

4.3. OBJECT STORAGE MODELS

kids kid[!]

Figure 4.4: The NSM storage model

Record

kid[2]

35

A prime disadvantage is again that modification of the object properties re
quires reconstruction of the record, but, contrary to FSM part of the object
needs reconstruction. As subobjects can be shared, the old record can not be
simply deallocated. To avoid dangling object references from the parent objects,
a tombstone should be left at the memory location, which refers to the new
record [LSL92].

Example 4.4 Continuing our example, under NSM the person object is repre
sented by the records shown in Figure 4.4. Basically all the subobjects are rep
resented by separate records. The person objects tom, alice, j ane and john
are represented by separate person record structures. Furthermore, they ref
erence each other either directly, or through a record structure presenting the
set-of-person object kids.

The NSM data model uses the same directory structure as FSM. However, as
subobjects are stored separately, the total storage cost is much less than in FSM.
A person object now only contains references to its subobjects spouse, address
and kids. The total storage requirement for the example data base is therefore:
one address record of (p+2s+i) bytes, four person records of (5p+s+i) bytes,
and one set-of-persons record of (3p+i) bytes, giving a total of: (24p+6s+6i)
bytes.

4.3.3 Decomposed Storage Model

In the decomposed storage model (DSM) each attribute is mapped onto a binary
relation and each value is associated with the surrogate of its conceptual tuple or
set. Similar to NSM, DSM has the advantage that shared objects are stored once
only. Furthermore, the storage requirements for DSM are not necessarily larger
than for NSM. In DSM each attribute value requires the storage of a surrogate,
while in NSM storage is required in the directory to record the field offset of the
attribute value or to represent a NULL value.

Furthermore, whereas in NSM it is possible to access an atomic attribute

36 CHAPTER 4. THE GOBLIN STORAGE MODEL

Person Cla.,;s
name records address records

Sjohn Sjohn "John Doc" Sjohn $address

Sjanc Sjane "Jane Doe" Sjanc Satldrcss
SLom $tom "Tom Doc" Stum $address
Sa1icc Salicc "Alice Doc" Salicc $address

age record spouse records kidsrei.:ords

$john 29 Sjohn Sjanc Sjnhn Stum

Sjane 27 Sjanc Sjohn Sjohn SaJicc

Stom 3 Sjane Stom
Salicc 4 Sjane Sali1.:c

Address Cla.-.s
numhcr records city records

Satltlress $address 1239 Saddrc.,;s "New York"
street records

Sad.dress "42st"

Figure 4.5: The DSM storage model

value simply by using its offset in a record, in DSM a lookup operation must be
performed to retrieve the attribute requested. Hash-based join indices can be
maintained to speed up this processing.

Example 4.5 Using DSM, the Person and Address objects will be completely de
composed in a set of binary relations. The surrogates are used to maintain the
structural relationships between the object attributes. Each attribute is repre
sented by a relation. The special surrogate Sa:ncho·r· identifies the anchor point
of the data and is merely used to encode that Sjohn is a valid object stored in
the data base. Null values do not have to be recorded because class membership
implicitly determines the type structure. The DSM storage model is illustrated
in Figure 4.5.

In the DSM model the records store simply (oid, value) associations. The
address record is thus stored in three binary associations {oid, city) , {oid,
street), and {oid, number), requiring a total of 3p + 2s + i bytes. Similarly,
the person object is represented by 5 associations. The kids set-valued attribute

_ is also represented by a binary relation associating parents with their children.
Note that contrary to DSM and FSM non-existing associations do not require
storage. Thus the non-existing spouse and kids associations of the children do
not contribute to the total storage requirement.

The storage requirement for a parent and a child is Sp + s + i and 4p + s +
i, respectively. The kids association requires an additional 4p. Thus the total
storage requirement is 27p + 6s + 5i.

Notice that the storage overhead is limited to 3p compared to NSM and that
the number of kids is implied by the representation. If the number of optional
attributes increases, the storage requirement for the DSM scheme is even less
than for NSM.

4.3. OBJECT STORAGE MODELS 37

4- 3.4 Other storage models

For completeness we will mention two hybrid models. On the basis of FSM,
DSM and NSM two hybrid models have been defined: Partial Decomposed Stor
age Model (P-DSM) [VKC86] and Partial Normalized Storage Model (P-NSM)
[HO88].

P-DSM is a combination of NSM and DSM. It vertically partitions an object
such that attributes used together frequently are stored in the same file. Often
the attributes are associated with the surrogate of the tuple or set of which it is
a part. P-NSM can be seen as a combination of FSM and NSM. In this approach
an object is vertically partitioned, such that complete subobjects are stored in
the same file.

These storage models offer the possibility to combine the advantages of both
schemes and to tune the database partitioning to a certain query mix (See for
instance [TF82l[pages 201-224]). Obviously, for highly dynamic workloads this
approach is not suited. As these models are derived from the basic storage
models we will not discuss them in further detail.

4.3.5 Storage model comparison

Both the NSM and DSM approach can express object sharing in their storage
model. In NSM the unit for clustering is the collection of atomic attributes with
their surrogate, which is simply its object identity. In FSM object sharing is
cumbersome and it can only be implemented by data replication or using an
election strategy.

DSM offers the best support for dynamically changing objects. In the NSM
and FSM approach adding new attributes to an object requires a complete stor
age reorganization, because the mapping of attributes to record fields is fixed at
object creation time. Consequently, when an attribute is added to the object a
new record layout must be determined for both approaches. Adding elements to
a set valued attribute is cheap in both NSM and DSM, but possibly requires a
record reorganization in FSM.

Furthermore, DSM has the advantage that selection of storage techniques can
be done independently for each attribute, eg. fixed or variable sized record field.
In NSM and FSM, where many attributes are stored together, these decisions
strongly interact. Similar arguments hold for indexing and data compression.

Judging from the storage requirements for the example data base we conclude
that DSM and NSM require far less storage than FSM. DSM has the added
advantage over NSM that undefined associations (eg. an undefined kids or
spouse attribute) do not require storage at all. Thus even though intuitively
the DSM approach introduces more storage overhead than NSM by duplicating
the oid of an object for each of its attributes, we learn from this example that
this is not a rule and basically depends on the number of optional attribute
values.

For class B and C queries DSM shows a better performance in disk-resident
data bases [VKC86]. As I/O cost is the main cost factor in these systems it is
not possible to carry the same conclusions over to memory-resident systems.

The high maintenance and reconstruction costs for DSM do not apply to a

38 CHAPTER 4. THE GOBLIN STORAGE MODEL

FSM NSM DSM OOPL
shared objects -- + + ++
object evolution -- - ++ -
declustering - + ++ --

storage overhead -- + + +
class A workload ++ + - ++
class B workload - + ++ ±
class C workload + + + +

Table 4.1: Summary of the qualitative storage model comparison

main-memory system, because these extra costs are far less prohibitive than
for disk based systems. We feel that a well-designed main-memory based DSM
system should at least provide the performance of an NSM-based system. The
reason is that at the lowest implementation level in NSM each attribute of a flat
object can be represented by a single pointer and a (mostly) fixed offset. DSM
merely requires a register file to denote the object components. However, it is
clear that DSM favors class B queries and NSM and FSM favor class A queries.

DSM provides better opportunities for load balancing than using NSM or
FSM. If the attributes of a single object are accessed frequently, DSM can spread
the attributes of the object over several processors. This is not possible with
NSM, where the unit of allocation is a single (sub)object.

Furthermore, in a distributed setting where semi-join operations are exten
sively used to reduce data transport, DSM does not require an expensive pro
jection operation as with NSM.

The qualitative comparison of the three storage models introduced so far:
FSM, NSM and DSM, is summarized in Table 4.1. We have also included an
object oriented programming language (OOPL) in this comparison.

4.4 GOBLIN STORAGE MODEL

The approach taken in Goblin is to pursue the DSM track further with a focus
towards a main-memory implementation and a loosely coupled multiprocessor.
The rationale behind this choice stems from the disadvantage of fixing a single
storage structure, -to deal with aggregate types only-, from the outset of a
DBMS implementation. It means that extensibility at the lower system level is
sacrificed a priori for initially good performance.

Rejection of the NSM approach is a direct consequence of its disadvantages
(=advantages of DSM) and the feature of Goblin to permit users to add at
tributes to objects on an individual basis. Using the NSM approach would
require continual data-base re-organization or an implementation that claims
storage space for all possible attributes of an object from the outset.

Furthermore, a DSM approach is more efficient in a distributed environment,
where semi-join operations do not require expensive unpacking of an NSM stor
age structure.

4.4. GOBLIN STORAGE MODEL 39

Therefore, the Goblin storage management scheme is a DSM-like implemen
tation which allows extending the set of basic types by defining a minimal set of
storage management functions. The details of our storage management scheme
are elaborated upon in the subsequent sections.

4 .4 .1 Storage model overview

The Goblin storage model is divided into four layers: the schema layer, the
summary layer, the data layer and the storage layer.

The schema layer manages the intentional data, which describes for each class
its type structure, the applicable methods, and the class constraints.

The summary layer administrates the data fragmentation and distribution.
The binary relations are declustered into fragments and allocated on the pro
cessors available. This information is maintained for each binary relation in a
Redistribution Association Table or RAT. The information is organized as an or
dinary relation2 . This approach has the advantage that the relational operations
can be used to determine the fragments that participate in a query. Actually, as
will be shown in Chapter 7, it is possible to simulate the query first against the
summary data stored in the RATs, before distributing the query subtasks.

The data layer manages the binary relation fragments. The fragments of the
binary relations are stored in binary associations tables or BATs. They form the
unit of allocation and processing. A set of relational operations is defined for
BATs, which is powerful enough to support the Goblin query language.

The storage layer is formed by the Global Persistent Object (store) (GPO).
This layer provides buffer management and persistent storage in a distributed
environment. Furthermore, it offers primitives for transaction management and
concurrency control.

4.4.2 The schema layer

The data-base schema describes the type, methods and constraints for the classes
maintained by the DBMS. This information is primarily used for type checking.
Either a static of dynamic approach can be followed to maintain the schema.

In the static approach the data-base definition is compiled into the programs,
i.e., the knowledge of the structure, methods and constraints is embedded in
the program code. This results in fast programs at the cost of redundant ad
ministration storage. It is also highly inflexible, because the description of the
data is kept separate from the data itself (e.g. in program header files). This
means that schema updates requires program location and recompilation and it
becomes difficult to write a generic program to process an arbitrary object.

Alternatively the schema information is kept with the objects (e.g. Smalltalk).
This allows for modeling flexibility, because each object can have a different type.
The prime disadvantage is the storage overhead of type information with each
data element. Moreover, it incurs processing overhead to repeatedly type check
operations against individual objects.

In a data-base environment a more reasonable approach is to factor out the
type information for bulk data. This corresponds to explicitly storing both ob-

2 represented by BATs

40 CHAPTER 4. THE GOBLIN STORAGE MODEL

9 9 ~ p
Class Type Cons1.r..1int Mel.hod

spcdlkation spcdficalion

~ <j) ~ ~
Tuple Set A1om Lypc Funclion
type type T={B,I.F.S}

{allrihutc name)

I I
>

I
:.ull-ohjccl/ sub-class defined

attrihulc a."

Figure 4.6: Legend for the schema graph components

ject relationships and access information. The former is used to type check
operations, while the latter is used for access to bulk data. This means losing
some of the flexibility of dynamic typing, but it also greatly reduces the stor
age and interpretation overhead. By "bulk" processing a high performance is
attainable.

In Goblin we focus on the third approach, i.e. factoring out type information
for bulk data only, because operations on bulk data provides a good handle on
parallel query processing.

The schema layer is administered by the Class Administration Tables (CAT).
The CAT is actually a directed graph, where the nodes correspond to the type
constructors, atomic types, methods, functions and constraints, described by the
data model. The edges define the relations between the nodes. This can be an
inheritance or subclass relation, or an IS-PART-OF relation. The inheritance
edges describe the relations between class specifications and the subobject edges
are used to define the type structure. For instance, a tuple type node is con
nected through labeled edges with its subobjects. Figure 4.6 gives a graphical
presentation of the graph components.

Example 4. 6 To illustrate the schema layer we give a graphical presentation of
the Person and Employee class specification as described in the previous chapter
{See Figure 4- 7).

Note that the implicit inheritance relation between the most general class
Object and Employee and Person is included in the schema.

Associated with each edge is a reference to its extent. In Goblin, it 1s a
reference to summary information about the extent to be described next.

4_4-3 The summary layer

The Goblin summary layer serves as an access path to the partitioned data-base
extent. To support distributed query processing each binary relation is a priori

4.4. GOBLIN STORAGE MODEL 41

ADDRESS

WORK

WORK

1 Employee
city

1.:ompany

PERSON

Object

Figure 4. 7: The Employee and Person schema definition

declustered into fragments and allocated on distinct processors. Each fragment
is mapped on a physical partition. In the query processing phase the fragmen
tation information is used to direct query requests on the conceptual binary
relations to the actual stored partitions. Basically there are three approaches to
store the fragmentation information: reconstruction rules, fragmentation rules,
or fragment data.

A reconstruction rule expresses how the relation can be reconstructed from its
fragments. For horizontal fragmentation this rule is simply the union of all the
fragments. During the query translation process, view substitution can be used
to transform the query on the relation into a query on its fragments. The main
disadvantage of this approach is that not enough fragmentation information is
available to use for query optimization. For each query all the partitions of a
relation must be accessed.

Fragmentation rules represent an opposite approach. These rules store the
fragmentation information. For hash-based fragmentation it suffices to store the
fragmentation attribute and the number of fragments. Using a default naming
scheme for the fragment relations, the query optimizer can translate the query
into a query over the fragments and exploit the fragmentation information. For
range-based fragmentation the fragment constraint must be maintained for each
fragment. To exploit this information, however, the query optimizer must have
a semantic query-optimization capability [vK93].

The final approach records fragment data in a summary data base, which
contains for each fragment attribute its value range. This approach enables

42 CHAPTER 4. THE GOBLIN STORAGE MODEL

to perform semantic query optimization by simply executing the query first
on the summary data base, thereby eliminating those fragments, or fragment
combinations, that do not contribute to the query result.

This method is not limited to a particular fragmentation scheme. For range
and count-based fragmentation, the attribute ranges are stored in the summary
data base. For hash-partitioned data the hash value for each fragment is main
tained.

The summary data base can be considered as a general and flexible indexing
mechanism. Running the query first against the summary data base reduces the
search space considerably, especially if the binary relations are partitioned on
both attributes.

In Goblin the partition information is maintained in a summary data base.
This decision is based on the following observations:

• A common technique in distributed query processing is to perform selec
tions first. Performing the selection operation first on the summary data
base, reduces the amount of processing required in the following stages.

• Join processing on fragments requires communication. Performing a join
operation first on the summary data eliminates fragment combinations that
do not contribute to the query result, and, thereby, reduces the amount of
communication.

• Efficient equi-join processing is achieved if the join attribute is range par
titioned. However, efficient theta-join processing is not possible for hash
partitioned relations.

• The overhead for running a summary query depends on the ratio summary
data and data-base size. This ratio and therefore the overhead, can be
controlled by adjusting the fragmentation degree.

The summary data is maintained in Redistribution Administration Tables
(RAT). Each binary relation has a RAT to store the fragment identities (hbid and
ibid), and the minimum and maximum values for its first and second attribute
hmin,hmax and tmin and tmax, respectively. The fragment identity is included
twice in the summary relation so that after joining two summary relations, the
fragment identity of both source relations is kept in the resulting relation (See
further on). The fragment allocation information is stored separately as they
can be replicated and stored on multiple sites.

Example 4- 7 The name attribute of the Person class is maintained in a binary
relation. It records the association between tuple objects and strings. Table 4.2
shows the summary relation Name [hbid,hmin, hmax, tbid, tmin, tmax] if
this relation is partitioned into 5 fragments; each one stored in a BAT partition.

Summary query processing resembles traditional query processing, but re
quires a redefinition of the relational operations to use the fragmentation in
formation. To support the summary query process the find, select, equi-join
and theta-join operation are modified to use the fragmentation information. It
depends on the fragmentation method, whether the summary information can

4.4. GOBLIN STORAGE MODEL 43

I hbid I hmin hmax II tbid tmin tmax

1 00000 12763 1 "Abiteboul" "Bergsten"
2 20000 32515 2 "Bodorik" "DeWitt"
3 40000 52109 3 "Eich" "Hafez"
4 60000 78198 4 "Hornick" "Khoshafian"
5 80000 99999 5 "Kim" "Yu"

Table 4.2: The RAT for the name relation

Relational Range Hash Description
operator partitioning partitioning
u.11 R & 11 R (4.1) 7fvR (4.6) find tuples matching value

U[l,h]R ~[1,1,,1k (4.2) n.a. range selection
R txJ S RrxJS (4.7) RJxJS (4.3) equi-join
R txle S RrxJeS (4.4) n.a. theta-join, 0 E { <, :S, ~' >}

Table 4.3: The main RAT operations (n.a. = not available)

be used. To distinguish these operations from the common set of operations we
use the symbols &.11 , CT[!,h], fXJ, fXJe and 7f, l><I for range partitioned data and hash
partitioned data, respectively. This is summarized in Table 4.3.

4-4-4 Range partitioning

For range partitioned relations these operations can be expressed in relational ex
pressions on the summary relations. Essential in this translation is the definition
of equality. For range-based partitioning two ranges are "equal" if they overlap.
Given two summary relations for Rand S, R[hbid, hmin, hmax, tbid, tmin, tmax]
and S[hbid, hmin, hmax, tbid, tmin, tmax], respectively, and equality as defined
above, we arrive at the following definitions for the relational operations on the
summary relations.

(T,11§

0-[1,1,,iS

Rfl<JS

where:

Rrl<JeS

where:

{t E s1s.tmin::; v::; S.tmax)}

{t E SjS.tmin::; h I\ l::; S.tmax)}

1rA(R txlc S)

A = [R.bid, R.hmin, R.hmax, S.bid, S.tmin, S.tmax]

C = (R.tmin < S.hmax I\ R.tmax > S.hmin)

(4.1)

(4.2)

(4.3)

(4.4)

44 CHAPTER 4. THE GOBLIN STORAGE MODEL

A= [R.bid, R.hmin, R.hmax, S.bid, S.tmin, S.tmax]

{

(R.tmax < S.hmin) if 0 =" <"
C = (f!:.tmax :S thmin) if 0 =" :S"

(R.tmin :2: S.hmax) if 0 =" 2:"
(R.tmin > S.hmax) if 0 =" >"

4.4.s Hash partitioning

(4.5)

For hash partitioned data equality is defined on the hash value. Consequently, no
equivalent expressions exist for the range selection and theta join operation other
than the identity operation and the Cartesian product, respectively. Given two
summary relations R[hbid, hhash, tbid, thash], S[hbid, hhash, tbid, thash] and the
hash function hash, we arrive at the following operations on the summary data
for the equi-join and find operation.

<i."s
f?x,<rs

where

{t E SIS.thash = hash(v)}

1rA(R ~c S)

{
A= [~.bid, R.hh0:___sh, S.bid, S.thash]
C = (R.thash = S.hhash)

(4.6)

The detailed discussion on construction and processing of summary queries
can be found in Chapter 6. In the current implementation the RAT relations
are mapped on binary relations, enabling an implementation using BATs. The
following section describes the issues involved in the design and implementation
of the data layer.

4-4- 6 The data layer

The main task of the data layer is to manipulate and store the fragments of
binary relations, which are stored in Binary Association Tables or BATs. The
BAT corresponds to the notion of partition as presented in Section 4.2. The two
attributes stored in a BAT are referred to as head and tail.

The head and tail attribute type can be any of the base types ({BOOL,INT,

STR,OID,FLOAT}), but is fixed for the BAT at creation time. This has the ad
vantage that type checking, offset calculation, and selection of the routines to
compare, access and store the attributes needs to be done only once for bulk
operations, thereby avoiding run-time overhead. The set of base types can be
extended by defining six routines to manipulate elements of that type. This
interface forms part of the ADT facility and is not further discussed.

The BAT interface is divided into five groups of operations: BAT creation,
BUN manipulation, iterators, relational operations and transaction manage
ment.

4.4. 6.1 Data definition

At creation time the programmer specifies the basic BAT properties. This con
sists minimally of the attribute types. Initially, the BAT is given a system

4.4. GOBLIN STORAGE MODEL 45

generated unique name, which is used by the summary layer to identify the
BAT. Furthermore, the behavior of the operations can be influenced by speci
fying that an attribute has a key property, so that each value must be (locally)
unique. Finally, the user can specify for individual attributes that a hash- or
comparison based index must be maintained. In most cases, however, the BAT
will construct indices dynamically before the execution of a relational- or sort
operation that will benefit from index support.

4.4.6.2 Data access

The BAT contains a number of fixed-size slots to store the binary associations.
These slots are called BUNs. A BUN variable is a pointer to the storage area
of the BAT. The BAT implementation allocates the BUN slots contiguously, so
that iteration over the available BUNs can be performed cheaply. Consequently,
after a BAT update, previously retrieved BUNs may not longer refer to the same
record slot.

After creation, the BAT can be filled either by loading the BAT from disk
or through insertion of individual head-tail attribute pairs. The BAT interface
provides operations to manipulate these BUNs. Next to BUN update operations,
a search operation and operations to access the head and tail attributes of the
BUN are available.

In some cases, for instance after sorting the BAT contents, all BUNs or a
subrange of them need to be accessed sequentially. For this purpose, the BAT
interface provides an iterator mechanism, which accesses the stored BUNs in suc
cession. The iterator construct also serves as the building block for the relational
operations, which often require iteration over an attribute range.

4.4.6.3 Relational operations

The BAT interface offers the ordinary set of relational operations, like the set op
erations, the select operation, equi-join and theta-join ·operation. Furthermore,
two special operations are provided to support the query processing scheme:
semi-join, mark and remark. All operations produce a binary relation. For the
join operations the join attribute is omitted from the result. This approach has
the advantage that the relational operations have to consider binary relations
only and can be implemented efficiently. An obvious disadvantage is that the
join attribute is lost in the process and potentially it has to be recovered through
a semi-join operation later on in the QEP.

The DSM model also leads to frequent semi-join operations. Namely, each
tuple attribute is represented by a binary relation, where the head attribute
corresponds to the tuple identity (oid) and the second attribute represents the
attribute value. After a selection on a tuple attribute, the semi-join operation
on the OID of the tuple is used to reduce the binary relations for the remaining
attributes.

The mark operation is used to invent unique object identifiers to represent
query results. Similar to the permanent objects, query results are also repre
sented using DSM. Each object represents a combination of objects from the

46 CHAPTER 4. THE GOBLIN STORAGE MODEL

data base that satisfies the structure, behavior and state constraint specified by
the query. The mark operation gives a name to the individual combinations.

The remark operation is a variant of the mark operation. It assigns unique
object identifiers to the tuples of its operand, but contrary to the mark operation
it returns two binary relations; one for each attribute.

4.4. 6.4 Transaction management

The BATs form the unit for allocation, locking and recovery. Operations are
provided for transaction management and concurrency control. For transaction
management, the BAT interface implements the local part of the two- phase
commit protocol, and consists of operations to begin, precommit, abort or com
mit a transaction. For concurrency control the primitive operations consists of
requests for read-only and exclusive locks. Although these operations are pro
vided by the BAT interface, they are implemented by the storage layer, which
provides the data layer an interface for creating and manipulating global persis
tent objects.

4.4.6.5 Implementation considerations

Since BATs model binary associations, there are only a limited number of im
plementation strategies. Namely, a component of the association can be stored
explicitly or implicitly. This leads to the following implementation schemes:

• (implicit, explicit) or (explicit, implicit), which is closest to an array-like
implementation, where the location of a value is calculated from the one
of the attributes;

• (implicit, implicit), which describe a pure functional association;

• (explicit, explicit), which is used to support a non-predominant access
pattern.

Within each scheme there are ample opportunities to further optimize towards
CPU processing or storage cost. For example, for sparse domain and range of
an association an (explicit,explicit) scheme can be augmented with two search
structures to obtain a fast retrieval and minimal storage.

Goblin does not insist on a single storage method for a particular BAT. As long
as two implementations provide the same interface, they can be interchanged
freely. One of our main goals is to hide these alternative implementations behind
the BAT interface description and to exploit the differences as best as possible
without interference of the user. That is, Goblin adapts the implementation
using statistics about BAT usage.

The adaptive algorithm lets the BAT automatically select among the internal
representation that is best under the given circumstances. Therefore, each BAT
implementation includes cost functions to help making decisions. In particular,
the BAT programmer should supply storage-, search-, and transport- costs func
tions. Balancing the requirements is captured by a single adaptation routine,
which is time-, query-, update-, or user- triggered. Once called, it compares

4.4. GOBLIN STORAGE MODEL 47

free

heap

Figure 4.8: The BAT memory layout

the weighted cost of the current implementation against the benefits of an al
ternative representation. If needed, it will convert the BAT to its new storage
structure. It may also decide to keep multiple incarnations around to satisfy
conflicting usage patterns at the cost of additional update overhead.

Currently, only the (explicit,explicit) scheme is implemented, which creates
indices at run time to speed up the relational operations. The algorithms of
most binary operations are hash-based and they first construct a hash index
on one operand. This hash-index is then retained until it is invalidated by an
update operation. Consequently, most operations have significantly different hot
and cold execution times. For instance, the cold and hot execution times of
joining two 10k binary relations are respectively 120 ms and 90 ms3 .

The memory layout of the BAT is depicted in Figure 4.8 and consists of three
areas: a descriptor, a fixed size area of record slots and finally a heap space.

The descriptor records the current state of the BAT, which consists of its name,
the attribute types, the available indices, information on the average attribute
value size and the cardinality. Furthermore, the descriptor maintains pointers
to identify the first free record slot and the top of the heap area.

The record slots store the fixed size BUNs. For variable sized attribute values,
for instance strings, the BUN contains a reference to the string, which is allocated
in the heap area. To facilitate BAT relocation or storage on disk, references are
represented by offsets relative to the BAT address.

4.4. 7 The storage layer

The previous sections have been focussed on object and schema representation,
partitioning and access structures. BAT persistency, stability and consistency
are not addressed by the schema, summary, and data layer. For these issues we

3 Measured for the Goblin kernel V2.0 on a SGI R3000/Irix 4.05 running at 33Mhz

48 CHAPTER 4. THE GOBLIN STORAGE MODEL

~-------------------------------------,
' '

8 '? 8' : '
Q,,ryPn«« . Q,,,ryPn<<SS

llATr.:4uc.<t< IIA1 ""I IIATn:qui:.,1.,

!IATUuffi:rMana~cr

l'r<x:c.,.-.,r:!.

' \-------------------------------------~

Figure 4.9: The storage layer

partly rely on the evolution of file systems for distributed operating systems. We
believe that novel operating systems offer transaction management primitives,
use replication techniques to increase availability and stability, and perform load
balancing for coarse grain objects (i.e. files). In the current implementation this
functionality is implemented by a separate storage management process, as it is
not yet offered by the Amoeba or IRIX operating systems.

On each processor there is a BAT Buffer Manager or BBM, which manages
part of the collection of BATs. The BBM layer offers a mechanism for creating,
updating, and destroying globally accessible and persistent objects in general
and BATs in particular. Furthermore, basic transaction support functions are
provided.

The BBM stores the global persistent BATs in a local memory buffer and
controls its contents. Its task can be compared to that of the buffer manager in
disk based systems. The main difference is that if a BAT is not locally available,
this results in retrieval of a copy of the BAT from another BBM process instead
of from disk.

The BBM uses a buffer replacement policy that favors frequently used objects
in order to reduce the number of buffer misses. As the Goblin Query Scheduler
has an overview of what data is required on each processor, the BBM offers
primitives to control the buffer replacement policy. The global setup is depicted
in Figure 4.9.

An efficient method for obtaining persistency in main-memory data-base sys
tems is achieved by using stable memory for maintaining the log records and
using disk to store the latest checkpoint [LC87]. Alternatively, persistency and
data consistency of BATs can be achieved efficiently through data replication if
the following conditions are satisfied:

• Network partition failures do not occur. As the Goblin project goal is
realization of a parallel DBMS, instead of a globally distributed DBMS,
the processors are interconnected through a dedicated, reliable network
(In the prototype a single ethernet connection). In the event of a network

4.4. GOBLIN STORAGE MODEL 49

failure all processing is delayed at the cost of decreased availability until
the network is up again.

• The number of simultaneous site failures does not exceed the replication
degree of BAT. The probability of information loss can be reduced to an
acceptable level given the probability of a site failure at the cost of memory
consumption and speed of data updates.

The direct consequence of these assumptions is that the replication control
algorithm, which maintains the one-copy-serializability property, can be based
on the simple read-one-write-all-available (ROWA) protocol. Quorum based
algorithms do not have to be considered, because network partitions are not
assumed.

The prime target of a persistent storage layer is to maintain global data
base consistency despite system failures. The storage layer design requires an
analysis of the different causes resulting in a transaction failure. Given the
Goblin architecture the possible causes are an application abort or a site failures.

An application abort is generated by a user interrupt or generated by the ap
plication code. The detection of such a failure is therefore straightforward. The
abort will be reported to the process, which coordinates the global transaction,
which will then initiate a global abort procedure. The BBM storage layer then
undoes all the updates made by the application and rolls back to the previous
consistent state. This roll-back functionality is provided by the BAT interface.

A site failure is the result of a bug in the application software or system
software, or the result of a hardware problem. Such a failure is detected by
the BBM layer, when it fails to update or access a replica on a remote site.
This kind of error should be detected before a data request is made because
multiple site failures could remain undetected. If a site failure occurs while a
transaction is in progress, the transaction is aborted. Furthermore, to maintain
the minimum replication degree the data which were stored on the the crashed
site are distributed over the remaining sites. Thus one of the replicas becomes
a primary copy. When the crashed site recovers, it will gradually absorb data
through data migration.

BATs, which partake in a global transaction are updated atomically using
a 2PC4 protocol. Each transaction is assigned a unique identifier, which is
then used to store the recovery information of the objects. The global commit
or abort decision is recorded and propagated to all sites. (As the global log
maintaining the transaction status is also a globally accessible persistent object,
the same mechanism as for ordinary objects is used to store the transaction
administration.)

During its lifetime, a globally unique identifier is associated with a BAT. BATs
are referenced by this identifier. If a BAT is not present in the local buffer, it is
retrieved from another site using its identifier.

BATs can be moved or copied by the BBM layer from one processor to another.
To transport the BAT it has to be converted to a representation, which does not
use local memory addresses. This functionality is offered by the marshal routine

4 two phase commit

50 CHAPTER 4. THE GOBLIN STORAGE MODEL

provided by the BAT interface, which converts the BAT to a byte sequence. The
routine unmarshal converts the byte sequence to its BAT representation.

The basic mechanism for obtaining BAT persistency in Goblin is replication.
To keepthe replicas consistent with each other, the replicas need to be updated
if on:e--0£'.them is changed. Replicas are updated by only transmitting the recent
updates, which are maintained by the BAT. Replicas can then be updated by
sending the log to the replica and replaying it on the BAT replica with a log
redo routine. In case of a transaction abort the updates can be undone with the
log undo routine. The log must therefore also contain the old .values.

4.5 CONCLUSION

This chapter discussed the alternative storage models for object representation
in a main memory context. Many of the issues discussed are similar to those for
NF2 relations, like clustering and declustering. We have, however, also discussed
a few issues that are typical for object oriented systems, like object sharing and
object dynamicity.

Given the assumptions on Goblin applications, the decomposed storage model
becomes the prime choice, because it allows an efficient support of object sharing,
and object updates, and still has low storage overhead.

Finally, the design of the Goblin storage model was presented. The binary re
lations resulting from the DSM approach are a priori partitioned into fragments,
which are declustered over the available processors. A novelty in this approach
is the use of a summary data base. This data base allows query processing to
be performed in two phases. The first phase runs a query on the summary data
base, and serves as a dynamic optimization step by selecting fragment combina
tions, which potentially contribute to the query result. These fragment combi
nations are executed in the second phase. In a distributed system, however, this
evaluation can be performed in parallel.

Chapter 5

Dynamic Query Processing

5.1 INTRODUCTION

Static query processing schemes (SQP) as described in Chapter 1 generate a sin
gle query evaluation plan (QEP), taking optimization decisions on the basis of
the statistics available at compile time. Thus, the query schedule and allocation
topology of subqueries to processors is fixed for the duration of the query evalu
ation. This often leads to a suboptimal execution due to unreliable or outdated
cost estimates or to an impractical exploration of the space of feasible QEPs. In
this Chapter we introduce an alternative processing technique called dynamic
query processing (DQP) as a possible solution to this limitation.

The prime objective of the DQP scheme is similar to those of the SQP schemes.
Namely, minimization of the query response time, not only for queries run in iso
lation, but also for a workload of concurrent running queries. The DQP scheme
is an alternative to achieve these goals in view of two important problems in
parallel query processing: coming up with a reliable estimate of intermediate
result sizes and predicting the load distribution accurately for the run-time of
the query. These problems are tackled in a DQP architecture with two mecha
nisms: a feedback mechanism to reduce the amount of work and a load balancing
technique to avoid congestions in query pipelines.

In a DQP scheme some of the optimization decisions are taken at query pro
cessing time on the basis of the feedback information. An abstract DQP archi
tecture consists of two components: a Query Scheduler and a Query Evaluator
(See Figure 6.1). The Query Scheduler controls and drives the query execution
by constructing query evaluation plans.

Each QEP is subsequently executed by the Query Evaluator. This component

51

52 CHAPTER 5. DYNAMIC QUERY PROCESSING

Application

Query rcqucsl suit Query re.

Query Evaluation Plans

Query Query

Scheduler Evaluator

Evaluation Feedback

Data
Data

Dictionary

Figure 5.1: The general DQP architecture

can actually consist of several processes which can either evaluate several QEPs
in parallel or use pipelining and data parallelism to execute individual QEPs in
parallel.

At specific points in the execution of a QEP the Query Evaluator sends feed
back information to the Query Scheduler. Such as information on the load
distribution and intermediate result sizes observed. The Query Scheduler then
decides to keep the current QEP, or change it for the remainder of the query.
The overall query evaluation strategy determines when information on the query
evaluation is feed-back.

In the remainder of this chapter we discuss three alternative evaluation strate
gies for dynamic query processing. Thereafter, we give a short overview of re
lated work and, finally, we describe the application of DQP to the Goblin parallel
OODBMS. The detailed discussion of the Goblin query processing architecture
can be found in Chapter 6.

5.2 QUERY EVALUATION STRATEGIES

An essential characteristic of a DQP architecture is that a query is not processed
in its entirety, but in subqueries or steps. After each subquery the query evalu
ation plan for the next subquery is re-considered. Therefore, the overall query
evaluation plan can be adjusted at run time to adapt to variations in the data
and load distribution. For this purpose important performance parameters, like
the sizes of intermediate results and the processor load are monitored and feed
back to a query scheduler. The scheduler can then optimize the query schedule
and allocation plan.

An important issue in the design of a DQP is the processing granularity of
these subqueries. If the granularity is small the level of control provided to
the Query Scheduler is large. The disadvantage of a small granularity is the

5.2. QUERY EVALUATION STRATEGIES 53

devastating effect on the scheduling overhead, which eliminates the performance
improvement from dynamic query optimization. The granularity can range from
the individual operations, which introduce a lot of control overhead, to the
complete query, which basically corresponds to the SQP scheme with a query
abort and re-run facility.

Another issue is the query decomposition technique. There are two orthogonal
approaches for this. Basically, they correspond to the methods used for query
parallelization, namely pipelining and task spreading. In this context we adopt
the terms query step and data step to stress that the primary objective is not to
parallelize the query, but to introduce control points in the query process, where
feedback information on the execution is returned to the Query Scheduler. These
methods are briefly discussed in the subsequent sections using a (simple) query
to illustrate the differences.

Example 5.1 Given relations R, S, T and U we consider the following 4-way
join query:

5.2.1 The query step approach

The query step approach divides the query tree produced by the parser into
subqueries such that they can be executed in a pipelined fashion. For dynamic
query processing, however, control operations are inserted at some points in the
query tree to direct the run-time optimization and load balancing. This operator
tests whether the intermediate result size differs too much from threshold values
set at query optimization time. In that case the remaining part of the query is
re-optimized using the new information [BR88, Ngu81]. With this technique the
smallest granularity obtained is a decomposition into subqueries around a single
relational operator.

The advantage of this approach is that it can be applied to the standard SQP
schemes. For instance, Graefe defines a choose-plan operator to insert control
points in a QEP [GW89]. At run-time this operator evaluates cost formulas
to choose between alternative query evaluation plans. The disadvantage of this
approach is that the alternative QEP are determined at query compilation time.
Furthermore, it is difficult to decide where to insert these choose-plan operators
in the query tree. Adding too many choose-plan operators leads to large QEPs
and reduce the amount of pipeline parallelism.

Example 5.2 The query example can be evaluated using different join orders.
Which order to choose can best be determined at run-time after each join. In
the following we assume that the optimizer produced two feasible join orders
(R 1><1 S) I><! (T 1><1 U) and ((RI><! S) I><! T) 1><1 U. The scheduler takes the run-time
decision on the basis of the cardinality of the intermediate result T1 = R l><I S.
On four processors this could lead to the following execution:

site subquery

54 CHAPTER 5. DYNAMIC QUERY PROCESSING

If IT1 I > threshold:

site subquery

A T2 = T1 ~ T
P2 Q=T2~U

If IT1 I :::; threshold:

site subquery

P2 T2 = T ~ U
A Q = T1 ~ T2

Note that in the evaluation only two of the four processors are used. Without
the control point this query could have been evaluated on three processors and
exploit pipeline parallelism.

5.2.2 The data step approach

In the data step approach the relations are partitioned such that the query is
replaced by the union of independent subqueries. These subqueries or tasks are
subsequently executed by the Query Evaluator. After each subquery execution
the Query Evaluator sends feedback information to the Query Scheduler. The
smallest granularity is achieved when the partitioning degree equals the cardi
nality of the relations. In this case each fragment consists of a single tuple and
the subquery just test whether a certain combination of tuples satisfies the query
constraint.

The advantage of this approach is that the tasks can be executed in parallel.
Furthermore, because the allocation of tasks to processors is not fixed at query
compile time and there are a large number of tasks, load balancing is easy to
achieve.

After each task evaluation, the Query Scheduler uses the feedback information
to reduce the number of tasks remaining, and in a parallel system to adjust the
task allocation.

Example 5.3 The sample query is replaced by a large number of similar query
tasks. If each relation is partitioned into two fragments and the query evaluator
uses four processors, then the query can be evaluated as follows:

site task site task

A T1 = R1 ~ S1 ~ T1 ~ U1 A Tg = R1 ~ S1 ~ T2 ~ U2
P2 T2 = R1 ~ S2 ~ T1 ~ U1 P2 T10 = R1 ~ S2 ~ T2 ~ U2
P3 T3 = R2 ~ S1 ~ T1 ~ U1 P3 Tu = R2 ~ S1 ~ T2 ~ U2
P4 T4 = R2 ~ S2 ~ T1 ~ U1 P4 T12 = R2 ~ S2 ~ T2 ~ U2
A TG = R1 ~ S1 ~ T1 ~ U2 A T13 = R1 ~ S1 ~ T2 ~ U1
P2 Ta = R1 ~ S2 ~ T1 ~ U2 P2 T14 = R1 ~ S2 ~ T2 ~ U1
P3 T1 = R2 ~ S1 ~ T1 ~ U2 P3 T15 = R2 ~ S1 ~ T2 ~ U1
P4 Ts = R2 ~ S2 ~ T1 ~ U2 P4 Tio = R2 ~ S2 ~ T2 ~ U1

5.2. QUERY EVALUATION STRATEGIES 55

Nate that in the task assignment the fragment distribution is taken into ac
count. The tasks that are consecutively allocated to a processor change only in a
single fragment, which minimizes the I/O.

5.2.3 Query restart

In this coarse method the query is evaluated as a unit and interrupted if a thresh
old specified for a monitored resource is exceeded at run-time. The decision to
re-consider the query plan at run-time results in a query abort, followed by the
generation of a new query plan, and a restart of the query evaluation.

The advantage of this scheme is that a large collection of query plans is consid
ered, because at each restart the original query is re-optimized using up-to-date
statistics obtained from the aborted query.

The disadvantage is that when an interrupt occurs in the middle of an exe
cution, only partial information on intermediate result sizes can be feed-back to
the scheduler. Furthermore, intermediate results, if they exist, are not re-used.
And finally, it is not clear whether the performance gain from the improved QEP
justifies the work invested in the first try.

Example 5.4 For our query there exist many alternative query evaluation plans.
Consider the first query evaluation plan to execute the query according to the
join order (R t><l S) t><l (T J oinU). In this evaluation both pipelining and task
spreading is used to improve the response time. The join operations are executed
in parallel on different processors as follows:

site subquery

A T1 = Rt><l S
P2 T2=Tt><lU
P3 T3 = T1 t><l T2

The resource consumption is monitored during query execution. If it exceeds
a compile time determined threshold, the query is aborted and the execution
information is feedback to the scheduler.

If it turns out that the cardinality of the intermediate result produced by T t><l U
exceeded a limit and caused the query abort, the query scheduler generates a new
query evaluation plan based on this information and restarts the query execution
so that this join operation is performed last:

site subquery

A T1 = R t><l S

Pz T2 = T1 t><l T
P3 T3 = T2 t><l U

Note that the intermediate results are not re-used. Furthermore, only three
of the available four processors are used.

5.6 CHAPTER 5. DYNAMIC QUERY PROCESSING

5.3 THE GOBLIN APPROACH

The DQP scheme presented in this thesis is based on the data-step approach.
The relations are partitioned into fragments a priori. The query result is then
the union over the subquery results for all fragment combinations. This choice
is motivated by considering that:

• In the query step approach, misjudgements in the initial subquery eval
uation can not be undone, because the intermediate results are already
generated. The effects are carried over to the remainder of the query.

• The data step approach results in a large number of independent tasks.
In a parallel system this increases the level of parallelism to be exploited
and it can easily be adjusted to match the requirements of the data base
application, such as the rate at which data can be consumed by the user
program.

• We use a main-memory system where the data is partitioned such that the
task can be executed in the memory of a single processor.

An important concern in the design of this query processing scheme is the
number of tasks. If the relations are partitioned in too many fragments, it leads
to a large number of task evaluations and schedule overhead.

For instance if a relation R; is partitioned into n; fragments then IL n.; similar
subqueries have to be evaluated 1 . Given a large multiprocessor platform these
subqueries can, in principle, be evaluated in parallel. However, the speedup will
be limited due to the speed by which the fragment data can be prepared or
distributed over the processor pool.

Furthermore, sequential evaluation (or limited parallel evaluation) creates an
opportunity for dynamic query optimization; it is possible to reduce the amount
of work using statistics of previous query task evaluations and semantic knowl
edge of the query operations. In a system based on the query step, the individual
subqueries are generally not of the same form, in the data step approach they
are similar. Before presenting the Goblin query processing scheme in detail we
briefly address the related work on dynamic query processing.

5.4 RELATED WORK

The two main aspects that influence the efficiency of the query evaluation plan
are data distribution and load distribution. In a dynamic query processing ar
chitecture the query optimization scheme reduces the effects of data distribution
variations on the execution time and the load balancing scheme tries to adapt
the query process allocation to variations in the load distribution.

The following two sections summarize the results from related work.

1 Depending on the query this number can be reduced by choosing a suitable partitioning
function. For instance, using hash-based partitioning of the operands of an equi-join operation
reduces the number of subquery evaluations to 1·';,~ ll';; l, where h is the number of hash
buckets.

5.4. RELATED WORK 57

5.4.1 Query optimization

Bodorik and Riordan [BR88] and Nguyen [Ngu81] propose a scheme based on
a threshold mechanism. This scheme basically follows the query step approach
where the query plan is corrected when the actual size of a partial result exceeds
the estimated size by a certain threshold value.

Graefe and Ward [GW89] introduce the notion of Dynamic Query Evaluation
Plans to solve the problem of producing query plans for parameterized queries.
Query execution involves evaluation of a decision procedure for the actual query
constants and the data distribution. Thereafter the components of an access
module are dynamically linked to obtain an appropriate execution plan. They
primarily focus on access methods, but their approach is also applicable to paral
lel query processing. Actually, in this approach the query evaluation plan is not
adjusted at run-time, but the decision to choose an alternative query evaluation
plan is delayed until query startup.

Another approach is used in the XPRS shared memory DBMS. The query
optimizer produces an optimized sequential QEP, which is parallelized at query
startup time. However, after query startup the QEP can not be changed.

5.4.2 Load balancing

Lu and Carey [LC86] present a task allocation algorithm to balance the system
load and to minimize the communication cost. It shows that load balancing
leads to significant reductions in the average time a query task waits for I/O
and CPU resources.

Murphy [Mur89] focussed on performance improvement for query execution
on shared memory multiprocessors using a minimal number of processors and
a limited amocnt of database buffers. The method is based on scheduling page
reads and page join operations efficiently.

Similar to the approach of Murphy, we consider query evaluation as a schedul
ing problem. First, the query is transformed into a query program, which solves
the query for a portion of the database at a single processor. Second, the re
lations involved are partitioned into fragments. Finally, combinations of these
fragments form query tasks, which are executed on the available processors by
a centralized scheduler. The query scheduler controls the load balancing and
it performs logical query optimization using up to date information on query
task execution and the availability of fragments. Our dynamic query process
ing scheme aims at improved processing of pre-compiled parameterized queries, ·
which exhibit large potential parallelism or none at all depending on the param
eter settings upon query execution.

In a pilot study of our approach [vdBKSA91] we focussed on load distribution
in this system. Specifically, we tried to identify the bottlenecks in the system
architecture through a simulation and a subsequent validation on the PRISMA
100-node shared nothing multi-processor [AKO88]. We observed that in this
first design the query evaluator formed the bottleneck. The overhead incurred
by using a centralized scheduler to manage the load distribution was negligible in
our distributed store environment, due to the subquery cost. These encouraging
results lead to further research which is presented in this thesis.

58 CHAPTER 5. DYNAMIC QUERY PROCESSING

5.5 CONCLUSION

In this chapter we have outlined the basic objectives and techniques to achieve
Dynamic Query Processing. The basic idea is to postpone optimization decisions
and adjust query evaluation plans at run-time. We argued that the main charac
teristics for a DQP architecture are the query step method and the granularity
of the resulting subqueries.

We presented two orthogonal approaches to query decomposition for dynamic
query processing: the query step and data step approach. In the first approach a
QEP for part of the query is produced and executed. On the basis of its result a
QEP for the next part of the query is .produced. The second approach partitions
the involved relations so that the query is replaced by the union of independent
similar subqueries.

The granularity specifies the amount of query processing performed before a
query evaluation plan is re-considered. It determines the level of control the
scheduler has on the query evaluation.

In this thesis we investigate a DQP architecture based on data step and a
small granularity because it facilitates exploitation of parallelism and run-time
optimization. In the data step approach a small granularity leads to a large
number of independent subqueries. The reduction of the number of subqueries
is therefore a major research issue addressed in this thesis .

In the following chapters the Goblin OODBMS is presented. Attention is paid
to its language aspects and storage model, but the main focus is its dynamic
query processing architecture.

Chapter 6

The Goblin Query Processing Scheme

6.1 INTRODUCTION

The Goblin query-processing architecture is based on the assumption that the
Goblin applications handle large amounts of similar data. A query is translated
into a set of relational operations that process data set-at-a-time. Efficient sup
port of navigational access, where an application retrieves and updates data by
visiting individual objects through their attributes may require a totally different
object representation scheme and query processing architecture. In such systems
the performance for data access is increased by clustering objects frequently used
together and by maintaining index structures for frequently evaluated path ex
pressions [BK89].

In the traditional approaches a query schedule is generated at query com
pile time (static query processing). The query optimizer uses cost functions to
chooses an optimal schedule from a large set of possible query schedules.

The cost formulas are mostly based on the number of distinct values and
cardinality of attributes. With these statistics and under the assumption that the
attribute value approaches a uniform distribution, the ordinality and cardinality
after applying a relational operation can be estimated. However, if the data
distribution is skewed, the error introduced can be significant [Loh89].

Furthermore, if the query consists of a large number of operations, the error
component is increased at each operator leading to a totally unreliable estimate,
and, therefore, a questionable optimal schedule. The decomposed storage model
of Goblin (See Chapter 4) has the effect that objects have to be reconstructed
from binary relations. The result is that queries tend to contain a large number
of joins. For instance, if a query requests all n attributes of objects of a subset

59

60 CHAPTER 6. THE GOBLIN QUERY PROCESSING SCHEME

of a class, n semi-join operations should be performed to retrieve the associated
attribute values.

Another problem which is expected to be more pronounced in an object ori
ented system is the unpredictability of the system load, which could lead to a
situation where one processor sits idle, while another forms the bottleneck in the
query pipeline. The main reason is that basic types with their operations can
be added to the system. For simple types like integer numbers and strings, the
CPU cost of an operation is easy to determine using profiling, and to predict.
However, when for instance an image type is added to the system, there can be
a large variation in the processing time required for its complex operations. It
can also be that the operation is performed remote by a special server.

To overcome the effect of data skew and the non-uniform load distribution
Goblin uses a DQP scheme as presented in Chapter 5. We expect that the
load balancing and dynamic query optimization scheme leads to a better system
utilization and query response time. We will first describe the Goblin DQP
architecture and then give an overview of query processing in Goblin.

6.2 THE GOBLIN ARCHITECTURE

The Goblin architecture is modeled after the general DQP architecture presented
in Chapter 5. The global architecture consists of three types of processes: a
single Query Scheduler, a pool of Query Processors, which correspond to the
Query Evaluator in the general DQP architecture, and an equal number of Buffer
Managers (See Figure 6.1), which provide global data access.

The Query Scheduler receives query requests from an application program and
drives and controls the query execution by generating subqueries or tasks and
distributing these tasks dynamically over a pool of Query Processors. It uses a
load balancing scheme to minimize the average task execution time. Further
more, it implements a task elimination algorithm to optimize the query execution
process using feedback information on task results.

The Query Processor executes the tasks in main-memory and it assists the
Query Scheduler by sending feedback information on the average task execution
time and occurrence of empty intermediate task results. The Query Processor
obtains the fragments for the task from its local Buffer Manager process. The
Buffer Managers together store the database and offer the Query Processors a
globally accessible and persistent fragment store.

In the next subsections these components are discussed in more detail.

6.2.1 Buffer Manager

On each processor there is a Buffer Manager, which maintains part of the data
base ensuring data persistency through data replication. If one of the processors
crashes, the system can continue by using one of the replicas stored on another
site. When the processor starts up again after a system crash, it can recover its
data using the replicas managed by the other buffer managers or stored on disk.

During query execution data is copied on request and transmitted between the
buffer managers on the network. ·Each buffer manager uses a significant amount

6.2. THE GOBLIN ARCHITECTURE

\I I
Query

Scheduler

I

Summary

Database

t
Partitioning

Infonnation

Task execuction feedback

Tasks

,- - -{- ---\ ,~ - -{- - - -

I
I Query Query I

Processor
I Processor
I
I
I

I
I
I

Buffer I Buffer
I

Manager Manager I

I

,11 I I

I I

- - - - ----✓ I I
._ - - - - - - - - --

Fragment Transport
-

Query

Processor

Buffer

Manager

Figure 6.1: The Dynamic Query Processing architecture

61

of its processors main-memory to store the fragment copies and to maintain
replicas.

The buffer contents is determined by the tasks that are being executed and
by the buffer replacement policy. The fragments that are required by a task
are fixed and can not be removed from the buffer. Several buffer replacements
strategies can be considered, ranging from random strategies to traditional LRU
algorithms. This choice is closely related to the task allocation algorithm used.
In Chapter 9 this issue is examined more closely by comparing several combina
tions of task allocation and buffer replacement algorithms.

The buffer managers migrate or replicate fragments to distribute the fragment
references evenly and to spread the storage for persistent fragments over the
available processors. Fragment migration and replication is not controlled by
the Query Scheduler. The goal of fragment allocation and replication in the
Goblin architecture is to improve the fragment availability and access time over
multiple queries, while the QS is only concerned with the efficient execution of
a single query. The fragment allocation information is available to the QS to
achieve this. The QS can then allocate subqueries over the available processors,
so that it results in a minimal amount of data transport.

The buffer manager offers a standard set of transaction management primi
tives, such as shared/exclusive read/write locks on fragments and a two-phase
commit protocol.

The data allocation and replication problem are not addressed in this thesis.
Furthermore, the transaction management issues, logging and recovery are also
considered to be outside the scope of this thesis. However, based on our expe
rience on transaction management and recovery issues in the PRISMA project
[vdBK90], we think that they can be solved satisfactorily.

62 CHAPTER 6. THE GOBLIN QUERY PROCESSING SCHEME

6.2.2 Query Processor

The Query Processors (QP) form the engine of the query evaluation process.
For each task the QP first tries to obtain the referred fragments from its local
buffer manager. If the data is not available, the buffer manager retrieves the
data from the remote sites.

In contrast to the SQP execution model, the execution order of the individual
operations in the query is not fixed at compile time. Instead, all feasible eval
uation plans are considered by the QP. The task evaluator of the QP selects a
plan depending on the availability of the fragments and a cost estimate for each
plan.

For instance, if the QP is requested by the QS to calculate Q = Ri ~ S2 ~ Ti,
and fragments S2 and Ti are already present, it will first calculate S2 ~ Ti,
and store the intermediate result for further use. When fragment Ri arrives, it
completes the join operation, and informs the QS that it has evaluated the task
Q(Ri, S2, Ti)- The task-evaluation algorithm is discussed in detail in Chapter
10.

A task monitor keeps a record of the average task execution time, and of
events, which are interesting for dynamic query optimization, like the occurrence
of empty intermediate results. This information is feedback to the QS.

6.2.3 Query Scheduler

The functionality of the Query Scheduler is implemented by three subprocesses:
the Generator, the Allocator, and the Optimizer. These processes communicate
and coordinate their actions through the data structure called the Task Table.
The Generator, Allocator and Optimizer use this data structure to store new task
descriptions, select tasks for execution, and change or remove task descriptions,
respectively. Figure 6.2 presents the global structure of the QS. In the following
paragraphs, the functionality of the main processes is described.

The Generator initiates and drives the query-execution process by producing
new tasks using the partitioning information stored in the summary database.
This partitioning information combined with the query specification determines
which fragment combinations might contribute to the query result. In essence it
simulates the actual query on the summary database. The generated tasks are
queued for execution in the Task Table.

The Optimizer performs logical optimizations of the query at run time. It uses
its knowledge about the dependencies between the operators and operands in a
query and the statistical information from task executions to remove or eliminate
tasks from the Task Table data structure. An example of a logical optimization
is task elimination. In this technique for each query a set of elimination rules
is defined. Consider a four-way join query Q = R ~ S ~ T ~ U, where the
relations R, S, T and U are partitioned into fragments. For this example the
following rules can be derived:

IR;~ Sjl = 0

IS,~Tjl=O

IT;~ Ujl = 0

----+ Vx,ylR, ~ Sj ~ T,, ~ Uyl = 0

----+ Vx,1;IR,, ~ S; ~ T1 ~ Uy)I = 0

----+ v,,, 11 IR,, ~ s11 ~ T, ~ u1)I = o

6.2. THE GOBLIN ARCHITECTURE 63

Task Execution Feedback

Optimizer

Task

Generator

Figure 6.2: The main components of the Query Scheduler

Thus, if the result of a task execution is empty, because of an empty partial
join (eg. R1 l><I S1), then all the other tasks with this fragment combination (viz.
Q(R1, S1, T,,,, Uy) will not contribute to the final query result and, therefore, do
not need to be executed. This technique is discussed in detail in Chapter 8.

The Allocator is responsible for the load control and load balancing of the
query evaluation. It selects tasks from the Task Table and assigns these tasks
to the available Query Processors. For task selection the Allocator can use the
fragment allocation information. For the selection of the processor site, the
load distribution of the QPs, maintained in the process table, is also taken into
account. This information is updated by task feedback information from the
Query Processors.

These functionalities of the QS, task generation, task elimination (optimiza
tion) and task allocation are essential for the whole system performance. There
fore, they are addressed separately and in detail in Chapters 7, 8 and 9 for task
generation, task elimination and task allocation, respectively.

Summarizing, the Goblin query processing architecture is designed to support
the following features:

• The query scheduler provides a solution to the unpredictability of the load
distribution, and at the same time uses the summary data base to exploit
skewed data distributions.

• The task generation and task elimination processes reduce the large num
ber of tasks resulting from the DQP scheme based on the data decompo
sition approach and a small task granularity.

• The task allocation process reduces the total number of fragment I/O
requests by taking into account the fragment distribution.

64 CHAPTER 6. THE GOBLIN QUERY PROCESSING SCHEME

• The query processor operates data driven to effectively handle strong fluc
tuations in the fragment arrival rate and dynamically optimize the query
task on the basis of measurements and the available resources.

Having presented the Goblin architecture, we will now look at the query eval
uation process in more detail, and specifically, discuss the first step in query
execution namely, the translation of Goblin queries into an internal representa
tion.

6.3 QUERY PROCESSING OVERVIEW

In Chapter 3 we introduced the derived-class concept as the basic mechanism to
query the Goblin data base. Each derived class defines a view on the data base
through which the objects can be accessed and updated using the methods on
the composing objects. Thus, the objects in the derived class reflect the current
state of the data base. Once the application program applies a method to the
derived class, the class definition is interpreted as a query on the classes from
which it is derived.

The general Goblin query process is decomposed into three pipelined sub
queries: an optional split subquery, an obligatory process subquery, and an op
tional merge subquery. The pipelined subqueries act as a filter and assembly line
for the objects that enter the pipeline at one end and leave the pipeline at the
other. These query pipelines can be further combined into networks of pipelined
quenes.

In the split subquery the binary relations involved in the query process are par
titioned to ensure independent subqueries on the partitions in the query phase,
and to reduce the amount of work in the process subquery. The split subquery
is rarely necessary as the binary relations are generally already partitioned on
both attributes in the binary relation.

In the next phase, the process subquery, the actual query is evaluated for all the
effective fragment combinations. Whether a fragment combination is effective,
or contributes to the query result can be checked by executing the query on the
summary data of the fragments.

The final phase, or merge subquery is used for global operations. In a sort
operation, for example, the merge phase merges the sorted fragments. For ag
gregate operations, the merge phase combines the intermediate results produced
in the query phase.

The decomposition into query phases is performed at compile time, and cor
responds to the heuristics used in query optimization in (parallel) relational
database machines. Performing selections before the remainder of the query, and
data partitioning to reduce the amount of work are examples of these heuristics.
The main difference with query decomposition in relational database systems is
that the bulk of the work is performed in the query phase by executing a com
bination of relational operations for each fragment combination. Thus, within
each phase, only data parallelism is exploited. Furthermore, the task throughput
of each phase can be dynamically adjusted, so that the input and output rates
of the pipelined phases are balanced.

6.3. QUERY PROCESSING OVERVIEW 65

In this thesis we consider only the process subquery. We assume that the data
is already partitioned, so that the split phase can be omitted. Furthermore, as
we do not consider the translation of aggregate queries, i.e. the merge phase
is also absent. In the following, the term query refers therefore to the process
sub query.

The decomposed storage model is also used to represent the query result. The
final assembly of objects from their composing binary relations is therefore left
to the application process. The rationale for this approach is that the applica
tion will only infrequently need access to the whole object. The overhead for
reconstructing part of the object at the application's site is low compared to
transporting a fully reconstructed object from the database to the application
process. In general the result consists of objects of a single class.

The result of the query evaluation is a set of binary relations that contain
enough information to construct objects with the type of the derived class that
satisfy the selection condition. Only when an external method (i.e. a C or
C++ function) is applied to the objects of the derived class, the objects are
reconstructed to the level required by the method.

The next sections describe the generic derived class, the translation process,
the scheduling and task execution in greater detail.

6.3.1 The derived class

From the definition given in Section 3.3 we know that the general derived class
definition consists of a type-specification, binding-list, and a constraint. In the
following we describe the syntax of a derived class specification, using a BNF
notation. Non-terminals are enclosed in brackets (()). Terminals are specified
in small caps for keywords (KEYWORD) and in italic script for other terminals.

(derived-class) : CLASS class-name
TYPE (type-specification)
FROM (binding-list)
WHERE (selection-condition)

The type specification determines the structure used to store the query result.
It specifies which attributes from the binding list appear in the query result. In
the following we will deal only with a special case, namely when all the attributes
from the binding list are kept.

The binding list defines the name and object domain for each attribute. The
attribute ranges over the associated class extent, and its type is implied by the
class specification. Without the type specification, the binding list implicitly
defines the extent of the derived class to consist of tuple objects, where each
attribute ranges over its associated class extent.

The attribute values range over the class extents associated with the class
names in the binding list. Without a selection condition the binding list class
extent of the derived class consists of all the possible attribute value combina
tions.

66 CHAPTER 6. THE GOBLIN QUERY PROCESSING SCHEME

The class names which appear in the binding list, can also be derived classes.
The first time a derived class is used it is materialized. In the following we only
consider the case that the class names in the binding list are materialized classes.

(binding-list) : class-name attribute-name
I class-name attribute-name ',' (binding-list)

The selection condition specifies the state constraint that holds for all the
objects in the derived class extent. In materializing the class extent the selection
condition is used to construct a query on the stored binary relations.

The basic building blocks for a condition are path expressions, restriction
terms, join terms and boolean terms. Currently, we do not consider function and
method calls. The complete condition is then an boolean expression over one or
more terms.

(selection-condition) : (boolean-term)

(boolean-term) : (join-term)
I (restriction-term)
I (boolean-term) AND (boolean-term)
I (boolean-term) OR (boolean-term)

(join-term) : (path-expression) (comp-op) (path-expression)

(restriction-term) : (path-expression) (comp-op) (constant)

(path-expression) : attribute
I attribute · (path-expression)

(comp-op) '<' I ':::;;' I '==' I '=' ! ~' I '>'

The path expression specifies the objects that can be reached starting from
the object referenced by an derived class or target attribute and traversing the
structure of the object. The path specifies the traversal by concatenating the
attribute names encountered. Note that as there exist single-valued and set
valued attributes, the result of the path expression represents a single object or
a set of objects.

The basic predicates consists of the equality operations = and ==, which test
for deep equality and object identity respectively, and the comparison operations
<, :::;;, ~, >1. The default comparison operations are defined for the base objects.

1Currently we do not consider the equality operation, because it requires an exact match
which implies that two objects have exactly the same properties. Furthermore, testing deep
equality is an expensive operation, which requires determining the sets of base objects reachable
from two objects, and testing whether the two are equal.

6.3. QUERY PROCESSING OVERVIEW 67

Composite objects are compared on their object identifiers, which have a system
defined ordering.

The condition is built out of two kinds of basic terms: join terms and restric
tions terms. The join term is an expression which relates two class attributes.
In general the expression consists of two path expressions and a basic predicate.
A restriction term specifies the minimal range of values for a path expression,
using a basic predicate and a constant value.

The steps in the query translation process will be illustrated using the follow
ing example query taken from the Goblin language report [K vdBS+93J.

Example 6.1 The class Mail collects all letters sent by children to their parents
living in Paris. As the class is defined in terms of existing classes, this is an
example of a derived class.

TYPE Letter=TUPLE(Person sender, receiver; STR text);

TYPE Mail= TUPLE(Letter l; Person p, c);

CLASS mail
TYPE Mail
FROM person p, person c, letter 1
WHERE C IN p.kids AND l.sender == C AND l.receiver -- p

AND p.address.city == 'Paris'

6.3.2 Query translation

Although Goblin provides a sophisticated set of language constructs for data
access, the translation of queries to query programs is rather straightforward.
This stems from the object representation model, which enables us to represent
query specifications on complex objects using simple binary predicates.

Furthermore, the Goblin query processing architecture is based on the assump
tion that query optimization can be done effectively at run-time. The execution
order of relational operations is therefore delayed until run-time, and based on
the cardinality or availability of the operands.

The translation and evaluation of the generic derived class is performed in the
following steps:

• The class definition is transformed into a query graph, which represents
the constraints that exist between the attributes of the derived class as
specified by the class constraint.

• This query graph is used by the task generation program of the query
scheduler. The query graph is interpreted on the summary data. The QS
generates for this query graph fragment combinations which (can) con
tribute to the query result.

• The tasks generated by the scheduler are specified by the query graph and
a set of fragment identifiers. The fragment identifiers are associated with

68 CHAPTER 6. THE GOBLIN QUERY PROCESSING SCHEME

edges in the graph. The query processor interprets the query graph using
this fragment assignment.

• Finally, for each method call in the application program, code is generated
to access the attributes referred to by the method. The query result is
delivered by Goblin to the application program as a set of binary relations.
For externally defined functions the query result is transformed to the
application language specific data structures. This aspect is not further
addressed in this thesis. ·

The next section defines the components of a query graph. Furthermore,
it discusses the transformation of the generic derived class into a query graph
representation. This is specified by the operator T which transforms the ba
sic syntactical components: path expressions, restriction terms, join terms and
selection conditions, and boolean terms into graph components.

6.3.3 The query graph

The query graph representation is not a new concept or restricted to the specifi
cation of relational queries. Our query graph resembles the one used by Gardarin
in [GGdM89] to direct the translation of logic programs to relational expressions.
Both approaches consider only binary predicates (relations).

Gardarin associates with each rule in the logic program a query graph. Each
variable is represented by a node and each predicate by an edge in the graph.
In his article he discusses the transformation process of this query graph to a
set of fixpoint equations and, finally, to a relational algebra program. His main
concern, however, is to translate recursive logic programs.

Goblin queries are not recursive, but are simply select-project-join (SP J)
queries. The first step in the translation is to put the selection condition in
a conjunctive normal form. Each conjunct defines a part of the query result, so
that the total query result is formed by the union of the query result of each
conjunct. In the following we consider the translation of a conjunct.

Example 6.2 The Mail example is ·already in a conjunctive normal form. The
selection condition is therefore given by the following rule:

M ail(p, c, l) kids(p, c) /\ sender(l, c) /\ receiver(l, p)

/\address(p, a) /\ city(a, x) /\ equal(x,' Paris')

The predicates kids, sender, address, city and receiver are defined by their
corresponding binary relations. The variables p,l and c are the projection at
tributes specified by the type definition. The x variable is a free variable which
ranges over the string attribute domain of the city relation. Note that the rule
is never recursive. In other words the goal predicate (Mail) does not occur in
the rule body.

In the next step this rule is translated to a query graph. A query graph is
identified by a four tuple G = (N, E, A). The set of nodes N = {l, ... , n}

6.3. QUERY PROCESSING OVERVIEW 69

kitls
p C

address

n:c.x!iver S(;!ncler

Figure 6.3: The query graph for the Mail query

corresponds to sets of data base objects. Some of these nodes are projection
attributes others are anonymous attributes like the x attribute in the previous
example. The set of projection attributes is given by A C N.

The constraints between objects is represented in the graph by the set of edges
E C N x N. An edge corresponds to an existing binary relation used by the
storage model, or to a condition. This can be a selection predicate between a
set of objects and an atomic object or a join predicate between two objects.

The number of edges connecting a node is called the degree and denoted by
d(x). It is defined by: d(x) = l{(e1, e2) E Elle1 = x V e2 = x}j.

6.3.4 Query graph construction

The translation of a generic derived class specification to a query graph is
straightforward. For each of the basic language constructs we define the trans
lation to a query graph. The operation which maps the language constructs to
a graph is denoted by T.

Example 6.3 The query graph for the Mail example query is presented in Fig
ure 6.3. It illustrates the translation of path-, restrict-, and join expressions.
Furthermore, note that the resulting query graph is cyclic.

6.3.4.1 Path expressions

A path expression denotes a traversal through the object graph. Applying the
path expression to a specific object or set of objects, it defines the objects that
can be reached.

The attributes in the path expression correspond to binary relations and are
mapped onto edges. The intermediate nodes visited when traversing the object
graph along the specified path are anonymous and correspond to the intermedi
ate objects visited. Let x1 , ... , Xn denote these intermediate anonymous nodes.
Then the translation of a path expression is given by:

~~
Xo

Path expressions do not occur in isolation, but form part of restriction- and
join-terms. In these situations the path expression is bound at one side to a

70 CHAPTER 6. THE GOBLIN QUERY PROCESSING SCHEME

class attribute, and specifies traversals through the object graph starting from
objects in the attribute domain.

6.3.4.2 Restriction terms

A restriction term selects objects from the attribute domain that satisfy a selec
tion condition. The attribute range is commonly determined by a path expres
sion and consists therefore of those objects that can be reached by traversing
the path through the object graph.

A restriction term can be considered to be a special kind of binary operation,
where one of the operands is a single object. To facilitate the translation process
selection expressions are treated similarly to join expressions. If the selection
predicate implies a range restriction, a condition edge is created labeled by the
selection condition and connected to a node representing the constant.

T(a ·Pl· P2 · · · Pn0c) ___, ~~
a C

The attribute a is added to the set of projection attributes. This information
is used in the task generation and task execution phase to determine the query
result.

6.3.4.3 Join terms

A join term selects those object combinations from two target attribute domains
that satisfy the join condition. The join condition is generally expressed between
objects that are associated to the attribute domain through path expressions.

The join condition can be considered to be a virtual binary relation, which
is not stored, but can be derived by evaluating the join condition on two sets
of objects. In the object graph perspective, a join term selects those pairs of
objects that are connected by two paths reaching from both objects and linked
by an edge representing the join condition. The construction of the query graph
is straightforward. Starting from each attribute, a sequence of edges is created.
These edges are linked by unique intermediate nodes denoted by x1 , ... , Xn and
YI, ... , Ym., to represent the intermediate objects in the object graph. The edges
can be labeled either by the attribute names specifying the path, or by two
node pairs (x;, x;+1)- In any case, each real edge is associated with a binary
relation. The join term is labeled by the condition 0 that holds between the
objects associated with nodes Xn and Y·rn·

T(a1 ·Pl··· Pn0a2 · q1 · · · qm.) --+

~l----r.--P_n-n~X_n_0y_,,_,r,-q_,_n---(,--I~

n1 :,;1 :i;n-l :1;.,1 1/n,. 'lfn,.-l '//1 a,2

If the join condition expresses equality of the object sets reachable from the
attributes, the condition edge can be omitted as edges that meet in the query
graph already imply equality of the domains associated with these edges.

6.4. CONCLUSION 71

~ ~/ ~
a,1 XI :1:n-l 1/m-l :t/1 a,2

Both attributes a1 and a2 are added to the set of projection attributes.

6.3.4.4 Boolean terms

Boolean terms are built from restriction- and join-terms using the boolean oper
ations. Because the boolean terms are specified in conjunctive normal form, the
translation consists simply of transforming the join-terms and restriction terms
in subgraphs and combining them into a single query graph, consisting of one
or more connected components.

If the query graph consists of two or more components, they are not connected
by an edge, and therefore are the possible combinations not restricted by a
constraint. The query result is then simply the Cartesian product of the result
of each connected component. For the remainder we assume that the query
graph consists of a single component, which is not a severe restriction. Because
in general queries are used to produce meaningful information by combining
data.

6.4 CONCLUSION

In this Chapter we have presented the Goblin dynamic query processing ar
chitecture. This architecture is modeled after the general DQP architecture
presented in Chapter 5. It consists of a query scheduler, query processor and
buffer manager.

This architecture is characterized by the novel two-level query processing
scheme. The query is evaluated in two phases. One level consists of the query
scheduler and the other of the query processor pool. The query scheduler first
evaluates the query on a summary data base containing fragmentation infor
mation. Then the tasks produced by the QS are executed on the second level
by the query processors. This scheme facilitates the implementation of a DQP
architecture and enables the separation of optimization issues. This leads to a
flexible and adaptive processing structure.

The query scheduler influences the number of I/0 requests by its task al
location algorithm. It tries to reduce the total number of tasks with its task
generation algorithm and task elimination algorithm. The query processor is
only concerned with CPU optimization and memory utilization. These issues
are discussed in detail in the subsequent chapters.

Furthermore, we introduced the query graph which is the internal query repre
sentation. The query graph forms the basis for summary query evaluation in the
task generation algorithm and task execution in the query processor. Finally,
we showed the translation of a query specification to a query graph.

Chapter 7

T a$k g,E;neration

7.1 INTRODUCTION

The Query Scheduler drives the query execution by generating tasks, assigns
these tasks to the available query processors, and coordinates the transport of
results to the application.

Task generation is based on running the query against the summary database
as defined in Chapter 4. The summary database maintains for each fragment of a
binary relation its identification and abstract information on the attribute values
contained. In case of range-partitioned relations this consists of the minimum
and maximum values for each attribute. For hash-partitioned relations it is
simply the hash value.

The task generation algorithm queries the summary information for all the
relations involved and selects those fragment combinations that can contribute
to the query result. For this purpose the relational operations join, semi-join,
and. select have been defined for summary relations (See Section 4.4.3).

·The summary data base should.refle.ct the actual data base partitioning. Any
change in an underlying binary relation must be propagated to the corresponding
summary relation before being used. In this thesis we assume that the workload
consist of read-only queries. Therefore, the overhead for maintaining the consis
tency of the summary data is not considered. Under a read-only workload the
summary data base can be replicated to all available processors and maintained
at low cost at run-time to reflect changes in the data base partitioning. The
main cost factor taken into account for task generation is the CPU cost.

In a parallel system task generation and task execution are run in parallel. In a
single processor environment the summary query is run as a batch job. before the

72

7.2. NOTATION AND TERMINOLOGY 73

tasks are executed. These approaches are referred to by the terms navigational
and batch query, respectively.

The summary query is evaluated using the query graph defined in Chapter 3.
The edges in the query graph are associated with their corresponding summary
relations. First the selections specified in the query graph are applied. This
is a good heuristic to reduce the cardinality of the operands involved in the
remaining operations. Secondly, an execution order for computing the summary
query is determined. The key to the solution of the summary query is based on a
graph algorithm for the Chinese Postman Problem. The derived execution order
is finally used in the third phase by the batch- or navigational- task generation
algorithms. The next sections discuss these phases in more detail.

7.2 NOTATION AND TERMINOLOGY

In this chapter we consider summary queries defined by a query graph G =
(N, E, A, card) consisting of a single connected component (See Chapter 6). The
query graph defines a constraint on the data base consisting of summary rela
tions. The edges in the graph correspond either to summary relations or to
selection or join conditions. Given an edge e = (x, y), the associated relation
is denoted as R(x, y) and the associated condition is denoted as C(x, y). The
nodes in the graph correspond to sets of partition ranges or in the case of hash
partitioning, to hash values. The set A identifies the nodes associated with the
projection attributes.

The summary relations have been introduced in Chapter 4. They maintain
for each fragment of a binary relation its unique identification bid and for each
attribute, the attribute value range or the hash value. To simplify the nota
tion, the summary information on both attribute values is named s1 and s2 for
both range- and hash-partitioned relations. A summary relation R denoted by:
R[bid, s1, s2].

Example 7.1 To illustrate these concepts we use the Mail query defined in Ex
ample 6.1. In Figure 7.1 we show the corresponding query graph and illustrate
its relation to the summary database. We assume that all the relations are hash
partitioned on both attributes. The summary relations maintain therefore for
each fragment the hash values for both attributes. The domain of node x is de
fined by the hash-values stored in the city summary relation. For node L it ·is
determined by the intersection of the summary relations receiver and sender.

The join, theta-join, and select operation have been redefined to process sum
mary relations. The main distinction with the common operations is that they
are based on a comparison operation on the partition information. For instance,
when joining two summary relations of range partitioned relations, two fragments
are considered equal if their attribute ranges overlap. To distinguish these op
erations from the ordinary relational operations, they are denoted as a', J:><:f, I><
and J:><:ro for the selection, join, semi-join, and theta-join operation, respectively.

The objective of summary query processing is to identify fragment combina
tions that (potentially) contribute to the query result. Therefore the summary
query result is formed by combinations of fragment identifiers associated with

74

sl bid s2 sl bid s2

0 cl 0 0 al 0

1 c2 I I a2 1

2 c3 0 0 a3 2

CHAPTER 7. TASK GENERATION

add'fss

I
I

sl bid

0 rl

0 r2

I r3

s2

0

I

2

receivffl"
/

/

I

sl bid

(I kl

1 k2

2 k3
i

kids

s2

2

0

1

sSnder

' ' I

sl bid

0 sl

I s2

2 s3

C

s2

1

0

0

Figure 7.1: The query graph and its associated summary relations

relation edges. For summary query processing the query graph is therefore trans
formed into a more appropriate representation, the join-index graph. This will
be explained further on. First the graph initialization is discussed.

7.3 QUERY GRAPH INITIALIZATION

During the initialization phase the edges in the query graph are bound to a set
of summary relations. It involves a binding phase and selection phase.

In the binding phase the target attributes nodes, that are not yet connected to
relation edges are bound. This means that each of these target attribute nodes
is connected through a relation edge to a node representing its domain. This
relation edge is associated to the summary relation representing the attribute's
domain.

In the selection phase condition.edges are successively removed from the graph.
Performing selections first is generally a good heuristic, because these operations
reduce the operands of remaining operations and are relatively cheap. Finally,
the edges in the query graph are labeled by the cardinality of their associated
summary relations.

Let the edge (c, x) E E correspond to• a condition edge, where c is the node
corresponding to the constant, and x the adjacent node and let (y1 , x), ... , (yi,, x)
denote the relation edges incident on x. Furthermore, the condition associated
with the edge is referred to by C(c, x). Then the following program evaluates
the selection condition:

FOR i .FROM 1 TO k DO

R(yi,x) cic(c,o:)R(y;,x)
DONE

7.4. THE CHINESE POSTMAN PROBLEM 75

HXJ 30

kids
X y C

citr addrps

I I

receivof s\mler
/ \

/ \

,, I

~
,,

I

sl bid s2 sl bid s2 sl bid s2 sl bid s2 sl bid s2

() cl 0 () al 0 () rl () 0 kl 2 () sl 1

I a2 1 () r2 1 1 k2 () 1 s2 ()

() a3 2 I r3 2 2 k3 1 2 s3 ()

Figure 7.2: The initialized Mail query graph

The removal of a condition edge implies the evaluation of the selection con
dition against all the binary relations R(y;, x). The cardinality statistics of the
updated relation edges is then adjusted.

Example 7.2 The binary relations in the Mail example are hash-partitioned. In
the selection phase the condition edge connected to node x is removed, leading to
the evaluation of the condition x = 'Paris' against the summary relation city.
Consequently, the summary relation is reduced to a single entry (See Figure 7.2).

Fortunately, all the projection attribute domains in the example are defined by
the summary relations associated with the relation edges receiver, sender, and
kids. Therefore, the query does not have to be evaluated on the complete object
domain defined by the summary relations Letter and Person.

After the initialization phase the summary relations have the following cardi
nality.

relation name cardinality
[Person,Person] kids 30
[Letter,Person] receiver 500
[Letter,Person] sender 500
{Address] Address 80
[Address, String] city 1

7.4 THE CHINESE POSTMAN PROBLEM

The solution to the summary query must satisfy the constraints specified by the
grounded and modified query graph. Each solution is identified by a combination

76 CHAPTER 7. TASK GENERATION

of object identifiers. If we denote these identifiers by Oi and (01, ... , on) identifies
a solution, then their associated objects satisfy the relations in the query graph.
In other words there is a path connecting these objects, which passes through
each edge of the graph at least once.

Obviously, given a graph there are many paths that traverse all the edges.
However, as traversing the path implies finding the associated set of objects at
each node, there is a cost involved· in the traversal. In general the traversal of
edges require joining the current set of objects with the binary relation associated
with the edge. In the worst case the join result is the Cartesian product of these
two. We assume that the cost is dominated by the cardinality of the binary
relation associated with each edge. This assumption is true if the resulting
object set is smaller or has approximately the same cardinality as the original
after traversing the edge. Otherwise, the cost is dominated by producing the
result.

If the join condition is an equi-join and represents a 1 - 1, or 1 - n-ary re
lationship, the result cardinality will be at most the maximum of the involved
relations. Furthermore, as the summary data base is relatively small the query
cost is considered acceptable.

The query problem reduces under this assumption to finding a route from
one node to another through a connected graph that uses each edge at least
once. This problem is also known as the (undirected) Chinese Postman Problem
(CPP) in Graph theory. The solution to this problem is given in [GM84l[pp.340-
344]. For brevity we will only give an outline of the algorithm and refer to the
textbook for a complete discussion and correctness proof.

Algorithm 7.1 The basic idea of the algorithm is to find an Eulerian cycle in the
graph. If the graph is not Eulerian, then edges are added between nodes of odd
degree to make the graph Eulerian. The algorithm is performed in the following
steps:

1. If the graph is Eulerian, the GP P cycle is simply the Euler cycle through
the graph. By definition the Euler cycle traverses each edge only once.

2. If the graph is not Eulerian, the graph is made Eulerian by adding chains
between pairs of nodes of odd degree. Let X ~ N denote the set of nodes
of odd degree.

3. Use the shortest path algorithm to find the shortest path between each pair
of nodes in X { and its length).

4. Construct the complete graph K(X), where each edge is labeled with the
length of the shortest path connecting the nodes.

5. Determine the perfect matching with minimum weight on K(X). The re
sulting set of edges correspond to chains in the original graph. Further
more, the chains are the shortest chains that can be added to make the
graph Eulerian.

6. Determine the Euler cycle through the modified graph.

7.4. THE CHINESE POSTMAN PROBLEM 77

With this algorithm a path through the query graph can be found that uses
each edge at least once. We refer to it as the CPP path.

Example 7.3 In the initialized Mail query graph the selection on city is performed
and the graph is adjusted accordingly.

1. First we note that the graph is not Eulerian. Thus in the GP P path some
edges will have to be traversed more than once.

2. The set X of nodes of odd degree is given by x and P. To make the graph
Eulerian, a chain consisting of existing edges connecting these nodes must
be added to the graph.

3. Calculating the shortest path between each pair of nodes in X is trivial.
This path is given by the edges CITY and ADDRESS.

4. The complete graph K(X) consists of a single edge connecting the nodes P
and x with length 100 + 1.

5. The perfect matching with minimum weight on K(X) is trivially the edge
(x, P). The query graph is made Eulerian by duplicating the edges CITY

and ADDRESS corresponding to the shortest path (x, P).

This algorithm results in the following CPP path:

start node

HXJ

address

The CPP path fixates the evaluation order for the operations required to cal
culate the summary query, but the choice of the starting edge is free. Obviously
the edge corresponding to the smallest relation is chosen as the starting edge.

Note that once in the evaluation all the edges have been traversed, the re
mainder of the CPP path can be skipped. For instance, in the previous example
once the evaluation has reached node P for the second time all the edges have
been traversed once. Consequently, traversing the relation edges address and
city a second time does not affect the query result found thus far.

In the following sections two evaluation algorithms are presented, which use
the CPP path to calculate the fragment combinations that potentially contribute
to the query result.

Both algorithms do not use the query graph immediately, but rather they
transform it first into a join-index graph, which is a more convenient represen
tation of the problem. In this transformation relation edges are mapped onto
individual nodes. Furthermore, each pair of adjacent edges on the CPP graph

78 CHAPTER 7. TASK GENERATION

reciever-address (r-a)

city-address

sl bid s2 st bid s2 sl bid s2 st bid s2 sl bid s2

II cl II 0 al II II kl 2 0 st I 0 rl II

I a2 I I k2 II I s2 0 0 r2 I

II a3 2 2 k3 I 2 s3 0 I r3 2

Figure 7.3: The join-index graph for the Mail query

is represented by an edge in the join-index graph. The nodes are labeled by the
name of the original edge and the new edges are labeled by the concatenation
of the original edge labels. Condition edges in the query graph are mapped to
edges in the join-index graph. Because selection conditions have already been
removed from the query graph the condition edges are always adjacent to two
relation edges.

The summary query result consists of fragment combinations that (poten
tially) contribute to the query result. These combinations are represented by a
set of binary relations, called pivot relations, which consist of a pivot attribute
and a fragment identifier.

Example 7.4 The join-index graph for our example is illustrated in Figure 7.3.
The join indices are initially undefined and are generated during summary query
evaluation by joining the summary relations of two adjacent nodes. This will be
illustrated in the next section.

7.5 BATCH TASK GENERATION

The batch algorithm is divided into two phases: the initialization phase and the
pivot phase.

In the initialization phase the edges and nodes in the join-index graph are
associated with binary relations by traversing the CPP path. The nodes in the
join-index graph are associated with the pivot relations identifying the subset of
the summary relation satisfying the query constraints. Furthermore, join indices
are constructed and associated with the edges in the join-index graph. An entry
in these join index relations represents a fragment combination with "equal"
partitioning information.

The CPP path is traversed starting with the node associated with the smallest
summary relation, the start node. While traversing the path a pivot relation is

7.5. BATCH TASK GENERATION 79

constructed for each node indicating which fragments from the start edge and
the current relation lie on the part of the CPP path traversed thus far.

Each pivot relation is basically a projection of the n-ary relation representing
the query solution on a unique tag -the pivot- and the fragment identifier. Ini
tially, the solution to the query is represented by the pivot relation associated
with the start node. This pivot relation is constructed using the mark opera
tion µ, which extends a relation with a unique tag field called tag. Thus if x

represents the start node the initial pivot relation P0 (x) is constructed as follows:

Po(x) 1f[tn/J.bid] µR(X)

Example 7. 5 After this first step the join-index graph of the Mail query is ex
tended with a pivot relation P(city). This pivot relation consists of a single entry
(1, c 1) identifying a fragment of the city relation.

The remaining pivot relations are constructed in two steps. First a join index
is constructed for the current relation edge and the next relation edge. Secondly,
this join index is joined with the current pivot relation. Let x and y represent
the current relation node and the relation node to be visited next, respectively.
Then given the pivot relation P(x) for relation node x, the join index R(x.y)
and pivot relation P(y) are constructed as follows:

R(x.y)

P(y)

11"[:d1id,,J.lri1l](R(X)~:i:.s2=)/·-'l R(y))

P(x) ~ R(x.y)

Example 7. 6 The first edge that is traversed in the join-index graph is the c-a
edge. The join-index is constructed by joining the summary relations city
and address on their attributes city. s2 and address. s 1. The resulting join
index consists of two tuples: R(c-a) = {(cl, al), (cl, a3)}, and the pivot relation
P(address) = {(l, al), (1, a3)}.

If the edge connecting the two nodes x and y corresponds to a condition edge
C(x, y), the join-index is calculated using the join condition. Note that the join
condition is defined on the attribute ranges of the summary relations R(x) and
R(y). The pivot relation is calculated similar to the previous case.

R(x.y)

P(y)

1f[:d,id,y./,id] (R(X)~C(:c.s2,y .. ,l)R(y))
P(x) ~ R(x.y)

If the traversed edge corresponds to a 1 - n relation, many fragments will
be associated with the same start fragment. Conversely, if an n - l relation
edge is traversed, the pivot relation will associate many start objects with the
same object. To maintain the property that each pivot relation represents a
projection of the query result, the duplicate pivot attributes in the constructed
pivot relation must be renumbered. This transformation can be represented by

80 CHAPTER 7. TASK GENERATION

a transformation relation T, which associates a unique new pivot attribute tag'
with each duplicate attribute in the constructed pivot relation. This transfor
mation relation is then used to renumber all the pivot relations constructed thus
far. Thus after construction of the new pivot relation P(y) the following actions
are performed:

X ·- µP(y)

P(y) ·- 1l"[ta,g',bidJx

T .- . 1r[ta.g',ta.gJX

VxEN

Example 7. 7 Consider relations P(x) = {(tagi, xi), (tag2, x2)} and R(x.y) =
{(xi, Yi), (xi, Y2), (x2, Yi)}. Then the new pivot relations P(x) and P(y) are
calculated as follows:

P(y) P(x) l><I R(x.y)

Resulting in P(y) = {(tagi,Yi),(tagi,Y2),(tag2,Yi)}. This pivot relation does
not have a unique pivot attribute and must therefore be renumbered:

X µP(y)

P(y) 1l"[ta,_q'.bidJx

T 1r[ta.!!' ,ta.!!] X

After this renumbering operation the pivot relation looks like:
P(y) = { (tag~,Yi), (tag2,y2), (tag3,yi)} and the transformation relation: T =
{(tagl., tagi), (tag2, tagi), (tag3, tag2)}. This relation Tis then used to renumber
the already defined pivot relations:

P(x) := 1l"[ta.!J',l,id](T 1><1 P(x))

Such that P(x) = {(tag~, xi), (tag2, xi), (tag3, x2)}. Note that the resulting pivot
relations can indeed be considered to be a vertically fragmented solution to the
query represented by R(x) l><I R(y).

Example 7.8 After two steps along the CPP path in the Mail query the pivot
relations for city, address, and kids are constructed. The renumbering oper
ation ensures that the common pivot attribute is unique. This is illustrated in
Figure 7.4- Note that the summary relations for city and address are dropped,
because the required information is stored in the pivot relations and join-indices.

In the pivot phase the pivot relations are used to construct all the fragment
combinations by joining the pivot relations on the pivot attribute.

Given the pivot sets P(xi), ... , P(x.,,,), the complete set of tasks T[bidi, ... , bid.,,,]
is found by joining the pivot sets on the unique tag and projecting on the BAT
identifiers of the pivot relations.

7.5. BATCH TASK GENERATION

I

~

city-address

I

I

I

cl al rn
cl al~

al kl

al k3

sl

(I

1

2

ffi
/

/

bid

kl

k2

k3

/

s2

2

(I

I

/

reciever-address fr-a)

sl bid s2 sl bid

(I sl 1 (I rl

1 s2 (I (I r2

2 s3 (I 1 r3

Figure 7.4: The join-index graph after two edge traversals.

T 1f[birl,, ... ,birl,,]P(xi) l><I · · · l><I P(xn)

81

s2

(I

1

2

(7.1)

Example 7. 9 Finally, when all the edges are traversed, all the nodes are associ
ated with a pivot relation. In the Mail example this results in the pivot relations
for city, address, kids, sender, and receiver. This is illustrated in Fig
ure 7.5. Notice that the uniqueness of the pivot attribute has the effect that the
calculation of the join expression 7.1 is reduced to a simple lookup operation.

Summarizing we arrive at the following algorithm:

0 e 8
1

8
I

8
I

I I I 1

~ EE ~ ~
Figure 7.5: The summary query result for the Mail example.

82 CHAPTER 7. TASK GENERATION

Algorithm 7.2 Given the join-index graph J = (N, E) associated with the query
graph. Let the CPP path through this graph be defined by the node sequence
(xi, ... ,xn)- Furthermore, let IR(xi)I ::; JR(x;)I for ii- l. Then the following
algorithm calculates the pivot sets for each node.

1. The node x1 represents by definition the smallest relation edge. The spe
cial operation µ creates the initial pivot relation from the set of fragment
identifiers of the summary relation. This operation associates a unique tag
value with each fragment identifier.

2. Traverse edges of the GP P path once from the starting node until the end
node is reached. For each visited node the pivot set is calculated. In the first
traversal a join index is associated with each edge. Let (xi, Xi+i) denote
the edge to be traversed, then the following must be taken into account to
construct the join index R(x.;,x;+1) and pivot set P(x.;+1):

• The edge (x;, x;+1) can be associated with a condition edge.

• The pivot set P(X-;+1) is already defined, because the node has already
been visited. In this case the new pivot set is is the intersection of the
previous and new one.

Thus the following actions are performed in the construction of the pivot
sets:

{
1f[,c; .bi,Ln;+1 ./rid] (R(X.;)~o:; .s2=0:;+1 .. ,1 R,,;+1)

1f[:,;; .bi,b,;+1 .bid] (R(x.;)~C(;i;; .. ,2=o:;+1 .slR:,,;+1)

P(x;+1) n P(x;) ~ R(x;, x;+ 1)

Example 7.10 After the initialization the tasks are produced using the join ex
pression 7.1 and added to a task table for execution.

7.6 NAVIGATIONAL TASK GENERATION

The algorithm used in batch task generation produces the tasks in the final
phase of the algorithm. For a parallel query processing architecture it is better
to perform the task generation and task execution in parallel. For this reason the
navigational task generation is designed. Basically, it recursively traverses the
CPP path and uses the summary relations to create and test possible fragment
combinations.

Similar to the object graph associated with the data base, a summary graph
can be associated with the summary database. The nodes in this graph cor
respond to the relation fragments and the edges correspond to the associated
fragments, i.e. those fragments that have overlapping attribute domains.

7.6. NAVIGATIONAL TASK GENERATION

city-address

I
•/
;.

reciever-address (r-a)

. I . ::::,,Q
; rl
' '
' ' 2 '

I; , , , , r2

I ; i i i i
4

i :
I I I I I

- - _,_ - - _,_ - - .,_ - - - ~ - - _, - - I
' ' ' ' .

I : I : 1 :

Figure 7.6: The summary graph for the Mail query

83

84 CHAPTER 7. TASK GENERATION

The navigational algorithm constructs the query result incrementally by travers
ing all possible CPP paths through the summary graph. Each fragment in the
summary graph, can be associated through a single edge with zero, one, or more
fragments. Furthermore, similar to the batch algorithm a distinction must be
made between relation and condition edges.

For each path through the summary graph the reachable fragments at each
node are maintained. Each time the path revisits a node, the same fragment
should be encountered. Let b; denote the fragment associated with the node
x;, the set of fragments B;+l reachable in the summary graph is determined as
follows:

B;+1

Example 7.11 The complete summary graph for the Mail example is illustrated
in Figure 7. 6. The graph is constructed incrementally by traversing the GP P
path for each possible fragment combination. The first path starts with fragment
c1. From this node, the address relation fragments al and a3 can be reached.
The algorithm will now recursively test each combination. As long as a fragment
combination is successful, the path is drawn as a solid line. Nate that most
combinations fail when the receiver-address edge is traversed. Only a single
fragment combination remains.

7. 7 CONCLUSION

In this chapter we discussed a new and generally applicable query optimization
technique. The task generation algorithm produces a series of fragment com
binations or tasks that are sufficient to calculate a query result. It is based
on simulating the query on a summary data base containing the fragmentation
information.

Processing a query in two phases, a query on the summary data base and a
query on the data fragments is useful both for query processing in disk-based
single processor environments and in a parallel processing environments. In
the first case, the summary query is used both as an indexing technique and
the tasks produced can be scheduled such that the available buffer space is
used optimally. An indication of its advantage can be found in the MCH task

.allocation algorithm of Chapter 9.
In a parallel environment the profit stems from the reduction of the number

of tasks to be executed and from the fact that task generation can be executed
in parallel with task execution using the navigational task generation algorithm.

The batch task generation algorithm is more suited for single processor envi
ronments as it uses cheap set-oriented operations to determine the tasks.

The DSM storage model made it possible to translate the query processing
problem to the graph-theoretical Chinese Postman Problem. The efficiency of
this approach relies on the assumption that the relations are properly parti
tioned, such that the cost for evaluating the primitive (join) operations is not
larger than one of its operands and therefore linear in the size of its operands.

7.7. CONCLUSION 85

The validity of this assumption depends on the partitioning of the relations.
At best it results in a 1-1 relationship between summary relations. For instance,
binary relations representing tuple attributes should be partitioned on their tuple
om. A proper partitioning is of utmost importance to keep the number of tasks
and, therefore, the summary query cost low.

Chapter 8

Task elimination

8.1 INTRODUCTION

The predominant approach towards query evaluation in DBMS is to map a static
query evaluation plan onto a processor pool for (data driven) execution. One
of the major obstacles for improved performance is the lack of techniques to
predict and to avoid resource congestion, which leads to underutilized hard
ware platforms. A possible solution is to use the standard query optimization
techniques to generate a revised query execution plan from scratch at query
evaluation time. To control the optimization overhead, the threshold technique
can be used to trigger the optimization (BR88, Ngu81]. Alternatively, a range of
different query schedules could already be prepared before the query evaluation.
The measured query statistics then determine the final query schedule (GW89].
For this purpose choose-plan operators are included in the query execution plan.

A novel approach is to use a dynamic query processing scheme, which partitions
the data base such that the query result is the union over all sub-queries. The
sub-queries are distributed for execution by a Query Scheduler as independent
tasks on a pool of processors. This approach· can be seen aS a generalization
of associative join processing [OV92](pp. 470-477], where through horizontal
partitioning of the operand relations a join expression is transformed to the
union of join expressions on their composing fragments:

R l><l S ----+ LJ R; l><l S.i
i,.i

This scheme has the advantage that information obtained after the execution
of each task can be returned to the Query Scheduler for load balancing and query

86

8.1. INTRODUCTION

ljuin(Cily.Factury)l = 0 ->

IQ(-.City,Factnry)l=t)

Figure 8.1: Dynamic Query Optimization

Q(Pcr.mnl,Cityl.Factoryl)

Q(Pcrson2,City I ,FacLOry I)

~3)

Q{Pcnmnl2,Cityl0.Fnctory8)

87

optimization. Load balancing is achieved by controlling the allocation of tasks.
The query optimization scheme is generally known as Dynamic Query Optimiza
tion (DQO) and is defined as the process of modifying the query schedule based
on the measurements taken by the Query Evaluator.

In this chapter, however, we present a run-time optimization called task elim
ination. This optimization is based on the assumption that the tuples, which
partake in the query result are, generally not uniformly distributed over the
product space of the relations involved. Instead, they often exhibit some clus
tering and data skew. As a result the query schedule need not be evaluated for
all the fragment combinations. For example consider the following query:

SELECT*
FROM Person P, City C, Factory F
WHERE P.address= C.name and C.name = F.location

Since the number of factories in a city is variable, there are many (City,
Factory) pairs that do not contribute to the query result. Consequently, a large
number of (Person, City, Factory) combinations do not have to be considered
either. Let Q(x, y, z) denote the sub-query that calculates the example query
for the fragments x, y, and z. Then this knowledge can be represented by the
following optimization rule:

ljoin(City, Factory)!= 0 --> IQ(-,,City, Factory)!= 0 (8.1)

This rule expresses the fact that if the result of the join between a City
fragment and a Factory fragment is empty, then the query, that uses this com
bination of fragments is empty regardless the contents of the Person fragment.
The Query Evaluator reports the occurrence of empty intermediate result to the
scheduler. The Query Scheduler can then perform logical optimizations using
this rule, i.e. not taking tasks that contain this combination of fragments into
execution (See figure 8.1).

Unlike in static query processing, the execution order of the joins are not
fixed in our DQO scheme. This means that the choice between the execution

88 CHAPTER 8. TASK ELIMINATION

orders (Person l><l City) l><l Factory and Person l><l (City l><l Factory) is made at
run-time. Thus, apart from the previous rule the following rule is also provided:

ljoin(Person, City)!= 0 ___,, IQ(Person, City, -)I= 0 (8.2)

Whether Rule 8.1 or Rule 8.2 is actually used depends on the execution order
chosen at run-time. If both joins are evaluated simultaneously the effect of these
optimization rules is combined to reduce the amount of work even further. In
Section 4 we investigate the effect of taking all pairwise joins into account. This
evaluation strategy is called parallel bottom-up evaluation.

8.2 RELATIONAL ALGEBRA PROPERTIES

Dynamic query processing is a novel approach to which old techniques based on
algebraic equivalence can be reused. This section focuses on these issues and
places these properties in the context of dynamic query processing. In the next
section a new technique is introduced and analyzed in detail.

Given the relational algebra expression and semantics preserving rewrite rules,
a series of equivalent expressions can be produced for any query expression. In
the following we summarize the significance of the communicative, associative,
and distributive properties of the relational operations on dynamic query opti
mization.

8.2.1 Commutative operations

For a commutative operation the result of the operation does not depend on
the order of the left or right operand. Interchanging them does not affect the
outcome of the operation. An example of such operations are the join, intersect,
and union operators.

AUB
AnB
Al><lB

BUA
BnA
Bl><IA

For dynamic query optimization in a main-memory context this property can
be used to reduce the cost for operation evaluation. For instance, in [Bra84]
it was shown that hash-based implementation of the relational operations have
a superior performance over comparison based implementation schemes. In
general these algorithms consist of two phases: a hash phase and a probe phase.

In the hash phase a hash table is built on the first operand. The size of the
hash table and the ·quality of the hash function determines the length of the
collision lists associated with each hash entry.

In the probe phase the hash table is used by calculating for each elements of
the second operand its hash value and evaluating the appropriate action when
a matching element in the collision list is found.

Obviously, the cost of the hash phase and probe phase is different and depends
on the· size of respectively the first and second operand relation. For instance

8.2. RELATIONAL ALGEBRA PROPERTIES 89

it turns out that in general it is more efficient to build a hash table on the
largest operand and iterate over the smaller operand in the probe phase (See
also Chapter 11).

8.2.2 Associative operations

An operator is called associative if the result does not depend on the execution
order. Of the relational operations, the join, union and intersection operation
are associative. This property is summarized in the following equations:

(Au B) u C

(An B) n C

(A l><I B) 1><1 C

Au (BU C)

An (B n C)
A 1><1 (B 1><1 C)

The associative property of the join operation leads to the most important
issue in query optimization: join order. The join operation is a relative expensive
operation. Furthermore, the processing cost depends on the operand size and is
in the worst case of the order O(n2). To determine an optimal join order it is
therefore necessary to have reliable estimates of the intermediate results. In the
DQP scheme these estimates are made regularly (after each operation) and are
therefore more reliable than the estimates that are made only once in the SQP
scheme.

In dynamic query processing the associative property of the join operation
leads to a design, where the join order is determined at run-time. Consequently,
the query specification is general enough to allow many execution orders to be
produced.

8.2.3 Distributive operations

The distributive property expresses the fact that an operation can be distributed
over a specific other operation. In the following equations we see that intersection
operation is distributive over the union operator and visa-verse. Furthermore,
the join operation is distributive over the union and intersection operation.

(An B) UC

(AU B) n C

(An B) l><I C

(Au B) 1><1 C

(A U C) n (B U C)

(A n C) u (B n C)

(A 1><1 C) n (B l><I C)

(A l><I C) U (B 1><1 C)

Query parallelization heavily relies on this distributive property of the join
operation. Both in SQP and DQP architectures, a query can be parallelized by
horizontally fragmenting the operand relations. Consider for instance the situa
tion where relation A is fragmented into n pieces. The query is then transformed
into the following:

Al><IB

90 CHAPTER 8. TASK ELIMINATION

Taking advantage of the distributive property it is translated into n join op
erations to be executed in parallel (once a copy of the relation B is present on
each processor).

8.2.4 Projection and selection

The projection and selection operation are relatively cheap to perform. Further
more, they have in common that they reduce their operand relations, either in
size (selection) or in the number of attributes (projection).

Consequently, it is generally considered to be a good heuristic to perform
projection and selection operations as early as possible. The equations below
state a few equivalence relations, that can be used to push the projection and
selection operators down the query tree. The terms [f] and [g] denote sets
of projection attributes. The symbols p and q are used for selection or join
predicates. The function attr applied to a predicate or relation identifies the set
of attributes used in the predicate or relation.

o-p(o-q, R)

1f[JJ (1r[!1l R)

o-J> 1f[JJ R

o-J>(R1 U R2)

o-J>(R1 [X]q R2) ---t

8.2.5 Semantic properties

O"]>llqR

K[tlR I\ f <:;;; g

1f[J]o-J>R I\ attr(p) <:;;; f
(o-J>R1) U (o-1,R2)

R1 [X]]>llq R2

o-qR1 [><].,. o-.,R2 I\ attr(q) <:;;; attr(R1)

/\attr(s) <:;;; attr(R2)

The key to dynamic query optimization form the semantic properties of the four
basic binary operations: union, intersect, join and difference. In particular, their
relationship with the empty set. These properties give rise to two different kinds
of optimization techniques: task simplification and task elimination.

In the task simplification technique, operations are omitted from the task
execution schedule, if it is clear that they will not add or remove tuples from an
intermediate result. This technique is based on the following properties of the
union and set difference operation:

AU0 ---t A

A\0 ---t A

(8.3)

The Query Scheduler decides upon detection of an empty intermediate result
to simplify the query tasks involving these segment combinations, which produce
the empty result. This results in a reduction of the task processing time and in
a reduction of segment transfer.

8.3. TASK ELIMINATION 91

Example 8.1 Consider the task T on fragments P, Q, R, and S defined by the
following equation:

T(P, Q, R, S) = P l><l Q \ R l><l S

If during processing it turns out that for a specific combination of fragments
(r1, s1), that r1 l><l s1 = 0, then all remaining tasks identified by (Px, q11 , r1, s1)
can be calculated using the following simplified task expression:

T(P,Q) = P l><l Q

Thus saving both fragment I/O and CPU time to calculate r 1 l><l s1 .

· In practice this technique improves the average task execution time only
marginally, as the cost of evaluating these operations, when one of the operands
is an empty set, is relatively low. We will not discuss this technique any further.

The following properties 8.4 form the basis of the task elimination technique.

Al><l0 ___. 0 (8.4)

An0 ___. 0

Task elimination uses the occurrence of empty intermediate (partial) results to
reduce the number of outstanding tasks. For instance, if for the query S l><l R l><l T
the Query Evaluator discovers that the intermediate result s1 l><l r 2 is empty, it
reports this observation to the Query Scheduler, which then removes all remain
ing tasks s1 l><l r 2 l><l t, from the task table. Note that in a static/pipelined query
processing environment s1 l><l r 2 need not be a combination which is executed.

In the remainder of this chapter we will discuss and analyze the effectiveness
of this technique in detail.

8.3 TASK ELIMINATION

In this section we determine the potential savings that can be obtained by task
elimination. The effectiveness of this technique is determined by the fraction
of empty intermediate results. As the detection of empty intermediate results
depends on the evaluation order of the operations in the query, we have also
examined the effect of using a left/right-deep tree and our own parallel bottom
up evaluation technique on the elimination factor. The results of this exercise
can be found in Section 8.4.

The fraction of empty intermediate results or elimination factor {e), strongly
depends on the relational operation and the attribute distribution of the partic
ipating relations. The expected value of the elimination factor (e) for a binary
operation ® between two fragmented relations A and B can be expressed in the
probability distribution P(i, j) for empty intermediate results and the number
of fragments of the relations nA and nn. P(i,j) is defined as the probability
that the result of A.;,® Bj is empty. Thus:

92

P(i,j)

E[e]

CHAPTER 8. TASK ELIMINATION

(8.5)

(8.6)

A parameter of importance is the fragment size, because it strongly influences
the elimination factor. This can easily be seen by considering the extreme cases.
If the fragment size equals the relation size, the elimination factor is zero, because
the join result is not empty. If on the other hand each fragment consists of a
single tuple, the elimination factor equals max(IAI, IBl)/IAI · IBI.

On one hand we expect the elimination factor to increase as the fragment size
decreases, because the probability of an empty result increases, but on the other
hand it also increases the number of tasks, which has a decreasing effect on the
elimination factor.

Furthermore, the fragment size determines the processing cost of a task and
the communication cost for transporting the fragments between processors. Be
cause it is not possible to present a general cost model for relational queries,
we have determined the total processing cost for the specific, commonly used,
eqm-Jom query.

Before we derive the processing cost for a k-way equi join, we first determine
the elimination factor for a single join operation A l><IA.a.=B.b B. Without loss of
generality we assume for the remainder of this chapter that the join attribute
domain is a subset of the natural numbers. Attribute a is a key attribute of
relation A and assumes values in the range [1, · · ·, cA]- The relation A is range
partitioned over its key attribute a into n 11, fragments A; containing p tuples
each, so that the key attribute a of fragment A; ranges over the values [pi +
1, · · ·, p(i + 1)]. The relation Bis also range partitioned on its key attribute. We
assume that the distribution of the key attribute of B and its non-key attribute
b are independent. The fragments Bj also contain p tuples. The attribute value
bis distributed according to a certain probability distribution function 1r(b).

To determine the elimination factor E[e], we first express the probability dis
tribution P(i, j) in the probability distribution 1r(b). For this we first determine
the match probability Pm, which is the probability that the join result of two
fragments A and B is not empty. A match occurs if an attribute value b of frag
ment B lies within the range of key attributes [pi+ 1, · · ·, p(i + 1)] of fragment A.
Because the attribute values b are uniformly distributed over the B fragments is
the match probability Pm(i,j) = Prob{IAi 1><1 Bjl > O} independent of the choice
of the B fragment. The match probability can then be expressed as follows:

]l(i+l)

Pm(i,j) = Pm(i) L 1r(b) (8.7)
li=J1i+l

Because Pm (i) is the same for all the fragments of B, we find the following
expressions for P(i,j) and E[e]:

8.3. TASK ELIMINATION 93

,,, ,,
~ : 1,,.,a,~nt ~ '1,,,i,.,-,.,,

Figure 8.2: Distribution of non-empty join tasks for respectively Uniform,
Zipf(0.5) and Normal(5,000;2,500) attribute distributions

P(i,j)

E[e]

P(i) = (1- Prn(i))1'

-
1
-I::P(i,j) = -

1
-nn LP(i) = ~ LP(i)

nAnn . . nAnn . nA .
t~J t t

(8.8)

(8.9)

In the following paragraphs we calculate the elimination factor for the situa
tion where the foreign key attribute B.b follows the Uniform, Normal and Zipf
distribution. Because the query is an equi-join operation on a key attribute, the
query result has the same cardinality as the referencing relation B. Therefore
the elimination factor can be used to compare the optimization technique for
different data distributions.

To show the clustering property of the data distributions, we have calculated
equi-join queries for these data distributions on two relations containing 10.000
tuples divided over 100 fragments, and presented the result in scatterplots (Fig
ure 8.2). Each dot represents a non-empty task result. These graphs immediately
provide visual evidence of the potential savings of the task elimination for Zipf
and Normal join attribute value distributions.

Uniform distribution

The uniform distribution is used to find the worst case behavior for the dynamic
query optimization. The reason is that the data contributing to the query result
is not clustered, which implies a low task elimination factor for moderately sized
fragments. The probability distribution function of the uniform distribution is
a constant 1r(x) = c: . From this distribution we can derive the following:

Pm.(i) .E...
CA

P(i) (r 1- ..E...
CA

E[e] (r 1- ..1'....
C.4_

94 CHAPTER 8. TASK ELIMINATION

Normal distribution

The Normal distribution is also used by Schneider and DeWitt [SD89] in their
performance analysis of join algorithms. This attribute distribution is chosen
for our analysis, because it could occur in scientific databases for attributes that
represent measurement data. The normal distribution N(µ, O") is defined by:

1 -(x-µ) 2

7r(x) = ;;cexp ?
O"V 27r 20"~

Because this is a distribution of a continuous function we determine the prob
ability Pm(i) as follows:

Pm(i) J, p(i+l) 1 -(x - µ) 2

--exp
2

dx
pi O"~ 20"

Zipf distribution

In actual databases, the attribute distribution will more likely follow the Zipf
distribution [ST89, KNT89]. The Zipf probability distribution function Z(c) for
attribute values in the range [1, · · ·, cA] is defined as:

He :z=k-c
h:=l

The c parameter is called the decay factor of the distribution. For c = 0
the distribution is uniform, if c = 1 the distribution equals the classical Zipf
distribution. The distribution of personal income follows Z(0.5).

Data distribution comparison

Given the Normal, Zipf and Uniform probability distribution functions and equa
tions (8.8) and (8.9) we have calculated the elimination factor as a function of
the fragment size for different distribution parameter settings (See Figures 8.3
and 8.4). The Uniform distribution is included in Figure 8.3, because it is equal
to a Zipf (0) distribution.

The graphs show that the elimination factor is a monotonically decreasing
function of the fragment size. Furthermore, even the worst case distribution
(Uniform) has a potential to reduce the number of tasks for fragment sizes
smaller than 2.5 % of the relation size. Finally, we find that the elimination factor
is sensitive to the parameters of the distribution. As the attribute distribution
becomes more clustered, the task elimination technique becomes more effective
over a larger range of fragment sizes (Cf. Z(0.5) and Z(l.O)).

8.4. MULTIPLE JOIN EVALUATION 95

0.9
1-

0.9
1-

2 ---- 2 ---·

0.8
3 ---- o.•

1 " 0 \ 0
~ 0. 7 ~ 0. 7 u

\\
] .

0.6 0.6

" 0 0.5 •o 0. 5
~ .

0.4 . 0.4
" " -a

e

~ 0.3 0.3

0.2
.

0.2

0.1 0.1 ______ --- ··-------
0 0

0 2 3 0 2 3
fragment size [%) fragment size [%)

1 Z(0)(= Uniform) 1 N(0.5cA; 0.15cA)
2 Z(0.5) 2 N(0.5cA; 0.25cA)
3 Z(l.O)

Figure 8.3: Elimination factor (Zipf) Figure 8.4: Elimination factor (Normal)

8.4 MULTIPLE JOIN EVALUATION

In a multiple join operation, the occurrence of an empty partial join result will
also result in the removal of tasks. In this section the total task elimination Ek

of an k-way equi-join is determined given the elimination factors ei of the (k - l)
partial joins. First an expression for the elimination factor for the multiple join is
formulated which is then used to calculate the total processing cost for a specific
3-way and 4-way equi-join.

The evaluation order of the join operations has a strong influence on the total
elimination factor. We considered two different evaluation methods: sequential
evaluation, which corresponds to the traditional left-deep and right-deep query
tree, and our own method parallel bottom-up evaluation.

In the following paragraphs formulas are derived for a general k-way equi-join
query. In the analysis each joined relation R is partitioned into ni fragments.
For each method we derive a formula for the number of tasks Nk that are removed
by the task elimination technique. The total task elimination factor of the join
query is obtained through division by the total number of tasks Nta,.sk:

Ek
Nk

(8.10)
Nta..sl,

k

NtnsA: II ni (8.11)
·i=l

Sequential evaluation

In the sequential evaluation method the query is either represented by a left-deep
or a right-deep join tree. The intermediate result at each stage of evaluation can
be empty (Figure 8.5).

Thus the query evaluator sends the query scheduler information that combi
nations of two, three, or more fragments result in an empty query result. For a

96 CHAPTER 8. TASK ELIMINATION

Rl><'JSl><'JT=0

Rl><'JS=0 \ '

\ ~, u

I R s T u
R S

Figure 8.6: Parallel bottom up evalua
Figure 8.5: Sequential evaluation tion

combination of two fragments a large number of tasks can be removed. However,
if the combination is more specific, less tasks can be removed. For instance, for
a 4-way join, the event IR1 1><1 S1 I = 0 results in the removal of n 3n 4 tasks1.
Whereas the event IR1 1><1 S1 1><1 T1I = 0 reduces the number of tasks only with
n 4 tasks. The number of eliminated tasks for a 3-way and 4-way join operation
can be determined using the elimination factors of the partial joins e1 and e2 :

N3 e1n1n2(n3 - 1)

N4 e1n1n2(n3n4 -1) + (1 - e1)e2n1n2n3(n4 -1)

Generally, of a k-way join e1 n1 n2 tasks result in empty R1 1><1 R2 combinations,
because of the first join operation. This results in e1 Nt(l .. ,k task eliminations. The
next operation results in (l-ei)e2Nta .. ,i, eliminations, caused by (l-e1)e2n1n2n3
empty task results. Summing all terms until the (k - 2)-th join operation we
find for Nk, the number of tasks that are not evaluated:

~ (wl-e;)) k

e.;rr nz
1=1

-.~ { (ll(l -,;)) ,; 1r n,}
Parallel bottom-up evaluation

(8.12)

In the parallel bottom-up evaluation method, all possible join combinations are
evaluated in parallel and the results are subsequently combined (Figure 8.6).
The scheduler is informed if the result of a join for any combination of two
fragments is empty. If such an event occurs, the scheduler removes the tasks
containing this fragment combination. The number of eliminated tasks a 3-way
and 4-way join operation is thus given by:

1 Note that at least one task had to be executed to generate this event

8.5. MULTIPLE JOIN PROCESSING COST 97

N3 (e1 + (1 - e1)e2)n1n2n3n4 - max(n1n2, n2n3)

N4 e1n1n2n3n4 + (1- e1)e2n1n2n3n4

+ (1- e1)(l - e2)n1n2n3n4 - max(n1n2, n2n3, n3n4)

If we generalize this for the k-way equi-join we find the following expression
for Nk, the number of eliminated tasks:

~ (n(l -e;)) ,, g n, - max(n,n,, . . ,n,_,n,_,) (8.13)

Because all join combinations are evaluated, more work is done than actually
required. However, the idea is that the additional work invested in a single
subquery evaluation will result in a higher total elimination factor and, thereby,
in a reduction of the total amount of work.

Comparison of the evaluation techniques

Using Equations (8.10) and (8.11) and the expressions for the number of elim
inated tasks (8.12) and (8.13) we have calculated the elimination factor for a
4-way equi-join for the Normal, Uniform, and Zipf distribution for both eval
uation techniques (See Figures 8. 7 and 8.8). These graphs show that for all
distributions the parallel bottom-up evaluation results in a larger elimination
factor than sequential elimination. The reason for this is that in the paral
lel bottom up evaluation all the possible join combinations are tried, so that
empty join results are detected at an early stage, leading to a larger number of
eliminated tasks.

For instance, for a fragment size of 2 % an improvement of 15 % can be
observed for a Zipf(l.O) distribution. However, the gain becomes smaller as the
fragment size increases.

Calculation of the elimination factor for other multi-join queries show that the
range of fragment sizes for which the task elimination is effective does not depend
on the number of joins, but only on the distribution parameters. However, within
this range, the elimination factor increases with the number of joins.

8.5 MULTIPLE JOIN PROCESSING COST

The total elimination factor can now be used to calculate the total processing
cost for a multiple join query. In the cost model below the assumption is made
that the tasks are evaluated by a single processor. Therefore, it gives an upper
bound on the total query cost. When more processors are used by the Query
Evaluator, tasks can be evaluated in parallel, which results in a lower response
time 2 . The following simple cost model can therefore be used to measure the
effectiveness.

2 Adding processors influences the effectiveness of the dynamic query optimization tech
nique, because it could be that a processor is processing a task that would otherwise be
eliminated by a task, which is executed in parallel. However, this effect' is negligible, because
of the small probability on such an event.

98 CHAPTER 8. TASK ELIMINATION

0.9

0.8

o. 7

0.6

0.5

0.4

0.3

0.2

0.1

1-
2 ---·
3 •.
4 ...

0 L--~-~-_cco=-~-_j
0 2 3

fragment size [%]

1 Normal(0.5cA;0.15cA)/sequential
2 Normal(0.5cA;0.15cA)/parallel
3 Normal(0.5cA;0.25cA)/sequential
4 Normal(0.5q;0.25cA)/parallel

Figure 8.7: E4 Normal distribution

0.9

0.8

0. 7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

1
2
3
~

2 3 • 4
fragment size [%)

Zipf(0) / sequential
Zipf(0)/parallel
Zipf(1) / sequential
Zipf(l)/parallel

1--
2 ----
3 ----
4 ..

Figure 8.8: E4 Zipf distribution

The total query processing cost C1rnwr,J for this architecture is determined by
the number of tasks remaining after task elimination (1 - E)Nta.sh and the task
processing cost Ctnsk·

Since all tasks are executed on a single processor, each task execution for a
k-way join requires at most k fragment transports Cco-m.(P) to the processor 3

and a single multi-join execution Cjoin(P). These latter factors depend on the
fragment size p.

C,1·ne·r·y

Ctn.,k
(1 - E)Nta,,,kCta,,,k
kCwm. (p) + Cj o·in (p)

Fragment transport requires a constant cost for network access and OS over
head Cnccess and a cost linear in the size of the fragment CcoJ!"/1 for copying the
data from the network to the processors memory.

For the execution cost of the join operation we only give an upper bound.
Each of the k - l equi-join operations results in at most p tuple combinations.
Assuming a hash join algorithm implementation we find that the join cost is
also linear in the fragment size. In the first phase of the algorithm a hash table
is constructed for one of the join operands, and in the second phase this hash
table is probed for each join attribute value of the second operand.

Ccom,(P)
Ci1,in(P)

pN1,)ltesCcu]!)I + C",cce.,.,

(k - l)pC1,,11.sh

In Table 8.1 the parameter setting for our target architecture is given, consist
ing of Micro Vax workstations, using the Amoeba distributed operating system.

Evaluation of the formulas for these two evaluation methods on a 4-way equi
join operation results in the total query processing cost as shown in Figures 8.9

3 If fragments are properly cached by the processor(s), at most 1 fragment transport is
required.

8.5. MULTIPLE JOIN PROCESSING COST 99

c(J,t_;(;(~.<; ... operating system overhead 1 msec
Cwpy data transfer rate lmsec/lk
Cha .. ,h hash join cost lO0µsec

N1,·yte., tuple size 0.2 k

Table 8.1: The parameter setting for Micro Vax systems running Amoeba

le+07

le+06

100000

10000

1000 ,.-----:~:-:-...... ":.":,:,,_~

100

4-way join -
4-way sequential -

4-way parallel ····

10 L__-~-~-~--~-=='
0 200 400 600 800 1000

Fragment size

Figure 8.9: Cq-nc.,. 11 for a 4-way join
and Zipf(l.0) distribution

le+07

le+06
~ .
8 100000

~ 10000
g.

4-way join -
4-way sequential ---·

4-way parallel -···

10 L_-~-~-~--~=='
0 200 400 600 800 1000

Fragment size

Figure 8.10: C,ru.ery for a 4-way
join and Normal(5,000;l,500) distri
bution

and 8.10. These graphs present the total query processing cost as a function
of the fragment size for the Normal(5,000;l,500) distribution and the Zipf(0.5)
distribution. The elimination factors were obtained using the formulas of Section
8.4, and the cardinality of the relations was set to 10,000.

The combination of task elimination and the cost model illustrate the per
formance gain to be expected from dynamic query processing. The top curve
in these graphs represents the total processing cost without task elimination.
The result of the calculation shows that within the effective range of the task
elimination technique a reduction of the total query cost can be obtained as long
as the fragment size is small enough. Outside the effective range the total query
processing cost decreases as the fragment size increases. Therefore, for this sim
ple cost model if enough memory is available for query evaluation, it is better to
choose a large fragment size outside the effective range of task elimination. How
ever, if parallel query execution is considered, large fragment sizes lead to long
communication delays at the query processors, which result in a larger response
time. Therefore, more research has to be done to study the effect of parallel
execution on the effectiveness of the task elimination optimization technique.

Furthermore, calculations on other multi-join queries show that task elimina
tion becomes more effective as the number of joins increases and the attribute
distribution becomes more clustered.

100 CHAPTER 8. TASK ELIMINATION

8.6 CONCLUSION

In this chapter, we presented the opportunities provided by the semantic proper
ties of the relational operations for dynamic query processing. Furthermore, we
presented a detailed analysis of a dynamic query optimization technique, called
task elimination. A probabilistic model has been used to estimate the potential
gains for different data distributions.

This analysis shows that the task elimination technique can lead to significant
reductions in the amount of query tasks that have to be processed. The effec
tiveness of the task elimination technique depends on the attribute distribution
and the fragment size. For a real-life distribution, like the Zipf distribution the
results are promising. If enough memory is available the fragment size should be
chosen as large as possible. However, when only a limited amount of memory is
available, task elimination and a small fragment size will reduce the total pro
cessing cost. Finally, when using task elimination, it was shown that the parallel
bottom up evaluation method increased the effectiveness of the task elimination
method.

Future research has to generalize the task elimination technique for other
relational operations. Furthermore, the effect of fragment size and fragment
caching on the response time in a parallel Query Evaluator must be considered.

Chapter 9

Task allocation

9.1 INTRODUCTION

Load balancing is a major issue in the design of a distributed computing system.
It deals with the question how a limited number of resources can be used to
process a workload, such that a global cost function is minimized. In a parallel
data base system the resources involved are the processors, the memory, and the
network bandwidth. The load balancing issues address in this case the allocation
of sub-queries to processors, the buffer management policy on each processor and
global data allocation. The goal of the load balancing mechanism is to minimize
the query response time or to maximize the query throughput. In this chapter
we consider the first objective: to minimize the response time.

In a parallel data base system, the response time can be reduced by executing
sub-queries in parallel. Unfortunately, the response time cannot be infinitely
reduced by reducing the task granularity and executing them in parallel, because
part of the computation is inherently sequential. For instance, the data re
partitioning and the scheduling overhead are often sequential. Therefore, the
amount of effective parallelism that leads to a reduced response time is limited.

Furthermore, query execution in a parallel system soon becomes I/O bound
as more processors are used to evaluate the query [Mur89] against data that is
not locally cached. The throughput is limited further by the rate by which the
query result can be delivered to the application.

In the proposed DQP architecture a query is executed by fragmenting the data
first and to calculate the query on all these fragment combinations. As the tasks
refer to the same global set of fragments, large fragment buffers can considerably
reduce the amount of communication required by retaining fragments in local

101

102 CHAPTER 9. TASK ALLOCATION

memory. As the available memory is limited, a buffer manager must decide at
run-time, which fragments to keep and remove.

Equally important for the effective use of the data buffers is the allocation of
tasks to processors. Ideally tasks that have a number of fragments in common,
are executed on the same processor, shortly after one other to maximize the
cache hit ratio. In this chapter we present a pilot study of several task allocation
algorithms and buffer management strategies.

9.2 THE I/0 BOTTLENECK

In Chapter 8 the relation between the fragment size and the total number of
tasks was investigated taking into account the effect of task elimination. Fur
thermore, a simple cost model for a k-way join operation was introduced to get
an impression of the total query execution time. Ir. this section, this cost model
is extended to incorporate the effect of buffer management and task allocation
on the average task execution time.

Before discussing specific task allocation and buffer management strategies we
introduce the cost factors to be considered for task execution. We define the task
evaluation time Ttn.sk as the time spent by a processor to execute a single task.
The task evaluation time can be decomposed into the following cost factors:

(k + m)Tcrnn + Te,cec,

where k is the number of input fragments per task, m the number of result
fragments per task, Tcom. the time to retrieve or transfer a fragment and Texec
the task execution time.

Assuming that a task can only be executed when all data used is locally
available, Tr:om. consists of the time to collect the data from memory at the
remote processor, transmit the data through the network, and the time to store
the data in the local buffer. This cost is generally modeled by a constant delay
T;,,, which models the network access time and the scheduling overhead and a
cost factor linear in the fragment size, which models the cost for copying the
data to and from the data buffer.

In the following Ta., Pc, and S denote respectively the network access time,
the network throughput and the fragment size.

s T,,.+
Pc

Note that in a shared-nothing multiprocessor, unless the processors are inter
connected through a point-to-point network, data transfers share a single com
munication medium. Consequently, the data transfers are serialized and limit
the amount of effective parallelism. Ultimately, in such a system the network
will form the bottleneck of the data base system and determine the minimum
response time.

In the expression for the communication time T,i is determined by collisions
on the network and process scheduling at both sender and receiver. Therefore

9.3. BUFFER MANAGEMENT 103

the network access time depends on the network traffic. If, for the sake of
argument, we disregard this effect then Tcom. ~ ,~ •. Assuming that the network
is the bottleneck then the upper bound on the maximum task throughput Ptask

is given by:

Ptask
(k + m)S

Pc

For a given partitioning the fragment size and the number of tasks to be
executed is fixed. The query response time is then determined by the task
throughput. Because the factors m and S are fixed, only two approaches can be
considered to increase the task throughput of the system:

• Increase the network throughput Pc; for instance by using a shared memory
architecture or customized communication hardware and a point-to-point
network.

• Reduce the number of fragment fetches per task k, through data replica
tion or buffering and using a large local fragment buffer. This way the
transmission cost is amortized over a large number of task executions.

The first approach represents a hardware approach, which is both costly and
considered to have a limited lifespan. As illustrated by the database machines
developed in the FGCS project. After a few years, the performance of parallel
data base systems built out of off the shelf components could compete with
these dedicated systems. In this chapter, we address the second alternative. By
locally storing frequently used fragments, the number of fragment requests can
be reduced significantly, so that the amount of parallelism for a specific query
can be improved and the response time reduced.

Generally speaking there are two aspects, which determine the effectiveness
of a buffer management scheme:

• What is put into the buffer?

• What is removed from the buffer, when the buffer is full.

The former issue is determined in the Goblin architecture by the task allo
cation algorithm of the Query Scheduler. If the scheduler assigns a task to a
query processor, it needs to retrieve the fragments referred to by the task. The
latter issue is called the buffer replacement policy. In the following sections we
first consider buffer replacement policies and then compare two task allocation
algorithms.

9.3 BUFFER MANAGEMENT

The buffer manager controls a pre-allocated amount of memory on each pro
cessor. Furthermore, as Goblin is a main memory architecture a distinction is
made between fragment replicas and fragment copies. To ensure persistency the
fragment replicas cannot be deallocated, without creating a replica on another

104 CHAPTER 9. TASK ALLOCATION

site. Fragment copies are created during query processing and represent either
copies of persistent fragments or intermediate results.

Fragments can either have a maximum size, contain a maximum number of
tuples, or be variable sized. The first option facilitates memory management
both for query processing and fragment I/O. The second option is useful for
analysis of the buffer management scheme. The latter option simplifies the
implementation and design of the relational operations. In this section we assume
that fragme:p.ts contain a maximum number of tuples and occupy a maximum
amount of memory.

The equivalent of a buffer manager in general purpose operating systems is the
page manager. The page manager decides on the basis of the reference behavior
of the processors workload, which pages can be removed from memory when a
running program references a page that is not in memory. From analysis of the
reference behavior of programs it turns out that in general programs display a
certain locality of page references. This is considered to be a consequence of
the imperative programming model. The set of pages at a certain moment in
the execution of the program is called the working set and its size differs from
program to program. An optimal paging scheme tries to determine the size of
the working set and keep the working set in memory to minimize the number of
page misses during the program's execution.

In our case the situation is a little different. The scheduler controls the ref
erence pattern of the workload and thereby the amount of locality. An optimal
buffering scheme should therefore consider, which fragments (cf. pages) can be
replaced from memory and the task allocation algorithm.

In the following section we first determine the best possible buffer management
and task allocation technique, and then compare the results with other buffer
replacement and task allocation algorithms.

9.3.1 Optimal buffer management

The complete query is expressed as the union of all task results, where each
task executes the query for a specific fragment combination. To simplify the
analysis we assume that the complete query requires to execute the task for all
possible fragment combinations. Each task on k operands can be identified by
the combination of k fragment identifiers (!1 , ... , f.:) (and its query graph).

Example 9.1 Consider a query which uses relations R, S, and T and each rela
tion consists of 2 fragments. Then the query execution involves evaluation of
the tasks identified by (r1, s1, ti), (r1, s1, t2), (r1, s2, ti), (r1, s2, t2), (r2, s1, ti),
(r2, s1, t2),(r2, s2, t1), and (r2, s2, t2).

The basic problem addressed in this section can now be stated as follows.
Given a collection of tasks T = {(!1 , · · ·, h)lf; C R;} and a fragment buffer.
Find a task allocation algorithm and a buffer replacement policy that minimizes
the number of buffer misses.

The optimal buffer management scheme proposed in this section minimizes
the average number of misses required for executing a query consisting of a large
number of tasks. The objective of the scheme is to maximize the number of
tasks that can be executed for a given buffer size and query.

9.3. BUFFER MANAGEMENT 105

Theoretically the minimum number of misses can be computed, given the
buffer size, the number of relations, and the number of fragment partitions. An
important notion in the analysis is the term buffer volume, which is defined. as
follows:

Definition 9.1 The buffer volume V is the number of tasks that can be evaluated
with the fragments stored in the buffer.

By definition the buffer volume depends on the number of relations referenced
by the query, and the distribution of the buffer slots over these relations.

Example 9.2 If the buffer contains for a 3-way join query 4 fragments of the first
relation, 3 fragments of the second relation and 1 fragment of the last relation, in
total 4 x 3 x 1 fragment combinations can be formed, resulting in a total number
of 12 task evaluations and by definition a buffer volume of V = 12.

If in our example the 8 buffer slots are divided differently over the relations,
for instance as 3 x 3 x 2, for the same buffer size the buffer volume would be
18. In other words in the first situation 12 tasks can be executed per 8 fragment
I/Os, while in the second case 18 tasks, an improvement of 50%.

The basic idea of the optimal buffer management scheme is to divide the
available buffer slots equally over the operand relations so that the buffer volume
is maximized. The effect of this scheme is summarized in the following theorem:

Theorem 9.1 Assuming that:

• The set of tasks consists of all fragment combinations.

• The task allocation algorithm first allocates the tasks that can be formed
with the current buffer content.

• The buffer replacement algorithm maintains the maximum cache volume
for the current buffer size.

Consider a task with k- operand relations and relation R; is partitioned into
n; relations. Then the number of buffer misses M per task for the optimal buffer
management scheme and a buffer size C is given by:

M

where:

V
C Cmod~, C k-cmod~,

1kl -LkJ
k

ITn;
i=l

106

10

0.1

0.01

0.001

0.0001

le-05
0 20

CHAPTER 9. TASK ALLOCATION

. -\,.-, ... -
\ -'

-- - ' - - -

40 60 80 100
C

Figure 9.1: The average number of buffer misses per task for optimal buffer
management.

Proof 9.1 The first assumption ensures that each fragment combination that can
be formed with the fragments in the buffer is an eligible task. The second as
sumption implies that each task belongs to a distinct buffer volume. Therefore
the complete task set can be covered by non-overlapping buffer volumes.

By maximizing the buffer volume the average number of misses per task can
be minimized. For each distinct buffer volume C fragment fetch operations are
required. The maximum buffer volume can be obtained by dividing the buffer
slots over the relations as evenly as possible: k - C mod k relations are assigned
l f: J slots and the remaining C mod k relations are assigned I fl slots. For such

b fJ l . . l V (lCJ)"s-Cmodk ('Cl)Cmodk k b a u er s ot assignment in tota = ,; . 1 ,; tas s can e
executed without fetching a new fragment. As a result the average and minimal
number of misses per task is given by:

M
C

l
Q_j k-Cmodk. ,Q.1 Cmodk
k I i:

Figure 9.1 displays the average number of misses per task for queries with 2
to 5 operands. Note that there are two extreme cases, that are not properly
covered by the previous cost formula:

• The buffer can hold only the fragments for a single task.

• The buffer can hold all the fragments for the complete task set

In the first case, the buffer is initially filled with the appropriate number of
fragments. For each following task it is sufficient to replace a single fragment.
Thus the average number of buffer misses per task is given by:

9.4. BUFFER REPLACEMENT TECHNIQUES

M
k + Nta,.,k -1

Nta,.,h,

107

In the second case, each fragment needs to be loaded in the buffer at most
once. Thus the average number of buffer misses is given by:

M

To mimic the optimal buffer management scheme presented in this section a
buffer replacement strategy and task allocation algorithm have been designed,
called the Maximum Cache Volume (MCV) and Maximum Cache Hit (MCH)
allocation algorithm. In the following sections first the buffer replacement and
task allocation algorithms are presented and finally the results from a simulation
study are presented.

9.4 BUFFER REPLACEMENT TECHNIQUES

Before a task can be completed, it is required that all its fragments are locally
available. Each time a fragment is not available, it is requested from the buffer
manager on a remote site and stored in a slot allocated in the local buffer. If all
the slots in the buffer are already occupied, the buffer replacement must decide
which fragment to be removed. To avoid loss of valuable data some fragments are
fixed, either permanently for persistent fragments, or temporarily for fragments
that are required for the current task evaluation.

All the buffer replacement algorithms considered have in common that they
do not remove fragments fixed in memory. Instead, they select a victim among
the set of non-fixed fragments.

9.4.1 Random replacement

The random replacement strategy randomly selects a fragment from the set of
non-fixed fragments. A disadvantage of this approach is that fragments can be
removed that are required for the next task evaluation. Furthermore, the random
behavior makes it impossible for the scheduler to predict which fragments are
stored in the buffer at a certain moment. Consequently, the task allocation
algorithm cannot take the buffer content into account to prevent fragment I/0.

9.4.2 LRU replacement

The LRU buffer replacement policy is well known from OS page replacement
algorithms. The idea is based on the locality principle of application programs.
A program references only a limited set of pages during a time interval. This
set is called the working set. The pages from the working set will only change
gradually during execution. If the buffer is large enough to contain the working
set, the LRU algorithm performs well. However, if the working set is slightly
larger than the buffer, there is a situation where the algorithm performs badly,

108 CHAPTER 9. TASK ALLOCATION

namely when the program sequentially references all the pages in the working
set, the LRU algorithm removes the page it needs in the near future.

In the database application the reference pattern is determined by the task
allocation algorithm. For the LRU algorithm to perform well it is necessary
that the locality principle holds for the reference pattern. It is therefore to be
expected that the LRU algorithm performs best with a task allocation algorithm
that displays locality.

9.4.3 Maximum Cache Volume replacement

The MCV replacement algorithm is derived from the optimal buffering scheme.
It tries to keep an equal number of fragments of the relations in the buffer. The
idea is that by keeping an equal number of fragments for each relation in the
buffer, the amount of tasks that can be formed is maximized. Thus increasing
the probability of hits for the next task execution. For instance, given a buffer
size of 12 and a query on three relations, a maximum of 4x4x4 = 64 tasks can be
evaluated, using the MCV policy, while the minimum amount of tasks is obtained
by allocating the buffer slots in an unbalanced fashion, like 10 x 1 x 1 = 10 tasks.

This method is designed to be combined with the the maximum cache hit task
allocation algorithm, which keeps track of the buffer contents.

9.5 TASK ALLOCATION

When a .task arrives at a Query Processor the task is queued for execution.
First the task operands are retrieved from the local buffer manager. When all
operands are available the task waits in the ready queue for execution. Therefore,
a certain amount of time the task has to wait, either for requested fragments to
arrive, or until the query processor is free to process the task1 .

A load balancing algorithm tries to minimize the average waiting time for a
task. In general load balancing algorithms use task allocation and task migra
tion to obtain a good load distribution. Furthermore, as the waiting time also
depends on the amount of communication required, the second objective of the
load balancing algorithm is a reduction of communication overhead.

As the tasks are relatively small we do not consider task migration algorithms,
but consider only task allocation algorithms. The following three task allocation
algorithms are considered:

• Random task allocation.

• Sequential task allocation.

• Maximum Cache Hit allocation.

The following sections present these algorithms in more detail. To reduce
the waiting time they share that they assign tasks to query processors with the
lowest load first. The feedback mechanism continuously reports the load of a
processors to the scheduler.

1The task execution algorithm described in Chapter 10 overlaps task execution with frag
ment I/0.

9.5. TASK ALLOCATION 109

9.5.1 Random allocation

In random task allocation, the query scheduler selects a task randomly from the
task table and assigns it to the processor with the minimum load. The advantage
of this algorithm is that the query scheduler only requires information on the
current load of the query processor.

Because the algorithm does not take into account the buffer contents of the
target query processor, the average number of misses per task is relatively high
for all the buffer replacement strategies.

9.5.2 Sequential allocation

In sequential task allocation the tasks are allocated to a processor in an incre
mental fashion. This means that two successively allocated tasks differ in only
a single fragment identifier. This allocation mechanism results in a certain lo
cality of reference at the query processor and is therefore expected to produce
less misses than random task allocation.

It requires the query scheduler to order the tasks before they are assigned.
If the complete product space of fragment identifiers must be traversed this is
a relatively simple problem that can be solved by numbering the fragments of
each relation. If the first operand specifies the least significant digit and the last
operand the highest significant digit, then each task specification is uniquely
identified by a number.

Example 9.3 For a query on relations R, S and T, which are partitioned in re
spectively 20, 30 and 10 fragments, the task (r14, s4, tg) represents the number
(14 * 30 + 4) * 10 + 8 = 4248, the next task will be either 4249 or 4247, which
corresponds to tasks (r14, s4, tg) and (r14, s4, t7), respectively.

9.5.3 Maximum Cache Hit allocation

Under the Maximum Cache Hit task allocation algorithm, the scheduler keeps
track of buffer contents of the local Buffer Managers. If a QP is available for
handling a new task, the least expensive one (w.r.t. I/0) is selected from the
task table.

Thus the query scheduler will first assign tasks that can be formed with the
current buffer content. If these tasks are not available, it assigns a task that
requires only a single fragment retrieval.

Example 9.4 Consider the same query as in the previous example. In the MOH
allocation scheme the QS knows the buffer contents for each QP. Let the buffer
of a QP contain the following fragments: {r1, r2, s1 , s2, t1}. With this buffer
contents the following tasks can be formed:

Zero fragment requests
(r1, s1, t1)
(r1,s2,t1)
(r2,s1,t1)
(r2, s2, t1)

110 CHAPTER 9. TASK ALLOCATION

When all these task have been executed, the scheduler selects a task that re
quires a single fragment transport:

Single fragment request

(r1, s1, i:c) x-=!= l
(r,,,s1,t1) x-=!=lAx-=!=2
(r1, S:1:, t1) X -=!= l /\ X -=!= 2

By this task assignment the buffer content changes so that new tasks can be
formed that require zero fragment requests.

9.6 PERFORMANCE COMPARISON

We have designed a simulation experiment to compare the previously discussed
task allocation and buffer replacement techniques. In this experiment the aver
age number of buffer misses per task are measured for each buffer replacement
- task allocation method combination (r, t), where r E {MCV, LRU, RN D} and
t E {MCH,SEQ,RND}.

The measured misses per task indicates the average number of fragment fetches
per task. In the experiment we assume that the buffer is initially empty. Fur
thermore we assume, similar to the optimal buffer management algorithm, that
the complete task set is defined as the Cartesian product of all fragment combi
nations.

The experiment is run on tasks consisting of k operand relations, where each
relation is partitioned into n fragments. The simulation executes the resulting nk

tasks by selecting a task from the task set using the task allocation method and
simulating the task execution on the buffer. For each simulated task execution
the buffer replacement algorithm determines the number of misses, and for each
fragment to be retrieved the fragments to be removed from the buffer. Finally,
the ratio of the total number of misses and tasks is returned.

In runtime overhead these methods can be ordered increasingly for the task
allocation algorithms as: RN D '.S SEQ '.S MC H, and for the buffer replacement
techniques as RND '.S LRU '.S MCV. Thus the combination (RND, RND)
results in the lowest run-time overhead and the combination (MCH, MCV) in
the highest. Obviously, this overhead must be set against the performance gain
resulting from a more efficient use of the buffer.

9. 6.1 Cache miss per task ratio

In the experiments we have examined all the possible combinations of buffer
replacement and task allocation algorithms. For each combination we varied the
number of operands for each task k, the number of fragments for each operand
n and the buffer size c represented by the maximum number of fragments it can
contain.

To visualize the results, the miss ratio is expressed as a function of the relative
buffer size Pc· The latter is a derived factor which expresses the buffer size
for a measurement as a percentage of the total number of fragments required.
Thus: Pc = c/nk. For a task on k operands consisting of n fragments the total
number of fragments is nk. If the relative buffer size is 100% each fragment
is retrieved once, independent of the number of tasks. Thus the miss ratio at

9.6. PERFORMANCE COMPARISON 111

a 100% relative buffer size will be the same for each task allocation - buffer
replacement combination.

The results from the experiment on tasks with three operand relations, each
partitioned into 25 fragments are presented in Figures 9.2 - 9.4.

In Figure 9.2 the allocation algorithms are compared in combination with the
MCV replacement strategy. As expected result the MCH and SEQ allocation
algorithms in less buffer misses than the RND algorithm. Furthermore, we see
that under MCV replacement the SEQ allocation is a linear function of the
relative buffer size, because the probability that a fragment is stored in the
buffer increases linear with the relative buffer size. Finally, we observe that the
MCH algorithm exploits large buffer sizes best.

Figure 9.3 confirms the last observation. However, it does not confirm our
expectation that the (MCH,MCV) is the best possible combination.It turns out
that the (MCH,LRU) combination performs better, probably because LRU re
placement removes the fragment that is least recently used in a task execution.
The knee shaped curve for the combination of the sequential allocation algorithm
is caused by the enumeration property of the algorithm. Each time the buffer
size is a multiple of the number of fragments per relation, the LRU replacement
algorithm ensures that the most recently used fragments are kept in memory.
Because the task allocation enumerates the tasks using the fragment identifiers
for the operands as base, the least significant digits (or the fragment identifiers
for the first operands) are used most frequently and lead therefore to a buffer
holding all the fragments associated with the first few operands.

With a random replacement strategy (Figure 9.4) all the allocation algorithms
perform equally bad. This observation underlines the importance of a proper
buffer replacement strategy.

Figure 9.5 shows that the influence of the replacement strategy for the MCH
allocation algorithm on the miss ratio is marginal. Both LRU and MCV replace
ment strategies show a good performance.

9. 6.2 Task allocation and buffer replacement overhead

Because the QS is responsible for the task allocation is the task allocation over
head the most important factor for the system performance. Therefore, we have
measured its CPU cost. For the experiment the average number of cycles spent
in each of the task allocation and buffer replacement algorithms was determined.
For this purpose code was added to do a basic block count. These basic block
counts were combined by a profiler to determine the total number of cycles spent
in each of these algorithms. The results of these experiments are summarized in
Table 9.1. This is a small but representative sample of all experiments.

The measurements show that the overhead of the MCH algorithm is directly
related to the buffer volume. In the current implementation of this algorithm
the tasks that can be formed for a certain buffer content are constructed at each
iteration of the algorithm. The overhead can be reduced by generating these
tasks incrementally. Nevertheless, the cost will be linearly related to the buffer
volume V = .£k_

'fl,

The overhead for the sequential and random allocation algorithms decreases
as the buffer size increases. Furthermore, it is an order of magnitude less than

112 CHAPTER 9. TASK ALLOCATION

Figure 9.2: MCV buffer replacement: k=3, n=25

HCH-
RND ----·
SEQ··

l.S

·,

0 L--~----=========~=--~--__::,1
0

Figure 9.3: LRU buffer replacement: k=3, n=25

c/n.k

Figure 9.4: Random buffer replacement: k=3, n=25

9.6. PERFORMANCE COMPARISON

2. S

1.5

0.5

20 40
c/n.k

60 80

LRU
MCV ----·
RND ··

Figure 9.5: MCH task allocation: k=3, n=25

LRU buffer replacement, k=3, n=l0
algorithm buffer size cycles
MCH 10 2418
MCH 20 8135
MCH 30 21325
SEQ 10 438
SEQ 20 96
SEQ 30 27
RND 10 774
RND 20 695
RND 30 27

Table 9.1: The task allocation overhead

113

100

114 CHAPTER 9. TASK ALLOCATION

the overhead for MCH.
Consequently, if we consider both the effectiveness of the task allocation al

gorithms and its overhead the results are obtained by using the SEQ allocation
algorithm in combination with the LRU or MCV buffer replacement algorithm.
The choice between LRU and MCV depends on the buffer size in relation to the
partitioning degree.

9. 7 CONCLUSION

In this chapter a few important issues related to load balancing were discussed.
In particular the importance of data distribution and data declustering were
left out. Instead the discussion concentrated on buffer replacement and task
allocation algorithm.

We argued that an important difference with bnffer management for general
purpose operating systems is that in data base systems it is possible to introduce
data locality in the query evaluation process. The optimal buffer management
scheme presented exploits this feature.

Finally, for a selection of buffer replacement and task allocation algorithms the
effect on the average buffer misses per task was measured through simulation.
The elaborate MCH - and simple SEQ task allocation algorithm in combination
with the LRU buffer replacement algorithm turned out to result in the lowest
average miss average.

Due to the overhead of the MCH algorithm and its influence on the total
system performance, the SEQ task allocation algorithm is by far the preferred
task allocation algorithm.

Chapter 10

Task evaluation

10.1 INTRODUCTION

In this chapter we present the dynamic query optimization algorithm used by
the Query Processor to evaluate tasks. The prime characteristic of the task
evaluation technique is that each task is executed on a single processor using a
main-memory buffer to store intermediate results and relation fragments. The
task allocation algorithm ensures that tasks consecutively allocated to a proces
sor differ in only a few fragments enabling the effective use of the main-memory
buffer. Therefore the main cost factor to be taken into account for task evalua
tion is CPU cost.

The graph representation of the query (See Chapter 6) forms the basis of
the algorithm. The task evaluation process proceeds by iteratively reducing.
the query graph until a single node remains. At each iteration an edge, called
the target edge, is selected and removed from the graph. At the same time
the relations associated with the edges are changed accordingly, such that the
constraints represented by the target edge propagate to the neighboring edges
and their associated relations in the remaining graph.

In the following section we first describe an old dynamic query evaluation
technique based on graph reduction. The Goblin algorithm can be seen as a
refinement of this algorithm. We present it in global terms to put the Goblin
dynamic query evaluation algorithm in a context. The bulk of this chapter
discusses the Goblin algorithm in detail.

115

116 CHAPTER 10. TASK EVALUATION

10.2 THE WONG-YOUSSEFI ALGORITHM

The Wong-Youssefi algorithm used to process QUEL queries in INGRESS is
based on graph reduction. The following gives a flavor of the algorithm. The
details can be found in [WY76]. The algorithm solves project-select-join queries
of the following form:

The query is transformed into a hyper-graph representation of nodes and
hyper-edges, i.e. sets of nodes. The nodes in the graph represent the relation
attributes involved. The edges are used for two purposes: relation edges group
the attributes of a single relation and condition edges to group the attributes
of the selection conditions Fi. The relation associated with a relation edge E is
denoted by R(E) and the selection condition associated with a condition edge is
denoted by C(E).

A well-known optimization heuristic, - used in this algorithm - , is to perform
projections as soon as possible in the evaluation process. The notion of distin
guished nodes is used to implement this heuristic. Informally at each point in
the execution this set contains the attributes minimally required to construct
the query result. The initial set contains the nodes of the projection attributes
o:. During query evaluation join-attributes are added to the set of distinguished
nodes when required for sub-query evaluation.

To describe the QUEL query optimization algorithm we define the procedure
EVAL. This procedure takes a hyper-graph g and a set of distinguished nodes
V and recursively compiles a query program to calculate the relation defined by
(Q, V). By definition the program delivers the result relation in RESULT(Q). The
procedure EMIT constructs the query program by adding statements to it.

Depending on the situation the following three actions are performed to pro
duce a query program (See also [Ull89l[pages 676-692]):

1. If the graph g consists of k disjoint hyper graphs 1-{1, ... , 1-{h the procedure
EVAL is called recursively on each of the hyper-graphs 1i.;, where the set of
distinguished nodes is restricted to the nodes of each sub-graph NODES(1ii)-

Because the disjoint hyper-graphs represent independent relations, the
query result is defined by the Cartesian product of the result obtained
from the sub-graphs 1i1, ... , 1-{k·

FOR i FROM 1 TO k DO
£i := V n NODES(1ii)
EVAL(H.;, £i)

DONE
EMIT RESULT(Q) := RESULT(1i1) X · · · X RESULT(1-{k)

2. If removal of a relation hyper-edge E decomposes the hyper graph into k 2:
1 disjoint sub-graphs, EVAL is called recursively on the sub-graphs and the

10.2. THE WONG-YOUSSEFI ALGORITHM 117

query result is found by joining the result of each call and projecting onto
the distinguished attributes. Each relation hyper edge F, which intersects
E, is semi-joined with R(E) as an optimization step.

FOREACH F IN Q DO

EMIT R(F) I>< R(E)
DONE

FOR i FROM 1 TO k DO

[; := (E U V) n NODES(7-i.;)

EVAL (7-i;, [i)

DONE

EMIT RESULT(G) 1rv (R(E) l><l RESULT (7-i 1) l><l • • • l><l RESULT (7-iiJ)

3. If a condition hyper-edge E is removed, the query result is found by calling
EVAL on the resulting sub-hypergraph and evaluating the selection condi
tion C(E) on the result. Let 1i denote this subgraph, then the query is
evaluated as follows:

[:= (EUV) n NODES(1i)

EVAL(1i,[)

EMIT RESULT (Q) : = 1rv<Yc(E) (RESULT (7-i))

At each graph reduction step, if the graph does not consist of the union disjoint
graphs, a target edge is selected and one of the above actions is performed when
appropriate. The authors consider the selection of the target edge a crucial issue
in the optimization strategy. Their solution is based on the following heuristics
rules that are applied in decreasing order of priority:

• Relation edges that are small (in cardinality) and intersect only one or
more relation hyper-edges receive the highest priority for removal. These
relations are semi-joined with their intersecting relations and potentially
reduce their size.

• Relation edges that represent cut edges of the graph are preferred. This
heuristic favors programs that use efficient decomposition joins [Ull89] [page
676] over programs that use sequences of two-way joins.

• Remaining relation edges that intersect only relation edges.

• Condition edges receive the lowest priority, because their removal can result
in a set of disjoint graphs, leading to the calculation of a Cartesian product
of the result of each sub-graph.

The use of heuristics is an important weakness of this algorithm. The assump
tions on which these rules are based do not always hold and can therefore result

118 CHAPTER 10. TASK EVALUATION

in a sub-optimal execution. The Goblin task execution algorithm is based on
the graph reduction paradigm found in the Wong-Youssefi algorithm, but it is
refined to take the actual cost of the operations and the Goblin architectural
features into account.

In the following section we first point out the major differences between the
two algorithms. Second, we present the Goblin task execution algorithm and
illustrate the algorithm using the Mail example. Finally, we discuss the criteria
that control the evaluation order.

10.3 GOBLIN TASK EVALUATION ISSUES

This section discusses the main differences between the Wong-Youssefi algorithm
and the Goblin task evaluation algorithm. They are related to the optimization
strategy, the data model, and the reuse of intermediate results.

10. 3.1 Cost based versus heuristic

The QUEL query optimization algorithm is driven by simple heuristics. This
means that 'the the join order in expressions like R(E) ~ RESULT(H1) · · · ~
RESULT(Hk) is selected randomly. This leads to possibly sub-optimal query
evaluation plan.

In contrast, the Goblin task evaluation algorithm is based on up-to-date cost
information. For each iteration step of the algorithm the best possible choice is
made on the basis of cost estimates and data availability. The latter is a result
from skewed data arrival in a distributed query processing architecture.

Furthermore, to overlap fragment I/O with query processing, a task is taken
into execution even though not all the fragments are already available.

10.3.2 Query result representation

The Wong-Youssefi algorithm is designed to execute queries on n-ary relations
and produce the query result as an n-ary relation. In Goblin the query result is
represented by a set of binary relations, - pivot relations -, which are related by
a single pivot attribute. In other words, the decomposed storage model is also
used to represent the query result.

This choice eliminates projection cost from the task evaluation. If an ap
plication accesses only a sub-set of the projection attributes, it merely has to
retrieve the associated pivot relations. Using these relations it can then easily·
reconstruct the data into the required format. This approach largely off-loads
the reconstruction of a query result to the application site. It is based on the
assumption that result reconstruction is cheap in main-memory.

Furthermore, the relational operations use and produce binary relations only.
This allows for a more efficient implementation of these restricted operations
than can be obtained for more general operations handling n-ary relations.

10.3.3 Reuse of intermediate results

Finally, the QUEL algorithm is designed to execute a single query, while in
Goblin a large number of similar queries are executed concurrently. Therefore,

10.4. NOTATION AND TERMINOLOGY 119

the former does not take the overlap that exists between query tasks into account.
Yet, most tasks have some fragment combination in common, and, therefore, can
use the same intermediate results.

The Goblin task evaluation maintains intermediate results in a buffer for reuse.
During task evaluation the buffer content is first checked to see if the result of
a reduction step is already available. For instance, the buffer is searched for the
task fragments in the initialization phase.

To summarize, the Goblin task evaluation algorithm is a cost-driven dynamic
query optimization scheme based on graph reduction which allows the reuse of
intermediate results. The algorithm consists of an initialization phase, a graph
reduction phase, and a pivot phase. In the following sections an overview is
presented of the evaluation scheme and the different phases are discussed in
detail.

10.4 NOTATION AND TERMINOLOGY

Similar to the task generation process (Chapter 7), task execution is driven
by a graph representation of the query. For task execution the query graph
is extended with a cost function, which determines for each edge the cost for
removing it from the graph. The query graph is thus represented by the five
tuple G = (N, E, A, card, cost), with N the set of nodes to represent attributes
and constants, E a set of (undirected) edges E, and A the set of projection
attributes, or attribute nodes. The other nodes are internal nodes or constant
nodes if they refer to constants. The functions card : E _, IN and cost : E _, IN
associate a cardinality and reduction cost with the edges. Furthermore, each
edge is either a relation edge or a condition edge. The relation and condition
associated with an edge (x, y) is denoted R(x, y) and C(x, y), respectively. The
number of edges connected to a node, i.e. its degree, is denoted as d(x). To
simplify the following expose we assume that the query graph consists of a single
connected component.

A task is specified by its query graph and edge assignment. The edge assign
ment associates edges with fragments of the corresponding relations. If :F de
notes the set of fragments, the task is completely defined by the pair T = (G, a),
where a : E _, :F associates a fragment with each edge. Note that each sub
graph of G with its associated edge assignment specifies a sub-query.

The task result is represented by binary relations, called pivot relations, one
for each attribute in A. These pivot relations identify the possible values for the ·
projection attributes and relate them through a pivot attribute1 . Thus related
objects (i.e. satisfy the constraints specified by the query graph) have the same
pivot attribute.

If a node is associated with a pivot relation it is a pivot node, otherwise it is
a single node. Two pivot nodes are related if their pivot relations use the same
pivot attribute. The set of related pivot nodes is called a pivot graph.

Example 10.1 We use the Mail query graph to illustrate these concepts (See Fig
ure 10.1). The graph contains two pivot graphs. In the pivot graph PG q con-

1 In the object oriented terminology it is called an object identifier

120 CHAPTER 10. TASK EVALUATION

PGq
~········-·---. _____ _

· city ··-.address

\

\

pivot

y
•• I

== "Paris"

Paris

Pans

London

Brussel

pivot

qi mJdrcssl

q2 address2

43 address)

q4 addrcss4

kids
C

receiver sender
L

~PGr
·-----!---··

I

pivot

"

L

lcncrl

lcncr2

lcucr3

Figure 10.1: Pivot relations and pivot graphs

taining the pivot nodes x and y the pivot relations are related through the pivot
attribute q, and in PG,. by attribute r.

We can now describe the Goblin evaluation algorithm in detail, starting with
graph initialization followed by the graph reduction algorithm.

10.5 GRAPH INITIALIZATION

The graph initialization encompasses binding of the graph with the actual task
parameters and the initialization of the cost factors for the graph edges.

In Goblin the binary relation fragments are distributed over the query pro
cessor pool. During the initialization phase the query processor initializes the
cardinality and cost function for the specific task by identifying the fragments
(and intermediate results) locally available.

The remaining fragments are retrieved from remote query processors. The
corresponding operators are inhibited until their operands arrive to enable task
execution to overlap with fragment I/O.

The relation edges are labeled by the cardinality_ of the corresponding frag
ments. Furthermore, the CPU cost to remove each edge from the graph is
estimated. This cost estimate directly reflects the reduction actions involved.
Its discussion is therefore delayed to Section 10.8.

The binding algorithm discussed in Chapter 7 ensures that each projection
attribute node is connected to at least one relation edge. This way the query
graph contains all information necessary to solve the query.

10.6 GRAPH REDUCTION

The graph reduction algorithm selects and removes a target edge from the query
graph at each iteration. In the process it generates pivot relations for the nodes

10.6. GRAPH REDUCTION 121

connected to the target edge, the target nodes. The generated pivot nodes are
related and belong therefore to the same pivot graph.

Intuitively, the pivot relations represent the solution to the sub-query iden
tified by the pivot graph. The constraint represented by the target edge is
materialized in the pivot relations. When two pivot graphs are combined, the
constraint implied by the target edge connecting them is propagated to the pivot
relations contained in the sub-graphs. The pivot relations are frequently renum
bered to ensure that after merging two pivot graphs they have the same unique
pivot attribute. This is done using the mark operation µ which extends its
operand relation with a unique new pivot attribute.

The target node type, target edge type and the presence of pivot relations de
termine the operations to be performed when the target edge is removed.

The target node can either be an attribute node, an internal node, or a con
stant. Their pivot relations form the task result. The query graph is completely
reduced when it contains only the attribute nodes. The internal nodes are part
of the query graph but do not occur in the reduced query graph. The pivot
relations created for these nodes are therefore dropped once their constraint is
propagated to the pivot relations of all their neighbors. Constant nodes specify
selection conditions. Once the condition is evaluated they are removed.

The target edge type specifies a constraint i.e. a condition- or a relation edge.
Removal of a condition edge implies either a theta-join operation, if the edge
connects two attribute nodes, or a selection, if the edge connects an attribute
node to a constant node. Removal of a relation edge results in the evaluation of
an equi-join operation.

In the following subsections we use the target edge type to classify the different
actions performed by the algorithm. First we consider condition edges connected
to a constant. Second, condition edges between attribute or internal nodes are
considered. They lead to theta-join operations. Finally, we consider relation
edges.

10. 6.1 Selection

Consider the target edge between an attribute node and a constant node denoted
by x and c, respectively. The condition for the target edge (x, c) is represented
by C(x, c).

The target edge puts a constraint on the domain of x. If x is a pivot node,
i.e. a partial result, this domain is always made explicit in a pivot relation.
If x is still a single node, the domain is determined by taking the intersection
over the domains of the incident relation edges. Fortunately, it is not necessary
to calculate this intersection. It suffices to select one relation edge, apply the
selection condition, and use the result to construct the pivot relation for x. In
the following we first consider the case that x is a single node, then we present
the actions involved if x is a pivot node.

• If x is a single node, then there is at least one incident relation edge. This
is guaranteed by the binding phase in the task generation algorithm. Let
R(w, x) represent this relation, then we can determine the pivot relation
P(x) as follows:

122 CHAPTER 10. TASK EVALUATION

P(x)

The graph rewrite is shown below. The constant node and target edge are
removed from the query graph. The created pivot node is shaded and forms
a pivot graph containing one node. Furthermore, the attribute values in
the pivot relation P(x) is a sub-set of the attribute values stored in the
relation R(w, x) that satisfy the selection condition.

C(x.c)

• If x is a pivot node it belongs to a pivot-graph. The selection condition can
immediately be applied to the pivot relation P(x), which can then be used
to restrict the relations in the pivot graph. To achieve this the relations
are semi-joined on their pivot attribute with P(x). If x1, ... , Xk are the
other nodes in the pivot-graph then the following actions are performed:

P(x)

P(x1)

P(x1.:)

o-c(v,)P(x)

P(x1) l>< P(x)

The constant node and target node are removed from the query graph.
The new pivot relation P(x) is a sub-set of the original pivot relation.
This is illustrated in the following figure:

C(x,c)

>

10.6. GRAPH REDUCTION 123

10.6.2 Theta-join

Consider that the target edge connects two attribute- or internal nodes by a
condition edge denoted by x, y and C(x, y), respectively. The condition requires
a theta-join over the attribute domains.

Each node can again be a single node or a pivot node. For a single node the
attribute domain is defined by an incident relation edge. The domain of the
pivot node is defined by its associated pivot relation. In the algorithm three
different cases must be considered: two single nodes, one single node and a pivot
node, and two pivot nodes. These cases are discussed separately.

• If x and y are single nodes then their attribute domains are determined by
the incident relation edges. The edge with the smallest relation is chosen
to determine the attribute domain of the pivot relations. Let R(w, x) and
R(y, z) represent the relations then we can determine the pivot relations
P(x) and P(y) by joining the relations R(w, x) and R(y, z) on the condition
C(x, y). The join result is extended with a pivot attribute p and used to
construct the pivot relations for x and y. It is possible to determine the
pivot relations for node w and z at the same time. However, if these
pivot relations already exist, they must be combined with the new pivot
relations. For simplicity, we will just calculate P(x) and P(y) .

T µ(R(w, x) ~c(,,,u) R(y, z))
P(x) 1f[1,,,,JT

P(y) 1f[11,11JT

The modification of the query graph is indicated in the following figure.
The nodes x and y form a pivot graph. In the example it is assumed that
the join condition is satisfied for the combinations C(xl, yl), C(xl, y2)
and C(x2, y2).

>

124 CHAPTER 10. TASK EVALUATION

• If x is a pivot node and y a single node, then the pivot relation P(x) and
a relation edge connected to node y are used to determine the possible at
tribute value combinations. Let R(y, z) denote the relation then the pivot
relation P(y) is found by joining P(y) and R(y, z) on the join condition.

The join result is renumbered so that each solution is uniquely identified
by a new pivot attribute p1

• The pivot relations of the other nodes in
the sub-graph of x must also be renumbered to reflect this change. Let
P(xi), ... , P(xi,) denote these pivot relations then the following operations
are performed:

T

P(x)

P(y)

P(xi)

µ(P(x) t><lc(x,y) R(y, z))

1r[v',"'lT

1r11i1,11lT

1f[11',:i:i]T t><IT.1,=P(:i: 1). 11 P(x1)

This operation is illustrated in the following figure. Similar to the previous
example we assume that the join condition is satisfied by the attribute
combinations: C(xl, yl), C(xl, y2), and C(x2, y2).

C(x,y)

' ,
I

'

R(y,z)

>

• If both x and y are pivot nodes, then their attribute domains are defined
by pivot relations. The new pivot relations are determined by joining these
two domains on the join condition, renumbering the result and projecting
them on the new pivot attribute, x and y attribute.

The relations in each pivot-graph must be renumbered. Let the pivot re
lations of the pivot-graph cbntaining x be represented by P(x1), ... , P(xm.)

10.6. GRAPH REDUCTION 125

and, similarly, the pivot relations associated with node y by P(y1), ... , P(yn)
The pivot attribute for P(x) and P(y) is denoted by p and q, respectively.
The new pivot attribute is represented by p'.

T ·- µ(P(x) l><lc(,i: .. !I) P(y))

P(y) ·- 1f[p',11]T l><IT.q=q P(y)
P(y1) - 1r[p',:1,]T l><IT.q=q P(yi)

P(y.,,,) ·- 1f[p','!ln]T l><JT.q=q P(y.,,_)
P(x) ·- 1f[1,,,,,]T l><IT.p=p P(x)

P(x1) ·- 7r[1,1 ,,,,] T l><lr.1,=1, P(x1)

P(xm) ·- 1r[J1',,,,,,JT l><lr.1,=p P(xm.)

If node x or y is an internal node and is not connected to an edge it will
not be used in a future reduction step. Therefore, its pivot relation does
not have to be constructed and it can be removed from the sub-graph.

The reduction step merges the two sub-graphs in a single graph. This is
shown in the following figure.

PG,
~---------------

10. 6.3 Equi-join

Because a relation edge can be connected to either a pivot node or a single
node, the algorithm must consider three different situations: two single nodes,
one single node and one pivot node, and finally, two pivot nodes. The following
paragraphs define the actions that are performed to handle each of these cases.

• If both x and y are single nodes then the pivot relations P(x) and P(y)
are undefined. Because they are connected by a relation edge the solution
of the sub-query defined by the pivot-graph consisting of nodes x, y and
edge (x, y) is simply R(x, y). The pivot relations are constructed by first
assigning a unique identifier to the tuples in R(x, y) using the µ (mark)
operation, and then by projecting on the pivot attribute p and the x or y

attribute2 .

2 In the implementation these three operations are typically combined in a single scan of
the relation R(x, y).

126

T

P(x)
P(y)

µR(x, y)

1r11,,,,JT

1f[1,,uJT

CHAPTER 10. TASK EVALUATION

After the operation the two nodes form a pivot graph and the edge con
necting them is removed.

R(x,y)

Q-t-0 >

• If node x is a pivot node and y is a single node then the pivot relations
P(x) and P(y) are determined by by joining the pivot relation P(x) with
R(x, y). The node y is then merged with the pivot-graph associated with
X.

The join operation can invalidate the uniqueness constraint for the pivot
attribute. All the pivot relations associated with the nodes of the sub
graph must therefore be renumbered. Let P(x), P(x1), ... , P(xk) denote
the pivot relations associated with node x and p' a new pivot attribute,
then removal of the target edge implies the following operations:

T

P(y)

P(x)
P(xi)

P(x.,)

µ(P(x) ~ R(x, y))

1r1111 ,11JT

1f[11'.:1:JT

1f[1i',:q]T ~T.p=P(:i: 1).p P(x1)

This reduction is illustrated in the following figure.

R(x,y)

R(x,y)

xi yl

xi y2

x2 y2

10.7. A SAMPLE TASK EXECUTION 127

If the pivot relation P(x) is not required in the query result and the node
is isolated (i.e. d(x) = 0), then the pivot relation is removed. This reduces
the renumbering overhead for the remaining query.

• If both x and y are pivot nodes, then node x is associated with a number
of pivot relations P(x), P(x1), ... , P(xm.) and node y is associated with a
number of pivot relations P(y), P(y1), ... , P(y11,).

Let p and q denote the pivot attributes of P(x) and P(y), respectively.
Then we have to find all the possible pairs (p, q) that satisfy the con
straint expressed by the relation R(x, y). In other words by joining the
pivot relation with the relation R(x, y) we find all possible combinations.
By marking the join result each combination is assigned a unique pivot at
tribute p'. This result is subsequently used to renumber the pivot relations
associated with node x and y.

T

P(x)

P(x1)

P(xm)

P(y)

P(y1)

P(y.,,,)

·- µ(P(x) ~ R(x, y) ~ P(y))

.- 1r[p',"']T ~T.J!=J! P(x)
·- 11"[1'',"'i]T ~T.J1=J1 P(xi)

·- 1l"[p' ,:i,,,,]T ~T.p=p P(x.,,,_)

·- 1r[J1', 11]T ~T.q=q P(y)

·- 1l"[Jl1 ,'//1]T ~T.q=q P(yi)

The reduction is illustrated in the following figure:

PGp•

,--~----------------,
', ------ ~

--

10. 7 A SAMPLE TASK EXECUTION

In this section we illustrate the task execution algorithm using the Mail query
example. In Chapter 7 this query has been used to clarify the task generation
algorithm. This algorithm produce tasks (G, :F), that uniquely identify a sub
query by a query graph G and a set of edge-fragment assignments. These tasks
are allocated to the processors available, taking into account the processor load

128 CHAPTER 10. TASK EVALUATION

relation attribute 1 attribute 2 relationship
city y [Address] x [String] 1-1
sender L [Letter] C [Person] n-1
receiver L [Letter] P [Person] n-1
kids P [Person] C [Person] 1-n
address P [Person] y [Address] 1-1

Table 10.1: The fragment types used in the Mail query

and fragment distribution (See Chapter 9). The task execution algorithm de
scribed in this Chapter, finally, processes each task and reports the result to the
Query Scheduler.

The first step in task execution is the initialization phase. In this phase the
fragments referenced in the task assignment are located. If the BAT for the
fragment is already available in the local buffer pool, the corresponding relation
edge can be immediately bound. Furthermore, the buffer manager is requested
to fix the BAT in memory, so that it is not removed during task execution.

If the BAT is not available, the Bat Buffer Manager retrieves it from the
buffer of another processor. Task execution can proceed even though not all the
relation edges are bound, because the graph reduction algorithm selects only
target edges that can be reduced successfully. During task processing the BATs
requested arrive and are bound to the graph, so that the query graph can be
completely reduced.

The Mail query is represented in a cyclic query graph of five relation edges and
a single condition edge. The relations associated with the edges are presented
in Table 10.1, which maintains the name, attribute names, attribute types, and
relationship.

1. The graph reduction algorithm is cost driven. This means that the cost
for removing the target edge should be minimal. In this example the first
target edge is likely to be the condition edge, because the City relation
has the smallest cardinality and the selection operation is cheap compared
to the other operations.

2. The next target edge is the relation edge Sender .. The pivot relations for
attributes C and L are created by simply numbering the tuples in the
sender relation. The attribute node L and C form a pivot-graph.

10.7. A SAMPLE TASK EXECUTION

T

P(C)

P(L)

µSender

1r[z,,CJT

1f[p,L]T

129

3. Removal of the city edge implies an equi-join of the pivot relation asso
ciated with node x and the city relation. After the join operation the
result must be renumbered, so that each solution is identified by a unique
pivot attribute. The node x represents an internal node and is not used
in the final query result. After the graph reduction x and its associated
pivot relation P(x) can be removed, because the node is not connected to
the remaining query graph.

P(y)

re · ,

:' ,,,,,
' ,,'

',

4. In this reduction step the pivot-graph consisting of node C and L is com
bined with the single node P by removing the relation edge kids. The
pivot relation P(P) is constructed by joining the kids relation with the
pivot relation P(C). The pivot relations P(L) is renumbered by joining
it with the relation T on the old pivot attribute. After this reduction the
nodes P, C and Lare merged in a single pivot-graph.

T µ(P(C) ~ Kids) ,
... -- - ... ,

P(P) 1f[p',P]T
,

'
P(C)

,
1f[p',C]T

, ,

P(L) 1f[p',L](T ~ P(L))
,

,
/ , , ,

5. It is possible that not all the edges in a pivot-graph are removed. This is
illustrated in this reduction step by removing the relation edge receiver
between nodes P and L. According to the algorithm this reduction is
solved by joining the pivot relations P(P), P(L) and receiver. The join
result is renumbered and is then used to renumber the pivot relations in
the sub-graph.

130 CHAPTER 10. TASK EVALUATION

T

P(P)

P(C)

P(L)

µ(P(P) W Receiver W P(L))

1r[z>',P](T W P(P))

1f[J>',c](T W P(C))

1r[z>',L](T W P(L))

6. Finally the two pivot-graphs identified by node y and nodes { P, L, C} are
combined by removing the relation edge address. After the reduction the
internal node y is removed from the pivot-graph.

T

P(P)

P(C)

P(L)

µ(P(P) w Address w P(y))

1f[J>',P](T W P(P))

1r[J>',c](T W P(C))

1r[z,',L](T W P(L))

7. The final result is represented by the pivot-graph identified by nodes
{ P, L, C}. The associated pivot relations form the DSM representation
of the query result.

I

I

/

/

'

10.8 TARGET EDGE SELECTION

....

.,

....

' \
\

I
I

I
/

/

The goal of the dynamic query optimization algorithm is to minimize the total
task execution time. As the selection and removal of the target edge involves join
processing on the associated binary relation fragments, the choice of the target
edge is critical to the task execution time. In the Wong-Youssefi algorithm, this
choice is based on classification of relations in a small and not-small.

In Goblin the edge that incurs the least processing is selected for removal. For
each edge this CPU cost is estimated at task initialization and it is updated at
run-time using the profiles of the pivot relations produced. This cost consists
of two components: the cost to calculate a new pivot relation and the cost for
renumbering already existing pivot relations from a sub-graph.

The first component is based on operand size and the result of an operation.
The operand size is known at run-time and the result size can be estimated for

10.8. TARGET EDGE SELECTION 131

a relational operation using statistics on the size, cardinality and distribution of
the attribute values of the operands [SAC+79).

Once a cardinality estimate is found of the resulting pivot relation, the second
component is easy to determine, because the pivot relations in the new pivot
graph have by definition the same cardinality. Furthermore, their cardinality in
the old pivot graph is known.

The operations used in the task execution algorithm are selection, theta
join, semi-join and equi-join. The following paragraphs present formulas which
express the cardinality of their result in the cardinality and ordinality of the
operand attributes. In these formulas we assume a uniform attribute value dis
tribution to simplify the analysis. The effect of skewed data distributions on
intermediate result size is studied in [ST89).

In the following we use R and S to denote binary relations, the symbols A
and B to represent the attributes, and card(R), ord(A), min(A), and max(A)
for the cardinality of relation R, the number of distinct attribute values, and the
minimum and maximum value of attribute A, respectively.

10.8.1 Selection

The query graph allows the specification of selection conditions on a single at
tribute of the form A 0 C, where 0 E { <, =, > }. For the equality predicate, the
cardinality of the selection result is estimated by the number of distinct attribute
values and cardinality of the relation.

card(u A=C R)
card(R)

ord(A)

For range selection predicates the formula uses the minimum and maximum
attribute values.

card(u A>C R)

10. 8.2 Theta-join

max(A) - C card(R)
max(A) - min(A)

__ C_-_m_in_(;_A....:...)_ card(R)
max(A) - min(A)

Attributes in the query graph that are connected through a condition edge ex
press a theta-join operation. These expressions are of the form A 0 B, where
0 E { <, =, >} and A and B represent the attributes. If the condition contains
the equality predicate, an equi-join is performed. This case is discussed in the
next section.

A reliable estimate of the cardinality of the theta-join result is difficult to
make. In the worst case, the join result equals the Cartesian product of both
operands. Of course this is generally a pessimistic estimate and does not provide
a solid basis for cost driven query optimization.

A better approach is to maintain statistics on these join operations. In the
Goblin architecture a processor executes many similar tasks. It is therefore

132 CHAPTER 10. TASK EVALUATION

possible to determine the join selectivity for a theta-join on two specific fragments
and use this join selectivity factor to estimate the cardinality for other fragment
combinations. For a join of two relations R and S the join selectivity ((J" R.S) is
defined as:

card(R l><J S)

card(R).card(S)

Given this join selectivity the following formula gives a cardinality estimates
for a theta-join on another fragment combination of the same relations:

card(R' l><lo S') (J"R.S .card(R').card(S')

10.8.3 Equi-join

The equi-join operation is the most common operation in the task evaluation
algorithm. Its frequent use is a consequence of the object representation model.
The join condition is therefore always expressed on a key and non-key attribute,
that often represent om types. Assuming that the relations R and S are joined
on the attributes A and B, where A is a key attribute of relation R, then the
cardinality of the result is at most the cardinality of S, because each tuple of S
joins with at most one tuple of R:

card(R l><J A=B S) card(S)

In some cases the type constructors of the data model can be used to get an
even more accurate estimate. If the relations R and S store two attributes of
a tuple then they are related by a 1 - 1 relationship. In the Mail query graph
this is exemplified by the address and city relation. An address is a tuple
object and has a unique city attribute. Then the cardinality of the join result is
determined by the cardinality of the smallest relation.

card(R l><JA=B S) min{ card(R), card(S)}

10.8.4 Semi-join

The semi-join operation is used in the task evaluation algorithm to reduce a
pivot relation to a sub-set of pivot attributes. Because the pivot attributes are
unique, the cardinality of the result simply equals the cardinality of the smallest
relation. Thus:

card(R I>< S) min{ card(R), card(S)}

Given these formulas to estimate the result size of an operation, the cost
formulas for the operations and the actions performed for each graph reduction,
it is possible to associate a cost estimate to each edge in the query graph. At
each iteration of the graph reduction algorithm the edge with the minimal cost
is selected as target edge.

10.9. OPTIMIZATION ISSUES 133

10.9 OPTIMIZATION ISSUES

The presented graph reduction algorithm solves general queries represented by
query graphs, but leaves still a lot of optimization issues open. In this section
we will briefly introduce two optimization techniques that can further improve
the task evaluation performance.

One technique exploits semantic constraints introduced by the data model
and has already been mentioned shortly in the presentation of the example. If
a target relation edge connected to a single node is removed and it is known
from the data model that it expresses a 1 - 1 relationship then the produced
pivot relation will have a unique pivot attribute. Consequently, the other pivot
relations do not have to be renumbered.

The other technique aims at reusing intermediate results. Basically, in this
technique the pivot relations associated with a pivot-graph are maintained. The
effectiveness of this technique strongly depends on the task allocation algorithm.
It is only applicable if the task allocation algorithm assigns a task that refers to
many fragments used in a task previously executed. In that case this task can
share and reuse intermediate results.

To make this work, a naming scheme for intermediate results is required to
identify at task initialization time, which results are available in the processor's
buffer. From the description of the algorithm we know that sub-query results
are uniquely identified by their pivot-graphs and the fragments associated with
the edges. In the initialization phase, these sub-graphs and associated pivot
relations replace their corresponding nodes in the query graph.

Reusing intermediate results has potentially a great effect on the average task
execution time. For instance, given a query on five different relations and a
processor pool consisting of five processors, it is possible to reduce the total
amount of work by assigning these tasks as follows:

Site Task sequence

Pl T(Pi, Qi, Ri, Si, Ti); T(P2, Qi, Ri, Si, Ti); T(P3, Qi, Ri, Si, Ti); .. .
P2 T(Pi, Q2, Ri, Si, Ti); T(Pi, Q3, Ri, Si, Ti); T(Pi, Q4, Ri, Si, Ti); .. .
P3 T(Pi, Qi, R2, Si, Ti); T(Pi, Qi, R3, Si, Ti); T(Pi, Qi, R4, Si, Ti); .. .
P4 T(Pi, Qi, Ri, S2, Ti); T(Pi, Qi, Ri, S3, Ti); T(Pi, Qi, Ri, S4, Ti); .. .
P5 T(Pi, Qi, Ri, Si, T2); T(Pi, Qi, Ri, Si, T3); T(Pi, Qi, Ri, Si, T4); .. .

If the task reduction algorithm stores the appropriate intermediate results this
task assignment has the effect that after the first task has been executed each
processor can calculate the next task result by combining the stored intermediate
result with the new fragment.

10.10 CONCLUSION

Query execution in Goblin is based on the dynamic query processing proposed
in this thesis. This chapter discussed the task execution algorithm employed in
the prototype. The dynamic features encompass adaptivity towards fragment
size and the size of intermediate results, and adaptivity towards skew in the
fragment arrival rate.

134 CHAPTER 10. TASK EVALUATION

The first feature is the result of a dynamic query optimization scheme, which
determines the join execution order at run-time, based on up-to-date relation
fragment profiles. As tasks are evaluated in main-memory, tasks are optimized
towards CPU cost. The task evaluation algorithm is like the Wong-Youssefi
algorithm based on graph reduction. It includes, however, three new aspects.

First, it can incorporate a mechanism for multi-task optimization by reusing
intermediate results. In the proposed dynamic query processing scheme, where
a large number of similar tasks are executed by a query processor, this has a
large potential.

Second, the execution order of the individual join operations can be decided
at run-time. The query optimization is not based on heuristics, but based on
the actual fragment profiles.

Thirdly, the algorithm allows overlapping of fragment I/0 with the graph
reduction process. This is useful, because the time cequired to retrieve a fragment
from a remote processor is of the same order of magnitude as a single equi-join
operation. Thus a task execution can proceed even though not all the fragments
are available.

These features lead to an efficient, adaptive query processing mechanism,
which is robust and adaptive to changes in the load distribution and data skew.

Furthermore, this approach has reduced the generally difficult optimization
problem in parallel database system into two controllable and distinct smaller
problems: a local (CPU) optimization problem at each of the Query Processors
and a task allocation problem (IO) at the Query Scheduler.

Many aspects have not been fully addressed in this chapter and will be in
vestigated in our future research. The graph reduction algorithm leaves room
for further optimization. Especially exploitation of the relationship between the
data model and the graph reduction algorithm shows promise. If it is known
that two relations form a sub-set of each other, a semi-join operation can be
avoided. Furthermore, in many cases it is not necessary to renumber the pivot
relations in a sub-graph, thereby saving many join operations.

With respect to the reuse of intermediate results not all has been said. Specif
ically, the heuristics to decide what intermediate results must be maintained
have to be developed. Furthermore, an analysis of its effectiveness is required
to get insight into the tradeoff between the use of memory resources for storing
intermediate results and the cost of their reconstruction.

Chapter 11

Goblin eva I uation

11.1 INTRODUCTION

In the previous chapters many design decisions have been made and techniques
have been explored for implementing an OODBMS. The Goblin prototype in
corporates many of these techniques. In particular, the current version exploits
partitioning information through a two-level query-processing scheme. The first
level generates tasks by running the query on a summary data base. The second
level evaluates these tasks for the particular fragment combinations in main
memory.

The system is designed to run both shared-memory and shared-nothing ar
chitectures. Currently, there are two target platforms: one is collection of
SGI/Indigo workstations (34364.3 Dhrystones/sec) running UNIX and the other
is a multi-processor system consisting of 8 Intel 80386 (7142.9 Dhrystones/sec)
running the distributed operating system Amoeba [MvRT+goJ. On both plat
forms the processors communicate through an Ethernet connection. A generic
thread package and interprocess-communication package is defined to facilitate
porting the architecture to other platforms.

The current implementation is not yet fully operational on the parallel plat
forms. However, all key algorithms have been implemented and can be run in
isolation. Thus, even though the system is only partially implemented, we can
obtain a fairly accurate performance prediction.

In this chapter we illustrate the performance of the key algorithms and com
ponents of the Goblin system. In the next section the relational operations
provided by the Goblin kernel and the communication sub-system are timed. In
the third section the effect of the two-level query-processing scheme is examined

135

136 CHAPTER 11. GOBLIN EVALUATION

for a simple query. In the fourth section we provide a performance prediction for
the parallel system for the Wisconsin benchmark. We conclude with a summary
of our findings.

11.2 THE GOBLIN KERNEL

Goblin is designed as a main-memory parallel data-base system. This has a
major influence on its design. In a main-memory parallel system the overall per
formance strongly depends on efficient processing and data communication. This
functionality is provided by a small kernel, which incorporates a communication
module and a processing module.

These modules will be discussed in further detail in the following sections.

11.2.1 Communication

In the Goblin system Query Schedulers and Query Processors are processes.
These processes are created at system startup time and communicate with each
other using message passing primitives provided by the communication module.

The Query Processors use the communication primitives to retrieve data frag
ments and report task results to the Query Scheduler. The data fragment mes
sages are important for the overall query performance, because a task can only
be completed until all the fragments it requires are locally available. Through
clever buffer management and task allocation the average number of fragment
requests can be reduced (See Chapter 9). However, due to a limited amount
of buffer memory fragment I/O can not be completely avoided. An efficient
implementation is therefore necessary. For query processing two factors are im
portant: the response time, i.e., the time measured from the fragment request
until its arrival, and the maximum throughput of the network i.e. the maximum
number of fragments that can be sent between process pairs.

The Query Scheduler uses the communication primitives to control the task
execution. It assigns from its task table a number of tasks to the query processor
with a lower than average load. The load information on Query Processors is an
example of the information feedback from the Query Processors to the Query
Scheduler. For system performance a low response time for task assignment and
for feedback information is essential. For instance, out-of-date load information
on the Query Processors reduces the load balancing algorithm's effic;;iency.

We have determined the response time for data transfer on both platforms.
In the experiment a client process sends a data request to a server process on
another site which then returns the data.

The results for the SGI network are disappointing due to the network load and
process scheduling delays. Its fast processor ensures that the measured system
and user-time for a data transfer of 100,000 bytes does not exceed 100 msec.
The network and scheduling delay, however, is in the order of a few seconds.

The Amoeba operating system is designed to support distributed applications,
which is visible in the results presented in Table 11,l. It shows the response
time for a small message (500 bytes) and a large message (30,000 bytes). The
first size corresponds to a typical control message and puts the communication

11.2. THE GOBLIN KERNEL 137

type size response time
control 500 byte 4 msec
data 30,000 byte 98 msec

Table 11.1: The communication response time on the Amoeba platform

overhead in a perspective. The large message represents a typical fragment
retrieval operation.

Both the response time for control messages and data messages are reason
able compared to the processing time of the relational operations. A proper
task allocation and buffer replacement scheme can reduce the average number
of fragment requests for a three way join task to 0. 5 - l. 0 fragment requests
(Chapter 9). Under these conditions the task spends only 50 - 100 msec on
communication and 800 - 1000 msec on processing (Amoeba platform).

11. 2.2 Processing

The task evaluation algorithm of the Query Processor determines at run time
the execution order for the operations specified by the query graph associated
with the task. At each reduction step of the algorithm the query processor
executes a relational operation. These operations are uninterrupted by I/0 and
other operations. The total task execution time equals the sum of the response
times of the individual operations including the overhead of the task evaluation
algorithm. The performance of these relational operations is therefore important
for the task execution time.

The basic operations called by the graph reduction algorithm are select, join
and semi-join. These operations take binary relations as operands and return
the result as a binary relation. Apart from these operations, the processing
module contains operations for partitioning binary relations. Either on one or
both attributes using a range-based or hash-based partitioning scheme. In the
following we present the results of performance measurements of these basic
operations on the SGI and Amoeba platform.

11.2.3 The join and semi-join operation

Both-the join and semi-join operation use ·a hash-based algorithm. First a·hash
index is created on the join attribute of one operand relation. Entries having
the same hash value are administrated in a collision list. The hash table size
is chosen as a power of two, such that the average collision list-length does not
exceed four entries. Each tuple of the other relation is then used to probe this
hash index. As long as the hash function uniformly distributes the tuples of the
first relation over the hash domain and the cardinality of the result size is less
than cardinality of the largest relation, the response time is linear in the operand
cardinality and given by:

138 CHAPTER 11. GOBLIN EVALUATION

where t1,,, tl' and tc represent the time to create a hash entry, the time to probe
the hash table and the time to construct a result tuple respectively.

The factors t1,, and tl' are dominated by the function calls required to cal
culate the hash value or to compare two values. Assuming that this cost is
appro;ximately given by t f, we can express the previous cost formula as follows:

where k is the average collision list length.
From this simple analysis we conclude that in main-memory data bases hash

tables must be constructed on the largest relation. Furthermore, we expect the
response time to show a saw-tooth characteristic as a function of the cardinality
of the second operand R2. This is because the hash table size assumes only values
that are a power of two. The average collision list length will then increase until
it reaches four.

These effects are illustrated by the measurements shown in Figures 11.l and
11.2 for the join and semi-join operation on the SGI platform and in Figures
11.3 and 11.4 for the Amoeba platform. Each graph shows three situations: (1)
both operands have the same cardinality I R1 I = I R2 I, (2) the cardinality of the
hash table operands is 10% of the other operand IR1I = 0.llR2I, and (3) the
cardinality of the probe relation is only 10% of the hash relation 0.llR1I = IR2I-

The Figures show the predicted saw-tooth shaped curves resulting from the
hash table size. For the join operation on equal sized relations discontinuities
occur for relations having cardinalities 8000, 16,000, 32,000 and 64,000. Each
point in the graph is represented by the average and standard deviation from
n1any 111easurements.

The potential for dynamic query optimization is illustrated by the difference
between the two execution orders. The curves show that by constructing a
hash table on the largest relation, the performance can be improved by a factor
of three. This optimization is implemented in the Amoeba version of the join
algorithms. Furthermore, the collision list anomaly is also solved for this version
as illustrated in Figures 11.3 and 11.4. In this implementation the hash table
size is a linear function of the operand size.

The absolute join performance in main-memory is impressive. On a single
processor 33 Mhz SGI/RS3000 a 100k x 10k join is performed within 520ms, and
a 100k x 100k join in approximately 4.5 seconds. The result sizes for these joins
are 10k and 100k, respectively. The performance characteristic for the semi-join
operation is comparable to the join performance, but consistently lower because
in constrast to the join operation it does not have to test all possible tuple
combinations of its two operands.

11.2.4 The select operation

The basic select operation scans the tuples of its operand and evaluates a range
condition on it. An alternative implementation uses an index on the selection
attribute of the operand if it exists, thereby considerably reducing the processing
time.

In the following we have only considered the execution time for a scan-based
implementation of the select operation. For this operation the execution time is

11.2. THE GOBLIN KERNEL

4000

3500

3000

u 2500 .
m

.5 .
j 2000

~ . -
LJ 1500
0
LJ

1000

500

0

IRll=c, IR21= c/10 ,_.,
IRll=IR2l=c >-+-<

IRll=c/10, IR21= c >a-<

I

)J'« k & iff'tZ'1
~

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
cardinality [tuples]

139

Figure 11.1: Join execution time on SGI as a function of the operand cardinality

2500

IRll=c, IR21= c/10 H>-<
IRll=IR2l=c >-+-<

1 IRll=c/10, IR21= c >a-<

2000

0 If~ .
1500 ! .

j

~ ~

1000 .
LJ

B

Figure 11.2: Semi-Join execution time on SGI as a function of the operand
cardinality

140 CHAPTER 11. GOBLIN EVALUATION

10000 ~-~--~-~--~-~---.----,~-~--~,--,--, .,#/r
8000

6000

4000

2000

IRl I= IR2 I =c H>-<
]Rl\=c, !R2!= 0.lc H-1

,./
,IF/

.. ,..~.,.~,,,,,·
·""" J>/

__ ... v,,,, ~~
;•~-

•• ♦,fJ ..-.~

~~
o~-~--~-~--~-~--~-~~-~--~-~

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
cardinality [tuples]

Figure 11.3: Join execution time on Amoeba as a function of the operand car
dinality

u . .
.s .
:j
~

~

10000

8000

6000

4000

2000

IRll=c, IR21=0.lc H>-<
IRll= R2l=c H-<

0 =-----'----'----'------'-----'--_L_--L_-----'------'-----_J
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

cardinality [tuples]

Figure 11.4: Semi-Join execution time on Amoeba as a function of the operand
cardinality

11.3. QUERY PROCESSING 141

simply a linear function of the cardinality of the input relation and the cardinality
of the output relation:

where t f, tc an u represent the time to respectively evaluate the comparison
function for an input tuple, the time to produce a result tuple and the selectivity
of the operation. Figures 11.5 and 11.6 show the execution time for the SGI and
Amoeba implementation as a function of the input cardinality and selectivity as
a percentage.

The 3-D graph shows that the time to construct a result tuple tc is the dom
inant cost factor. For a selectivity of 0% the selection cost increases slowly to
a maximum of 10 ms in the cardinality range of lk - 100k tuples. At a 100%
selectivity, the operation on a 100 Kbyte relation takes 600 ms.

11. 2. 5 The partition operation

Finally we look at the execution cost for the partition operation. As this oper
ation distributes its input relation tuples over a number of output relations and
does not reduce the number of tuples, the response time is a linear function of
the input cardinality of the form:

where t1, represents the partition overhead per tuple and t" the constant start-up
cost.

The measurements confirm that the execution cost is a linear function of
the cardinality. Furthermore, the initialization overhead is negligible. For the
SGI version we find that tl' = 53.9 msec/1000 tuples. This figure is quite high
compared to the cost of a join and select operation and indicates that partitioning
is best performed a priori.

11.3 QUERY PROCESSING

The two level query processing scheme consists of task generation and task ex
ecution. In Goblin the binary relations are a priori partitioned and distributed
over the processors. With each binary relation a summary relation is associated
which maintains for each fragment its partition information consisting of the
fragment identifier and the hash values for the attributes.

The task generation algorithm executes the query on the summary relations
to determine which fragment combinations contribute to the final query result.
The tasks produced are stored in a task table and subsequently selected by the
task allocation algorithm for execution on the Query Processors.

The partitioning degree and the fragment cardinality influence the query ex
ecution time. For a high partitioning degree the cardinality of the summary
relations is high and the task generation overhead is high compared to the task
execution time. If the relations are partitioned into a few large fragments, the
task generation algorithm produces only a few tasks having a high execution
time.

142

response time [msec]

900
BOO
700
600
500
400
300
200
100

cardinality

CHAPTER 11. GOBLIN EVALUATION

100

ctivity [%]

Figure 11.5: The select execution time on the SGI platform as a function of the
input cardinality

response time [msec]

2500

2000

1500

1000

500

cardinality

100

50
selectivity [%]

Figure 11.6: The select execution time on the Amoeba platform as a function of
the input cardinality

11.3. QUERY PROCESSING 143

In this section we show the influence of the partitioning degree on the total
execution time and the minimal response time. The minimal response time is
defined as the response time obtained if all the tasks were executed in parallel.

For this purpose we consider the query represented by the following query
graph:

CPP path
---►

X y z

For this query graph we will first discuss the task generation in detail and then
show the operations performed in the task evaluation process. Finally we show
the overall performance by combining the task generation and task evaluation
cost.

For the experiment the relations x, y and z represent binary relations with
two integer attributes. The attributes are unique and randomly selected from
the integer domain [1, c], where c equals the cardinality of the relation. Before
the query is executed the binary relations are partitioned into variable number
of partitions. In the experiment the number of partitions ranges from 1 to 100.

11.3.1 Task generation

The nodes in the graph n1, n2, n3 and n 4 correspond to object sets. The rela
tionships between these objects are maintained in the binary relations x, y and
z. The task generation algorithm determines a CPP path in the query graph
and uses it to generate fragment combinations that possibly contribute to the
query result. Because the query graph is a linear chain a possible CPP path
is given by (x, y, z). Because all the summary relations have the same size the
start node can be either x or z.

This edge sequence identifies a program which when run on the summary
relations returns the fragment combinations contributing to the query result.
In the following program (See Table 11.2) the join operation on two binary
relations P[a,b] and Q[c,d] is defined as: join(P,Q) = 1f[a,,<L](P 1><11,=c Q). The
mark operation applied to a binary relation R[a, b] returns a relation S[p, a],
where attribute p is a unique pivot attribute.

The remark is similar to the mark operation. It invents for each tuple of
its operand relation a new pivot attribute, but does this for both attributes
at the same time. Applied to a relation R[a, b] the remark operation returns
the relations S[p, a] and T[p, b] . This operation supports the renumbering of
constructed pivot relations as described in Chapter 7.

144 CHAPTER 11. GOBLIN EVALUATION

p1 -x = mark(x)
x-y = join(x,y)
p1-y = join(p1-x,y)
p2-p1, p2-y= remark(p1-y)
p2-x = join(p2-p1,p1-x)
y-z = join(y,z)
p2-z = join(p2-y,y-z)
p3-p2, p3-z = remark(p2-z)
p3-x = join(p3-p2,p2-x)
p3-y = join(p3-p2,p2-y)

Table 11.2: The summary query program for the example query

The solution to the summary query is represented in DSM format by the
pivot relations p3 -x, p3-y and p3-z. Each fragment combination is identified by
a unique pivot value. The set of tasks can therefore be constructed by joining
these three relations on their pivot attribute.

The binary relations are hash partitioned on both attributes. Thus if the hash
function on the first attribute assumes n different values and the hash function on
the second attribute assumes m values, the combination of them partitions the
relation in m x n fragments. For simplicity we choose m = n in the experiment
leading to the quadratic partitioning degrees p E {l, 4, 9, 16, 25, 36, 49, 64, 81,100}.

With this partitioning the join attribute in each relation assumes ,Ip different
values. If two summary relations of size p are joined each tuple in one operand
relation will match ,Ip tuples in the other relations. The join result has therefore
a cardinality of p,jp. With the next join operation the result size grows again
by a factor of ,jp. Consequently, the summary query cost grows as a power of
the square root of the partitioning degree 0(,jp""), where n is the number of
relations in the query graph.

Figures 11.8 and 11.7 show respectively the response time and the number
of generated tasks as a function of the partitioning degree. Fortunately, even
though the total number of tasks grows enormously, the absolute cost for sum
mary query processing is acceptable for small partitioning degrees. Furthermore,
in the figures the measurements coincide with the results from the model for the
number of generated tasks and the summary query time, which are f(p) = $
and respectively f(p) = 3.5...Jt .

In any case, the summary query cost must be balanced with the task evaluation
cost. Consequently, the partitioning degree should depend on the cardinality of
the binary relation. In the following section we consider the relation between
task evaluation cost and partitioning degree.

11.3.2 Task evaluation

The task evaluation algorithm is based on reduction of the query graph. The
algorithm selects at run time target node and edge combinations and propagates

11.3. QUERY PROCESSING

10000

. 8000

E
~ .
~ 6000

" .
"'
~
0

C .
§

4000

"
~

;l
3 2000

0
0

experiment 1-0---1

model ----·

20 40 60
number of partitions

145

80 100

Figure 11. 7: The number of generated tasks as a function of the partitioning
degree

40000

35000

u .
.§. 30000

j
25000 . .

" 0
f; 20000 .
C

>,
C

15000
~
>,
C

I
10000

5000

0
0

experiment ~
model ----·

20 40 60
number of partitions

80 100

Figure 11.8: The summary query response as a function of the partitioning
degree

146 CHAPTER 11. GOBLIN EVALUATION

14000

12000

10000

u
~ .s 8000 .
~
>, 6000

" ~
4000

\
\

2000

0

f--------------
---.----------------------11--------------------------·1 ------------

0 10 15 20 25 30
number of partitions

Figure 11.9: The average task execution time as a function of the partitioning
degree.

the implied constraints to the connected edges until the graph is reduced to a
single edge. This edge and its associated binary relation is then used to construct
the pivot sets for the distinguished nodes1 .

Currently there exists only a Prolog implementation of the graph reduction al
gorithm. This program generates for a given query graph and set of distinguished
nodes a task evaluation program. For the moment the dynamic optimization is
and reuse of intermediate results is not included.

For task evaluation we consider the query on the relations x, y and z intro
duced in the previous example. Assuming that the distinguished nodes are n 1 , n 2

and n3. Then for this example a (possible) task evaluation algorithm is given
by:

ti = join(x,y)
t2 = join(t1 ,z)
n1 = mark(t2)
n2 join(a1,t2)

n3 = join(a1,t1)

We expect the average task execution time to be inversely proportional to
the partitioning degree. There are two reasons for this. First, because the
join execution time is linear in its operand size and result size (See Section
11.2.3) and the partitioning degree is inversely proportional to the operand size.
Secondly, because the cardinality of the total query result is independent from

1 i.e. nodes associated with projection attributes

11.3. QUERY PROCESSING 147

6500

6.000

~ 5500

1

~ 5000 f C

! :g
" 4500 ! . I "' !

♦
4000

3500 ~---~---~----~---~---~
0 20 40 60 80 100

number of partitions

Figure 11.10: The partitioning time on the as a function of the partitioning
degree

the partioning degree, the cardinality of the task result is inversely proportional
to the number of tasks as presented in Figure 11. 7 and therefore only adding to
this effect.

In the experiment the average task evaluation time is determined as a function
of the partitioning degree. The source relations contain 100,000 tuples each.
Given a partitioning degree ranging from 1 to 100 the fragment cardinality ranges
from 100,000 to 1,000 tuples. The results are shown in Figure 11.9. The average
task execution time decreases fast as the partitioning degree increases. Already
at a partitioning degree of 9 the task execution cost is an order of magnitude
less than the original cost.

11. 3. 3 Partitioning overhead

For completeness we have also measured the time required for partitioning the
three relations. In the experiment the relations are locally available and the
resulting fragments are also stored locally. The summary relations are produced
as a by-product of the partitioning operation.

The result is presented in Figure 11.10. The partitioning cost is surprisingly a
linear function of the number of partitions. This could indicate a flaw in Goblin's
memory allocation and requires our future attention.

A more important observation is that the partitioning cost is considerable
compared to the task execution cost and summary query cost. Furthermore,
the cost is high even for low partitioning degrees. For instance, it takes almost
6 seconds to partition the three relations into 100 fragments. Therefore, it is
better to partition relations a priori.

148

-~

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

CHAPTER 11. GOBLIN EVALUATION

partition~
partition+summary -+--·

reponse time ·B--

oc__ ___ __.__ ___ __._ ____ _,__ ___ _._ ___ __,

0 20 40 60 80 100
number of partitions

Figure 11.11: The minimum query response time as a function of the partitioning
degree

11.3.4 Combining the results

In the previous subsections we presented the basic cost factors for running the
example query in an operational system. By combining the partitioning cost,
the summary query cost, the number of produced tasks and the average task
execution time with the basic communication cost we can estimate the minimum
response time (Figure 11.11) and total time (Figure 11.12) as a function of the
partitioning degree.

The minimum response time is defined as the time obtained when all the tasks
are executed in parallel. It is defined by the following formula:

tm:in = tJl(l:/'lition + t.,·11:m:m.a,-r,J + it,, .. ,k + 3tcom:m.

The partition time t 11 (1.·rtiti.on offsets the response time with a relatively constant
5 seconds. The task execution time itnskis high between a partition degree of 1
and 9 but negligible for higher partitioning degrees; in the order of 25 msec. The
summary query cost dominates the response time for partitioning degree higher
than 9. The last factor is the communication cost for retrieving three fragments.
The communication cost can be reduced to a single fragment retrieval by caching
the fragments.

This minimum response time represents of course only a lower bound. The
time required for distributing the tasks over the available processors and the
fragments over the processors is not included. Although it is possible to dis
tribute the tasks over the available processors in a single broadcast message and
to distribute the fragments over the available processors in a maximum of 3.p
broadcast messages, where p is the partitioning degree, it must be said that this
scheme is not employed in the Goblin architecture.

The total time estimate sums the partitioning time, summary query execution
time and total task execution time. It corresponds to the situation where the

11.4. THE WISCONSIN BENCHMARK 149

1. 6e+06

1. 4e+06

1. 2e+06

le+06

~ 800000
~

."!
,3 600000

400000

40 50 60 70 80 90 100
number of partitions

Figure 11.12: The total query processing time as a function of the partitioning
degree

query is evaluated on a single processor. The following formula is used to obtain
this measure:

The results are shown in Figures 11.11 and 11.12. It shows that the optimal
partitioning degree for the minimum response time for this example is reached
for a low partitioning degree p = 9. For larger partitioning degrees the processing
time for the summary query increases fast. Therefore, for obtaining better results
for parallel query processing the summary query cost must be reduced. (For
instance by executing the summary query in parallel.)

Note, however that the minimum response time without partitioning for this
three way join query on 100,000 binary relations is a low as 580 ms and the total
time is in that case 30.8 seconds.

11.4 THE WISCONSIN BENCHMARK

The Wisconsin benchmark [DeW91] is a well known benchmark used to com
pare the performance of relational systems. To get a rough idea of the relative
performance compared to other data-base systems, most new systems have run
the j oinABprime query of the benchmark.

The benchmark uses three synthesized relations A,B and C consisting of thirteen
integer attributes and three 52-byte string attributes. The length of each tuple
is therefore 208 bytes, assuming no storage overhead. In the original benchmark
the cardinality of the relations is fixed. The small relation C contained 1,000
tuples and the two larger relations A and B 10,000 tuples.

The size of these benchmark relations (2 Mbyte and 200 Kbyte respectively)
is relatively small compared to the physical address space of todays computers.

150 CHAPTER 11. GOBLIN EVALUATION

For this reason the benchmark relation cardinality is scaled up to compare the
performance of data-base machines. The performance of these systems has been
measured on relations containing 100,000 and 10,000 tuples (and more [DeW91]).
Because the resulting relation size is at least 20 MByte it is unrealistic even for
main-memory data-base machines to execute the Wisconsin queries in main
memory without partitioning the relations.

The two integer attributes unique! and unique2 are uniformly distributed
unique random values in the range [O, max -1], where max is the cardinality of
the benchmark relation. In the joinABprime benchmark the relation A is joined
with the relation Bprime on the attributes unique! and unique2. The Bprime
relation is constructed by selecting 10% of the B relation. Because both join
attributes are key attributes, the resulting relation contains 10,000 tuples.

In the DSM storage model the Wisconsin relation is represented by thirteen
binary relations, one for each attribute. Each reiation stores the association
of a tuple identifier and an attribute value. Finding all the attribute values
associated with a specific tuple requires joining these relations on the tuple
identifier. Therefore the relations are hash partitioned on the tuple identifier to
reduce this reconstruction cost.

Similar to the previous experiment the query is divided in two steps: task
generation and task evaluation. The task generation algorithm traverses a CPP
path through the query graph and runs the query on the summary relations.
This implies a join expression over the 26 summary relations. This seems to be
a prohibitive amount of work. Fortunately the summary relations are very small
and the partitioning on the tuple identity leads to a small summary query result
as well.

For instance, assume that both relations are partitioned in p fragments. Then
all the fragment combinations of relation A_unique1 and B_unique2 potentially
contribute to the query result. Furthermore, as each A_unique1 and B_unique2
fragment uniquely identify fragments for the remaining A and B attributes, re
spectively, a total of p2 tasks is expected.

The result of this experiment is shown in Figure 11. 13. Although the summary
query is executed on a total of 26 relations, the partitioning on the tuple identifier
leads only to a quadratic increase of the query execution time as a function of
the partitioning degree.

The task execution time is measured separately. For a partitioning degree
ranging from [l, 100] the cardinality of the A fragment ranges from 100,000 to
1,000. The result of this experiment is shown in Figure 11.14.

If we combine the previous results to determine the minimal query execution
time for this query we see that for a partitioning degree of 6 the query response
time is 4000 ms (Figure 11.15). This graph includes estimated communication
cost.

In Table 11.3 we compare the estimated joinABprime query execution time
to the results obtained by other data-base systems. The absolute performance
is of the same order of magnitude as the other main-memory systems. There is
room for improvement, however.

First, we have observed that the summary query cost dominates the query
execution time. Only 1.6 seconds of the estimated 4 seconds is used for com-

11.4. THE WISCONSIN BENCHMARK 151

80000

70000

60000

u
50000 .

I .
j 40000

~

."l 30000
B

20000

10000

partition degree

Figure 11.13: The joinABprime summary query execution time as a function of
the partitioning degree

5500

5000

\ 4500

4000

\
¥ 3500

.5.
3000

~ 2500 }
~

."l
2000 ' B

1500 ~
1000

500

0
0 20 40 60 80 100

partition degree

Figure 11.14: The joinABprime task execution time as a function of the parti
tioning degree

1.52 CHAPTER 11. GOBLIN EVALUATION

20000

18000

u 16000 .
m .s

-~
14000

.
m 12000 §

~ ,..
10000

~ .
-~
.~ 8000
E

6000

4000
0 10 15 20 25

partition degree

Figure 11.15: The joinABprime minimal response time as a function of the
partitioning degree

System #proc response time
Silicon DBM 3 23.900 sec [LR88]
PRISMA 10 6.132 sec [Wil93]
PRISMA 30 2.034 sec
DBS3 10 1.8 sec [BCV91]
Goblin/SOI 6 4 sec

Table 11.3: The minimum response time for some parallel main-memory data
base systems for the j oinABprime query.

puting the joinABprime tasks in parallel. We can amortize the summary query
cost over multiple queries by storing its result. Each time the user evaluates
the joinABprime query, the summary query result can be reused. Furthermore,
the implementation of the summary query algorithm can be improved consid
erably. In the current implementation the final pivot phase, - where the tasks
are produced- , is implemented by joining the pivot relations. Alternatively, this
can be implemented using cheap lookup operations.

With these modifications we expect a response of 2.5 seconds.

11.5 CONCLUSION

The timing of the individual operations shows that the relational algebra oper
ations on the binary relations are efficiently implemented.

The important performance factors in Goblin's two-level query-processing
scheme are summary query cost, task evaluation cost and communication cost.
On the basis of measurements of these factors we determined the minimum re-

11.5. CONCLUSION 153

sponse time as a function of the partitioning degree that can be obtained on a
parallel platform .

It turned out that the minimum response time is dominated by the summary
query cost. This cost increases exponentially with the partitioning degree and
is only reasonable for small partitioning degrees(~ 9). The task evaluation cost
and communication cost are negligible compared to this factor.

Nevertheless, compared to other main-memory parallel systems we arrive at
a reasonable response time estimate of 4 seconds for the j oinABprime query of
the Wisconsin benchmark, which can be reduced to 2.5 seconds by improving
the implementation of the summary query algorithm.

Furthermore, the communication overhead for task distribution and task con
trol is small compared to the task execution cost, which justifies a limited amount
of parallel execution. The overall resource consumption can be controlled be
cause the Query Scheduler can determine the number of processors used for the
task evaluation.

The effect of load balancing is not covered by the experiments. This aspect will
be studied in future experiments once the Goblin prototype is fully implemented.

Chapter 12

Summary and Future Research

12.l INTRODUCTION

This thesis presents the design and analysis of a dynamic query processing archi
tecture for the Goblin parallel OODBMS. The primary objective of this research
was to design a query processing architecture that can effectively and efficiently
cope with skewed data distributions and dynamically changing load distribution.

The design of an efficient parallel DBMS is a complex task, because many
design issues that affect the performance depend on each other. For instance, a
shared-memory multiprocessor requires a different query processing scheme than
a shared-nothing architecture. Furthermore, load balancing is more difficult to
achieve in a shared-nothing architecture.

To achieve this ambitious goal we fixated from the onset a few design decisions
based on technological trends and requirements of the envisioned application
domains. Consequently, the baseline for the Goblin design was that it should be
a parallel main-memory OODBMS designed for a shared-nothing architecture.
Once we made this decision we could concentrate our work on the storage model
and on the query processing architecture.

The current design is the result of extensive testing and performance eval
uation based on mathematical models, simulation models and benchmarks on
prototype implementations of key algorithms. Although the prototype system is
not yet fully implemented we concluded on the basis of the performance of key
algorithms that this architecture shows a competitive performance compared to
other main-memory parallel DBMS systems.

154

12.2. THE MAIN CONTRIBUTIONS 155

12.2 THE MAIN CONTRIBUTIONS

The research addressed many design aspects that have an impact on the perfor
mance of a parallel main-memory OODBMS. In global terms we can summarize
the research contribution of our work in the following two points:

• The development, analysis and performance evaluation of a novel two-level
dynamic query processing scheme.

• The design, implementation and performance evaluation of a storage model
for a parallel main-memory OODBMS.

The results, their consequences and points for further research are discussed
in the remainder of this chapter. Section 12.2.1 discusses the results and conse
quences for the storage model and section 12.2.2 the results and consequences
for the query processing scheme. We conclude this thesis with an overview of
the remaining research questions.

12.2.1 The Goblin storage architecture

The storage model is an important performance factor for a data base system.
It is specifically designed to take advantage of the main-memory approach and
to provide flexible storage of objects in a parallel system.

Object representation

We compared three alternative storage models for object representation for the
main features of the Goblin architecture: the object-oriented data model, the
parallel architecture and the main-memory design. The data model led to the
consideration of two aspects: representation of object sharing and the efficient
support of object evolution. The second feature, the parallel architecture, led
to the requirement that the representation should allow coarse-grain parallelism
and an easy declustering scheme. The main-memory assumption, finally, led to
the requirement that the storage overhead should be low.

On the basis of a qualitative comparison of the three storage models we se
lected the decomposed storage model (DSM). This method maps the attributes
of an object to binary relations. Consequently, join operations are required to
retrieve all object's attributes, which is the main reason why it is seldomly used.

It turns out, however, that in a main-memory environment the join overhead
is low and will reduce even further with the increase in processor speed. Fur
thermore, DSM has a low storage overhead compared to the normalized storage
model, allows declustering, and provides efficient support of object sharing and
object updates. Finally, a data base kernel can be optimized to support only
operations on binary relations.

Therefore, our main conclusion is that DSM deserves to be reconsidered as
the storage model for parallel main-memory OODBMS.

Two-level storage

Goblin declusters binary relations into fragments and distributes them over the
processor pool to exploit parallelism. This means that a query on a binary

156 CHAPTER 12. SUMMARY AND FUTURE RESEARCH

relation is mapped to sub-queries on the fragments. To perform this mapping
correctly information on the partitioning must be maintained consisting of the
partioning method used and the allocation of fragments.

We decided to maintain the fragmentation information for each binary relation
in a summary relation, because this approach facilitates the use of fragmentation
information in the query optimization process. It does not require symbolic
evaluation of a query against a fragmentation rule to decide whether a fragment
accessed by a query. Instead, the query is simply evaluated against the summary
database using the a set of relational operations. The effect is that the number
of sub-queries to be run on the data base is reduced.

The summary database maintains for each fragment of a bjnary relation its
identification and, in case of range partitioned relations, the minimum and max
imum values for each attribute involved. As the partitioning degree is limited
by the number of processors in the system is the storage overhead for maintain
ing the summary database low. Furthermore, the summary query processing
overhead can be controlled by varying the partitioning degree.

A disadvantage of this scheme is that to obtain correct answers to queries
it is critical that the summary data base is consistent with the data base. A
change in the. partitioning information of a fragment must be reflected in the
summary relation. Fortunately, this overhead is limited and can be avoided for
frequently updated fragments by temporarily extending its partitioning infor
mation to cover the complete relation domain. In that case the fragment will
be accessed by every query. Using this technique the summary relation can be
updated by a process running in the background.

Out conclusion is that the surn.mary data base provides a general indexing
mechanism which facilitates the use of partitioning information in query opti
mization. The idea is also applicable to a centralized DBMS where it can limit
the number of I/0 operations.

12.2.2 Dynamic query processing architecture

Query optimization is a difficult and time consuming process. This is even more
so for a parallel DBMS where both data parallelism and pipeline parallelism is
exploited. In some systems the optimization process has been split into a logical
optimization phase and a parallization phase, which takes the data allocation
and load distribution at query start-up time into account. This functional de
composition is based on the assumption that the optimization decisions taken
in the two phases are independent. Unfortunately, this assumption does not
hold. Furthermore, the effectiveness of pipeline parallelism depends ori the load
distrib1ition: A change in the loa:d distribution can introduce bottlenecks in the
query pipeline.

To overcon1e these problems we have designed a dynamic query processing ar
chitecture which can efficiently take load balancing decisions and perform query
optimization at run-time. Its primary characteristics are that it exploits data
parallelism only and uses a two-level query processing structure. We decided
not to exploit pipeline parallelism, because it is difficult to combine with a load
balancing scheme.

12.2. THE MAIN CONTRIBUTIONS 157

In the two-level query processing scheme a query is evaluated first on the
summary data base and then on the stored fragments. A consequence of the
declustering scheme used in the storage architecture is that a query is mapped
into a union query over all possible fragment combinations, or tasks. These tasks
are independent, run in parallel, and they are small enough to be executed in
main-memory.

The two-level architecture is implemented by two kind of processes: Query
Schedulers (QS) and Query Processors(QP). The QS generates tasks for a given
query, distributes them dynamically over the processor pool and uses feedback
information on the executed tasks to reduce the total amount of work (task
elimination) and to adjust the task allocation for load balancing. The QP execute
these tasks in main-memory and return execution information to the QS.

The main advantage of this two-level query processing scheme is that the
optimization issues are separated. In the QS the task generation process drives
the query execution by executing the query on the summary data base. Its
task elimination process performs logical optimization using optimization rules
and feed back information to reduce the number of tasks remaining. The task
allocation process, finally, is mainly concerned with load balancing and reducing
the I/ 0 by taking into account the strong relation that exists between task
allocation and buffer management in the QP.

The primary concern for the QP is to reduce the average task execution time
through an effective use of memory and CPU resources. To achieve this its
task evaluation algorithm uses a modified version of the INGRESS dynamic
query optimization scheme. It is designed to exploit the similarity of tasks by
storing and re-using intermediate results and to handle strong fluctuations in
the fragment arrival rate.

These four processes, task generation, task elimination, task allocation and
task execution have been studied in detail in this thesis. Through mathematical
models, simulation and measurements on prototype implementations of these
algorithms we have uncovered the critical performance parameters of the two
level query processing scheme, namely partitioning degree and the data model.

It turns out that the minimum response time is obtained for low partitioning
degrees (;:::: 10). The minimum response time is dominated by the task genera
tion process which has to consider a large number of fragment combinations for
execution. The number of produced tasks, and therefore the query cost, depends
on the partitioning degree and underlying data model. If the attributes of two
summary relations have a m - n relationship, the number of tasks increases sig
nificantly. For 1 - n and 1 - 1 relationships the number of tasks can be limited
with a proper partitioning.

It is possible to reduce the summary cost by improving the algorithm and by
amortizing the cost of summary query processing over multiple executions by
storing the summary query result. Therefore, we think that the two-level query
processing architecture is a viable approach to the complex query optimization
and load balancing task in parallel data base systems.

158 CHAPTER 12. SUMMARY AND FUTURE RESEARCH

12.3 FUTURE RESEARCH

The design of a parallel OODBMS is a multi-year effort. Therefore we have
not addressed all the issues in detail. In the previous chapters we have already
encountered directions for further research. We will address them in the following
sections.

The first direction is the further development of the binary storage architec
ture. In the discussion data placement and data replication have only been
discussed in global terms. The main research question is how to make the data
placement and replication adapt to the query workload and available memory
resources. A technique to consider is to decluster binary relations on the basis
of their partitioning, such that for query processing only a limited number of
fragments need to be transported. Another technique worth considering is to
maintain transport statistics for each fragment. If it turns out that a fragment
is frequently copied to a certain processor site, it could be advantageous to move
the fragment permanently to that site.

The second direction concerns the query processing architecture. In particular,
optimizations for the summary query algorithm must be considered. Possible
approaches are to choose the data partitioning on the basis of the underlying
data model. For instance, partition attribute relations of tuple objects on their
tuple om to reduce the number of generated tasks.

The next important issue is to study the effect of the task allocation algorithms
on the load distribution. In the beginning of the project simulation models have
been constructed to study this aspect, but the experiments failed due to defective
simulation software.

Finally, in the task evaluation algorithm the effectiveness and mechanisms for
re-using intermediate results must be studied in detail. The main problem here
is to guess which intermediate results should be maintained to make an effective
use of buffer memory. This problem is related to browsing query optimization,
but more restricted, because in this case the query remains the same and only
the accessed fragments changes.

Bibliography

[ABD+92] M. Atkinson, F. Bancilhon, D. DeWitt, D. Maier, and S. Zdonik.
Building an Object-Oriented Database System: The story of 0 2 ,

chapter The Object Oriented Data Base System Manifesto, pages
3-18. Data Management Systems. Morgan-Kaufman, 1992.

[AK92] S. Abiteboul and P. Kannelakis. Building an Object-Oriented
Database System: The story of 02, chapter Object Identity as
a Query Language Primitive, pages 98-127. Data Management
Systems. Morgan-Kaufman, 1992.

[AKO88] P.M.G. Apers, M.L. Kersten, and H.C.M. Oerlemans. PRISMA
Database Machine: A Distributed, Main-Memory Approach. In
Proceedings of the International Conference on Extending Database
Technology, 1988. Venice, Italy.

[AKW+92] P.M.G. Apers, M.L. Kersten, A. N. Wilschut, P.W.P.J Grefen, C.A.
van den Berg, and J. Flokstra. PRISMA/DB: A Parallel Main
Memory Relational DBMS. IEEE Journal on Data and Knowledge
Engineering, 4(6):541-554, December 1992.

[BCV91] B. Bergsten, M. Couprie, and P. Valduriez. Prototyping DBS3,
a shared-memory parallel database system. In Proceedings of the
First International conference on Parallel and Distributed Infor
mation Systems, pages 226-235, 1991. Miami Beach, Florida.

[Bea88] F. Bancilhon and et al. The design and implementation of 0 2 , an
object-oriented database system . In Advances in Object-Oriented
Database Systems, 1988.

[Bea90] H. Boral and et al. Prototyping Bubba, a highly parallel database
system. IEEE Journal on Data and Knowledge Engineering,
2(1):4-24, 1990.

[BG89] L. Becker and R.H. Giiting. Rule-based optimization and query
processing in an extensible geometric database system. Forschungs
bericht 312, Fachbereich Informatik Universitat Dortmund, Post
fach 500500, D-4600 Dortmund, August 1989.

159

160 BIBLIOGRAPHY

[BK89] E. Bertino and W. Kim. Indexing techniques for queries on
nested objects. IEEE Journal on Data and Knowledge Engineer
ing, 1(2):196-214, June 1989.

[BR88] P. Bodorik and J .S. Riordon. A threshold mechanism for dis
tributed query processing. In Proc. of the 16-th Annual ACM
Computer Science Conference, pages 616-625, 1988. Atlanta, GA.

[Bra84] K Bratbergsengen. Hashing methods and relational operations.
In Proceedings of the 10th International Conference on Very Large
Data Bases, pages 323-333, August 1984. Singapore.

[Car84] L. Cardelli. Semantics of datatypes, volume 173 of Lecture Notes
in Computer Science, chapter A semantics of Multiple Inheritance.
Springer-Verlag, 1984.

[Cat93] R.G.G Cattell, editor. The Object Database Standard: ODMG-93.
Morgan Kaufmann, 1993.

[CBSB92] C. Chachaty, P. Borla-Salamet, and B. Bergsten. Capturing paral
lel data processing strategies within a compiled language. Applied
Information Technology, (13), 1992.

[CDRS86] M. Carey, D.J. DeWitt, J.E. Richardson, and E.J. Shekita. Ob
ject and File Management in the EXODUS Extensible Database
System. In Proceedings of the Twelfth International Conference on
Data Bases, pages 91-100, August 1986. Kyoto.

[Dea90] 0. Deux and et. al. The Story of 0 2 . IEEE Journal on Data and
Know ledge Engineering, 2(1):91-108, March 1990.

[DeW91] D.J. DeWitt. The Benchmark Handbook, chapter The Wisconsin
Benchmark: Past, Present, and Future, pages 119-166. Morgan
Kauffman, 1991.

[DGS+9o] D. J. DeWitt, S. Ghadeharizadeh, D.A. Schneider, A. Bricker,
H. Hsiao, and R. Rasmussen. The GAMMA Database Machine
Project. IEEE Journal on Data and Knowledge Engineering,
2(1):44-51, 1990.

[GGdM89]

[Gib91]

[GM84]

G. Gardarin, I. Guessarian, and C. de Maindreville.
of logic programs into funtional fixpoint equations.
Computer Science, 63:253-274, 1989.

Translation
Theoretical

G.A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary
Storage. An ACM Distinguished Dissertation. The MIT Press,
Cambridge Massachusetts, London England, 1991.

M. Gondran and M. Minoux. Graphs and Algorithms. Interscience
Series in Discrete Mathematics. Wiley, 1984.

BIBLIOGRAPHY 161

[Gro87)

[Gro90)

[GW89)

[HOSS)

[HRD93)

[HS93)

[HZ87]

[JR86]

The Tandem Database Group. NonStop SQL: A Distributed High
Performance, High-Availability Implementation of SQL, pages
113-137. Number 359 in Lecture Notes in Computer Science.
Springer-Verlag, September 28-30 1987. Pacific Grove, CA.

EDS Database Group. Eds - collaborating for a high-performance
parallel relational database. In Proceedings of the ESPRIT confer
ence, November 1990. Brussels, Belgium.

G. Graefe and K. Ward. Dynamic query evaluation plans. In
Proceedings of the 198!) SIG MOD conference, pages 358-366, 1989.

A. Hafez and G. Ozsoyoglu. The partial normalized storage model
of nested relations. In Proceedings of the 14th International Con
ference on Very Large Data Bases, pages 100-111, August 1988.
Los Angeles, CA.

I. Herman, G.J. Reynolds, and J. Davy. Made: A multimedia
application development environment. CWI Report CS-9369, CWI,
1993.

A. Heur and M.H. Scholl, editors. Fifth Workshop on Foundations
of Models and Languages: Optimization in Databases. Intitut fiir
Informatik, Technische Universitat Clausthal, september 1993.

M. Hornick and Z. Zdonik. A Shared Segmented Memory System
for an Object Oriented Database. ACM Transactions on Office
Information Systems, 5(1), January 1987.

M.B. Jones and R.F. Rashid. Mach and matchmaker: kernel and
language support for object oriented distributed systems. In Inter
national OOPSLA '86 conference, 1986. Portland, OR.

[KAM+87] M.L. Kersten, P.M.G. Apers, Houtsma M.A.W., E.J.A. van Kuyk,
and R.L.W. van de Weg. A Distributed, Main-Memory Database
Machine. In Proc. of the Fifth International Workshop on Database
Machines, pages 353-369, October 1987.

[KBG89] W. Kim, E. Bertino, and J. Garza. Composite objects revisited.
ACM Sigmod Record, 18(2):337-347, 1989.

[KBGW90) W. Kim, N. Ballou, J.F. Garza, and D. Woelk. Architecture of the
ORION next-generation database system. IEEE Journal on Data
and Knowledge Engineering, 2(1):109-124, March 1990.

[Ker91) M.L. Kersten. Goblin, a DBPL designed for Advanced Database
Applications. In Proceedings of the 2nd International Conference
of Database and Expert System Applications, 1991. Berlin.

[KNT89) M. Kitsuregawa, M. Nakayama, and M. Tagaki. The effect of
bucket size tuning in the dynamic hybrid GRACE hash join

162 BIBLIOGRAPHY

method. In Proceedings of the fifteenth international conference
on Very Large Data Bases, pages 257-267, August 1989. Amster
dam, The Netherlands.

[KvdB91] M.L. Kersten and C.A. van den Berg. Parallel Processing of a
Class of Geographical Queries. In Proceedings of the International
Workshop on Database Management Systems for Geographical Ap
plications, pages 274-287, 1991. Capri, Italy.

[KvdBS+93] M.L. Kersten, C.A. van den Berg, A.P.J.M. Siebes, Thieme C.J.,
and van der Voort M.H. The Goblin Database Programming Lan
guage. Technical Report CS-R9407, CWI, november 1993.

[LC86] H. Lu and M. J. Carey. Load balanced task allocation in locally dis
tributed computer systems. In Proceedings of the 1986 conference
on parallel processing, pages 1037-1039, 1986.

[LC87] Tobin J. Lehman and Michael J. Carey. A Recovery Algorithm
for a High-Performance Memory-Resident Database System. In
Proceedings of the 1987 SIGMOD conference, 1987.

[Loh89] G.M. Lohman. Is query optimization a 'solved' problem ? Com
puter Science technical report 89-005, Oregon Graduate Center,
Beaverton, OR, 1989.

[LR88] M.D. Palmer Leland and W.D. Roome. The Silicon Database Ma
chine: Rationale, Design, and Results. In Database Machines and
Knowledge Base Machines, pages 311-324, 1988.

[LSL92] T.J. Lehman, E.J. Shekita, and Cabrera L.F. An Evaluation of
Starburst's Memory Resident Storage Component. IEEE Jour
nal on Data and Knowledge Engineering, 4(6):555-567, December
1992.

[Mur89] M.C. Murphy. Effective resource utilization for multiprocessor join
execution. In Proceedings of the 15th International Conference on
Very Large Data Bases, pages 67-75, 1989.

[MvRT+9o] S.J. Mullender, G. van Rossum, A.S. Tanenbaum, R. van Renesse,
and H. van Staveren. Amoeba: A distributed operating system for
the 1990s. Computer, 23(5):44-53, 1990.

[Ngu81] G.T. Nguyen. Distributed query management for a local network.
In Proceedings of the 2nd International Conference on Distributed
Computing Systems, pages 188-196, 1981. Paris, France.

[01171] T.W. Olle. Feature Analysis ofGeneralized Database Management
Systems. Communications of the ACM, 14(5), May 1971.

[OV92] Tamer M Ozsu and Patrick Valduriez. Principles of Distributed
Databases. Prentice-Hall, 1992.

BIBLIOGRAPHY 163

[Pag92] J. Page. Proc. of the 10th British National Conference on
Databases, volume 618 of Lecture Notes in Computer Science, chap
ter A study of a Parallel Database Machine and its Performance
- The NCR/Teradata DBC/1012, pages 113-137. Springer-Verlag,
July 6-8 1992. Aberdeen, Scotland.

[PMC+9o] H. Pirahesh, C. Mohan, J. Cheng, T.S. Liu, and P. Selinger. Par
allelism in relational database systems: Architectural issues and
design approaches. In Proc. of the 2nd International Symposium
on Databases in Parallel and Distributed Systems, pages 4-29, July
1990. Dublin.

[SAC+79] P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and
T.G. Price. Access path selection in a relational database manage
ment system. In Proc. ACM SIGMOD Int. Conj. on Management
of Data, pages 23-34, May 1979. Boston, Ma.

[SD89] D. A. Schneider and D.J. DeWitt. A performance evaluation of
four parallel join algorithms in a shared-nothing multiprocessor en
vironment. In Proc. of the 1989 ACM SIGMOD conference, pages
110-122, June 1989. Portland, Oregon.

[SKPO88] M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout. The
Design of XPRS. In Proceedings of the 14th International Confer
ence on Very Large Data Bases, pages 318-330, August 1988. Los
Angeles, CA.

[SRH90] M. Stonebraker, L. Rowe, and M. Hirohama. The Implementation
of POSTGRES. IEEE Journal on Data and Knowledge Engineer
ing, 2(1):125-142, March 1990.

[ST89] S. Salza and M. Terranova. Evaluating the size of queries on rela
tional databases with non uniform distribution and stochastic de
pendence. In Proc. of the 1989 ACM SIGMOD conference, pages
8-14, 1989. Portland, Oregon.

[Tee93] W.B. Teeuw. Parallel Management of Complex Objects: The design
and implementation of a Complex Object Server for Amoeba. PhD
thesis, Twente University, 1993.

[TF82] T.J. Teorey and J.P. Fry. Design of Database Structures. Prentice
Hall, 1982.

[TN91] M. Tsangaris and J. Naughton. A stochastical approach for clus
tering in object bases. SIGMOD Records, May 1991.

[Ull89] J. D. Ullman. Principles of Database and Knowledge Base Systems,
volume II. Computer Science Press, 1989.

[Val87] P. Valduriez. Join indices. TODS, 12(2):218-246, 1987.

164

[VBD89]

[vdBK90]

BIBLIOGRAPHY

F. Velez, G. Bernard, and V. Darnis. The 0 2 Object Manager: an
Overview. In Proceedings of the 15th International Conference on
Very Large Data Bases, pages 357-366, August 1989. Amsterdam.

C.A. van den Berg and M.L. Kersten. Logging and Recovery in
PRISMA, pages 229-241. Lecture Notes in Computer Science 503.
Springer-Verlag, September 1990.

[vdBKSA91] C. A. van den Berg, M.L. Kersten, and S. Shair-Ali. Dynamic par
allel query processing. Technical Report CS-R9112, CWI, February
1991.

[vdBvD93] C.A. van den Berg and F. van Dijk. DBO implementation options:
data base requirements for Multi-Media support. MADE Report
T /DBO-eval/S.2, CWI, 1993.

[vK93] E. van Kuijk. Semantic Query Optimization in Distributed
Database Systems. PhD thesis, Twente University, 1993.

[VKC86] P. Valduriez, S. Khoshafian, and G. Copeland. Implementation
techniques of complex objects. In Proceedings of the Twelfth In
ternational Conference on Very Large Data Bases, pages 101-109,
August 1986. Kyoto.

[WA91] A.N. Wilschut and P.M.G Apers. Dataflow Query Execution in a
Parallel Main-Memory Environment. In Proceedings of the First
International conference on Parallel and Distributed Information
Systems, pages 68-77, 1991. Miami Beach, Florida.

[WFA92] A.N. Wilschut, J. Flokstra, and P.M.G. Apers. Parallelism in a
main-memory system: The performance of PRISMA/DB. In Pro
ceedings of the 18th International Conference on Very Large Data
Bases, 1992. Vancouver, Canada.

[WG89] A. Wilschut and P. Grefen. XRA definition. PRISMA document
P465, Twente University, September 1989.

[Wie83]

[Wil93]

[WT90]

[WY76]

G. Wiederhold. Database Design. McGraw-Hill, 1983.

A. Wilschut. Parallel Query Execution in a Main Memory
Database System. PhD thesis, Twente University, 1993.

P. Watson and Townsend. The EDS Parallel Relational Database
System, pages 149-166. Lecture Notes in Computer Science 503.
Springer-Verlag, September 1990. Noordwijk, The Netherlands.

E. ·wong and K. Youssefi. Decomposition- a strategy for query
processmg. ACM Transactions on Data base Systems, 1(3):223-
241, 1976.

4GL, 10

mark, 121
nested relations, 30
segments, 28
tombstones, 31

ADABAS, 32
adaptive storage, 46
ADT, 19
Allocator, 63
Amoeba, 135
application interface, 10
applications

GIS, 2
multi-media, 2

associative join processing, 86
attribute nodes, 119

basic block count, 111
BAT, 44

adaptive storage, 46
BID, 49
implementation, 46
memory layout, 47
relational operations, 45
transaction management, 46
unique identifier, 49

BAT Buffer Manager, 48
Bat Buffer Manager, 128
Batch task generation, 78
BBM, 48
Binary Association Tables, 44
binary relation, 35
binding list, 22, 65
boolean term, 71
Bubba, 2

Index

165

buffer management, 136
Buffer Manager, 60
buffer miss ratio, 110
buffer replacement, 48, 61, 107
buffer volume, 105
BUN, 45

cardinality, 131
CAT, 40
Chinese Postman Problem, 75
choose-plan operator, 53
class, 16

extent, 16
hierarchy, 17
inheritance, 17
object factory approach, 17
object taxonomy approach, 17
specification, 16

Class Administration Tables, 40
class constraint, 21
clustering, 29
collision list, 137
communication cost, 136
commutative operation, 88
complex objects, 16
constant nodes, 119
cost function, 119
cost model, 6
CPP, 76
CPP path, 77

data availability, 4
data layer, 39
data model, 16
data parallism, 3
data partitioning, 3

dynamic, 3

166

data placement, 3
data replication, 4
data skew, 6, 59, 87
data step, 53, 54
DBMS

main-memory, 2
object-oriented, 2
parallel, 1

DBPL, 10
decision procedure, 57
declustering, 3, 29
decomposed storage model, 35
decomposition, 53
derived class, 22, 65
direct storage model, 32
directory, 28
distinguished nodes, 116
distributive property, 89
DQP, 7, 51
DSM, 35, 45
duplicate elimination, 18
dynamic partitioning, 3
Dynamic Query Evaluation Plans,

57
dynamic query optimization, 88, 116,

130, 133, 138
associative operations, 89
commutative operations, 88
distributative operations, 89
selection and projection, 90
semantic properties, 90

Dynamic Query Processing, 7
dynamic query processing, 51, 86

architecture, 51
data step, 54
decomposition, 53
granularity, 52
load balancing, 57
query monitoring, 55
query optimization, 57
query restart, 55
threshold technique, 53

edge assignment, 119
EDS, 2
effective parallelism, 101
elimination factor, 91

embedded queries, 10
Exodus, 10

INDEX

extensible data-base systems, 11

FGCS, 103
flattened storage model, 32
fragment cardinality, 141
fragment data, 41
fragment size, 92
fragmentation

hash-based, 41
range-based, 41

Fragmentation rules, 41
FSM, <12

Galileo, 10
Gamma, 2
GemStone, 10
Generator, 62
Goblin, 9

language, 15
Goblin DBPL

application interface, 25
base types, 19
class constraint, 21
class specification, 20
derived class, 22
dynamic classification, 20
inheritance, 21
ISA, 21
methods and functions, 21, 23
object creation, 25
query specification, 22
statements and expressions, 24
type constructors, 19
type generalization, 20
type specialization, 20
types and subtypes, 19

Goblin design
adaptiveness, 12
application domain, 10
language, 11
main-memory, 12
operating system support, 13
technological trends, 12

Goblin kernel, 136
communication cost, 136
join cost, 137

INDEX

processing cost, 137
selection cost, 138

Goblin query processing, 56, 59
Allocator, 101
architecture, 60
Buffer Manager, 60
derived class, 65
fragment allocation, 61
Generator, 72
load balancing, 63
Optimizer, 86
partitioning degree, 56
partitioning method, 56

· performance evaluation, 135
query decomposition, 64
query graph, 68
query optimization, 62
Query Processor, 62
query result representation, 65
Query Scheduler, 62
query translation, 67
summary query evaluation, 62
task evaluation, 62, 115

Goblin storage model, 38
access path, 40
BAT, 44
CAT, 40
data layer, 44
declustering, 39, 40
fragment allocation, 61
fragment storage, 39, 44
hash partitioning, 44
indexing, 39, 40
partitioning, 40
persistency, 39, 48
range partitioning, 43
RAT, 42
relational operations, 43
replication, 49
schema representation, 39, 40
summary data base, 40, 42
transaction failure causes, 49

Goldrush, 2
granularity, 52, 101
graph reduction, 116, 120

hash phase, 88

hash-based fragmentation, 41
head attribute, 44
heuristics rules, 11 7
horizontal fragmentation, 3, 41
hyper-graph, 116

I/O bottleneck, 29, 102
impedance mismatch, 2, 10
inclusion inheritance, 17
INGRESS, 116
intermediate results, 133
internal nodes, 119

join cost, 137
join order, 87
join selectivity, 132
join term, 70
join-index graph, 77
joinABprime, 149

167

load balancing, 4, 53, 56, 101, 108
load distribution, 60
locality, 104
locality principle, 107
logical optimization phase, 6
LRU buffer replacement, 107

Mail example query, 68
main-memory

persistency, 48
main-memory approach, 1
mark, 45, 79
Maximum Cache Hit, 107
Maximum Cache Hit task allocation,

109
Maximum Cache Volume, 107
MCH,107
MCV,107
MCV replacement, 108
memory layout, 47
MIMD, 12
minimum response time, 148

navigational task generation, 82
network load, 136
NF2 , 30
Normal distribution, 94
normalized storage model, 34

168

NSM, 34

OASIS, 32
object, 16

attributes, 16
behavior, 16
equality, 18
methods, 16
state, 16

object attributes, 16
object identifier, 119
object identity, 16
object methods, 16
one-copy-serializability, 49
Ontos, 10
OODBMS, 2

application interface 10 18 25)))

concepts, 15
extensibility, 11
Goblin, 9
object representation 27
object storage modei: 27
ODMG datamodel, 2
schema design, 16
standardization, 2
workload, 31

operator tree, 6
optimal buffer management, 104
optimization heuristic, 116
optimization rule 87
Optimizer, 62 '
ordinality, 131

P-DSM, 37
P-NSM, 37
page manager, 104
parallel bottom-up evaluation· 96
parallel disks, 29 '
parallel query optimization 6
parallel query processing, 2'

data availability, 4
data parallelism 3
data placement,

1

3
data replication, 4
dynamic, 7
load balancing, 4
pipeline parallelism , 4
program parallelism, 4

INDEX

static, 6
sub-query allocation, 4

parallelization phase, 6
partitioning, 40

fragment allocation, 42, 46
fragment data, 41
fragmentation rule 41
hash-based, 41 '
query optimization, 40
range-based, 41
reconstruction rule, 41
summary relation, 41

partitioning degree, 3, 92, 141
partitions, 28
path expression, 66, 69
path-expression, 24
performance evaluation, 135

minimum response time, 148
partitioning overhead, 147
task evaluation, 144
task generation, 143
Wisconsin benchmark, 149

physical database design, 27
physical representation 27
pipeline parallelism, 4 '
pivot attribute, 78, 119
pivot graph, 119
pivot node, 119
pivot phase, 80
pivot relation, 78, 79
pivot relations 119
placement tree~ 30)

PRISMA, 2
private objects, 18
probability distribution 92
probe phase, 88 '
program parallelism, 4
project-select-join, 116
projection attributes, 69, 119

QEP, 6
QP, 62
QUEL, 116
query

parallelization, 89
query complexity, 59
query decomposition, 4

INDEX

query evaluation plan, 6, 51
Query Evaluator, 51
query execution phase, 6
query graph, 68, 73
query optimization, 56
query process, 4

cost model, 6

execution, 6
logical optimization, 6
optimization, 6
parallelization, 6

query evaluation plan, 6
query translation, 4

Query Processor, 62

Query Scheduler, 51
query scheduler, 6
query step, 53
Query translation, 67
query translation, 4

RAID, 29
random replacement, 107
random task allocation, 109
range-based fragmentation, 41
RAT, 42
read-one-write-all-available, 49
reconstruction rule, 41
records, 28
Redistribution Administration Tables,

42
relative buffer size, 110
remark, 45
replica control algorithm, 4
response time, 136
restriction term, 70
ROWA, 49
run-time optimization, 53, 87

schema layer, 39, 40
select-project-join query, 68
selection condition, 66
selection cost, 138
semantic properties, 90
semi-join, 45
sequential evaluation, 95
sequential task allocation, 109
SGI/Indigo, 135
shared objects, 30

election strategy, 30
replication strategy, 30

single node, 119
SPJ, 68
SQP, 6, 51
Starburst, 31
Static Query Processing, 6

static query processing, 51
storage layer, 39
storage model, 28, 32

clustering, 29

declustering, 29
directory, 28
DSM, 35
fragment storage, 44
FSM, 32
I/0 bottleneck, 29

main-memory, 29

NSM, 34
object evolution, 30
object sharing, 30
partition, 28
record, 28
schema representation, 39
segment, 28
surrogate, 28

sub-graph, 119
summary data base, 41
summary database, 72
summary graph, 83
summary layer, 39, 40
summary query, 73

algorithm, 75
batch algorithm, 78
join index graph, 77
navigational algorithm, 82
query graph, 73
relational operations, 73
renumbering, 79

169

result construction, 80
result representation, 73, 78

summary query cost, 144, 150
summary relation, 43, 73

relational operations, 43
surrogates, 28

tail attribute, 44

170

Tandem's NonStopSQL, 2
target edge, 117, 120
target edge selection, 130
target nodes, 121
target type, 21
task allocation, 61, 101, 108,136

allocation overhead, 111
buffer miss ratio, 110
buffer replacement, 103, 107
buffer volume, 104
cost model, 102
I/0 bottleneck, 102
LRU buffer replacement, 107
MCH task allocation, 109
MCV buffer replacement, 108
optimal buffering, 104
performance evaluation, 110
random buffer replacement, 107
random task allocation, 109
sequential task allocation, 109

task elimination, 86, 91
cost model, 97
effectiveness, 97
elimination factor, 94
join order, 95
parallel bottom-up evaluation,

96
partitioning degree, 92
sequential evaluation, 95

task evaluation, 115
cost based optimization, 118
cost model, 130
data model optimization, 133
equi-join reduction, 125
execution, 128
graph reduction, 120
initialization, 120, 128
intermediate results, 118, 133
query graph, 119
query result representation, 118
renumbering, 121
selection reduction, 121
target edge selection, 130
theta-join reduction, 123

task execution time, 146, 150
task generation, 72

batch algorithm, 78

INDEX

navigational algorithm, 82
task migration, 108
task monitor, 62
task simplification, 90
Teradata DBC/1012, 2
transaction failure, 49
two-level query-processing, 152
type

atomic, 18
constructors, 18
objects versus values, 18

uniform distribution, 93
UoD, "16

Wisconsin benchmark, 149
summary query cost, 150
task execution time, 150

Wong-Youssefi algorithm, 116
working set, 104, 107
workload, 104

XPRS, 57

Zipf distribution, 94

Samenvatting

Snel beschikbare en betrouwbare informatie wordt steeds belangrijker binnen het
bedrijfsleven en de overheid. Tevens ziet men dan <lat de hoeveelheid gegevens
die bijgehouden wordt jaarlijks met 25 % groeit. Gegevensbanken vormen een
middel om onder deze omstandigheden toch aan de informatiebehoefte te vol
doen.

Een belangrijk voordeel van een gegevensbank is <lat men door middel van
zoekvragen ruwe gegevens kan combineren om zo 'verborgen' informatie af te
leiden. Denk bijvoorbeeld aan de bestrijding van uitkeringsfraude door loonbe
lastinggegevens te koppelen aan uitkeringsgegevens.

N aarmate de zoekvragen ingewikkelder worden en de hoeveelheid gegevens
omvangrijker, is het voor een enkele computer niet mogelijk om een zoekvraag
binnen een aanvaardbare termijn op te lossen. Met een zogeheten 'parallelle
gegevensbank' waarbij verschillende computers samenwerken kan de verwer
kingstijd teruggebracht worden. In <lit proefschrift wordt een nieuwe techniek
onderzocht om de zoekvraag door een aantal computers te laten verwerken.

In de gangbare aanpak wordt de zoekvraag opgedeeld in deelvragen en daarna
verdeeld over de beschikbare computers. Het resultaat van een deelvraag wordt
doorgestuurd naar een andere computer en gebruikt in de oplossing van zijn
deelvraag. Zodoende wordt het resultaat van de zoekvraag als het ware aan
een lopende band geconstrueerd. De centrale problemen in deze aanpak zijn
de opdeling van de zoekvraag in deelvragen en de toekenning van de totale
hoeveelheid werk over de beschikbare computers, zodanig <lat de deelvragen
binnen dezelfde termijn opgelost worden. Hiervoor moet de duur voor iedere
deelvraag bepaald worden en rekening gehouden worden met de belasting van
iedere computer. Helaas is het onmogelijk om deze factoren voorafgaand aan de
verwerking precies te bepalen, zodat niet volledig gebruik gemaakt wordt van de
totale capaciteit van het computersysteem waardoor niet de minimaal mogelijke
duur bereikt wordt.

In de voorgestelde aanpak worden de gegevens in stukken verdeeld zodat de
originele zoekvraag kan worden opgelost door een groot aantal identieke deelvra
gen of taken uit te voeren op een gedeelte van de gegevensbank. Een centrale
component construeert, coordineert en verdeelt deze taken tijdens de verwerking,
rekening houdend met de belasting van iedere computer. Een voordeel van deze
aanpak is dat het niet nodig is om voorafgaand aan de verwerking een schatting
te maken van de duur van iedere deelvraag, omdat de verdeling van het werk

171

172 Samenvatting

tijdens de verwerking nog aangepast kan worden. Deze techniek wordt dynamic
query processing genoemd.

Echter, het dynamisch aanpassen van de verwerking aan de feitelijke werk
last kost extra tijd. In <lit proefschrift proberen we voor deze nieuwe verwer
kingsmethode inzicht te krijgen in deze kosten. Bovendien worden nieuwe tech
nieken voorgesteld en geanalyseerd die de totale werklast terugbrengen gebruik
makend van de informatie in de gegevensbank.

Een van deze technieken is het zogenaamde "two-level query processing" waar
bij de zoekvraag op twee abstractieniveaus wordt verwerkt. De centrale com
ponent lost de zoekvraag op over een samenvatting van de opgeslagen gegevens
en construeert aan de hand van het resultaat taken die parallel op de werkelijke
gegevens worden uitgevoerd. Aan de hand van de informatie op de geabstra
heerde gegevens kan de centrale component bepalen welke zoekvragen uitein
delijk kunnen bijdragen aan. het resultaat.

Op basis van wiskundige analyses en simulaties van deelaspecten van deze "dy
namic query processing"-techniek is een parallel object-georienteerde gegevens
bank ontworpen en geimplementeerd. Uit metingen aan het geimplementeerde
systeem blijkt <lat, ondanks de tijd die de centrale component nodig heeft voor
de generatie van deelvragen, het systeem een zoekvraag binnen eenzelfde tijd
kan beantwoorden als traditionele parallelle gegevensbanken. Dit is bemoedi
gend aangezien er in de implementatie nog vele verbeteringen aan te brengen
ZIJn.

Uit vervolgonderzoek zal de werkelijke kracht van het systeem moeten blijken
zodra er met meer ingewikkelde zoekvragen geexperimenteerd gaat worden. De
verwachtirig is <lat traditionele systemen bij het oplossen van deze zoekvragen
de beschikbare computers minder effectief kunnen gebruiken.

Curriculum Vitae

Carel van den Berg was born in Bergen, North-Holland, The Netherlands on
August 14, 1963. In 1975 he started secondary school at the Murmellius Gym
nasium in Alkmaar and passed his final exam gymnasium-,8 in 1981.

He studied computer science at the University of Amsterdam and got his B.Sc.
in 1984, and M.Sc. in 1986 with physics as subsidiary subject. He specialized
in computer architecture with image processing as research subject and wrote
his M.Sc. thesis on the design and implementation of an efficient image-memory
interface for an array processor. "An image processing system using a mesh
connected array of binary processors and bit/pixel accessible image memory".
His advisors were Prof. Dr. L.O. Hertzberger and Dr. W. Duinker.

After his graduation he joined the data-base research group of Dr. M.L. Ker
sten at the Centre for Mathematics and Computer Science (CWI) in Amster
dam to work on the PRISMA-project which is a joint research effort of industry
(Philips), dutch academia, and the CWI on the design and implementation of
a parallel main memory relational database machine using a parallel object ori
ented language. His tasks were twofold: to participate in the design and imple
mentation of this system and to perform research on parallel data-base machines.
This effort resulted in a prototype implementation and a number of international
publications. Furthermore, it triggered the conception of the research subject
of this thesis: dynamic query processing in a parallel object-oriented data-base
system.

In the fall of 1990 he was assigned to the SION project "Starfish" and started
his Ph.D. research. In this project the University of Amsterdam, Free Univer
sity, Twente University and the GWI cooperate to develop applications for a
distributed operating system (Amoeba). In this project he concentrated on the
design and development of a query processing architecture and data representa
tion for a parallel object-oriented database system.

Currently, he continues his research on dynamic query processing and takes
part in the Esprit project "MADE" to investigate data-base support for multi
media applications.

173

	scan-21-03-2022-111155
	scan-21-03-2022-111242

