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—— Abstract

Many computational problems are subject to a quantum speed-up: one might find that a problem

having an O(n?)-time or O(n?)-time classic algorithm can be solved by a known O(n'*?)-time or
O(n)-time quantum algorithm. The question naturally arises: how much quantum speed-up is
possible?

The area of fine-grained complexity allows us to prove optimal lower-bounds on the complexity of
various computational problems, based on the conjectured hardness of certain natural, well-studied
problems. This theory has recently been extended to the quantum setting, in two independent
papers by Buhrman, Patro and Speelman [7], and by Aaronson, Chia, Lin, Wang, and Zhang [1].

In this paper, we further extend the theory of fine-grained complexity to the quantum setting.
A fundamental conjecture in the classical setting states that the 3SUM problem cannot be solved
by (classical) algorithms in time O(n*"¢), for any ¢ > 0. We formulate an analogous conjecture,
the Quantum-3SUM-Conjecture, which states that there exist no sublinear O(n'~¢)-time quantum
algorithms for the 3SUM problem.

Based on the Quantum-3SUM-Conjecture, we show new lower-bounds on the time complexity of
quantum algorithms for several computational problems. Most of our lower-bounds are optimal, in
that they match known upper-bounds, and hence they imply tight limits on the quantum speedup
that is possible for these problems.

These results are proven by adapting to the quantum setting known classical fine-grained
reductions from the 3SUM problem. This adaptation is not trivial, however, since the original
classical reductions require pre-processing the input in various ways, e.g. by sorting it according to
some order, and this pre-processing (provably) cannot be done in sublinear quantum time.

We overcome this bottleneck by combining a quantum walk with a classical dynamic data-
structure having a certain “history-independence” property. This type of construction has been used
in the past to prove upper bounds, and here we use it for the first time as part of a reduction. This
general proof strategy allows us to prove tight lower bounds on several computational-geometry
problems, on CONVOLUTION-3SUM and on the 0-EDGE-WEIGHT-TRIANGLE problem, conditional on
the Quantum-3SUM-Conjecture.

We believe this proof strategy will be useful in proving tight (conditional) lower-bounds, and
limits on quantum speed-ups, for many other problems.
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1 Introduction

The world is investing in quantum computing because of so-called quantum speed-ups:
quantum algorithms can solve many computational problems faster than their classical
counterparts. However, the amount of speed-up that is possible varies among different
computational problems. It is expected that quantum computers will remain an expensive
resource for a long time, and the extent to which a quantum speed-up is possible, or not
possible, may one day be a key factor in deciding whether or not to invest in the use of a
quantum computation, for example in an industrial setting.

Such a consideration is not a mere abstraction. It is folk knowledge among researchers in
quantum error-correction that current error-correction techniques are so costly, meaning the
constant-factor overhead they impose is so great, that quadratic quantum speed-ups will offer
no advantage, when compared to their classical counterparts. Babbush et al. [4] consider
N-qubit quantum algorithms that work by making quantum calls to certain primitives, so
that a quantum algorithm will do, e.g., M calls, and the corresponding classical algorithm
will do M? calls, to the same primitive. Here M » N a~ 100 (so, e.g., we might using
Grover to search for a satisfying assignment to a CNF with roughly 100 variables). They
then estimate how large M must be, in order for quantum computers to offer a significant
advantage over their classical counterparts, and conclude:

[We find that, even when] using state-of-the-art surface code constructions under a
variety of assumptions, (...) quadratic speedups will not enable quantum advantage on
early generations of fault-tolerant [quantum computers] unless there is a significant
improvement in how we would realize quantum error-correction.

It can further be said that the estimates appearing in [4] are extremely generous on the
quantum side, in many respects. So, even allowing for incremental improvements to current
quantum error correction, improvements in qubit technology, and so forth, this uselessness
of quadratic quantum speedups is likely to assert itself in practice, for decades to come.

It is therefore essential to understand how much quantum speed-up is possible for specific
computational problems (for example, so as not to overstate the potential of early-generation
quantum computers). For this purpose we would need to have tight upper and lower-bounds
on both classical and quantum algorithms.

Sadly, the state of affairs is such that we do not even know how to prove super-linear
time lower-bounds (e.g., on a classical random-access machine). Hence, there are some
computational problems which do have polynomial-time (e.g. quadratic-time) algorithms,
classical or quantum, and these algorithms are conjectured to be optimal, but we presently
have no way of proving this.
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The theory of fine-grained complexity has been developed in the last decade to overcome
this problem. Analogous to how NP-completeness allows us to prove super-polynomial lower-
bounds, fine-grained complexity allows us to prove tight fixed-polynomial (e.g. quadratic)
lower-bounds on the time complexity of many problems in P, conditioned on hardness
conjectures for a few natural, well-studied problems. Three central hardness conjectures are
the strong exponential-time hypothesis (SETH) for satisfiability, a conjectured cubic-hardness
for the all-pairs shortest-path problem (APSP) and a conjectured quadratic hardness for the
3SUM problem.!

Recently, two independent works initiated the study of fine-grained complexity in the
quantum setting. Both works studied quantum variants of SETH, and used these variants to
prove (often tight) bounds on how much quantum speed-up is possible for various problems.
Aaronson, Chia, Lin, Wang, and Zhang [1] presented linear quantum time lower bounds
for Closest Pair, Bichromatic Closest Pair, and Orthogonal Vectors, conditioned on the
quantum hardness of the Satisfiability (SAT) problem. In the same paper, they also present
matching quantum upper bounds for these problems. Simultaneously, Buhrman, Patro,
and Speelman [7] presented a framework for proving quantum time lower bounds for many
problems in P conditioned on quantum hardness of variants of SAT, which they used to
prove an n'® quantum time lower bound for the Edit Distance and the Longest Common
Subsequence problems.

In this work, we explore quantum fine-grained reductions to derive quantum time lower-
bounds for several problems in P, conditioned on a natural, conjectured quantum hardness
for the 3SUM problem. These lower-bounds will often tightly match upper-bounds given by
known quantum algorithms, and similar tight upper and lower-bounds have also been proven
in the classical setting. Together, these tight classical and quantum bounds are finally able
to tell us exactly how much quantum speed-up is possible for various problems, which is
the main goal of this line of research. For the problems we study, we will conclude that a
quadratic speed-up is, in fact, the best possible.

1.1 The conjectured hardness of 3SUM

The 3SUM problem is defined as follows: We are given as input a list .S of n integers, which
we may assume to be between —n3 and n?,2 and we wish to know if there exist a,b,c in S
such that a + b+ ¢ = 0. There is a simple classical algorithm that solves this problem in
O(n?) time which is as follows: Use O(nlogn) time to make a sorted copy of the input S,
let’s denote by S’. Then go over n? pairs (a,b) € S x S and search if —(a + b) is present in S’
using binary search. This algorithm takes O(nlogn) +n?logn = O(n?) time®, but even after
many years of interest in the problem, the exponent has not been reduced. The conjecture
naturally arises that there is no € > 0, such that 3SUM can be solved in O(n?~¢) classical
time. We refer to this conjecture as the Classical-3SUM-Conjecture. Using this conjecture,
one can derive conditional classical lower bounds for a vast collection of computational
geometry problems, dynamic problems, sequence problems, etc. [10, 14, 13, 15].

However, the Classical-3SUM-Conjecture no longer holds true in the quantum setting, as
there is a faster quantum algorithm for 3SUM: we may use Grover search as a subroutine in
the O(n?) classical algorithm to solve the problem in O(n) quantum time. Apart from this

! The survey by Vassilevska Williams contains an overview of many results within this area [15].

2 This is because the 3SUM problem over lists with larger integers can be reduced to the 3SUM problem
on n3-bounded integers by a simple hashing technique.

3 Note that there is also a classical algorithm that solves 3SUM in O(n?) time.
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quadratic speedup, no further improvement to the quantum-time upper-bound is known. It is
worth mentioning that there is a sub-linear O(ns/ 4) quantum query algorithm for computing
3SUM |2, 8] — with a matching lower bound of Q(n?*) [5] — this query algorithm however,
is not time efficient. Consequently, it was conjectured [3] that the 3SUM problem cannot be
solved in sub-linear quantum time in the QRAM model:

» Conjecture 1 (Quantum-3SUM-Conjecture [3]). There does not exist a § > 0 such that
3SUM on a list of n integers can be solved in O(n'~%) quantum time in the QRAM model.

It is then natural to try to extend the classical 3SUM-based lower bounds to the quantum
setting, and one may at first expect this task to be a simple exercise. However, one soon
realizes that none of the existing classical reductions can be easily adapted to the quantum
regime. Indeed, most of the existing classical reductions begin by pre-processing the input
in some way, e.g., by sorting it according to some ordering, and this pre-processing turns
out to be essential for the reduction to work efficiently. This is not an issue in the classical
setting, as the classical conjectured lower bound for 3SUM is quadratic. Hence, the classical
reductions can accommodate any pre-processing of the input that takes sub-quadratic time,
such as e.g. sorting. However, this pre-processing becomes problematic in the quantum
setting, since here we will need a sublinear-time quantum reduction, and even simple sorting
requires linear quantum time on a quantum computer [12].

We present a workaround for this problem. The idea of the proof is to adapt Ambainis’
quantum walk algorithm for element distinctness [2]. For example, to enable reductions that
need a sorted input, then instead of having the reduction sort the entire list, we combine
a data structure for dynamic sorting together with a quantum walk algorithm. As we will
show, this approach only needs the reduction to sort a small part of the input and allows us
to show that 3SUM remains hard, even when the entire input is sorted. As we will see, this
idea can be extended to allow for any “structuring” of the input (not just sorting) which
can be implemented by a dynamic data structure obeying a certain “history-independence”
property. The proof will be sketched in Section 1.2.

This quantum-walk plus data-structure proof strategy has been used to prove upper-
bounds on other problems (e.g., for the closest-pair problem [1]), and here we use it for the
first time as part of a reduction in order to obtain a lower-bound. We expect that the same
strategy will be applicable to other quantum fine-grained reductions, and our hope is that
this will give rise to a landscape of results, that establish (conditional) tight lower-bounds for
quantum algorithms. This, in turn, will precisely answer the question of how much quantum
speed-up is possible for a variety of computational problems.

Using this strategy we are able to show that various “structured” versions of 3SUM are
as hard as the original (unstructured) 3SUM problem, even in the quantum case. Once we
have shown that these structured versions of 3SUM are hard, we may then construct direct
quantum adaptations of the classical reductions, to show the quantum hardness of several
computational-geometry problems, of CONVOLUTION-3SUM and of the 0-EDGE-WEIGHT-
TRIANGLE problem. This enables us to prove quantum time lower-bounds for these problems,
conditioned on the Quantum-3SUM-Conjecture. All these results are formally stated and
proven in Sections 3,4,5 of the full version of our paper [6].

1.2 Main ldea: Reductions via Quantum Walks

The Classical-3SUM-Conjecture states that there is no sub-quadratic classical algorithm
to solve the 3SUM problem. However, the statement of this conjecture can be shown to
be equivalent to the same statement for a promise version of 3SUM where the input S is
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sorted. That is because, if there was a sub-quadratic algorithm for 3SUM on sorted inputs,
then given any (unsorted) input one can first sort the entire input with additional O(nlogn)
pre-processing time, and then use the sub-quadratic algorithm for sorted 3SUM, resulting
in a sub-quadratic algorithm for unsorted 3SUM. In fact, one can make a more general
statement in this regard. An input to the 3SUM problem is a list S € {—n?,...,n3}" of n
integers (possibly with repetitions). One may consider a family {¢;} of queries, i.e., each
qi - {—n3,...,n3}" — A, is a function on lists of integers, for some set A; of possible answers
to the query. (For example, ¢;(S) could output the i-th smallest integer in S.) We may
then ask about static data-structures that allow us to efficiently answer these queries. (For
example, we may consider the sorted version of S to be a data-structure that allows us to
efficiently obtain the i-th smallest element of S.) Then we may generally state that, if it is
possible to preprocess an input S in sub-quadratic time to produce a static data-structure
that allows us to answer any query in n°() time, then the “structured” variant of Classical-
3SUM-Conjecture, where we give the algorithm access to all the queries ¢;(S) for free, is
equivalent to the original version of Classical-3SUM-Conjecture.

Most of the known fine-grained reductions from 3SUM, in the classical setting, can be
explained in the following way: one first shows that a certain “structured” variant of 3SUM
is just as hard as the original 3SUM problem, and then one reduces the structured variant
of 3SUM to another problem. While for some reductions [10] require the input list to be
sorted in the usual order of the integers, other reductions require the input to be structured
in some other way, for example, reductions in [13, 14] require that the elements are hashed
into buckets and every element in the bucket can be accessed efficiently.

The reduction from “unstructured” to “structured” 3SUM is usually trivial to do in
classical sub-quadratic time, but not so in quantum sub-linear time (e.g., a quantum computer
cannot sort in sublinear time [12]). This is the main difficulty in translating the classical
reductions to the quantum setting.

Our main observation is that, if a certain analogous dynamic data-structure problem can
be solved efficiently by a dynamic data-structure possessing a certain “history-independence”
property, then it is possible to use a quantum walk in order to show that the “structured”
variant of Quantum-3SUM-Conjecture, where we give the algorithm access to the queries for
free, is equivalent to the original unstructured version of the Quantum-3SUM-Conjecture.*
It is this insight that underlies all of our reductions, and which we expect will open up the
way to many other fine-grained reductions in the quantum setting.

One might informally state our observation as follows.

[informal] Let {g;} be a collection of queries over 3SUM inputs, i.e., each ¢; is a function
over inputs S € {—n?,...,n3}" for 33SUM. Suppose that there exists an efficient classical
dynamic data-structure that allows us to answer the queries ¢;, under updates to S, where
an update consists of replacing an element in the list S by a different element. By efficient
we mean that any query or update can be carried out in n°(*) time. Suppose further that the
dynamic data structure satisfies a certain “history-independence” property®, which means
that the data structure corresponding to each set S has a unique representation in memory,
which only depends on the current value of S (so it is independent of the initial value of .S,
and of the subsequent updates which resulted in the current value of S).

The history-independence is necessary to achieve the appropriate amplitude amplification/cancellation
in the quantum walk: if two update histories for the data structure (e.g. insertions/removals) lead to
the same data contents (e.g. same list), then there should be a single basis state that represents the
result.

Also mentioned in [2, 1]
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Then, conditioned on the Quantum-3SUM-Conjecture, 3SUM cannot be done in O(n!~¢)
quantum time, for any € > 0, even if the queries ¢;(S) can be done at unit cost.

Hereafter, we refer to these versions of 3SUM, where queries ¢;(S) have unit cost, as
“structured” versions of the 3SUM problem. To be clear, by being able to do the queries at
unit cost, we mean that the algorithm is given access to an oracle gate, implementing the
unitary transformation:

The distinction between an arbitrary dynamic data-structure and a history-independent
solution should be understood as follows. Generally speaking, a solution to a dynamic
data-structure problem could represent data in a way which depends on the specific sequence
of updates which were applied to the initial data. For example, self-balancing trees are
a solution to the dynamic sorting problem, but the specific balancing of the tree which
is kept in memory depends on the sequence of updates which were applied, so different
sequences of insertions and deletions might lead to the same list, but will nonetheless be
represented differently in memory. A history-independent data-structure, however, has fixed
a-priori representations for each possible data value. So, for example, in the dynamic sorting
problem, a history-independent data-structure must represent each possible list in a unique,
or canonical way in memory.

Our idea

Let S = (z1,...,2,) be an unstructured input to 3SUM. We will now discuss quantum
query algorithms for solving 3SUM. Such algorithms can access the input only via a unitary
li,b) — |i,b® x;). Each application of this unitary is called a query. But, in accordance to
data-structure nomenclature, we have also called queries to the functions g;. So to distinguish
the two, in this section we will use input queries to refer to queries to the input, in the sense
of query complexity, and let us use data-structure queries, to refer to the values ¢;(S).

Consider the quantum walk algorithm for Element Distinctness by Ambainis [2]. It was
observed by Childs and Eisenberg [8] that this algorithm can be used to solve any problem,
such as 3SUM, where we wish to find a constant-size subset that satisfies a given property.
Although this algorithm is optimal and sub-linear for 3SUM when we only measure the
number of input queries (it uses ©(n**) input queries, and this is required [5]), the algorithm
still requires linear time, essentially because an Q(nl/ 4)-time operation is performed between
each input query.

This optimal query algorithm for 3SUM is a quantum walk on the Johnson graph, namely,
the graph of () vertices with each vertex of the graph labelled by an r-sized subset of [n],
and where there is an edge between two vertices if and only if the two corresponding sets
differ by exactly two elements. This resulting graph J(n,r) is a good-enough expander, so
that a quantum walk will be able to find an r-sized subset of [n] containing indices to three
elements of S that sum to zero, in queries sublinear in n.> To do so, the quantum-walk
algorithm maintains the list of values (z;,,..., ;) entangled together with the basis state
representing the current r-sized subset {i1,...,4,} S [n] that is being traversed. Using this
list of values, as a part of the quantum walk algorithm, a subroutine checks (in superposition)
if there is a 3SUM solution in (z;,,...,2;,.). While this step requires no additional input
queries, so the total number of input queries is O(n3/ 4), the actual implementation of this
subroutine requires a significant amount of time (namely time r = Q(n'/4)), which then
makes the resulting quantum walk algorithm for 3SUM linear, at best.

5 For an excellent introduction to quantum walks, see Chapter 8 of Ronald de Wolf’s lecture notes [9].
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It is this subroutine, i.e. the subroutine that checks for a 3SUM solution in the r-sized
set of values, that we would like to further speed up. Now suppose that we had a faster-than-
linear algorithm for a “structured” version of 3SUM. lL.e., the algorithm works in sublinear
time, provided it is given certain data-structure queries ¢;(S) as part of the input. Now, if we
could efficiently answer these data-structure queries at any point during the entire quantum
walk, then we could use this faster-than-linear algorithm to speed-up the subroutine. To do
so, we need a dynamic data structure that allows us to efficiently answer the data-structure
queries, under the kind of updates that are required at each step of the quantum walk. For
the quantum walk on the Johnson graph, each update corresponds to replacing a single
element in the list of values (z;,,...,x;,)-

An important detail remains: in order for the quantum walk to work, it is necessary
that there is a unique basis state corresponding to each node in the quantum-walk graph
(otherwise we won’t have the desired amplitude interference). It is for this reason that the
dynamic data-structure structure is required to have a history-independence property.

Proof of Theorem 1.2 (sketch). In order to prove this theorem, we will first go through
the steps of the more general version of Ambainis’ quantum walk algorithm for Element
Distinctness given by [8].

Let S e {—n?,...,n%}" be an input to the 3SUM problem. Let r» = n” for some 3 € (0,1)
which will be fixed later (so that r is an integer). The graph G used in Ambainis’ construction
is a Johnson graph J(n,r) with vertices all labelled by r-sized subsets of [n]. Let V, V' c [n]
with |V| = |V’| = r. Vertices labelled by V and V” are connected if and only if |V nV'| = r—1,
i.e., V' can be obtained by replacing a single element of V.

Given a subset I < [n], we use S[I] to denote all the elements S[i],i € I. Now suppose
we have a history-independent classical dynamic data structure for answering a family of
data-structure queries {¢;}, where each ¢; : {—n3,...,n3}". For V < [n] of size |V| = r, let
D(S[V]) denote the (unique) state of the data-structure corresponding to S[V]. Le., given
D(S[V]), we are able to answer any query ¢;(S[V]) in time n°"). And if we change V to V'
by replacing a single element of V', we are able to update D(S[V]) to D(S[V’]), also in time
no®,

To define a quantum walk on G, define an orthonormal basis of quantum states |V'), one
for each r-subset V. We start with creating a uniform superposition over all the vertices of
the Johnson graph J(n,r):

=== X W, 1)

Ve \Vi=rveln]  keV

with ¢ = (n —r)(7) being the normalization constant.”-8

" Refer to the circuit construction in Andrés P4l Gilyén’s Master’s thesis [11] for creating a uniform
superposition over all the vertices of Johnson Graph J(n,r). This construction uses 6(7") elementary
quantum gates in total and their results extend for any r = n® with 0 < 8 < 1.

Note that, the circuit construction that we refer to creates a uniform superposition of vertices in J(n,r)
with the vertices represented in O(rlogn) sized array of qubits. This representation of vertices do
not allow for time efficient insertions and deletions. Therefore, we first encode all the vertices V' (in
superposition) in a data structure similar to the data structure we use to store the query values, so that
the (walk) updates on the states representing the vertices also occur time efficiently. In our paper, we
use V to denote a vertex already encoded in the data structure. In the full version of the paper [6], we
show that such encoding procedures exist and are (almost) linear (reversibly as well), i.e. run in 5(7‘)
time where r is the size of the set that is being encoded.

31:7

ITCS 2022



31:8

Fine-Grained Complexity via Quantum Walks

The key idea is to store values from the list, and the contents of the data-structure, along
with the subset V. So the full quantum state has the form |V, D(S[V]), k) where k € [n]. If
|[V| = r then k denotes an element in [n]\V to be added to V. We say a vertex V is marked
if S[V] is a positive 3SUM instance (of smaller size), i.e., if there are p, ¢, € V such that
S[p] + Slq] + S[r] = 0.

The quantum walk algorithm is analogous to Grover’s algorithm, where the aim is to
make the amplitude on marked vertices large enough that with very high probability® the
final measurement collapses on a marked vertex, i.e., a vertex labelled by an r-subset that
contains a solution to 3SUM problem. The algorithm starts with a state

|s>:\% S sy S Ik, @)

[V|=r ¢V

which is a uniform superposition of all the states on subsets of size r and ¢ = (n —r)(7) is
the normalization constant.

There are two main operations in this algorithm: A walk operation Uy and a phase
flip operation Uppaserisp Which is

—|V,D(S[V])) if V is marked

|V, D(S[V])) if V' is not marked. 3)

UphaseFlipH/, D(S[V])> = {

The full algorithm is (UL, Upnaseriip)'® where t1 = O(y/r) and t2 = O((n/r)'). The total

w

time taken by the algorithm is

Tsetup(|3>> + tl : t2 : Tunitary(Uwalk) + t2 . Tunitary(UphaseFlip)7 (4)

where Tyerup(]s)) denotes the time taken to setup the initial state |s) that also includes the
time taken to query values of the subset of indices of size r. The term Tpnitery(U) denotes
the number of elementary gates required to implement a unitary U.

In the setup phase, for every vertex V we initialize the dynamic data-structure corres-
ponding to S[V]. We may think of S[V] as obtained via the (0, ...,0) list by updating each
position ¢ with S[¢]. Hence, the setup time for each vertex, which consists of computing
D(S[V]) for all V in superposition, is at most rn°™).

Now, because the data structure supports efficient updates, the U,y unitary can be
implemented in time n°M | Tt in is this Upas operation that an element is inserted and some
other element is deleted, hence it is sufficient that the dynamic data structure supports
replacement of values.

The unitary Upnaeserip in Equation 3 adds a negative phase to the marked states and
none to the unmarked states, which means Uppqseriip implements a subroutine that checks
whether or not a vertex V is marked by going through its input-query values S[V] and
checking if there is a 3SUM solution present in S[V]. Currently, there is no known (time)
efficient method to implement this subroutine.'°

Instead, suppose that there exists a constant > 0 such that there is a subroutine that
can solve this structured version of 3SUM on r elements in O(r!~) quantum time. We can
now implement Uppaseriip in the following way. Call the subroutine that is optimal for solving
3SUM on this of ordered input. The data-structure queries ¢;(S[V]) to the structured

9 Throughout the paper we say that something holds “with high probability” if it holds with probability
at least 1 — o(1).

10 One would require a dynamic data-structure for efficiently answering 3SUM queries, which is not known
to exist.



H. Buhrman, B. Loff, S. Patro, and F. Speelman

input can be simulated with an n°*) overhead in time, because the data structure D(S[V])
supports efficient data-structure queries. The time complexity of the original Ambainis’ walk
algorithm then becomes

r. no(l) + tl . t2 . nO(l) + t2 . no(l) . rl_a7 (5)
which, after ignoring all the n°() factors, becomes
r+tits + tgrlia. (6)

Substituting the values of t; = O(y/7) and ta = O((n/r)®) the total time taken in Equation 6
roughly becomes

T-‘ri'i‘i"rl_a- (7)

Given that r = n” for a B € (0,1), it is easy to see that for every 0 < o < 1, there exists a 3
such that max(}, 5255) < 8 < 1, and then the value of (7) becomes strictly sublinear. It
then follows that there is no sub-linear quantum time algorithm for solving the structured
version of 3SUM, unless Quantum-3SUM-Conjecture is false. <

We have omitted several details from the above proof sketch. One omission is that we
neglected to account for the error (in the quantum walk and in the invoked subroutine for
3SUM). This is simple to account for and we will do so in Section 3.1 of the full version of
our paper [6]. The most crucial omission is that we will actually require probabilistic dynamic
data-structures in our reductions. Randomness seems to be required because no dynamic
sorting data-structure is known that is simultaneously time-efficient, space-efficient, history-
independent, and deterministic. However, a solution exists if any of these four requirements
is removed. We will first (in Section 3.1 of [6]) present a solution which uses a deterministic
data-structure, but large space, and then (in Section 3.2 of [6]) a probabilistic solution which
is also efficient in space. It is an interesting open question in classical data-structures to
provide, or disprove the existence of, a dynamic data-structure that simultaneously satisfies
all four requirements.'!

1.3 Applications

We use our proof strategy to show, conditional on Quantum-3SUM-Conjecture, tight lower-
bounds on several computational-geometry problems, on CONVOLUTION-3SUM, and on the
0-EDGE-WEIGHT-TRIANGLE problem. Our lower-bounds show that the quantum speed-up
is at most quadratic for all of these problems.

Our lower-bounds on CONVOLUTION-3SUM and 0-EDGE-WEIGHT-TRIANGLE tightly
match the Grover-based speed-up that quantum algorithms can get for these problems.

Our quantum reductions from 3SUM to computational-geometry problems are comple-
mentary to a recent paper by Ambainis and Larka [3], where they present quantum speed-ups
for several such problems. Our results show, under the Quantum-3SUM-Conjecture, that all

"' The question might arise: why do we care for the structure to be space efficient? This is for two
reasons. On the one hand, we expect memory to be an expensive resource for quantum computers,
so algorithms using a large amount of memory, even in regimes that are practical classically, might
never be so quantumly. On the other hand, making our reductions space efficient allows us to weaken
the Quantum-3SUM-Conjecture to say that no space-efficient quantum algorithm can solve 3SUM in
sublinear time. We do not explicitly state this outside of this footnote, but all the lower-bounds in this
paper also follow from this weaker conjecture.
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of the speed-ups obtained by Ambainis and Larka are optimal. There are also computational-
geometry problems for which the Quantum-3SUM-Conjecture gives us a lower-bound, but
for which no quantum speed-up is known.

Table 1 (in page 11) summarizes our results. It also includes the best-known classical
upper and lower-bounds.

1.4 Future directions and open questions

The study of quantum fine-grained complexity is just beginning. Classically, there are
many fine-grained reductions laying out the structure of the class P, but only a few of such
reductions have been established for BQP. This forms an appealing avenue for future work,
as not only is the topic very much unexplored, any tight lower-bounds given by quantum
fine-grained reductions will allow us to understand how much quantum speed-up is possible.
The following is a non-exhaustive list of questions which are currently open, and which
we hope will benefit from the approach contained in our paper:
Table 1 contains four problems for which we can prove some quantum lower-bound,
conditioned on the Quantum-3SUM-Conjecture. Is this lower-bound tight, i.e., are there
matching algorithms? Or can we prove a higher lower-bound, perhaps based on a different
conjecture?
In the classical setting, there are problems, other than 3SUM, which serve as a basis for
fine-grained reductions, e.g. the Orthogonal Vectors problem, the all-pairs shortest-path
problem [15]. What lower-bounds can we prove in the quantum setting, based on these
problems? Can we prove tight bounds on quantum speed-ups?
The Classical-3SUM-Conjecture itself gives various other lower-bounds in the classical
setting, which we did not study in the quantum setting, namely lower-bounds against
dynamic data-structure problems. Can these lower-bounds be proven in the quantum
regime, also?
More generally, for what other problems can we prove that the known quantum speed-up is
optimal, under a reasonable hardness hypothesis such as the Quantum-3SUM-Conjecture?

The various papers using dynamic data-structures in quantum walks, including [2, 1]
and our paper, give rise to an interesting question in classical data-structures. The vast
majority of space-efficient dynamic data-structures are not history-independent: history-
independence is a feature which cannot be properly motivated if one is only interested
in classical algorithms, but which is fundamentally necessary for using the dynamic data-
structure as part of a quantum walk. Omne can then attempt to understand for which
problems do history-independent, memory and time-efficient dynamic data-structures exists.
For sorting, the only known solution (skip lists) is randomized. Is this necessary? More
generally, what dynamic data-structure problems have solutions that are simultaneously
deterministic, time-efficient, space-efficient, and history-independent? Can we prove lower-
bounds against data-structures obeying all four criteria simultaneously, which we cannot
prove against data-structures obeying only three among the four criteria?

1.5 Full version of the paper

All the main theorems and their respective proofs are presented in the full version of this paper
[6] whose structure is as follows. In Section 2.1 of [6] we describe our model of computation,
and in Section 2.2 of [6] we describe various simple variants of the 3SUM problem and show
that the Quantum-3SUM-Conjecture is equivalent for these versions. (These are not the
structured versions we mentioned earlier, here the proof of equivalence is very simple.)
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Using the approach we sketched above (in Section 1.2), we proceed to give a full proof that,
under the Quantum-3SUM-Conjecture, two “structured” variants of 3SUM also require Q(n)
time on a quantum computer. We give two separate proofs: The first proof (in Section 3.1
of [6]) uses a deterministic data structure which is space-inefficient, and the second proof
(in Section 3.2 of [6]) uses a probabilistic data structure which is space-efficient. As direct
implications of these hardness results, in Section 4 of [6] we present conditional quantum
time lower bounds for several computational geometry problems.

Lastly, in Section 5 of [6], we present conditional quantum time lower bound for
CoNVOLUTION-3SUM and 0-EDGE-WEIGHT-TRIANGLE problems. This requires us to
prove, under the Quantum-3SUM-Conjecture, that a third “structured” variant of 3SUM
also requires §2(n) time on a quantum computer.

Table 1 This is a summary of all the Quantum-3SUM-hard problems mentioned in this paper,
with (almost) matching upper bounds for most of them.

3SUM-based quantum Classical
lower-bounds (our results) 7 complexity (x%)
Problems Quantum
upper-bound

GEOMBASE Q(n) | O(n) (x) O(n?)
3-POINTS-ON-LINE Q(n) | O(n*+eW)y 3] O(n?)
POINT-ON-3-LINES Q(n) | O(n*+eW) [3] O(n?)
SEPARATOR Qn) | Onr+o®) 3] O(n?)
STRIPS-COVER-BOX Q(n) | O(n*+eW) 3] 0(n?)
TRIANGLES- COVER-TRIANGLE Q(n) | O(n*+eM) 3] O(n?)
POINT-COVERING Q(n) | O(n*+eW)y 3] O(n?)
VISIBE;ZX;EI\?;SWEEN— Q(n) O(n“"(l)) 3] o(n?)
HOLE-IN-UNION Q(n) | On**°M) () O(n?)
TRIANGLE-MEASURE Q(n) Open! 0(n?)
VISIBILITY-FROM-INFINITY Q(n) Open! O(n?)
VISIBLE-TRIANGLE Q(n) | O(n*°W)y (1) O(n?)
PLANAR-MOTION-PLANNING Q(n) Open! 0(n?)
3D-MOTION-PLANNING Q(n) | Open! O(n?)
GENERAL-COVERING Q(n) | O(n*+eW) 3] 0(n?)
CONVOLUTION-3SUM Q(n) | On) (%) 0(n?)
0-EDGE-WEIGHT-TRIANGLE Q%) | O(n*®) () o(n?)

(#) Using a simple Grover speed-up on the classical algorithm.
(t) Implicit in [3], by using the classical reduction to TRIANGLES-COVER-TRIANGLE and
then using the corresponding quantum algorithm.

(##) All upper-bounds are straightforward: For problems like CONVOLUTION-3SUM and
0-EDGE-WEIGHT-TRIANGLE the best known algorithms use brute force, for the
computational-geometry problems, the upper-bounds follow from geometry arguments [10].
All lower-bounds for computational geometry problems are from [10], the lower-bound
for ConvOLUTION-3SUM follows from [13], and, the lower-bound for 0-EDGE-WEIGHT-
TRIANGLE follows from [14].
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