a Poisson process on X X (R x R*) with intensity measure £ X v where 7 is
Lebesgue measure.

Due to the censoring, one does not observe the complete model W but rather the set

U= |J @o+n )
thHew

of interval parameterisations. When I = (0, 0), we have a full observation of the burglary time. For
any other value of I, only the corresponding interval is observed. Our aim is to reconstruct X or
W from U. In order to do so, the posterior distribution of X or W given U is needed. This will be
the topic of the next section.

3 | THE BAYESIAN FRAMEWORK

In a Bayesian framework, the posterior distribution updates prior forms in the light of data
gathered (Gamerman & Lopes, 2006). Heuristically,

pxjux[a) « pyix(|x)px(x), )

through the use of Bayes’ theorem. The term py x(u | x) describes the likelihood that the points
of x generate the intervals in u. In the literature this term is referred to as a forward term, forward
density or forward model (Lieshout, 1995; Lieshout & Baddeley, 2002). The term px(x) captures
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prior beliefs about the geometry of x; in our case, the burglary times. In our context, since the for-
ward model is a mixture of discrete and absolutely continuous components, some care is required
in handling (3).

Theorem 2. Let W be a point process on the open set X C R with probability density function px
with respect to the distribution of a unit rate Poisson process on X marked independently with mark
distribution v defined in Theorem 1. Write X for the ground process of locations in X and consider the
forward model (2). Let u be a realization of U that consists of an atomic part {(ai,0), ..., (@n,0)},
m € Ny, and a nonatomic part {(ay+1,lm+1), ---> (@, In)}, n > m. Then the posterior distribution of
X given U = u satisfies, for A in the Borel c-algebra of the weak topology on Ny,

P(X € AIU = u) = C(u) pX({a17 ~--sam3x19 ---,xn—m})lA({aly ~~~,am,x1, ~~~,xn—m}) X
xn-m
n—-m n—-m
X Z Hl{xDi € [Amti> Amai + Lnail} dx;,
Dy, ..Dn-m i=1 i=1
Ui {Dj)=(1, ....n-m)}

provided that c(u)~! defined by

n-m n-m
/ px({an, .amxi, o Xm D Y, []100, € (@miis myi + bnal} [ [ [ dxi
n—m Di...Dp-m =1 i=1
U;{D;}=(1. ...n—m)}

exists in (0, o).

Proof. We must show that for each A in the Borel c-algebra of Ny with respect to the weak
topology and each F in the Borel s-algebra of the weak topology on Ngyg+ the following identity
holds:

E [17(U)PX € A|U)| = E[1p(U)14(X)]. 4)
Let

_ 5
gx(a,)) = IEYll{a <x<a+l}

describe a probability density function for parameterizations of intervals generated by x € X, not-
ing that it is jointly measurable as a function on X X (R x R*). Then, denoting the cardinality of

aset by | - | and Lebesgue measure by #, E[15(U)14(X)] can be expanded as

& o=@

EZ [Col EY: n—|Cy|
> }(ﬁ) <E_ﬁ> /n1A<{x1,...,xn}>px<{x1,...,xn}> >

n!
n=0 Cycil,...n €1 -Cn—|Co|
Ui (Gj)=(1....n]\Co

n—1C,| =Gy n

1
S —— - WPIF({u, .. Uiy} U {5, 0) © k € Co}) du; dx;.
— ( j— T o ot ot 65 ! )H

(5
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For the left-hand side of (4), expanding as before, we get

o

e (@) Ez \'©' /By, "< 1
2o X <ﬁ> <ﬁ> anx<{x1,...,xn}> 2 aoian

n!
n=0 Cycfl,...n} €1 -Cn—|Cy|
Uj{CGj)=(1,...n]\Co

n—|Cy|
</ - H G, WP (X € A|U = {uy, ..., un-ic,) } U {(%, 0) : k € Co}) X
(RxR+)"-ICo =1 J

n—|Co| n
X 1p({t1, o Unoiy ) U {6, 0) s k€ Gob) [ du,-) [ ax-

j=1 i=1

Plugging in the claimed expression for the conditional expectation, one obtains

. ) <]EZI>|CO|<EY1>n—|COI/ 1
EZ, LYy pX({x R ¢ }) n—1CyN!
nZ:; = Cocg}mn} ET, ET; xn 1 n cl,...zn;cm (n—1Co)!
Yi{Cj)=(1, ...n)\Co
n—ICo|
/ H qxcv(uj)C({ul, ...,Lln—|C0|} U {(x,0) - k€ Cob)
RxROO Gy

/ ‘ le({yla v Yn-icol Y U {xk t k€ CoHLa({yr, - Yn-icy) ) U {xk @ k€ Co}) Z
Xxn-ICo

Pt ---Pn-icq|
Uj{Dj)=(1....n}1\Cp

k=1 j=1 i=1

n1G,| noiGl
I 100, € lwir, wea + uk,z]}dyk> 1p({t1, oo Unoiy ) U {06, 0) = k€ Cob) [ duy[ [

Note that in order to cancel terms, the order of integration must be changed. As evidently the first
term in gy(a, l), that is fy(I)/EY7, does not depend on x. By Fubini’s theorem,

0 e_,/ﬂ(x) EZl [Col ]EYl n—|Col
E1pU)PX € A|U)] <—> oy
r;) n! C0C§..n} ETl ETl

/ Px({Y1s - Ynoic U {xk - k€ CoD1a({y1, - s Vi, } U {xk - k€ Co})
X”

n—|Cl
i,
—_— 1r({ur, ... unjc, } U {(%, 0) : k € Co}) qy, (u;)
DL Dy (n=1CoD! J e y-ico e E A
Uj{Dj}=(1, ...n}\Co
n—|Co|
/ px(fa,.ox ) Y ] Uxe € [win wia + wial}dxe, [X
&=l CroCpojcyl  i=1

Uj{CGj1=(1....n]\Co
n—|Cl n—|Cl

xe({ur, - Un-jcy } U106, 0) = k€ Cob) [ dw [ dyi [ Jexi = Elr@ax)],

j=1 k=1 ieC,
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after canceling and rearranging terms and noting that the term in between brackets cancels out
against the normalization constant c({uy, ..., Us—|c, |} U {(%,0) : k € Cp}). =

Theorem 2 states that the posterior distribution of X given U = u is the union of m atoms
combined with n — m points that are distributed on X"~ according to the symmetric probability
density function

n-m
cwpx({ar, - @ X1, Xuem) Y, [[ 100, € [@msss Gt + bnsil) (6)
D1, ...Dpn-m i=1

Ui {Dj}=(1,....n-m}

with respect to Lebesgue measure.

Corollary 1. In the framework of Theorem 2, the conditional distribution of the mark assign-
ments Dy, ..., D,_,, for nonatomic marks is as follows. For dy, ...,dp,—m € {1, ...,n — m} such that
{di,....dp-m} ={1,...,n—m},

HD(1)1 = dl, voos Dy = dn—m|X = {al, ceos Oy X1, -'-sxn—m}, U=u)
H’?_ml{xd € [am+i> Amti + Intil}
Z Hl 1 1{xC € am+laam+z +lm+l]},

CVlVVl
u( )(1 ~.n—m}

provided that x; € [Ap+i, Am+i + Imsil for i = 1, ..., n — m and zero otherwise.

As a special case, let us consider an inhomogeneous Poisson process with integrable intensity
function 4 : X — R*. Then, under the posterior distribution, X consists of n independent points,
one in each interval of u, with probability density function

A(X)

/[a,»,a,-+l,-]nX As)ds

on [a;a;+;]nX for intervals with [; > 0. To see this, recall that for a Poisson process
(Lieshout, 2000)

n—-m

Px({@1s ooy @ X1, ooy X }) = €XP [/(1 - ﬂ(s))ds] [TA@ [T
Jj=1 i=1

which factorises over terms associated with each interval. Hence (6) is proportional to

n-m
> [Treoo1tem, € [ameis @msi + bnsil}.
D1, ---Dp—m i=1

Ui{D;}={1,...n-m}

4 | STATISTICAL INFERENCE

In this section we will consider statistical inference for aoristically censored data. Our main aim
is to reconstruct the latent point process X from observed parameterized intervals U, that may or
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may not be censored. In tandem, the censoring probability as well as the parameters # of the dis-
tribution of the nondegenerate intervals must be estimated. Parameters of the prior distribution
may either be treated as fixed or subject to estimation.

4.1 | Forward model parameters

Suppose that we observe a realizationu = {(a;,0), ..., (@m,0), (@m+1, bnt1)s ---» (@n, 1)} of U, where
a; € R, [; > 0 and n # 0. Our first aim is to estimate the parameters # of the mark distribution
v (cf. Theorem 1). The parameter vector # comprises the parameters ¢ of the probability density
function fy as well as any other parameters y involved in the joint distribution of the random
vector C; = (Y1, Z;) that defines the alternating renewal process (cf. Section 2.1).

The likelihood function can be obtained from the proof of Theorem 2 by taking A equal to My
in Equation (5). On a logarithmic scale,

o E[Z;¢, x] _ EYi:¢l \ | Ny [ fr@:0)
Llrw = mlog (E[Tl;cf,x]> +(n-mlog <E[T1,¢ ){]> 2 los <E[Y1;c1> - O

upon ignoring terms that do not depend on 7.

Equation (7) simplifies greatly if we assume that the mixture weight p=
E[Z1;¢, y1/E[Ty; ¢, x1 does not depend on ¢. This is the case, for example, when Y; and Z; are
independent and Gamma distributed with the same shape parameter k and rate parameters 4 for
Y; and y A for Z;. Then p = p(y) = 1/(1 + y) does not depend on ¢{ = (k, 1) and

N o (S0

L(p,¢;u) =mlogp + (n — m)log(1 — p) + lo ( .

p.¢ gp g1 -p ;;g Y.t

The atom probability p may be estimated by the sample estimate m/n, the fraction of atoms in
the sample u. For ¢, we need the following result.

Proposition 2. Let v be as in Theorem 1. Then the distribution of the lengths of nondegenerate
intervals is given by the length-weighted marginal distribution f(l) = lfy(1)/IEY; and the left-most
points are, conditionally on L = I, uniformly distributed on [-1, 0].

Proof. Let f(l) be the marginal probability density function of the length l. Evaluating,

0] *fr (D) Ify(D)
f= E—l{a<0<a+l}da—/ EYld Y

Let f4)=i(a) be the conditional probability density function for the left-most point A of an interval
given its length L. Using the definition of conditional intensity for I > 0,

Oyg<0<a+1}
’l 1
Sai=1(@) = f;(zl)) =2 IR0 = %l{a € [-1,0]}.

EY,

Thus A ~ Unif[—1, 0]. =
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Assume that the mixture weights do not depend on ¢. Then, the parameters ¢ = (k, A) may
be estimated by treating the nondegenerate intervals as an independent sample from f(I) and
applying the maximum likelihood method. For example, if fy is the probability density function
of a Gammal(k, A) distribution with shape parameter k > 0 and rate parameter A > 0, f(l) is the
probability density of a Gamma distribution with parameters k + 1 and A.

4.2 | State estimation

Since the posterior distribution of X or W given U (cf. Theorem 2) is intractable because of the
normalisation constant c(u), we will use Markov chain Monte Carlo methods (Brooks et al., 2011;
Moller & Waagepetersen, 2003) for simulation. These methods construct a Markov chain in such
a way that the stationary distribution of the chain is exactly the posterior distribution. Of these
methods, a Metropolis-Hastings algorithm with a fixed number of points will be used. Since
the transition probabilities depend on likelihood ratios, the benefit is that one can sample from
unnormalized densities.

Let us return to the framework of Theorem 2. Note that sampling from the posterior distri-
bution of X given U is cumbersome due to the presence of the permutation sum term in (6).
Therefore our approach is to sample from the posterior distribution of the complete model W
and project on its ground process of locations. Doing so avoids attributing points to intervals
and therefore avoids the intractable sum. Moreover, as we saw in Section 2.3, W has probability
density function px with respect to a unit rate Poisson process on X X (R x R*) with intensity
measure £ X v. Upon observing U = u for u = {(a1,0), ..., (@, 0), (@m+1, ln+1)s ---» (@ns 1n) }, by (6)
this means that we must sample from a probability density function = on X"~ that is propor-
tional to px({ai, ..., m, X1, ..., Xn—m }). The ordering of the points inherent in working on X"~
represents the unique correspondence between points in X and intervals in U in the complete
model. We will use the notation X to indicate that we look at vectors rather than sets x. In the
special case that n = m, all points are observed perfectly and there is no need for any simulation.

We will use the Metropolis—Hastings algorithm (Brooks et al., 2011) when n > m, that is when
there are density-admitting points. The state space is given by

E(u) = {(X1, .., Xn-m) € XM eXn [amtis Qi + lm+i],pX({a1’ s A, X1, o, X }) > 0}

From now on, we shall assume that the state space is nondegenerate in the sense that
ﬁ pX({al,...,am,xl,...,xn_m})dxl...dxn_m > 0. (8)
E(ua)

Now, the Metropolis—-Hastings algorithm is defined as follows. Let q : E(u) X E(w) > R* bea
Markov kernel. Iteratively, if the current state isxX € E(u), propose a new state y € E(u) according
to the probability density function g(x, -) and accept the proposal to move to y with probability

1 ifpx({a1, ..., @m, Y1, s Yn-m QY. X)

a(i;’) = ZpX({ah cees Ay X1, ---,xn—m})Q()_(’B_’); (9)
PxUa1, @ V1 Vi DI

— otherwise.
px{{ay, .. Xy, . X, DY)}
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When the proposal is rejected, stay in the current state X. The choice of g depends on px. In our
simulations in Section 5, we will use the following algorithm which is valid when the prior density
function py is strictly positive.

Algorithm 1. Suppose that px > 0 and n > m. Iteratively, if the current state isx € E(u),

+ pick an interval [ap+i, Gm+i + lntil, i = 1, ..., n — m, uniformly at random from the nondegen-
erate ones;

« generate a uniformly randomly distributed point y; on X N [@p+i, @m+i + Lnti] and propose to
update x; to y;;
« accept the proposal with probability

(10)

px(({an, ..., am. X1, oo Xn—m } \ (X)) U {J’i})>

a;((X1, ..., Xp—m), i) = Min <1,
pX({ala --'7aM9x1’ ...,x;q_m})

and otherwise stay in the current state.

A few remarks are in order. First, note that since X is open, its intersection with closed inter-
vals that contain a point in & is also nondegenerate when [; > 0. Secondly, when px may take
the value zero, the proposal mechanism in Algorithm 1 might result in a new state that does not
belong to E(u), even when X does. Moreover, only changing one component at a time might lead
to nonirreducible Markov chains. For example, if u contains the parameterizations of the inter-
vals [0, 1] and [0.1,1] and px(x) = O for realisations x that contain components separated by a
distance less than 0.55, then states such as x = (0.3,0.9) and y = (0.9, 0.3) cannot be reached from
one another.

In the next propositions, basic properties of the algorithm are considered. The proofs are mod-
ifications to our context of classic Metropolis—Hastings proofs found in, for example, Mengersen
and Tweedie (1996), Roberts and Smith (1994) or Meller and Waagepetersen (2003, chapter 7).

We will write Y; for subsequent states and denote by P(X, F) = P(Y;;; € F|Y; = X) the tran-
sition probability from state X € E(u) into Borel set F c E(u). Similarly, for r = 2,3,.., P*(X, F)
denotes the z-step transition probability.

Proposition 3. Consider the setup of Theorem 2 with n > m and assume that condition (8) is
met. Then, the Metropolis—-Hastings algorithm defined by Markov kernel q on E(u) and acceptance
probabilities (9), is reversible with respect to r.

Proof. Take X,y in E(u) and assume that 7(¥)q(y,X) > 7(X)q(X,y) > 0. Then

”()_()Q()_(’ }_,)a()_(’ 3_7) = C(u)pX({als e Qms X1, ooy Xp—m })Q(i 3_,) =

Pty errs O V1o +ros Yo D@, RPN 2 B X1 AR 606 200 ).
px(as, ....am, Y1, -, Yn-m (¥, X)

writing c(u) for the normalization constant. We conclude that the chain is in detailed balance and
therefore reversible with respect to z. [

Recall that the Markov chain is called z-irreducible (Meyn & Tweedie, 2009) if for every x €
E(u) and every Borel set F C E(u) with z(F) > 0 there exists some natural number z such that
P'(x,F) > 0.
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Proposition 4. Consider the setup of Theorem 2 with n > m and assume that condition (8) is met.
Let Q be the one-step transition kernel of the Markov chain on E(u) generated by Markov kernel
q : E(u) x E(u) - R* in which every proposal is accepted. If the chain defined by Q is z-irreducible
and q(X,y) = 0 ifand only if q(y,X) = 0, then the Metropolis-Hastings algorithm defined by q and
(9) is z-irreducible. In particular, the chain of Algorithm 1 is z- irreducible when px > 0.

Proof. The first part follows from Roberts & Smith, 1994, theorem 3.ii.

For Algorithm 1, ¢(X,y) > 0 only if X and y in E(u) differ in at most a single component.
Thus, assume that x; = y; for all j #i € {1,...,n — m} and x; # y;. Then q(X,y) = q(¥,X) so they
are strictly positive or zero together. Write Q* for the z-step transition kernel of the always-accept
chain. Then, for X, y € E(u),

nm

nmxy) > ( ) >0
g xy) H (XN [am+u At + bnei])

by changing each component in turn. We conclude that the Markov chain of Algorithm 1 is
z-irreducible. n

Recall that a z-irreducible Markov chain is called aperiodic (Meyn & Tweedie, 2009) if the
state space (E(u) in our case) cannot be partitioned into measurable sets By, By, ..., B4_1 such that
z(E(u) \ Ud 1B ;) = 0 and P(X, Bjy1moda) = 1 for all X € B; (for some d > 1, the period). By Meller
and Waagepetersen (2003, proposition 7.6), a z- 1rreduc1ble Markov chain with invariant proba-
bility distribution x is aperiodic if and only if for some small set D with z#(D) > 0 and some 7 € N,
the following holds: P/(x,D) > Oforallx € Dand i > 7.

Proposition 5. Consider the setup of Theorem 2 with n > m and assume that condition (8) is met.
If 0 < px({ai, ..., Qm, X1, -..» Xn—m) < 6 for some 6 > 0 and all X € E(u), then the Markov chain of
Algorithm 1 is aperiodic.

Proof. Let & be the pointon X N [@p+1, Am+1 + Ln+1] that replaces x;. By (8), there exist x;, ..., Xp—m
such that

/ C(u)pX({al9 vees A,y é’xZ’ ~~-,xn—m)d§ = ”(§7x2’ -~~,xn—m)d§
Xn[am-H am+1+lm+1]

Xn[amﬂ ’am+1 +lm+1 ]
is strictly positive, where c(u) is the normalization constant. Define a measure x4 on the Borel
o-algebra on E(u) by

M(F) = / 1{(5,)(:2, "'sxn—m) € F}”(ésXZ’ o--»xn—m)dé
Xn[am+l am+1+lm+l]

and note that u(E(w)) > 0.Set C = {(&,X2, ..., Xn-m) : & € X N [Ame1s Ams1 + Ims1]}. We claim that
C is small with respect to u. To see this, take y = (3,3, ..., Xp—m) € C and note that for F C E(u),
the transition probability P(y, F) is at least

1 1
n—m(X N[an1, Ame1 + Imi1]) XN[Ay150p1 i ]

1p(E, X2, .oy Xpom) o1 (Vs X2, - X)), E)dE.
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(&, %, ., Xnom) = T, X2, -y Xnem), then a1 (0, X2, -, Xn—m), &) = 1 > w(€, X2, ..., Xp—m)/(c(1)S).
Otherwise, a1((, ..., Xn—m), &) = (&, X0, oo Xnem)/] T X2s oy Xpemn) = 7(E, X2, ..o, Xp—n) [ (c(@) ).
In summary,

1 u(F)

P(y,F) > ,
n—me(X N |[amni1, Gmpr + lng1]) c(@)é

so C is small with respect to u. Moreover, z(C) > 0 because of the choice of x,, ..., X,_-
Iterating the above argument one notices that fory € C, P*(y, C) is at least as large as the rth
power of the bound above with F = E(u), an observation that completes the proof. (]

In conclusion, under mild conditions, from almost all initial states, Algorithm 1 converges
in total variation to the invariant probability distribution. Conditions for general proposal ker-
nels g can be found in Meller and Waagepetersen (2003, chapter 7) or Roberts and Smith (1994,
theorem 3).

4.3 | Prior model parameters

In Section 4.2, we discussed Monte Carlo methods to sample from the posterior distribution of W
or X given U = u. This distribution is defined in terms of the prior probability density function
px- Typically, px is given in unnormalised form and depends on a parameter vector 6, that is,
px(X;0) = c(O)hx(x; 0) for an explicit function hy : Ny — R*. Since the likelihood function for
0 contains the latent marked point process W, we call on techniques from missing data analysis.

The likelihood function I(9) is obtained from the proof of Theorem 2 by taking A equal to My
in Equation (5). Disregarding terms that do not depend on 6, one obtains I(8; u) = ¢(#)c(f|u)™*
where

(e

—£(X)
C(e)_1 = Ze /k hX({xl, ...,xk};H)dxl...dxk,
X

= k!

and c(f|u)~! is given by

/ hX({al’ -e0 Ams X1, ~~~’xn—m}; 0) Z l{xDi € [am+i, Amyi + lm+i]} dxi-

D1, ...Dp—m
U; {Dj}=(1, ...n—m}

n-m
=1

One observes that c(6|u) is equal to the normalization constant of the nonatomic part of the
posterior distribution of X given U = u.

To handle the two normalization constants, it is necessary to look at the log relative likelihood
L(6) of U with respect to some fixed and user-selected reference parameter 6y, Then, as in Gelfand
and Carlin (1993) and Geyer (1999),

(11)

L(0) = log [w] = log Ey, [M

—ul - hx(X; 6)
c(0p)c(0]u) hy (X 90)|U = u] log K, [—] .

hx(X; 6y)

Being expressible in terms of expectations under the reference parameter, the log-likelihood
ratio can be approximated by Markov chain Monte Carlo methods. Note that two samples are

85UB017 SUOWILIOD BA 81D 8(eal|dde 8y} Aq peusenof a1e a1 O ‘SN J0 S8IN1 10} A%iq 1 8UIUO /1A UO (SUOIIPUOD-PUe-SWLIBIALID A8 | IM"ARIG 1 [BU|UO//STNY) SUOIPUOD PUe SIS 1 8U1 885 *[£202/TT/02] U0 ARIqITauIuO A8]IM ‘Spue|eUiN aueIya0D Aq 6T9ZT SO/ TTTT OT/I0p/wW0d A Im Afeiqpuljuo//sdny Wwoly papeojumod ‘€ ‘€20 ‘69v6.9%T



1082 L. L. LIESHOUT AND MARKWITZ
Scandinavian Journal of Statistics

required: one from the posterior distribution of X and one from the prior. For the latter, pro-
vided py is locally stable, classic Metropolis—Hastings methods based on births and deaths apply
(Geyer, 1999; Moller & Waagepetersen, 2003). If the conditional intensity is monotone, exact sim-
ulation can be carried out (Kendall & Moller, 2000; Lieshout & Baddeley, 2002). In Section 6,
a Monte Carlo likelihood algorithm is used to perform this parameter estimation method on a
burglary data set.

5 | SIMULATIONS WITH DIFFERENT PRIORS

In this section, we present a few simulations to illustrate how the choice of prior affects state
estimation. Calculations were carried out using the C++ marked point process library MPPLIB,
developed by Steenbeek et al. For px we choose the area-interaction point process (Baddeley
& Lieshout, 1995; Widom & Rowlinson, 1970), a model that favors clustered, regular and ran-
dom realizations depending on parameter values. Specifically, this model has probability density
function

px) = ap"™® exp [—logy£(X N U,(x))] (12)

with respect to a unit rate Poisson process on X. Here U,(x)= Ul."le(xi, r) where B(x;, r) is the
closed interval [x; — r,X; + r]. When y < 1, realizations tend to be regular, for y > 1 clustered.
When y = 1, one has a Poisson process with intensity . The scalar @ = c(f, y) is the normalization
constant. Realizations can be obtained by Kendall’s dominated coupling from the past (CFTP)
algorithm (Kendall, 1998) developed initially from the perfect simulation methods of Propp and
Wilson for coupled Markov chains (Propp & Wilson, 1996).

51 | Toyexample

Consider datau = {(0.45,0.4), (0.51, 0), (0.58,0)} that consist of two atoms and a single nondegen-
erate interval. By the discussion at the end of Section 3, for a Poisson prior (y = 1), the posterior
distribution of the location X3 in X = (0, 1) that generated the nondegenerate interval is uniformly
distributed. To see the effect of informative priors, Figure 2 plots the posterior distribution of X;
when the prior is an area-interaction model with # = 2rlogy = 1.2 and r = 0.1. Note that mass is
shifted to the left side of the interval due to the presence of atoms. For # = —1.2 and r = 0.1, the
atoms repel X3, resulting in mass being shifted to the right side of the interval (cf. Figure 3). To
carry out the state estimation, we ran Algorithm 1 with a burn-in of 10,000 steps and calculated
the histograms based on the subsequent 100,000 steps.

5.2 | Area-interaction gamma model

The left-most panel in Figure 4 shows a simulation in X = (0,1) from U in a model where
X is an area-interaction process with parameters f = 12, # = 2rlogy = 0 and r = 0.05 marked
by a mixture distribution v in which the atom probability is p = 0.2 and fy is the probabil-
ity density function of a Gamma distribution with shape parameter k = 2.5 and rate parameter
A =0.07. The points shown as black dots are the points of X in the simulated pattern, the red
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FIGURE 2 Locations of two atoms and a spanning interval together with a histogram of point locations.
The interval start and end points as well as the atom locations are marked on the histogram x-axis.

Metropdlis—H cstings output for regular arecrinteradtion process
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FIGURE 3 Locations of two atoms and a spanning interval together with a histogram of point locations.
The interval start and end points as well as the atom locations are marked on the histogram x-axis.

points constitute a realisation from the posterior distribution of X given U obtained by run-
ning Algorithm 1 for 10,000 steps. The points seem to settle in a random manner within the
intervals.

A simulation using a prior favoring clustering can be found in black in Figure 5. The parameter
settings were as before except that n = 1.2. In red, a realization from the posterior distribution is
shown, obtained after 10,000 steps from the Metropolis-Hastings algorithm. Figure 5 shows the
effect of the complex underlying geometry when choosing proposal points within parameterized
intervals. The algorithm tends to move proposed times to areas where multiple intervals intersect,
leading to clustering within these regions.
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Metropalis—H cstings output far random areainteradtion process Distribution of points within union of intervds
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FIGURE 4 Plots of the simulated and new locations of a random area-interaction point process. Parameter
values: (f,n,1, 4, k,p) = (12,0,0.05,0.07,2.5,0.2)
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FIGURE 5 Parameter values: (8,7,r, A, k,p) = (12,1.2,0.05,0.07,2.5,0.2)

Figure 6 shows, in black, a simulation from U for a regular area-interaction prior with
n = 2rlogy = —1.2. A realisation from the posterior distribution of X is shown in red. The struc-
ture of the prior point process is maintained in the posterior, with points being spread out from
each other.

6 | APPLICATION TO CRIMINOLOGICAL DATA

Having verified the effect of different priors on the model, a natural next step is to run the model
on an actual dataset. Returning to the criminological context that inspired the model, times of
property crimes are often not known due to victims not being home. Deducing the posterior dis-
tribution of offense times would aid improvements in predictive policing, as well as assist local
governments in providing recommendations to residents in high-crime areas.
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FIGURE 6 Parameter values: (8,7, r, A, k,p) = (12,-1.2,0.05,0.07,2.5,0.2)

The data set we have chosen collects burglaries in Washington D.C. in February 2016
(see https://opendata.dc.gov/datasets/DCGIS::crime-incidents-in-2016/) after applying filters for
month and type of crime. We scale the time so that X = (0, 1). Intervals smaller than 30 min in
length are treated as atoms. The data also contain many fields, including exact date and time of a
resident leaving and re-appearing at the scene of the crime.

6.1 | Parameter estimation

In Section 5 we considered simulated examples with pre-set parameter values to generate interval
realizations. In the case of a real-data example, the aforementioned parameter values need to be
estimated.

6.1.1 | Forward model parameters

In the case of the Washington D.C. data, a Gamma model proved to be unsatisfactory. Specifi-
cally, the salient feature of the collection of observed nondegenerate intervals is that it combines a
large number of small intervals with a few very long ones, which cannot be captured by a Gamma
distribution with shape parameter larger than one. Due to the length-weighted nature of the
observed non-degenerate intervals, this criterion must be satisfied (see Proposition 2). Therefore,
we instead use the heavy-tailed Weibull distribution.

Since we have independence of the mixture weight E[Y;]/E[T;] on the parameter vector
¢ = (k, 6), we may use Proposition 2. The length-weighted marginal distribution generated by a
Weibull random variable Y; has probability density function

Iy () k(LY (1)
D= = - +) 1> 0,
f EY, /11“(1+%)</1> e >

where k is the shape parameter and 4 the scale parameter.
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To infer the values of k and A from the data, maximum likelihood estimation has been used.
Using the log-likelihood, after some calculation we find that

N
i= (=Y .
nk+1)i3

and we can hence solve the score equation

nn e S k
k+k210g<§li) Zlog(l)+ log<n(k+1)>

n 1\ nk+1) Xililogd)
rav (1) -7 soE

numerically for k and subsequently 4, where y(x) = d% log(I'(x)) is the digamma function.
For the Washington D.C. data, k =0.27 and 1 = 0.000046.

6.1.2 | Prior parameters

We assume that the prior is an area-interaction model as in Section 5 with parameters f and
n. To simplify calculations and for scaling reasons, we use k = log f instead. Thus, 0 = (x, )
becomes the parameter vector. In this experiment, we have set r = 0.008, which corresponds
to 5.5 h.

To estimate the parameter vector §, we proceed as in Section 4.3 and consider (11). For the
area-interaction model,

A(x)
hx(x,0) = 0715

where A(X) = (X n U,(x)). The expectations in (11) must be approximated by Monte Carlo sam-
ples. Let N denote the number of samples. Then the Monte Carlo log relative likelihood Iy(6)
reads

hX(Xu is 9) h’X(Xl’ 0)
wi0) = log ( L %)) < Zinx: oo>> =
where X, ; are samples from the posterior and X; from the prior. An approximate maximum like-
lihood estimator can be obtained by taking the gradient with respect to the parameter 6 and
equating to zero.
The parameters 6y = (ko, o) are known as reference parameters, and safeguard the algorithm
from instability issues. A common method to choose 6, is through the Monte Carlo EM proce-

dure (Dempster et al., 1977; Gelfand & Carlin, 1993; Geyer, 1999). In this process, one iteratively
optimises the Monte Carlo approximation of

Q(8, 0k) = Eg, [logpx(X U a;0)|U = u],
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writing a as the atoms of u. When, as in our case, the gradient of % is well-defined, this can be
carried out by solving

ZN Vhy(X;:0)
VhX(Xll,i; 0) _ =1 hx(X[ZGk) _

hx(Xui; 0 N hy(X;:0)
x( u,i ) Zi:lh;(X,-;Qk)

N

7,00 =
i=1

over 0 (Geyer, 1999). When the reference parameters 6, have been found, the most likely value
of 6 is calculated by maximizing Equation (13). This parameter vector is then used to perform
the state estimation procedure outlined in Section 4, which generates samples from the posterior
distributions. In this way, realizations of burglary times are attained from real-life aoristic crime
data sets.

6.2 | Results for application

Using the methods outlined in Section 6.1.2, the model was run on the Washington D.C. burglary
dataset for February 2016. With model parameters tuned, prior parameters were estimated and
realisations were generated with this set of parameter values after the Monte Carlo EM procedure
was run until convergence. Ten such realizations have been plotted in Figure 7, with each realiza-
tion being denoted in black. Each realiation corresponds to one configuration of burglary times.
Note that for demonstration purposes, only 3 days of February are shown.

Burglary time prediction Washington D.C. (February 2016)
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FIGURE 7 Model output for 3 days of February 2016 with 10 realizations in black. Prior parameters are
estimated to be f = 115.469, n = —0.256 with model parameters » = 0.008, k = 0.27 and A = 0.000046.
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As in the simulation example, an area-interaction prior was used. The prior parameter esti-
mation led to results of f = 115.469 and = —0.256, meaning that the model assumed a regular
underlying structure. While one may assume that criminology datasets would lend themselves
better to clustered priors, this may not always be the case. For example, it may be the case that
burglars wish not to interfere with each other, leading to burglary times being more spread out.
Future work will look into these phenomena as well as relaxing certain, perhaps restrictive model
assumptions.

7 | CONCLUSION

In this work, a Bayesian inference framework for aoristic data was introduced in which an alter-
nating renewal process is used to model the interval censoring of temporal data, converting it
into a marked point process model. A prospective point, which cannot be observed directly, was
paired with an interval within which the point lies. State estimation was then applied to best esti-
mate the location of this point. Theory was developed regarding the distribution of these marks
based on this renewal framework and the posterior distribution deduced. The fact that the forward
model allows for a mixture of discrete and absolutely continuous components makes this pro-
cess nontrivial. A state estimation procedure was outlined in the form of a Metropolis-Hastings
algorithm for a fixed number of points, after which ergodicity properties were verified. Using
an area-interaction prior, this procedure was applied to sample from the posterior distribution.
Effects of the prior were clearly present when sampling from the complete model. Finally, we
demonstrated that the model can be applied to a criminological data set.

Throughout, we assumed that all intervals corresponding to a point in X were observed.
Returning to a criminology context, sampling bias may arise since the data may contain only
intervals whose right-most point is in a given interval. Additionally, a random labeling regime
was assumed. It might be more realistic to have location-dependent independent marking, for
example based on a semi-Markov process rather than an alternating renewal process. Further-
more, spatial aspects were completely ignored. These generalisations will form the topic for our
future research.
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