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INTRODUCTION 

This thesis contains the results of researches that we made into a 

practical statistical situation. Our aim has been to make the results actu-

ally accessible to practicing statisticians and therefore this work was 

written with this goal in mind. It gives for instance several methods to 

compute (approximate) critical values for the test-statistics that occur. 

The practical situation concerns the detection of differences of pref-

erences or aversions between individuals when the observations are the 

(repeated) choices they have made. Suppose for instance that n persons may 

choose from k brands of choc_olate. All persons may have the same absolute 

preferences, possibly changing in time, for special brands, but it is the 

difference between the persons with respect to these preferences that we 

wish to detect. (The title of this thesis might thus have been "Tests for 

differences of preference"). 

The practical problem and the statistical solution of it are outlined 

in chapter 1, which gives the practicing statistician all the information 

he needs to be able to apply the test. 

The basis of the solution of the problem is a vector of observable 
+ 

random variables,!*' of which the asymptotic normality is established un-
+ der certain conditions. (Section 4.2.). The class of quadratic forms in!* 

+ + I T = {t'Qt Q non-negative definite} -* -* 

is then considered as a possible class of, in practice, useful test-statis-

tics. The use of quadratic forms is given extentive intuitive (section 2.1.) 

and theoretical (chapter 8) motivation. 

Two problems arose in the determination of the asymptotic distribution 
+ -+ 

of !;Q!*· The first problem was the singularity of the dispersion-matrix of 

£ (also asymptotically) and the second problem was the (more or less) ar--* 
bitrariness of the matrix Q. It could be expected that only for some special 

choices of Q the test-statistic would (asymptotically) have a x2-distribu-
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tion. Both problems are solved by a theorem (theorem 3.2.1.) which gives 

the distribution of a non-negative definite quadratic form in normal vari-

ables, also in the case that the dispersion matrix of the normal variables 
+ + is singular. Using this theorem, asymptotic distributions of !;Q!* are de-

termined (both under the null-hypothesis and under alternatives) (section 

4.3.). 

A usual method to deal with singularity is to define a transformation 

to a lower dimensional space in which the dispersion matrix of the (trans-

formed) variables is non-singular. This leads mostly to complicated statis-

tics and obscures the working of the tests. Using Rao's theory on g-inverses 

of matrices (RAO (1973)) it is shown that such a transformation is unnecces-

sary (chapter 6). MADANSKY (1963) used the method of transformation to a 

lower dimension when he proposed a generalisation to Cochran's Q-test 

(COCHRAN (1950)). Both Madansky's and Cochran's test can be seen as a spe-

cial case of the tests we investigated (chapter 6). 

Consistency properties and power of the tests from Tare considered 

in chapter 4. The asymptotic relative efficiencies of pairs of tests from 

T, according to Pitman and Bahadur are established in chapter 5. Neither 

of these efficiency concepts gives a clear indication which Q to use when 

an overall type test is desired. 

Therefore, again mostly motivated by intuitive arguments, a x2-type 

statistic is recommended for practical use (section 6.4.). The recommen-

dations are supported by the results of simulation which we give in chap-

ter 9. It is shown there also that the tests can effectively be directed 

towards a special alternative by a suitable choice of the matrix Q. 

Finally, in order to find a good and simple approximation for the 

distribution under H0 , the expectation and variance of the test-statistics 

are established for some special choices of Q (chapter 7). 
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CHAPTER 1 

PRACTICE: A RECOMMENDED STATISTIC 

1.1. A TESTING PROBLEM: GENERAL REMARKS 

In this study, we investigate the properties of a class of statistical 

tests for a certain testing problem. As a result of the investigations a 

member of this class can be recommended for practical use. In this first 

chapter, we give the possible user all the information he needs when he 

wants to apply the recommended test. 

A more formal approach is started in chapter 2 and the problem is 

developed further in chapters 3-8. Finally some numerical results are given 

as illustration in chapter 9. 

In this section we begin with the statement of the problem. Although 

the proposed testing procedure is applicable in many other situations, it 

is convenient to adopt the terminology of the following example. This not 

only makes the description of the situation easier, but it is also natural, 

because this investigation was motivated by this example. 

In 1975 KNEEPKENS (1975) wrote a report "De voornaamste kop op de 

voorpagina's van een vijftal landelijke Nederlandse dagbladen in de eerste 

twee maanden van 1964 en 1974", (in Dutch), in which he compared 5 Dutch 

newspapers in 1964 and 1974. In this report, Kneepkens asks the question 

if there exists a statistical test for the following situation. 

'Newspaper' Problem 

Each day, every one of n newspapers chooses a subject for its 'front-

page' article from a category of subjects. The different categories are 

elements of a given categorical system 

(1.1.1) C 

On the basis of the observed choices made by then newspapers on m 

different days, we want to find out if there are one or more newspapers 
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differing, more or less persistently from the others with respect to their 

preferences for categories from C. 

Formulated as a testing problem, we would want to test the null-hypoth-

esis that the newspapers do not differ among themselves with respect to 

their choices, against the alternative that at least one newspaper has a 

persistent preference or aversion for at least one subject-category. 

Although this is still somewhat loosely formulated, it follows that we 

need to construct an overall-test not unlike Friedman's m rankings test. As 

in Friedman's case, the test that we shall construct is not likely to work 

well against all deviations from the null-hypothesis. 

Now, let's be more specific. The mathematical model that we make for 

the 'newspaper'-problem will be based on the following assumptions 

(1.1.2) the newspapers make their choices independently of each other; 

(1.1.3) the choices which are made on different days are independent. 

Let 

(1.1.4) 

denote an observation on the i'th day, i.e. 

(1.1.5) C (v) is the category that is chosen on the i'th day by 
-i 

the v'th newspaper. 

Introduce the following random variables 

(1.1.6) x .. -lJ 
(V) 

= { 
1 if the v'th newspaper chooses C. on the i'th day; 

J 

0 otherwise. 

*) and probabilities 

(1.1.7) (v) P(x .. (v) = 1) 
pij -lJ 

P(C. (V) =C.), 
-l J 

*) II d= II 

indicates a definition. 
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with 

(1.1.8) 1. 

(When an index is replaced by a"+" sign, we mean that the indexed quantity 

has been summed over that index, i.e. 

We define 

(1.1.9) 

k (v) I piJ. i. 
j=1 

d (+) a .. = x.. , -lJ -lJ 

i.e. a .. is the number of times that the category C. has been chosen on the -lJ J 
i'th day, and 

(1.1.10) h. (v) g (v) 
-J ~+j 

i.e. h (v) is the number of times that the v'th newspaper has chosen cate-
-j 

gory C .• Note that 
J 

(1.1.11) h. (+) -
-J a .• -+J 

Because every newspaper chooses one category at a time, we have 

(1.1.12) (\/) 
~i+ - 1. 

The assumptions (1.1.2) and (1.1.3) mean that in our model we must take 

(1.1.13) ~ij (v) and ~hl(µ) to be independent whenever if h or v f µ. 

This completes our basic mathematical model. We can now formulate the null-

hypothesis in terms of this model 

(1.1.14) for all i and j. 

(v) 
Denote the common value of pij , under H0 , by pij" It is then clear that 

the model still contains the mxk unknown parameters pij" 
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All the unknown (nuisance) paramete.rs p .. , however, can be eliminated when lJ 
we condition on the event 

(1.1.15) A A 

where 

<;l:11 <;1;12 

<;1;21 <;l:22 

(1.1.16) A 

<;!;ml ~m2 

and A is a similarly defined m x k matrix which contains the observed values 

of A. 
(\!) When we consider t.he random variables x. . , but now conditioned on -lJ 

A A, i.e. 

(1.1.17) t .. (\!) (x .. (\!) JA = A) 
-lJ -lJ -

then the joint distribution of the t .. (\!) contains, under H0 , no more un--iJ 
known parameters. In fact, it is evident that, under H0 , given~= A, all 

the ('generalised') permutations of 

(1.1.18) 

are equally likely to occur as outcomes of (1.1.4). That is, each 

generalised permutation has (conditional) probability 

(1.1.19) 
ail! ai2! •·· aik! 

n! 

Therefore we can use the observable random variables t .. (v) as building--lJ 
stones for possible test-statistics. 

Finally we define, analogous to (1.1.10) 

(1.1.20) f. (\!) t . (\!) 
-J -+J 



1.2. PRESENTATION OF THE DATA 

Assume that the matrix A contains the observed values of a. . . ·rhen 
-1.J 

under the condition of the event A= A, we may represent the data as 

follows. 

Table 1.2.1. Presentation of the data. 

newspaper category 

\) = j = 
1 2 . n 1 2 . k 

1 S:1 
( 1) 

S:1 
(2) 

S: 1 
(n) . a11 a12 alk 

2 S:2 
( 1) 

S:2 
(2) 

S:2 
(n) 

a21 a22 a2k 

. 
. 

m C 
(1) 

C 
(2) 

C 
(n) 

aml am2 . amk -m -m -m 

n 

n 

. 

. 

n 

a +1 a +2 . a+k mn 

(1) (2) 
!1 

(n) :J. . 
1 !1 !1 a+l 

2 !2 
(1) 

!2 
(2) 

!2 
(n) 

a+2 
. . . . 

. . 
k !k 

(1) 
!k 

(2) 
!k 

(n) 
a+k 

m m . m nm 4-

EXAMPLE 1.2.1. In this example we present the data of 6 Dutch newspapers 

in 1964. 

1. De Telegraaf 4. Algemeen Handelsblad 

2. De Volkskrant 5. N.R.C. 

3. Het Parool 6. De Waarheid. 

We consider the following categories 

7 
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cl. Dutch economy c4. America 

c2. Dutch politics cs. Africa & Middle East 

c3. remaining Dutch news c6. remaining foreign news. 

The source of the following table of data is KNEEPKENS (1975). 

Table 1.2.2. Example of data of 6 Dutch newspapers. 

newspaper category 

date 1 2 3 4 5 6 1 2 3 4 5 6 

2-1-'64 cs cl c4 cs c4 cl 2 0 0 2 2 0 6 

7-1-'64 c6 c6 c6 c6 cl cl 2 0 0 0 0 4 6 

11-1-'64 c4 c4 c4 c4 c4 c4 0 0 0 6 0 0 6 

17-1-'64 c6 cl cs cs c6 cl 2 0 0 0 2 2 6 

23-1-'64 cl cs c6 c6 c6 c3 1 0 1 0 1 3 6 

29-1-'64 cs cs c6 cs c6 cs o· 0 0 0 4 2 6 

4-2-'64 c3 c3 c· 
3 c3. Cl cl 2 0 4 0 0 0 6 

10-2-'64 c3 c3 c3 c3 c3 c3 0 0 6 0 0 0 6 

15-2-'64 c3 cs cs c_ c6 cl 1 0 1 0 3 1 6 :, 

21-2-'64 c2 c6 c6 c6 c6 c2 0 2 0 0 0 4 6 

27-2-'64 c2 c2 c6 c2 c2 cl 1 4 0 0 0 1 6 

category 11 6 12 8 12 17 66 

1 1 2 0 0 2 6 11 

2 2 1 0 1 1 1 6 

3 3 2 2 2 1 2 12 

4 1 1 2 1 2 1 8 

5 2 3 2 4 0 1 12 

6 2 2 5 3 5 0 17 

11 11 11 11 11 11 66 

Inspection of the data of example 1.2.1. leads to the following 

remarks. 

i. Between two subsequent days of observation, there are each time four 

days on which no observation was made (not counting sundays). This is 

done to satisfy as good as possible the assumption (1.1.3). 

ii. On 11-1-'64 and 10-2-'64 all the newspapers chose a subject from the 
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same category (c4 and c 3 resp.). Because these observations cannot 

contribute to the detection of deviations from HO, they are "useless", 

and they should play no role in our procedure. In section 2.5. we shall 

show that we may delete such observations when we use one of the tests 

that we have developed for this problem. 

After deletion of these observations we have 

Table 1.2.3. Data of example 1.2.1. after deletion of "useless" obser-

vations. 

newspaper category 

date 1 2 3 4 5 6 1 2 3 4 5 6 

2-1-'64 cs cl c4 cs c4 cl 2 0 0 2 2 0 6 

7-1-'64 c6 c6 c6 c6 cl cl 2 0 0 0 0 4 6 

17-1- I 64 c6 cl cs cs c6 Cl 2· 0 0 0 2 2 6 

23-1-'64 cl cs c6 c6 c6 c3 1 0 1 0 1 3 6 

29-1-'64 cs cs c6 cs c6 cs 0 0 0 0 4 2 6 

4-2-'64 c3 c3 c3 c3 cl cl 2 0 4 0 0 0 6 

15-2-'64 c3 cs cs cs c6 cl 1 0 1 0 3 1 6 

21-2-'64 c2 c6 c6 c6 c6 c2 0 2 0 0 0 4 
I 

6 

27-2-'64 c2 c2 c6 c2 c2 Cl 1 4 0 0 0 1 6 

category 11 6 6 2 12 17 54 

1 1 2 0 0 2 6 11 01 2 2 1 0 1 1 1 6 

3 2 1 1 1 0 1 6 

4 0 0 1 0 1 0 2 

5 2 3 2 4 0 1 12 

6 2 2 5 3 5 0 17 

9 9 9 9 9 9 54 

1.3. THE 'CONDITIONAL' SITUATION 

Sometimes an experimental setup leads directly to the situation which 

we have in section 1.1. after the conditioning on the event A= A. We mean 

that a researcher may determine the elements of A in advance and perform 
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an experiment in which the outcomes are of the type (1.1.18), which have 

each, under a 1 H0
1

, the same probability. 

Without changing the notation, the random variable t .. (v) would now 
-1.J 

mean 

( 1. 3.1) 
(v) _ { 1 if in.the outcome on the i'th day Cj is in the v'th 

!ij - place, 
0 otherwise. 

The random variables f. (v) may be defined as in (1.1.20). 
-J 

In fact, once we have conditioned on the event~= A, it is not possi-

ble to discriminate between the two kinds of experiments and the two test-

ing problems anymore, apart from the fact that the alternatives we are in-

terested in may be chosen differently. This 'conditional' situation will 

be the starting point of the theory in chapter 2. 

We give an example of this situation. 

EXAMPLE 1.3.1. Suppose that a foreman distributes each morning n jobs 

among n workers. Among then jobs are a .. of the kind C., on the i'th day. 
l.J J 

We would now want to test the hypothesis that the foreman distributes the 

jobs at random, for instance against the alternative that some worker gets 

jobs assigned to him that are persistently of the same kind. 

1.4. THE PROPOSED TEST 

For the testing problems described in sections 1.1. and 1.2. we pro-

pose the following test-statistic 

V g k n (f. (v) - a+j/ 
-J n (1.4.1) l r 

j=l v=l a+j 
n 

If, under the experimental situation of section 1.1. some category has not 

been chosen, we have a+j = O and (f (v) - a /n) 2 = O. In those cases we -j +j 

(v) - a+j)2/ a+j =- 0. define (f. -J n n 

Ef. (v) -- a+j It is easily shown that, under H0 , -J n, so our test-statistic 

has the form of the traditional chi-squared statistic. 
In chapter 4 and 6 we shall show that the asymptotic distribution of 

n-l vlH is in a special case a x2-distribution with (n-1) (k-1) degrees of n - 0 
freedom, and in general the distribution of a linear combination of indepen-
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dent x2-variables. In both cases the following approximation is an improve-

ment on these asymptotic distributions. 

Approximate c~ by a x2-distribution with n degrees of freedom, where 

c and n are determined such that, under H0 , 

( 1.4.2) Ecv n 

and 

(1.4.3) 2n, 

thus equating the first two moments of cv to those of x2[n]. Hence 

(1.4.4) 

(1.4.5) n 

Ev and o 2 (v) are given, under H0 , by 

k s. 
(1.4.6) Ev = n I ...1.. 

E. j=l J 
2 k S~ -T. 2 

Sjl - Tjl 
(1.4. 7) o 2 (v) = 2n { I _J __ J + I I E E } ' n-1 j=l E. j;,11 J j 1 

where 

a+. m a .. 
(1.4.8) E. _J_= I -2:1. 

J n i=l n 

-2 m 
(1.4.9) s. n I aij(n-aij) J i~l 

-4 m 
a~.(n-a .. / (1.4.10) T. n I J i=l lJ lJ 

-2 m 
(1.4.11) Sjl n I aijail 

i=l 

-4 m 2 2 (1.4.12) Tjl n I aijail 
i=l 

Critical values and tail-probabilities of the distribution of~ may be 
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approximated using this method. 

For practical calculations of~, we may use the following formula 

n 
{f. (V)}2 

k I 
V=1 -J 

(1.4.13) V - n I nm 
j=l a +j 

Finally we apply the test to the data of example 1.2.1. 

EXAMPLE 1.4.1. For the data of example 1.2.1., after the deletion of "use-

less" observations (see table 1.2.3.), our test-statistic takes the value 

v = 33.19. In this case we have E(~jH0 ) = 20.11 and cr2 (~jH0) = 19.59, so 

that c = 2E/cr2 = 2.0526, n = 41.27 and cv = 68.13. The critical value of 

the x2[41.27] distribution for a= 0.05 is equal to 57.26, so H0 is re-

jected. The right tail-probability of 68.13 for the x2[41.27] distribution 

is equal to 0.0053. 

An estimate of the right tail-probability of 33.19 in the exact dis-

tribution is equal to 0'.007,. indicating a close fit of the approximation. 

The estimate was obtained from 1000 simulated drawings from the exact 

distribution of v. 



CHAPTER 2 

THEORY: PRELIMINARIES 

2. 1 . THE PROBLEM 

We consider a sequence E1 , ... ,Em of m independent experiments. 'rhe 

possible outcomes of Ei (i=l, ••• ,m) are the permutations of then charac-

ters 

(2 .1.1) cl .•. cl c2 •.• c2 
'------r--' .____,._... 
ailx ai2x 

13 

where Cj (j=l, ... ,k) occurs aij times, with O aij < n and l~=l aij = n. 
Because of the repetitions of the characters in the permutations, we shall 

call such a permutation a 'word'. 

As indicated by the notation, the characters C. (j=l, ... ,k) and the 
J 

length n of the words will be the same for all experiments, but the numbers 

a .. may differ from experiment to experiment. In asymptotic considerations 
l.J 

we shall let m + co with n and k fixed. 

The indices i,h will be used throughout this work to index the experi-

ments, the indices j and 1 to index the characters and v,µ E {1, ... ,n} to 

indicate the v'th and µ'th place in a word. So we shall always have 

(2.1.2) i,h E {1, ... ,m}; j,l E {1, ... ,k}; v,µ E {1, ..• ,n}. 

By this convention we can use these symbols without further explanation. 

Subject to this convention each given formula will hold for each value that 

the indices occurring in it can take, unless otherwise is indicated. 

The properties of the numbers aij may be summarized by 

(2.1.3) n}. 
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The number N. of different words for E. is 
l. l. 

(2.1.4) N. n! 
l. ail! ai2! ... aik! 

Let 

(2.1.5) R. { 1, ••• ,N.} 
l. l. 

and let 

(2.1.6) 

denote the set of words pertaining to Ei, in lexicographical order. Then 

(2.1. 7) Q Q X 
1 

X Q 
m 

is the set of all possible outcomes of the composite experiment 

(2.1.8) 

To complete the mathematical model we shall use, we look at the class of 

all probability distributions on Q, with E1 , •.• ,Em independent. Let Pi be 

the class of probability distributions on Qi 

(2.1.9) 

and let w. be random on Q, with 

(2.1.10) 

-J. l. 

P(w. 
-J. 

1} 

Then, according to the independence of E1 , ••• ,Em we have 

(2.1.11) 
m 

TT Pir 
i=l i 

with r. E R. and p. E P. , and this is the class of probability distributions 
l. l. l. l. 

we consider. It will be indicated by 

(2.1.12) p 
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In order to formulate the hypotheses about P which we want to consider, we 

introduce parameters tir as follows 

(2.1.13) t. ir 

with, obviously 

(2 .1.14) 

Let 

(2.1.15) 

and 

(2.1.16) 

d 

then every element of 

(2.1.17) 

t. ir 0. 

·N. 
1. 

$ 1 - ; , r E Ri, l 
i r=l 

specifies a distribution from P and v.v •. 

The hypothesis to be tested is 

(2.1.18) V. 
1. 

t. 
1. 

0 

The widest class of alternative hypotheses is of course 

(2.1.19) t. ,;, 
1. 

0 I 

t r O}, 

but this class is too amorphous for our purposes. In order to formulate a 

useful subclass of Hl, 

Qi' which 
Let, 

(2.1.20) 

are used for 

for all i, j 

t .. (v) (1r) 
l.J 

we first introduce elementary random variables on 

building up test-statistics. 

and v, t .. (v) {0,1} be defined as : 
l.J 

1 if in 1T C. occurs in the v'th place; 
{ J 

0 otherwise. 

The following relations are then easily proved 
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N. l (v) a .. 
(2.1.21) I tij (7Tir) N. -2:l. 

r=l l n 

N. 
aij (aij-1) l 

(v) (µ) (2.1.22) I tij (7Tir) tij (7Tir) = N. n(n-1) (vfµ), 
r=l l 

N. l (v) (µ) aijail 
(2.1.23) I tij (7T ir) til (7Tir) = N. n(n-1) (vfµ,jfl). 

r=l l 

Now let 

(2.1.24) 

and 

(2 .1.25) o .. (v,µ) g o (v,µ). 
l] ijj ' 0 (v) g o ... (v,v). 

ij l]J 

(V) 
Let the random variables ind~ced by P

1
. and (2.1.20) be denoted by t.. , 

-lJ 
then we have, under Pi, 

(2.1.26) 
( ) a.. ( ) 

P(t .. v = 1) = -2:2 + o .. v , 
-lJ n l] 

(V) (µ) a .. (a .. -1) (v,µ) (2.1.27) P(t .. t .. 1) lJ lJ + 0 .. 
-lJ -1J n(n-1) l.J 

(vfµ), 

(2.1.28) P(t .. (v) 
!:il 

(µ) 1) 
aijail 

0ijl 
(v,µ) =---+ 

-lJ n(n-1) 

Notice that 

(2.1.29) P(t .. 
-lJ 

(v) 
!:il 

(V) 
1) 0, (jfl). 

The proof of these relations follows from the fact that the left-hand mem-

bers are equal to the expected value of the product of the r.v.'s occurring 

in these expressions. For instance for (2.1.28) we have, using (2.1.13), 

(2.1.23) and (2.1.24) 

P(t .. (V) 
-lJ 

t (µ) 
-il 

1) Et (v)t (µ) 
-ij -il 
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o (v ,µ) 
ijl 

The other two relations are special cases. 

Note that under H0 all o's are equal to 0. Thus if 

(2.1.30) H'. Vijlvµ 0ijl 
(v,µ) 0, o· 

then 

(2.1.31) 

but not the other way around. 

We can now tentatively formulate the alternative hypotheses we wish to 

consider. 
We shall_say that place v has a preference for or an aversion from 

character C. respectively if 
J 

m 
(2.1.32) I 

i=1 
o .. (v) > O 

l.J 
or < 0. 

An aversion thus is the same as a negative preference. Now it is easily 

verified by means of (2.1.26) that 

n 
(2.1.33) I 

V=l 
0,. (V) 

1.J 
0 

k 
I 

j=1 
o .. (v) 

l.J 
0 

thus preferences cannot occur in one place only, they are automatically 

balanced by aversions in other places and vice versa. In fact, preferences 
as defined above are relative preferences of the places with respect to 

the preferences of other places, not preferences in an absolute sense. 
These considerations lead us to consider the following class of 

alternative hypotheses 

(2.1.34) H'. 1. 3. JV 

m 
I I 
i=1 

The statistic 

(2.1.35) I (t .. (v) - aij) 
i=1 -1.J n 

0 .. (V) I > o. 
l.J 
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Im (V) has according to (2.1.26) the expected value . 1 o .. 
J.= J.J 

obviously a good building stone for a test-statistic. 

Defining 

(2.1.36) 

we have 

(2.1.37) 

f. (v) 
-J 

E(f. (v) !H ) 
-J 0 

d ID 

I 
i=l 

a .. 
J.J 

E(f. (v) IH') = a+j 
-J O n 

and an intuitively attractive test-statistic is 

n 
(2.L38l I 

v=l 

and is thus 

This statistic has the form of the traditional chi-squared statistic: it 

will assume large values under Hi and large terms will indicate the pre-

ferences and aversions which cause the sum to be large. 

It would be too much, however, to expect this statistic to have a chi-

squared distribution and it will be shown later that it has a more compli-

cated one (under H0 as well as under H1), which can nevertheless be approx-

imated by means of a modified chi-squared distribution. 

The choice of a quadratic form in the f. (v) will be 
-J 

to be indicated by the simultaneous asymptotic normality 

shown in chapter 4 
of the f. (v) and 

-J 
other theoretical considerations. Several degrees of generalisation of 

(2.1.38) can then be considered. The most promising one is 

n k 
(2.1.39) I I 

v=sl j=1 

where the g. are weighing coefficients for the categories, which will gen-
J 

erally (as in (2.1.38)) depend on the a ./n, but which may also express the 
+J 

experimenter's emphasis on certain characters as compared to others. One 

might also choose the weights dependent, not only on the characters, but 

also on the places: g, (v) instead of g .. We do not, however, elaborate this 
J J 

case in this thesis. In every trial every place occurs exactly once, but 

the frequencies of the characters may be different from trial to trial. In 

the applications which led to the development of our tests the places were 

equivalent: changing their order should have no influence on the experimen-

tal situation. Therefore, although the general theory developed later also 



covers this case, we do not, at this moment, aim at generalisations where 

different weights are attached to the places. 
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A further generalisation is to allow cross-terms in.the test-statistic 

(2.1.40) 
n 
I 

v=1 
I I g.l(f.(v)_a+j)(fl(v)_a+l) 

j=1 1=1 J -J n - n 

The behaviour of such a test-statistic is far more complicated than that of 

(2.1.39) and as the result of theoretical considerations (mostly of an as-

ymptotic character) the form (2.1.39) will emerge as the most useful one. 

The choice of weighing coefficients will be considered in chapters 4 and 5. 

Some special cases are treated in chapter 6. 

The most general quadratic form is. of course 

n n 
(2 .1.41) I I 

v=1 µ=1 

Although test-statistics of this generality are difficult to interpret and 

therefore of little practical use, the theory which will be developed in 

later chapters will completely cover this general case. For practical pur-

poses specialisation to the form (2.1.39) is recommended and special atten-

tion is paid to this test-statistic and to (2.1.36). 

As will appear later, tests based on (2.1.39).will, under acceptable 

conditions for the g. , be consistent for m + co if 
J 

(2.1.42) 3. 
J\! 

1 m 
I I 

i=1 

This holds e.g. for (2.1.38). 

2.2. NOTATION AND SIMPLE RESULTS 

Notational conventions. 

+ co as m + co 

If xi denotes any quantity (scalar, vector, r.v., matrix etc.) indexed by 

the variable i which ranges (for instance) over the index set {1, .•• ,m}, 

we shall frequently use the derived quantities X+, X* and x., defined by 

m 
(2.2.1) I 

i=1 

(2.2.2) 

X. 
]. 
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(2.2.3) X 
1 m I 
m i=l 

X. 
l. 

Note that X+, X* and X all depend on m, though this is not apparent from 

this notation. Sometimes a fixed number m0 of experiments is considered. To 

distinguish the quantities X+ etc., which are defined for general m, from 

the equivalent quantities for m0 , we shall write 

(2.2.4) 

and so on. 

mo 
I 

i=l 
X. 

l. 

Furthermore, In denotes the 
zero's 

identity matrix of order n, 0 k is the 
d n, 

(0 =O },andl kthenxkmatrixof n n,n n, n x k matrix consisting of 

one's (1 1 ). We use n n,n the symbol® to denote the Kronecker product of 

matrices (RAO (1973)). 

We consider the r.v.'s defined by (2.1.20) as 

(2.2.5) t .. (V) 
-J.J = { 

1 if in the word obtained at the i'th trial, the 
character C. occurs in the v'th place; 

0 otherwise. J 

Let, for all i, j, v, 

(v) (v) a .. 
(2.2.6) t .. t .. _ _;SL 

-J.J -J.J n 

and let 

(2.2. 7) 

Furthermore, we shall consider 

(2.2.8) 

We shall use the following real, symmetric, k x k matrix of weighing factors 

g 11 g12. glk 

g21 g22 g2k 
(2.2.9) G 

d 
(gjl=glj). 

gkl gk2 gkk 



Let 

(2.2.10) Q d I ® G. 
n 
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-1 The test-statistic, defined in (2.1.40), may then, apart from a factor m 

be written as 

(2.2.11) V - v(G) 
1 n I 
m \l=l 

I I g.l(f_(\l) - a+j)(fl(\l) - a+l). 
j=l 1=1 J -J n - n 

Though it is not essential w.r.t. our problem, we shall wish, for practical 

reasons, that 

(2.2.12) 

with probability one. This means that we have to choose G such that Q is 

non-negative definite (n.n.d). (A k x k matrix Q is n.n.d iff ;, Q; 2: 0 for 
each ; E lR k). 

In most of the theory it is irrelevant whether Q has the structure as 

in (2.2.10) or is an arbitrary n.n.d, real symmetric matrix. So from now 

on we shall suppose that Q is an arbitrary real, symmetric, n.n.d matrix. 

We define the test function Pm,Q' 

(2.2.13) { 
1 if t' Qt 2: k 1 (m,Q) ; -* -* -ct 

0 otherwise, 

where k 1_a(m,Q) is determined as the smallest value such that 

(2.2.14) 

Sometimes we shall randomise the test for theoretical purposes, i.e. 

(2.2.15) Pm,Q = { ~(m,Q) if t; Qt : ki (m,Q) , 
0 - -* < -a 

where ki-a (m,Q) is the highest possible outcome of !; Q !* which is smaller· 
than k 1 __ a(m,Q), and y(m,Q) is determined such that in (2.2.14) the equality 

sign holds. It will be clear from the context whether we use~ Q defined -m, 
by (2.2.15) or by (2.2.13). The decision rule for the resulting level-a 

test is derived from Pm,Q in the usual way. 
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We define the vector of expectations oft .. (v) in the same way as 
-J.J 

(2.2. 7) 

(2.2.16) 

It follows directly from (2.1.26), that 

(2.2.17) 

which reduces, under H0 , to 

(2.2.18) 

It is useful to define 

(2.2.19) 

The matrix of variances and covariances of the components of a vector 

of r.v.'s x will be called the dispersion matrix of~, and will be denoted 

by 

(2.2.20) D(x). 

In particular we define for each i 

(2.2.21) 

(2.2.22) 

The entries of Eli and E0i may be found from the following moments, which 

may be derived from (2.1.26), ••• ,(2.1.28), together with the obvious rela-

tion (cf. (2.1.29)) 

(2.2.23) P(t .. (V) 
-l.J 

The moments are 

(2.2.24) 

t (V) 
-il 

2 

1) 0, 

= aij - aij - 2 o .. (v) aij + o .. (v) - (o .. (v) >2 
n n2 J.J n J.J J.J 



(2.2.25) 
(v) (µ) 

cov (t. . ,t. . ) -]_J -iJ 

aiJ' (n-ai. J') ( ) a. . ( ) ( ) ( ) ( ) 
-~-~- + 0,. V,µ _..2::.1.(o .. V +O,. µ ) - 0,. V 0,. µ 

n2(n-1) lJ n lJ lJ lJ lJ 

(2.2.26) 
(v) (v) 

cov(t. . ,t. 1 ) -]_J -]_ (jfl) 

-
ai.J.ai'l_ai'J',: () a.l () () () 

u V _..2:_ 0,. V - 0 .. V 0. V 
n2 n il n lJ iJ il 

(2.2.27) (V) (µ) cov(t.. ,t. 1 ) = -]_J -]_ 

ai. J. al. 1 ( ) a . . ( ) a . 1 ( ) ( ) ( ) 0 V,µ _..2::.1. 0 µ __ i_ 0,. V - O .. V 0, µ 
n2(n-l) + ijl n il n iJ iJ il 

LOi follows from Lli by omitting all terms containing a o (cf. (2.1.18)). 

Let, for n <!: 2, 

1 1 1 - n-1 - n-1 
1 1 1 - n-1 - n-1 

(2.2.28) Ng 

then 

(2.2.29) 

and N is of rank n-1, with eigenvalues 0, and _E.__1 with multiplicity n-1. n-
Furthermore, let 

ail (n-ail) -ai1ai2 

-ai2ai1 ai2(n-ai2) 

(2.2.30) 

23 
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we then have, as can easily be verified 

(2 .2.31) 

(2.2.32) 

N ® K. 
]. 

N 0 K. 

Notice that LO• is singular, because the sums over rows and column's of K. 

and N are zero. More generally, LOi and Lli are singular because, for each 
fixed i, the following n + k - 1 linear relationships hold true for the n x k 
random variables t .. (v), both under H0 and H1, 

-J.J 

(2.2.33) t (V) - 1, 
-i+ 

t (+) _ a
1
. J', -ij v=l, •.. ,n; j=l, ..• ,k. 

REMARK 2.2.1. Not only the singularity of LO•' but also its rank will play 

a part in the considerations. What can be said about the rank of L0 .? 

Let's first consider the determinant of a matrix which has the same struc-

ture as Ki, 

a 1 (n-a1) -a1 a 2 
-a2a 1 a2 (n-a2) 

(2.2.34) 

Using this relation, it can easily be shown that Ki is singular. Also the 

rank of Ki may now be found easily. Let ki be the number of positive aij's 
at the i'th experiment. Then, again using (2.2.34) it follows that 

(2.2.35) rank(K.) 
l. 

k. - 1. 
l. 

Moreover, because in our case we have n-II=l a1 ;=:: 0 for j=l, ..• ,k, (2.2.34) 

is non-negative for each j, j=l, •.. ,k. It follows that the matrix Ki is non-

negative definite. 

For rank(LOi) we find 



(2.2.36) rank(N®K.) 
l. 

Now consider the matrix K+. We have 

(2.2.37) + + x'K X + 
+ + + 
x' K1 x + x' K2 x + ••. + x' Km x. 

(n-1) (k.-1). 
l. 

If r denotes the rank of K+, there exist k-r linearly independent vectors 
+ + 
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x, such that K+x = 0, or x' K+ x = O. But this implies, because the matrices 
+ + Ki are non-negative definite that x' Ki x = 0 for all i. This means that 

(2.2.38) max rank (K. ) 
l. i 

max(k.-1). 
l. i 

Because in any case rank(K+) $ k-1 we find 

(2.2.39) max(k.-f) $ 
l. i 

rank (K) $ k-1 

and similar bounds for rank(L0 .). It follows that rank(L0 .) is not a fixed 

number, but has to be determined in each separate case. 

For the expectation of~ we find 

(2.2.40) 

which reduces, under H0 , to 

(2.2.41) 

An<;l when Q 

(2.2.42) 

I ® G, n 

trace(! ®G) (N®K) n • 

2.3. SOME ASYMPTOTIC CONSIDERATIONS 

m 
!; I 
m i=l 

trace GK .. 
l. 

The choice of the weighing coefficients gjl in the matrix G, or, more 
generally, the choice of the matrix Q, will largely be determined by the 

nature of the asymptotic distribution of (Q) as m +co. 
+ + Because the vectors ! 1 , ! 2 , ••. are not identically distributed, it 
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is necessary to impose some asymptotic conditions. Therefore we only con-

sider infinite sequences of experiments for which the following 2 assump-
tions hold. 

ASSUMPTION 1. For all j and 1 the following finite limits exist, 

(2 .3.1) , lim a •j = a. > 0, (say), 
m+oo J 

1 m a . a 1 (2.3.2) lim - l (a .. - ....21..) (a. _.....:!:_) djl, (say). m i=l 1.J m 1.l m 
m+oo 

The alternatives we consider satisfy 

ASSUMPTION 2. For all j,l,v andµ the following limits exist, 

(2.3.3) lim 0 (v,µ) 
= l,;jl 

(v,µ) (say), 
m+oo 

•jl 

(2.3.4) lim 0 (V) 
0. 

(V) (say). *j , 
m+oo J 

In (2.3.4), but not in (2.3.3), we accept lo. (v) I 
J 

00 As a special case 
of (2.3.3) we have 

(2,3.5) I,;. (v) I,; •• (v,v) lim o . (v) 
m+oo 'J J JJ 

The vectors 5 and t with components o (v) and I,;. (v) are constructed as in 
j J 

(2 .2.16). 

At first sight, these conditions may seem to be very strong. It is in-

deed very easy to construct examples of infinite sequences of experiments 

that do not satisfy these assumptions. However, we have to bear in mind 

that for statistical purposes, the asymptotic distributions are only nec-

essary to provide a good approximation for the finite situation. Further-

more, there exist situations for which the conditions are trivially ful-
+ filled. For instance in the case that a 1 = a 2 = a 3 = ... and A1 = A2 = A3 

Or, more generally, if 
+ + + 

(al ,a2, ••. ,am) 
+ + + 

(am+l'am+2•···,a2m) 
+ + + 

(a2m+l'a2m+2•···,a3m) 
and 

c!l ,A2, ... ,!m) + + + 'T 'T + 
(A l'A 2•···•112) = <42 1' 62 2•···•113) = ... m+ m+ m m+ m+ m 

So if we have m0 observations, we could think of an infinite sequence of 

experiments, where the whole block of m0 experiments is repeated infinitely 



many times. Then we would have, for instance, 

(2.3.6) 
m 

lim i l aij 
m-- i=l 

a .. 
l.J 

etcetera. In this way, all the limiting values are equal to the values in 

the finite case. It may be expected that the approximations derived from 

the asymptotic distributions are then fairly good. 

We leave it to the reader to verify that under assumption 1, 

(2.3.7) lim n<tlHol lim 
m-><" m-><" 

exists. Under assumptions 1 & 

(2.3.8) 

exists as 

(2.3.9) 

where the 

(2 .3.10) 

lim + D(t) -* m--

well as 

+ lim E(t) -* m.._ 

components 

lim K
0 

m-><" 

exists, and we have 

(2.3.11) 

lim L1 • 
m-><" 

lim 5* 
m--

of 5 may 

K , 

LO• LO , (say), 

2 

L1 , (say), 

t , 

be +00 or -00 Also 

(say), 

The alternatives satisfying assumption 2 determine a subset A of V, 
the set of all possible alternatives, with (cf.(2.1.17)), 

m 
(2.3.12) V XV. 

i=l i 

for infinite sequences of experiments. So we have 

(2.3.13) A {d E Vjd satisfies assumption 2}. 

It is convenient to split up A still further. Define 

27 
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(2.3.14) Al {a E Alt•t 00}, 

(2.3.15) A2 
d {aEAlo < t•t < oo}, 

(2.3.16) A3 
d {a E Al!•t O}. 

Note that for alternatives in A2 u A3 we have 

1 m 
(2 .3.17) + I l 0 i',; lim m i=l J_ 

When an expectation is taken with respect to a particular alternative 

a EA, we shall sometimes write Ea, and we shall write E0 for the expecta-

tion under H0 • 

We shall establish the following results. 

i. When Q is non-singular, ~(Q) is consistent against each alternative in 

A1 . When Q is singular,· ~(Q) may, or may not, be consistent against 

each alternative in A1 . In a number of cases (depending on the struc-

ture of Q and the particular alternative) it can be shown that the 

asymptotic distribution of ~(Q) is the (standard) normal distribution 

(after a proper transformation). 

ii. For alternatives in A2 , ~(Q) has asymptotically a non-central x2-dis-

tribution, or the distribution of a linear combination of independent 

non-central x2-variables. The test based on ~(Q) is not consistent, 

but its asymptotic power may still considerably exceed the level of 

significance. 

iii. For alternatives in A3 , ~(Q) has asymptotically a central x2-distri-

bution or the distribution of a linear combination of central x2-

variables. The test is not consistent and the asymptotic power remains 

close to the level of significance. 

2.4. CONTIGUOUS ALTERNATIVES 

In order to find an asymptotic expression for the power function, we 

need to consider contiguous alternatives, that is, alternatives that con-

verge to H0 at a certain rate. 

Let a E A
1 

be a fixed alternative, and let this alternative be deter-



mined by the sequence of vectors 61 , 62 , •••• Define for each 0, with 

0 s 0 s 1, a0 as the alternative that is determined by the sequence of 
vectors 

(2.4.1) si\, ei\, 063,··· 

Clearly 

(2.4.2) a0 E A1 when o < e s 1. 

Let 

(2.4.3) 0 d [O,1], 0' d (0,1]. 

Next, consider a sequence {0 }
00 

1 of values in 0' such that mm= 

(2.4.4) m•B2 n O m , as m-+ 00 • 

We shall call the sequence of alternatives 

(2.4.5) 

a contiguous alternative to HO. 
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Quantities associated with a contiguous alternative will carry a super-

script c. In this way we have the following straightforward 
N. 

(v,µ) 1 m ]. 
(V) (µ) C lim~ I I lim o •jl tij (7Tir) til (7T ir) m i=l r=1 

lim 0 o (v,µ) o. 
m •jl 

Furthermore, 
Ni 1 m 

um rm I I 
m i=l r=l 

t ... (V) (7T. ) 0 6. 
J.J ir m ir 

In r;. (v). 
J 

So 

results 

0 6, m ir 
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When we take an expectation or determine a dispersion matrix under a 

contiguous alternative we shall write Ec and Dc respectively. We have 

(2.4.6) 

(2.4. 7) 

2.5. AN IMPORTANT PRACTICAL CASE 

In this section we describe a class of experimental situations which 

is important for practical purposes and which can be reduced, by imposing 
a condition, to the situation of section 2.1. 

We consider, again, a sequence 

(2.5.1) EI g (EI EI EI ) 1' 2, ... , m 

of m independent experiments. The result of each.experiment is a word of 

length n consisting of characters from the fixed set {c1 , .•• ,ck}, each of 

these characters being available for each place. The number of possible 

words thus is kn and the set n• of these words is the same for all i. The i 
set of possible outcomes for E' then is 

(2.5.2) 

(v) For each i, n x k random variables x. . are defined by means of the -1.J 
functions 

(2.5.3) 
d= { 

0

1 if in w' CJ. 
x .. (v) (w') 

l.J otherwise, 

occurs in the v'th place; 

and probabilities 

(2.5.4) (v) gP(x __ (v) 
pij -1.J 1). 

(V) (V) 1 Thus in the random vector (~il , •.• ,~ik ) one of the components 
assumes the value 1 (indicating the v'th character of the word) and the 

others the value 0. 
Now, moreover, the experimental situation considered implies that the 

characters of each of the words are chosen independently: denoting the 



random element of Qi by ~i this means that the probability of the word 
(C. , .•• ,C. ) is equal to 

J1 Jn 
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n k (\/) ( ') 
( ) X.. W. 

{ \)} iJ i (2.5.5) TT TT 
v=l j=l 

pij 

with 

(2.5.6) 

For the whole sequence E' we get, with w' = (wi,···,w~) E Q' 

(2.5. 7) P(~' =w') 
m n k 
TT TT TT 

i=1 \/=1 j=1 

(v) ( ') 
( ) x.. w. 

{ \)} iJ i 
pij 

The number of parameters in this model is so large that reduction is im-

perative. This can be achieved by imposing a condition of the following 
character. Let 

(2.5.8) a .. -iJ 
d n (v) I x .. 

\/=1 -iJ 

then the condition is 

(2.5.9) Ad V .. 
iJ 

where, in applications, the a .. are the values assumed by a ..• (See remark iJ -iJ 
2.5.1.). Applying A, the set Q' is reduced to its subset Q given by (2.1.6) 

and (2.1.7) and we have for all i and TTir E Qi 
(v) 

( ) 
X. . (TT. ) 

{ v} iJ ir 
pij 

k n 
TT TT 

(2.5.10) P(w!=TT. jA) j=1 v=1 
-i ir N. k i n 

I TT TT 
s=1 j=l v=l 

(\/) (. ) 
( ) 

X. . TT. 
{ v} iJ is 
pij 

If we call this pir' as in (2.1.10), the conditional situation is identi-

cal to the situation in section 2.1., with 

(2.5.11) t .. (\/) 
-iJ 

and the parameters~ and o (v,µ) are functions of the p (v) and of 
ir ijl ij 
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the a .. from (2.5.9). We can now apply the methods of section 2.1.; in par-
1.J 

ticular we can test the hypothesis 

(2 .5.12) 

against the alternative 

(2 .5 .13) 3. 
JV 

I I (p. • (v) 
i=l 1.J 

n 
1 I p .. <v> > I > o 
n V=l 1.J 

using one of the test-statistics from section 2.1. This is possible because 
* * evidently H0 => H0 : under A and H0 all words in Qi have the same probability. 

* It is less evident that H1 ' corresponds to Hi of (2 .1. 34), -because of the 

complicated character of the 6 .. (v). They depend not only, in a rather com-
(v) 1.J 

plicated way, on the p.. , but also on the a .. and are, therefore, in the 
1.J 1.J 

unconditional situation random variables. As a matter of fact, these random 

variables have not even been defined yet. To remedy this omission, we start 

from (2.1.26), which can now be written as 

(2.5 .14) 6 .. (v) 
1.J 

P(t .. (V) = 1) - aij = P(x .. (V) = 1JA) - aij = 
-1.J n -1.J n 

(v) J - aij E(x.. a .. ) 
-1.J 1.J n 

So if we define 

(2.5.15) 0 (V) d (V} J _ ~ij 
-1.. J' = E (x. . a .. ) -1.J -1.J n 

we have, as we should 

(2.5.16) 6,. (V) IA 
-1.J 

- 6 (V) 
ij 

while moreover 

(2 .5.17) ( ) ( ) Ea.. ( ) Ea .. 
E ~ .. v v J - -1.J = Ex .. v - -1.J = u = EE(x.. a .. ) n -1.J -1.J -1.J n -1.J 

1 n (v) 
n I Pij 

v=l 

Now formula (2.1.34) for Hi is later justified by the consistency of the 

test for (2.1.42). The analogon of (2.1.42) is now 



(2 .5.18) 
m 11 I (p .. (\>) 

Tm i=l J.J 
1 n ( ) I p .. V ) I co 
n v=l J.J 

co 

and if this condition holds we have according to (2.5.17) 

(2.5.19) 

(V) Since, however, the o . . only assume values between -1 and 1 and since, 
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-J.J 
for any fixed j and v, o (v) o (v), ... are independent this means that -lj ' -2j 
(see theorem 4.5.6.) 

(2.5.20) I 1 0 .. (V) I t co Tm l -J.J i=l 
co. 

Thus, the consistency of the test based on test-statistic (2.1.39) for the 

unconditional situation when (2.5.18) is satisfied, follows from the con-

sistency in the conditional situation based on (2.1.42). 
For future use we now give analogous definitions for 6 .. (v,µ) and 

-J.J 
6 (v,µ), based on (2.1.27) and (2.1.28), 
-ijl 

(2.5.21) 

(2.5.22) 

We have 

(2.5.23) 

(2.5.24) 

with 

(2.5.25) 

( ) d ( ) ( ) a .. (a .. -1) 
6 .. v,µ = E(x .. v x .. µ la .. ) - -J.J -J.J 
-J.J -J.J -J.J -J.J n(n-1) 

Eo .. <v,µ) 
-J.J 

(j/1,v/µ). 

(v/µ), 

n n 
. (V) (µ) __ 1_{( t p,,(µ))2- t (p .. (µ)>2}, 

= piJ' piJ' n(n-1) l J.J l J.J µ=1 µ=1 

Eo .. (v,µ) 
-J.Jl 

(V) (µ) 1 n ( ) { ( t p .. V ) ( = Pij Pil - n(n-1) · l J.J 
v=1 

Eo .. (v,µ) = Eo ... (v,µ). 
-J.J -J.JJ 

(j/1,v/µ), 

n t (µ)) 
l Pil -

µ=1 
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Sometimes the unconditional analogon of (2.1.39), namely 

(2.5.26) (v) _ ~ij)}2 g, l { l (x. • , 
J v=l i=l -iJ n 

which we shall call w(G), or more generally w(Q) (cf.(2.2)), will be con-

sidered. (The factor-!, as in (2.2.11), ser:es asymptotic purposes; for a m 
test-statistic such a factor is irrelevant). The distribution of w(Q) de-

(v) -
pends on the nuisance parameters pij and is therefore unknown, also under 
* H0 . This makes (2.5.26) unfit to be used as an unconditional test-statistic. 

The asymptotic distribution of ~(Q) is, under certain conditions, neverthe-

less the same as that of ~(Q). 

REMARK 2.5.1. In section 2.1. the conditions in (2.1.3) imply that a .. = n 
l) 

never occurs. In the unconditional experimental situation the probability 

of such an occurrence is equal to 

k 
(2.5.27) I 

j=l 

n 
(V) 

TT Pij 
v=l 

and is thus positive. 

It is clear that such an experiment, where all characters 

are the same, cannot contribute to finding differences between 

of a word 
(v) 

the pij 
and that the experiment is then useless and had better be left out of con-

sideration. 

What is the effect of the deletion of such observations? To obtain m 

'useful' observations a random number~ of observations will have to be -m 
taken, i.e. a sequence 

(2.5.28) E' 

of experiments has to be performed. Let 

(2.5.29) I. d number of the i'th 'useful' experiment, 
-i 

where a 'useful' experiment is an experiment which does not result in an 

outcome where all characters are equal. 

Deletion of "useless" experiments yields the sequence 

(2.5.30) E' I 



of m independent experiments. Let 

(2.5.31) ,{,
2 

A ••• A,<, 
-m 

35 

,{,). 
m 

We shall now impose the condition I, where in applications, as in (2.5.9), 

the ii. are the values assumed by the I .. Thus, given I, we consider the 
-J.. 

sequence 

(2.5.32) E'' (1) 

of m independent experiments. 

The i'th experiment of E'' (1), Ei' (1), has as set of possible outcomes 

(2 .5.33) 

i.e. Qi' is the same set for each i. The set of possible outcomes for 
E'' (1) is then of course 

(2.5.34) 

while the conditional probabilities are of course proportional to the 
unconditional ones (cf.(2.5.5)), 

(2.5.35) P(w!' 
-J.. 

P(w'. = 
-,<,. 

J.. 

n 
TT 

v=1 
k 

1 - I 
j=l 

(C. , ••• ,C. 
J1 Jn 

>II> 

(v) 
P,l. 

iJV 
n (v) TT p,{, . 

v=1 iJ 

Because, after conditioning on 1, the probabilities of the 'deleted' ex-

periments have become irrelevant, we may as well renumber the sequence of 

experiments, i.e. we shall replace ii by i throughout, in particular 

(2.5.36) 

If we. then write 
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(2.5.37) 
k n (V) I TT piJ' 

j=l v=l 

and define x .. (v) Q
1
~' + {0,1} as in (2.5.3), we can write (2.5.35) as l.J 

(2.5.38) 

(V) 
1 n k (v) x. . (w.) \ \ { } l.J J. 

Vl l l piJ' 
'" i v=l j=l 

A further conditioning on A reduces the set Q'' to its subset Q and we have 

for all i and nir E Qi 

1 n k 
{p .. (v)} 

x .. (v) (n. ) 
TT TT l.J ir 

pi v=l j=l l.J 
(2.5.39) p (W~ I n. jA) -J. ir N. k X., (V) (n. ) J. 1 n 

{p .. (v)} I TT TT l.J J.S 

s=l pi v=l j=l l.J 

k (V) n ( ) x.. (n. ) 
TT TT { ~} J.J ir 

v=l j=l 
pij 

N. k 
. (v) 

) J. n 
{p .. (V)} 

X.. (n. 
I TT TT l.J J.S 

s=l v=l j=l l.J 

This is quite the same as (2.5.10), so from here on we may proceed as from 
(v) (2.5.10) on, the only difference being that the p.. are now not the l.J 

original ones, because some experiments have been deleted. This has no in-

fluence, however, on the consistency of the test, because when (2.5.18) 

holds, it also holds for a sub-sequence. Furthermore it would be nice if 

for each finite m, 

(2.5.40) p (,l < oo) 
-m 1. 

The reader is referred to existing probability theory on this problem. 

We conclude that we may safely delete observations for which a .. = n •. -J.J 

REMARK 2.5.2. Similarly, a category which does not occur in any of the ex-

periments should (and can) be ieft out of consideration. 



CHAPTER 3 

SURVEY OF THEOREMS USED 

3. 1 . DEFINITIONS AND 'l'HEOREMS ABOUT MATRICES 

Consider a q x s matrix A of any rank r. A generalised inverse (or a 

g-inverse) of A is a s x q matrix, denoted by A-, that satisfies 

(3.1.1) AA A A. 

If A- furthermore satisfies 

(3.1.2) A AA A 

then A is called a reflexive generalised inverse of A. The notion of g-

inverse is discussed extensively in RAO (1973). 
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We shall apply the notion of g-inverse in particular to real symmetric 

matrices. Let A be a real symmetric matrix of order q. By 

(3.1. 3) A PAP' 

we denote the canonical reduction of A. That is, A is the diagonal matrix 

9f eigenvalues of A and Pis the matrix of the corresponding eigenvectors 

of A. Because A is real and symmetric, the eigenvalues are all real, and we 

shall always suppose that they occur in decreasing order (A 1 2: A2 2: ••• 2: Aq) .• 

Furthermore, we shall always take the eigenvectors orthonormal, i.e. 

(3.1.4) P'P PP' I . q 

Now let A moreover be non-negative definite (n.n.d) and let it have 

rank r. (Dispersion matrices are non-negative definite). Then A has pre-

cisely r positive eigenvalues and zero as eigenvalue with multiplicity q-r. 

Let A+ be the r x r diagonal matrix of the first r (positive) eigenvalues of 
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A, and P + the q x r matrix of corresponding eigenvectors. Partition the 
matrices A and Pas follows 

(3.1.5) A ( A+ 
0 ) , 

0 0 

(3.1.6) p = ( P 11 p12 

\ p21 p22 

where P 11 has order r, so 

(3.1. 7) p 
+ 

\ 
} I 

It can easily be verified, using these partitionings, that 

(3.1.8) A PAP' PAP' + + + 

We shall call P+A+P~ the positive canonical reduction of A. 

REMARK 3.1.1. Although we speak about "the" canonical reduction of A, the 

reduction is not entirely unique. Any eigenvector p from P may, for instance, 

be replaced by -p, without affecting the identity A P A P ' . Or when A has 

two equal eigenvalues, the corresponding eigenvectors may be exchanged, so 

that P is changed but not P AP' . The reduction is unique when all the eigen-

values of A are distinct and positive, and when we make the diagonal ele-

ments of P positive (SRIVASTAVA & KHATRI (1979), p.19). 

Because the implications of this non-uniqueness are minor, we shall 

maintain the terminology. (The question arises again only in theorem 3.2.1. 

of the next section). 

Because in the positive canonical reduction of A, the column vectors 

in P+ are still orthonormal, we have 

(3.1.9) P'P + + I r 

A natural way to obtain a g-inverse of A is then 

(3.1.10) A 

because it apparently satisfies (3.1.1). A is even reflexive because it 



also satisfies (3.1.2). We shall call g-inverses defined as in (3.1.10) 
natural generalised inverses or ng-inverses. 

Any q x s matrix B such that 

(3.1.11) A BB' 

will be called a square-root of A. The set of square roots of A is ·non-

empty as follows from the following lemma. 

LEMMA 3.1.1. Any real, symmetric, n.n.d matrix A has at least one square-

root. 

PROOF. Let A P+A+P~ be the positive canonical reduction of A. Let 

(3.1.12) 

and 

(3.1.13) 

L g 

B g PL 
+ 

0 

0 

0 

r;:; 

0 

0 

0 

If:" r 

Then BB' = P+LLP~ = P+A+P~ = A, so Bis the required square root. D 
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The square root of A defined by (3.1.13) will be called a natural 

square-root of A; it is a q x r matrix; r is the smallest value which s can 

assume in a square-root B. Square-roots are uniquely determined, up to an 

orthonormal transformation: 

LEMMA 3.1.2. Let A be a real, symmetric n.n.d matrix of order q. Let 
B: q x s 1 and C: q x s 2 be two square-roots of A, with s 2 s 1 • Then there 

exists an orthonormal matrix U: s x s , such that 
2 2 

(3.1.14) C = (B O)U. 

PROOF. SRIVASTAVA & KHATRI (1979), p.20. 0 
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LEMMA 3.1.3. Let A be a real, symmetric n.n.d matrix of order q. Let Q be 

a q x q matrix. Let B be a square-root of A. Then the non-zero eigenvalues 

of QA and B'QB are the same. 

PROOF. Let A be a non-zero eigenvalue of QA with eigenvector p. Then 

QAp = Ap => QBB'p = Ap => B'QB(B'p) = A(B'p). It follows that A is also an 

eigenvalue of B'QB, with eigenvector B'p. 

Now, letµ be a non-zero eigenvalue of B'QB, with eigenvector q. Then 

B'QBq = µq => QBB'(QBq) = µ(QBq) => QA(QBq) µ(QBq). Soµ is also an eigen-

value of QA, with eigenvector QBq. D 

COROLLARY 3.1.1. Let Q and A be real, symmetric, n.n.d matrices of order q. 

Let Band C be arbitrary square-roots of A. Then 

i. The non-zero eigenvalues of B'QB, C'QC and QA are the same. 

ii. rank(B'QB) 

of QA. 

rank(C'QC) = r, where r = number of non-zero eigenvalues 

PROOF. i. Follows directly from lemma 3.1.3. 

ii. The matrix B'QB is a real, symmetric, n.n.d matrix. (It is the dis-

persion matrix of B'~, when~ has a q-variate distribution with dis-

persion matrix Q). The eigenvalues of B'QB are then non-negative. The 

rank of B'QB is moreover equal to the number of non-zero eigenvalues. 

The rest of the statement follows now from i. 

REMARK 3.1.1. It follows from corollary 3.1.1. that, when the eigenvalues 

of QA have to be calculated, we can always take the natural square-root of 

A, B, and calculate the eigenvalues of B'QB. When A is not of full rank, 

B'QB is of smaller order than QA. It may then be easier to compute the 

eigenvalues of B'QB instead of those of QA. Moreover, it may be an advan-

tage that B'QB is symmetric while QA is not. 

The following s x q matrix is often convenient 

(3.1.15) D d (I O ) 
s,q s q-s q > s. 

Note that, for instance 

(3.1.16) D AD' r,q r,q 
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. *) We shall also use the following (n+k) x (n•k) matrix of rank n+k-1 , 

(3.1.17) F 

( 

11. •• 1 00 •.. 0 • . • 00 ••• 0) oo ... o 11 .•• 1 ••• oo ... o . . . . . . . . . . . . 
00 ••• 0 00 ... 0 .•• 11 ... 1 

Ik Ik • • • Ik 

The linear space spanned by the column's of a matrix X will be denoted 

by M(X) and the linear space of solutions of the equation x1 = 0, the null-

space of X, will be denoted by N(X). Note that 

(3.1.18) !. E N(F), 
1 

where!. and 8 were defined in section 2.2. 
1 * 

LEMMA 3.1.4. Let A be a kXk matrix and Ban nxn matrix. Let the p'th 

eigenvalue of A be A and a corresponding eigenvector (p1 , •.• ,pk)'; 
p p p + 

let the T'th eigenvalue of B be µT and a corresponding eigenvector qT. 

Then the set of eigenvalues of the matrix A® B is equal to 

{xjx 1, ... ,k, T 1, ... ,n}. 

An eigenvector corresponding to the eigenvalue ApµT is 

PROOF. ANDERSON (1958), p.348. 0 

Note that in particular it follows from lemma 3.1.4. that the eigen-

values of A® B and B ® A are the same. 

LEMMA 3.1.5. Let A be a real, symmetric, n.n.d matrix of order q and rank 

r, and let A1 , ••. ,Ar be the positive eigenvalues of n~l A. With N as de-

fined by (2.2.28), the eigenvalues of A®N then are A1 , ..• ,Ar, all> 0, 

each with multiplicity n-1, and O with multiplicity q + (n-1) (q-r). 

*) The symbols n and k have, in later applications, the same meaning as in 

chapter 2; the symbol q will usually be n•k. 
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PR001::_. The eigenvalues of N are O and n~l with multiplicity n-1. The result 
now follows from lemma 3.1.4. D 

LEMMA 3.1.6. Let A be a real, symmetric, n.n.d matrix of order q with eigen-

values A1 , •.. ,Aq. Then 

(3.1.19) A q 

+ for each q x 1 vector x' . 

PROOF. SRIVASTAVA & KHATRI (1979), p.21. 0 

LEMMA 3.1.7. Let A be a real, symmetric, n.n.d matrix of order q. If 
-+ 00 -+ 

(xm)m=l is a sequence of vectors of q components such that xi:ixm + 00 as 

m+ 00 , then 

(3.1.20) 

+ + x'x mm 
lim- L 

m•- (~•A~)' 
m m 

PROOF. Let Al 2 A2 2 ••• 2 Aq 2 0 be the eigenvalues of A. If Al= A2 = ..• = Aq = 0 
+ + then x~Axm = 0 for each m and (3.1.20) follows immediately. So suppose 

that Al> 0. From lemma 3.1.6. it follows that, for each m, 

+ + ½ (x'x) 
mm 

+ + 
x'x s; __ m_m __ 

(;'A;)!, 
m m 

Because the lefthand-side of this inequality diverges to 00 , the righthand-

side necessarily also diverges to 00 D 

3.2. DISTRIBUTION OF QUADRATIC FORMS IN NORMAL VARIATES 

Various theorems are known about the distribution of quadratic forms 

in normal variates. However, most of the theorems concern necessary and 

sufficient conditions for such a quadratic form to be distributed as a 

(non-) central x2-distribution .. The following theorem gives the distribu-

tion of a n.n.d quadratic form in normal variates for the general case. 



This theorem is known for non-singular dispersion matrix L. We give a 

simple proof that includes the case of a singular L. 

-+ -+ THEOREM 3.2.1. Let x~N (µ,L). Let Q be a real, symmetric, n.n.d qxq 
- q -+ r -+ r 

matrix. Then there exist numbers r € lN , c € lR and vectors A € lR , w € lR 

such that 

r 
(3.2.1) -+ -+ \ 

~•Q~-c+ l 
T=l 

-->-

A (u + w ) 2 
T -T T 

with ~~Nr(O,Ir), i.e. ~ 1 , ... ,~r are independent and each has a standard 

normal distribution. 

Let B be an arbitrary square-root of L. Explicit values of r, c, ! 
and w may then be calculated from 

(3.2.2) r rank(B'QB), 

(3.2.3) Al 2:: A2 2:: ••• 2:: Ar are the positive eigenvalues of B'QB, 

If we furthermore denote the positive canonical reduction of B'QB by 

P + A+ P ~, we have 

(3.2.4) 

(3.2.5) 

-->-
w 
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The values of r, A1 , ••• ,Ar and care independent of the particular choice 

of square-root of L. 

PROOF. We first prove the existence of the four quantities r, c, ! and~-
-->-When B is a q x s square-root of L (BB' = L), the stochastic vector x may 

-+ -+ -+ 
be represented as x =µ+Bl, with i~Ns(O,Is). Then 

The matrix B'QB is a real, symmetric, n.n.d matrix, being the dispersion 
-->- -->-matrix of B's, when s ~N (O,Q). Taking r = rank(B'QB), it follows ·that 
- - q 

B'QB has exactly r positive eigenvalues and zero as eigenvalue of multi-

plicity s-r. Let the eigenvalues of B'QB be Al 2:: A2 2:: ••• 2:: Ar> Ar+l 
A 

8 
= O. Let P A P' = B 'QB be the canonical reduction of B • QB and let 
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PAP' be the positive canonical reduction of B'QB. 
+++ -+d -+ -+ -+ 

We now define v = P'i, or equivalently X _ P~, because PP' 
-+ -+ 

Ev 0, and 

-+ -+ 

-+ 
D(v) 

-+ 
D(P'tl 

-+ 
P'D{t)P P'I P 

s 
P'P I . 

s 

I . Then 
s 

So ~~Ns(0,Is). 
-+ 

dinates of v. 

-+d -+ -+ 
Take u = D v, sou is the vector of the first r coor-

Of course, ~~Nr(0,Ir). It follows that 

s 
I 

t=1 

because Ar+l = ... =As 0. 
-+ -+ 

For the second term, 2µ'QBi, we may write 

-+ 
with d' 

-+ 
µ'QBP. 

-+ 

d v T-T 

r 
I 

t=1 

Let P, be the eigenvector from P corresponding to the eigenvalue A,. 
-+ -+ 

The eigenvalues Ar+1 , ... ,As are equal to zero. Therefore B'QBP, = 0, for 

T = r+1, •.• ,s. Because Q is a real, symmetric, n.n.d matrix, we may write 

Q TT' for some square-root T of Q. We then have 

-+ 
T'BP, 

-+ -+ 
0 TT'BpT 

0 IIT'Bp /I 
T 

-+ o. 

Therefore, the last s-r column's of the matrix QBP contain only zero's, 

from which it follows that dr+1 = 

s r -+ -+ I I µ'QB;i: - d v - du 
t=1 ,-T t=l T-T 

Let w d /A for T T T T 1, ••. ,r, or 

-+ 
w 

Then it follows that 

-1 -+ A D P'B'Qµ + r,s 

d = 0. So we have 
s 



The first two terms together now give 

r 
I 

,=1 

r 
A u2 + 2 I T-T ,=1 

A w u . 
'[ '[-'[ 

If we add l~=l A,w~ to both sides, the righthand-side may be written as 
\'r A (u + w ) 2 . But 
l,=1 '-, ' 

r 
I 

,=1 
+ + w'A w + 

So we have finally 

,=1 
A (u +w ) 2 + µ'QBP A- 1P 1 B'Qµ '[ -, '[ + + + 

This establishes the existence of the quantities c, r, I and t, and 

the formulae (3.2.2)-(3.2.5). 
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We shall now show that r, c and I are independent of the particular 

choice of B. Let C be another square-root of L, and suppose that C is used 

instead of B. From corollary 3.1.1. it follows that rank(C'QC) rank(B'QB) 

= r, and furthermore that the non-zero eigenvalues of C'QC 
+ + \'r 2 same. Furthermore, because ~•Q~ <:'. 0 and l,=l A,<~,+ w,l <:'. 

+ + bility one), c is the 'minimum value' that ~•Q~ can assume 
+ 

and B'QB are the 

0 (with proba-
+ (u has a posi-

tive density in -w), which is of course independent of the choice of square 

root of L. This completes the proof. D 

+ + COROLLARY 3.2.1. Let x~N (0,L). Let Q be a real, symmetric, n.n.d qxq 
- q 

matrix. Then 

(3.2.6) 

PROOF. This follows from theorem 3.2.1. and lemma 3.1.3. D 

REMARK 3.2.1. For the matrix B of theorem 3.2.1., we may take the natural 

square-root of Las defined in section 3.1. 
+ That the vector w is not necessarily uniquely determined, and does not 

have to be, may be understood from the (obvious) fact that for r = 3 and 

Al A2 the r.v.'s 
2 2 2 

!1 Al (~1 + w1) + A2 <!:!2 + w2) + A3 (~3 + w3) ' and 
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d 2 2 2 
:'.:2 A1(~1-w2) +A2(~2+w1) +A3(~3-w3) 

have the same distribution. The non-uniqueness follows from the fact that 

the canonical reduction is not uniquely determined. (See remark 3.1.1.). 

All the same, it is possible to get the same t, even when using two 

different square-roots of E. Suppose that Chas been used instead of B, and 

that C is a q x t matrix with t;:,: q. C gives the same r, ! and c as follows 

from theorem 3.2.1. By lemma 3.1.2. there exists an orthonormal matrix u 

such that C = (B/O)U, or in greater detail, 

s 

C 

t-s 

s t-s s t-s 

Define V' = (u11 /u12 ). Then.C = BV' and V'V =Is.Also C'QC = VB'QBV' = 

= VP+A+P~V', where P+A+P~ is the positive canonical reduction of B'QB. 

It may easily be verified that VP+A+P~v• is "a" positive canonical reduction 

of C'QC. If we would have used this reduction for the calculation of w, 

then: 

So in this case thew's would be the same. 

The non-uniqueness of w is otherwise not very important, because what-

ever the choice of square-root of E and the choice of canonical reduction is, 

the resulting distribution is of course always the same. 

REMARK 3.2.2. When x has a positive density in 0, the minimum value that 

~•Q~ can assume is 0, from which it follows that the constant c, defined 

by (3.2.5) is equal to 0. Formally this can be verified as follows. When 
-+ -+ -+ x can assume the value 0, then, in the representation x =µ+Bl, the vec-

-+ -+ -+ -+ 
tor l can assume a value y such thatµ+ By= 0, orµ -By. It follows 

that 



-+ -+ y'B'QBy 

-+ 

y'P A P'P A-lP'B'QBy + + + + + + 
'---v-----' 

I 

-+ -+ y'B'QBy -+ -+ y'B'QBy o. 

REMARK 3.2.3. Although w does depend, in a way, on the choice of square-
-+ 

47 

root of r, certain functions of ware independent of it. Consider the case 

c = O. (We have c = 0 in our situation). We have 

and 

-+ -+ trace QL + µ'Qµ 
r I + + 

T=l \ + µ'Qµ 

r 
E I 

T=l 
:>- (u + w l 2 

T -T T 

r 
I 

T=l 
:>- + 

T 

r 
I 

T=l 

It follows that 

r 
(3.2.7) I 

T=l 

-+ -+ µ'Qµ 

Alternatively, this may be derived from (3.2.5). 

Another interesting identity, which we shall use is 

r 
(3.2.8) I 

T=l 

-+ -+ µ'QBB'Qµ -+ -+ µ'QLQµ 

The following theorem is closely related to the preceding one. It 

gives criteria for (3.2.1) to have a (non-) central x2-distribution, with-

out having to calculate eigenvalues and -vectors explicitly. Though it may 

be found (without proof) in various places, we quote it here for complete-

ness. The proof can be found in RAYNER & LIVINGSTONE (1965). The theorem 

is also given by RAO (1973). We quote JOHNSON & KOTZ (1970). 

-+ -+ THEOREM 3.2.2. Let x~N (µ,L). Let Q be a real, symmetric q x q matrix and - q 
assume that 

(3.2.9) trace QL r-/- 0. 

The quadratic form 
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(3.2.10) 

has a (non-) central x2-distribution iff 

(3.2.11) 

(3 .2 .12) 
-+ -+ -+ -+ 
µ'QEQµ = µ'Qµ, 

(3.2.13) 

The number of degrees of freedom is then 

(3.2.14) trace QE r E ]N 

and the non-centrality parameter is 

(3.2.15) 1 + + 2 µIQµ• 

PROOF. RAYNER & LIVINGSTONE (1965). 

r 
I 

r 
3.3. THE DISTRIBUTIONS OF l 

T=l 
A u 2 AND T-T T=l 

A (u + w ) 2 • T -T T 

tr 2 tr , 2 + + 
The distributions of lT=l AT::T and lT=l /\T <::T + WT) , with :: ~ N (0 ,Ir), 

A1 , .•. ,Ar E JR+ , w1 , ..• ,wr E JR have been studied extensively. The reader is 
referred to JOHNSON & KOTZ (1970), and KOTZ, JOHNSON & BOYD (1967a,b). 

We list here some of the facts that we used. Let 

r 
A (u + w ) 2 , Q, + + + I (3.3.1) Q<::,A,w) 

T=l T -T T 

d +++ (3.3.2) Q(::,A,0). 

Moments. 

r r 
(3.3.3) EQ, = I 

T=l 
A + I 

T T=l 
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r 
,2 

r · 2 2 (3.3.4) a2(fl.) 2 I + 4 I ;. w , 
T=l T T=l T T 

r 
A 3 

r 
A3W2 (3.3.5) µ3 (fl.) = 8 I + 24 I 

T=l T T=1 T T 

The moments of~ follow by omitting the terms containing wT's. If Al= A2 
Ar=1, the moments reduce to those of the (non-) central x2~distri-

bution. 

Asymptotic expansions. 

,;r 2 The distribution function of fl. - lT=l \ (~T + wT) , 

(3.3.6) 

may be represented in an infinite series of central x2-distributions 

(3.3.7) F(z;A;W) 
ex, 

I akP <x2[r+2k.]:,; i), 
k.=O 

with coefficients ak., recursively defined by 

(3.3.8) 

(3.3.9) 

(3. 3.10) 

(3.3.11) 

k. 1,2, ..• 

T = 1,2, •.. ,r, 

k. 1,2, ... 

x2[v] a r.v. with a x2-distribution with v degrees of freedom, and fl> 0 a 

suitably chosen constant. The choice of fl leaves some room to influence the 

rate of convergence of the series. A good choice is 

(3.3.12) fl 

so that IYTI < 1 for T = 1, •.. ,r. In our calculations in chapter 9 we 

always take fl as defined by (3.3.12). 

The series is uniformly convergent for any bounded interval of z > 0. 
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A bound for the error (EN(z)) resulting from the truncation of (3.3.7) 
after the N'th term is given by 

(3. 3 .13) 

for O < µ < 1 , and 

(3.3.14) 

f(~+N+l) 

r{~) (N+l) ! 
} { 

for µ > 1, f[v]is the density of the x2-distribution with \! degrees of free-

dom, while 

(3. 3.15) 
d 1 r 

µ 2 I 
T=l 

w2s 
T 

-A-+ max 
T 

11-f-1. 
T 

This expansion can fruitfully be used fo~ computer calculation, when 

a subroutine program for the x2-distribution is available. (See also the 

examples in chapter 9). 

Approximations. 

When no computer is available, the distribution of fZo may be approxi-

mated, using the same method as proposed in chapter 1, by an adapted x2-

distribution, i.e. the distribution of bx2[v], where band\! are chosen 

to make the first two moments agree with those of fZo, i.e. 

r 
"-2 

r 
(3.3.15) b I )/( I " T=l T T=l T 

r 
>21( 

r 
"-2 (3 .3 .16) \) = I A I ) 

T=l T T=l T 

An improvement is possible if we use a+bx2[v] instead of bx2[v]. We have 

in that case, 

(3.3.17) 

(3.3.18) 

r 
a = I 

T=l 

\) 

r 
I 
" T 

T=l 

r r 
I b I 

T=l T=l 
r 
I 

T=l 

However, for positive a, this approximation assigns the value O to P ( fZo 5: z) , 

for all O 5: z 5: a, so this approximation does not work well for small z. 
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The most simple approximation to the distribution of Q. is the distri-

bution of x 2[v,o2] with 

(3.3.19) V 

so that only 

(3.3.20) V 

(3.3.21) 02 

r 
I 

T=1 
A 

T 

the first 

1 2 Q -20 (_) 

1a2 (Q.) 

r 
I 

T=1 

moments of Q. and x2[v,o2] 

+ 2E(Q_l, 

- E (Q_), 

the first two moments of Q. and x 2[v,o 2J agree. 

agree. 

And when we take cx2[v,o 2] to approximate Q_, with 

(3.3.22) 
2a2 + /4a4-2µ3E 

C = 4E 

(3.3.23) 02 a2 - 2cE. 

2c2 

(3.3.24) E - 02, V 
C 

When we take 

then the first three moments of cx2[v,o 2] agree with those of Q.. (E 

a2 = a2(Q_), µ3 = µ3(Q_)). 

The last approximation, however, is only possible when 

(3.3.25) 

All these approximations necessitate the use of a table of the non-

central x2-distribution. The reader is referred to JOHNSON & KOTZ (1970), 

p.137, for a survey of existing tables and approximations of the non-central 

x2-distribution. 

We shall now prove a lemma concerning a slightly more general situation, 

but which we shall apply to the distribution of Q.. 

LEMMA 3.3.1. Let~ be a r.v. with an absolutely continuous distribution. 

Suppose that the density f of~ is symmetric with respect to O and that f 

is strictly decreasing, continuously differentiable and positive on [0, 00 ). 

Let ~1 , ... ,~r be independent and identically distributed as~- Let 
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:.\ 1 , .•. ,ArElR+' w1 , .•. ,wrElR, 3 {l }' w ,t O. TE , ••• ,r T 

The function 

r 
Hr(t,z) P( L 

T=l 
:.\ (u + tw ) 2 z), T -T T t 2 0, 

is then strictly decreasing in t on [ 0, 00 ) for each z E JR +. 

PROOF. Without loss of generality we may suppose that wT 2 0 for T = 1, ..• ,r, 

where at least one of the inequalities is strict. Let, for T = 1, ... ,r, 

with density gT(t,y) and distribution function GT(t,y), and 

d z -r 

r 
I 

T=l 
:.\ (u + tw ) 2 

T -T T 

with density hr(t,z) and distribution function Hr(t,z). 

we shall prove the lemma by induction. First consider the case r 1. 

We have 

So 

for z > 0, 

because f is symmetric w.r.t. 0 and strictly decreasing on [0, 00 ) and w1 ,t 0. 

It follows that H1 (t,z) is strictly decreasing in t for each fixed z > 0. 

Next, suppose that Hr (t,z) is strictly decreasing in t for each z > 0. 

Then we have for r+l, 

Hr+l (t,z) P (~r+l 5 z) = P (~r + Xr+l 5 z) 
z 

f g 1 (t,x)Hr(t,z-x)dx. 

0 



Now we have 

3Hr+l (t,z) 
:lt 

z 

f Hr(t,z-x) ;t g 1 (t,x)dx + 
0 z 

f g 1 (t,x) ;t Hr(t,z-x)dx. 
0 

3 Now g 1 (t,x) > 0 for x E [0,z] and at Hr (t,z-x) < 0 for fixed z-x by the in-

duction hypothesis. It follows that the second term is negative. 

For the first term we can write, using partial integration, 

z 

f Hr(t,z-x) ;t g 1 (t,x)dx 
0 

0 

z 

+ f 
0 

z 

+ f 
0 

hr(t,z-x) 3 at G1 (t,x)dx 

'-----y------' '--------,-----
> 0 < 0 

< 0 
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So Hr+l (t,z) is also strictly decreasing in t for each z > 0. It is left to 

the reader to verify that all operations used were permissable. 0 

3.4. MULTIVARIATE CENTRAL LIMIT THEOREM 

Because of the fact that in our problem the vectors ~i do not have 

identical distributions, we need a multivariate C.L.T. for unequal compo-

nents. The most general form of C.L.T. that we need is a theorem for tri-

angular array's. Because we have not been able to find a suitable reference 

in the literature, we give this theorem here with its proof. The proof is 

based on theorem's 27.2 and 29.4 of BILLINGSLEY (1979). The former is a 

Lindeberg-type C.L.T. for triangular array's of random variables, while 

the latter provides a standard way in which limit theorems for random vec-

tors can be derived from corresponding theorems about random variables. 

(The Cramer-Wold device). 
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THEOREM 3.4.1. Let (~m 1 , ... ,~m m) be a triangular array of q-dimensional 
t I + -+ 

random vectors such that for each m, the, vectors x 1 , ... ,x are indepen--m, -m,m 
dent, and, 

0 (3.4.1) Ex -m,i 

(3.4.2) D(x .) E m,i -m,1. 

Suppose that 

(3.4.3) lim .!-. ! 
m->-oo m i=l 

E . m,i 

and that for every £ > 0, 

(3.4.4) 

E ,f. 0 q 

i 

i 

1, ... ,m , 

1, ... ,m 

where F . is the distributipn function of x .. m,1. -m,1. 
Then 

(3.4.5) x . + N(0,E), -m,1. as 

0 

PROOF. Let 1 ( :.\, ... , Aq) ' be an arbitrary q-dimensional vector. Define the 

following random variables 

Then (y 1 , .•• ,y ), m = 1,2, ... is a triangular array of one-dimensional -m, -m,m 
random variables with the following properties for each m and i = 1, ... ,m: 

i. the variables y 1 , ... ,y are independent; -m, -m,m 

ii. 

iii. 

Elm,i 

o2(y . ) -m,1. 

EA'X . 0; -m,i 
o2 c1·~ .) -m,i 

Define 

2 d s = m 

m 
I 

i=l 
o2(y . ) -m,1. 

Note that (3.4.3) gives 

A'E A m,i 

m 
A I ( l 

i=l 



2 
s 

lim ~= 
ill"*°" m 
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+ 1 + ;\' (lim - l I: . ) ;\ 
ill"*°" m i=l m,i 

We shall proceed to show that the Lindeberg-condition of theorem 27.2 

of BILLINGSLEY (1979) is satisfied for the just defined variables ~m,i" Let 

Gm,i be the distribution function of ~m,i" Then we have, by the Cauchy-

Schwartz inequality, for every E > 0, 

1 m 
I 2 i=l s m 

,;; _!_f,t 
2 s m 

JWt 
2 s m 

2 
y dG . (y) m,i 

> ES 
m 

f 1t,;1 > ES 

m 

f 1t,;1 
I 

i=l 

m 
I 

i=l 

+ + + 2 (;\'x) dF . (x) m,i 
,;; 

m 

++ + (x'x)dF . (x) m,.1. 
> ES m 

ll;ll 2
dF .(;)_ m,i f 11,;1 > ES m 

For every E > O, there exists a E' > 0, such that for sufficiently large m 

(m~m• (E)), 

So we have, for m m' ( E) , 

+ 2 m 

f ,t,;1 
fil ! I 
s2/m m i=l m > ES m 

+ 2 m 

f 11;t11 
,;; fil ! I 2 m 

sm/m i=l > E'lrn 

Now, f is fixed, s 2/m converges to a constant which may be taken to be un-
m 

equal to zero (treat the case f•I:f = 0 separately). With (3.4.4) it then 

follows that, for every E > 0, 
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1 m 
lim 2 L 
m-+oo s i=l 

m > E:S 
m 

2 . 
y dG . (y) m,l 0 • 

Applying the above mentioned theorem 27.2, it follows that 

1 m 
2 L lm,i + N(0,1) 

s i=l 
m 

as m+ 00 , for every 1ElRq. If we take i~N(6,l::), this result may be written 

as 

m 
2-

2
t•c ~; .> ~--1-~t,; l m l. -+ -+ ½ 

s i=l - ' (;\IL\) 
m 

as m + 00 , for every 1 E lR q. 

Because s /rm+ (1•i::1)\ m 

as m+ 00 , for every 1 E lR q_ 

as m + 00 , we have also 

The proof is now completed with theorem 29.4 of BILLINGSLEY (1979), 
+ which states that x -m 

L+ ++ 
+ X iff A 1 X -m 

t,; for each 1 E lR q_ D 
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CHAPTER 4 

CONSISTENCY, ASYMPTOTIC DISTRIBUTIONS AND POWER 

4. 1. CONSISTENCY 

A sequence of level-a tests {tp } is consistent against a fixed alter-. -m,Q 
native a.EA (cf. section 2.3.), iff for m-+ 00 

(4.1.1) 

It is desirable that (4.1.1) holds for each a·E (0,1), so we shall call 

{pm,Q} consistent only if this is the case. 

The class of alternatives against which {pm,Q}, based on ~(Q) -

is consistent depends on the choice of Q. In this section we shall determine 

this class. 

In section 4.3. we shall prove that, under H0 and assumption 1, the 
-+ -+ 

distribution of !;Q!* converges to a fixed distribution. It follows that 

the sequence of critical values {k1_a(m,Q)} is at least bounded. Therefore 

(4.1.1) holds for every a E (0,1) iff 

(4.1.2) for each M E JR • 

THEOREM 4.1.1. A necessary and sufficient condition for {pm,Q} to be con-

sistent against a fixed alternative a.EA, is that 

(4.1.3) 

for this alternative. 'l'he class of alternatives for which {tp Q} is con--m, 
sistent forms a subclass of A1• 

PROOF. The test {(j) } is consistent against a.EA iff (4.1.2) holds. From 
-m,Q 

the Cantelli inequality (RAO (1973)) it follows that for a sequence of ran-

dom variables {rm}, 
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(4.1.4) for each M E JR 

iff 

(4.1.5) and 

First suppose that not lim 8'Q8 = 00 • This means that 8'Q8 has a 
m-+= * * * * 

finite limit point, dz 0, say. If we take y t•Qt , with E y = 
-m -* -* a-m 

trace QL1 • + 8;Q8*, there exists a subsequence {y~}==l' such that 

(4.1.6) Ey trace QL1 + d < 00 • 

-~ 

So (4.1.5) is not satisfied for this subsequence, and therefore 

limm-+= P (ym z M) does not exist. It follows that {(() Q} is not consistent. 

Next, suppose that lim 8'Q8 = 00 With u = t - 8 , we have 
m-+= * * -* -* * 

(4.1. 7) 

d -+ + + + + -+ 2 + + 
Take this time Ym = 2o;Q~* + o;Qo*, then Eym = o;Qo*, o (ym) = 4o;QL1 .Qo*, 
and it follows from lemma 3.1.7. that (4.1.5) is satisfied. The consistency 

now follows from 

(4.1.8) 

which is true because Q is n.n.d, and therefore ~;Q~* 2 0 with probability 

one. 

Furthermore, 8'Q8 00 implies 8'8 00 by lemma 3.1.6. This completes 
* * * * 

the proof. D 

THEOREM 4.1.2. A sufficient condition for{(() Q} to be consistent against -m, 
each alternative in A1 , is that Q is non-singular. 

PROOF. When Q is non-singular, all its eigenvalues are positive. It follows 

from lemma 3.1.3. that then 00 => 00 • The proof is completed 

with theorem 4.1.1. D 

The question naturally arises now if there exist a Q and an a E A1 for 

which o;Qo* f 00 • The above theorem shows that Q has to be singular if this 
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is to be true. A trivial example is furnished if we take Q In 0 lk, with 

rank n, because 5'Q5 = 0 (t'Qt = 0) for each m and each a E A1 for this * * -* --A 
choice of Q. 

A more important question is the following. Does there exist, given a 

singular Q, an alternative a E A1 for which 5'Q8 f 00 , i.e. an alternative 
* * 

for which {(l) Q} is not consistent. The answer is: not always; there are -m, 
singular matrices Q such that {(l) Q} is consistent against all alte·rnatives -m, 
in A1 . 

Recall that the vectors 8. and 5 are elements of the null-space N(F) 
l * 

of the matrix F defined in section 3.1. Conversely, under certain circum-

stances, any element of N(F) may, apart from a constant factor, occur as a 

vector 5., as follows from the following lemma. 
l 

LEMMA 4. 1.1. Let n 2 k 2 4. Let i be an arbitrary element from N (F) • Then for 

any experiment Ei, with ai 1 > 0, ai2 > 0, ... , aik > 0, there exist constants 

lli 1 , ... ,lliN. , and a constant c, such that 
l 

(4.1.9) o = n/c Et .. 
-i 

PROOF. For the experiment Ei, with ail > 0, ... , aik > 0, we have if n 2 k 2 4, 

N. 
l 

n(n-1) ... (n-k+2) 2nk+1. 

Introduce the variables x 1 , ... ,~ and solve the following nk + 1 equations 
i 

(1) (1) (2) (2) (n) (n) , 
(writing n = (n 1 , ..• ,nk ,n 1 , ... ,nk , ... ,n_1 , ... ,nk l J. 

N. N. 
l (V) l l tiJ. (11ir)xr, l x 

r=l r=l r 
0. 

Because the number of variables (Ni) exceeds the number of equations (nk+l), 

there is always a solution. 

Next, choose a constant c such that the solutions xr satisfy 

1 
N. 

l 

Then we may take llir 

1 - ..l_ 
N. 

l 

xr/c, from which follows that E~i 

We then have the following theorem. 

t. 
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THEOREM 4.1.3. Let n::C:k:CC4. Let Q be a singular (real, symmetric and n.n.d) 

nk x nk matrix, with rank Q < (n-1) (k-1). Then there exists an alternative 
+ + + -r a E A1 such that lim o' o = 00 , but lim o ·Qo = 0. 

m+oo * * m+oo * * 
PROOF. Because rank Q < (n-1) (k-1), N(Q) n N(F) cf (o}. So take-;;- E N(Q) n N(F), 
+ + 
n cf 0. By lemma 4.1.1., there now exist constants c and ~i 1 , ... ,~iN. and an 

associated experiment E. such that Ef. = n/c 8. _ 1 
l -l l 

Also 6. EN(Q) nN(F). It follows that 
l 

but 

m + + 
2 n'Qn 
C 

0 

m + + 2n'n+oo, 
C 

for each m, because 1 E N (Q) . 0 

This theorem shows that, if the test is not directed against a very 

specialised alternative, test-statistics with a matrix Q with rank smaller 

than (n-1) (k-1) should be avoided, because there are then always alterna-

tives that cannot be detected. 

When rank Q is larger than or equal to (n-1) (k-1), two different 

situations can occur. We show, by examples, that it is possible that there 

still is an alternative for which{(!) Q} is not consistent (example 4.1.1) -m, 
and it is also possible that, even though Q is singular, {~m,Q} is consis-

tent against all alternatives in A1 (example 4.1.2). 

EXAMPLE 4.1.1. Taken= k = 4. Choose a sequence E1 , E2 , ... with ail> 0, 

ai 2 > 0, ... , aik > 0. Define a c and ~il, ... '~iN. such that 

t. 
l 

d + Et. 
-i 

l 

C(1,-1,0,0;-1,1,0,0;0,0,0,0;0,0,0,0) I 

This is possible by lemma 4.1.1. This defines an alternative a to H0 with 

as m + 00 , 

so a'° A1 . 

Take 
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1 1 0 0 1 1 

1 1 0 0 1 1 

0 0 1 0 0 0 06,10 0 0 0 1 0 0 

Q 
d 1 1 0 0 1 1 

1 0 0 1 1 I --- -1-
0 10,6 I 1 10 

Q is a real, symmetric, n.n.d matrix of order 16, with rank 13, which is 

larger than (n-1) (k-1) = 3•3 = 9. Obviously 8'Q8 = 0 for each m. It follows 
* * 

that for this particular alternative {W Q} is not consistent. -m, 

EXAMPLE 4 .1. 2. Take n 2: 2 and k 2: 2 arbitrary. Let 

Q d 

Obviously, Q is a real, symmetric, n.n.d matrix of order nk, with rank 

nk-k > (n-1) (k-1). Consider an arbitrary alternative a E A1 . Now 

n-1 k 
(4.1.10) I I 

v=1 j=l 

Because a E A1 , we have !;!* + 00 , so at least one component of 8* must (in 

absolute value) tend to infinity. Due to the linear relationships 

o*+(v) 0 for all v, and o . (+) = 0 for all j, this means that . *J 
i. at least four components must in absolute 

ii. those four components cannot all be among 

It follows that at least two terms of the sum 

finity, and so 8'Q8 + oo. 
* * 

Because a E A1 was arbitrary, we have 

value tend to infinity; 
• (n) • (n) • (n) 
u*l ,u*2 , ... ,u*k 
(4.1.10) must tend to in-

for each a E A1 . 

From theorem 4.1.1. it then follows that {W Q} is consistent against each -m, 
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4.2. ASYMPTOTIC MULTIVARIATE NORMALITY 

->-In this section we shall establish the asymptotic normality of!*, 

under the assumptions 1 & 2 of section 2.3. Under these conditions, the 
-->-

dispersion matrix of!* converges to a limit as m->-

Recall that 

(4.2 .1) Ll 
d lim Ll· 

-->-lim D(t ) , 
m-+oo m-+oo -* 

(4.2.2) LO 
d lim LO· lim n(tlHoJ, m-+oo m-+oo 

(4.2.3) 8 8 -->-lim lim Et m-l-<X> * m-+oo -* 

-->- d 8 (4.2.4) r; lim 
m-+oo . 

THEOREM 4.2.1. Under the assumptions 1 & 2 of section 2.3., we have for 

m-->- 00, 

(4.2.5) 

-->- ->-
PROOF. ~l' ~2 , ... 

->-
vectors, with E~i 

is a sequence of independent n x k dimensional random 
-->- -->-= O and dispersion matrix D(~i) 

assumptions 1 & 2 we have 

->-

->-D(t.). Under the 
-l 

lim 1 ! 
m-+oo m i=l 

->-D(u.) 
-i lim D(!*l = Ll. 

m-+oo 

Because there exists a constant c, such that IJ ;:r_ II 
2 

:o:; c with proba-
-i 

bility one, for i = 1,2, ... , the 'Lindeberg' condition of theorem 3.4.1. 

is trivially fulfilled. (Adaptation of theorem 3.4.1. to ordinary sequences 

of random vectors is straightforward). Therefore, all the conditions 

of theorem 3.4.1. are fulfilled and the result follows. D 

COROLLARY 4.2.1. Under the assumptions 1 & 2 of section 2.3. and HO, we 

have form->- oo, 

(4.2.6) ->-

PROOF. Under H0 , 8 



COROLLARY 4.2.2. Under the assumptions 1 & 2, we have for alternatives in 

A2 u A3, 

(4.2.7) 

t t PROOF. Because !* = ::* + *' ::* + N(O,I:1) by theorem 4.2.1., * by 

assumption 2, the result follows from a Cramer-type theorem. D 

For contiguous alternatives we have the following theorem. 

THEOREM 4.2.2. Under contiguous alternatives, as defined in section 2.4., 

we have 

(4.2.8) 

PROOF. The proof is analogous to the proof of theorem 4.2.1., this time 

using the triangular-array method explicitly. D 

4.3. ASYMPTOTIC DISTRIBUTION OF THE TEST-STATISTIC 
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In this section we derive the asymptotic distribution of ~(Q) =!;~Q!*· 

THEOREM 4.3.1. Under H0 , under alternatives from A2 uA3 and under contig-

uous alternatives, we have 

(4 .3 .1) 

where 

(4.3 .2) X N(o,r:0 >, under HO; 

N(6,L1), under alternatives from A2 u A3 ; (4.3.3) 

N(>'n !,LO), under contiguous alternatives. (4.3.4) 

L 
PROOF. In all three cases we where x has one of the distri-

butions (4.3.2) - (4.3.4). Because (.) 'Q(.) is a continuous function, the 

result follows. D 
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+ + 
Note that the distributions of ~•Q~ follow from theorem 3.2.1. 

For alternatives in A1 , the situation is somewhat different. Although 

{<:f>m,Q} is consistent against a E A1 when °t;Q8* + 00 , the asymptotic distribu-

tion (a.d.) does not exist in all cases. We shall give some examples where 

the a.d. does exist. 

THEOREM 4.3.2. For alternatives in A1 , ~(Q) 
+ + - !;Q!* has the following a.d. 

(4.3.5) 
t'Qt - 8'Q8 -* -* * * 

m 

where 

(4.3.6) 

PROOF. From (4.1.7) it follows that 

tQt - °t;Q!* 
Im 

+ + 
From theorem 4.2.1. it follows that~*+ N(O,L1). As in theorem 4.3.1., 

;;Q;* then converges to a fixed distribution. Therefore m-½<;;Q;*) 0. 
-r + -r+L++ + + 

Furthermore, from a.+~ it follows that 20:Q~* + 2s'Q~, where x N(O,L1). 
+ + 

The result follows from E(2s'Q~) = 0 and cr2 (2s'Q~) = 4s'QL1Qs. 0 

Note that in many cases cr2 , defined by (4.3.6), is equal to zero. The 

a.d. of ~(Q) is then degenerate. Other transformations may still yield a 

proper a.d., as is illustrated by the following theorems. Let 

(4.3.7) 

THEOREM 4.3.3. For alternatives in A1 , and matrices Q such that a;+ 0, 

v(Q) _ t•Qt has the following a.d. - -* -* 

(4.3.8) 

+ where x 

+ + 
PROOF. Because cr; + 0 and~*+ N(O,L1), the result follows from the iden-

tity (4.1.7). D 
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2 + + Note that am+ 0 implies that 4~'QL1Q~ 0, so the situation of theorem 

4.3.3. is not covered by tpeorem 4.3.2. 

THEOREM 4.3.4. For alternatives 

and limm-i-= 8*/am exists, ~(Q) _ 

in A1, and matrices Q such that a2 + oo 

+ + m 
!;Q!* has the following a.d. 

(4.3.9) 81Q8) + N(0,1). 
* * 

PROOF. From (4.1.7) it follows that 

+ + 
Because ~;Q~* converges to a fixed 

-1+ + p 
distribution, a u'Qu + 0. Furthermore 

m -* -* -18 + -h + h + 
E(2a o'Qu) = 0 and a 2 (2a- o'Qu) 

m * -* m * -* 
verges because lim a- 18 exists 

= 1. The random variable 2am ;Q~* con-

m-i-= m * 
+ and u -* 

THEOREM 4. 3. 5. For those alternatives in A1 , for which limm-+<><> 8 */ /I 6 * IJ 
+ + 

exists, ~(Q) _ !;Q!* has the following a.d. 

(4.3.10) 

where 

(4.3.11) 

PROOF. The proof is analogous to the proof of theorem 4.3.4. D 

REMARK 4.3.1. Until now we have assumed Q to be a fixed, real, symmetric, 

n.n.d matrix. However Q may depend on m (we shall write Qm in that case) 

without affecting the results, provided that 

(4.3.12) Q 

exists, and Q is a real, symmetric, n.n.d matrix. 
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4.4. POWER OF THE TEST 

After having examined the consistency of{~ } and having determined 
-m,Q 

the asymptotic distributions of ~(Q), we shall now investigate the power of 

the test. We shall consider the exact power (for finite m), the asymptotic 

power and the asymptotic power under contiguous alternatives. The latter 

may be considered as an approximation to the exact power for finite m; we 

shall give a lower-bound for it, which can be calculated easily using only 

the table of the standard normal distribution. 

Furthermore we shall investigate to what extent we can use the power 

to select a useful Q-matrix. 

Recall that the critical value of the test was defined in (2.2.12). 

The exact power of <f>m,Q for a specified alternative a.OE A is then, ·by 

definition 

(4.4 .1) 

Because it is almost impossible (except for small m) to determine the exact 

distribution of !~Q!*, neither the critical value k 1_a(m,Q), nor the exact 

power of the test can be determined. In practice therefore, an approximate 

value is chosen for k 1_a(m,Q). This might be k 1_a(Q), defined by 

(4.4.2) et, 

i.e. the critical value of the asymptotic distribution of !;Q!*· It might 

be x2
1_a[v], with the degrees of freedom, v, properly chosen. Or it might 

be a critical value resulting from some other practical approximation to 

the distribution of !~Q!* under H0 . The possible ways of determining a 

practical critical value are described in chapter 9. Let k be any critical 

value determined in one of those ways. The exact 'practical' power of the 

test, against a. O E A, 

(4.4.3) 

still cannot be determined, except for very small m. However, it may be 
0 

estimated by simulating the distribution of !~Q!* under a. E A with the 

aid of a computer. Some examples of this simulation can be found in chap-

ter 9. 



The asymptotic power, 

(4.4.4) 

is equal to 1 for consistent tests, and is apparently not a good approxi-

mation to the exact power for finite m. 
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Therefore, to obtain an approximation to (4.4.3), we shall pro·ceed as 

follows. Suppose that a fixed number m0 > 0, of experiments (E 1 , ••• ,E ) 
mo 

have been performed, with 

(4.4.5) 

under the alternative a.0 EA, which is determined by 

(4.4.6) 

-Because only the first m0 co9rdinates of a.Oare of interest for the cal-

culation of (4.4.3), we shall compare the experiment with the following 

infinite sequence of experiments 

(4.4.7) 

with associated a vectors 

(4.4.8) 

and under the alternative from A1 , 

(4.4.9) a. 

This infinite sequence of experiments clearly satisfies assumptions 1 & 2. 

To stress the dependence of 8. and 8 on the particular chosen alter-
i . 

native, we shall write 

(4.4.10) t. (a.) 
l 

if we mean the vector 8. computed from the i'th component of a., and 
l 
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(4 .4 .11) 

likewise. 

Now consider the particular contiguous alternative, derived from a E A
1

, 

(4.4.12) 

It follows from theorem 4.3.1. that 

(4.4.13) 

where Pc means that the probability is calculated under the contiguous al-

ternative (4.4.12). 

We shall take (4.4.13) as an approximation to (4.4.3). The, intuitive, 

motivation is the analogy with usual statistical practice. The motivation 

is supported by the following facts. Notice that 

(4.4.14) + 
;;;(a) 

and likewise, 

(4.4.15) 

so that !(a) and L0 (a) are equal to the corresponding quantities, calculated 

for the first m
0 

experiments. Furthermore, the exact expectation of the test-

statistic for the m0 experiments is equal to 

(4.4.16) 

while 

(4.4.17) 
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and 

(4.4.18) 

It follows that at least the non-centrality parts of the exact expectation 

and of the expectation of the approximation are equal. This motivates the 

choice of this particular contiguous alternative (4.4.12). 

From theorem 3.2.1. it follows that (4.4.13) is equal to 

(4.4.19) 

with ~~N(0,I), LO= BB', r = rank B'QB, :\ 1 , •.. ,Ar the (positive) eigen-
+ -1 

values of B'QB and w = A+ P~B'Qs(a). The reader is referred to section 3.2. 

for details. The asymptotic expansion of KOTZr JOHNSON & BOYD (1967b), as 

described in section 3.3., may be used for the actual calculation of 

(4.4.13) (or (4.4.19)), or any approximation to this distribution. Some 

examples can be found in chapter 9. 

For all these calculations a table of the non-central x2-distribution 

or the aid of a computer is necessary. (The approximations involve the non· 

central x2-distribution). 

However, there exists a lower-bound for (4.4.13) that can be calculat-

ed easily . It follows from the following theorem. 

THEOREM 4.4.1. Let u~N(0,I ), A1 , ... ,A EJR , w1 , ... ,w EJR u'{b}, then - r r + r + 
r 

(4.4.20) P( I 
T=l 

A (u + w ) 2 
T -T T 

-vrz - v2 
s z) s P( W s us 

2 v£ - V ), 
w 

where 

r 
V { I 

and ~ N ( 0 , 1 ) • 

PROOF. 

r 
P( I 

T=l 

T=l 

A (u + w ) 2 s z) 
T -T T 

r 
w { I 

T=l 

r 
P( I 

T=1 

By the Cauchy-Schwartz inequality we have 

r 
A w u + I 

T T-T T=l 

'r/ z 0. 

>.. w2 s z). 
T T 
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r 
I :>.. w u ,2 

r 
~u ~w ) 2 r 

:>.. u2 ) ( - I $ I T T-T T-T TT T-T T=1 
r 

Writing v { l 
T=1 

r 
p ( I 

T=1 

T=1 
r 

:>.. w2}½ and W = { I T T 

:>.. u2 + 2 T-T 

r 
I 

T=1 

T=1 

:>.. w u T T-T 

T=1 

:>..2w2}!:; 
T T ' we have 

r 2 + I :>.. w $ z) = 
T=1 T T 

P(V2 r 
I 2 r 

+ v4 zv2) + 2V I " w u $ T T-T 

$ 

T=1 T=1 
r 

P( ( I 
r 

:>.. w u ) 2 + 2v2 l T T-T T=1 T=1 
r 

P({ I 
T=1 

r 2 p (-viz s I :>.. w u + V 
T=1 T T-T 

v2 
r 

P(-vlz - $ I :>.. w u 
T=1 T T-T 

-viz - v2 viz -
P( W $ u $ w 

where ~ N ( 0, 1) • D 

$ viz) r 

$ viz -·v2) 

2 
V ) ' 

When we apply theorem 4.4.1. to (4.4.19) we get 

(4.4.21) 
r 

P ( l :>.. (u + /2u0w ) 2 
:?: k) :?: 

T=l T -T T 

-£vv'k - m v 2 -
1 P( 0 0 

m0v 
:?: - $ u $ 

-Vvk - £v2 Vvk -0 1 - P( W $ u $ ) - w 

$ 

2 
) 

r 
I :>.. w2). T T T=1 

From remark 3.2.3. and (4.4.14), (4.4.15) it follows moreover that 

(4.4.22) 

(4.4.23) 

Therefore, it is not even necessary to calculate the >..T's and wT's to de-

termine this lower bound (the righthand side of (4.4.21)) of the power of 

the test for finite m0 • 
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Notice that this lower bound may also be used to make a quick estimate 

of the number of observations necessary to achieve a given power against a 

given alternative a0 EA. 
The last question that remains to be answered is whether we can use 

the approximation to the powerfunction to select an 'optimal' Q-matrix. 

There are two approaches to this problem. Suppose that we have a fixed al-

ternative a0 EA and a fixed m0 , so that °t(a) and E
0

(a) are fixed arid known. 

We would then want to select the matrix Q that gives the highest power 

against this alternative. Alternatively, suppose that the number of obser-

vations is not fixed in advance, and that we want to achieve a given power 

against a0 • We then would select a matrix Q that would need the least ob-

servations to do this. However, the alternative a as defined in (4.4.9) 
+ 

would then depend on m0 , and so also ,(a) and E0 (a). The situation.is then 

rather complicated. Both approaches may not be equivalent. 

We do not pursue this problem here any further, because we come back 

to it in the next chapter. 

However, one step towards simplification of .matters can already be 

made. In order to keep the critical value k (exact, or resulting from some 

approximation) in the neighbourhood of the critical values of the x2-dis-

tribution, we shall choose Q, without loss of generality, in such a way 

that for the a.d., 

r 
(4.4.24) I ;\ r rank B'QB 

T=1 T 

where BB' = LO. 

4.5. ASYMPTOTIC DISTRIBUTIONS IN THE UNCONDITIONAL CASE 

Although the unconditional version of our test-statistic, previously 

defined (in (2.5.26)) as 

(4.5.1) 
d 1 

:'.!:(G) = iii 

is unfit to be used as a test-statistic, it is nevertheless interesting to 

investigate its asymptotic distribution. To this end we introduce similar 

notation as in section 2.2. (See also section 2.5.). Let 

(4.5.2) 
• (V) d (v) _ ~ij 
x.. x .. -iJ -iJ n 
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(4.5.3) 

With Q In® G, or a more general Q, ~(G) may be written as 

(4.5.4) 

Let 

(4.5.5) £ •• ( V) Ei .. ( V) _ p { V) 
iJ -iJ - ij 

Define£. as o. in (2.2.16). Then 
i i 

(4.5.6) 

* I * which reduces, under H0 , to E(~* H0 ) = 0. Let 

(4.5.7) 

(4.5.8) 

The entries of 1i and Oi may be found from 

(4.5.9) 

(4.5.10) 2 • (v) I * n-1 2 
cr (~ij HO) = 7(pij - {pij} ) ' 

(4.5.11) 
• (v) • {v) n-2 (v) (v) 1 (µ) (µ) 

cov(x.. ,x. 1 ) = --(-p.. p. 1 ) + - 2 l (.-p<. P; 1 ) , 
-iJ -i n iJ i n µ=l ~J 

(4.5.12) (j;,11), 

and the independence of the variables x .. {v) (with respect to the indices i -iJ 
and v). 

Furthermore, let 



pi 1 ( l-p i1) -p i1 P i2 

-pi2pi1 pi2(l-pi2) 

(4.5.13) d n-1 
L. = --

1. n 

then 

(4.5.14) 

(4.5.15) 

. * We shall obtain the a.d. of ~(Q), under a
0

, under the following 

assumption. 

ASSUMPTION 3. 

(4.5.16) 

(4.5.17) 

Furthermore, we shall consider alternatives that satisfy 

ASSUMPTION 4. 

(4.5.18) 

(·4.5.19) 

(4.5.20) 

where I c:. (V) I may be 00 

J 

(V) 
€, 

J 

(say), 

(say). 

(say), 

(say), 

(say), 
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Let the vector 1, with components c:j (v) be constructed as in (2.2.16). 

REMARK 4.5.1. The remarks that we have made on the plausability of the 

assumptions 1 & 2 in section 2.3. apply here also. Notice that assumption 

* 4 & H
0 

imply assumption 3. 
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(v) ' ( •) (v) ( •) 
From (4.5.18) it follows that lim~ P.j -p•j pj -pj 

. (V) ( •) ,(V) 
For those j and v for which p. -p. ,J 0, the£. of (4.5.19) satisfy 

J J J 

I£. (V) I = 
J 

+ + (v) (•) 
and hence £' £ = co. Only when pj - pj = 0 for each j and v 

we can have 1£. (v) I < 00 for each j and v, or;,;< co. However in that case 
J * the alternative clearly converges to H0 , and is not very interesting to us. 

So we shall consider mostly alternatives for which;,;= co, being the equi-

valent of the class of alternatives for which 8'8 =coin the conditional 

case. For the sake of completeness, some results are also given for the case 
++ 

that £ 1 £ < 

Under the assumption 3, we have 

(4.5.21) 

while under assumption 4, the following limits exist 

+ (4.5.22) lim m+co D(x) -* l:i,m~ 1. ~1 , 

+ + + 
(4.5.23) lim Ex lim £ £. m+co -* * 

It is again useful to define 

(4.5.24) 
+ d + + z. x. - £. 
-1. -1. 1. 

THEOREM 4.5.1. Under the assumption 4, we have for~, 

(4.5.25) 

PROOF. The proof is analogous to the proof of theorem 4.2.1. D 

* COROLLARY 4.5.1. Under assumption 4 & H0 , we have for~, 

(4.5.26) 

PROOF. As in corollary 4.2.1. D 

++ 
COROLLARY 4.5.2. Under the assumption 4, we have for £ 1 £ < co, 

(4.5.27) 

(say), 

(say), 
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PROOF. As in corollary 4.2.2. 0 

* THEOREM 4.5.2. Under assumption 4 we have, under H0 and under alternatives 

such that E'E < 00 , 

(4.5.28) 

where 

* (4.5.29) X N(0,E 0 ), under HO, 

(4.5.30) X N(E,E 1>, under alternatives such that E'E < 00 

PROOF. As in theorem 4.3.1. D 

When we consider a sequence of experiments Ei, E2, ... with probabili-

ties p .. (v) that satisfy assumption 4, it is a natural question to investi-
iJ . 

gate whether from assumption 4 it follows that the limits of the quantities 

of assumption 1 & 2 exist (or at least almost surely, because these quanti-

ties are now random variables). While assumption 4 is sufficient to ensure 

the convergence of the distributions in the unconditional case, it is not 

sufficient to ensure convergence in the conditional case. we then need an 

additional assumption, which, however, is as plausible as the others, 

because it also involves the convergence of the arithmetic mean of a 

sequence. See also the remarks in section 2.3. 

ASSUMPTION 5. For all j, 1, V andµ the following limits exist 

(4.5.31) 
m 

lim 1 l (p .. (v) (v)) (p,1(µ) -p•l(µ)) 
m i=l iJ - P.j 

(say). 

Assumption 1 is implied by the assumptions 4 & 5 in the sense of the 

following theorem. 

THEOREM 4.5.3. Consider a sequence Ei, E2, ... satisfying assumptions 4.& 5. 

Then 

(4.5.32) 

(4.5.33) 

a.s. -
1 2 a.s. 

l (a .. -a.) --,. 
m i=l -iJ -•J 
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(4.5.34) 
a.s. --

(j;ll). 

PROOF. The results follow with the strong law of the large numbers (RAO 
2 2 2 2 (1973), p.114) and the fact that cr (a .. ), cr (a .. ) and cr (a .. a. 1 ) are all 

-iJ -iJ -iJ-i 
bounded, uniformly in i. D 

For the first part of assumption 2 we have an equivalent theorem. 

THEOREM 4.5.4. Let E1, E2, ... be a seqwence satisfying assumptions 4 & 5. 

Then 

(4.5.35) 

(4.5.36) 

(4.5.37) 

o (v,µ) 
-•jl 

a.s. -
a.s. -

(v,µ) (v) (µ)_';'\'( (v,µ)+ (v) (µ)) 
eJ.l + pJ. pl' l l e.l p. pl 

v;lµ J J 

1 n (v) 
n z: pj 

v=l 

PROOF. As in theorem 4.5.3. D 

In the second part of assumption 2, (2.3.4), it is assumed that 

lim o . (v) = o. (v), where jo. (v) I may be 00 • We have 
m+oo *J J J 

THEOREM 4. 5. 5. Let E 1, E2, . . . be a sequence satisfying assumptions 4 & 5. 

For each pair (j,v) such that 

(4.5.38) 

we have 

(4.5.39) 

PROOF. The result follows directly from (4.5.37) and (4.5.38). D 



77 

It is, 

convergence 

the test in 

(v) (•) . 
however, possible that p. = p. for some J and v. The a.s. 

·J J 
of o . (v) is then not guaranteed. But, for the consistency of 

-*J 
the conditional situation it is sufficient that 616 = oo. We 

shall·now show that (2.5.18) is sufficient to ensure, the consistency of the 

test. 

THEOREM 4.5.6. A sufficient condition such that 

(4.5.40) 

is that 

(4.5.41) 3. 
JV 

a.s. -
1 m (V) ( •) I Tm I (p. . - P. . > I 
m i=l iJ iJ 

oo 

PROOF. Consider a j and V for which (4.5.41) holds. Take x. o .. (V), 
-i -lJ 

d (v) ( •l d µ - p p and x. = x. - µ . . Then Ex. = µ. and Ex. = 0. Furthermore, i - ij - ij -i -i i -i i -i 

the variables ~ 1 , ~ 2 , ... are independent. Because fij (v) can only assume 

values between -1 and 1 for each i, cr 2 (o .. (v)) -iJ 
formly in i. We have 

cr 2 (;.) is bounded, uni-
-i 

-1 From assumption 4 (4.5.18) it follows that limm->oo m (µ 1+ •.. +µm) exists and 

therefore 

0 ( >1rn) 00 

From the strong law of the large numbers (RAO (11973), p.114) it follows that 

a.s. 
-o as m.+ 00 

and therefore 

a (>1m) a.s. as m 00 

-½ ~ -½ It follows that m (~1+ •.. +~m) is negligible with respect tom (µ 1+ ... +µm) 

(a.s.). So (4.5.41) gives 
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and therefore 

D 

a.s. -
a.s. 
--+oo 

Finally, some remarks must be made concerning the power of the test in 

the unconditional case. Recall that the .proposed test is carried out con-

ditionally. For the interesting alternatives in the unconditional case, 

(4.5.41) holds. Theorem 4.5.6. then gives that the (conditional) test is 

consistent (a.s.). This means also that the un,conditional asymptotic power 

is equal to 1. In section 4.4. we have described for the conditional case 

what to do to approximate the power for finite m. In the unconditional case, 

the situation is even more co_mplicated. Not only.are the a .. now random -iJ 
variables, but also the critical values are now random. However, a possibly 

crude approximation can be obtained by computing Ee .. (v) and Ea .. from the 
-lJ -lJ 

p .. (v) of the alternative considered and substituting these values into the 
lJ 

formulas of section 4.4. for the conditional power. 



79 

CHAPTER 5 

ASYMPTOTIC RELATIVE EFFICIENCIES 

5.1. PITMAN EFFICIENCIES 

To make a comparison possible between the different tests that we get 

for different choices of the matrix Q, we shall investigate the asymptotic 

relative Pitman efficiency (ARPE) and the asymptotic relative Bahadur ef-

ficiency (ARBE), for two different consistent,tests based on ~(Q 1) and 

~(Q2). 
We shall start in this section to give a definition of ARPE as this is 

given by ROTHE (1979). Then ~e shall give some theorems of Rothe and in the 

next section we shall apply his theory to our situation. 

We quote from ROTHE (1979). 

Let {P 0 , 0 E 0} be a family of probability distributions on a space 

(n,F), where 0 is an interval (finite or infinite) on the real line con-

taining zero. Furthermore, {(I) } is a sequence of level-a tests (a> 0) for -m 
H0 : 0 O against H1 : e E 0,{o}. Take 0' 0,{o}. we shall assume that for 

every e-/ o, 

(5.1.1) 

(5 .1.2) 

Usually, pm is a test based on m observations. Now the question arises how 

many observations are necessary to achieve a given power SE (a,1). So for 

O < a < S < 1, we define a function N: 0' JN , which is called a Pitman ef-

ficiency function for S (S - PEF), if 

(5.1.3) 

(5.1.4) 
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where Cf>o = a.. 
Further, let 

(5.1.5) 

(5.1.6) inf{n E lN jE0 ((I) ) 2 8 for all m 2 n}. -m 

Now let IT denote the collection of all sequences {0 }, with 
m 

{ (i)} . Let lf>m , = 1,2 be two sequences of level-a. tests with 
-(i) NB , respectively. Then 

N (2 ) (0 ) 
d m 

(5 .1. 7) e12 infIT lim inf 
NO> ce > m+ "' 13 m 

resp. 

N< 2> ce > 
+ 13 m 

(5.1.8) e12 supIT lim sup 
N (l) (0 ) m+ "' _@_ m 

0m E 0 1
, 0m + 0. 

13-PEF N (i) 
_@_' 

are the lower (resp. upper) ARPE. If e 12 
ARPE of {(j) (l)} with respect to {(I) <2>}. 

e 12 (say) then e 12 is the 

-m -m 
Now if the following three conditions are satisfied, a general theo-

rem about e 12 is applicable. 

CONDITION A. There is a strictly increasing and bijective function 

H: [0, 00 ) + [a.,1) such that for sequences {0} in 0 satisfying m0 2 + n 2 0, m m 
as m-*"", we have 

H(n). 

CONDITION B. For every m E lN, the function '¥m: 0 + E 0 (pm) is continuous 

at 0 = 0. 

CONDITION C. For every sequence {0 } E IT such that m0 2 + 00 , we have m m 



{ (i)} . THEOREM 5.1.1. Let Pm , = 1,2 be level-a test-sequences satisfying 

conditions A (with functions Hi, respectively), Band C. 
{~ (l)} with respect to{~ (2)} exists and is equal to -m -m 

H;1 (S) 
(5.1.9) -1 f3E(a,1). 

H1 - (B) 

PROOF. ROTHE (1979). 

Then the ARPE of 
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Note that the function H(n) of condition A is precisely the asymptotic 

power function of{~ Q} under contiguous alternatives. -m, 

5.2. DETERMINATION OF "ARPE" IN OUR CASE 

We shall apply the theory of section 5.1. in our situation using the 
' contiguous alternatives as defined in section 2.4. So aE A1 is a fixed al-

"" 2 00 ternative, {0m}m=l is a sequence in 0' such that mem + n 2: O, and {a0 }m=l 

is the associated contiguous alternative. m 

We consider matrices Q such that (4.1.3) is satisfied for aEA1 , i.e. 

v_(Q) is consistent against a. We use~ Q as defined by (2.2.15). -m, 
In view of (4.1.3), (5.1.1) will hold, at least from a certain index m1 

on. When {pm,Q} is consistent against a E A1 , it is also consistent against 

a 0 , for each 8, 0 < 8 1, as follows easily from theorem 4 .1.1. Therefore 

(5.1.2) is also satisfied. We shall now proceed to verify conditions A, B 

and C of the preceding section. 

Condition A. 

Let {8} be a sequence in 0 such that m0 2 
+ n. It follows from theo-m m 

+ ~ ,+ + + L+ + rem 4.1.2 that!*+ N(vn ~,L0 ) and from theorem 4.3.1. that·!;Q!* + ~•Q~, 
+ ,+ where ~~N{vn ~,L0 ), under the contiguous alternative {a8 }. Then 

m 

where k 1_a(Q) is defined in (4.4.2). 

The question is now whether 

(5.2.1) H(n) 
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is a strictly increasing function of n. We have 

H(n) 

for some r E JN, A1 ;::: ... ;::: Ar> 0 and w1 , ... ,wr E JR, ~"'.N(O,Ir). Clearly 

H(O) = a, lim H(n) = 1. n-+«> 
The fact that H(n) is strictly increasing follows from lemma 3.3.1. So 

condition A is fulfilled, and H(n) has a unique inverse H- 1 (S) for each 

SE(a,1). 

Condition B. 

.+ 
This follows from the fact that the exact distribution of!* depends 

one in a continuous way, when e is in a sufficiently small neighb~urhood 

of 0. 

Condition C. 

Condition C follows from the fact that for sequences {em} such that 

2 d 
mem + oo, Ee lm + oo and Ee ¥mfoe (¥ml+ 00

, with lm = 2o;<ae )Q~* + 
m m m m 

!;<ae )Q6*(ae ). The rest of the arguments are similar to those of theorem 
m m 

4.1.1. 

It follows that the conditions of theorem 5.1.1. are satisfied. The 

ARPE of {pm,Q
1

} with respect to {pm,Q
2

} is thus given by 

(5.2.2) 

With 

(5.2.3) 

H;l (S) 

H~l (S) , 
SE (a,,l). 

i 1,2 , 

-1 
No explicit formula can be given for Hi (S), though the inverse may 

be determined numerically. See chapter 9. In general, e 12 (S) will be depen-

dent on a, S, Q1 , Q2 and the particular alternative a E A1 • 

Furthermore, it turns out that H(n) is nothing else than the asymptot-

ic power of the test under contiguous alternatives, i.e. H(m0 ) is equal 
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to (4.4.19), which we used as an ap~roximation to the power of the test for 

m0 trials. 

When two matrices Q1 and Q2 are compared, the criterion (5.2.2)selects 

as best test the one that first reaches S, as In! tends away from 0. When 

Q1 -f Q2 would imply H1 (n) s H2 (n) for all n, or H1 (n) H2 (n) for all n, then 

a "best" Q could be selected and it would be independent of S. But this 

would be the same Q that would have been selected when we would have taken 
+ the Q that gives, for a fixed m0 , the highest asymptotic power against S• 

So in that case, the concept of Pitman-efficiency does not add anything 

that we do not already know. However, Q1 -f Q2 does not always imply that 

H1 s H2 or H1 H2 and so the selection of a "best" Q does depend on S. 

All this means that the Pitman-efficiency is not very helpful in 

selecting a 'good' Q. 
* When, however, we approximate H(n) by a function H (n), using the 

approximation (3.3.19), i.e. 

(5.2.4) 

with 

r 
(5.2.5) V n I 

T=1 

we have (ROTHE (1979)) 

(5.2.6) 

where c 2 (v,a,S) is the (uniquely determined) non-centrality parameter such 

that the S-fractile of ~2[v,c2 (v,a,S)] and the a-fractile of ~2[v] coincide. 

When we now compare Q 1 and Q2 , with 

(5.2.7) r, 

we may choose Q1 and Q2 such that (4.4.24) holds, i.e. 

(5.2.8) 
r 
I 

T=1 
" {1) 

T 

Then it follows from (3.2.7) that 

r 
I 

T=1 
" (2) 

T 
r. 
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r 
" (1) (w ( 1)) 2 (5.2.9) 52 I + + n n l;;'Q1 i;; 1 T=l T T 

r 
" (2) (w (2) ,2 (5.2.10) 52 n I + + n l;;'Q2i;; 2 T=l T T 

Then we may approximate the ARPE as follows 

(5 .2 .11) 
H;l (S) H;-1 

(S) 
---~ 
H~l (S) Htl (S) 

2 c (r,a,S) x 

52 
1 

52 
2 

_.__ = 

2 c (r,a,S) 

which is independent of r, a and S. Moreover, this apporoximate value of 

e 12 (S) corresponds to 

that this approximate 

the usual ARPE in the c~se of x2-distributions. Note 
* value (e12 (say)) may be calculated directly, without 

having to calculate eigenvalues etc. 
* . When we would use e 12 as a criterion to select a Q-matrix, we would 

+ + choose the one that maximises the "non-centrality parameter", l;;'QI;;, in 

accordance with usual practice. 

5.3. BAHADUR EFFICIENCIES 

The reader is referred to BAHADUR (1960) for his concept of compari-

sons of asymptotic slopes for the comparison of the different tests that we 

get for different choices of Q. We give here only short definitions of the 

"standard sequence" and the "Bahadur slope" of his article. 

In order-to compute the "Bahadur slope" for a sequence of test-statis-

tics {'!'.m}:=l , this sequence has to be.a "standard sequence", i.e. it has 

to satisfy the following three conditions. 

i. There exists a continuous probability distribution function F such 

that, under H0 , 

(5.3.1) F(x). 

ii. There exists a constant a, 0 < a < 00 , such that 

(5.3.2) 
2 ax log ( 1 - F (x) ) = - - 2-( 1 + o ( 1) ) , as x 00 
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iii. There exists a function b on H1 , with Q'.',b<co, such that for each 6EH1 

T 
(5 .3 .3) limm+<x> Pe ( ITm - b(S) I > E) 0 for every E > 0. 

The asymptotic Bahadur slope is now defined to be 

(5.3.4) G(S) = a{b(6)} 2 . 

The asymptotic relative Bahadur efficiency (ARBE) for two standard 
sequences {T (l)}co and {T (2 )}co is then defined as 

-m m=1 -m m=1 

(5.3.5) 

5.4. DETERMINATION OF "ARBE" IN OUR CASE 

We apply the theory of ARBE for tests against alternatives in A1 , i.e. 

instead of 6 E H1 , we shall write a E A1 . 

THEOREM 5. 4 .1. When Q is chosen such that 6 ;Q! * + co for each a E A1 , then 

{(t'Ot )½}co is a standard sequence for testing H0 . -*--* m=1 

PROOF. We verify the three conditions for a standard sequence. 

i. L + + + + By theorem 4.3.1., we have, under H0 , !'.(Q) + !!'Q!!, with !!~N(O,r:0 ), 

½L ++½ ++½ and so (!'.(Q)) + (!!'Q!!) , and (!!'Q!!) has a continuous distribution. 

This proves i. 

ii. Using theorem 3.2.1., we have 

r 
1 -F(x) 1 - P( 2 

T=l 

+ + 
with '.:~N(O,Ir) and Al 2 .•. 2 Ar> 0. 
Note that 

r 
A u2 > x 2 ) 

r 
u2 > x2) 2 ½ X P( I '.', P(Al I = P((x [r]) >F) 

T=l T-T T=l -T 1 
r 

A u2 > x 2 ) 2 2 P ( ( X 2 [ 1 J J ½ > ) • P( I 2 P(A 1'.:1 >x) 
T=l T-T 1 
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iii. 

So 

BAHADUR (1960) showed for x-distributions that (5.3.2) is satisfied 

with a= 1, regardless of the number of degrees of freedom. It follows 
that 

and so 

2 
- 2x),._ (1+0(1)) s; log(l-F(x)) 

1 

log (1-F (x) ) 
2 

X v;-< 1 + O ( 1) ) • 
1 

2 
X s; - v;-< 1 + o ( 1) ) , 

1 

Hence ( 5. 3. 2) is satisfied in this case, with a = _l__ • This proves ii . 
),._1 

+ + L + 
By theorem 4.2.1. and 4.3.1., ~;Q~* + ~•Q~, so 

1 + + 
- u'Qu 
m -* -* t 0. 

The expectation of~ 6'Q; is zero, and its variance is equal to 
m * -* 

..i_ 6'QE Q6 = i 6'QE Q5 2 * 1• * m • 1• • m 

By assumption 2, 6. and E1• converge to a finite limit: Therefore 

lim i 6'QE Q6 0. m-+oo m • 1 • • 

It follows that 

Furthermore, 
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It follows that, 

and with Slutzky's theorem, 

This proves iii. 

It follows from i., ii. and. iii. that (!;QI*>½ is a standard sequence. D 

We find that the ARBE of ~(Q1) w.r.t. ~(Q2 ) is equal to 

1 + + 
A ( 1) 

z;; 'Q z;; 
.1 

(5.4.1) E12 (a) 
1 
1 + 

A (2) l;;'Q2z;; 
1 

* (1) (2) This is almost equal to e 12 • In the case that >- 1 = >- 1 we even have 
* * E12 = e 12 . This supports the use of e 12 as a measure of relative efficiency. 

Notice that it is not surprising that the largest eigenvalue of Q 1L0 and 

Q2L0 occur in E12 , because of their influence on the distribution of ~(Qi). 
When rank B'QiB = r, and Q1 and Q2 are chosen such that (4.4.24) holds, 

then '-ill and '-i 2 ) will not differ very much, so in that case e72 E12 • 

We conclude that the measures of relative efficiency ARPE and ARBE are, in 

our situation, not essentially different. 
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CHAPTER 6 

SPECIAL CASES & PRACTICE 

6.1. MATRICES Q SUCH THAT THE A.D. OF THE TEST-STATISTIC IS CHI-SQUARED. 

When for some reason a test-statistic is desired of which the a.d. 

under H0 is chi-squared, it can be constructed as follows. Suppose that 

~~N(0,l:). Let l: be any g-inverse of L Then it follows from theorem 3.2.2. 
2 that the quadratic form ~•i:: has a (central),x -distribution, because 

l: l:- l: l:- l: = l: l:- l:, by the properties of g-inverses. The number of degrees 

of freedom is then trace(l:-l:), which is equal· to rank l:, because l:-l: is 

idempotent (RAO (1973)). 

By corollary 4.2.1., we have, under assumption 1 & H0 , 

N®K. 

So if we choose Q = L;, it follows that 

bution. Because of the special structure 

has an asymptotic x2-distri-

we may choose Q of the form 
n-1 -(2.2.10), Q = In ®G. Take G = n K , then Q = In ®G is indeed a g-inverse 

of L0 , as is easily verified. Because the order of K is much smaller than 

the order of L0 , finding a g-inverse of K is more practicable. Of course, 

the natural g-inverse of K may be taken. 

The number of degrees of freedom is 

rank L0 $ (n-1) (k-1). 

In practice we do not have L0 at our disposal, and therefore we would 
n-1 - n-1 - • choose G = G (m) = n K. converging to n K as m 00 • (See also remark 

4. 3.1). 

Furthermore, if we choose Q = L;, the approximation to the power of 

the test (4.4.19) becomes a non-central x2-distribution with trace(L;L0 ) 

as degrees of freedom and non-centrality parameter 
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n 
I 

T=l 
2 w 
T 

++ w'w 

positive eigenvalues 
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of QLO = L~Lo are all equal to 1) • 

It can be shown that there exists a g-inverse of LO such that the test-

statistic based on it not only has the same distribution as the statistic 

MADANSKY (1963) proposed as a generalisation of Cochran's Q - test·(see 
+ section 6. 2 . ) , but also gives the same numerical value for each w E fl. 

+ (Thew and n as they were defined in section 2.1.). It follows that Madans-

ky's test is a special case of the class of tests we investigate. The same 

follows automatically for Cochran's Q-test, which is in its turn a special 

case of Madansky's test. We return to Cochran's test in section 6.2. 

Tests of this type, including the one of Madansky, have to be used 

with some care, because, depending on the kinrl of g-inverse which is chosen, 

L~ may not be of full rank. In view of the results of section 4.1., the test 

might not be consistent against each alternative in A1 • 
In the cases k = 2 and k = 3, however, matrices Q can be found, such 

that Q is non-singular, diagonal, and such that the a.d. of ~(Q) is chi-

squared. 

6.2. THE CASE k 2 

In the case that k = 2, the eigenvalues of the asymptotic distribution 
+ + . of !;Q!*, under H0 , may be found by an elementary calculation, at least 

when we take Q of the form Q = In® G. It is even more simple when we take 

G diagonal, i.e. 

(6.2 .1) 

Recall that 

(6.2.2) LO N®K, 

with, because k=2 

(6.2.3) K ( a -a) 
-a a 

1 m ailai2 
(6.2.4) a = lim I --2-m-+oo m i=l n 
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-+ -+ To find the a.d. of !;Q!~, we have to calculate the eigenvalues of 

(6.2.5) (I ®G) (N®K) n N®GK. 

By lemma 3 .1. 5., the eigenvalues of N ® GK can be found from the eigenvalues 
n 

of n-l GK. Let 

(6.2.6) Ad n 
n-1 a. 

Then we have 

It follows that the eigenvalues of n~l GK are equal to 

(6.2. 7) 0 V A 

The eigenvalues of QL0 are therefore A 

and O with multiplicity n+l. 

To obtain an a.d. which is chi-squared, we only have to choose g 1 and 

g 2 such that 

(6.2.8) n-1 1 
n a 

if we furthermore take 

(6.2.9) 

G, and hence Q, has full rank. The resulting test is then consistent against 

all alternatives in A1 . 

In practical cases we take G 

(6.2.10) n-1 1 
n a 

m 

G(m) with 
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where 

(6.2 .11) 

From (6.2.8) or (6.2.10) it would appear that we still have a choice for g
1 

and g 2 . However for k = 2, in this case 

n a n a 
1 ,; (f (v) _ _±_!_)2 + ! ,; (f (v) +2)2 

- m l gl -1 n m l g2 -2 - -- -
v=l v=l n 

nm-a+l,2 _ 
n 

So with (6.2.10) this gives 

(6.2.12) 

n (v) a n (v) a 
I (~1 - -±.!.i 2 n(n-1) I <!1 - -±.!.i 2 

n-1 v=l n v=l n 
~(Q) - -n 1 m m m 2 I ail (n-ail) n I ail - I ail 2 n i=l i=l i=l 

Hence in this case we obtain Cochran's Q-statistic (COCHRAN (1950)). The 

asymptotic distribution, under H0 , is then x2[n-1]. 

For the diagonal matrix G of (6.2.1) with g 1 and g 2 given by (6.2.10) 

we shall write G2 and the corresponding statistic as ~(G2 ). 

6.3. THE CASE k = 3 

In the case that k = 3, we may proceed in the same way as for k = 2. 

Let this time, 

( ~1 

0 u (6. 3 .1) G g2 
0 

and 

(: 
d e \ 

I 
(6.3.2) K b :) f 
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with 

(6.3.3) 
1 m 

a = lim l 
m-><x> m i=l 

etc., 

and 

(6.3.4) d n 
A= n-1 a, etc. 

Note that 

(6.3.5) A+D+E 

It follows that 

(6.3.6) 2 AB-D 

D+B+F 

CK may also be written as 

(6.3.7) 

E+F+C=O. 

DF -BE AC - E
2 = -DC + EF 

(say). 

-AF+ DE 

Imposing the condition that the sum of the eigenvalues of QL0 must be 
n equal to (n-1) (k-1) = (n-1)•2, we find for the eigenvalues of n-lGK, 

(6.3.8) 

with 

(6.3.9) 

Both non-zero eigenvalues are now equal to 1 if 

(6.3.10) 

It may be verified that this is the case only when 

(6. 3.11) 
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It follows that G, and hence Q, is non-singular, and the resulting test is 

therefore consistent against each alternative in A1 • 

In practical cases we shall determine G = G(m) from K
0 

instead of Kin 

the same way, and we shall call it G3 = G3 (m) and we shall write the corre-

sponding statistic as ~(G
3
). 

6.4. RECOMMENDATIONS 

In section 4.1. it has been shown that the test based on the test-sta-
-+ -+ 

tistic ~(Q) = !;Q!* is consistent again~t each alternative in A1 , the class 

of alternatives that we wish to detect, when Q is non-singular. When Q is 

singular, the test may, or may not, be consistent against each alternative 

in A1 • Because our aim was to design an overall test which is consistent 

against each alternative in A1, we recommend the most simple form of test-

statistic, i.e. with Q of the form Q = In ®G, with G diagonal with non-zero 

diagonal elements, so that Q is non-singular. The interpretation of the ob-

servations is easier when only quadratic terms occur in the test-statistic. 

Moreover, when HO is rejected it is possible to see from the term(s) which 

caused the rejection, where the preferences or aversions occurred. The 

drawback on the use of a diagonal G is, that for k > 3 it is not possible 

to define a G such that v(G) has a x2-distribution under all circumstances. 

But this disadvantage may be overcome by the application of a modified x2 -

approximation to the distribution of ~(G). 
Therefore, if there is no special interest in interaction between 

preferences, we recommend the use of a diagonal G. If the user attaches 

special weight to some categories he can adjust the weights accordingly. 

If there is no outside reason to weigh one category differently from others, 

the most "natural" weights, dependent on the number of occur·rences of the 

categories, seem to be 

(6.4.1) 

we shall call the diagonal matrix with these weights: G. The test-statistic g 
then has the following form 

(6.4.2) v(G ) -- g 

k 
I 

j=l 

n 
I 

v=l 
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i.e. the form of the usual "goodness-of-fit" statistic. 

This choice of g. has the advantage that - as is apparent from the nu-
J 

merical results of chapter 9 - the approximation by means of an adapted x2-

distribution seems to be somewhat better in this case than with other 

weights. 

The a.d. of v(G g), under H0 , may be determined using the methods of 

chapter 4, and when rank QE0 = r, with Q = I ©G g' we can use a correction 

factor c. = c. (m) to make sure that 

r 
(6.4.3) I with 

-r=l 

C.v(G -
r 
I 

-r=l 

g 

A 
T 

n 
) has 

r , 

as asymptotic distribution. Then (4.4.24) is also satisfied. 

In a special case (see section 6.5.) we have >- 1 = ... =Ar= 1, so 

in that case the a.d. is x2[r]. 

In general, when I~=l A r, the A 's will not be very far away 
T T 

1, and the distribution of (6.4.3) will then closely resemble a x2[r] 

from 

dis-

tribution. (The asymptotic expansion (3.3.7) for the distribution of 

I~=l >-.~! seems to work best when the >-.'s are not too far away from 1). 

However, the exact moments of v(G) and of its a.d. may not be very - g 
close to each other. But, because the shape of the distribution of v(G) - g 
will resemble a x2-distribution, we can use the above mentioned approxi-

mation with a modified x2-distribution. The first two moments of v(G) are - g 
then equal to the first two moments of its approximation. The reader is re-

ferred to chapter 1 for a description of this approximation. 

Because the expectation and variance have also been determined for 

~(G1) and ~(G2 ), and in general for v(G) with diagonal G, see chapter 7, 

this method may also be applied to these variables. 

To conclude, we recapitulate the reasons for the choice of v(G) as - g 
recommended test-statistic. 

i. The test based on v(G) is consistent against each alternative in A1 ; - g 
ii. the test-statistic has a well-known, simple form, is easy to calculate 

and lends itself well for interpretation; 

iii. in a special case, the a.d. is x2 and in general the a.d. will resem-

ble a x2-distribution; 

iv. the exact expectation and variance, under H0 , are known and a useful 

approximation exists, from which critical values may be determined. 



6.5. ONE MORE SPECIAL CASE 

In the special case that 

(6 .5.1) a . t- 0 
mJ 

for each j, 

n-1 2 the a.d. of -- v(G J, under H0 , is x [ (n-1) (k-1) J. n - g 
This can be shown as follows. Notice that 

(6.5.2) lim.......,,., a . ,....,- 'J for each i and j. 

Let 

al a2 

al a2 ¾: 
(6.5.3) H ! 

n 

al a2 

Then from a+= nit follows that His idempotent, i.e. 

(6.5.4) H. 

The diagonal elements of Gg, defined in (6.4.1), reduce under (6.5.1) to 

(6.5.5) 

and K (defined in (2.3.10)) reduces to 

(6.5.6) 1 
K = 2 

n 

a 1 (n-a1) -a1a2 
-a2a 1 a 2 (n-a2) 

The a.d. of n-l v(G) jH0 is determined by the eigenvalues of n - g 

Q!:
0 

= n-l (I ® G ) (N ® K) 
n n g 

N®n-lGK. 
n g 

95 
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n n-1 The eigenvalues may be found from the eigenvalues of--(-- GK) GK. n-1 n g g 
We have 

1 0 0 a 1 (n-a1) 
al -a1a2 -alak 

1 0 - 0 -a2a1 a 2 (n-a2 ) -a2ak 
GK n a2 

g 2 n 

0 0 1 
ak(n-ak) 

ak 
-akal -aka2 

n-a1 -a2 -ak 

1 
-al n-a2 -ak 

n Ik -H. 

-al -a2 n-ak 

Now from (6.5.4) it follows that 

(6.5. 7) 

so that Ik - H is also idempotent. It follows that the eigenvalues of 

GgK = Ik - H are either O or 1 (RAO (1973)). Therefore the eigenvalues of 

QE0 are also either O or 1. 

The a.d. of n-l v(G) is then chi-squared with n - g 

(6.5.8) 
n-1 trace (QE

0
) = n trace (-- G K) n g 

as number of degrees of freedom. 

k a. 
(n-1i I (1 _-1i 

j=l n 
(n-1) (k-1) 



CHAPTER 7 

EXPECTATION AND VARIANCE 

7. 1 . NOTATION 

In the exact expectation and variance of ~(Q), which we shall derive 
for some special cases, the following quantities occur. 

d -1 m 
(7 .1.1) E. = n I aij' J i=l 

m 
(7 .1.2) s. n-2 I aij(n-aij), J i=l 

m 2 2 (7 .1.3) T. d n-4 I aij (n-aij) , J i=l 

d m 
(7 .1.4) Sjl n-2 I aijail' 

i=l 

m 2 2 (7 .1.5) Tjl n-4 I aijail. 
i=l 

7.2. EXPECTATION 

The expectation of ~(Q), which we already mentioned in (2.2.40), 

(7 .2 .1) 

may be found as an application of the general formula for the expectation 

of a quadratic form (RAO (1973)). 

Under H0 , it reduces to 

(7.2.2) 

and when Q I ®G, n 

97 
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(7 .2.3) 
m 

E(~(G) IH0 > = }: 
i=l 

trace (GK.) . 
l 

When G is moreover diagonal, we have 

k 
(7.2.4) !2 \' m l gJ.SJ .• 

j=l 

(7.2.5) n-1, 

which is thus also the expectation of Cochran's Q-statistic. For ~(G
3

) we 

have, using (6.3.7), 

(7.2.6) 

-n . ...!_ n-l [FA+EB+DC} 
CK n 

2 (n-1). 

Notice that for ~(G2 ) and ~(G3 ) it is not necessary to apply a correction-

factor to make the test-statistic satisfy (4.4.24). 

Finally we have for v(G) - g 

k S. 
(7.2.7) E(v(G) JH0 ) = n l --1.. 

- g j=l Ej 

In the special case that 

(7 .2.8) a . 
mJ 

formula (7.2.7) reduces to 

(7.2.9) 

We have 

E(v(G ) IH0 ) - g n(k-1). 

LEMMA 7.2.1. 

(7.2.10) E(v(G) IH0 ) s n(k-1) - g 

for each j, 
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with equality iff (7.2.8) holds. 

PROOF. The proof is left to the reader. 0 

7.3. VARIANCE 

The variance of ~(Q) is hard to determine in general and therefore we 

limit ourselves to a special case. Let Q = In® G, with G diagonal. We shall 

determine a 2 (~(G) IH0 ). The determination of a 2 (~(G)) under alternatives is 
completely analogous, but would take too much space to reproduce here. We 

shall therefore suppose, throughout this section, that H0 holds. Let 

(7.3.1) 

(7.3.2) 

(7.3. 3) 

s .. (v) gt .. (v) = t .. (v) - aij 
-iJ -iJ -iJ n 

(v) g f (v) _ 
~j -j 

1f .. 
g aij 

lJ n 

m (v) I s .. 
i=l -iJ 

LEMMA 7. 3". 1. We have for all i, i 1 , i 2 , j and l, except where otherwise 

indicated. 

(7.3.4) 

(7.3.5) (1) (1) (1) (1) jll, E ~ij ~il cov(t .. ,t.
1 

) -1fij1fil' -iJ -i 

(7.3.6) 
(1) (2) (1) (2) 1 2 E s.. s .. cov(t.. ,t.. ) - n-1 {1rij-1rij}, -iJ -iJ -iJ -iJ 

(7.3.7) 
(1) (2) (1) (2) = _1_ 1f 1f jll, E ~ij ~il cov(~ij '~il ) n-1 ij il ·' 

(7.3.8) 
(1) 2 (2) 2 cov ( { s . . } , { s . l } ) -lJ -i 

1 (1) 2 (1) 2 - --1 cov({s.. } ,{s. 1 } ) n- -iJ -i 

(7.3.9) ({ (1)}2 { 1(2)}{~. 1(2)}) = cov s .. ,s. • -lJ -il 2 

(7 .3.10) 
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PROOF. (7.3.4)-(7.3.7) follow from (2.2.24)-(2.2.27). We next prove 

(7.3.10). Write 

(7. 3.11) 

Then, for each i and 1, 

(1) (2) 2 
cov(~ ,{~il } ) 

Observe that 

(1) (v) 
l cov(~ ,!il ) 

v=l 

(1) n ( ) 
cov (x , l t. v ) 

- v=l -il 
( 1) cov(x ,a .. ) - lJ 0. 

Thus, using the fact that, due to symmetry, the joint distributions of the 
(1) (2) (1) (n) 

pairs (~ ,!il ) , ... , (~ . ,!il ) are the same, 

(1) (1) (1) (2) 
cov(x ,!il ) + (n-l)cov(x ,!il ) 0. 

Therefore 

(1) (2) 
cov(~ ,!il ) 

And thus also 

1 ( 1) ( 1) 2 - --1 cov(x ,{s. 1 } ) . n- - -i 

This proves (7.3.10). Simultaneous interchanging of j and 1 and (1) and 

(2) in (7.3.10) gives (7.3.9). (7.3.8) follows if we take 

x. (v) g {s .. (v) }2 
-J -lJ 

instead of (7.3.11). D 

We use the following notation 



m m 
(7.3.12i I*= I I 

LEMMA 7.3.2. 

(7.3.13) 

i1=1 i2=1 

iii2 

= { 

2 
2n ,* 
n-1 l 

2 
2n I* 
n-1 
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if. jfl, 

if j=l. 

PROOF. Using independence when i 1 ;-!i2 , E:!!ij (v) = 0, and (7.3.5) we have 

for j f 1, 

Also, now using (7.3.7), 

These two results together give ( 7. 3. 13) if j f 1. The case j = 1 is proved 

analogously. D 
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THEOREM 7.3.1. For diagonal G, we have 

(7 .3.14) 
2 k 

2 ( (G) I H ) = _!_ 2n { 1 2 ( 2 ) 1 1 ( 2 } cr· 0 2 1 l g. s.-T. + l l g.gl s.1-T.l) . 
m n- j=l J J J jfl J J J 

PROOF. We have 

v(G) 

Using permutability over the index v we have, under H0 , 

-
- _1 n (v) 2 n (µ) 2 cr 2 (v(G)) l l g.g1cov( l {e. } , l {e1 } ) 

m2 j=l l=l J v=l -J µ=1 -

1 k k n n 
cov( {e. (v) }2 , {e (µ) }2 )} =2 L L gjgl{ l L 

m j=l 1=1 v=l µ=1 -J -1 

1 k k 
({ (1) }2 { (1) }2) 

=2 L L gjgl {n cov ~j I ~l + 
m j=l 1=1 

(1) 2 (2) 2 + n(n-l)cov({e. } ,{e1 } )}. 
-J -

Next, observe that, using (7.3.8), (7.3.9) and (7.3.10), 

n Cov({e. (1) }2 ,{e_
1

(1) }2) ({ (1) }2 { (2) }2 -J + n(n-l)cov ~j , ~l ) 

(1) 2 ,* (1) (1) (2) 2 ,* (2) (2) + n(n-l)cov( l {s .. } +ls .. s .. , l {s. 1 } +ls. 1 s. 1 ) 
i=l -lJ -llJ -l2J i=l -l -ll -l2 

This is just the expression 0£ lemma 7.3.2.; the rest 0£ the proof is sim-

ple calculation. D 

(7 .3.15) 
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the variance of Cochran's Q-statistic (under H0J. 
Substitution of (6.3.11) in (7.3.14) does not lead to a simpler form 

for cr2 (~(G3J!H0}. 

For v(G} we obtain - g 

(7.3.16) 
2 k 

cr2(v(G ) !Ho) = 2n { l - g n-1 j=l 
I I 
j;,!l 

which reduces in the special case (7.2.8) to 

(7.3.17) 
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CHAPTER 8 

MOTIVATION OF THE CHOICE OF QUADRATIC FORMS 

To derive tests for the simple hypothesis H0 : Vi 6i O , against 

the composite hypothesis H1 : 3i 6i f O , with certain optimality proper-

ties, there are basically only a few methods. We shall show why two stan-

dard methods fail in our situation, and why we have therefore chosen for a 

third method based on asymptotic distributions. 

8.1. THE NEYMAN & PEARSON FUNDAMENTAL LEMMA - METHOD 

Consider the problem of testing the simple hypothesis 

(8.1.1) V. 
1. 

against the simple alternative 

(8.1.2) 

(8.1.3) P(w. 
. -1. 

(8.1.4) P(~l 

(8.1.5) P(w. 
-1. 

6. 
1. 

7firlHO) 

7T 1r1 
I\ 

7T ir I Hl l 

1 =-N . 
1. 

... I\ (JJ 
-m 

1 -+ N. 
1. 

m 1 = 7T jHO) TI , mr N. m i=l 1. 

* 6ir' 

m 
1 * (8.1.6) P(~l = 7T I\ ... I\ (JJ = 7T IH1l = TI (~+6ir_l, 1r1 -m mr i=l m 1. 1. 

r E R., 
1. 

r. ER .• 
1. 1. 

According to Neyman & Pearson's fundamental lemma, the most powerful test 

rejects H0 for large values of the quotient of (8.1.6) and (8.1.4), i.e. 



m 1 * TT(-+ 11. ) 
i=l Ni ir. m 

1. * (8.1. 7) TT (1 + N. b.. m 1 i=l 1. ir. 
TT 1. 

i=l N. 
1. 

leading to the test-statistic 

(8.1.8) 

* where b.i (.) is a function !\ JR , with 

(8.1.9) r ER .• 
1. 
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) , 

For given b.i, this may lead to a useful test, with, after taking the loga-

rithm, 

(8.1.10) 

(8.1.11) 

m 
E log 'El= I 

i=l 

By the Central Limit Theorem, log ! 1 is asymptotically normal. Critical 

values could be determined by enumerating the exact distribution, or can 

be based on the asymptotic distribution, after having computed the vari-

ance of log 'Ei· 
If, however, we are interested in the behaviour of this test also for 

other (or even all) alternatives from A1 , then it is not at all clear how 

E log 'El behaves under these alternatives. Moreover, we see no way to 

adapt it to work against other alternatives in A1 too. Therefore, we do 

not pursue this method any further. 

8.2. THE LIKELIHOOD-RATIO METHOD 

Consider the problem of testing the simple hypothesis 

(8.2.1) 

against 

V. 
1. 

0 
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(8.2.2) 3. 1. 

The likelihood-ratio test rejects H0 for large values of 

sup P(~l = 1Tlr A AW = 1T IH1) !:,, -m mr 
(8.2.3) A 1. 1 m 

P (~1 = 1T lr A AW = 1T !Ho> -m mr 1 m 

m 
(J:__ + sup TT !:,, ) 

!:,, i=l N. ir. 1 m 1. 1. 1. TT N .. m 1 m 1 i=l 1. 
TT TT 

i=l N. i=l N. 1. 1. 

The likelihood-ratio is in this case apparently a constant, and is there-

fore also unfit to produce a useful test-stattstic, to test HO against this 

wide class of alternatives. 

Now suppose that we only wish to consider alternatives from H1 for 

which words beginning with the character c 1 have, for each i, a higher 

probability than the other words. This restricts the possibilities consid-

erably and so 

m 
sup + TT (J:__ + !:i. ) 

!:ii i=l Ni 1.ri 

will take a lower value if the !:ii may only range over these restricted al-

ternatives. Define 

(8.2.4) 

i.e. Ni is the number of words with c 1 in the first position in the set of 

outcomes Q, of the i'th trial. Let 1. 

(8.2.5) d R• {1, ... ,NJ..!}. i 

Then restricted alternatives may be formulated as follows 

(8.2.6) !:, > 0 ir for r ER! 1. and !:, $ 0 
ir 
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** Notice that H1 H1 but not conversely, so that a possible test derived 

in this way only works against this much smaller class of alternatives. 

We have 

(...!.._ + (8.2.7) I:,. ) sup ! ** i E H1 N. ir. 
l. l. 

This may be written as 

(...!.._ + (8.2.8) ** I:,. ) sup 
/:,i E Hl N. ir. 

l. l. 

So the likelihood-ratio becomes 

(8.2.9) A 

m 
TT 

i=l 
m 
TT 

i=l 
(...!.._) 
N. 

l. 

{ 1 if r. ER~ , 
l. l. 

...!.._ if ri i R;_. N. 
l. 

(1) 
1 1-t. 1 (1T. ) 

( ) l. l.r. - l.. N. 
l. 

and the likelihood-ratio test rejects H
0 

for large values of 

(8.2.10) 
m 
TT 

i=1 

or, equivalently, for large values of 

(8.2.11) 

Analogously we may define 

(8.2.12) T (V) 
-j 

m l t .. (V) log N,. 
i=l -1.J 1 

Aiming at an overall test, as we do, we do not know in advance where 

possible preferences occur, so we might combine these statistics to, fqr 

instance 

(8.2.13) T max T (V) 
-2 -j , 

j,v 

to get an overall test-statistic for H0 • This is possible, because the 
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T. (v) do not depend on any particular alternative. This would lead to a 
-J 
test for an outlier among the characters 

Let's now study the r.v.'s T (v) in greater detail. We have, using the -j 
results of chapter 2, 

m 
(8.2.14) I ET (V) 

-j 
i=l 

(8.2.15) 

a .. 
..2:1.. log n 

m a .. 
I {..2:1.. -

i=l n 

+ 

m (v) N, + I oij log N., 
l i=l l 

2 a .. 2 1i_} log N. + 
l n 

The expectation and variance under H0 are found by deleting the terms con-

taining o's. 

The variables T (v) are not independent, and their covariances may be -j 
found using (2.1.27) and (2.1.28). The (marginal) a.d.'s are normal by the 

C.L.T. The joint a.d. of the T (v) may be found using the methods of chap-. -j 
ter 4. 

The distribution of ~ 2 , however, is difficult to obtain, the exact 

distribution as well as the asymptotic distribution (JOHNSON & KOTZ (1972), 

p.44). The development of this outlier-test would be an interesting subject 

for further research. 

The result (8.2.14) suggests the use of a test-statistic similar to 

the one defined in (2.1.39) 

(8.2.16) 
d 1 k n 

~3 m I gj I 
j=l v=1 

{ ! (t .. (v) 
i=l -lJ 

This statistic, which gives trials with a high number of possible words 

more weight than ~(G) does, may be treated in the same way as the statistic 

v(G). Its a.d. may be determined in a similar way as that of ~(G), both 

under HO and under alternatives. 

By these considerations we could be led to consider a class of test-

statistics which is even more general than (2.1.41), of the form 

n n k k 
(8.2.17) I I I I 

v=l µ=1 j=l 1=1 

with 
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(8.2.18) G. 
J. 

as suggested weights. 

Although the analysis of the behaviour of such an extensive class of 

test-statistics would lead to a new and major enterprise, the suggestion 

that the use of Gi = log Ni would possibly increase the power of our tests 

in an adapted form is worthy of future consideration. 

8.3. AN APPROXIMATE LIKELIHOOD-RATIO METHOD 

Let~ have a q-variate normal distribution, with mean vectorµ and dis-

persion matrix L. (x ~ N ( µ, L) ) • Suppose that µ is unknown, but that L is a - q 
known, fixed, positive definite matrix. For the problem of testing 

+ + H0 : µ = µ0 against H1 : µ f µ0 , the likelihood-ratio is equal to 

(8.3.1) 

Clearly, 

(8.3.2) 

A(x) 

-q/21 1-½ 1 -1 supH (2TT)_ Z: exp{-2(x-µ)'Z: (x-µ)} 
1 

-q/21 ,-½ 1 -1 supH (2TT) Z: exp{-2(x-µ) 'L (x-µ)} 
0 

1 -1 + supH exp{-2(x-µ)'Z: (x-µ)} 
0 

Furthermore, 

(8.3.3) 1 + + -1 + + supH exp{-2(x-µ) 'Z: (x-µ)} 
1 

1, 

because the infimum of (x-µ) 'Z: (x-µ) is equal to O, atµ x. 

So the likelihood-ratio test rejects H0 for large values of the sta-

tistic, 

(8.3.4) -1 
(x-µ ) 'Z: (x-µ ) , - 0 - 0 

i.e. a quadratic form in~, where the weighing coefficients are elements 

of the inverse of the covariance matrix Z:. It follows easily from theorem 

3.2.1. that the a.d. of this statistic is a central x2-distribution with q 

degrees of freedom under H0 , and a non-central x2-distribution with q de-
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+ + -1 + + grees of freedom and non-centrality parameter (µ-µ 0 ) 'L (µ-µ0 ) under H1 . 

These are well-known facts. 

The situation is not essentially changed when the dispersion matrix of 

;IH0 , LO (say),_differs from the dispersion matrix of ;IH 1 , Ll (say). The 

likelihood-ratio test-statistic would become 

(8.3.5) 

with a central x2-distribution under H0 , but, in general, not a non-central 

x2-distribution under H1 . The distribution of (8.3.5) under H1 may be deter-

mined with theorem 3.2.1. 
+ The situation does change when the dispersion matrix of xis dependent 

+ onµ, as is shown in the following example. 

+ + + + 3 EXAMPLE 8.3.1. Suppose that ~-N3 (µ, L(µ)), where µEJR and 

+ . 
L(µJ L(O) 

with LO positive definite. 
-+ -+ -+ 

We test H0 : µ = 0 against H1 : µ i 0. The question is now: does 

-3/21 1-½ 1 -1 supH (211) L(µ) exp{-2 (x-µ)'L (µ)(x-µ)} 
1 

still attain its maximum value atµ x for a given x? 
-+ ->- -+ 

Let x = (1,2,3)' be an observed value of x. Then we have forµ x 

L(µ) 

0 

4 

0 

0 

0 

9 

and 

36; 

-3/21 + 1-½ 1 -1 (211) L(µ) exp{-2(x-µ)'L (µ)(x-µ)} 



-+ However, when we takeµ 

4 

0 

0 

0 

4 

0 

0 
1 
4 
0 

0 

0 
25 
4 

i) and 

25 
4 

-3/21 -+ ,-½ 1 -+ -+ -1 -+ -+ -+ (2ir) E (µ) exp{ - 2 (x-µ) 'E (µ) (x-µ)} 

-3/2 2 13 (2ir) (5)exp{- 25}. 
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2 13 1 Now (5)exp{- 25} R1 0.2378 > 6. It follows that the maximum is not attained 
-+ + atµ= x. Therefore, in this case, the statistic 

-+-+ -1-+-+ (x-µ ) 'E (x-µ ) - 0 0 - 0 

is not the likelihood-ratio statistic. 

When E is singular, for instance with rank r < q, a straightforward 
-+ -+ -+ generalisation is possible. Let x~N (µ,E). The density of x can then be - q 

represented as (RAO (1973), p.528), 

where the density is concentrated on the hyperplane 

-+ -+ N'x = N'µ 

with probability one.-E is any g-inverse of E, A1 , ... ,Ar are the non-zero 

eigenvalues of E and N is a qx (q-r) matrix of rank (q-r) such that N'E = O. 
-+ Now suppose again thatµ is unknown, but that Eis a known, fixed, non-
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negative definite matrix. We want to test H0 : µ µo against H1 : µ t- µ0 . 

Because Eis fixed, the matrix N is fixed and both x andµ satisfy the same 

(q-r) linear constraints, under H0 and under H1 . This means that the distri-

bution of xis concentrated on the same hyperplane under H
0 

and under H
1

. 

The likelihood-ratio for this testing problem is then equal to 

(8.3.6) 

for each; E {;/N'; = N';0 }. 

It is then again clear that the likelihood-ratio test-statistic is 

equal to 

(8.3.7) 

Again it follows from theorem 3.2.2. that this statistic has, under H0 , a 

central x2-distribution with trace(E-E) = rank E = r as number of degrees 

of freedom and, under H1 , anon-central x2-distribution with the same number 
-

of degrees of freedom and (µ-µ 0 ) 'E (µ-µ 0 ) as non-centrality parameter. 

Furthermore, it can be seen that it is possible, also in this case, to 

construct an example like example 8.3.1. 

REMARK 8.3.1. It can be proved that (8.3.7) does not depend on the choice 

of g-inverse E-. 

In our testing problem, we have !:* N(O,I:0 ) ·under H0 , where I:0 is 
+ ~ A A singular and !:* N ( o ,I:1 ) under alternatives from 2 u 3 . Notice that both 

o and r:1 are dependent on the particular 

natives in A1 , we have a;o* 00 , but the 

verge in all cases. 

alternative a E A2 u A3 . For alter-

distribution oft does not con--* 

Nevertheless, we could suppose that for large enough m we would have 

(8.3.8) under H0 

and 

(8.3.9) under H1 , 
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where"~" means "is approximately distributed as" (in (8.3.8) and (8.3.9)). 

When we make furthermore the crude assumption that Ll• LO• for all alter-

natives, then it follows from the preceding theory that 

(8.3.10) 

is an "approximate" likelihood-ratio test-statistic. 

The use of (8.3.10) as test-statistic is equivalent to the method pro-

posed, somewhat summarily, by MADANSKY (1963). He does not base the choice 

of his statistic on likelihood considerations and considering the fact that 

the assumptions necessary for this justification are hardly satisfied, this 

is just as well. For Ll• LO• is not satisfied in our case, nor is L1 .the 

same for each alternative a E A1. On the contrary, both 8 * and Ll. depend in 
a rather complex way on a and in view of example 8.3.1. we conclude that 

even all the above conditions would not guarantee that (8.3.10) would, 

asymptotically, be equivalent to the likelihood-ratio test. 

Furthermore, (8.3.10) is of the type (2.1.41) in section 2.1., with 

cross-terms, thus complicating the interpretation of the results. It seems 

perfectly justified, therefore, to consider a more general class of qua-

dratic forms, presented in this thesis as 

(8.3.11) 

with Q n.n.d, and to pay special attention to the diagonal case. This is 

what we have made our purpose to do. 
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CHAPTER 9 

NUMERICAL RESULTS 

This research would not be complete without illustrative examples of a 

numerical kind. Because of the huge number of parameters in our problem, it 

is hardly possible to cover all the situations that can occur, and there-

fore the results of the numerical computations that we give must merely be 

seen as illustrations of the theory. 

There are two kinds of numerical computations that have been made. The 

first kind concerns the elaboration of most of the formula's that occur in 

the theory, for a typical practical case, like the computation of exact mo-

ments, eigenvalues etc. The.second kind concerns· the numerical simulation 

of the exact probability distributions of the test-statistics involved. 

All calculations were performed on the CDC - CYBER 73 computer of SARA 

("Stichting Academisch Rekencentrum Amsterdam"). Several procedures were 

used from the library STATAL of statistical procedures, developed by the 

"Mathematisch Centrum", Amsterdam, and from the library NUMAL of numerical 

procedures developed by the University of Amsterdam. 

We start with the definition of a typical practical case, in the con-

ditional situation. 

9.1. A TYPICAL CASE 

Suppose we have the following tableau of observations, i.e. with 

m = 10, n = 5 and k = 3. The table has the same structure as table 1. 2 .1. 

For shortness, the categories chosen are indicated by their numbers 

instead of by their names. 
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Table 9. 1 . 1 • Example of an observation for m = 10, n = 5 and k = 3 • 

1 2 3 4 5 j=l j=2 j=3 

1 1 1 2 3 3 2 1 2 5 
2 1 1 2 3 2 2 2 1 5 

3 3 3 2 2 3 0 2 3 5 
4 1 3 3 3 1 2 0 3 5 
5 2 2 3 2 2 0 4 1 5 
6 1 2 3 2 2 1 3 1 5 
7 1 3 3 2 3 1 1 3 5 
8 1 2 3 1 1 3 1 1 5 

9 1 3 3 2 1 2 1 2 5 

10 2 1 3 2 3 1 2 2 5 

14 17 19 50 

j=l 7 3 0 1 3 14 1/ j=2 2 3 3 6 3 17 

j=3 1 4 7 3 4 19 

10 10 10 10 10 50 

We shall test our null-hypothesis on the basis of these observations. 

The very first thing to do is to select a Q matrix for the test-statistic 

We shall consider four different statistics, with Q of the form 

(9.1.1) Q - I ® G, 
n 

and G diagonal, i.e. 

(9.1.2) G 

The test-statistic that we recommend has weighing factors as given in 

(6.4.1). We obtain in this case 
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(9.1.3) 50 19 = 2.6316. 

In order to satisfy ( 4. 4. 24') , we shall modify these weighing factors a 

little by multiplying each with the same constant factor (0.9610), giving 

(9.1.4) 3.4320; 2.8263; 2.5288. 

This has of course no influence on the performance of the test. For ease of 

reference, we shall call the matrix Q defined by (9.1.1), (9.1.2) and 

(9.1.3), Q1 , and the associated test-statistic ~(Q1 ) or simply ~ 1 . 

A second possible choice is to take the weighing factors equal: 

(9.1.5) 2.8986 I 

giving a matrix Q2 and a statistic ~ 2 . The value 2.8986 is again the result 

of a modification (we could otherwise have taken g 1 = g 2 = g 3 = 1). 

A third statistic ~ 3 may be obtained when we have the impression (be-

fore the actual observations were made) that there is a preference for c 1 
in the first position. We can then give more weight to the first character 

by choosing (for instance) 

(9.1.6) 4; 1; 0.5 1 

or, after modification, 

(9.1. 7) 6.7227; 1.6807; 0.8403. 

The fourth and last statistic that we consider, ~ 4 , has weighing fac-

tors given by (6.3.11), 

(9.1.8) 3.4638; 3.2072; 2.1809. 

This gives also a g-inverse type, or Madansky-type statistic. The Q-matri-

ces of ~ 3 and ~ 4 are called Q3 and Q4 resp. 

Recapitulating, we shall consider the following four test-statistics. 
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Table 9.1.2. Weighing factors of four possible test-statistics. 

weighing factors 

statistic g1 g2 g3 type 

+ + "x2n ~1 - t'Q t 3.4320 2.8263 2.5288 -* 1-* 
+ + 

~2 - t'Q t -* 2-* 2.8986 2.8986 2.8986 "equal weights" 
+ + 

~3 - t'Q t -* 3-* 6.7227 1.6807 0.8403 "directed" 
+ + x2" ~4 - t'Q t 3.4638 3.2072 2 .1809 "asymptotic -* 4-* 

To investigate the performance of the test, we have constructed 2 al-

ternatives, which we shall call a(l) and a( 2). 

Alternative a(l). Because we are in the conditionaL situation, an alterna-

tive is defined by the assignment of (unequal) probabilities to each of 

the possible words in each of the experiments Ei. We have 

Table 9.1.3. Number of possible words per experiment. 

number of possible words + i a. 
J. N. 

J. 

1 2 1 2 30 

2 2 2 1 30 

3 0 2 3 10 

4 2 0 3 10 

5 0 4 1 5 

6 1 3 1 20 

7 1 1 3 20 

8 3 1 1 20 

9 2 1 2 30 

10 1 2 2 30 

(Notice that there are 30 x 30 x 10 x ••• x 30 x 30 = 3.24 x 1012 possible ways 

of obtaining a table of observations like the one in table 9.1.1.). 
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We have constructed an alternative in which a preference for c 1 in the 

first position is reflected in the fact that 

(9.1.9) P(t. (l) 
-J.1 0.8 

for those experiments for which ail 

(9.1.10) P(t. (l) 
-J.1 0.4 

2, and 

in the cases that ail= 1. For the rest the probabilities are spread evenly 

over the words. For instance, in the first experiment, the 12 words commenc-

ing with c 1 have probability 0.8/12 0.00, while the other 18 of the 30 

possible words have probability 0.2/18 = O.Ot. In the sixth experiment, the 

4 words beginning with c 1 have probability 0.4/4 = 0.1 and the other 16 

0.6/16 = 0.0375. In the third experiment the words have the same probabili-

ty as under HO, namely 0.1. The probabilities· in the other experiments were 

determined likewise. 

Alternative a( 2). This alternative is more intricate, because it has been 

constructed to represent three relative preferences, apreference of c 1 for 

the first position, a preference of c 2 for the second and a preference of 

c 3 for the third position. 

Probabilities have been assigned in the following way. Probability 

0.4 has been divided evenly over all the words of the type 

(9.1.11) X X 

where x stands for an arbitrary character, i.e. words which are completely 

in accordance with the presumed preferences. Probability 0.3 has been dis-

tributed over all the words of one of the following types 

cl c2 c3 X X 

(9.1.12) cl c2 c3 X X 

Cl c2 c3 X X 

where C. means: not the character c .. Words of the type 
J J 
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cl c2 c3 X X 

(9.1.13) cl c2 c3 X X 

cl c2 c3 X X 

together have probability 0.2, while words of the type 

(9.1.14) X X 

get together probability 0.1. We shall call the types of words given by 

(9.1.11) - (9.1.14), type A, B, C and D respectively. When words of a certain 

type do not occur, types have been taken together. The assignment of prob-

abilities is illustrated in the following tables. For the first experiment 

we have 

Table 9.1.4. Assignment of probabilities in the first experiment, under the 

alternative a( 2 ). 

word type probability 

cl cl c2 c3 c3 C 0.2/12 = 0.0166 •• 

cl cl c3 c2 c3 B 0.3/6 = 0.05 

Cl Cl c3 c3 c2 B 0.3/6 = 0.05 

Cl c2 cl c3 c3 B 0.3/6 = 0.05 

cl c2 c3 cl c3 A 0.4/2 = 0.2 

cl c2 c3 c3 Cl A 0.4/2 = 0.2 

cl c3 cl c2 c3 C 0.2/12 = 0.0166 •• 

cl c3 C c3 c2 C 0.2/12 = 0.0166 •• 1 
Cl c3 c2 cl c3 C 0.2/12 = 0. 0166 .• 

cl c3 c2 c3 cl C 0.2/12 = 0.0166 .. 

cl c3 c3 Cl c2 B 0.3/6 = 0.05 

Cl c3 c3 c2 cl B 0.3/6 = 0.05 

c2 cl cl c3 c3 D 0.1/10 = 0.01 

c2 Cl c3 Cl c3 C 0.2/12 = 0.0166 .• 

c2 cl c3 c3 cl C 0.2/12 = 0.0166 •• 

c2 c3 cl cl c3 D 0.1/10 = 0.01 

c2 c3 Cl c3 cl D 0.1/10 = 0.01 

c2 c3 c3 cl Cl C 0.2/12 = 0.0166 •. 
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c3 cl Cl c2 c3 D 0.1/10 = 0.01 

c3 cl cl c3 c2 D 0.1/10 = 0.01 

c3 cl c2 Cl c3 D 0.1/10 = 0.01 

c3 cl c2 c3 cl D 0.1/10 = 0.01 

c3 Cl c3 cl c2 C 0.2/12 = 0.0166 .. 

c3 cl c3 c2 cl C 0.2/12 = 0.0166 •• 

c3 c2 Cl cl c3 C 0.2/12 = 0.0166 .. 

c3 c2 cl c3 cl C 0.2/12 = 0.0166 .. 

c3 c2 c3 cl Cl B 0.3/6 = 0.05 

c3 c3 cl cl c2 D 0.1/10 = 0.01 

c3 c3 cl c2 cl D 0.1/10 = 0.01 

c3 c3 c2 cl cl D 0.1/10 = 0.01 

In the third experiment, the character c 1 does not occur, so words of 

the type A do not occur. In such cases we have given probability 0.7 to the 

words of type B, as is illustrated in the following table 

Table 9.1.5. Assignment of probabilities in the third experiment, under the 

alternative a( 2 ). 

word type probability 

c2 c2 c3 c3 c3 B 0.7/3 = 0.233 •. 

c2 c3 c2 c3 c3 D 0.1/3 = 0.033 .. 

c2 c3 c3 c2 c3 C 0.2/4 = 0.05 

c2 c3 c3 c3 c2 C 0.2/4 = 0.05 

c3 c2 c2 c3 c3 C 0.2/4 = 0.05 

c3 c2 c3 c2 c3 B 0.7/3 = 0.233 .. 

c3 c2 c3 c3 c2 B 0.7/3 = 0.233 .. 

c3 c3 c2 c2 c3 D 0.1/3 = 0.033 •. 

c3 c3 c2 c3 c2 D 0.1/3 = 0.033 •. 

c3 c3 c3 c2 c2 C 0.2/4 = 0.05 

The probabilities in the other experiments were determined in the same 

way. 
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9.2. ASYMPTOTIC DISTRIBUTIONS UNDER HO AND CRITICAL VALUES 

The a.d. of V •t under H0 , is given by -'Z-

r 2 (9.2.1) I A u , 
T=l T-T 

where >- 1 , ••• ,Ar are the non-zero eigenvalues of QiLO. For the actual cal-

culations we work with LO•. Because Q = In® G, LO• = N ® K
0

, the non-zero 
eigenvalues of QL0 are equal to the non-zero eigenvalues of ~ 1 GK, each • n- • 
of which must be taken with multiplicity (n-1). We have in our example 

(9.2.2) K 

-0.068 -0.100) 
0.176 -0.108 

-0.108 0.208 

The eigenvalues calculated for the four statistics are given in the follow-
ing table. 

Table 9.2.1. Eigenvalues for the a.d. of ~i' i 1, ... ,4. 

eigenvalues 

statistic Al = A2 = A3 = >-4 AS = A6 = >-7 = >-8 

~1 1.0716 0.9284 

~2 1.1328 0.8672 

~3 1.5333 0.4667 

~4 1.0000 1.0000 

Let ~(l) , ••• , ~(4 ) be random variables of the type (3.3.2), with 

eigenvalues as in table 9.2.1., i.e. their distributions are the a.d.'s 

of ~1•···•~4• 
The distribution-functions of the a.d. of ~i can be calculated using 

(3.3.7). Some results are given in the following table. 
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Table 9.2.2. Distribution functions of~ (l) , ... ,~( 4 ), the a.d.'s of 

~ 1 , ..• ,~4 , under H0 • 

z P(~ (1) :,; z) P(~(2) :,; z) P(~(3) :,; z) P(~ (4) :,; z) 

0 0.0000 0.0000 0.0000 0.0000 
2 0.0191 0.0194 0.0283 0.0190 
4 0 .1434 0.1448 0.1770 0.1429 
6 0.3535 0.3551 0.3888 0.3528 
8 0.5669 0.5679 0.5836 0.5665 
10 0.7350 0.7350 0.7316 0.7350 
12 0.8485 0.8478 0.8333 0.8488 
14 0.9179 0.9170 0.8991 0.9182 
16 0.9573 0.9564 0.9402 0.9576 
18 0.9785 0. 9778 0.9650 0.9788 
20 0.9895 0.9890 0.9798 0.9897 
22 0.9950 0.9947 0.9884 0.9951 
24 0.9976 0.9974 0.9934 0. 9977 

Notice that the last column of table 9.2.2. gives the distribution-

function of the x2-distribution with 8 degrees of freedom. 

Using an iterative zero-searching procedure, critical values of 
(1) (4) . 

, ... ,~ were obtained (we shall call this method of obtaining 

critical values: "method A"). The results are given in the following table. 

Table 9.2.3. Critical values of the distributions of~ (l) , ... ,~( 4 ). 

(Method A). 

Cl. ~1) 
, 1-ci. 

~2) 
, 1-CI. 

~3) 
,1-ci. 

~4) 
,1-CI. 

0.1000 13.3730 13.4016 14.0336 13.3616 

0.0500 15.5293 15.5824 16.6753 15.5073 

0.0250 17.5685 17.6505 19.2285 17.5345 

0.0100 20 .1432 20.2682 22.5142 20.0902 

0.0050 22.0240 22.1850 24.9520 21.9550 

0.0025 23.8545 24.0545 27.3545 23. 7745 

0.0010 26.2245 26.4745 30.4745 26.1245 

Notice again that the last column contains the critical values of the 

x2[8] - distribution. 
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Most program-libraries of numerical methods contain procedures to cal-

culate eigenvalues. They will, however, probably not contain a procedure to 

calculate the distribution of ~(i). The possible user of our methods thus 

has to write a program for these distributions and critical values himself. 

To avoid this, he can use the approximation to the distribution of~• 

which we described in section 3.3. and use a table of the x2-distribution. 

We have done this ("method B") for the approximation using two adapted mo-

ments. The correction factor (b) and the degrees of freedom (v) are given 

by (3.3.15) and (3.3.16) respectively. We found 

Table 9.2.4. Approximate critical values for the distributions of~ (l) , •.• , 

~( 3), obtained from an approximation with two adapted moments. (Method B). 

~(1) ~(2) ~(3) 

b 1.0051 1.0176 1.2844 

V 7.9592 7.8613 6.2286 

critical values 

a k (1) 
B,1-a 

k(2) 
B,1-a 

k (3) 
B,1-a 

0.1000 13.3754 13.4090 14.0786 

0.0500 15.5283 15.5795 16.6105 

0.0250 17.5627 17.6313 19.0232 

0.0100 20.1278 20.2193 22.0879 

0.0050 21.9996 22.1084 24.3374 

0.0025 23.8262 23.9522 26.5416 

0.0010 26.1855 26.3342 29.4001 

The determination of critical values may also be based on the exact 

moments of ~ 1 , .•. ,~4 , which can be calculated from (7.2.2) and (7.3.14). 

("Method C"). We have 
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Table 9.2.5. Exact moments of ~1 , ... ,~4 , under H0 . 

i E~i,HO cr2 (~i,HO) C n 

1 8.0000 14.0337 1.1401 9.1209 

2 8.0000 14.2424 1.1234 8.9873 

3 8.0000 17.8405 0.8968 7.1747 

4 8.0000 13.9529 1.1467 9.1737 

The last two column's contain c as defined by (1.4.4) and n, defined 

by (1.4.5). Using the method described in section 1.4. we find the following 

approximate critical values of the distribution of ~i-

Table 9.2.6. Approximate critical values for the distributions of ~ 1 , ... ,~4 , 

using the exact moments. (Method C). 

a k (1) 
c, 1-a 

k(2) 
C,1-a 

k (3) 
C,1-a 

k(4) 
C, 1-a 

0.1000 13.0182 13.0558 13.6633 13.0035 

0.0500 14.9880 15.0445 15.9684 14.9659 

0.0250 16.8411 16.9164 18.1542 16.8118 

0.0100 19.1685 19.2683 20. 9187 19.1296 

0.0050 20.8615 20.9797 22.9409 20.8155 

0.0025 22.5099 22.6465 24.9177 22.4568 

0.0010 24.6345 24.7952 27.4753 24.5721 

All the critical values, calculated from the a.d. of ~i' from an 

approximation to the a.d. or from the exact moments of the ~i may be used 

as approximate critical values for the performance of the test. 

The exact critical values would have to be based on the exact distri-

bution of v. which is unavailable to us. See also section 9.6. 
-1-

The outcomes of ~i' i=l, .•• ,4, for the data of table 9.1.1. are as 

given in the following table. 
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Table 9.2.7. Outcomes of the four test-statistics for the data of table 
9.1.1. 

statistic ·outcome 

~1 17.24 

~2 16.46 

~3 22.49 

~4 17.03 

The outcomes are significant at the 5% level for all four tests. 

Actually, the data of table 9.1.1. were obtained from a simulation of the 

experiment under the alternative a(l)" This explains the fact that the out-

come of ~3 is the highest of the four, because this statistic was designed 

especially to work against a(l)" 

9.3. SIMULATION RESULTS (UNDER HO) 

For each of the four statistics considered, we obtained 1000 pseudo-

observations, under H0 , by generating for each experiment Ei a pseudo-ran-

dom word. The words of each experiment were combined and an outcome of ~i 
was calculated. In this way we were able to make (pseudo-) estimates of the 

right-tail probabilities of the critical values of the preceding sections. 

These results thus also give an impression of the actual level of signifi-

cance of the tests as compared to the nominal level a. 

Table 9.3.1. Estimates of the right-tail probabilities (e.r .. t.p.) of the 

critical values k~:i-a of method A, under H0 , obtained by simulation. (See 

remark 9.3.1.). 

a k (1) 
A,1-a e.r.t.p k(2) 

A,1-a e.r.t.p k (3) 
A,1-a e.r.t.p k(4) 

A,1-a e.r.t.p 

0.1000 13.3730 0.073 13.4016 0.107 14.0336 0.100 13.3616 0.104 
0.0500 15.5293 0.038 15.5824 0.058 16.6753 0.038 15.5073 0.035 
0.0250 17.5685 0.015 17.6505 0.017 19.2285 0.020 17.5345 0.015 
0.0100 20 .1432 0.004 20.2682 0.009 22.5142 0.005 20.0902 0.007 
0.0050 22.0240 0.003 22 .1850 0.002 24.9520 0.003 21.9550 0.002 
0.0025 23.8545 0.000 24.0545 0.002 27.3545 0.001 23. 7745 0.000 
0.0010 26:2245 0.000 26.4745 0.001 30.4745 0.000 26.1245 0.000 
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Table 9.3.2. Estimates of the right-tail probabilities (e.r.t.p.) of the 

critical values k~:~-a of method B, under H0 , obtained by simulation. 

a k (1) 
B,1-a e.r.t.p k(2) 

B,1-a e.r.t.p k (3) 
B,1-a e.r.t.p 

0.1000 13.3754 0.103 13.4090 0.084 14.0786 0.086 
0.0500 15.5283 0.055 15.5795 0.043 16.6105 0.031 
0.0250 17.5627 0.019 17.6313 0.017 19.0232 0.014 
0.0100 20.1278 0.011 20.2193 0.006 22.0879 0.004 
0.0050 21.9996 0.006 22.1084 0.003 24.3374 0.001 
0.0025 23.8262 0.001 23.9522 0.001 26.5416 0.001 
0.0010 26.1855 0.001 26.3342 0.001 29.4001 0.000 

Table 9.3.3. Estimates of the right-tail probabilities (e.r.t.p.) of the 

critical values k~:~-a of method C, under H0 , obtained by simulation. 

a k (1) 
C,1-a e.r.t.p .k (2) 

C,1-a e.r.t.p k (3) 
C,1-a e.r.t.p k (4) 

C, 1-a e.r.t.p 

0.1000 13.0182 0.115 13.0558 0.103 13.6633 0.101 13.0035 0.095 
0.0500 14.9880 0.060 15.0445 0.061 15.9684 0.046 14.9659 0.044 
0.0250 16.8411 0.034 16.9164 0.030 18.1542 0.024 16.8118 0.017 
0.0100 19.1685 0.012 19.2683 0.011 20.9187 0.009 19.1296 0.005 
0.0050 20.8615 0.005 20.9797 0.006 22.9409 0.003 20.8155 0.003 
0.0025 22.5099 0.003 22.6465 0.002 24.9177 0.000 22.4568 0.002 
0.0010 24.6345 0.002 24.7952 0.000 27.4753 0.000 24.5721 0.000 

REMARK 9.3.1. Due to high costs of computer time, the simulations have not 

been made for each a separately. Therefore, the estimates of the right-

tail probabilities in tables 9.3.1., 9.3.2. and 9.3.3. are dependent 

columnwise. 

Inspection of the tables 9.3.1., 9.3.2. and 9.3.3. shows that in al-

most all cases the approximate critical values are slightly too high. This 

means that the actual level of the test is lower than the nominal level a. 

We shall call such tests "timid" (such tests are usually called "conserva-

tive"), in contrast with the tests where the actual level is higher than 

the nominal level a, which we shall call "bold". When critical values are 

used which are obtained by method C for ~1 , the test that we recommend, 

"bold" tests are obtained. Of course we have to take the inaccuracy into 
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account resulting from the fact that we have only estimates of the right-

tail probabilities at our disposal. The general tendency is however clear 

enough. 

Furthermore it seems that the estimates in table 9.3.3. (method C) are 

generally closer to the nominal values of a than in the other two cases. 

Therefore we recommend method C for the approximation of the critical 

values in all cases. 

Another impression of the goodness of the approximation using the ex-

act moments of~ (method C) may be obtained from the following figures. 

Figure 9.3.1. Pseudo-emperical distribution function of 1000 simulated ob-

servations of ~ 1 (dashed line) and distribution function of an adapted x2-

distribution. (The same simulation results as for table 9.3.3.). 
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Figure 9.3.2. Pseudo-emperical distribution function of 1000 simulated ob-

servations of ~2 (dashed line) and distribution function of an adapted x2-

distribution. (The same simulation results as for table 9.3.3.). 
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Figure 9.3.3. Pseudo-emperical distribution function of 1000 simulated ob-

servations of ~3 (dashed line) and distribution function of an adapted x2-

distribution. (The same simulation results as for table 9.3.3.). 
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Figure 9.3.4. Pseudo-emperical distribution function of 1000 simulated ob-

servations of ~ 4 (dashed line) and distribution function of an adapted x2-

distribution. (The same simulation results as for table 9.3.3.). 
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9.4. SIMULATION RESULTS (UNDER ALTERNATIVES) & POWER 

To make an estimate of the power of the four tests considered, we also 

generated 1000 pseudo-observations of ~ 1 , ••• ,~4 , under each of the two al-

ternatives a(l) and a(
2

) that were defined in section 9.1. Estimates of the 

right-tail probabilities of the (approximate) critical values of section 

9.2. are given in the tables 9.4.3. - 9.4.8. 

In each case the estimate is compared with the approximation to the 

power of the test as calculated from formula (4.4.19), 

(9.4.1) 

So, in addition to the eigenvalues A1 , ... ,Ar which are the same as those 

under tt
0 

(table 9.2.1.), we need the vectors w defined by (cf. section 4.4.) 

(9.4.2) w 

for each of the four choices of Q and each of the two choices of a. For 

those readers who might wish to check the calculations, we give the eight 

vectors win the following tables. 
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Table 9.4.1. Components of the vectors w for Q1 , .•. ,Q4 and a(l). 

T 
( 1) 

WT (a(l)) 
(2) 

WT (a(l)) 
(3) 

WT (a(l)) 
(4) 

WT (a(l)) 

1 0.1868 0.1377 -0.5025 -0.4055 

2 0.1932 0.2357 -0.2277 0.2431 

3 0.0126 -0.0805 -0.2990 -0.2049 

4 -0.3861 -0.0883 -0.0896 0.1983 

5 -0.2305 0.2825 -0.0036 0 .1464 

6 -0.1950 0.1950 0.0017 0.0916 

7 -0.2643 -0.3372 -0.0137 -0.1758 

8 -0.1412 -0.2865 0.0218 0.3625 

Table 9.4.2. Components of the vectors w for Q1 , ... ,Q4 and a( 2 ). 

T 
(1) 

WT (a(2)) 
(2) 

WT (a(2)) 
(3) 

WT (a(2)) 
(4) 

WT (a(2)) 

1 0.1905 -0.2085 -0.5484 -0.6021 

2 0.5163 0.3100 -0.0277 0.3325 

3 -0.4854 -0.6994 -0.3583 0.3345 

4 -0.2673 0.0661 -0.2832 0.5011 

5 0.2177 0.3071 -0.1960 -0.3165 

6 -0.5087 0.3168 -0.3130 0.0530 

7 -0.4392 -0.5438 0.5709 0.4182 

8 -0.1266 0.0396 0.4031 -0.1050 

We now have 



Table 9.4.3. Estimates of the right-tail probabilities (e.r.t.p.) of the 
critical values k(il) A, -a of method A, under a(l)' obtained by simulation. 
The values in brackets give the approximate power (a.p.) calculated from 

(4.4.19). 

a k (1) e.r.t.p k(2) e.r.t.p k (3) e.r.t.p k(4) e,r.t.p 
A,1-a (a.p.) A, 1-a (a.p.) A,1-a (a.p.) A, 1-a (a.p.) 

0.1000 13.3730 0.304 13.4016 0.281 14.0336 0.435 13.3616 0.298 
(0.355) (0.331) (0.436) (0.354) 

0.0500 15.5293 0.184 15.5824 0.153 16.6753 0.290 15.5073 0.167 
(0.240) (0.217) (0.314) (0.239) 

0.0250 17.5685 0.113 17.6505 0.071 19.2285 0.185 17.5345 0.088 
(0.159) (0.139) (0.221) (0.158) 

0.0100 20.1432 0.048 20.2682 0.029 22.5142 0.077 20.0902 0.043 
(0.091) (0.076) (0.135) (0.090) 

0.0050 22.0240 0.030 22.1850 0.017 24.9520 0.038 21.9550 0.024 
(0.058) (0.047) (0.092) (0.058) 

0.0025 23.8545 0.015 24.0545 0.007 27.3545 0.023 23.7745 0.013 
(0.037) (0.029) (0.062) (0.037) 

0.0010 26.2245 0.006 26.4745 0.000 30.4745 0.010 26.1245 0.005 
" (0.020) (0.015) (0.036) (0.020) 

Table 9.4.4. Estimates of the right-tail probabilities (e.r.t.p.) of the 

critical values k~~~-a of method B, under a(1), obtained by simulation. 
The values in brackets give the approximate power (a.p.) calculated from 

(4.4.19). 

a k(1) e.r.t.p k (2) e.r.t.p k(3) e.r.t.p k(4) e.r.t.p 
B,1-a (a.p.) B,1-a (a.p.) B,1-a (a.p.) B,1-a (a.p.) 

0.1000 13.3754 0.335 13.4090 0.283 14.0786 0.398 13.3616 0.322 
(0.355) (0.330) (0.434) (0.354) 

·0.0500 15.5283 0.192 15.5795 0.172 16.6105 0.276 15:5073 0 .191 
(0.240) (0.217) (0.317) (0.239) 

0.0250 17 .5627 0.109 17 .6313 0.083 19.0232 0.180 17.5345 0.117 
(0.159) (0.140) (0.228) (0.158) 

0.0100 20.1278 0.051 20.2193 0.037 22.0879 0.092 20.0902 0.053 
(0.091) (0.077) (0.145) (0.090) 

0.0050 21.9996 0.022 22.1084 0.026 24.3374 0.059 21.9550 0.026 
(0.059) (0.048) (0.102) (0.058) 

0.0025 23.8262 0.013 23.9522 0.010 26.5416 0.038 23. 7745 0.012 
(0.037) (0.030) (0.071) (0.037) 

0.0010 26.1855 0.003 26.3342 0.004 29.4001 0.016 26.1245 0.003 
(0.020) (0.016) (0.044) (0.020) 
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Table 9.4.5. Estimates of the right-tail probabilities (e.r.t.p.) of the 

critical values k~~~-a of method c, under a(l), obtained by simulation. 
The values in brackets give the approximate power (a.p.) calculated from 
(4.4.19). 

Cl. 
k (1) e.r.t.p k (2) e.r.t.p k (3) e.r.t.p k(4) e.r.t.p 

C, 1-a (a.p.) C,1-a (a.p.) C,1-a (a.p.) C,1-a (a.p.) 

0.1000 13.0182 0.365 13.0558 0.309 13.6633 0.405 13.0035 0.339 
(0.377) (0.352) (0.455) (0.376) 

0.0500 14.9880 0.216 15.0445 0.209 15.9684 0.272 14.9659 0.220 
(0.266) (0.242) (0.344) (0.265) 

0.0250 16.8411 0.128 16.9164 0.134 18.1542 0.175 16.8118 0.130 
(0.185) (0.164) (0.257) (0.184) 

0.0100 19.1685 0.071 19.2683 0.079 20.9187 0.095 19.1296 0.073 
(0.113) (0.096) (0.173) (0.112) 

0.0050 20.8615 0.039 20.9797 0.044 22.9409 0.052 20.8155 0.041 
(0.077) (0.064) (0.127) (0.076) 

0.0025 22.5099 0.020 22.6465 0.021 24.9177 0.031 22.4568 0.018 
(0.052) (0.041) (0.093) (0.051) 

0.0010 24.6345 0.007 24.7952 0.011 27.4753 0.020 24.5721 0.007 
(0.031) (0.024) (0.060) (0.030) 

Table 9.4.6. Estimates of the right-tail probabilities (e.r.t.p.) of the 

critical values k1~~-a of method A, under a( 2), obtained by simulation. 
The values in brackets give the approximate power (a.p.) calculated from 

(4.4.19). 

Cl. 
k (1) e.r.t.p k(2) e.r.t.p k(3) e.r.t.p k(4) e.r.t.p 

A, 1-a (a.p.) A,1-a (a.p.) A,1-a (a.p.) A,1-a (a.p.) 

0.1000 13.3730 0.694 13.4016 0. 724 14.0336 0.619 13.3616 0.701 
(0. 761) (0. 761) (0.669) (0.760) 

0.0500 15.5293 0.590 15.5824 0.607 16.6753 0.482 15.5073 0.575 
(0.651) (0.651) (0.535) (0.650) 

0.0250 17.5685 0.478 17.6505 0.478 19.2285 0.370 17.5345 0.464 
(0.543) (0.543) (0.415) (0.542) 

0.0100 20.1432 0.349 20.2682 0.360 22.5142 0.239 20.0902 0.332 
(0.412) (0.412) (0.285) (0.412) 

0.0050 22.0240 0.281 22.1850 0.293 24.9520 0.166 21.9550 0.261 
(0.328) (0.327) (0.210) (0.327) 

0.0025 23.8545 0.208 24.0545 0.208 27.3545 0.121 23. 7745 0.201 
(0.256) (0.255) (0 .151) (0.256) 

0.0010 26.2245 0.122 26.4745 0.150 30.4745 0.067 26.1245 0.147 
(0.181) (0.179) (0.096) (0.180) 



Table 9.4.7. Estimates of the right~tail probabilities (e.r.t.p.) of the 

critical values k~~i-a of method B, under a( 2), obtained by simulation. 

The values in brackets give the approximate power (a.p.) calculated from 

(4.4.19). 

a k (1) e.r.t.p k(2) e.r.t.p k(3) e.r.t.p k(4) e.r.t.p 
B, 1-a (a.p.) B,1-a (a.p.) B,1-a (a.p.) B,1-a (a.p.) 

0.1000 13.3754 0.680 13.4090 0.716 14.0786 0.637 13.3616 0.681 
(0. 761) (0.761) (0.666) (0.760) 

0.0500 15.5283 0.588 15.5795 0.588 16.6105 0.491 15.5073 0.571 
(0.651) (0.651) (0.538) (0.650) 

0.0250 17.5627 0.470 17 .6313 0.469 19.0232 0.378 17.5345 0.464 
(0.543) (0.544) (0.424) (0.542) 

0.0100 20.1278 0.327 20.2193 0.347 22.0879 0.265 20.0902 0.363 
(0.413) (0.414) (0.300) (0.412) 

0.0050 21.9996 0.262 22.1084 0.275 24.3374 0 .171 21.9550 0.271 
(0.329) (0.330) (0.227) (0.327) 

0.0025 23.8262 0.187 23.9522 0.208 26.5416 0.117 23.7745 0.205 
(0.257) (0.258) (0.169) (0.256) 

0.0010 26 .1855 0.130 26.3342 0.121 29.4001 0.070 26.1245 0.138 
(0.182) (0.183) (0 .113) (0.180) 

Table 9.4.8. Estimates of the right-tail probabilities (e.r.t.p.) of the 

critical values k~~i-a of method c, under a( 2), obtained by simulation. 

The values in brackets give the approximate power (a.p.) calculated from 

(4.4.19). 

a k (1) e.r.t.p k(2) e.r.t.p k (3) e.r.t.p k(4) e.r.t.p 
C,1-a (a.p.) C,1-a (a.p.) c,1-a (a.p.) C,1-a (a.p.) 

0.1000 13.0182 0.735 13.0558 0.729 13.6633 0.663 13.0035 0.705 
(0.788) (0.779) (0.687) (0. 778) 

0.0500 14.9880 0.623 15.0445 0.629 15.9684 0.528 14.9659 0.601 
(0.680) (0.679) (0.570) (0.679) 

0.0250 16.8411 0.518 16.9164 0.527 18.1542 0.417 16.8118 0.500 
(0.581) (0.581) (0.464) (0.580) 

0.0100 19.1685 0.403 19.2683 0.433 20.9187 0.305 19.1296 0.398 
(0.460) (0.460) (0.344) (0.459) 

0.0050 20.8615 0.319 20.9797 0.326 22.9409 0.222 20.8155 0.317 
(0.379) (0.379) (0.271) (0.378) 

0.0025 22.5099 0.260 22.6465 0.251 24.9177 0.169 22.4568 0.252 
(0.307) (0.308) (0.211) (0.306) 

0.0010 24.6345 0.183 24.7952 0.169 27.4753 0.114 24.5721 0.180 
(0.229) (0.230) (0.148) (0.228) 

133 



134 

REMARK 9.4.1. The same remark applies as in remark 9.3.1. Notice further-

more that the last column of table 9.4.4. contains the same critical values 

as the last column of table 9.4.3. The estimates, however, are independent 

of the estimates of table 9.4.3. They are given to make a better comparison 

possible. 

According to these results it appears that ~ 3 has the highest-power 

against a(l)' which is in agreement with the fact that Q3 was especially 

chosen so that ~ 3 would react on this kind of alternative. Furthermore, ~l 

and ~ 4 are equally good, though ~l seems to perform slightly better than 

~4-
Against a( 2 ) it is ~ 2 that appears to work best, which is again not 

surprising because there are preferences for three positions in a(
2
). Again 

~land ~4 are competetive while now ~ 3 seems to work worst. 

It seems that the highest power is obtained when the critical values 

have been determined by method C. The results-may be misleading, however, 

because we have not made a correction for the fact that the actual levels 

of the tests are not equal to the nominal levels. Therefore we compare 

"bold" and "timid" tests which possibly gives a distorted picture of the 

situation. The results are nevertheless supported by the results of Pitman-

efficiencies (section 9.5.). 

Finally we observe that the approximate power of the tests as calcu-

lated from (4.4.19) is too high throughout. Again for the critical values 

of method C, the results are closest to the estimates from the simulation. 

Because no calculations have been made for a higher number of experiments 

than 10, it is not clear whether the approximation improves as m gets larg-

er. This should therefore be a subject for further (numerical) research. 

9·_ 5. PITMAN & BAHADUR EFFICIENCIES 

The asymptotic relative Pitman efficiency (ARPE) of ~(Qi) with respect 

to v(Q .) is equal to (cf. (5.2.2)) 
- J 

(9.5.1) e •• (f3) 
-Z-J 

-1 H. (f3) 
_;;___ 
H-;1 (f3) , 

-z, 

f3 E (a, 1), 

where Hi(n} is given by (5.2.3). Using an iterative zero-searching procedure 

the inverse values of H(n) were calculated. Because e .. (f3) depends on a,f3 
-Z-J 
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and a, we cannot give a complete survey of the results. Therefore, we shall 

only give the results for a= 0.05 and S = 0.25, 0.50 and 0. 75 and for a(l) 

and a(
2
). For other values of a and S the ARPE's show generally the same 

pattern. 

Table 9. 5 .1. ARPE 's for the 4 tests considered, with a = 0. 05 and S = 0. 25 

for a(l). 

H-l (0.25) 10.43 11.55 7.85 10.47 

test 1 2 3 4 no. 

10.43 1 1.000 1.107 0.753 1.004 
11.55 2 0.903 1.000 0.680 0.906 
7.85 3 1.329 1.471 1.000 1.334 

10.47 4 0.996 1.103 0.750 1.000 

Table 9. 5. 2. ARPE' s for the 4 tests considered, with a = 0. 05 and S = 0. 50 

for a(l). 

H-l(0.50) 20.82 22.68 16.35 20.89 

test 1 2 3 4 no. 

20.82 1 1.000 1.089 0.785 1.003 

22.68 2 0.918 1.000 0. 721 0.921 

16.35 3 1.273 1.387 1.000 1.278 
20.89 4 0.997 1.086 0.783 1.000 
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Table 9. 5. 3. ARPE' s for the four tests considered, with a = 0. 05 and S = 0. 7 5 

for a(1). 

H-l(0.75) 33.69 36.25 27.28 36.33 

test 1 2 3 4 no. 

33.69 1 1.000 1.076 0.810 1.078 

36.25 2 0.929 1.000 0.753 1.002 

27.28 3 1.235 1.329 1.000 1.332 

36.33 4 0.927 0.998 0.751 1.000 

Table 9.5.4. ARPE's for the four tests considered, with a=0.05 and S=0.25 

H-l(0.25) 3.74 3.73 4.70 3.75 

test 1 2 3 4 no. 

3.74 1 1.000 0.997 1.257 1.003 

3.73 2 1.003 1.000 1.260 1.005 

4.70 3 0.796 0.794 1.000 0.798 

3.75 4 0.997 0.995 1.253 1.000 

Table 9. 5. 5. ARPE' s for the four tests considered, with a = 0. 05 and S = 0. 50 

H-l(0.50) 7.46 7.45 9.32 7.47 

test 1 2 3 4 
no. 

7.46 1 1.000 0.999 1.249 1.001 

7.45 2 1.001 1.000 1.251 1.003 

9.32 3 0.800 0.799 1.000 0.802 

7.47 4 0.999 0.997 1.248 1.000 
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Table 9.5.6. ARPE's for the four tests considered, with a.= 0.05 and S = 0. 75 

for a( 2 ). 

H- 1 (0.75) 12.06 12.06 14.94 12.08 

test 1 2 3 4 no. 

12.06 1 1.000 1.000 1.239 1.002 

12.06 2 1.000 1.000 1.239 1.002 

14.94 3 0.807 0.807 1.000 0.809 

12.08 4 0.998 0.998 1.237 1.000 

These results confirm clearly the simulation results of the preceding 

section. I.e. :::3 (the "directed" test) performs best against a(l). Second 

best is :::1 (the "x2-type" test), though only ~lightly better than :::4 (the 

"asymptotic x2-type" test) .. The "equal weights" test, :::2 performs definite-

ly worse against a(l)" 

The situation under a( 2) is different, fully in accordance with our 

expectations. As in the simulation results, the "equal weights" test per-

forms best against a( 2). Again :::1 is second best and is slightly better 

than :::4 • This time the directed test, :::3 performs worst. 

The approximation to e .. (S), (cf. (2.5.11)), 1,J 

* (9.5.2) e •• 1,J 

is much easier to use, because no eigenvalues etc. have to be calculated. 

We have 
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+ 
Table 9.5.7. Components of the vectors s for a(l) and a( 2). 

\) 
+(1) s +(2) s 

1 0.2600 0.2683 
1 j 2 -0.1033 -0.1020 

3 -0.1567 -0.1663 
1 -0.0650 -0.1200 

2 j 2 0.0258 0.2783 
3 0.0392 -0.1583 
1 -0.0650 -0.1463 

3 j 2 0.0258 -0.1870 
3 0.0392 0.3333 
1 -0.0650 -0.0010 

4 j 2 0.0258 0.0053 
3 0.0392 -0.0043 
1 -0.0650 -0.0010 

5 j 2 0.0258 0.0053 
3 0.0392 -0.0043 

Table 9. 5. 8. Approximate ARP.E's for the four tests considered, calculated 

according to (5.2.11), for a(l)" 

+ + s 'Qis 0.405 0.373 0.616 0.402 

test no. 1 2 3 4 

0.405 1 1.000 1.086 0.657 1.007 

0.373 2 0.921 1.000 0.606 0.928 

0.616 3 1.521 1.561 1.000 1.532 

0.402 4 0.993 1.078 0.653 1.000 

Table 9.5.9. Approximate ARPE's for the four tests considered, calculated 

according to (5.2.11), for a( 2). 

+ + s 'Qis 1.132 1.144 1.069 1.125 

test no. 1 2 3 4 

1.132 1 1.000 0.990 1.059 1.006 

1.144 2 1.011 1.000 1.070 1.017 

1.069 3 0.944 0.934 1.000 0.950 

1.125 4 0.994 0.983 1.052 1.000 
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The reader may judge for himself whether he thinks these approximations 

good enough for his purposes. In any case, the general tendency is the same 

as in the 'exact' ARPE cases. 

Finally, the asymptotic relative Bahadur efficiency (ARBE) is equal to 

(cf. ( 5. 4. 1) ) 

(9.5.3) E •• (a) 1,J 

1 + + 
-(-.)1:_;'Q.I:_; 
;\ i, i, 

1 
1 + + 

-,-.)1:_;'Q.I:_; 
;\ J J 

1 

Using the data of tables 9.1.2., 9.2.1., 9.5.8. and 9.5.9 .. we find 

Table 9.5.10. ARBE's for the four tests considered, calculated according to 

( 5 . 4 • 1 ) , for a ( 1 ) • 

1 + + 0.378 0.329 0.402 0.402 77>1:_;'Qil:_; 
;>..1 

test no. 1 2 3 4 

0.378 1 1.000 1.149 0.940 0.940 

0.329 2 0.870 1.000 0.818 0.818 

0.402 3 1.063 1.222 1.000 1.000 

0.402 4 1.063 1.222 1.000 1.000 

Table 9.5.11. ARBE's for the four tests considered, calculated according to 

( 5 • 4 • 1 ) , for a ( 2 ) • 

1 + + 1.056 1.010 0.697 1.125 -,-.)1:_;'Q.I:_; 
;\ i, i, 

1 

test no. 1 2 3 4 

1.056 1 1.000 1.046 1. 515 0.939 

1.010 2 0.956 1.000 1.449 0.898 

0.697 3 0.660 0.690 1.000 0.620 

1.125 4 1.065 1.114 1.614 1.000 
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It is clear that the simulation results of section 9.4. are more in 

accordance with the ARPE's than with the ARBE's. The ARPE therefore seems 

to be the better measure of asymptotic relative efficiencies in our case. 

9.6. CONCLUDING REMARKS 

By computer generation of all possible n;1 Ni different combinations 

of words and calculation of ~(Q) for each combination, it is in principle 

possible to obtain the exact distribution of ~(Q). However, the number of 

possibilities becomes soon prohibitive. For instance in our example we have 

(9.6.1) 
m 
TT 

i=1 
N. 3.24 X 1012 . 

J_ 

So only for relatively small m, it can be done in practice. The interested 

reader is referred to DIK (1979), which shows that, under H0 , the number of 

possibilities can be reduced a little by symmetry arguments, and which 

gives some results, under H0 , for the case that Q = In x Gg. 

He may also find there results of simulations of ~(Q), i.e. in the un-

conditional situation. Some remarks are made there also on the effects of 

the deletion of "useless" observations. 

We are aware that the numerical examples that we have given do not, 

in any way, cover all the possible situations that can occur. But the exam-

ples given support clearly the recommendations that we have given in this 

thesis. 
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SAMENVATTING 

Dit proefschrift handelt over een practische statistische situatie. 

Ons doel is geweest om de onderzoeksresultaten ook werkelijk toegankelijk 

te maken voor toepassers van de statistiek, en met dit doel in gedachten is 

dit werk geschreven. Wij geven bijvoorbeeld een aantal methoden voor het 

berekenen van (benaderingen van) kritieke waarden voor de voorgestelde 

toetsingsgrootheden. 

De practische situatie betreft het ontdekken van verschillen in voor-

keuren of afkeren tussen individuen, wanneer de waarnemingen de (herhaalde) 

keuzen zijn die zij hebben gedaan. Stel bijvoorbeeld dat n personen mogen 

kiezen uit k verschillende merken chocolade. Alle personen zouden dezelfde 

voorkeuren kunnen hebben voor bepaalde merken, mogelijkerwijs varierend in 

de loop der tijd, maar het is een eventueel verschil tussen de personen met 

betrekking tot hun voorkeuren dat we willen ontdekken. 

In het eerste hoofstuk wordt het practische probleem en de door ons 

aanbevolen oplossing uiteengezet. Alle gegevens die nodig zijn voor het 

uitvoeren van de methode in de praktijk worden in dit hoofdstuk gegeven. 
+ 

De basis van de oplossing van het probleem vormt een vector!* van 

waarneembare stochastische variabelen, waarvan de asymptotische normaliteit 

onder bepaalde voorwaarden wordt vastgesteld. De klasse van kwadratische 
+ vormen int -* 

+ + I T {!~Q!* Q niet-negatief definiet} 

wordt dan beschouwd als een mogelijke klasse van practische toetsingsgroot-

heden. Het gebruik van kwadratische vormen wordt uitgebreid gemotiveerd, 

zowel intuitief (sectie 2.1.) als theoretisch (hoofdstuk 8). 

Twee problemen deden zich voor bij het bepalen van de asymptotische 
+ + verdeling van !~Q!*· Het eerste was de singulariteit van de dispersie-matrix 

+ van!* (ook in de limiet). Het tweede probleem was de betrekkelijke wille-

keurigheid van de matrix Q. Slechts voor enkele speciale keuzen van Q zou 
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de toetsingsgrootheid (asymptotisch) een x2-verdeling kunnen opleveren. 

Beide problemen worden opgelost door stelling 3.2.1. welke de verdeling 

geeft (in expliciete vorm) van een kwadratische vorm in normaal verdeelde 

variabelen, ook in het geval dat de dispersie-matrix van de normaal verdeel-

de variabelen singulier is. Met behulp van deze stelling worden de limiet-
+ 

verdelingen van !~Q!* bepaald (onder de nulhypothese en onder alternatieven) 

(sectie 4.3.). 

Een gebruikelijke methode om het probleem van een singuliere dispersie-

matrix op te lossen is het definieren van een transformatie naar een lager 

dimensionale ruimte waarin de dispersie-matrix van de (getransformeerde) 

variabelen niet singulier is. Dit geeft meestal aanleiding tot gecompli-

ceerde toetsingsgrootheden en maakt de werking van de toets vager. Met be-

hulp van Rao's theorie over g-inversen van matrices (RAO (1973)) wordt aan-

getoond dat zo'n transformatie onnodig is (hoofdstuk 6). MADANSKY (1963) 

gebruikte de methode van transformatie naar een lagere dimensie toen hij 

een generalisatie van Cochran's Q-toets voorstelde (COCHRAN (1950)). Zowel 

de toets van Madansky als die van Cochran kan gezien worden als een speciaal 

geval van de toetsen die we onderzochten (hoofdstuk 6). 

De consistentie en het onderscheidingsvermogen van de toetsen uit T 

worden beschouwd in hoofdstuk 4. De asymptotische relatieve werkzaamheid 

van paren van toetsen uit T volgens Pitman en Bahadur wordt bepaald in 

hoofdstuk 5. Geen van beide methoden geeft een duidelijke indicatie welke 

Q gebruikt moet worden opdat de toets tegen meerdere alternatieven een 

hoog onderscheidingsvermogen heeft. 

Een toetsingsgrootheid van het x2 type wordt daarom voorgesteld.voor 

gebruik in de praktijk, in hoofdzaak gemotiveerd op intuitieve en practische 

gronden (sectie 6.4.). De aanbevelingen worden ondersteund door de resulta-

ten van numerieke simulatie die we geven in hoofdstuk 9. In dat hoofdstuk 

wordt ook aangetoond dat de toets gericht kan worden op een speciaal alter-

natief door een geschikte keuze van de matrix Q. 

Teneinde een goede en eenvoudige benadering te verkrijgen voor de ver-

deling onder H0 , wordt tenslotte de verwachting en variantie (onder H0 ) van 

de toetsingsgrootheid bepaald voor enkele speciale keuzen van Q (hoofdstuk 7). 



STELLINGEN 

bij het proefschrift Test.6 60~ P~e6~ence 
van J.J. Dik. 

I. 

Het gebruik van wegingsfactoren die onderling eenvoudige 

bezitten voor de toetsingsgrootheid !;~Q!;*, met Q = In® G, van 

schrift, kan een nadelige invloed hebben op de nauwkeurigheid 

gestelde benaderingen. 

II. 

quo ti en ten 

dit proef-

van de voor-

Het toetsingsprobleem dat R.L. Anderson beschrijft in het hieronder 

genoemde artikel is, althans onder H
0

, identiek aan het toetsingsprobleem 

in dit proefschrift voor het speciale geval dat k = n en aij = 1 voor elke 

i en j. Dit proefschrift bevat daarom een alternatief bewijs voor de 

asymptotiek van Anderson's toetsingsgrootheid (onder H
0
). 

III. 

ANDERSON, R.L. (1959), Use of contingency tables in the analysis of 

consumer preference studies, Biometrics 1.2, 582-'590. 

In de laatste paragraaf van zijn artikel toont SCHACH (1979) aan dat 

de suggestie die KANNEMANN (1976) doet om het probleem van knopen op te 

lossen bij de toets van ANDERSON (1959) niet leidt tot een asymptotische 

x2-verdeling. Als (vage) oplossing voor dit probleem stelt hij voor: 

"numerieke diagonalisatie van de som van de (voorwaardelijke) dispersie-

matrices, en de constructie van een overeenkomstige toetsingsgrootheid 

met een asymptotische x2-verdeling", wat dit ook moge betekenen. 

Dit probleem kan echter worden opgelost door de limietverdeling te 

bepalen met behulp van stelling 3.2.1. van dit proefschrift, of door ge-

bruik te maken van g-inversen zoals beschreven in dit proefschrift. De 

eerste oplossingsmethode geeft dan weliswaar geen x2-verdeling, maar even-

als in dit proefschrift zouden geschikte benaderingen kunnen worden gevon-

den. Het bezwaar van de tweede oplossing (en waarschijnlijk ook van de 

oplossing die Schach bedoelt) is dat een andere toetsingsgrootheid wordt 



gedefinieerd. Het streven naar een x2-verdeling dient stellig niet altijd 

voorop te staan. 

IV. 

ANDERSON, R.L. (1959), Use of contingency tables in the analysis of 

consumer preference studies, Biometrics .!2, 582-590. 

KANNEMANN, K. (1976), An incidence test fork related samples, 

Biom. Zeitschrift ~, 3-11. 

SCHACH, S. (1979), An alternative to the Friedman test with certain 

optimality properties, Ann. of Statist. z, 537-550. 

De methode die PATIL (1975) geeft voor het berekenen van de exacte 

verdeling van Cochran's Q-toets geeft geen wezenlijke verkorting van de 

berekeningen t.o.v. het uitschrijven van alle mogelijkheden. Bovendien is 

de methode slecht overdraagbaar naar het meer algemene geval dat beschreven 

wordt in dit proefschrift. 

V. 

PATIL, K.D. (1975), Cochran's Q-test: Exact distribution, Journal of 

the American Statistical Association 70, 186-189. 

Met betrekking tot de Poisson-verdeling geldt de volgende ongelijkheid. 

Laat ~A~ Poisson(>-). Voor gehele a en b met O;:; a< b-1, en reele µ en A met 

0 <µ<A, zodanig dat 

P(v ;:; a) 
-µ 

geldt de volgende ongelijkheid, 

;:; a) > P(v 
-µ "bl. 

ZIJM, W.H.M. & J.J. DIK (1979), Two inequalities for Poisson-probabili-

ties, Indagationes Mathematicae A 82, 87-94. 



VI. 

Het is merkwaardig dat voor de (reeds lang bekende) asymptotiek van de 

multihypergeometrische verdeling in de literatuur geen eenvoudig exact 

bewijs te vinden is, behalve in enkele speciale gevallen. Het. wordt hoog 

tijd dat in deze lacune wordt voorzien. 

VII. 

Stelling 3.2.1. van dit proefschrift biedt de mogelijkheid om in een 

kxr tabel met vaste marges cellen samen te nemen anders dan koloms- of 

rij gewijs. Het is dan mogelijk om de toets speciaal te richten op af-

wijkingen van de nulhypothese die zich bijvoorbeeld in de diagonaal cellen 

van de tabel voordoen. 

VIII. 

Bij het berekenen van tweezijdige betrouwbaarheidsintervallen voor de 

parameters van de Poisson-verdeling en van de binomiale verdeling wordt 

soms voorgesteld om, indien een uitkomst 0 is verkregen, slechts een rechter-
. . 1 . . . betrouwbaarheidsgrens te berekenen met a 1.p.v. 2a. Deze methode is onJuist. 

IX. 

Een goed model voor de verdeling van het aantal woorden per zin bij 

Nederlandse roman-schrijvers is de gegeneraliseerde hypergeometrische ver-

deling, type IV, volgens de indeling van Kemp & Kemp {JOHNSON & KOTZ (1969)). 

De parameters van de verdeling kunnen dienen voor karakterisering van 

de stijl van de schrijvers. Tevens is een interpretatie van dit model moge-

lijk. 

JOHNSON, N.L. & s. KOTZ (1969), Distributions in statistics: Discrete 

distributions, John Wiley & Sons, New York. 



x. 

Buiten de reeds bekende voordelen van het onderstrepen van stochastische 

variabelen, zoals de duidelijke herkenbaarheid van parameters en stochasten 

en het zuiniger gebruik van letters, zeker in teksten waarin matrices voor-

komen, heeft het onderstrepen van stochastische variabelen nog het voordeel 

dat bij mondelinge explicatie waarbij een schoolbord wordt gebruikt de 

docent niet (noodgedwongen) van de notatie van een boek hoeft af te wijken. 

XI. 

In de toename van de mogelijkheden om statistische gegevens per com-

puter te laten verwerken door statistische bibliotheek-procedures zoals 

SPSS schuilt het gevaar dat steeds meer waarnemingen worden "verguld", 

d.w.z. dat de waarde van de door de computer afgedrukte resultaten niet 

meer is dan uiterlijke schijn. 

XII. 

In de wiskundige omgangstaal verdient het de voorkeur om de binomi-

aal coefficient (~) uit te spreken als "k uit n" in plaats van het (onzin-

nige) "n boven k", of, erger, "n over k". 


