
Pattern Masking for Dictionary Matching
Panagiotis Charalampopoulos #

The Interdisciplinary Center Herzliya, Israel

Huiping Chen #

King’s College London, UK

Peter Christen #

Australian National University, Canberra, Australia

Grigorios Loukides #

King’s College London, UK

Nadia Pisanti #

University of Pisa, Italy

Solon P. Pissis #

CWI, Amsterdam, The Netherlands
Vrije Universiteit, Amsterdam, The Netherlands

Jakub Radoszewski #

University of Warsaw, Poland

Abstract
Data masking is a common technique for sanitizing sensitive data maintained in database systems,
and it is also becoming increasingly important in various application areas, such as in record linkage
of personal data. This work formalizes the Pattern Masking for Dictionary Matching (PMDM)
problem. In PMDM, we are given a dictionary D of d strings, each of length ℓ, a query string q of
length ℓ, and a positive integer z, and we are asked to compute a smallest set K ⊆ {1, . . . , ℓ}, so
that if q[i] is replaced by a wildcard for all i ∈ K, then q matches at least z strings from D. Solving
PMDM allows providing data utility guarantees as opposed to existing approaches.

We first show, through a reduction from the well-known k-Clique problem, that a decision version
of the PMDM problem is NP-complete, even for strings over a binary alphabet. We thus approach
the problem from a more practical perspective. We show a combinatorial O((dℓ)|K|/3 + dℓ)-time and
O(dℓ)-space algorithm for PMDM for |K| = O(1). In fact, we show that we cannot hope for a faster
combinatorial algorithm, unless the combinatorial k-Clique hypothesis fails [Abboud et al., SIAM
J. Comput. 2018; Lincoln et al., SODA 2018]. We also generalize this algorithm for the problem of
masking multiple query strings simultaneously so that every string has at least z matches in D.

Note that PMDM can be viewed as a generalization of the decision version of the dictionary
matching with mismatches problem: by querying a PMDM data structure with string q and z = 1,
one obtains the minimal number of mismatches of q with any string from D. The query time or
space of all known data structures for the more restricted problem of dictionary matching with at
most k mismatches incurs some exponential factor with respect to k. A simple exact algorithm for
PMDM runs in time O(2ℓd). We present a data structure for PMDM that answers queries over D
in time O(2ℓ/2(2ℓ/2 + τ)ℓ) and requires space O(2ℓd2/τ2 + 2ℓ/2d), for any parameter τ ∈ [1, d].

We complement our results by showing a two-way polynomial-time reduction between PMDM and
the Minimum Union problem [Chlamtáč et al., SODA 2017]. This gives a polynomial-time O(d1/4+ϵ)-
approximation algorithm for PMDM, which is tight under a plausible complexity conjecture.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases string algorithms, dictionary matching, wildcards, record linkage, query term
dropping

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2021.65

Related Version Extended Version: https://arxiv.org/abs/2006.16137

© Panagiotis Charalampopoulos, Huiping Chen, Peter Christen, Grigorios Loukides, Nadia Pisanti,
Solon P. Pissis, and Jakub Radoszewski;
licensed under Creative Commons License CC-BY 4.0

32nd International Symposium on Algorithms and Computation (ISAAC 2021).
Editors: Hee-Kap Ahn and Kunihiko Sadakane; Article No. 65; pp. 65:1–65:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:panagiotis.charalampopoulos@post.idc.ac.il
https://orcid.org/0000-0002-6024-1557
mailto:huiping.chen@kcl.ac.uk
https://orcid.org/0000-0003-1782-667X
mailto:peter.christen@anu.edu.au
https://orcid.org/0000-0003-3435-2015
mailto:grigorios.loukides@kcl.ac.uk
https://orcid.org/0000-0003-0888-5061
mailto:pisanti@di.unipi.it
https://orcid.org/0000-0003-3915-7665
mailto:solon.pissis@cwi.nl
https://orcid.org/0000-0002-1445-1932
mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0002-0067-6401
https://doi.org/10.4230/LIPIcs.ISAAC.2021.65
https://arxiv.org/abs/2006.16137
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 Pattern Masking for Dictionary Matching

Funding This paper is part of the PANGAIA project that has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant
agreement no. 872539. This paper is also part of the ALPACA project that has received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement no. 956229.
Panagiotis Charalampopoulos: Supported by the Israel Science Foundation grant 592/17.
Huiping Chen: Supported by a CSC Scholarship.
Grigorios Loukides: Supported in part by the Leverhulme Trust RPG-2019-399 project.
Nadia Pisanti: Supported by the University of Pisa under the “PRA – Progetti di Ricerca di Ateneo”
(Institutional Research Grants) – Project no. PRA_2020-2021_26.
Jakub Radoszewski: Supported by the Polish National Science Center, grant number
2018/31/D/ST6/03991.

1 Introduction

Let us start with a true incident to illustrate the essence of the computational problem
formalized in this work. In the Netherlands, water companies bill the non-drinking and
drinking water separately. The 6th author of this paper had direct debit for the former but
not for the latter. When he tried to set up the direct debit for the latter, he received the
following masked message by the company:

Is this you?
Initial : S. Name: P****s E-mail address : s ******13 @g ***l.com
Bank account number : NL10RABO ********11.

The rationale of the data masking is: the client should be able to identify themselves, to help
the companies link the client’s profiles, but not infer the identity of any other client, so that
clients’ privacy is preserved. Thus, the masked version of the data is required to conceal as
few symbols as possible but correspond to a sufficient number of other clients.

This requirement can be formalized as the Pattern Masking for Dictionary Matching
(PMDM) problem: Given a dictionary D of d strings, each of length ℓ, a query string q of
length ℓ, and a positive integer z, PMDM asks to compute a smallest set K ⊆ {1, . . . , ℓ},
so that if q[i], for all i ∈ K, is replaced by a wildcard, q matches at least z strings from
D. The PMDM problem applies data masking, a common operation to sanitize personal
data maintained in database systems [1, 26, 56]. In particular, PMDM lies at the heart of
record linkage of databases containing personal data [23, 39, 40, 52, 59, 61], which is the
main application we consider in this work.

Record linkage is the task of identifying records that refer to the same entities across
databases, in situations where no entity identifiers are available in these databases [22, 32, 47].
This task is of high importance in various application domains featuring personal data,
ranging from the health sector and social science research, to national statistics and crime
and fraud detection [23, 36]. In a typical setting, the task is to link two databases that
contain names or other attributes, known collectively as quasi-identifiers (QIDs) [60]. The
similarity between each pair of records (a record from one of the databases and a record
from the other) is calculated with respect to their values in QIDs, and then all compared
record pairs are classified into matches (the pair is assumed to refer to the same person), non-
matches (the two records in the pair are assumed to refer to different people), and potential
matches (no decision about whether the pair is a match or non-match can be made) [22, 32].
Unfortunately, potential matches happen quite often [9]. A common approach [52, 59] to
deal with potential matches is to conduct a manual clerical review, where a domain expert

P. Charalampopoulos et al. 65:3

looks at the attribute values in record pairs and then makes a manual match or non-match
decision. At the same time, to comply with policies and legislation, one needs to prevent
domain experts from inferring the identity of the people represented in the manually assessed
record pairs [52]. The challenge is to achieve desired data protection/utility guarantees;
i.e. enabling a domain expert to make good decisions without inferring peoples’ identities.

To address this challenge, we can solve PMDM twice, for a potential match (q1, q2).
The first time we use as input the query string q1 and a reference dictionary (database) D
containing personal records from a sufficiently large population (typically, much larger than
the databases to be linked). The second time, we use as input q2 instead of q1. Since each
masked q derived by solving PMDM matches at least z records in D, the domain expert
would need to distinguish between at least z individuals in D to be able to infer the identity
of the individual corresponding to the masked string. The underlying assumption is that
D contains one record per individual. Also, some wildcards from one masked string can
be superimposed on another to ensure that the expert does not gain more knowledge from
combining the two strings, and the resulting strings would still match at least z records in
D. Thus, by solving PMDM in this setting, we provide privacy guarantees alike z-map [57];
a variant of the well-studied z-anonymity [54] privacy model.1 In z-map, each record of
a dataset must match at least z records in a reference dataset, from which the dataset is
derived. In our setting, we consider a pattern that is not necessarily contained in the reference
dataset. Offering such privacy is desirable in real record linkage systems where databases
containing personal data are being linked [23, 40, 61]. On the other hand, since each masked
q contains the minimum number of wildcards, the domain expert is still able to use the
masked q to meaningfully classify a record pair as a match or as a non-match. Offering
such utility is again desirable in record linkage systems [52]. Record linkage is an important
application for our techniques, because no existing approach can provide privacy and utility
guarantees when releasing linkage results to domain experts [41]. In particular, existing
approaches [40, 41] recognize the need to offer privacy by preventing the domain expert from
distinguishing between a small number of individuals, but they provide no algorithm for
offering such privacy, let alone an algorithm offering utility guarantees as we do.

A secondary application where PMDM is of importance is query term dropping, an
information retrieval task that seeks to drop keywords (terms) from a query, so that the
remaining keywords retrieve a sufficiently large number of documents. This task is performed
by search engines, such as Google [8], and by e-commerce platforms such as e-Bay [42], to
improve users’ experience [29, 58] by making sufficiently many search results available to
users. For example, e-Bay applies query term dropping, removing one term, in our test
query:

Query: vacuum database cleaner
Query results : 0 results found for vacuum database cleaner

42 results found for vacuum cleaner

We could perform query term dropping by solving PMDM in a setting where strings in a
dictionary correspond to document terms and a query string corresponds to a user’s query.
Then, we provide the user with the masked query, after removing all wildcards, and with
its matching strings from the dictionary. Query term dropping is a relevant application for
our techniques, because existing techniques [58] do not minimize the number of dropped
terms. Rather, they drop keywords randomly, which may unnecessarily shorten the query,

1 The notation used for such privacy models is generally k instead of z, e.g. k-anonymity [55, 57].

ISAAC 2021

65:4 Pattern Masking for Dictionary Matching

or drop keywords based on custom rules, which is not sufficiently generic to deal with all
queries. More generally, our techniques can be applied to drop terms from any top-z database
query [33] to ensure there are z results in the query answer.

Related Algorithmic Work. Let us denote the wildcard symbol by ⋆ and provide a brief
overview of works related to PMDM, the main problem considered in this paper.

Partial Match: Given a dictionary D of d strings over an alphabet Σ = {0, 1}, each of
length ℓ, and a string q over Σ ⊔ {⋆} of length ℓ, the problem asks whether q matches any
string from D. This is a well-studied problem [14, 18, 35, 46, 50, 51, 53]. Patrascu [50]
showed that any data structure for the Partial Match problem with cell-probe complexity
t must use space 2Ω(ℓ/t), assuming the word size is O(d1−ϵ/t), for any constant ϵ > 0.
The key difference to PMDM is that the wildcard positions in the query strings are fixed.
Dictionary Matching with k-errors: A similar line of research to that of Partial Match
has been conducted under the Hamming and edit distances, where, in this case, k is the
maximum allowed distance between the query string and a dictionary string [11, 12, 15,
17, 25, 64]. The structure of Dictionary Matching with k-errors is very similar to Partial
Match as each wildcard in the query string gives |Σ| possibilities for the corresponding
symbol in the dictionary strings. On the other hand, in Partial Match the wildcard
positions are fixed. The PMDM problem is a generalization of the decision version of
the Dictionary Matching with k-errors problem (under Hamming distance): by querying
a data structure for PMDM with string q and z = 1, one obtains the minimum number
of mismatches of q with any string from D, which suffices to answer the decision version
of the Dictionary Matching with k-errors problem. The query time or space of all known
data structures for Dictionary Matching with k-mismatches incurs some exponential
factor with respect to k. In [24], Cohen-Addad et al. showed that, in the pointer machine
model, for the reporting version of the problem, one cannot avoid exponential dependency
on k either in the space or in the query time. In the word-RAM model, Rubinstein showed
that, conditional on the Strong Exponential Time Hypothesis [16], any data structure
that can be constructed in time polynomial in the total size ||D|| of the strings in the
dictionary cannot answer queries in time strongly sublinear in ||D||.

We next provide a brief overview of other algorithmic works related to PMDM.
Dictionary Matching with k-wildcards: Given a dictionary D of total size N over an
alphabet Σ and a query string q of length ℓ over Σ ⊔ {⋆} with up to k wildcards, the
problem asks for the set of matches of q in D. This is essentially a parameterized variant of
the Partial Match problem. The seminal paper of Cole et al. [25] proposed a data structure
occupying O(N logkN) space allowing for O(ℓ+2klog log N+|output|)-time querying. This
data structure is based on recursively computing a heavy-light decomposition of the
suffix tree and copying the subtrees hanging off light children. Generalizations and slight
improvements have been proposed in [13], [43], and [28]. In [13] the authors also proposed
an alternative data structure that instead of a logkN factor in the space complexity has
a multiplicative |Σ|k2 factor. Nearly-linear-sized data structures that essentially try all
different combinations of letters in the place of wildcards and hence incur a |Σ|k factor in
the query time have been proposed in [13, 44]. On the lower bound side, Afshani and
Nielsen [3] showed that, in the pointer machine model, essentially any data structure for
the problem in scope must have exponential dependency on k in either the space or the
query time, explaining the barriers hit by the existing approaches.
Enumerating Motifs with k-wildcards: Given an input string s of length n over an alphabet
Σ and positive integers k and z, this problem asks to enumerate all motifs over Σ ⊔ {⋆}
with up to k wildcards that occur at least z times in s. As the size of the output is
exponential in k, the enumeration problem has such a lower bound. Several approaches

P. Charalampopoulos et al. 65:5

exist for efficient motif enumeration, all aimed at reducing the impact of the output’s size:
efficient indexing to minimise the output delay [7, 30]; exploiting a hierarchy of wildcards
positions according to the number of occurrences [10]; or defining a subset of motifs of
fixed-parameter tractable size (in k or z) that can generate all the others [5, 48, 49].

Our Contributions. We consider the word-RAM model of computations with w-bit machine
words, where w = Ω(log(dℓ)), for stating our results. We make the following contributions:
1. (Section 3) A reduction from the k-Clique problem to a decision version of the PMDM

problem, which implies that PMDM is NP-hard, even for strings over a binary alphabet.
2. (Section 4) A combinatorial O((dℓ)k/3 + dℓ)-time and O(dℓ)-space algorithm for PMDM

if k = |K| = O(1), which is optimal if the combinatorial k-Clique hypothesis is true.
3. (Section 5) We consider a generalized version of PMDM, referred to as MPMDM: we

are given a collection M of m query strings (instead of one query string) and we are
asked to compute a smallest set K so that, for every q from M, if q[i], for all i ∈ K, is
replaced by a wildcard, then q matches at least z strings from dictionary D. We show an
O((dℓ)k/3zm−1 + dℓ)-time algorithm for MPMDM, for k = |K| = O(1) and m = O(1).

4. (Section 6) A data structure for PMDM that answers queries over D in O(2ℓ/2(2ℓ/2 + τ)ℓ)
time and requires space O(2ℓd2/τ2 + 2ℓ/2d), for any parameter τ ∈ [1, d].

5. (Section 7) A polynomial-time O(d1/4+ϵ)-approximation algorithm for PMDM, which
we show to be tight under a plausible complexity conjecture.

Let us now discuss why our data structure results (Section 6) cannot be directly obtained
using data structures for Dictionary Matching with k-wildcards. Conceivably, one could
construct such a data structure, and then iterate over all subsets of {1, . . . , ℓ}, querying for
the masked string. Existing data structures for dictionary matching with wildcards (cf. [13,
Table 1], [44], and [28]), that allow querying a pattern with at most ℓ wildcards, have
(a) either Ω(min{σℓ, d}) query time, thus yielding Ω(2ℓ ·min{σℓ, d}) query time for our prob-

lem, and space Ω(dℓ), a trade-off dominated by the Small-ℓ algorithm (cf. our Table 1);
(b) or Ω(ℓ) query time, thus yielding Ω(2ℓℓ) query time for our problem, and Ω(dℓ logℓ log(dℓ))

space, a trade-off dominated by the DS Simple (cf. our Table 1).

2 Definitions and Notation

Strings. An alphabet Σ is a finite nonempty set whose elements are called letters. We
assume throughout an integer alphabet Σ = [1, |Σ|]. Let x = x[1] · · · x[n] be a string of length
|x| = n over Σ. For two indices 1 ≤ i ≤ j ≤ n, x[i . . j] = x[i] · · · x[j] is the substring of x

that starts at position i and ends at position j of x. By ε we denote the empty string of
length 0. A prefix of x is a substring of x of the form x[1 . . j], and a suffix of x is a substring
of x of the form x[i . . n]. A dictionary is a collection of strings. We also consider alphabet
Σ⋆ = Σ ⊔ {⋆}, where ⋆ is a wildcard letter that is not in Σ and matches all letters from Σ⋆.
Then, given a string x over Σ⋆ and a string y over Σ with |x| = |y|, we say that x matches y

if and only if x[i] = y[i] or x[i] = ⋆, for all 1 ≤ i ≤ |x|. Given a string x of length n and a
set S ⊆ {1, . . . , n}, we denote by xS = x ⊗ S the string obtained by first setting xS = x and
then xS [i] = ⋆, for all i ∈ S. We then say that x is masked by S.

The main problem considered in this paper is the following.

ISAAC 2021

65:6 Pattern Masking for Dictionary Matching

Pattern Masking for Dictionary Matching (PMDM)
Input: A dictionary D of d strings, each of length ℓ, a string q of length ℓ, and a positive
integer z.
Output: A smallest set K ⊆ {1, . . . , ℓ} such that qK =q⊗K matches at least z strings
from D.

We refer to the problem of computing only the size k of a smallest set K as PMDM-Size.
We also consider the data structure variant of the PMDM problem in which D is given for
preprocessing, and q, z queries are to be answered on-line. Throughout, we assume that
k ≥ 1 as the case k = 0 corresponds to the well-studied dictionary matching problem for
which there exists a classic optimal solution [4]. We further assume z ≤ d; otherwise the
PMDM has trivially no solution. In what follows, we use N to denote dℓ.

Tries. Let M be a finite set containing m > 0 strings over Σ. The trie of M, denoted by
R(M), contains a node for every distinct prefix of a string in M; the root node is ε; the set
of leaf nodes is M; and edges are of the form (u, α, uα), where u and uα are nodes and α ∈ Σ
is the label. The compacted trie of M, denoted by T (M), contains the root, the branching
nodes, and the leaf nodes of R(M). Each maximal branchless path segment from R(M) is
replaced by a single edge, and a fragment of a string M ∈ M is used to represent the label
of this edge in O(1) space. The size of T (M) is thus O(m). The most well-known example
of a compacted trie is the suffix tree of a string: the compacted trie of all the suffixes of
the string [62]. To access the children of a trie node by the first letter of their edge label in
O(1) time we use perfect hashing [27]. In this case, the claimed complexities hold with high
probability (w.h.p., for short), that is, with probability at least 1 − N−c (recall that N = dℓ),
where c > 0 is a constant fixed at construction time. Assuming that the children of every
trie node are sorted by the first letters of their edge labels, randomization can be avoided at
the expense of a log |Σ| factor incurred by binary searching for the appropriate child.

3 PMDM-Size is NP-hard

We show that the following decision version of PMDM-Size is NP-complete.

k-PMDM
Input: A dictionary D of d strings, each of length ℓ, a string q of length ℓ, and positive
integers z ≤ d and k ≤ ℓ.
Output: Is there a set K ⊆ {1, . . . , ℓ} of size k, such that qK =q⊗K matches at least z

strings from D?

Our reduction is from the well-known NP-complete k-Clique problem [37]: Given an
undirected graph G on n nodes and a positive integer k, decide whether G contains a clique
of size k (a clique is a subset of the nodes of G that are pairwise adjacent).

▶ Theorem 1. Any instance of the k-Clique problem for a graph with n nodes and m edges
can be reduced in O(nm) time to a k-PMDM instance with ℓ = n, d = m and Σ = {a, b}.

Proof. Let G = (V, E) be an undirected graph on n = |V | nodes numbered 1 through n, in
which we are looking for a clique of size k. We reduce k-Clique to k-PMDM as follows.
Consider the alphabet {a, b}. Set q = an, and for every edge (u, v) ∈ E such that u < v, add
string au−1bav−u−1ban−v to D. Set z = k(k − 1)/2. Then G contains a clique of size k, if
and only if k-PMDM returns a positive answer. This can be seen by the fact that cliques of

P. Charalampopoulos et al. 65:7

1 2

3 4

n=4
k=3

Instance of k-PMDM
e1

e3

e4

e2

Instance of k-CLIQUE
D : s1 = bbaa <-> e1 s3 = abba <-> e3

s2 = baba <-> e2 s4 = aabb <-> e4
q = aaaa z = 3{1,2,3} is

a 3-Clique K = {1,2,3} as qK = a matches 3=k(k-1)/2=z strings in D

Figure 1 An example of the reduction from k-Clique to k-PMDM. The solution for both is
{1, 2, 3} as shown. Note that, for k = 4, the instance of 4-PMDM would need z = 6 matches; neither
this many matches can be found in D nor a 4-clique can be found in the graph.

size k in G are in one-to-one correspondence with subsets K ⊆ {1, . . . , n} of size k for which
qK matches z strings from D: the elements of K correspond to the nodes of a clique and the
z strings correspond to its edges. k-PMDM is clearly in NP and the result follows. ◀

An example of the reduction from k-Clique to k-PMDM is shown in Figure 1.

▶ Corollary 2. k-PMDM is NP-complete for strings over a binary alphabet.

Our reduction (Theorem 1) shows that solving k-PMDM efficiently even for strings over
a binary alphabet would imply a breakthrough for the k-Clique problem for which it is
known that, in general, no fixed-parameter tractable algorithm with respect to parameter k

exists unless the Exponential Time Hypothesis (ETH) fails [19, 34]. That is, k-Clique has
no f(k)no(k) time algorithm, and is thus W[1]-complete (again, under the ETH hypothesis).
On the upper bound side, k-Clique can be trivially solved in O(nk) time (enumerating all
subsets of nodes of size k), and this can be improved to O(nωk/3) time for k divisible by 3
using square matrices multiplication (ω is the exponent of square matrix multiplication).
However, for general k ≥ 3 and any constant ϵ > 0, the k-Clique hypothesis states that there
is no O(n(ω/3−ϵ)k)-time algorithm and no combinatorial O(n(1−ϵ)k)-time algorithm [2, 45, 63].

In particular, assuming that the k-Clique hypothesis is true, due to Theorem 1, we
cannot hope to devise a combinatorial algorithm for k-PMDM requiring O((dℓ)(1−ϵ)k/3)
time, for any k ≥ 3 and ϵ > 0, since dℓ = nm. In Section 4, we show a combinatorial
O((dℓ)k/3)-time algorithm, for constant k ≥ 3, for the optimization version of k-PMDM
(seeking to maximize the matches), which can then be trivially applied to solve k-PMDM in
the same time complexity, thus matching the above conditional lower bound.

Given an undirected graph G, an independent set is a subset of nodes of G such that no
two distinct nodes of the subset are adjacent. Let us note that the problem of computing
a maximum clique in a graph G, which is equivalent to that of computing the maximum
independent set in the complement of G, cannot be n1−ϵ-approximated in polynomial time,
for any ϵ > 0, unless P = NP [31, 65].

Any algorithm solving PMDM-Size can be trivially applied to solve k-PMDM.

▶ Corollary 3. PMDM-Size is NP-hard for strings over a binary alphabet.

4 Exact Algorithms for a Bounded Number k of Wildcards

We consider the following problem, which we solve by exact algorithms.

Heaviest k-PMDM
Input: A dictionary D of d strings, each of length ℓ, a string q of length ℓ, and a positive
integer k ≤ ℓ.
Output: A set K ⊆ {1, . . . , ℓ} of size k such that qK = q⊗K matches the maximum
number of strings in D.

ISAAC 2021

65:8 Pattern Masking for Dictionary Matching

We will show the following result, which we will employ to solve the PMDM problem.

▶ Theorem 4. Heaviest k-PMDM for k = O(1) can be solved in O(N +min{Nk/3, ℓk})
time, where N = dℓ.

A hypergraph H is a pair (V, E), where V is the set of nodes of H and E is a set of
non-empty subsets of V , called hyperedges – in order to simplify terminology we will simply
call them edges. Hypergraphs are a generalization of graphs in the sense that an edge can
connect more than two nodes. Recall that the size of an edge is the number of nodes it
contains. The rank of H, denoted by r(H), is the maximum size of an edge of H.

We refer to a hypergraph H × K = (K, {e : e ∈ E, e ⊆ K}), where K is a subset of V , as
a |K|-section. H × K is the hypergraph induced by H on the nodes of K, and it contains all
edges of H whose elements are all in K. A hypergraph is weighted when each of its edges is
associated with a weight. We define the weight of a weighted hypergraph as the sum of the
weights of all of its edges. In what follows, we also refer to weights of nodes for conceptual
clarity; this is equivalent to having a singleton edge of equal weight consisting of that node.

We define the following auxiliary problem on hypergraphs (see also [20]).

Heaviest k-Section
Input: A weighted hypergraph H = (V, E), with E given as a list, and an integer k > 0.
Output: A subset K of size k of V such that H × K has maximum weight.

When k = O(1), we preprocess the edges of H as follows in order to have O(1)-time
access to any queried edge. We represent each edge as a string, whose letters correspond
to its elements in increasing order. Then, we sort all such strings lexicographically using
radix sort in O(|E|) time and construct a trie over them. An edge can then be accessed in
O(k log k) = O(1) time by a forward search starting from the root node of the trie.

A polynomial-time O(n0.697831+ϵ)-approximation for Heaviest k-Section, for any ϵ > 0,
for the case when all hyperedges of H have size at most 3 was shown in [20] (see also [6]).

Two remarks are in place. First, we can focus on edges of size up to k as larger edges
cannot, by definition, exist in any k-section. Second, Heaviest k-Section is a generalization
of the problem of deciding whether a (c, k)-hyperclique (i.e. a set of k nodes whose subsets
of size c are all in E) exists in a graph, which in turn is a generalization of k-Clique.
Unlike k-Clique, the (c, k)-hyperclique problem is not known to benefit from fast matrix
multiplication in general; see [45] for a discussion on its hardness.

▶ Lemma 5. Heaviest k-PMDM can be reduced to Heaviest k-Section for a hypergraph
with ℓ nodes and d edges in O(N) time, where N = dℓ.

Proof. We first compute the set Ms of positions of mismatches of q with each string s ∈ D.
We ignore strings from D that match q exactly, as they will match q after changing any set
of letters of q to wildcards. This requires O(dℓ) = O(N) time in total.

Let us consider an empty hypergraph (i.e. with no edges) H on ℓ nodes, numbered 1
through ℓ. Then, for each string s ∈ D, we add Ms to the edge-set of H if |Ms| ≤ k; if this
edge already exists, we simply increment its weight by 1.

We set the parameter k of Heaviest k-Section to the parameter k of Heaviest k-
PMDM. We now observe that for K ⊆ V with |K| = k, the weight of H × K is equal to the
number of strings that would match q after replacing with wildcards the k letters of q at the
positions corresponding to elements of K. The statement follows. ◀

P. Charalampopoulos et al. 65:9

Instance	of	HEAVIEST	k-SECTION	Instance	of	HEAVIEST	k-PMDM	
D	:	 	s1	=	abcda 	q	=	aaaaa	

	s2	=	aadba 	k	=	3	
	s3	=	acaba 	d=6	
	s4	=	adaca 	l=5	
	s5	=	bbaac	
	s6	=	acdaa	

K={2,3,4}	of	size	k=3	has	maximum		
number	of	matches	(5)	as	qK	=	a									a	

matches	s1,	s2,	s3,	s4,	and	s6.	 K	=	{2,3,4}	of	size	k=3	is	s.t.	H	x	K	has	maximum	weight	5	

1	

e1	(1)	e3	(2)	

e5	(1)	

e2	(1)	

5	

e6	(1)	

Hypergraph	H	with	l =	5	nodes		
a	weight-2	edge	(e3)	and	
4	weight-1	edges	

4	
3	

2	

e1={2,3,4}	from	s1	
e2={3,4}	from	s2	
e3=e4={2,4}	from	s3	and	s4	
e5={1,2,5}	from	s5	
e6={2,3}	from	s6	

Figure 2 An example of the reduction from Heaviest k-PMDM to Heaviest k-Section. The
solutions are at the bottom. Each edge has its weight in brackets and the total weight is d = 6.

An example of the reduction in Lemma 5 is shown in Figure 2.
The next lemma gives a straightforward solution to Heaviest k-Section. It is analogous

to algorithm Small-ℓ, presented in Section 6, but without the optimization in computing
sums of weights over subsets. It implies a linear-time algorithm for Heaviest 1-Section.

▶ Lemma 6. Heaviest k-Section, for any constant k, can be solved in O(|V |k + |E|) time
and O(|V | + |E|) space.

Proof. For every subset K ⊆ V of size at most k, we sum the weights of all edges correspond-
ing to its subsets. There are

(|V |
k

)
= O(|V |k) choices for |K|, each having 2k − 1 non-empty

subsets: for every subset, we can access the corresponding edge (if it exists) in O(1) time. ◀

We next show that for the cases k = 2 and k = 3, there exist more efficient solutions. In
particular, we provide a linear-time algorithm for Heaviest 2-Section.

▶ Lemma 7. Heaviest 2-Section can be solved in O(|V | + |E|) time.

Proof. Let K be a set of nodes of size 2 such that H × K has maximum weight. We
decompose the problem in two cases. For each of the cases, we give an algorithm that
considers several 2-sections such that the heaviest of them has weight equal to that of H × K.

Case 1. There is an edge e = K in E. For each edge e ∈ E of size 2, i.e. edge in the classic
sense, we compute the sum of its weight and the weights of the nodes that it is incident to.
This step requires O(|E|) time.

Case 2. There is no edge equal to K in E. We compute H × {v1, v2}, where v1, v2 are
the two nodes with maximum weight, i.e. max and second-max. This step takes O(|V |) time.

In the end, we return the heaviest 2-section among those returned by the algorithms for
the two cases, breaking ties arbitrarily. ◀

We next show that for k = 3 the result of Lemma 6 can be improved when |E| = o(|V |2).

▶ Lemma 8. Heaviest 3-Section can be solved in time O(|V | · |E|) using O(|V | + |E|)
space.

Proof. Let K be a set of nodes of size 3 such that H × K has maximum weight. We
decompose the problem into the following three cases.

Case 1. There is an edge e = K in E. We go through each edge e ∈ E of size 3 and
compute the weight of H × e in O(1) time. This takes O(|E|) time in total. Let the edge
yielding the maximum weight be emax.

Case 2. There is no edge of size larger than one in H × K. We compute H × {v1, v2, v3},
where v1, v2, v3 are the three nodes with maximum weight, i.e. max, second-max and third-
max. This step takes O(|V |) time.

ISAAC 2021

65:10 Pattern Masking for Dictionary Matching

Case 3. There is an edge of size 2 in H × K. We can pick an edge e of size 2 from E in
O(|E|) ways and a node v from V in O(|V |) ways. We compute the weight of H × (e ∪ {v})
for all such pairs. Let the pair yielding maximum weight be (e′, u′).

Finally, the maximum weight of H × K ′ for K ′ ∈ { emax, {v1, v2, v3}, e′ ∪ {u′} } is equal
to the weight of H × K, breaking ties arbitrarily. ◀

▶ Lemma 9. Heaviest k-Section for an arbitrarily large constant k ≥ 4 can be solved in
time O((|V | · |E|)k/3) using O(|V | + |E|) space.

Proof. If |E| > |V |2, then the simple algorithm of Lemma 6 solves the problem in time

O(|V |k + |E|) = O(|V |k/3(|V |2)k/3 + |E|) = O((|V | · |E|)k/3)

and linear space. We can thus henceforth assume that |E| ≤ |V |2.
Let K be a set of nodes of size at most k such that H ×K has maximum weight. If H ×K

contains isolated nodes (i.e. nodes not contained in any edge), they can be safely deleted
without altering the result. We can thus assume that H × K does not contain isolated nodes,
and that |V | ≤ k|E| since otherwise the hypergraph H would contain isolated nodes.

We first consider the case that the rank r(H × K) > 1, i.e. there is an edge of H × K of
size at least 2. We design a branching algorithm that constructs several candidate sets; the
ones with maximum weight will have weight equal to that of H × K. We will construct a set
of nodes X, starting with X := ∅. For each set X that we process, let ZX be the superset
of X of size at most k such that H × ZX has maximum weight. We have the following two
cases:

Case 1. There is an edge e in H × ZX that contains at least two nodes from ZX \ X. To
account for this case, we select every possible such edge e, set X := X ∪ e, and continue the
branching algorithm.

Case 2. Each edge in H × ZX contains at most one node from ZX \ X. In this case
we conclude the branching algorithm as follows. For every node v ∈ V \ X we compute its
weight as the total weight of edges Y ∪ {v} ∈ E for Y ⊆ X in O(2k) = O(1) time. Finally,
in O(|V |k) = O(|V |) time we select k − |X| nodes with largest weights and insert them into
X. The total time complexity of this step is O(|V |). This case also works if |X| = k and
then its time complexity is only O(1).

The correctness of this branching algorithm follows from an easy induction, showing that
at every level of the branching tree there is a subset of K.

Let us now analyze the time complexity of this branching algorithm. Each branching in
Case 1 takes O(|E|) time and increases the size of |X| by at least 2. At every node of the
branching tree we call the procedure of Case 2. It takes O(|V |) time if |X| < k.

If the procedure of Case 2 is called in a non-leaf node of the branching tree, then its O(|V |)
running time is dominated by the O(|E|) time that is required for further branching since
we have assumed that |V | ≤ k|E|. Hence, it suffices to bound (a) the total time complexity
of calls to the algorithm for Case 2 in leaves that correspond to sets X such that |X| < k

and (b) the total number of leaves that correspond to sets X such that |X| = k.
If k is even, (a) is bounded by O(|E|(k−2)/2|V |) and (b) is bounded by O(|E|k/2). Hence,

(b) dominates (a) and we have

O(|E|k/2) = O(|E|k/3|E|k/6) = O(|E|k/3|V |k/3). (1)

If k is odd, (a) is bounded by O(|E|(k−1)/2|V |) and (b) is bounded by O(|E|(k−1)/2),
which is dominated by (a). By using (1) for k − 3 we also have:

O(|E|(k−1)/2·|V |) = O(|E|(k−3)/2·|E|·|V |) = O((|E|·|V |)(k−3)/3·|E|·|V |) = O((|E|·|V |)k/3).

P. Charalampopoulos et al. 65:11

We now consider the case that r(H × K) = 1. We use the algorithm for Case 2 above
that works in O(|V |) time, which is O(|V | · |E|). ◀

Lemmas 5-9 imply Theorem 4, which we employ iteratively to obtain the following result.

▶ Theorem 10. PMDM can be solved in time O(N + min{Nk/3, ℓk}) using space O(N) if
k = O(1), where N = dℓ.

Proof. We apply Lemma 5 to obtain a hypergraph with |V | = ℓ and |E| = d. Starting with
k = 1 and for growing values of k, we solve Heaviest k-Section until we obtain a solution
of weight at least z, employing either only Lemma 6, or Lemmas 6, 7, 8, 9 for k = 1, 2, 3 and
k ≥ 4, respectively. We obtain O(N + min{Nk/3, ℓk}) time and O(N) space. ◀

5 Exact Algorithms for a Bounded Number m of Query Strings

Recall that masking a potential match (q1, q2) in record linkage can be performed by solving
PMDM twice and superimposing the wildcards (see Section 1). In this section, we consider
the following generalized version of PMDM to perform the masking simultaneously. The
advantage of this approach is that it minimizes the final number of wildcards in q1 and q2.

Multiple Pattern Masking for Dictionary Matching (MPMDM)
Input: A dictionary D of d strings, each of length ℓ, a collection M of m strings, each
of length ℓ, and a positive integer z.
Output: A smallest set K ⊆ {1, . . . , ℓ} such that, for every q from M, qK = q ⊗K

matches at least z strings from D.

Let N = dℓ. We show the following theorem.

▶ Theorem 11. MPMDM can be solved in time O(N + min{Nk/3zm−1, ℓk}) if k = O(1)
and m = O(1), where N = dℓ.

We use a generalization of Heaviest k-Section in which the weights are m-tuples that
are added and compared component-wise, and we aim to find a subset K such that the
weight of H ×K is at least (z, . . . , z). An analogue of Lemma 6 holds without any alterations,
which accounts for the O(N + ℓk)-time algorithm. We adapt the proof of Lemma 9 as follows.
The branching remains the same, but we have to tweak the final step, that is, what happens
when we are in Case 2. For m = 1 we could simply select a number of largest weights, but for
m > 1 multiple criteria need to be taken into consideration. All in all, the problem reduces
to a variation of the classic Multiple-Choice Knapsack problem [38], which we solve using
dynamic programming. Overall, we pay an additional O(zm−1) factor in the complexity of
handling of Case 2, which yields the complexity of Theorem 11.

6 A Data Structure for PMDM Queries

We next show algorithms and data structures for the PMDM problem under the assumption
that 2ℓ is reasonably small. We measure space in terms of w-bit machine words, where
w = Ω(log(dℓ)), and focus on showing space vs. query-time trade-offs for answering q, z

PMDM queries over D. A summary of the complexities of the data structures is shown
in Table 1. Specifically, algorithm Small-ℓ and data structure Simple are used as building
blocks in the more involved data structure Split underlying the following theorem.

▶ Theorem 12. There exists a data structure that answers q, z PMDM queries over D in
time O(2ℓ/2(2ℓ/2 + τ)ℓ) w.h.p. and requires space O(2ℓd2/τ2 + 2ℓ/2d), for any τ ∈ [1, d].

ISAAC 2021

65:12 Pattern Masking for Dictionary Matching

Table 1 Basic complexities of the data structures from Section 6.

Data structure Space Query time
Algorithm Small-ℓ O(dℓ) O(2ℓℓ + dℓ)

DS Simple O(2ℓd) O(2ℓℓ)
DS Split, any τ O(2ℓd2/τ2 + 2ℓ/2d) O(2ℓ/2 · (2ℓ/2 + τ)ℓ)

DS Split for τ = 2ℓ/4√
d O(2ℓ/2d) O(2ℓℓ + 23ℓ/4√

dℓ)

Algorithm Small-ℓ: O(dℓ) Space, O(2ℓℓ + dℓ) Query Time. No data structure on top
of the dictionary D is stored. In the query algorithm, we initialize an array A of size 2ℓ with
zeros. For an ℓ-bit vector m, by Km ⊆ {1, . . . , ℓ} let us denote the set of the positions of set
bits of m. Now for every possible ℓ-bit vector m we want to compute the number of strings
in D that match qKm = q ⊗ Km.

To this end, for every string s ∈ D, we compute the set K of positions in which s and
q differ. For m that satisfies K = Km, we increment A[m]. This computation takes O(dℓ)
time and O(1) extra space. Then we apply a folklore dynamic-programming-based approach
to compute array B, which is defined as follows:

B[m] =
∑

j∈S(m)

A[j], where S(m) = {j ∈ [1, 2ℓ] : Kj ⊆ Km}.

In other words, B[m] stores the number of strings from D that match qKm
. It takes O(ℓ2ℓ)

time and O(2ℓ) extra space. Thus, overall, the (query) time required by algorithm Small-ℓ
is O(ℓ2ℓ+dℓ), the data structure space is O(dℓ), and the extra space is O(2ℓ).

We first present Simple, an auxiliary data structure, which we will apply later on to
construct DS Split, a data structure with the space/query-time trade-off of Theorem 12.

DS Simple: O(2ℓd) Space, O(2ℓℓ) Query Time. We initialize an empty set Q. For each
possible subset of {1, . . . , ℓ} we do the following. We mask the corresponding positions in
all strings from D and then sort the masked strings lexicographically. By iterating over the
lexicographically sorted list of the masked strings, we count how many copies of each distinct
(masked) string we have in our list. We insert each such (masked) string to Q along with
its count. After processing all 2ℓ subsets, we construct a compacted trie for the strings in
Q; each leaf corresponds to a unique element of Q, and stores this element’s count. The
total space occupied by this compacted trie is thus O(2ℓd). Upon an on-line query q (of
length ℓ) and z, we apply all possible 2ℓ masks to q and read the count for each of them from
the compacted trie in O(ℓ) time per mask. Next, we show how to decrease the exponential
dependency on ℓ in the space complexity when 2ℓ = o(d), incurring extra time in the query.

DS Split: O(2ℓd2/τ 2 + 2ℓ/2d) Space, O(2ℓ/2 · (2ℓ/2 + τ)ℓ) Query Time, for any τ .
This trade-off is relevant when τ = ω(

√
d); otherwise the DS Simple is better. We split each

string p ∈ D roughly in the middle, to prefix pL and suffix pR; specifically, p = pLpR and
|pL| = ⌈ℓ/2⌉. We create dictionaries DL = {pL : p ∈ D} and DR = {pR : p ∈ D}. Let us now
explain how to process DL; we process DR analogously. Let λ = ⌈ℓ/2⌉. We construct DS
Simple over DL. This requires space O(2ℓ/2d). Let τ be an input parameter, intuitively
used as the minimum frequency threshold. For each of the possible 2λ masks, we can have at
most ⌊d/τ⌋ (masked) strings with frequency at least τ . Over all masks, we thus have at most
2λ⌊d/τ⌋ such strings, which we call τ -frequent. For every pair of τ -frequent strings, one from
DL and one from DR, we store the number of occurrences of their concatenation in D using
a compacted trie as in DS Simple. This requires space O(2ℓd2/τ2).

P. Charalampopoulos et al. 65:13

abba

acba

acca

abac

ab

ac

ac

ab

ba

ba

ca

ac

a?

?b

?c

??

4

2

2

4

b?

?a

??

D DL DR

? ? ? a ? ?

? a ? a

4 3 4 3

Counts of Simple

2

3

4

DL DR

Compacted trie of Split

· · ·

Figure 3 Let τ = 3. If both q′
L and q′

R are 3-frequent (we check this using the counts of DS
Simple), we read the count for q′

Lq′
R from the compacted trie of DS Split. If q′

L is 3-infrequent, we
apply Small-ℓ on qR and the dictionary consisting of at most τ = 3 strings from DR corresponding
to the right halves of strings in DL that match q′

L.

Consider DL. For each mask i and each string pL ∈ DL, we can afford to store the
list of all strings in DL that match pL ⊗ i. Note that we have computed this information
when sorting for constructing DS Simple over DL. This information requires space O(2ℓ/2d).
Thus, DS Split requires O(2ℓd2/τ2 + 2ℓ/2d) space overall.

Let us now show how to answer an on-line q, z query. Let q = qLqR with |qL| = ⌈ℓ/2⌉.
We iterate over all possible 2ℓ masks.

For a mask i, let q′ = q ⊗ i. We split q′ into two halves, q′
L and q′

R with q′ = q′
Lq′

R and
|q′

L| = ⌈ℓ/2⌉. First, we check whether each of q′
L and q′

R is τ -infrequent using the DS Simple
we have constructed for DL and DR, respectively, in time O(ℓ). We have the following two
cases (inspect also Figure 3).

If both halves are τ -frequent, we can read the frequency of their concatenation using the
stored compacted trie in time O(ℓ).
Else, at least one of the two halves is τ -infrequent. Assume without loss of generality
that q′

L is τ -infrequent. Let F be the dictionary consisting of at most τ strings from DR

that correspond to the right halves of strings in DL that match q′
L. Naïvely counting

how many elements of F match q′
R could require Ω(τℓ) time, and thus Ω(2ℓτℓ) overall.

Instead, we apply algorithm Small-ℓ on qR and F . The crucial point is that if we ever
come across q′

L again (for a different mask on q), we will not need to do anything. We can
maintain whether q′

L has been processed by temporarily marking the leaf corresponding
to it in DS Simple for DL. Thus, overall, we perform the Small-ℓ algorithm O(2ℓ/2)
times, each time in O((2ℓ/2 + τ)ℓ) time. This completes the proof of Theorem 12.

Efficient Construction. For completeness, we next show how to construct DS Split in
O(dℓ log(dℓ) + 2ℓdℓ + 2ℓℓd2/τ2) time. We preprocess D by sorting its letters in O(dℓ log(dℓ))
time. The DS Simple for DL and DR can then be constructed in O(2ℓ/2dℓ) time. We then
create the compacted trie for pairs of τ -frequent strings. For each of the 2ℓ possible masks,
say i, and each string p ∈ D, we split p′ = p ⊗ i in the middle to obtain p′

L and p′
R. If both

p′
L and p′

R are τ -frequent then p′ will be in the set of strings for which we will construct the
compacted trie for pairs of τ -frequent strings. The counts for each of those strings can be
read in O(ℓ) time from a DS Simple over D, which we can construct in time O(2ℓdℓ) – this
data structure is then discarded. The compacted trie construction requires time O(2ℓℓd2/τ2).

Comparison of the Data Structures. DS Simple has lower query time than algorithm
Small-ℓ. However, its space complexity can be much higher. DS Split can be viewed as an
intermediate option. For τ as in Table 1, it has lower query time than algorithm Small-ℓ for

ISAAC 2021

65:14 Pattern Masking for Dictionary Matching

d = ω(23ℓ/2), while keeping moderate space complexity. DS Split always has higher query
time than DS Simple, but its space complexity is lower by a factor of 2ℓ/2. For example, for
d = 22ℓ we get the complexities shown in Table 2.

Table 2 Basic complexities of the data structures from Section 6 for d = 22ℓ.

Data structure Space Query time
Algorithm Small-ℓ O(22ℓℓ) O(22ℓℓ)

DS Simple O(23ℓ) O(2ℓℓ)
DS Split for τ = 25ℓ/4 O(25ℓ/2) O(27ℓ/4ℓ)

7 Approximation Algorithm for PMDM

Clearly, PMDM is at least as hard as PMDM-Size because it also outputs the positions of
the wildcards (set K). Thus, PMDM is also NP-hard. In what follows, we show existence of
a polynomial-time approximation algorithm for PMDM whose approximation factor is given
with respect to d. Specifically, we show the following approximation result for PMDM.

▶ Theorem 13. For any constant ϵ > 0, there is an O(d1/4+ϵ)-approximation algorithm for
PMDM, whose running time is polynomial in N , where N = dℓ.

Our result is based on the Minimum Union (MU) problem [21], which we define next.

Minimum Union (MU)
Input: A collection S of d sets over a universe U and a positive integer z ≤ d.
Output: A collection T ⊆ S with |T | = z such that the size of ∪S∈T S is minimized.

To illustrate the MU problem, consider an instance of it where U = {1, 2, 3, 4, 5},
S = {{1}, {1, 2, 3}, {1, 3, 5}, {3}, {3, 4, 5}, {4}, {4, 5}, {5}}, with d = |S| = 8, and z = 4.
Then T = {{3}, {3, 4, 5}, {4}, {4, 5}} is a solution because |T | = z = 4 and | ∪S∈T S| = 3 is
minimum. The MU problem is NP-hard and the following approximation result is known.

▶ Theorem 14 ([21]). For any constant ϵ > 0, there is an O(d1/4+ϵ)-approximation algorithm
for MU, whose running time is polynomial in the size of S.

▶ Theorem 15. PMDM can be reduced to MU in time polynomial in N .

Proof. We reduce the PMDM problem to MU in polynomial time as follows. Given
any instance IPMDM of PMDM, we construct an instance IMU of MU in time O(dℓ) by
performing the following steps:
1. The universe U is set to {1, . . . , ℓ}.
2. We start with an empty collection S. Then, for each string si in D, we add member Si

to S, where Si is the set of positions where string q and string si have a mismatch. This
can be done trivially in time O(dℓ) for all strings in D.

3. Set the z of the MU problem to the z of the PMDM problem.

Thus, the total time O(dℓ) needed for Steps 1 to 3 above is clearly polynomial in the size
of IPMDM.

▷ Claim 16. For any solution T to IMU and any solution K to IPMDM, |K| = | ∪S∈T S|.

P. Charalampopoulos et al. 65:15

Proof. Let F ⊆ D consist of z strings that match qK . Further, let the set F∗ consist of the
elements of S corresponding to strings in F . We have | ∪S∈T S| ≤ | ∪S∈F∗ S| ≤ |K|.

Now, let C = ∪S∈T S. Then, qC = q⊗C matches at least z strings from D and hence
|K| ≤ |C| = | ∪S∈T S|. ◁

To conclude the proof, it remains to show that given a solution T to IMU we can obtain
a solution K to IPMDM in time polynomial in the size of IMU. This readily follows from the
proof of the above claim: it suffices to set K = ∪S∈T S. ◀

Proof of Theorem 13. The reduction in Theorem 15 implies that there is a polynomial-time
approximation algorithm for PMDM. In particular, Theorem 14 provides an approximation
guarantee for MU that depends on the number of sets of the input S. In Step 2 of the
reduction of Theorem 15, we construct one set for the MU instance per one string of the
dictionary D of the PMDM instance. Also, from the constructed solution T to the MU
instance, we obtain a solution K to the PMDM instance by simply substituting the positions
of q corresponding to the elements of the sets of T with wildcards. This construction implies
the approximation result of Theorem 13 that depends on the size of D. ◀

Sanity Check. Theorem 1 (reduction from k-Clique to k-PMDM) and Theorem 13
(approximation algorithm for PMDM) do not contradict the inapproximability results for the
maximum clique problem (see Section 3), since our reduction from k-Clique to k-PMDM
cannot be adapted to a reduction from maximum clique to PMDM-Size.

Two-Way Reduction. Chlamtáč et al. [21] also show that their polynomial-time O(d1/4+ϵ)-
approximation algorithm for MU is tight under a plausible conjecture for the so-called
Hypergraph Dense vs Random problem. In what follows, we also show that approximating
the MU problem can be reduced to approximating PMDM in polynomial time and hence
the same tightness result applies to PMDM.

▶ Theorem 17. MU can be reduced to PMDM in time polynomial in the size of S.

Proof. Let ||S|| denote the total number of elements in the d members of S. We reduce the
MU problem to the PMDM problem in polynomial time as follows. Given any instance IMU
of MU, we construct an instance IPMDM of PMDM by performing the following steps:
1. Sort the union of all elements of members of S, and assign to each element j a unique

rank rank(j) ∈ {1, . . . , |U |}. Set ℓ = |U |. This can be done in O(||S|| log ||S||) time.
2. Set the query string q equal to the string aℓ of length ℓ. For each set Si in S, construct a

string si = aℓ, set si[rank(j)] := b if and only if j ∈ Si, and add si to dictionary D. This
can be done in O(dℓ) time.

3. Set the z of the PMDM problem equal to the z of the MU problem. This can be done
in O(1) time.

Thus, the total time O(dℓ log(dℓ)) needed for Steps 1 to 3 above is clearly polynomial in
the size of IMU as ℓ ≤ ||S||.

A proof of the following claim is analogous to that of Claim 16.

▷ Claim 18. For any solution T to IMU and any solution K to IPMDM, |K| = | ∪S∈T S|.

To conclude the proof, it remains to show that, given a solution K to IPMDM, we can
obtain a solution T to IMU in time polynomial in the size of IPMDM. It suffices to pick z

sets in S that are subsets of K. Their existence is guaranteed by construction, because such

ISAAC 2021

65:16 Pattern Masking for Dictionary Matching

sets correspond to the at least z strings in D that have b in a subset of the positions in K.
This selection can be done naïvely in O(||S||) time. Finally, the above claim guarantees that
they indeed form a solution to IMU. ◀

References

1 Secure critical data with Oracle Data Safe (white paper). https://www.oracle.com/a/tech/
docs/dbsec/data-safe/wp-security-data-safe.pdf, September 2020.

2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique
algorithms are optimal, so is Valiant’s parser. SIAM Journal on Computing, 47(6):2527–2555,
2018. doi:10.1137/16M1061771.

3 Peyman Afshani and Jesper Sindahl Nielsen. Data structure lower bounds for document index-
ing problems. In 43rd International Colloquium on Automata, Languages and Programming
(ICALP 2016), volume 55 of LIPIcs, pages 93:1–93:15, 2016. doi:10.4230/LIPIcs.ICALP.
2016.93.

4 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic
search. Communications of the ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.

5 Alberto Apostolico and Laxmi Parida. Incremental paradigms of motif discovery. Journal of
Computational Biology, 11(1):15–25, 2004. doi:10.1089/106652704773416867.

6 Benny Applebaum. Pseudorandom generators with long stretch and low locality from random
local one-way functions. SIAM Journal on Computing, 42(5):2008–2037, 2013. doi:10.1137/
120884857.

7 Hiroki Arimura and Takeaki Uno. An efficient polynomial space and polynomial delay algorithm
for enumeration of maximal motifs in a sequence. Journal of Combinatorial Optimization,
13(3):243–262, 2007. doi:10.1007/s10878-006-9029-1.

8 David R. Bailey, Alexis J. Battle, Benedict A. Gomes, and P. Pandurang Nayak. Estimating
confidence for query revision models, U.S. Patent US7617205B2 (granted to Google), 2009.

9 Martha Bailey, Connor Cole, Morgan Henderson, and Catherine Massey. How well do
automated linking methods perform? Lessons from U.S. historical data. NBER Working
Papers 24019, National Bureau of Economic Research, Inc, 2017. doi:10.3386/w24019.

10 Giovanni Battaglia, Davide Cangelosi, Roberto Grossi, and Nadia Pisanti. Masking patterns
in sequences: A new class of motif discovery with don’t cares. Theoretical Computer Science,
410(43):4327–4340, 2009. doi:10.1016/j.tcs.2009.07.014.

11 Djamal Belazzougui. Faster and space-optimal edit distance "1" dictionary. In 20th Annual
Symposium on Combinatorial Pattern Matching (CPM 2009), volume 5577 of Lecture Notes
in Computer Science, pages 154–167. Springer, 2009. doi:10.1007/978-3-642-02441-2_14.

12 Djamal Belazzougui and Rossano Venturini. Compressed string dictionary search with edit
distance one. Algorithmica, 74(3):1099–1122, 2016. doi:10.1007/s00453-015-9990-0.

13 Philip Bille, Inge Li Gørtz, Hjalte Wedel Vildhøj, and Søren Vind. String indexing for
patterns with wildcards. Theory of Computing Systems, 55(1):41–60, 2014. doi:10.1007/
s00224-013-9498-4.

14 Allan Borodin, Rafail Ostrovsky, and Yuval Rabani. Lower bounds for high dimensional nearest
neighbor search and related problems. In 31st ACM Symposium on Theory of Computing
(STOC 1999), pages 312–321, 1999. doi:10.1145/301250.301330.

15 Gerth Stølting Brodal and Srinivasan Venkatesh. Improved bounds for dictionary look-up with
one error. Information Processing Letters, 75(1-2):57–59, 2000. doi:10.1016/S0020-0190(00)
00079-X.

16 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiability
of small depth circuits. In Parameterized and Exact Computation, 4th International Workshop
(IWPEC 2009), volume 5917 of Lecture Notes in Computer Science, pages 75–85. Springer,
2009. doi:10.1007/978-3-642-11269-0_6.

https://www.oracle.com/a/tech/docs/dbsec/data-safe/wp-security-data-safe.pdf
https://www.oracle.com/a/tech/docs/dbsec/data-safe/wp-security-data-safe.pdf
https://doi.org/10.1137/16M1061771
https://doi.org/10.4230/LIPIcs.ICALP.2016.93
https://doi.org/10.4230/LIPIcs.ICALP.2016.93
https://doi.org/10.1145/360825.360855
https://doi.org/10.1089/106652704773416867
https://doi.org/10.1137/120884857
https://doi.org/10.1137/120884857
https://doi.org/10.1007/s10878-006-9029-1
https://doi.org/10.3386/w24019
https://doi.org/10.1016/j.tcs.2009.07.014
https://doi.org/10.1007/978-3-642-02441-2_14
https://doi.org/10.1007/s00453-015-9990-0
https://doi.org/10.1007/s00224-013-9498-4
https://doi.org/10.1007/s00224-013-9498-4
https://doi.org/10.1145/301250.301330
https://doi.org/10.1016/S0020-0190(00)00079-X
https://doi.org/10.1016/S0020-0190(00)00079-X
https://doi.org/10.1007/978-3-642-11269-0_6

P. Charalampopoulos et al. 65:17

17 Ho-Leung Chan, Tak Wah Lam, Wing-Kin Sung, Siu-Lung Tam, and Swee-Seong Wong.
Compressed indexes for approximate string matching. Algorithmica, 58(2):263–281, 2010.
doi:10.1007/s00453-008-9263-2.

18 Moses Charikar, Piotr Indyk, and Rina Panigrahy. New algorithms for subset query, partial
match, orthogonal range searching, and related problems. In 29th International Colloquium on
Automata, Languages and Programming (ICALP 2002), pages 451–462, 2002. doi:10.1007/
3-540-45465-9_39.

19 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,
2006. doi:10.1016/j.jcss.2006.04.007.

20 Eden Chlamtáč, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George Rabanca. The
densest k-subhypergraph problem. SIAM Journal on Discrete Mathematics, 32(2):1458–1477,
2018. doi:10.1137/16M1096402.

21 Eden Chlamtáč, Michael Dinitz, and Yury Makarychev. Minimizing the union: Tight approx-
imations for small set bipartite vertex expansion. In 28th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2017), pages 881–899, 2017. doi:10.1137/1.9781611974782.56.

22 Peter Christen. Data Matching – Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Data-Centric Systems and Applications. Springer,
Heidelberg, 2012. doi:10.1007/978-3-642-31164-2.

23 Peter Christen, Thilina Ranbaduge, and Rainer Schnell. Linking Sensitive Data. Springer,
Heidelberg, 2020. doi:10.1007/978-3-030-59706-1.

24 Vincent Cohen-Addad, Laurent Feuilloley, and Tatiana Starikovskaya. Lower bounds for
text indexing with mismatches and differences. In 30th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2019), pages 1146–1164, 2019. doi:10.1137/1.9781611975482.70.

25 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In 36th ACM Symposium on Theory of Computing (STOC 2004),
pages 91–100, 2004. doi:10.1145/1007352.1007374.

26 Alfredo Cuzzocrea and Hossain Shahriar. Data masking techniques for nosql database security:
A systematic review. In 2017 IEEE International Conference on Big Data (BigData 2017),
pages 4467–4473, 2017. doi:10.1109/BigData.2017.8258486.

27 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. Journal of the ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.

28 Pawel Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson. Weighted ancestors
in suffix trees. In Algorithms - 22th Annual European Symposium (ESA 2014), volume
8737 of Lecture Notes in Computer Science, pages 455–466. Springer, 2014. doi:10.1007/
978-3-662-44777-2_38.

29 Sreenivas Gollapudi, Samuel Ieong, Alexandros Ntoulas, and Stelios Paparizos. Efficient query
rewrite for structured web queries. In 20th ACM International Conference on Information
and Knowledge Management (CIKM 2011), pages 2417–2420, 2011. doi:10.1145/2063576.
2063981.

30 Roberto Grossi, Giulia Menconi, Nadia Pisanti, Roberto Trani, and Søren Vind. Motif trie:
An efficient text index for pattern discovery with don’t cares. Theoretical Computer Science,
710:74–87, 2018. doi:10.1016/j.tcs.2017.04.012.

31 Johan Hastad. Clique is hard to approximate within n1−ϵ. Acta Mathematica, 182:105–142,
1999. doi:10.1007/BF02392825.

32 Thomas N. Herzog, Fritz J. Scheuren, and William E. Winkler. Data quality and record linkage
techniques. Springer, 2007.

33 Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Computing Surveys, 40(4), 2008. doi:
10.1145/1391729.1391730.

34 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

ISAAC 2021

https://doi.org/10.1007/s00453-008-9263-2
https://doi.org/10.1007/3-540-45465-9_39
https://doi.org/10.1007/3-540-45465-9_39
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1137/16M1096402
https://doi.org/10.1137/1.9781611974782.56
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-030-59706-1
https://doi.org/10.1137/1.9781611975482.70
https://doi.org/10.1145/1007352.1007374
https://doi.org/10.1109/BigData.2017.8258486
https://doi.org/10.1145/828.1884
https://doi.org/10.1007/978-3-662-44777-2_38
https://doi.org/10.1007/978-3-662-44777-2_38
https://doi.org/10.1145/2063576.2063981
https://doi.org/10.1145/2063576.2063981
https://doi.org/10.1016/j.tcs.2017.04.012
https://doi.org/10.1007/BF02392825
https://doi.org/10.1145/1391729.1391730
https://doi.org/10.1145/1391729.1391730
https://doi.org/10.1006/jcss.2000.1727

65:18 Pattern Masking for Dictionary Matching

35 T. S. Jayram, Subhash Khot, Ravi Kumar, and Yuval Rabani. Cell-probe lower bounds for
the partial match problem. Journal of Computer and System Sciences, 69(3):435–447, 2004.
doi:10.1016/j.jcss.2004.04.006.

36 Dimitrios Karapiperis, Aris Gkoulalas-Divanis, and Vassilios S. Verykios. Summarizing and
linking electronic health records. Distributed and Parallel Databases, pages 1–40, 2019.
doi:10.1007/s10619-019-07263-0.

37 Richard M. Karp. Reducibility among combinatorial problems. In 50 Years of Integer
Programming 1958-2008 - From the Early Years to the State-of-the-Art, pages 219–241. Springer,
2010. doi:10.1007/978-3-540-68279-0_8.

38 Hans Kellerer, Ulrich Pferschy, and David Pisinger. The Multiple-Choice Knapsack Problem,
pages 317–347. Springer Berlin Heidelberg, 2004. doi:10.1007/978-3-540-24777-7_11.

39 Pradap Konda, Sanjib Das, Paul Suganthan G.C., Philip Martinkus, Adel Ardalan, Jeffrey R.
Ballard, Yash Govind, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, Shishir
Prasad, Ganesh Krishnan, Rohit Deep, and Vijay Raghavendra. Technical perspective:
Toward building entity matching management systems. SIGMOD Record, 47(1):33–40, 2018.
doi:10.1145/3277006.3277015.

40 Hye-Chung Kum, Ashok Krishnamurthy, Ashwin Machanavajjhala, Michael K. Reiter, and
Stanley Ahalt. Privacy preserving interactive record linkage (PPIRL). Journal of the American
Medical Informatics Association, 21(2):212–220, 2014. doi:10.1136/amiajnl-2013-002165.

41 Hye-Chung Kum, Eric D. Ragan, Gurudev Ilangovan, Mahin Ramezani, Qinbo Li, and
Cason Schmit. Enhancing privacy through an interactive on-demand incremental information
disclosure interface: Applying privacy-by-design to record linkage. In Fifteenth USENIX
Conference on Usable Privacy and Security, pages 175–189, 2019. doi:10.5555/3361476.
3361489.

42 Prathyusha Senthil Kumar, Praveen Arasada, and Ravi Chandra Jammalamadaka. Systems
and methods for generating search query rewrites, U.S. Patent US10108712B2 (granted to
ebay), 2018.

43 Moshe Lewenstein, J. Ian Munro, Venkatesh Raman, and Sharma V. Thankachan. Less
space: Indexing for queries with wildcards. Theoretical Computer Science, 557:120–127, 2014.
doi:10.1016/j.tcs.2014.09.003.

44 Moshe Lewenstein, Yakov Nekrich, and Jeffrey Scott Vitter. Space-efficient string indexing for
wildcard pattern matching. In 31st Symposium on Theoretical Aspects of Computer Science
(STACS 2014), pages 506–517, 2014. doi:10.4230/LIPIcs.STACS.2014.506.

45 Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for
shortest cycles and paths in sparse graphs. In 29th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2018), pages 1236–1252, 2018. doi:10.1137/1.9781611975031.80.

46 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and
asymmetric communication complexity. Journal of Computer and System Sciences, 57(1):37–49,
1998. doi:10.1006/jcss.1998.1577.

47 George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas. Blocking
and filtering techniques for entity resolution: A survey. ACM Computing Surveys, 53(2), 2020.
doi:10.1145/3377455.

48 Laxmi Parida, Isidore Rigoutsos, Aris Floratos, Daniel E. Platt, and Yuan Gao. Pattern
discovery on character sets and real-valued data: Linear bound on irredundant motifs and an
efficient polynomial time algorithm. In 11th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2000), pages 297–308, 2000. doi:10.1145/338219.338266.

49 Nadia Pisanti, Maxime Crochemore, Roberto Grossi, and Marie-France Sagot. Bases of motifs
for generating repeated patterns with wild cards. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 2(1):40–50, 2005. doi:10.1109/TCBB.2005.5.

50 Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. SIAM Journal on
Computing, 40(3):827–847, 2011. doi:10.1137/09075336X.

https://doi.org/10.1016/j.jcss.2004.04.006
https://doi.org/10.1007/s10619-019-07263-0
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1007/978-3-540-24777-7_11
https://doi.org/10.1145/3277006.3277015
https://doi.org/10.1136/amiajnl-2013-002165
https://doi.org/10.5555/3361476.3361489
https://doi.org/10.5555/3361476.3361489
https://doi.org/10.1016/j.tcs.2014.09.003
https://doi.org/10.4230/LIPIcs.STACS.2014.506
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1006/jcss.1998.1577
https://doi.org/10.1145/3377455
https://doi.org/10.1145/338219.338266
https://doi.org/10.1109/TCBB.2005.5
https://doi.org/10.1137/09075336X

P. Charalampopoulos et al. 65:19

51 Mihai Pǎtraşcu and Mikkel Thorup. Higher lower bounds for near-neighbor and further rich
problems. SIAM Journal on Computing, 39(2):730–741, 2009. doi:10.1137/070684859.

52 Eric D. Ragan, Hye-Chung Kum, Gurudev Ilangovan, and Han Wang. Balancing privacy and
information disclosure in interactive record linkage with visual masking. In ACM Conference
on Human Factors in Computing Systems (CHI 2018), 2018. doi:10.1145/3173574.3173900.

53 Ronald L. Rivest. Partial-match retrieval algorithms. SIAM Journal on Computing, 5(1):19–50,
1976. doi:10.1137/0205003.

54 Pierangela Samarati and Latanya Sweeney. Generalizing data to provide anonymity when
disclosing information (abstract). In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS 1998), page 188. Association
for Computing Machinery, 1998. doi:10.1145/275487.275508.

55 Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing information:
k-anonymity and its enforcement through generalization and suppression. Technical report,
Computer Science Laboratory, SRI International, 1998.

56 Ricardo Jorge Santos, Jorge Bernardino, and Marco Vieira. A data masking technique for
data warehouses. In 15th International Database Engineering and Applications Symposium
(IDEAS 2011), pages 61–69, 2011. doi:10.1145/2076623.2076632.

57 Latanya Sweeney. Computational disclosure control: a primer on data privacy protection.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2001. URL:
http://hdl.handle.net/1721.1/8589.

58 Zehong Tan, Canran Xu, Mengjie Jiang, Hua Yang, and Xiaoyuan Wu. Query rewrite for null
and low search results in ecommerce. In SIGIR Workshop On eCommerce, volume 2311 of
CEUR Workshop Proceedings, 2017.

59 Yufei Tao. Entity matching with active monotone classification. In 37th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS 2018), pages 49–62,
2018. doi:10.1145/3196959.3196984.

60 Dinusha Vatsalan and Peter Christen. Scalable privacy-preserving record linkage for multiple
databases. In 23rd ACM International Conference on Information and Knowledge Management
(CIKM 2014), pages 1795–1798, 2014. doi:10.1145/2661829.2661875.

61 Dinusha Vatsalan, Ziad Sehili, Peter Christen, and Erhard Rahm. Privacy-preserving record
linkage for Big Data: Current approaches and research challenges. In Handbook of Big Data
Technologies, pages 851–895. Springer, 2017. doi:10.1007/978-3-319-49340-4.

62 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory (SWAT 1973), pages 1–11. IEEE Computer Society, 1973. doi:10.
1109/SWAT.1973.13.

63 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In 2018 International Congress of Mathematicians (ICM), pages 3447–3487, 2019. doi:
10.1142/9789813272880_0188.

64 Andrew Chi-Chih Yao and Frances F. Yao. Dictionary look-up with one error. Journal of
Algorithms, 25(1):194–202, 1997. doi:10.1006/jagm.1997.0875.

65 David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory of Computing, 3(1):103–128, 2007. doi:10.4086/toc.2007.v003a006.

ISAAC 2021

https://doi.org/10.1137/070684859
https://doi.org/10.1145/3173574.3173900
https://doi.org/10.1137/0205003
https://doi.org/10.1145/275487.275508
https://doi.org/10.1145/2076623.2076632
http://hdl.handle.net/1721.1/8589
https://doi.org/10.1145/3196959.3196984
https://doi.org/10.1145/2661829.2661875
https://doi.org/10.1007/978-3-319-49340-4
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1006/jagm.1997.0875
https://doi.org/10.4086/toc.2007.v003a006

	1 Introduction
	2 Definitions and Notation
	3 PMDM-Size is NP-hard
	4 Exact Algorithms for a Bounded Number k of Wildcards
	5 Exact Algorithms for a Bounded Number m of Query Strings
	6 A Data Structure for PMDM Queries
	7 Approximation Algorithm for PMDM

