arXiv:2102.09030v7 [csLG] 5Mar 2023

REVISITING THE MOMENT ACCOUNTANT METHOD FOR
DP-SGD

Marten van Dijk"2:3*, Nhuong V. Nguyen*'*, Toan N. Nguyen*{,
Lam M. Nguyen®, Phuong Ha Nguyen®
L CWI Amsterdam, The Netherlands
2 Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
3 Department of Electrical and Computer Engineering, University of Connecticut, CT, USA
4 Department of Computer Science and Engineering, University of Connecticut, CT, USA
5 IBM Research, Thomas J. Watson Research Center, Yorktown Heights, NY, USA
6 eBay, CA, USA

marten.van.dijk@cwi.nl, nhuong.nguyen@uconn.edu, toan.nguyen@uconn.edu,
LamNguyen.MLTD@ibm. com, phuongha.ntu@gmail.com

ABSTRACT

In order to provide differential privacy, Gaussian noise with standard deviation ¢ is added to local
SGD updates after performing a clipping operation in Differential Private SGD (DP-SGD). By non-
trivially improving the account method we prove a simple and easy to evaluate closed form (e, §)-DP
guarantee: DP-SGD is (¢, 6)-DP if o = 1/2(e + In(1/5))/e and T is at least =~ 2k? /¢, where T is
the total number of rounds, and K = kN is the total number of gradient computations where k
measures K in number of epochs of size IV of the local data set. We prove that our expression is
close to tight in that if 7" is more than a constant factor ~ 8 smaller than the lower bound ~ 2k? /e,
then the (¢, §)-DP guarantee is violated. Choosing the smallest possible value 7" ~ 2k? /¢ not only
leads to a close to tight DP guarantee, but also minimizes the total number of communicated updates
and this means that the least amount of noise is aggregated into the global model and accuracy is
optimized as confirmed by simulations. In addition this minimizes round communication.

1 Introduction

Privacy leakage is a big problem in the big-data era. Solving a learning task based on big data intrinsically means that
only through a collaborative effort sufficient data is available for training a global model with sufficient clean accuracy
(utility). Federated learning is a framework where a learning task is solved by a loose federation of participating
devices/clients which are coordinated by a central server [21]. Clients, who use own local data to participate in a
learning task by training a global model, want privacy guarantees for their local proprietary data.

For this reason DP-SGD [1] was introduced as it adapts distributed Stochastic Gradient Descent (SGD) with Differential
Privacy (DP). Here, differential privacy comes from adding Gaussian noise A/ (0, C?0°I) to local (client-computed)
mini-batch SGD updates after performing a clipping operation z — [z]¢c = x/ max{l, ||z||/C}. This wrings with
being able to learn an accurate global model; even though more Gaussian noise by increasing o leads to better differential
privacy guarantees, this hurts the accuracy of the final global model and slows convergence of SGD toward the final

* These authors contributed equally.
T Supported by NSF grant CNS-1413996 “MACS: A Modular Approach to Cloud Security.””
The previous version of this eprint introduces proactive DP-SGD together with an analysis and discussion.

In memory of our dear friend and author of this paper Nhuong Nguyen.

global model. We can also not make the clipping constant C' too small, otherwise, convergence of SGD to a minimum
(a final global model) does not bootstrap.

In order to understand how to set parameters that balance accuracy and differential privacy, (¢, §)-DP guarantees for
DP-SGD have originally been analysed by the moment account method [1]. This method leads to a simple closed form
bound relating various DP-SGD parameters and as a result gives a first intuitive insight of how to chose a concrete
parameter setting. The disadvantage of the bound is its dependence on two constants c; and ¢ which are proven to
exist but are themselves not further characterized. It turns out that many pairs (c1, co) are possible and we show in this
paper that these constants can be related through a function and this allows us to non-trivially improve the moment
accountant method and show a bound without unknown constants.

We know, however, that the recent f-DP framework [[6] already provides a tight differential private characterization of
DP-SGD in terms of a so-called trade-off function. The f-DP framework shows how (¢, §)-DP can be equivalently
formulated as fc s-DP in the f-DP framework. We notice that a trade-off function can also be used to derive other
divergence based DP guarantees, but not the other way around (as opposed to (¢, d)-DP). The f-DP framework
supersedes all existing other frameworks in that a trade-off function contains all the information needed to derive known
DP metrics.

Given that f-DP produces tight DP characterizations, why are we concerned with improving the moment accountant
method? The reason is that the general f-DP framework, cited from [[6], has “the disadvantage is that the expressions it
yields are more unwieldy: they are computer evaluable, so usable in implementations, but do not admit simple closed
form." For the specific case of DP-SGD, we want to improve the moment account method in order to obtain a simple
closed form (e, 0)-DP guarantee which we want to show is tight “up to a constant" by using the f-DP framework. This
closes the gap between the moment accountant method and f-DP and in essence marries the advantages of both: It
allows us to gain immediate intuition and to a-priori set concrete parameters for DP-SGD without extensive simulations
using the f-DP based differential privacy accountant of [38]].

We want a simple, close to being tight, closed form expression of the differential privacy guarantee as a func-
tion/expression of parameters representing the local data set size IV, the mini-batch or sample size s during local SGD
iterations, the total number of rounds 7', and the added Gaussian noise per communicated SGD update represented by
standard deviation o.

* We non-trivially improve the analysis of the moment accountant method in [[1] and show for the first time that
(e, §)-differential privacy can be achieved for

o=+/2(e+1n(1/))/e (1)
in parameter settings with (a) a reasonable DP guarantee by choosing § < 1/N and e smaller than 0.5, where
(b) the total number K of gradient computations over all local rounds performed on the local data set is at least
a constant (= e/2) times /€ 1n(1/6) epochs (of size N), and (c) T is at most another constant (= 1/2) times
e(N/s)2.

We notice that in a practical setting conditions (a) and (b) are typically satisfied (since we want small enough €
and ¢ for reasonable DP guarantees and the lower bound on K is generally satisfied in practice as usually K is
50 or 100s of epochs). Therefore, condition (c) is the limiting constraint.

» We equivalently reformulate condition (c) as a lower bound on 7T": T is at least ~ 2k? /e where k = K/N
measures K in number of epochs (of size N). Confirmed by simulations, we show that by setting 7" equal
to the lower bound T = 2k? /¢, we optimize accuracy (as this minimizes the number of times/rounds when
noise is aggregated into the global model at the server) and minimize round complexity. By using the f-DP
framework, we prove that T"’s required lower bound ~ 2k? /¢ cannot be made smaller by more than a constant
factor ~ 8 (otherwise, this conflicts with an asymptotical result proved by the f-DP framework). We conclude
that setting

T ~ 2k?*/e)
leads to a close to tight (e, §)-DP guarantee which also optimizes accuracy and minimizes round complexity.

* Simulations based on (I)) and () show a significantly smaller ¢ compared to current state of the art. For
example, our theory applies to e = 0.15 for the non-convex problem of the simple neural network LeNet [18§]]
with cross entropy loss function for image classification of MNIST [[17] at a test accuracy of 93%, compared
to 98% without differential privacy. Notice that [[1] reports for a 60-dimensional PCA projection layer with a
single 1,000-unit ReL.U hidden layer for MNIST 90% test accuracy for e = 0.5 and 95% test accuracy for
€ = 2, both for § = 107° = 0.6/N.

Outline: We provide background in Section 2} where we define (e, 0)-differential privacy and explain DP-SGD as
introduced by [1]]. In Section [3| we explain our main theory, where we start by discussing the theoretical result of the

moment accountant method of [1]] and its limitation, which we improve leading to our main contribution as given in (T))
with a tightness result for (2)) based on the f-DP framework. Experiments are in Section[d] The asynchronous SGD
framework, detailed differential privacy proofs and analysis, and additional experiments with extra details are in the
appendices.

2 Differential Private SGD (DP-SGD)

The optimization problem for training many Machine Learning (ML) models using a training set {£; }7*; of m samples
can be formulated as a finite-sum minimization problem:

min {F(w) = %Z f(w;fi)} : 3)

weR?

The objective is to minimize a loss function with respect to model parameters w. This problem is known as empirical
risk minimization and it covers a wide range of convex and non-convex problems from the ML domain, including, but
not limited to, logistic regression, multi-kernel learning, conditional random fields and neural networks.

In this paper, we want to solve (3) in a distributed setting where many clients have their own local data sets and the
finite-sum minimization problem is over the collection of all local data sets. A widely accepted approach is to repeatedly
use the Stochastic Gradient Descent (SGD) recursion

w1 = wy — 0V f(wyg; §), “4)

where w; represents the model after the ¢-th iteration; w, is used in computing the gradient of f(wy; &), where £ is a
data sample randomly selected from the data set {&;}7*, which comprises the union of all local data sets.

This approach allows each client to perform local SGD recursions for the £ that belong to the client’s local data set.
The updates as a result of the SGD recursion (@) are sent to a centralized server who aggregates all received updates
and maintains a global model. The server regularly broadcasts its most recent global model so that clients can use it in
their local SGD computations. This allows each client to use what has been learned from the local data sets at the other
clients. This leads to good accuracy of the final global model.

Each client is doing SGD recursions for a batch of local data. These recursions together represent a local round and at
the end of the local round the sum of local model updates, i.e., the addition of computed gradients, is transmitted to the
server. The server in turn adds the received sum of local updates to its global model — and once the server receives new
sums from all clients, the global model is broadcast to each of the clients. When considering privacy, we are concerned
about how much information these sums of local updates reveal about the used local data sets. Each client wants to
keep its local data set as private as possible with respect to the outside world which observes round communication.

Rather than reducing the amount of round communication such that less sensitive information is leaked, differential
privacy [10l 8, [11} O] offers a solution in which each client-to-server communication is obfuscated by noise. If the
magnitude of the added noise is not too much, then a good accuracy of the global model can still be achieved possibly
at the price of more overall SGD iterations. On the other hand, only if the magnitude of the added noise is large enough,
then good differential privacy guarantees can be given.

2.1 (e, d)-Differential Privacy

Differential privacy [10} 8} [11,|9] defines privacy guarantees for algorithms on databases, in our case a client’s sequence
of mini-batch gradient computations on his/her training data set. The guarantee quantifies into what extent the output of
a client (the collection of updates communicated to the server) can be used to differentiate among two adjacent training
data sets d and d’ (i.e., where one set has one extra element compared to the other set).

Definition 2.1. A randomized mechanism M : D — R is (e, §)-DP (Differentially Private) if for any adjacent d and
d’ in D and for any subset S C R of outputs,

PriM(d) € S] < e Pr(M(d') € S] + 4,
where the probabilities are taken over the coin flips of mechanism M.

The privacy loss incurred by observing o is given by

) PriM(d)=o0
Li@m@) =1n (137”[[/\/1(21’))—09 '

As explained in [11] (¢, §)-DP ensures that for all adjacent d and d’ the absolute value of privacy loss will be bounded
by e with probability at least 1 — 0. The larger € the more certain we are about which of d or d’ caused observation o.
When using differential privacy in machine learning we typically use 6 = 1/N (or 1/(10N)) inversely proportional
with the data set size V.

In order to prevent data leakage from inference attacks in machine learning [19] such as the deep leakage from
gradients attack [37, 36} [12] or the membership inference attack [30} 23| 31]] a range of privacy-preserving methods
have been proposed. Privacy-preserving solutions for federated learning are Local Differential Privacy (LDP) solutions
(L2022 321141 [7] and Central Differential Privacy (CDP) solutions [22}[13]20} 27, [34]. In LDP, the noise for achieving
differential privacy is computed locally at each client and is added to the updates before sending to the server — in this
paper we also consider LDP. In CDP, a trusted server (aka trusted third party) aggregates received client updates into a
global model; in order to achieve differential privacy the server adds noise to the global model before communicating it
to the clients.

2.2 DP-SGD

Algorithm 1 DP-SGD: Local Model Updates with Differential Privacy

1: procedure LOCALSGDWITHDP(d)

2 fori € {0,...,7 —1} do

3 Receive the current global model w from Server.
4: Uniformly sample a random set {£,};" ; C d
5: h=0,U=0

6: while h < s; do

7 9=[Vf(d,&)le

8: U=U+g

9: h++
10: end while
11: n « N(0,C?0I)
12: U=U+n
13: Send (i, U) to the Server.
14: end for

15: end procedure

We analyse the Gaussian based differential privacy method, called DP-SGD, of [1]], depicted in Algorithm [T]in a
distributed setting as described above. Rather than using the gradient V f (1, £) itself, DP-SGD uses its clipped version
[V f(,&)]c where [x]c = / max{1, ||z||/C}. Clipping is needed because in general we cannot assume a bound C'
on the gradients (for example, the bounded gradient assumption is in conflict with strong convexity [24]), yet the added
gradients need to be bounded by some constant C' in order for the DP analysis to go through.

DP-SGD uses a mini-batch approach where before the start of the i-th local round a random min-batch of sample size s;
is selected out of a local data set d of size |d| = N. Here, we slighty generalize DP-SGD’s original formulation which
uses a constant s; = s sample size sequence, while our analysis will hold for a larger class of sample size sequences.
The inner loop maintains the sum U of gradient updates where each of the gradients correspond to the same local model
w until it is replaced by a newer global model at the start of the outer loop. At the end of each local round the sum of
updates U is obfuscated with Gaussian noise N (0, C?0?) added to each vector entry, and the result is transmitted to the
server. The noised U is transmitted to the server who adds U times the round step size 7; to its global model w (we
discount averaging the sum represented by U by scaling the step size inversely with s;). As soon as all clients have
submitted their updates, the resulting new global model w is broadcast to all clients, who in turn replace their local
models with the newly received global model (at the start of the outer loop).

2.3 Tight f-DP Framework

Appendix [C|summarizes the recent work by [6] that introduces the f-DP framework based on hypothesis testing. f-DP
has (e, §)-DP as a special case in that a mechanism is (¢, §)-DP if and only if it is f, s-DP with f, 5(a) = min{0, 1 —
de‘a, (1 — 6 — a)e™}. They prove that DP-SGD is C/n (G (5 /2) -1)®T_DP where C,/n is an operator representing
the effect of subsampling, G(,,/2)-1 is a Gaussian function characterizing the differential privacy (called Gaussian DP)
due to adding Gaussian noise, and operator @7 describes composition over 7" rounds. Cy/n (G (5 /2)-1)®*T_DP can be
translated into a tight (e, §)-DP formulation.

Towards understanding how to a-priori set parameters for best utility and minimal privacy leakage, the tight f-DP
formulation for DP-SGD can be translated into sharp privacy guarantees. However, as stated in the introduction by a
citation from [6], the expressions it yields are more unwieldy. This leads in [38] to a differential privacy accountant
(using a complex characteristic function based on taking the Fourier transform) for a client to understand when to stop
helping the server to learn a global model. A differential privacy accountant is a method for keeping track (account for)
spent privacy budget.

3 Improved Moment Accountant Method

[1] proves the following main result (rephrased using our notation by substituting ¢ = s/N in their work): There
exist constants ¢; and co so that given a constant sample size sequence s; = s and number of rounds 7, for any
€ < c1T(s/N)?, Algorithm|l]is (e, §)-DP for any § > 0 if we choose

L o, /N -/ TI(/8)

The interpretation of this result is subtle: The condition on € is equivalent to

1/y/c1 < z where z = (s/N) - /T /e.

Substituting this into the bound for ¢ yields

(i3 s

This formulation only depends on 7" through the definition of z. Notice that z may be as small as 1/,/c;. In fact, it
is unclear how z depends on T since T is equal to the total number K of gradient computations over all local rounds

performed on the local data set divided by the mini-batch size s, i.e., T = K/s, hence, z = k-+/1/(Te) with k = K/N.
This shows that for fixed K and N, we can increase 7" as long as 1/,/c; < z, or equivalently,

T < c1h?/e ©6)
(notice that the original constraint on e directly translates into this upper bound on 7" by using T' = K/s).

o> (cy-2)-

3.1 Main Contribution

Rather than applying the main result of [1]], we can directly use the moment accountant method of their proof to analyse
specific parameter settings. It turns out that 7" can be much larger than upper bound (6)). In this paper we formalize
this insight (by showing that ‘constants’ ¢; and ¢y can be chosen as functions of 7" and other parameters) and show a
lower bound on ¢ which does not depend on 7" at all — in fact z in (5] can be characterized as a constant independent of
any parameters. This will show that o can remain small up to a lower bound that only depends on the privacy budget,
see (I). Our improvement over the existing moment accountant method is that it can be generalized for analysing the
complimentary range 7' > c1k? /e, i.e., for T at least lower bound .

Theorem 3.1. Let o and (e, §) satisfy the relation

oc=+/2(e+1n(1/6))/ewithd < 1/N and e < 0.5. 7

For sample size sequence {si}iT;Ol the total number of local SGD iterations is equal to K = Z;TF;Ol s;. We define

k = K/N as the total number of local SGD iterations measured in epochs (of size N). Related to the sample size
sequence we define the mean § and maximum S, ., and their quotient 0 as
T—1
1 K
T ZO S = ?7 Smazx = maX{SOa) STfl};
i=

smaw
and 9 = .
S

5 =

Let vy be the smallest solution satisfying

v 2> +

1—a

24 . < o] 1 63> 3/0
+ — e

l—-a\(1-+va)3? o(l-a)—2e/ao

€
ithoax = —.
wi « ’Yk

Qi

Parameter v = 2 + O(&), which is close to 2 for small &. We assume data sets of size N > 10000 and sample size
sequences with 0 < 6.85. If

k

v

2¢In(1/6) - e/(v0) and 3)
T > — -k,)

then Algorithm|l|is (¢, §)-differentially private.

By substituting k = K /N and by using K = 3T, lower bound @) is equivalent to the upper bound T' < — (N/35)? as
is mentioned in the introduction for a constant sample size sequence s = s; = 8.

All our theory, including the above theorem, holds in the asynchronous SGD framework of Appendix [A] In Appendix [A]
we provide a more general asynchronous mini-batch SGD algorithm (which follows Hogwild!’s philosophy [28) 14} 135,
24, [16| 25]) with DP. The asynchronous setting allows clients to adapt their sample sizes to their processing speed and
communication latency.

We notice that polynomial increasing sample size sequences s; ~ ¢Ni? have 5 ~ [NT?*!/(p + 1)]/T and $,40 =
gNTP, hence, @ = 1 + p. This shows that our theory covers e.g. linear increasing sample size sequences as discussed
in [25]], where is explained how this implies reduced round communication — another metric which one may trade-off
against accuracy and total local number K of gradient computations.

The proof is in Appendix [B| and follows a sequence of steps: We discuss the analysis of [1]] and explain where we
will improve. This leads to an improved analysis with a first generally applicable Theorem[B.2] As a consequence we
derive a simplified characterization in the form of Theorem [B.4] Finally, we introduce more coarse bounds in order to
extract the more readable Theorem [3.1] We notice that the simulations in Section @] are based on parameters that satisfy
constraints (32] 33] [34] [62) of Theorem[B.4]as this leads to slightly better results.

3.2 Reusing the Local Data Set

We stress that 7' cannot be chosen arbitrarily large in Theorem [3.1]as it is restricted by K = kN. Also k cannot grow
2
arbitrarily large since kN = K > T > % - k2, hence, k < 7—22 - N. This upper bound on k does impose a constraint

after which (¢, 0)-DP cannot be guaranteed — so, K and, hence, T' cannot increase indefinitely without violating the
privacy budget. Here we notice that repeated use of the same data set over multiple learning problems (one after another)
is allowed as long as the number of epochs of gradient computing satisfies the upper bound k& < # - N. Hence, the

larger N the more collaborative learning tasks the client can participate in. For typical values € = 0.2, 702 ~ 2, and a
data set of size N = 10000 we have k£ < 1000, which may accommodate about 10-20 learning tasks.

3.3 Accuracy

Lower bound @) shows that we may freely choose T' > v6%k? /e without affecting the (e, §)-DP guarantee Here, the
corresponding standard deviation ¢ according to (7)) only depends on € and § and does not depend on the actual choice
of T as long as it is at least 792k /. This allows one to optimize the number of rounds 7" with constant mini-batch size
s = K/T for best accuracy of the final global model.

If all local data sets are iid coming from the same source distributior] then simulations in Section 4 show that the best
accuracy of the final global model is achieved by choosing the largest possible mini-batch size s or, equivalently, since
K = sT, choosing the smallest possible number of rounds T’ = v6%k? /e according to lower bound @) Optimizing
accuracy by choosing the smallest 7" can be understood by observing that this implies that the least number of times
noise is added and aggregated into the global model at the server (larger mini-batches imply less noise relative to the
size of the mini-batches). As a secondary objective, a smaller number of rounds means less round communication.

3.4 Tightness

Appendix uses the f-DP frameworkff] to prove the tightness of Theorem|3.1

“Even though more rounds leak more updates, the sample size is smaller leading to less privacy amplification due to subsampling.

This is the case in big data analysis where each local data set represents a too small sample of the source distribution for learning
an accurate local model on its own. Hence, collaboration among multiple clients through a central server is needed to generate an
accurate joint global model.

*We correct for the factor 2 larger Gaussian noise in the f-DP framework because our analysis based on [1] assumes a
probabilistic (rather than a deterministic) sampling strategy as implemented in the Opacus library [26].

Theorem 3.2. For T = (y0%k?/¢)/a with constant a > 4+, there exists a parameter setting that fits all conditions of
Theoremexcept Sfor lower bound @) such that (e, 0)-DP is violated.

Theorem [3.2| shows that in Theorem [3.1|7”’s required lower bound v6%k? /e cannot be made smaller by more than a
constant factor 4y ~ 8 (otherwise, this conflicts with an asymptotical result proved by the f-DP framework). This
shows that choosing 7" equal to the lower bound v6%k? /e is close to tight in order to achieve (¢, §)-DP.

Of course, larger T also satisfy lower bound (8 implying the same (e, §)-DP guarantee. We notice that a larger T can
meet v0? - k2 /€’ for a smaller €’ leading to a close to tight (¢, §)-DP guarantee if we choose a larger o, which can be
done if this still leads to sufficient accuracy. Intuitively, a T larger than the lower bound v62k? /e invests in the potential
of improved differential privacy (i.e., ¢ < €) which we do not need if we only require the (¢, §)-DP guarantee. Better is
to sacrifice this potential and meet the lower bound so that accuracy of the final global model is optimized (as discussed
above). Since the lower bound can at most be a constant factor 4y ~ 8 smaller, we cannot improve the accuracy much
more by reducing T further without violating the (e, 6)-DP guarantee.

As a theoretical consequence, for fixed k, Appendix formulates (¢, §)-DP guarantees for varying ¢ which can be
used to show f-DP for a (non-trivial) trade-off function f that depends on a target € and ¢ but does not depend on the
choice of T assuming v02k?/e <T < K = kN.

3.5 Choosing ¢

We notice that, since T’ < K = kN (this corresponds to the smallest possible mini-batch size s = 1), lower bound @)
implies kN > k? /¢, hence, ¢ > k/N and we must have ¢ = Q(1/N). Therefore, the smallest possible ¢ is O(1/N)

and leads to o = ©(v/N In N) according to . We notice that the theory in [S]] for a similar but not exactly the same
setting of DP-SGD strongly suggests for DP-SGD that unless the added Gaussian perturbation is as large as v/N almost
the whole database can be recovered by a polynomial (in N) adversary; o = ©(v/ N In N) seems needed if one wants

cryptographical strong security. However, in general, o = (v N In N) is too large for sufficient accuracy. In practice
we choose € = 6(1):

In order to attain an accuracy comparable to the non-DP setting where no noise is added, the papers cited in Section
generally require large e (such that o can be small enough) — which gives a weak privacy posture (a weak bound on the
privacy loss). For example, when considering LDP (see Section , 10% deduction in accuracy yields only € = 50 in
[2] and € = 10.7 in [22], while [32} [14] show solutions for a much lower ¢ = 0.5. Similarly, when considering CDP
(see Section [2.T)), in order to remain close to the accuracy of the non-DP setting [22] requires ¢ = 8.1, [[13]] requires
€ = 8, and [20] requires ¢ = 2.038.

The theory presented in this paper allows relatively small Gaussian noise for small e: We only need to satisfy the main
equation . For example, in Sectionsimulations for the LIBSVM data set show (e = 0.05, = 1/N)-DP is possible
while achieving good accuracy with o =~ 20. Such small ¢ is a significant improvement over existing literature.

3.6 Utility Graph for Selecting C, o, and K

The most important mission in machine learning is achieving a good accuracy, therefore, the added Gaussian noise
cannot be too large and is constrained. For this reason each client wants to choose (i) the smallest possible clipping
constant C' for the clipping operation used in DP-SGD such that SGD still bootstraps convergence, and given C, set (ii)
the standard deviation o of the added Gaussian noise for differential privacy to a maximum value beyond which we
cannot expect to achieve sufficiently good (test) accuracy for the learning task at hand, and given C' and o, estimate (iii)
the total number of gradient computations KX = kN needed to achieve the target test accuracy, and given C, o, and K,
select (iv) T = v0%k? /e and s = K /T, where € and § < 1/N are chosen according to (7). Choosing T' = 762k? /e
is close to tight for achieving (e, §)-DP, and in Theorem [3.1} 7" = ~62k? /¢ optimizes the accuracy of the final global
model and minimizes the round communication.

Choosing the maximum value for ¢ in the above procedure leads to the best possible (e, §)-DP guarantees as this allows
the smallest possible ¢ for a given § = 1/N or 1/(10N). If the smallest possible ¢ is larger than the client’s target
epsilon €4, then the client should not participate in the collaborative training of the global model and should abort. If
the smallest € is < €4, then the client can participate.

In order to select parameters C, o and K, we introduce the concept of a utility graph where a “best-case” accuracy is
depicted as a function of noise o and clipping constant C' in DP-SGD (see Sectiond). In DP-SGD the last round of
local updates is aggregated into an update of the global model, after which the global model is finalized. This means
that the Gaussian noise added to a client local update of its last round is directly added as a perturbation to the final
global model. We have a best-case scenario if we neglect the added noise of all previous rounds. That is, the “best-case”

accuracy for DP-SGD is the accuracy of a global model which is trained using SGD without DP after which Gaussian
noise is added. The utility graph depicts this “best-case” accuracy.

To generate the graph, we fix a diminishing learning rate 7; (step size) from round to round and we fix the total number
K of local gradient computations that will be performed. Based on local training data and a-priori knowledge (possibly
from transferring a public model of another similar learning task), a local client can run SGD locally without any added
DP mechanism. This learns a local model w* and we compare how much accuracy is sacrificed by adding Gaussian
noise n ~ N(0, C?01); that is, we compute and depict the ratio “F(w* + n)/F(w*)." This teaches us the range of &
and C' combinations that may lead to sufficient accuracy (say at most a 10% drop).

4 Experiments

Our goal is to show that the more general asynchronous differential privacy framework (asynchronous DP-SGD which
includes DP-SGD of Algorithm[T)) of Appendix [A]ensures a strong privacy guarantee, i.e, can work with very small e
(and 6 = 1/N), while having a good convergence rate to good accuracy. We refer to Appendix [D|for simulation details
and complete parameter settings.

Objective function. We summarize experimental results of our asynchronous DP-SGD framework for strongly convex,
plain convex and non-convex objective functions with constant sample size sequences. As the plain convex objective
function we use logistic regression: The weight vector w and bias value b of the logistic function can be learned by
minimizing the log-likelihood function J:
N
T == lyi-log(@:) + (1 —y:) - log(1 — 7,)],

i=1
where N is the number of training samples (x;, ;) with y; € {0,1}, and 5; = 1/(1 + e~ (@ =i+b)) is the sigmoid
function. The goal is to learn a vector/model w* which represents a pair w = (w, b) that minimizes J. Function J
changes into a strongly convex problem by adding ridge regularization with a regularization parameter A > 0, i.e., we
minimize J = J + 2 ||@||® instead of J. For simulating non-convex problems, we choose a simple neural network
(LeNet) [[18] with cross entropy loss function for image classification.

Asynchronous DP-SGD setting. The experiments are conducted with 5 compute nodes and 1 central server. For
simplicity, the compute nodes have iid data sets.

Data sets. All our experiments are conducted on LIBSVM [3[f|and MNIST [17]] data sets.

4.1 Utility Graph

Since we do not have a closed form to describe the relation between the utility of the model (i.e., prediction accuracy)
and o, we propose a heuristic approach to learn the range of o from which we may select o for finding the best (¢, §)-DP.
The utility graphs — Figures|I(a)} and — show the fraction of test accuracy between the model “F'(w + n)"
over the original model F'(w) (without noise), where n ~ N'(0, C?5I) (per round) for various values of the clipping
constant C' and noise standard deviation o. Intuitively, the closer F'(w +n)/F(w) to 1, the better accuracy wrt to F'(w).
Note that w can be any solution and in the utility graphs, we choose w = w™* with w* being near to an optimal solution.

The smaller C, the larger o can be, hence, € can be smaller which gives stronger privacy. However, the smaller C,
the more iterations (larger K) are needed for convergence. And if selected too small, no fast enough convergence is
possible. In next experiments we use clipping constant C' = 0.1, which gives a drop of at most 10% in test accuracy for
o < 20 for both strongly convex and plain convex objective functions. To keep the test accuracy loss < 10% in the
non-convex case, we choose C' = 0.025 and o < 12.

4.2 DP-SGD with Different Constant Sample Sizes

Figure [I(b)|and Figure 2(b)| illustrate the test accuracy of our asynchronous DP-SGD with various constant sample
sizes for the strongly convex and plain convex cases. Here, we use privacy budget ¢ = 0.04945 and noise o0 = 19.2.
It is clear that with s = 1. When we use a bigger constant sample size s, for example, s = 26, our algorithm can
achieve the desired performance, when compared to other constant sample sizesﬂ The experiment is extended to the

Shttps://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html

Thttp://yann.lecun.com/exdb/mnist/

's = 26 meets the lower bound on T’; a larger s violates this lower bound. The reason for having a somewhat small maximum
possible s is because of the relatively small data set size.

phishing 00 phishing phishing

0.9

Test accuracy
Test accuracy
°

e
>

—— £=0.04945

[— s=1 0.6
! s=5

05 — s=10
— s=15
— s=20
— s=26

Accuracy fraction of F(w* + noise)/F(w*)

0.5

0.4
0 20 40 60 80 100 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
of iteration # of iteration

(a) (b) (©

Figure 1: Strongly convex. (a) Utility graph, (b) Different s, (c) Different e

phishing phishing phishing

0.9

Test accuracy
Test accuracy

£=0.04945

Accuracy fraction of F(w* + noise)/F(w*)

0.5

0 20 40 60 80 100 [10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
of iteration # of iteration

(a) (b) (©

Figure 2: Plain convex. (a) Utility graph, (b) Different s, (c) Different €

mnist mnist mnist

°
S

Test accuracy
Test accuracy

— s=10
—— s=25

°
=

—— s=50
02 — 5=100
— s=200
— 5=300 0.2

5=370

Accuracy fraction of F(w* + noise)/F(w*)

0 10 20 30 40 50 0 50K 100K 150K 200K 250K 300K 350K 0 50K 100K 150K 200K 250K 300K 350K
of iteration # of iteration

(a) (b) (©

Figure 3: Non-convex. (a) Utility graph, (b) Different s, (c) Different e

non-convex case as shown in Figure[3(b)] where we can see a similar pattern. Experimental results for other data sets
are in Supplemental Material [D] This confirms that our DP-SGD framework can converge to a decent accuracy while
achieving a very small privacy budget .

4.3 DP-SGD with Different Levels of Privacy Budget

Figure[I(c) and Figure[2(c)|show that our DP-SGD framework converges to better accuracy if € is slightly larger. E.g., in
the strongly convex case, privacy budget e = 0.04945 achieves test accuracy 86% compared to 93% without differential
privacy (hence, no added noise); € = 0.1, still significantly smaller than what is reported in literature, achieves test
accuracy 91%. Figure[3(c)|shows the test accuracy of our asynchronous DP-SGD for different privacy budgets € in the
non-convex case. For e = 0.15, our framework can achieve the test accuracy about 93%, compared to 98% without
differential privacy. These figures again confirm the effectiveness of our DP-SGD framework, which can obtain a strong
differential privacy guarantee.

5 Conclusion

We improved the moment account method and provided a simple characterization of parameters that achieves (¢, ¢)-DP,
which we prove is close to tight in that 7" cannot be more than a factor ~ 8 smaller. Choosing 7" as small as possible
optimizes accuracy and minimizes round complexity.

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 308-318. ACM, 2016.

[2] Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan Rogers. Protection against
reconstruction and its applications in private federated learning, 2019.

[3] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1-27:27, 2011.

[4] Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A unified analysis of
hogwild-style algorithms. In NIPS, pages 2674-2682, 2015.

[5] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Proceedings of the twenty-second
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 202-210, 2003.

[6] Jinshuo Dong, Aaron Roth, and Weijie Su. Gaussian differential privacy. Journal of the Royal Statistical Society,
2021.

[7] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Local privacy, data processing inequalities, and
statistical minimax rates, 2014.

[8] Cynthia Dwork. A firm foundation for private data analysis. Communications of the ACM, 54(1):86-95, 2011.

[9] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data, ourselves:
Privacy via distributed noise generation. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 486—503. Springer, 2006.

[10] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of cryptography conference, pages 265-284. Springer, 2006.

[11] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and Trends®
in Theoretical Computer Science, 9(3—4):211-407, 2014.

[12] Jonas Geiping, Hartmut Bauermeister, Hannah Droge, and Michael Moeller. Inverting gradients — how easy is it
to break privacy in federated learning? In NIPS, 2020.

[13] Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client level perspective,
2018.

[14] Meng Hao, Hongwei Li, Xizhao Luo, Guowen Xu, Haomiao Yang, and Sen Liu. Efficient and privacy-enhanced
federated learning for industrial artificial intelligence. IEEE Transactions on Industrial Informatics, 16(10):
6532-6542, 2020. doi: 10.1109/T11.2019.2945367.

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems, 25:1097-1105, 2012.

[16] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Improved asynchronous parallel optimization
analysis for stochastic incremental methods. JMLR, 19(1):3140-3207, 2018.

[17] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.lecun.com/
exdb/mnist/|

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[19] Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated learning: A survey, 2020.

[20] Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private recurrent
language models. In International Conference on Learning Representations (ICLR), 2018. URL https://
openreview.net/pdf?id=BJOhF1Z0b,

10

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://openreview.net/pdf?id=BJ0hF1Z0b
https://openreview.net/pdf?id=BJ0hF1Z0b

[21] H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agiiera y Arcas. Federated learning of deep
networks using model averaging. ICLR Workshop Track, 2016.

[22] Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. Toward robustness and privacy in federated
learning: Experimenting with local and central differential privacy, 2021.

[23] M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive privacy analysis of deep learning: Passive and active
white-box inference attacks against centralized and federated learning. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 739-753, 2019. doi: 10.1109/SP.2019.00065.

[24] Lam Nguyen, Phuong Ha Nguyen, Marten Dijk, Peter Richtarik, Katya Scheinberg, and Martin Takac. Sgd
and hogwild! convergence without the bounded gradients assumption. In International Conference on Machine
Learning, pages 3750-3758. PMLR, 2018.

[25] Nhuong Nguyen, Toan Nguyen, Phuong Ha Nguyen, Quoc Tran-Dinh, Lam Nguyen, and Marten Dijk. Hogwild!
over distributed local data sets with linearly increasing mini-batch sizes. In International Conference on Artificial
Intelligence and Statistics, pages 1207-1215. PMLR, 2021.

[26] Opacus. Opacus PyTorch library. URL https://opacus.ai.

[27] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Ulfar Erlingsson. Scalable
private learning with pate. In International conference on learning representations, 2018.

[28] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In Advances in neural information processing systems, pages 693-701, 2011.

[29] Nicolas Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponential convergence
rate for finite training sets. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

[30] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against
machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pages 3—18. IEEE, 2017.

[31] L. Song, R. Shokri, and P. Mittal. Membership inference attacks against adversarially robust deep learning models.
In 2019 IEEE Security and Privacy Workshops (SPW), pages 50-56, 2019. doi: 10.1109/SPW.2019.00021.

[32] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou. A
hybrid approach to privacy-preserving federated learning. In Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security, pages 1-11, 2019.

[33] Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. Journal of the American
Statistical Association, 105(489):375-389, 2010.

[34] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. Differentially private model publishing for
deep learning. 2019 IEEE Symposium on Security and Privacy (SP), May 2019. doi: 10.1109/sp.2019.00019.
URL http://dx.doi.org/10.1109/SP.2019.00019,

[35] Huan Zhang, Cho-Jui Hsieh, and Venkatesh Akella. Hogwild++: A new mechanism for decentralized asynchronous
stochastic gradient descent. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages 629—638.
IEEE, 2016.

[36] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients, 2020.

[37] Ligeng Zhu, Zhijian Liu, and Song Han. In Advances in Neural Information Processing Systems, volume 32,
2019.

[38] Yuqing Zhu, Jinshuo Dong, and Yu-Xiang Wang. Optimal accounting of differential privacy via characteristic
function. arXiv preprint arXiv:2106.08567, 2021.

11

https://opacus.ai
http://dx.doi.org/10.1109/SP.2019.00019

A Asynchronous Mini-Batch DP-SGD

Algorithmg™|2] 3] and] explain in pseudo code our asynchronous LDP approach. It is based on the Hogwild! [28]
recursion

wip1 = wy — 0V f (W05 &), (10)
where w, represents the vector used in computing the gradient V f(u,; £;) and whose vector entries have been read
(one by one) from an aggregate of a mix of previous updates that led to w;, j < ¢. In a single-thread setting where
updates are done in a fully consistent way, i.e. w; = wy, yields SGD with diminishing step sizes {7, }.

Recursion (I0) models asynchronous SGD. The amount of asynchronous behavior that can be tolerated is given by
some function 7(¢), see [24] where this is analysed for strongly convex objective functions: We say that the sequence
{w} is consistent with delay function 7 if, for all ¢, vector w0, includes the aggregate of the updates up to and including
those made during the (¢ — 7(t))-th iteration, i.e.,

Wy =wo — Yy m;VI(y;€5)

jEu
for some U with {0,1,...,t —7(t) — 1} CU.

In Algorithm [the local SGD iterations all compute gradients based on the same local model @, which gets substituted
by a newer global model vy, as soon as it is received by the interrupt service routine ISRRECEIVE. As explained in
ISRRECEIVE 90y, includes all the updates from all the clients up to and including their local rounds < k. This shows that
locally the delay 7 can be estimated based on the current local round ¢ together with k. Depending on how much delay
can be tolerated SETUP defines Y (k, 7) to indicate whether the combination (k, 7) is permissible (i.e., the corresponding
delay aka asynchronous behavior can be tolerated). It has been shown that for strongly convex objective functions
(without DP enhancement) the convergence rate remains optimal even if the delay 7(¢) is as large as ~ +/t/ Int [24].
Similar behavior has been reported for plain convex and non-convex objective functions in [25]].

In Algorithm [4| we assume that messages/packets never drop; they will be resent but can arrive out of order. This
guarantees that we get out of the "while Y'(k, i) is false loop" because at some moment the server receives all the
updates in order to broadcast a new global model 0,1 and once received by ISRRECEIVE this will increment k and
make Y (k,) true which allows LOCALSGDWITHDP to exit the wait loop. As soon as the wait loop is exited we
know that all local gradient computations occur when Y (k,) is true which reflect that these gradient computations
correspond to delays that are permissible (in that we still expect convergence of the global model to good accuracy).

Algorithm 2 Client — Local model with Differential Privacy

1: procedure SETUP(n):

Initialize sample size sequence {s;}7_, (diminishing) round step sizes {7}; }._,, and a default global model 9 to
start with.

Define a permissible delay function Y (k, i) € {True, False} which takes the current local round number ¢ and the
round number £ of the last received global model into account to find out whether local SGD should wait till a
more recent global model is received. Y (-, -) can also make use of knowledge of the sample size sequences used by
each of the clients.

2: end procedure

In this paper we analyse the Gaussian based differential privacy method of [1]]. We use their clipping method; rather than
using the gradient V f (0, £) itself, we use its clipped version [V f (w0, £)]c where [z]c = x/ max{1, ||z|/C}. Also,
we use the same mini-batch approach where before the start of the i-th local round a random min-batch of sample size
s; is selected. During the inner loop the sum of gradient updates is maintained where each of the gradients correspond
to the same local model « until it is replaced by a newer global model. In supplementary material [B|we show that this is
needed for proving DP guarantees and that generalizing the algorithm by locally implementing the Hogwild! recursion
itself (which updates the local model each iteration) does not work together with the DP analysis. So, our approach
only uses the Hogwild! concept at a global round by round interaction level.

At the end of each local round the sum of updates U is obfuscated with Gaussian noise; Gaussian noise A'(0, C?0?) is
added to each vector entry. In this general description o; is round dependent, but our DP analysis in Supplementary
Material [B|must from some point onward assume a constant o = o; over all rounds. The noised U times the round step
size 7); is added to the local model after which a new local round starts again.

“*Our pseudocode uses the format from [25]).

12

Algorithm 3 Client — Local model with Differential Privacy

1: procedure ISRRECEIVE(?y):

This Interrupt Service Routine is called whenever a new broadcast global model vy, is received from the server.
Once received, the client’s local model W is replaced with ¥y, (if no more recent global model v, was received out
of order before receiving this Uy)

The server broadcasts global model 9y, for global round number & once the updates corresponding to local round
numbers < k — 1 from all clients have been received and have been aggregated into the global model. The server
aggregates updates from clients into the current global model as soon as they come in. This means that 9y, includes
all the updates from all the clients up to and including their local round numbers < k£ — 1 and potentially includes
updates corresponding to later round numbers from subsets of clients. The server broadcasts the global round
number & together with 0y.

2: end procedure

Algorithm 4 Client — Local model with Differential Privacy

1: procedure LOCALSGDWITHDP(d)

2 1=0,0 =79

3 while True do

4 while Y (k,) = False do nothing end > k is the global round at the server.
5: Uniformly sample a random set {{x};°; C d
6: h=0,U=0

7 while h < s; do

8: 9 =I[Vf(0,&)lc

9: U=U+g
10: h++
11: end while
12: n + N(0,C?c21)
13: U=U-+n
14: w=w+mn-U
15: Send (¢, U) to the Server.
16: 1++

17: end while
18: end procedure

The noised U is also transmitted to the server who adds U times the round step size #; to its global model ©. As soon as
all clients have submitted their updates up to and including their local rounds < k — 1, the global model v, denoted as
Uy, 1s broadcast to all clients, who in turn replace their local models with the newly received global model. Notice that
U}, may include updates from a subset of client that correspond to local rounds > k.

The presented algorithm adapts to asynchronous behavior in the following two ways: We explained above that the
broadcast global models ¥ themselves include a mix of received updates that correspond to local rounds > k — this is
due to asynchronous behavior. Second, the sample size sequence {s;} does not necessarily need to be fixed a-priori
during SETUP (the round step size sequence {7; } does need to be fixed a-priori). In fact, the client can adapt its sample
sizes s; on the fly to match its speed of computation and communication latency. This allows the client to adapt its local
mini-batch SGD to its asynchronous behavior due to the scheduling of its own resources. Our DP analysis holds for a
wide range of varying sample size sequences.

We notice that adapting sample size sequences on a per client basis still fits the same overall objective function as
long as all local data sets are iid: This is because iid implies that the execution of the presented algorithm can be cast
in a single Hogwild! recursion where the &, are uniformly chosen from a common data source distribution D. This
corresponds to the stochastic optimization problem

min {F(w) = E¢op[f(w; &)},

weRE
which defines objective function F' (independent of the locally used sample size sequences). Local data sets being iid in

the sense that they are all, for example, drawn from car, train, boat, etc images benefit from DP in that car details (such
as an identifying number plate), boat details, etc. need to remain private.

13

B Differential privacy proofs

This appendix proves a key observation improving the DP moment accountant from [1]]. As shown in [1l], for any
given T > 0 in one specific setting, there are many choices for (¢, §, o) depending on two constants (¢, cs) (see
Theorem . We re-frame the problem as for a given (e, §, o) there are many choices T' depending on K and sample
size sequence s, where T' > k2 /(const - €) (see Theorem .

This appendix provides the proof of Theorem It follows a sequence of steps: In Section we discuss the
analysis of [1]] and explain where we will improve. This leads in Section[B.2]to an improved analysis yielding a first
generally applicable Theorem DP definitions/tools with a key lemma (generalized from [1]]) are discussed in
Section[B.2.T]and the proof of Theorem[B.2)is in Section[B.2.2] As a consequence we derive in Section [B.3]a simplified
characterization in the form of Theorem Finally, we introduce more coarse bounds in order to extract the more
readable Theorem [3.]lin Section B4l

B.1 DP-SGD Analysis by Abadi et al.

[1] proves the following theorem (rephrased using our notation substituting ¢ = s/N):

Theorem B.1. There exist constants ¢, and cy so that given a sample size sequence s; = s and number of steps T', for
any € < c1T(s/N)?, Algorithmis (e,)-differentially private for any § > 0 if we choose

o s o 8/ VTI(/5)

The interpretation of Theorem[B.T] however, subtle: The condition on € in Theorem [B.1]is equivalent to

1/y/c1 < z where z = (s/N) - /T /e.

Substituting this into the bound for o yields

In(1/6
o> (cy-2)- M (11)
€
This formulation only depends on T through the definition of z. Notice that z may be as small as 1/ Vi In fact, it
is unclear how z depends on T since T is equal to the total number K of gradient computations over all local rounds
performed on the local data set divided by the mini-batch size s, i.e., T' = K/s, hence, z = (K/N) - \/1/(T¢). This
shows that for fixed K and N, we can increase 7" as long as 1/,/c1 < z, or equivalently,

T < ci(K/N)?*/e 12)

(notice that the original constraint on € in Theorem directly translates into this upper bound on 7" by using T' = K/s).
Since o cannot be chosen too large (otherwise the final global model has too much noise), €, see @, cannot be very
small. Therefore, 9I2)) puts an upper bound on 7" which is in general much less than K for practically sized large data
sets (K equals the maximum possible number of rounds for mini-batch size s = 1).

Rather than applying Theorem [B.T] we can directly use the moment accountant method of its proof to analyse specific
parameter settings. It turns out that 7" can be much larger than upper bound (12). In this paper we formalize this
insight (by showing that ‘constants’ ¢; and co can be chosen as functions of " and other parameters) and show a lower
bound on o which does not depend on 7T’ at all — in fact z in can be characterized as a constant independent of any
parameters. This will show that o can remain small to at least a lower bound that only depends on the privacy budget.
We can freely increase 1" (up to K if needed) in order to improve accuracy.

B.2 A General Improved DP-SGD Analysis

We generalize Theorem B] [1]]:
Theorem B.2. We assume that o = o; with o > 216/215 for all rounds i. Let

1 1 3N . 2,/ 2e,/
1"—7"0'23'(c)ed/UQWithuo— rooandulzﬂ

l—uy l—wujod o—rp (o0 —ro)o’

where rq is such that it satisfies
ro<1l/e, up <1, and uy < 1.

14

Let the sample size sequence satisfy s; /N < ro/o. For j = 1,2,3 we define S'j (resembling an average over the sum of
j-th powers of s; /N) with related constants p and p:

~
Ju

A 1 «— Sj Slgg S%
S; = — Lt — < d— < p.
J T < N(N—Si)j717 Sg = pan 3, >p

(3

Il
o

Let e = clTS’%. Then, Algorithmis (e, 8)-differentially private if

0>i\/§2T(6—|—ln(1/5))
> 7 -

This generalizes Theorem E] where all s; = s are constant. First, Theorem @] covers a much broader class of
sample size sequences that satisfy bounds on their *'moments’ Sj (this is more clear as a consequence of Theorem
[B.2). Second, our detailed analysis provides a tighter bound in that it makes the relation between “constants” ¢y and ¢;
explicit, contrary to [1]]. Exactly due to this relation ¢g = ¢(¢1) we are able to prove in AppendixTheoremas a
consequence of Theorem B.2]by considering the case c(cy) = 2/(pc1).

In order to prove Theorem [B.2] we first set up the differential privacy framework of [1]] in Appendix Here we
enhance a core lemma by proving a concrete bound rather than an asymptotic bound on the so-called A-th moment
which plays a crucial role in the differential privacy analysis. The concrete bound makes explicit the higher order error
term in [1]].

In Appendix [B.2.2) we generalize Theorem [B.T]of [1]] by proving Theorem [B.4]using the core lemma of Appendix [B.2.}

V2rpr+1—1 }

where ¢ = c(c1) with ¢(x) = min {, -
rpx px

B.2.1 Definitions and Main Lemma

We base our proofs on the framework and theory presented in [1]. In order to be on the same page we repeat and cite
word for word their definitions:

For neighboring databases d and d’, a mechanism M, auxiliary input aux, and an outcome o, define the privacy loss at

o as
PriM(aux,d) = o

PrM(aux,d") = o]’

For a given mechanism M, we define the A-th moment a4 (\; aux, d, d’) as the log of the moment generating function
evaluated at the value A:

clo;M,aux,d,d') =In

arm(A;aux, d, d") = InE,pq(aux,a)[exp(X - ¢(0; M, aux, d, d'))].

We define
apm(N) = max, o (\;aux, d, d')

where the maximum is taken over all possible aux and all the neighboring databases d and d’.

We first take Lemma 3 from [1]] and make explicit their order term O(¢*\3 /o) with ¢ = s, . and 0 = o; in our
notation. The lemma considers as mechanism M the i-th round of gradient updates and we abbreviate a.aq(A) by a; (A).
The auxiliary input of the mechanism at round ¢ includes all the output of the mechanisms of previous rounds (as in [[L]).

For the local mini-batch SGD the mechanism M of the i-th round is given by

Sri—].

M(aux,d) = > [Vf(ib,)] + N (0, C2071),

h=0

where w is the local model at the start of round ¢ which is replaced by a new global model © as soon as a new 0 is
received from the server (see ISRReceive), and where &, are drawn from training data d, and [.] denotes clipping (that
is [z]¢ = x/ max{1, ||z||2/C}). In order for M to be able to compute its output, it needs to know the global models
received in round ¢ and it needs to know the starting local model w. To make sure M has all this information, aux
represents the collection of all outputs generated by the mechanisms of previous rounds < 7 together with the global
models received in round ¢ itself.

15

In the next subsection we will use the framework of [1]] and apply its composition theory to derive bounds on the privacy
budget (¢, d) for the whole computation consisting of 7" rounds that reveal the outputs of the mechanisms for these T
rounds as described above.

We remind the reader that s; /N is the probability of selecting a sample from a sample set (batch) of size s; out of
a training data set d’ of size N = |d'|; o; corresponds to the A'(0, C?0?1) noise added to the mini-batch gradient
computation in round ¢ (see the mechanism described above).

Lemma B.3. Assume a constant ro < 1 and deviation o; > 216/215 such that s;/N < ro/o;. Suppose that X is a
positive integer with

A<o?ln
8i0%

and define

Uo(N) = 2/ g Ui(\) = 2e/Aro/0i

o, — 1o (i —r0)oi

Suppose Uy(A) < ug < 1and Uy (M) < uy < 1 for some constants ug and uy. Define

1 1 e
= .93 . 2y
r o (1—u0+1—u1 Ug))exp(?)/al)
Then,
AN +1 SAZ(A+1
i) < =5 A+)2+7‘_ si A (+2)3.
N(N —s;)07 19 N(N —8;)%0;

Proof. The start of the proof of Lemma 3 in [1] implicitly uses the proof of Theorem A.1 in [11], which up to formula
(A.2) shows how the 1-dimensional case translates into a privacy loss that corresponds to the 1-dimensional problem
defined by po and i in the proof of Lemma 3 in [1], and which shows at the end of the proof of Theorem A.1 (p. 268
[L1]]) how the multi-dimensional problem transforms into the 1-dimensional problem. In the notation of Theorem A.1,
f(D) + N (0, 0°T) represents the general (random) mechanism M (D), which for Lemma 3 in [1]’s notation should be
interpreted as the batch computation

M(d) =" f(dn) +N(0,0°T)

heJ

for a random sample/batch {dp, }rcs. Here, f(d) (by abuse of notation — in this context f does not represent the
objective function) represent clipped gradient computations V f(0; dj,) where 1 is the last received global model with
which round i starts (Lemma 3 in [1] uses clipping constant C' = 1, hence ' (0, C?0I) = N (0, 0%I)).

Let us detail the argument of the proof of Lemma 3 in [1]] in order to understand what flexibility is possible: We consider
two data sets d = {d,...,dn_1} andd’ = d+ {dx}, where dy ¢ d represents a new data base element so that d and
d’' differ in exactly one element. The size of d’ is equal to N. We define vector x as the sum

e=) f(d).
J\{N}
Let
z = f(dN)

If we consider data set d, then sample set J C {1,---, N — 1} and mechanism M (d) returns

M@ =" fdn) + NO,0° D) = Y f(dn) +N(0,0°T) = &+ N(0,0%I).

heJ he J\{N}

16

If we consider data set d’, then J C {1,--- , N} contains d with probability ¢ = |J|/N (|.J| = s; is the sample size
used in round). In this case mechanism M (d’) return

M(d') = Zf(dh) +N(0,0°T) = f(dn) + Z f(dp) +N(0,0%T) = z + z + N(0,0°T)

heJ heJ\{N}

with probability q. It returns

M) =" f(dn) + N (0,0 T) = Y fdp) + N(0,0%T) = 2+ N(0,07T)

heJ heJ\{N}

with probability 1 — ¢. Combining both cases shows that M (d’) represents a mixture of two Gaussian distributions
(shifted over a vector x):
M(d) =z + (1= q) - N(0,0°I) + ¢ N(z,0°0).

This high dimensional problem is transformed into a single dimensional problem at the end of the proof of Theorem A.1
(p. 268 [L1]) by considering the one dimensional line from point z into the direction of z, i.e., the line through points x
and x + z; the one dimensional line maps z to the origin 0 and x + z to ||z||2. M(d) as wells as M(d’) projected on
this line are distributed as
M(d) ~ po and M(d') ~ (1 — q)po + qua,
where
Ho ~ N(0702) and py ~ N(”Z”% 02)'

In [1]] as well as in this paper the gradients are clipped (their Lemma 3 uses clipping constant C' = 1) and this implies

llzll2 = [l f(dn)]l2 < C = 1.

Their analysis continues by assuming the worst-case in differential privacy, that is,

M1 NN(1,02).

Notice that the above argument analyses a local mini-batch SGD computation. Rather than using a local mini-batch
SGD computation, can we use clipped SGD iterations which continuously update the local model:

Wht1 = W — N V[f(Wn, &n)]c-

This should lead to faster convergence to good accuracy compared to a local minibatch computation. However, the above
arguments cannot proceecEf] because (in the notation used above where the dy,, h € J, are the &, h € {0,...,8, — 1 =
|J| — 1}) selecting sample dy in iteration h does not only influence the update computed in iteration 4 but also
influences all iterations after A till the end of the round (because f(dx) updates the local model in iteration & which
is used in the iterations that come after). Hence, the dependency on d is directly felt by f(dy) in iteration h and
indirectly felt in the f(d;) that are computed after iteration h. This means that we cannot represent distribution M (d")
as a clean mix of Gaussian distributions with a mean z, whose norm is bounded by the clipping constant.

The freedom which we do have is replacing the local model by a newly received global model. This is because the
updates f(dp,), h € J, computed locally in round ¢ have not yet been transmitted to the server and, hence, have not been
aggregated into the global model that was received. In a way the mechanism M (d) is composed of two (or multiple if
more newer and newer global models are received during the round) sums

M(d) =" foldn) + D fildn) +N(0,0°T),

heJo heJy

"'This is actually a subtle argument: We do not have fixed constant sample sizes, instead we have probabilistic sample sizes with
a predetermined expectation. The idea is to add each data element to the sample with probability s; /N. This means that the sample
size is equal to s; in expectation. This allows one to compare two samples that differ in exactly one element dx (as is done in this
argument). If one uses fixed constant sample sizes, then M(d') = x + (1 — q) - N'(0,0°I) + ¢ - N(f(dn) — f(dn), 0°I) for
z = f(dy)and some h € J. Now || f(dn) — f(dn)|l2 < [|f(dN)|l2 + || f(dr)|l2 < 2C = 2 (for C = 1) and we pay a factor 2
penalty. In the f-DP framework we actually consider the latter and work with fixed (non-probabilistic) constant sample sizes. In this
paper and, what should have been assumed in [1] and is actually implemented in the Opacus library [26]], we assume a probabilistic
sample size and safe the factor 2. We notice that even if we aim at a constant sample size sequence with sample sizes s, we can
reinterpret the s; as the actual chosen probabilistic sample size with E[s;] = s and apply our theory that holds for varying sample
size sequences.

#Unless we assume a general upper bound on the norm of the Hessian of the objective function which should be large enough to
cover a wide class of objective functions and small enough in order to be able to derive practical differential privacy guarantees.

17

where J = Jy U Jy and Jj represent local gradient computations, shown by f(.), based on the initial local model w
and J; represent the local gradient computations, shown by f(.), based on the newly received global model © which
replaces w. As one can verify, the above arguments are still valid for this slight adaptation. As in Lemma 3 in [1] we
can now translate our privacy loss to the 1-dimensional problem defined by o ~ N (0, C?0?) and ju; ~ N(C, C%0?)
for |V f(.,.)|l2 < C as in the proof of Lemma 3 (which after normalization with respect to C' gives the formulation of
Lemma 3 in [1]] for C = 1).

The remainder of the proof of Lemma 3 analyses po and the mix 4 = (1 — ¢)uo + gu1 leading to bounds for the
expectations (3) and (4) in [1] which only depend on o and p;. Here, ¢ is the probability of having a special data
sample £ (written as dp in the arguments above) in the batch. In our algorithm ¢ = s;/N. So, we may adopt the
statement of Lemma 3 and conclude for the i-th batch computation

SZAN+1) 0 (s3IN3) .

; <
N < FE 502 N343

In order to find an exact expression for the higher order term we look into the details of Lemma 3 of [1]. It computes an
upper bound for the binomial tail

A+1
S (M7) Enl0ala) = e () (13)
t=3

where

Ern [((v0(2) = 11(2))/11(2))']

(29)'(t — D! ¢ (29)" exp((£* — t)/(20%)) (0" (t = D! + t)
2(1 _ q)tflo—t (1 _ q)tO—Qt 2(1 _ q)tflo-Zt
_ (29"t = DU Fexp((t2 —8)/(20%))) | ¢'(L+ (1 = @)2 exp((t* — 1)/ (20%))t") (14)
2(1—q)t~ 1ot 2(1—q)to®

Since t > 3, we have the coarse upper bounds

exp((t2 = 1)/(20%)) 1 o (1= @)2"exp((t” — 1)/ (20))t"
— exp((32 = 3)/(20?)) ~ (1-¢q)2%exp((3% — 3)/(20%))3%
By defining c as 1 plus the maximum of these two bounds,
max {1,1/((1 — q) - 216)}
exp(3/0?) ’

c=1+

we have ((14)) at most

(29)'(t — Dltcexp((t* —1)/(20?)) | q'c(1 — q)2" exp((t* —)/ (20%))t"
= 2(1 — q)t-1ot 2(1 — q)to?t :
Generally (for practical parameter settings as we will find out), ¢ < 1 — 1/216 which makes ¢ < 2. In the remainder of

this proof, we use ¢ = 2 and assume ¢ < 215/216. In fact, assume in the statement of the lemma that o = ¢; > 216/215
which together with ¢ = s;/N < rg/o; and ry < 1 implies ¢ < 215/216.

15)

After multiplying (T5) with the upper bound for

t At
and noticing that (¢ — 1)!!/¢! < 1 and ¢*/t! < e! we get the addition of the following two terms

A+ 1A(2g) exp((#? — 1)/(20%)) | A+ 1AL~)2 exp((t* —t)/(20%))e"
A (1-q)tot A (1-q)to '

t
<A+1> §A+1A—

This is equal to
t

A+ 1 [X2gexp((t —1)/(20?))
(=)= < (1-q)o
a _q)/\4)\—1 (Aq2exp(tl+(2)—021)/(20))> . (16)

We notice that by using t < A + 1, A\/o? < In(1/(qo)) (assumption), and ¢ = s; ./N. < ro/c we obtain

N2qexp((t —1)/(20?)) A2q exp()\/(202?)) 2vAq 2y/Arofo
(i —a0o = T Gage SU-a oon W

and

Aq2 exp(l + (t — 1)/(20’2)) Aq2e eXp()\/(202)) 26\/E B 26\/% -
(1-4q)o® = (1—gq)o? = (1—q)o2 (0 —ro)o =U1(N).

Together with our assumption on Uy () and Uy (), this means that the binomial tail is upper bounded by the two
terms in (I6) after substituting ¢ = 3, with the two terms multiplied by

> , 1 1 > , 1 1
Up(N\) = < dd U\ = <
; N =W S Tow ™ 2 00 1w

Jj=0

respectively. For (T3) this yields the upper bound
1 A+1 [A2gexp(1/02)\° 1 A+1 [Aq2exp(l+1/02)\°
(1-q) ‘*‘17“1(1—61)

1—ug A (1-q)o A (1-q)o?
1 1 2%exp(3+3/0?)\ N(A+1)¢
< 23 2 : .
- <1 — ug exp(8/07) + 1—u o3) (1—q)203

By the definition of r, we obtain the bound
r A1+ N)g

~ rg (1—q)203"

which finalizes the proof.

B.2.2 Proof of Theorem [B.2l

The proof Theorem [B.2]follows the line of thinking in the proof of Theorem 1 in [1]]. Our theorem applies to varying

sample/batch sizes and for this reason introduces moments S;. Our theorem explicitly defines the constant used in the
lower bound of ¢ — this is important for proving our second (main) theorem in the next subsection.

Theoremassumes o = o for all rounds ¢ with ¢ > 216/215; constant 7y < 1/e such that s;/N < ry/0; constant

3 1 1 e 9
ro= 1.2 (1_u0+1_u10_3>exp(3/0), (17)
where
Uy = % and u; = m

are both assumed < 1.
Forj =1,2,3 we deﬁne{gfl

. 1= s 58 S2

S] = T pars N(N 7151)371 with ;,223 <p, i <p

Based on these constants we define

ox) = min{””’x“_l 2 }

rpx " px
Let e = ¢;T'S2. We want to prove Algorithm@is (e, §)-differentially private if

2 \/ ST (e +n(1/9))

€

o> where ¢y = ¢(c1).

El

§§SZ denotes the j-th power (s;).

19

Proof. For j = 1, 2, 3, we define

}ﬂ
L

s , 1 = slo?
Si=Y —————and S} = § e
T NN syl T T g NNV s

[Z

I§
=)

(Notice that S7 < rg.) Translating Lemmain this notation yields (we will verify the requirement/assumptions of
Lemma [B.3]on the fly below)

Zaz) < Sa(>\+1)+r183>\2(>\+1).
=0 0

The composition Theorem 2 in [[I]] shows that our algorithm for client ¢ is (¢, ¢)-differentially private for

T—1
> mi (X)) —
b > min exp (Z a;(A) Ae) ,

=0

where T indicates the total number of batch computations and the minimum is over positive integers A. Similar to their
proof we choose A such that

SoA(N + 1) + ;83)\2()\ F1) e < —Ae/2. (18)
0
This implies that we can choose 0 as small as exp(—\e/2), i.e., if
6 > exp(—Ae/2), (19)

then we have (e, 0)-differential privacy. After dividing by the positive integer), inequality is equivalent to the
inequality

So(A+1) + —S5A(1+ X) < ¢/2,
To

which is equivalent to

53 €
(A+1) <1+ro52’\> <35

This is in turn implied by
A1<come (20)

together with
€ r S3 € €
— 14+ —Zp—) < —,
€0 255 < + ro So €0 252) — 25,
or equivalently,

r Sg
— —e] <1 21
CO(+2000 S%E)_ ()
We use .
=C1 TSl2 =C1 SlSi (22)
(for constant o; = o). This translates our requirements (20) and (21)) into
CpoC1 SlS{
A+1< — d 23
+1s 5 g, o (23)
5153 1
14+ — ——57) < 1. 24
(+ 27‘0 + CpC1 522 1 = ()
Since we assume L
S153 5153 <
5= &y P
S5 S2

and since we know that S} < ro, requirement (24)) is implied by

-
co(1+ ?p coc1) <1,

20

or equivalently

1-c
C1 S ?20 (25)
2%
Also notice that for constant o; = o we have S} = S;02/T. Together with
2 G2
5 _Sircpr
S2 SQ
we obtain from 23))
CoC1 5151 CoC1 . o
A+1< — < — . 26
tl<— S, = o P (26)
Generally, if
2
1< —, 27)
PCo

then implies A < o%: Hence, (a) for our choice of u and u; in this theorem, Up(A\) < ug and Uy (A\) < uy as
defined in Lemma , and (b) the condition A < af In S_N < is satisfied (by assumption, S_N o~ >1 /o > e). This
implies that Lemma|B.3|is indeed applicable.

For the above reasons we strengthen the requirement on ¢ (conditions (23)) and (27) with (22)) to

1760 2
<min{ ——=, — - 515}

For constant o; = o, we have

S8, =TS?,
hence, we need
1-— 2 N
e<min{m§0,A}-TSf (28)
2CG P

Summarizing , , and for some positive integer A proves (e, §)-differential privacy.
Condition (i.e., exp(—A\e/2) < 6) is equivalent to

In(1/6) <

A€
> (29)

If
€

is positive, then it satisfies (20) and we may use this A in (29). This yields the condition

€
< R e
In(1/6) < (L00252j 1> 5
which is implied by

€
< —_— _—= — — €.
In(1/9) < (CO 25, 2) 2715, €

For constant o; = o we have Sy = .SET/ o2 and the latter inequality is equivalent to
o 2 V8 /T(e+In(1/9)) a1
o> — .
= e c
Summarizing, if , , and the lambda value is positive, then this shows (e, §)-differential privacy.
The condition (30) being positive follows from

4% o
co
Substituting So = SQT/ o2 yields the equivalent condition
AT S,
<e
o2¢cy —

21

or

which is implied by (31). Summarizing, if and (31), then this shows (e, §)-differential privacy. Notice that
corresponds to Theorem 1 in [1]] where all s; are constant implying +/ Sy = q/+/1 — q in their notation.

We are interested in a slightly different formulation: Given

. {1—00 2}

C1 =N 5 5, =
P2

2% Pl

what is the maximum possible ¢y (which minimizes o implying more fast convergence to an accurate solution). We
need to satisfy ¢g < 2/(pc;) and

%010(2) +c—1<0,
that is,
T
(co +1/(rper))? <1/ (?pcl) +1/(rper)?,
or
r 2rpc; +1—1
co < W (er) + 1/ (rper)? - 1 (rper) = YEPEFT=L,
rpcy
We have
2 1-1
co = min {\/W,2/(ﬁcl)} = C(Cl)~
rpCy
This finishes the proof.

B.3 A Simplified Characterization

So far, we have generalized Theorem [B.T]in Appendix [B]in a non-trivial way by analysing increasing sample size
sequences, by making explicit the higher order error term in [[1], and by providing a precise functional relationship
among the constants ¢; and ¢y in Theorem [B.1] The resulting Theorem B.Z]is still hard to interpret. The next theorem is
a consequence of Theorem [B.2]and brings us the interpretation we look for.

Theorem B.4. For sample size sequence {si}?:_ol the total number of local SGD iterations is equal to K = ZiTzfol S;.

We define the mean s and maximum S, .. and their quotient 0 as

1 K s
5= — E 8i = —, Smaz = Max{sq,...,s7_1}, and 0= ""%,

We define

h(z) = (1+ (e/z)? — e/:v)27 g(x) = min {17h(x)})

€T

and denote by ~ the smallest solution satisfying

S 2 +24-a< o n 1 e3> 3/0% in eN
—)e witha = —.
TEToa T I—a\(1-vae o(l-a)-2evaoc K
If the following requirements are satisfied:
g (V2 m(1/)/e)
5 < -N (32)
9)
K
e < ~h(o) N’ (33)
¢ > 792~%~%, and (34)
o > 2(e+1n(1/0))/e, (35)

then Algorithmd|is (e, 6)-differentially private.

22

Its proof follows from analysing the requirements stated in Theorem We will focus on the case where ¢(z) = 2

Es
which turns out to lead to practical parameter settings as discussed in the main body of the paper.
Requirement on r — (38): In Theorem [B.2] we use
P 1 1 63 2
_ . 23 . - = 3/c
rero (1—u0+1—u103)e
with 5 5
Uug = 109 and uyp = ﬂ,
o—T (0 —710)o
where r(is such that it satisfies
ro<1/e, up <1, anduy < 1. (36)
In our application of Theorem[B.2] we substitute 79 = ao. This translates the requirements of (36) into
1 2e
a< =, a<l ando > eva (37)
eo 1-a
As we will see in our derivation, we will require another lower bound (42) on 0. We will use (#2) together with
1 2
< a <1, and /AT Im(1/0)))e > VO
ev/2(e +1n(1/6))/e 1-«a
to imply the needed requirement (37). These new bounds on « are in turn equivalent to
a < g(e, §) where (33)
2
2
g(€,8) = min Ve , 1+ ee — cve
e\/2(e +1n(1/9)) 2(e +1In(1/4)) 2(e +1In(1/9))/e
(notice that this implies o < 1).
Substituting g = «o in the formula for r yields the expression
g 1 63 2
— 93, S) 39
r <(1\/a)2+0(1a)2e\/aa) e’ (1= a)a (39)
Requirement on s; /N - : In Theoremwe also require s;/N < ro/c which translates into
si/N < a. (40)

Requirement on o — (42)) and : In Theorem we restrict ourselves to the case where function ¢(x) attains the
minimum c¢(z) = 2/(px). This happens when

V2rpr+1-1 S 2

- .

rpx 12
This is equivalent to
2
z>2wl 4 41)
P P
Notice that in the lower bound for ¢ in Theoremwe use ¢g = ¢(x) for x = ¢;, where ¢; is implicitly defined by
€ = ClTS%
or equivalently
c1 = LA
752

To minimize €, we want to minimize ¢; = x. That is, we want ¢; = x to match the lower bound @T)). This lower bound
is smallest if we choose the smallest possible p (due to the linear dependency of the lower bound on p). Given the
constraint on p this means we choose

1S5
S3

23

For ¢; = x satisfying (1)) we have

co=cler) = P

Substituting this in the lower bound for ¢ attains

2 \/ST(e +1In(1/5) _ [o%

c(c1) €

2(e + In(1/)) /e.

In order to yield the best test accuracy we want to choose the smallest possible o. Hence, we want to minimize the

lower bound for ¢ and therefore choose the smallest p given its constraints, i.e.,
.St
pP= >
Sa

0> +/2(e+1n(1/8))/e.

This gives

(42)

Notice that this lower bound implies o > 216/215 and for this reason we do not state this as an extra requirement.

Our expressions for p, g, and ¢; with x = ¢; shows that lower bound holds if and only if

e (2r2 428,) 1
S1
Requirement implying : The definition of moments Sj imply
A K
S =—
'T TN
and, since s;/N < a < 1,
Sj < O(j/(l — Oz)J_l.
Lower bound on ¢ is therefore implied by

a® TN a?
>2 2 T.
€= r(lfa)Q K * 11—«

We substitute K
T=p8"
f N
in (#4) which yields the requirement
N 2r
N 2.0\2
‘KZad_ap @+

This inequality is implied by the combination of the following two inequalities:

11—«

and

Inequality (@8) is equivalent to

’y_a(l—a)?'yK 11—«
This implies)
= l1-a 22
Also notice that
1 K N
B = Ti = Sl S «

(@?B).

(43)

(44)

(45)

(40)

(47)

(48)

(49)

from which we obtain

Let us define

We will require

and also o(1 — @) — 2ey/a > O i,

Bounds (52)) and (53) are equivalent to

With condition (54) in place we may derive the upper bound

because all denominators are decreasing functions in v and remain positive for «

These two upper bounds combined with (50) show that (#9) is implied by choosing

where v(0, eN/K) is defined as the smallest solution of satisfying

7y

1< ap.
_ eN
asa?psp-as iy (51)
a<l (52)
;s Ve (53)
1—a
2
a < h(o) where h(o) = (1+ (e/o)? — e/a) . (54)
_
a(l — a)?
24 o n 1 (i
1—a \(1-+V«a)? (1 oz)—Qe\fa
24 < o N 1 >
I-a\(1-va)?2 ol1-a)—-2e/ao
< @. Similarly,
2 2
< .
l—-a~1—a&
v =(0,eN/K),
> LJr (55)
1—a

24-a< o 1 €3> 3/02
+ — e ,
I—a\(1-+va)?2 o(l-a)—2e/ao

where @ = (eN/K)/~. The smallest solution ~ will meet with equality. For this reason the minimal solution
~ will be at most the right hand side of (53)) where ~ is replaced by its lower bound 2; this is allowed because this
increases & to the upper bound in (51)) and we know that the right hand side of (53) increases in & up to the upper bound
in (51) if the upper bound satisfies

eN
— <
QK*h()

This makes requirement (54) slightly stronger — but in practice this stronger requirement is already satisfied because K
is several epochs of NV iterations making £7- < 1 while o >> 1 for small e implying that i(o) is close to 1.

Notice that v = 2 + O(a), hence, for small & we have v & 2. A more precise asymptotic analysis reveals

3
y=2+(2+2% (a+ ;) e3Va + 0(a?).

Relatively large & closer to 1 will yield v > 2.

25

Summarizing

{E), @), G, G4, B3} = [@3)-
Combining all requirements — resulting in (57), (58), and (42), or equivalently (60), (61), and (d2): The combina-

tion of requirements #3) and ([&7) is equivalent to
€
<, /— 56
a <,/ T (56)

(notice that 7" and (3 are not involved in any of the other requirements including those discussed earlier in this discussion,
hence, we can discard (@3)) and substitute this in (7). The combination of (50), (54), and (33) is equivalent to
N N
;—K < h(o) withy = v (U, GK) (57)
(for the definition of /(.) see (54) and for (., .) see (55)).
We may now combine (56), (38), and {0) into a single requirement

5i/N < min {g(e, 5, \/E } (58)

(for the definition of g(., .) see (38)). This shows that (57), (58), and (we remind the reader that the last condition
is the lower bound on o > +/2(e + In(1/9))/e) implies (e, §)-DP by Theorem

Let us rewrite these conditions. We introduce the mean s of all s; defined by

T—1
B 1 K
ST X7

and we introduce the maximum s, of all s; defined by

Smax — IH&X{SO7 ey STfl}.
We define 6 as the fraction s
0 — n@_aa:) (59)
S
This notation allows us to rewrite
€
i/N < —
si/ T
from (38) as
K s 02 <
—— €
'YN NS
From this we obtain that the requirements (57) and (58) are equivalent to
eN K3 4 eN K
) 22 << =, kel
7(”’1{) N’ _6_7<0,K> h(o) < (60)
and
05 < g(€,0)N. 61)

This alternative description shows that (60), (61)), and (42) with definitions for A(.), ¥(.,.), g(.,.), and 6 in (54), (53),
(38), and implies (e, 0)-DP. This proves Theorem [B.4| (after a slight rewrite of the definitions of functions A(.) and

g(.,).
B.4 Proof of the Main Theorem

Theorem [B24]can already be used to a-priori set hyperparameters given DP and accuracy targets. Still, as discussed
below, by making slight approximations (leading to slightly stronger constraints) we obtain the easy to interpret Theorem
Bdldiscussed in Section Bl

We set o as large as possible with respect to the accuracy we wish to have. Given this 0 we want to max out on our
privacy budget. That is, we satisfy (33) with equality,

o = 2t n(1/9)) 62)

€

26

We discuss (62) with constraints (32)), (33), and (34) below:

Replacing and @: In practice, we need a sufficiently strong DP guarantee, hence, 6 < 1/N and ¢ is small enough,
typically < 0.5. This means that we will stretch o to at least v/2 + 41n N. A local data set of size N = 10000 requires
o > 6.23; alocal data set of size N = 100000 requires o > 6.93. For such ¢ > 6 we have h(o) > h(6) = 0.42 (since
h(o) is increasing in o). (For reference, h(10) = 0.58, and for o >> 1 we have h(o) ~ 1.) From (62) we infer that
g9(\/2(e+1n(1/6))/e) = g(c) = min{1/(ec), h(c)}. One can verify that h(c) — 1/(eo) is positive and increasing
for o > 2.5, hence, g(c) = 1/(eo) for ¢ > 6. This reduces requirement to § < N/(ec#) and requirement to
€ < 0.42 - yK/N. Notice that (34) in combination with ¢ < %K/N implies condition § < N/(ecd). This implies
that and (33) are satisfied for € < min{0.42 - v,70/(ec)} - & or, equivalently, K > € - max{2.4/v,eq/(70)}
epochs of size N. If < 6.85,theno > 6 > 0.88 - § = 2.4 - 0/e, hence, max{2.4/7v,eq/(7v0)} = ec/(~0) and this
reduces the condition on K to

K>eo- % = /2¢(e+1n(1/9)) - ¢/(v0) epochs of size N,
Y
where the equality follows from (62). In practical settings, /X consists of multiple (think 50 or 100s of) epochs

(of size N) computation and this is generally true. We conclude that and are automatically satisfied
by for general practical settings with § < 1/N, e typically smaller than 0.5, N > 10000, § < 6.85, and

K > +/2¢e(e +1n(1/9)) - e/(v0) epochs.

Remaining constraint (34): By using (62), can be equivalently recast as an upper bound on o,

O_<\/ 2(e + In(1/6))
~ 10?2 (K/N)-(5/N)

Here, ~y is a function of o because y depends on € in & which is a function of o through (62). However, the definition of
~ shows that for small €, 7 is close to 2 and this gives 1/In(1/5)/(02 - (K/N) - (s/N)) as a good approximation of the
upper bound. Substituting § = K/T yields

o< NVT [2(e+1n(1/6))

- R (63)

For v ~ 2 and # = 1 (constant sample size), this upper bound compares to taking coz ~ v/2 in ; we go beyond the
analysis presented in [1] in a non-trivial way.

If NVT/K is large enough, larger than the relatively small o1/02(y/2)/(e + In(1/6)), then upper bound is
satisfied. That is, for given K and N, we need T to be large enough, or equivalently the mean sample/mini-batch size
§ = K/T small enough. Squaring both sides of and moving terms yields the equivalent lower bound

202
Tzl o0

2 e+ 1In(1/4) (KN,

which after substituting (62) gives
92
7> (K/N)2.
€

In other words 7 is at least a factor 02 /e larger than the square of the overall amount of local SGD computations
measured in epochs (of size V). Notice that we have a lower bound on T rather than an upper bound as in from the
theorem presented in [[1].

C Tight Analysis using Gaussian DP

[6] explain an elegant alternative DP formulation based on hypothesis testing. From the attacker’s perspective, it is
natural to formulate the problem of distinguishing two neighboring data sets d and d’ based on the output of a DP
mechanism M as a hypothesis testing problem:

Hy : the underlying data setis d versus Hj : the underlying data setis d’.
We define the Type I and Type II errors by

ag = Eoupay[0(0)] and By = 1 — Eqopq(ary [¢(0)],

27

where ¢ in [0, 1] denotes the rejection rule which takes the output of the DP mechanism as input. We flip a coin and
reject the null hypothesis with probability ¢. The optimal trade-off between Type I and Type II errors is given by the
trade-off function

TM(d), M(d))(e) = inf{Bs : ay < a},

for o € [0, 1], where the infimum is taken over all measurable rejection rules ¢. If the two hypothesis are fully
indistinguishable, then this leads to the trade-off function 1 — «. We say a function f € [0, 1] — [0, 1] is a trade-off
function if and only if it is convex, continuous, non-increasing, and f(z) < 1—z for z € [0, 1]. We define a mechanism
M tobe f-DP if

T(M(d), M(d")) = f
for all neighboring d and d’. Proposition 2.5 in [6] is an adaptation of a result in [33] and states that a mechanism is
(e, 9)-DP if and only if the mechanism is f. 5-DP, where

fes(@) =min{0,1 — ¢ — e, (1 — 6 — a)e™}.

We see that f-DP has the (e, §)-DP formulation as a special case. It turns out that the DP-SGD algorithm can be tightly
analysed by using f-DP.

Gaussian DP: In order to proceed [6] first defines Gaussian DP as another special case of f-DP as follows: We define
the trade-off function

Gu(a) = TN(0,1), N (p, 1)) (@) = (711 — a) — p),
where @ is the standard normal cumulative distribution of A/(0, 1). We define a mechanism to be p-Gaussian DP if it is
G,,-DP. Corollary 2.13 in [6] shows that a mechanism is y-Gaussian DP if and only if it is (e, d(¢))-DP for all € > 0,

where
€

5(e) = @(72 + g) (- g). (64)

Subsampling: Besides implementing Gaussian noise, DP-SGD also uses sub-sampling: For a data set d of N samples,
Sample,(d) selects a subset of size s from d uniformly at random. We define convex combinations

fo(@) =pfla) + (1 =p)(1-a)
with corresponding p-sampling operator
Cp(f) = min{f, f, 1},

where the conjugate ¢g* of a function ¢ is defined as
9" (y) = sup{yz — g(x)}.
xT
Theorem 4.2 in [6] shows that if a mechanism M on data sets of size IV is f-DP, then the subsampled mechanism
M o Sample, is Cy/n(f)-DP.
Composition: The tensor product f ® g for trade-off functions f = T'(P, Q) and g = T(P’, Q') is well-defined by
fog=T(PxP,QxQ).
Let y; + M;(aux,d) with aux = (y1,...,y;—1). Theorem 3.2 in [6] shows that if M;(aux, .) is f-DP for all aux,
then the composed mechanism M, which applies M; in sequential order from i = 1to i = T, is f®7-DP.
Tight Analysis DP-SGD: We are now able to formulate the differential privacy guarantee of DP-SGD since it is a
composition of subsampled Gaussian DP mechanisms. Theorem 5.1 in [6] states that DP-SGD in Algorithmi@]
Cs/n (G5 2)-1)" -DP.
Since each of the theorems and results from [6]] enumerated above are exact, we have a tight analysis.

Our Goal: We want to understand the behavior of the DP guarantee in terms of s, N, T, and ¢. Our goal is to have
an easy interpretation of the DP guarantee so that we can select “good" parameters s, N, T', and ¢ a-priori; good in

M Their DP-SGD algorithm uses noise A/ (0, C?(20)I) compared to N (0, C252I) in our version of the DP-SGD algorithm.
This is related to the earlier footnote on probabilistic versus constant sample sizes. Here, we use /2 in the f-DP framework in order
to compare with our DP-SGD parameter setting.

28

terms of achieving at least our target accuracy without depleting our privacy budget. If we know how the differential
privacy budget is being depleted over DP-SGD iterations, then we can optimize parameter settings in order to attain best
performance, that is, best accuracy of the final global model (the most important target when we work with machine
learning modelling). According to our best knowledge, all the current-state-of-the art privacy accountants do not allow
us to achieve this goal because they are only privacy loss accountants and do not offer ahead-planning. It is not sufficient
to only rely on a differential privacy accountant (see e.g., [38] as follow-up work of [6])) for a client to understand when
to stop helping the server to learn a global model.

When talking about accuracy, we mean how much loss in prediction/test accuracy is sacrificed by fixing a o (and
clipping constant C'). Our theory maps o directly to an (¢, §)-DP guarantee independent of the number of rounds 7.
This allows use to characterize the trade-off between accuracy and privacy budget. All the current-state-of-the art
privacy loss frameworks do not offer this property.

We notice that [6] makes an effort to interpret the C/, N(G(U /2)-1)®T_DP guarantee. Their Corollary 5.6 provides a
precise expression based on integrals, themselves again depending on p = s/N and 1 = (0/2)~? in our notation. This
still does not lead to the intuition we seek as we cannot extract how to select parameters o, s and 7' given a data set
of size IV, given a privacy budget, and given a utility that we wish to achieve. We further explain this point in next
paragraphs.

In what follows, we seek a relationship between o, s, T, ¢, §, and N for Gaussian DP based on Corollary 5.4 in
[6]. Corollary 5.4 in [6] provides an asymptotic analysis which is a step forward to the kind of easy to understand
interpretation we seek for: It states that if both 7" — oo and N — oo such that sﬁ /N — ¢ for some constant ¢ > 0
(and where s is a function of N that may tend to co as well), then the DP-SGD algorithm (in this paper with the factor 2
differing o) is pu-Gaussian DP for

i=(e/2) - with 7 = VB [elo/2) 7 @ (3(0/2) 1 /2) + 30(—(0/2)1/2) — 2. (65)

In Sectionwe show that 77! = o=! + O(0~2) and we show that for 1 < € < 1, u-Gaussian DP translates to the
DP-SGD algorithm being (¢,)-DP for § < € < 1if

o (¢/2)y/2(In(1/5) + In(e) — O(InIn(1/5))) with sVT/N = ¢,

We see a similar sy/T' /N dependency in Theorem by [1]. The difference is that Theorem holds in a non-
asymptotic setting. That is, 7" and N do not need to tend to co whereas the expression above does require taking such
a limit. Of course, one can analyse the convergence rate of achieving the limit p given 7" and N tending to infinity.
When doing such an analysis one may find expressions of Gaussian DP guarantees as a function of 7" and N that hold
for all concrete values of 7" and V. This may lead to results that strengthen our Theorem [B.T|(we leave this as an open
problem). It is clear that the above asymptotic result is still insufficient for our purpose: How do we a-priori select
concrete parameters o, s, and 7' given concrete parameters for NV, a given privacy budget and utility that we wish to
achieve?

In this paper we decided to generalize the proof method of Theorem [B.T|rather than working with the complex integrals
that provide the exact characterization of f-DP for the DP-SGD algorithm as stated above. This approach allows us to
obtain the non-asymptotic result of Theorem [3.1] which shows into large extent the independence of 7', which is not
immediately understood from Theorem [B.T|and the corollary discussed above. Section|[C.2]shows a first result on the
tightness of our Theorem 3.1} The advantage of our result is that it is easy to interpret and we do not need to fully rely
on an accountant method to keep track of spent privacy budget while participating in learning a global model based on
local data.

C.1 Translation to (¢,)-DP

a2
We first observe that by using e = 1+ z + O(2?) and ®(z) = 1 + e\/T:) (z+0(2%) =3+ 7=+ O(z?), a first

1

order approximation of 7! is equal to 0 =% + O(c2) (hence, 7~ ~ 0! for large o).

For x > 0, we have the approximation

Let y < z. Together with —(z — y)2/2 = 2zy — (z + y)?/2 we derive

-z +y)— 2VD(—x—y) = U (- +0(:)
Var aey el)
w2 L Lot)

Ver Cxty (a+y)? (@ +y)°
e~@=v)?/2 9y 6yz® + 2y° 1
= (2 _ .2 2 _ 2)3 + 0(75))
Var ety @ -y T
B e—ﬁu—wmﬁ2(2y +oL 1Ly
VIm 2=/ et e

If we assume
p<e<l,

then (u/2)/ (/1) = u?/(2¢) < €/2 < 1,¢/pu > 1, and € < 1. We can use the above formulas and approximate as
follows:

€ . e u
) (u + 2) e“P(. 2)
—(e/m)*(1=p?/(2¢))* /2 3 5
B . (2 H2 2 "’O(/lg)))
Vor (1= (1?/(2€))?) €
This gives
T 1\5
1 2 V2O ey + 0L
€ — ,LL2/2)
hence,

(¢/2),/2(n(1/8) + In(=7 + O((£)9)))
T = \/ ﬁ/(e; ut/4) with sVT/N — cand 7' =0~ + O(c72).
€ —
For small €, we can approximate 7 as

N (6/2)\/2(111(1/5) +In(4=(5)° +0((%))

T

€

Since (¢/2)77! = u < ¢, we may write u = ¢/b for some b > 1. Notice that (¢/2)/e = 7/b. This leads to the
approximation

b~ \/2(111(1/5) + m%b% + O(b%))).

By default § = 1/N and, see Section[3.5] N = Q(1/¢), that is, e = Q(1/N) (also notice that good accuracy can only
be achieved for o small enough, that is, € is generally orders of magnitude larger than 1/N). So, we may assume € > 4.

Then substituting 1/21n(1/6) for b at the right hand side yields
b~ \/2(In(1/6) + In(e) — O(InIn(1/9))).
Substituting back in the expression for 7 proves for § < € < 1,

_ (¢/2)y/2(n(1/8) + In(e) — O(InIn(1/3)))

€

with sVT /N — cand 771 = 01 + O(c72).

C.2 Asymptotic Tightness of Theorem [3.1]

2
We consider the special case where 1" meets its lower bound: 7' = % -k? (notice that our experiments and understanding
show that this is a good setting for best accuracy). Let

€ k K svT

ETVE VTN T N

30

where we consider a constant step size s (hence, § = 1). Substituting this in the final formula for 7 of Section
yields for € > ¢

_ |In(1/6) +1In(e) — O(Inln(1/4))
T & e .

Here, 7 =~ o for o > 1 and we see that compared to Theorem [3.1|this formula attains a factor 2f /8 smaller o for
the same (e,). This shows that in this asymptotic setting for N — 0o, T — 00, € > d, and 0 > 1, Theorem-ls up
to a factor 2, /7 tight. In other words, the formula in Theorem- pays a factor in tightness in order to hold for general
concrete parameter settings (not just the asymptotic setting).

The factor 2,/ seems large. However, if the lower bound on T' can be tightened to 7' > % - k2, then the constant
¢ above can be increased to ¢ = \/W leading to a formula for 7 that matches the formula for o in Theorem
implying that it is tight in the asymptotic setting. In other words, rather than expecting to be able to lower the constant
2in o = y/2(e +1n(1/9))/e, we can focus on how much the lower bound of T" can be reduced by a small factor
(notice that the derivations in Theorem [B.4]that lead to this lower bound may be tightened up). We expect the bound
2

(e +1n(1/6))/e to be quite tight, while the lower bound T > Ty, = ‘9 - k2 can at most be reduced by a
factor 47 0T > Thin_asym = 4 - k2. For smaller T < Tipin _asym. the asymptotlc setting for N — oo, T' — o0,
€ > 6, and 0 >> 1 contradicts the tightness of the asymptotic result @ of the f-DP framework. This proves Theorem

[3.2] We notice that this is also (unsurprisingly) confirmed by experiments in Appendix [D.4 where we implement the
f-DP accountant in order to compute which e is actually being achieved.

C.3 Interpreting Theorem [3.1)in the f-DP Framework

In the f-DP framework, if a mechanism is f-DP, then it is (e, §)-DP for all (¢, 6) for which f > f. 5. When considering
DP-SGD for parameters o and 1" and the other hyper parameters fixed, there exists some function h, 7 such that
DP-SGD is f-DP if and only if h,r > f. This function implies (¢, §)-DP for all h, 1 > fe 5. Conversely, if we
want to realize (¢, 0)-DP for some target privacy budget defined by (¢, d), then we need to choose o and T such that
ho’,T > fe,é'

We notice that Theorem [3.1]can be cast in the f-DP framework as it allows us to formulate an appropriate (non-tight)
iLO—’T for which DP-SGD is]AIU’T—DP as follows: We first notice that by the definition of h, 7 we have

ho’,T Z ho’,T .

By fixing o and T', we may freely choose (e, §) as long as the conditions of Theorem [3.1]are satisfied: (¢, §) € H(o,T)
with

o> +/2(e+1n(1/6))/€

§<1/N
H(o,T) =< (6,9) : €<0.5 ,
k> \/2eln(1/6) - e/(y(o,¢,k) - 0)

T > (0,6 k) - 0%k? /e
where ~ is a function of o, € and k = K/N. Hyper parameters K and N (and, therefore also k) are fixed. For a given
T, we consider a constant sample size s = K /7" from round to round, hence, we use § = 1 in the definition of H (o, T').
By defining

hor(a) = sup fes(a),
(€,6)eH(0,T)

we have that DP-SGD is /. 7-DP.

Now consider a target epsilon € = €;4,4¢; and define a new set

o> +/2(e+1n(1/0))/e
§<1/N
G(0, €target) = 3 (€,0) - €< 0.5

k> +/2eln(1/6)-e/(v(c, €, k) - 0)

€ Z €target

Notice that G(0, €4rget) is independent of 7', but does satisfy the property

g(av etarget) - H(O'7 T) forT > 702k2/€target-

31

Therefore,

o,€r0w (a) = sup fe,ﬁ(a)7
(e,0)€G(0,€target)

is also independent of 1" while it satisfies

2.2
ho’,T Z ga'@target for T Z ’}/6 k /eta'l"geb
Together with h, 7 >]Alg’T we conclude

hO',T > 9o,ctarget forT > 792k2/5ta7'get-

This shows how Theorem 3.1] translates to the f-DP framework in that as long as the number of rounds is large enough,
that is, K > T > v02k? / €target> We have that there always remains some f-DP privacy guarantee given by 9o,ctarget-
Notice that g, c,,,,., 1S independent of T". So, even in the limit for larger 7', not all of the privacy budget is being
depleted. For larger T', f, 7 remains at least gy c,,,,.,- Since the f-DP framework and its resulting DP accountant
provide a tight analysis, this shows that an increasing number 7" of rounds revealing more and more local updates does
not linearly increase the privacy leakage! Instead, a larger 7' gives rise to more updates that each leak privacy and gives
rise to subsampling of smaller mini-batches which amplifies the differential privacy guarantee more, hence, less leakage
per round. The total resulting leakage remains bounded in that we can always guarantee g, ,,,,..-DP (even for larger
T'). This implies that the tight f-DP based privacy accountant will have a limit (upper bound) on its reported privacy
leakage for increasing T' (< K).

D Experiments

We provide experiments to support our theoretical findings, i.e., convergence of our proposed asynchronous distributed
learning framework with differential privacy (DP) to a sufficiently accurate solution. We cover strongly convex, plain
convex and non-convex objective functions over iid local data sets.

We introduce our experimental set up in Section[D.1] Section[D.Z]provides utility graphs for different data sets and
objective functions. A utility graph helps choosing the maximum possible noise o, in relation to the value of the clipping
constant C, for which decent accuracy can be achieved. Section [D.3|provides detailed experiments for our asynchronous
differential privacy SGD framework (asynchronous DP-SGD) with different types of objective functions (i.e., strongly
convex, plain convex and non-convex objective functions), different types of constant sample size sequences and
different levels of privacy guarantees (i.e., different privacy budgets ¢).

All our experiments are conducted on LIBSVM [3[**], MNIST [17] [} and CIFAR10f¥|data sets.

D.1 Experiment settings

Simulation environment. For simulating the asynchronous DP-SGD framework, we use multiple threads where each
thread represents one compute node joining the training process. The experiments are conducted on Linux-64bit OS,
with 16 cpu processors, and 32Gb RAM.

Objective functions. Equation defines the plain convex logistic regression problem. The weight vector w and the
bias value b of the logistic function can be learned by minimizing the log-likelihood function .J:

N
J=- Z[yz -log(d;) + (1 —y;) - log(1l — 7;)], (plain convex) (66)

i=1
where N is the number of training samples (z;, y;) with y; € {0,1} and &; is defined by

_ 1
7 T e

which is the sigmoid function with parameters w and b. Our goal is to learn a vector w* which represents a pair
w = (w, b) that minimizes J.

“*https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
"""Thttp://yann.lecun,com/exdb/rnniST/
¥ https://www.cs.toronto.edu/ kriz/cifar.html

32

Function J can be changed into a strongly convex problem J by adding a regularization parameter A > 0:

R A
J=- Z[yz “log(oi) + (1 —yi) - log(1 — 0;)] + 5 |lw||®, (strongly convex).

where w = (w, b) is vector w concatenated with bias value b. In practice, the regularization parameter A is set to 1/N
[29].

For simulating non-convex problems, we choose a simple neural network (Letnet) [[18] for MNIST data set and
AlexNet [15] for CIFAR10 data set with cross entropy loss function for image classification.
The loss functions for the strong, plain, and non-convex problems represent the objective function F'(.).

Parameter selection. The parameters used for our distributed algorithm with Gaussian based differential privacy for
strongly convex, plain convex and non-convex objective functions are described in Table|l} The clipping constant C' is
set to 0.1 for strongly convex and plain convex problems and 0.025 for non-convex problem (this turns out to provide
good utility).

lrable 17 Common[p#rafeaishs ol ?Smmmgsskéb"s}ieb%IanKAW}t@ﬁﬁﬁﬁfgﬁﬁﬁitEﬁt\@CY

Strongly convex 5 11% " 0.1
Plain convex 5 Tt OF 1+ﬁ0\/f N/A 0.1
Non-convex 5 : J:g’ — N/A 0.025
1 The i-th round step size 7}; is computed by substituting ¢t = Zl_}) s; into the diminishing step size
formula.
For the plain convex case, we can use diminishing step size schemes B 7 O oo 5 TAVT In this paper, we focus our

7o
1+8-Vt"
search on parameter 3 = 0.001 for strongly convex case and 3 = 0.01 for both plain convex and non-convex cases.
Moreover, most of the experiments are conducted with 5 compute nodes and 1 central server. When we talk about
accuracy (from Figure[/|and onward), we mean test accuracy defined as the fraction of samples from a test data set
that get accurately labeled by the classifier (as a result of training on a training data set by minimizing a corresponding
objective function).

experiments for the plain convex case on Here, nyg is the initial step size and we perform a systematic grid

D.2 Utility graph

The purpose of a utility graph is to help us choose, given the value of the clipping constant C, the maximum possible
noise o for which decent accuracy can be achieved. A utility graph depicts the test accuracy of model F'(w* + n) over
F(w*), denotes as accuracy fraction, where w* is a near optimal global model and n ~ N(0, C25%I) is Gaussian noise.
This shows which maximum ¢ can be chosen with respect to allowed loss in expected test accuracy, clipping constant
C and standard deviation o.

As can be seen from Figure[dand Figure[3] for clipping constant C' = 0.1, we can choose the maximum o somewhere in
the range o € [18, 22] if we want to guarantee there is at most about 10% accuracy loss compared to the (near)-optimal
solution without noise. Another option is C' = 0.075, where we can tolerate o € [18, 30] yielding the same accuracy
loss guarantee. When the gradient bound C' gets smaller, our DP-SGD can tolerate bigger noise, i.e, bigger values of
o. However, we need to increase the number K of iterations during the training process when C' is smaller in order
to converge and gain a specific test accuracy — this is the trade-off. For simplicity, we intentionally choose C' = 0.1,
o < 20 and expected test accuracy loss about 10% for our experiments with strongly convex and plain convex objective
functions.

The utility graph is extended to the non-convex objective function in Figure[6] To keep the test accuracy loss less or
equal to 10% (of the final test accuracy of the original model w*), we choose C' = 0.025 and noise level o < 12 for
MNIST data set (as shown in Figure[6(a)) and C' = 0.025 and noise level 0 < 6.572 for CIFAR10 data set (as shown in
Figure[6(b)). For simplicity, we use this parameter setting for our experiments with the non-convex problem.

D.3 Asynchronous distributed learning with differential privacy

We consider the asynchronous DP-SGD framework with strongly convex, plain convex and non-convex objective
functions for different settings, i.e., different levels of privacy budget ¢ and different constant sample size sequences.

33

phishing

1.01

0.9 1

0.8

0.7 4

0.6 1

Accuracy fraction of F(w* + noise)/F(w*)

0.5 1

sigma

(a) Strong convex.

phishing

1.01

0.9 1

0.8 1

0.7 1

0.6

Accuracy fraction of F(w* + noise)/F(w*)

0.5 1

sigma

(b) Plain convex.

Figure 4: Utility graph with various gradient norm C' and noise level o

D.3.1 Asynchronous DP-SGD with different constant sample size sequences

The purpose of this experiment is to investigate which is the best constant sample size sequence s; = s. This experiment
allows us to choose a decent sample size sequence that will be used in our subsequent experiments. To make the analysis
simple, we consider our asynchronous DP-SGD framework with T'(k, i) defined as false if and only if & < i — 1, i.e.,
compute nodes are allowed to run fast and/or have small communication latency such that broadcast global models are
at most 1 local round in time behind (so different clients can be asynchronous with respect to one another for 1 local
round). We also use iid data sets. The detailed parameters are in Table 2]

The results from Figure [7]to Figure [§| confirm that our asynchronous DP-SGD framework can converge under a very
small privacy budget. When the constant sample size s = 1, it is clear that the DP-SGD algorithm does not achieve good
accuracy compared to other constant sample sizes even though this setting has the maximum number of communication
rounds. When we choose constant sample size s = 26 (this meets the upper bound for constant sample sizes for our
small N = 10,000 and small € ~ 0.05, see Theorem @), our DP-SGD framework converges to a decent test accuracy,
i.e, the test accuracy loss is expected less than or equal to 10% when compared to the original mini-batch SGD without
noise. In conclusion, this experiment demonstrates that our asynchronous DP-SGD with diminishing step size scheme
and constant sample size sequence works well under DP setting, i.e, our asynchronous DP-SGD framework can gain
differential privacy guarantees while maintaining an acceptable accuracy.

We also conduct the experiment for the non-convex objective function with MNIST and CIFAR10 data sets. The
detailed parameter settings can be found in Table 3| and Table[d] Here, we again consider our asynchronous setting

34

mushrooms

1.04

0.9 1

0.8 1

0.7 1

0.6 1

0.5 1

Accuracy fraction of F(w* + noise)/F(w*)

0.4

sigma

(a) Strong convex.

mushrooms

1.04

0.9 1

0.8 1

0.7 1

0.6

Accuracy fraction of F(w* + noise)/F(w *)

0.4

sigma

(b) Plain convex.

Figure 5: Utility graph with various gradient norm C and noise level o

TaPkﬁra{rhéft&i’lq parametsfging for sfrongly and plaiipeonvex problems

Mo 0.1 initial stepsize
N, 10,000 # of data points

K 50, 000 # of iterations

€ 0.04945

o 19.29962

) 0.0001

C 0.1 clipping constant

s {1,5,10,15,20,26} | constant sample size sequence

dataset LIBSVM 1id dataset
n 5 # of nodes
T k>i—1 1—asynchronous round

where each compute node is allowed to run fast and/or has small communication latency such that broadcast global
models are at most 1 local round in time behind. As can be seen from Figure 0] (with MNIST data set), our proposed
asynchronous DP-SGD still converges under small privacy budget. Moreover, when we use the constant sample size
s = 370 (this meets the upper bound for constant sample sizes for our small N = 60,000 and small € ~ 0.15, see
Theorem [B.4), we can significantly reduce the communication cost compared to other constant sample sizes while

35

mnist

1.0

0.8 1

0.6 1

0.4

0.2 1

Accuracy fraction of F(w* + noise)/F(w*)

Sl e eaSTaN

ol
0 10 20 30 40 50
sigma
(@
cifarl0
100 A — C=0.01
—_ C=0.025
%
B — C=0.05
Iy — C€=0.075
3 80 — c=01
e — C=0.25
+ C=0.5
*
2 60+ — C=0.75
w C=1.0
bS]
=4
k)
I}
& 40
>
3
o
=1
S
< 201
RS e—————— ——]
0 10 20 30 40 50
sigma
(b)

Figure 6: Utility graph with various gradient norm C' and noise level ¢ for MNIST and CIFAR10 data sets.

[PablenEdyapic parameter segfjjig for non-convex problem withyyNIST data set |

7o 0.1 initial stepsize
N, 60, 000 # of data points

K 360, 000 # of iterations

€ 0.15007

o 12.10881

) 1.667-107°

C 0.025 clipping constant

s {10, 25, 50, 100, 200, 300, 370} | constant sample size sequence

dataset MNIST iid dataset
n 5 # of nodes
T k>1—1 1—asynchronous round

keeping the test accuracy loss within 10%. The constant sample size s = 10 (as well as s < 10) shows a worse
performance while this setting requires more communication rounds, compared to other constant sample sizes. We can
observe the same pattern for CIFAR10 data set as shown in Figure[TI0] where we can choose the constant sample size
s < 689 with N = 50, 000 data points and € ~ 0.5. While the constant sample size s satisfying 300 < s < 689, the
test accuracy gets the highest level while the constant sample size s < 50 deteriorates the performance of accuracy

36

phishing

0.9
0.8 A
3 0.7
o
=]
5]
©
@
2 0.6 1
— s=1
— s=5
0.5 1 — s=10
— s=15
— s=20
— 5=26
041 — - " " " "
0 10000 20000 30000 40000 50000
of iteration
(a) Strong convex.
hishin
0.9 P]
0.8
o)
© 0.7
3
I
©
]
©
0.6
—— s=5
— s=10
0.5 — s=15
— =20
— 5=26
0 10000 20000 30000 40000 50000

of iteration

(b) Plain convex.

Figure 7: Effect of different constant sample size sequences

[ekl fE&agic parameter sgtFing for non-convex problem for NHFART0 data set

70 0.1 initial stepsize
N, 50,000 # of data points

K 350,000 # of iterations

€ 0.50102

o 6.572

) 2-107°

C 0.025 clipping constant

s {10, 25, 50, 100, 300, 500,689} | constant sample size sequence

dataset CIFAR10 iid dataset
n 5 # of nodes
T k>1—-1 1—asynchronous round

significantly. This figure again confirms the effectiveness of our asynchronous DP-SGD framework towards a strong
privacy guarantee for all types of objective function.

37

mushrooms

Test accuracy
o
o

o
w»

— s=1

0.4 —— s=5
— s=10
— s=15
03 — =20
— s=26
0.2 " " " " " "
0 10000 20000 30000 40000 50000
of iteration
(a) Strong convex.
mushrooms
1.0
0.94
0.8
>
1%
© 0.7
=3
I
©
0.6
©
— s=1
0.5 — s=5
— s=10
0.4 — s=15
— 5=20
— 5=26
0.3 ' r : . . .
0 10000 20000 30000 40000 50000

of iteration

(b) Plain convex.

Figure 8: Effect of different constant sample size sequences

Table 5: Diffefrepltipﬁgsaqg,)a@glgg(?et7 FHLNgs Tof stronghamsi oLz gonvex problems

(0.04945,0.0001) | 19.29962 26
(0.1,0.0001) 13.06742 55
(0.25,0.0001) 850143 103
(0.5,0.0001) 6.05868 163
(1.0,0.0001) 127273 265
(2.0,0.0001) 3.03241 400

D.3.2 Asynchronous DP-SGD with different levels of privacy budget

We conduct the following experiments to compare the effect of our DP-SGD framework for different levels of privacy
budget € including the non-DP setting (i.e., no privacy at all, hence, no noise). The purpose of this experiment is to show
that the test accuracy degradation is at most 10% even if we use very small €. The detailed constant sample sequence s
and noise level o based on Theorem [B-4]are illustrated in Table[5] Other parameter settings, such as initial stepsize 7o,
are kept the same as in Table[2]

38

Test accuracy

loss with € ~ 0.15 is less

mnist
1.0

0.8 1

Test accuracy
o
(o))
L

o
S
L

0.2 1

0.0 T T T T T T T T
0 50K 100K 150K 200K 250K 300K 350K

of iteration

(a) Non-convex.

Figure 9: Effect of different constant sample size sequences

cifarl0
0.7
0.6
0.5
0.4
0.3
s=10
— 5=25
0.2 —— 5=50
— s=100
0.1 — 5=300
— $=500
—— 5=689
0.0 T T T T T T T T
0 50K 100K 150K 200K 250K 300K 350K

of iteration
(a) Non-convex.

Figure 10: Effect of different constant sample size sequences.

As can be seen from Figures[IT]and Figure[T2] the test accuracy degradation is about 10% for ¢ = 0.04945 compared to
the other graphed privacy settings and non-DP setting. Privacy budget ¢ = 0.1, still significant smaller than what is
reported in literature, comes very close to the maximum attainable test accuracy of the non-DP setting.

We ran the same experiment for the non-convex objective function. The detailed setting of different privacy budgets
is shown in Table[6] Note that we also set the asynchronous behavior to be 1 asynchronous round, and the total of
iterations on each compute node is K = 360, 000. Other parameter settings for the non-convex case, such as initial
stepsize 7)o, are kept the same as in Table[3] As can be seen from Figure [I3] with MNIST data set, the test accuracy
than 10% (the expected test accuracy degradation from utility graph at Figure[6). Another
pattern can be found in Figure By selecting € = 0.5 for CIFAR10 data set, the test accuracy reduces less than 10%,

39

phishing

0.94

o
©
|

Test accuracy
o
~

—— £=0.04945
0.6 — £=0.1
—— £=025
— £=05
— £=1.0
0.5 — £=20
—— non-DP
(I) 10600 20600 30600 40600 50600
of iteration
(a) Strong convex.
phishing
0.9
0.8 1
3
e
g
© 0.7
@
A
—— £=0.04945
— £=0.1
061 — £=025
— £=0.5
— £=1.0
0.5 — £=2.0
—— non-DP
0 10000 20000 30000 40000 50000

of iteration

(b) Plain convex.

Figure 11: Effect of different levels of privacy budgets e and non-DP settings

compared to the non-DP setting. Note that we use AlexNet for CIFAR10, which shows ~ 0.74 maximum test accuracy
in practic

Table 6: Differﬁt]_pgyg@y budget §@7t§)1gs [for nop-coNYes APNCHZE0F MNIST data set

(0.15007, 1.667 - 10~ °) | 12.10881 370
(0.2,1.667-107°) | 10.48452 460
(0.25,1.667-10°) | 9.37379 543
(0.5,1.667-10°) | 6.63120 889
(0.75,1.667 - 10 °) | 5.41887 11683
(1.0,1.667-10°) | 4.69244 1409
(2.0,1.667-10°°) | 3.31648 2159

These figures again confirm the effective performance of our DP-SGD framework, which not only conserves strong
privacy, but also keeps a decent convergence rate to good accuracy, even for a very small privacy budget.

$$https://github.com/icpm/pytorch-cifar10

40

mushrooms

1.0
0.9
0.8
>
9
o7
=1
2
o
©
3 0.6
= —— £=0.04945
—— £=0.1
0.5 — £=025
— £=05
— £=1.0
0.4 +—5
—— non-DP
0 10000 20000 30000 40000 50000
of iteration
(a) Strong convex.
mushrooms
1.0
0.94
0.8
>
1%
€o7
=1
I
©
]
v 0.6
= —— £=0.04945
— £=0.1
0.5 — £=025
— £=0.5
— £=1.0
0.4 — =20
—— non-DP
0 10000 20000 30000 40000 50000

of iteration

(b) Plain convex.

Figure 12: Effect of different levels of privacy budgets e and non-DP settings

Table 7: Differentl PRMIeY PBdagesqHings for ngn-cor]lvgjalﬁfgelﬁlzbtgr‘CIFARlO data set

(0.25,2.0-10°) | 9.20838 17
(0.5,2.0-10°) | 657192 689
(0.75,2.0-10°) | 5.36037 909
(1.0,2.0-10°) | 4.65014 1099
(15,2.0-10°) | 4.16111 1267
(2.0,2.0-107°) | 3.28831 1690
(3.0,2.0-107°) | 2.68273 1994

D.4 Comparison to the f-DP Accountant

We have implemented a simplified differential privacy calculator based on Theorem [3.1] for computing the optimal
privacy budget (¢, d) given the training hyper-parameters (o, 6, N, k, C'). This calculator has the follow steps:

1. Set§ = 1/N, e = 21n1/9,

02-2

2. Sety = 2 (because v = 2 + O(a)) as the initial value.

41

mnist

1.0
0.8
>
3
5 0.6 1
I+
©
o
H — £=0.15
= —— £=02
041 — £=025
— =05
— €=0.75
— £=1.0
0.2 1 — £=2.0
—— non-DP
0 50K 100K 150K 200K 250K 300K 350K

of iteration

(a) Non-convex.

Figure 13: Effect of different levels of privacy budgets e and non-DP settings

cifarl0
0.6
0.5
>
1%}
e
3 0.4
©
@
()
i
0.3
0.2
— £=3.0
—— non-DP
0'1 1 T T T T T T T T
0 50K 100K 150K 200K 250K 300K 350K

of iteration

(a) Non-convex.

Figure 14: Effect of different levels of privacy budgets e and non-DP settings

. According to Theorem 3.1} we compute T},;,, as a result of next steps (3, 4, and 5) as a lower bound on 7" as
follows:

A= Y
e Compute & = K

4 - 3 2
* Recompute the new Vpew = 125 + -2 ((17‘\7/5)2 + 0(175‘)1728\/5%> 3/

. Repeat steps 3 until vy, — v < 0.00017 or inequality (8] is violated. In the latter case the calculator cannot
find a solution of a set of hyperparameters that satisfies the privacy constraint (¢,d) and we lower o and
increase € accordingly (in step 1) and repeat steps 2, 3, and 4.

2
. Based on inequality (EI) we compute minimal value T, = 3’60—162. From the asymptotic tightness analysis in

. 27,2
sectlonnwe learn that T’,,;,, can at most be lowered to Ty, _qsym = %.

. Corresponding t0 T4, and Tipin_asym, WE S€t Spar = T’“—N and Spaz_asym =

min

kN

Tmin_asym

42

7. We obtain the resulting set of parameters (¢,d,0,v,0,k,N,s,T) for (s,T) equal to (Smaz, Tmin) and
(Smaz_asyms Tmin_asym) Tespectively.

This calculation helps us planning ahead the number of rounds 7" and the sampling rate s and we can choose €4-get by
defining an initial o.

Given the hyper-parameters defined in Tables [2} [3|and [} we use this calculator to compute €;4rge; and compared this
with the value €7_pp as a result from the exact/tight f-DP accountant from [6]], see github.com/tensorflow/privacy.
This leads to Tables[8| [0} and[I0} Since e;_pp is tight, we conclude that €;qrget fOr Trin_asymp cannot be achieved,
hence, our provided formula for 7,;, is indeed tight up to a factor 4y as mentioned in the main body and studied in

Appendix[C.2]

Trnin and Ty 76%k> 0%k>
min min_asym € Ae
Smax = T]fgn and Smax_asym — T]:i,f\,-[n 26 397
€target 0.0497 | 0.0497
€f—DP 0.0105 | 0.0533

Multiplication factor (€;4rget/€—pp) | 4.7234 | 0.9328
Table 8: Comparison of €;4rge; With €,_pp from the f-DP accountant for Table where § = 1,5 = 1/10000 and
o = 19.29962 for LIBSVM dataset (N = 10000), & = 5.

Tmin and Tmin asym @ 0152
Smaz = 70— and Smaz_asym = 70— | 288 6085
Etarget 0.1521 | 0.1521
€f_Dp 0.0389 | 0.2097
Multiplication factor (€qrget/€f—pp) | 3.9147 | 0.7257
Table 9: Comparison of €.4rgc¢ With €4 pp from the f-DP accountant for Tablewhere 6 =1,5 = 1/60000 and
o = 12.10881 for MNIST dataset (N = 60000), k = 6.

Tmin and Tmin asym @ 01’22

Smazr = T]frfn and Smaz_asym = ’Ifj,fvn 406 15009
€target 0.5253 0.5253
€f_DP 0.1133 | 0.8239
Multiplication factor (€;qrget Ef_DP) 4.6372 | 0.6376

Table 10: Comparison of €4yt With € pp from the f-DP accountant for Tablewhere 6 =1,5 = 1/50000 and
o = 6.572 for CIFAR10 dataset (N = 50000), k = 7.

43

https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/analysis/gdp_accountant.py

	1 Introduction
	2 Differential Private SGD (DP-SGD)
	2.1 (,)-Differential Privacy
	2.2 DP-SGD
	2.3 Tight f-DP Framework

	3 Improved Moment Accountant Method
	3.1 Main Contribution
	3.2 Reusing the Local Data Set
	3.3 Accuracy
	3.4 Tightness
	3.5 Choosing
	3.6 Utility Graph for Selecting C, , and K

	4 Experiments
	4.1 Utility Graph
	4.2 DP-SGD with Different Constant Sample Sizes
	4.3 DP-SGD with Different Levels of Privacy Budget

	5 Conclusion
	A Asynchronous Mini-Batch DP-SGD
	B Differential privacy proofs
	B.1 DP-SGD Analysis by Abadi et al.
	B.2 A General Improved DP-SGD Analysis
	B.2.1 Definitions and Main Lemma
	B.2.2 Proof of Theorem B.2

	B.3 A Simplified Characterization
	B.4 Proof of the Main Theorem

	C Tight Analysis using Gaussian DP
	C.1 Translation to (,)-DP
	C.2 Asymptotic Tightness of Theorem 3.1
	C.3 Interpreting Theorem 3.1 in the f-DP Framework

	D Experiments
	D.1 Experiment settings
	D.2 Utility graph
	D.3 Asynchronous distributed learning with differential privacy
	D.3.1 Asynchronous DP-SGD with different constant sample size sequences
	D.3.2 Asynchronous DP-SGD with different levels of privacy budget

	D.4 Comparison to the f-DP Accountant

