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Abstract
Data masking is a common technique for sanitizing sensitive data maintained in database systems,
and it is also becoming increasingly important in various application areas, such as in record linkage
of personal data. This work formalizes the Pattern Masking for Dictionary Matching (PMDM)
problem. In PMDM, we are given a dictionary D of d strings, each of length ℓ, a query string q of
length ℓ, and a positive integer z, and we are asked to compute a smallest set K ⊆ {1, . . . , ℓ}, so
that if q[i] is replaced by a wildcard for all i ∈ K, then q matches at least z strings from D. Solving
PMDM allows providing data utility guarantees as opposed to existing approaches.

We first show, through a reduction from the well-known k-Clique problem, that a decision version
of the PMDM problem is NP-complete, even for strings over a binary alphabet. We thus approach
the problem from a more practical perspective. We show a combinatorial O((dℓ)|K|/3 + dℓ)-time and
O(dℓ)-space algorithm for PMDM for |K| = O(1). In fact, we show that we cannot hope for a faster
combinatorial algorithm, unless the combinatorial k-Clique hypothesis fails [Abboud et al., SIAM
J. Comput. 2018; Lincoln et al., SODA 2018]. We also generalize this algorithm for the problem of
masking multiple query strings simultaneously so that every string has at least z matches in D.

Note that PMDM can be viewed as a generalization of the decision version of the dictionary
matching with mismatches problem: by querying a PMDM data structure with string q and z = 1,
one obtains the minimal number of mismatches of q with any string from D. The query time or
space of all known data structures for the more restricted problem of dictionary matching with at
most k mismatches incurs some exponential factor with respect to k. A simple exact algorithm for
PMDM runs in time O(2ℓd). We present a data structure for PMDM that answers queries over D
in time O(2ℓ/2(2ℓ/2 + τ)ℓ) and requires space O(2ℓd2/τ2 + 2ℓ/2d), for any parameter τ ∈ [1, d].

We complement our results by showing a two-way polynomial-time reduction between PMDM and
the Minimum Union problem [Chlamtáč et al., SODA 2017]. This gives a polynomial-time O(d1/4+ϵ)-
approximation algorithm for PMDM, which is tight under a plausible complexity conjecture.
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1 Introduction

Let us start with a true incident to illustrate the essence of the computational problem
formalized in this work. In the Netherlands, water companies bill the non-drinking and
drinking water separately. The 6th author of this paper had direct debit for the former but
not for the latter. When he tried to set up the direct debit for the latter, he received the
following masked message by the company:

Is this you?
Initial : S. Name: P****s E-mail address : s ******13 @g ***l.com
Bank account number : NL10RABO ********11.

The rationale of the data masking is: the client should be able to identify themselves, to help
the companies link the client’s profiles, but not infer the identity of any other client, so that
clients’ privacy is preserved. Thus, the masked version of the data is required to conceal as
few symbols as possible but correspond to a sufficient number of other clients.

This requirement can be formalized as the Pattern Masking for Dictionary Matching
(PMDM) problem: Given a dictionary D of d strings, each of length ℓ, a query string q of
length ℓ, and a positive integer z, PMDM asks to compute a smallest set K ⊆ {1, . . . , ℓ},
so that if q[i], for all i ∈ K, is replaced by a wildcard, q matches at least z strings from
D. The PMDM problem applies data masking, a common operation to sanitize personal
data maintained in database systems [1, 26, 56]. In particular, PMDM lies at the heart of
record linkage of databases containing personal data [23, 39, 40, 52, 59, 61], which is the
main application we consider in this work.

Record linkage is the task of identifying records that refer to the same entities across
databases, in situations where no entity identifiers are available in these databases [22, 32, 47].
This task is of high importance in various application domains featuring personal data,
ranging from the health sector and social science research, to national statistics and crime
and fraud detection [23, 36]. In a typical setting, the task is to link two databases that
contain names or other attributes, known collectively as quasi-identifiers (QIDs) [60]. The
similarity between each pair of records (a record from one of the databases and a record
from the other) is calculated with respect to their values in QIDs, and then all compared
record pairs are classified into matches (the pair is assumed to refer to the same person), non-
matches (the two records in the pair are assumed to refer to different people), and potential
matches (no decision about whether the pair is a match or non-match can be made) [22, 32].
Unfortunately, potential matches happen quite often [9]. A common approach [52, 59] to
deal with potential matches is to conduct a manual clerical review, where a domain expert
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looks at the attribute values in record pairs and then makes a manual match or non-match
decision. At the same time, to comply with policies and legislation, one needs to prevent
domain experts from inferring the identity of the people represented in the manually assessed
record pairs [52]. The challenge is to achieve desired data protection/utility guarantees;
i.e. enabling a domain expert to make good decisions without inferring peoples’ identities.

To address this challenge, we can solve PMDM twice, for a potential match (q1, q2).
The first time we use as input the query string q1 and a reference dictionary (database) D
containing personal records from a sufficiently large population (typically, much larger than
the databases to be linked). The second time, we use as input q2 instead of q1. Since each
masked q derived by solving PMDM matches at least z records in D, the domain expert
would need to distinguish between at least z individuals in D to be able to infer the identity
of the individual corresponding to the masked string. The underlying assumption is that
D contains one record per individual. Also, some wildcards from one masked string can
be superimposed on another to ensure that the expert does not gain more knowledge from
combining the two strings, and the resulting strings would still match at least z records in
D. Thus, by solving PMDM in this setting, we provide privacy guarantees alike z-map [57];
a variant of the well-studied z-anonymity [54] privacy model.1 In z-map, each record of
a dataset must match at least z records in a reference dataset, from which the dataset is
derived. In our setting, we consider a pattern that is not necessarily contained in the reference
dataset. Offering such privacy is desirable in real record linkage systems where databases
containing personal data are being linked [23, 40, 61]. On the other hand, since each masked
q contains the minimum number of wildcards, the domain expert is still able to use the
masked q to meaningfully classify a record pair as a match or as a non-match. Offering
such utility is again desirable in record linkage systems [52]. Record linkage is an important
application for our techniques, because no existing approach can provide privacy and utility
guarantees when releasing linkage results to domain experts [41]. In particular, existing
approaches [40, 41] recognize the need to offer privacy by preventing the domain expert from
distinguishing between a small number of individuals, but they provide no algorithm for
offering such privacy, let alone an algorithm offering utility guarantees as we do.

A secondary application where PMDM is of importance is query term dropping, an
information retrieval task that seeks to drop keywords (terms) from a query, so that the
remaining keywords retrieve a sufficiently large number of documents. This task is performed
by search engines, such as Google [8], and by e-commerce platforms such as e-Bay [42], to
improve users’ experience [29, 58] by making sufficiently many search results available to
users. For example, e-Bay applies query term dropping, removing one term, in our test
query:

Query: vacuum database cleaner
Query results : 0 results found for vacuum database cleaner

42 results found for vacuum cleaner

We could perform query term dropping by solving PMDM in a setting where strings in a
dictionary correspond to document terms and a query string corresponds to a user’s query.
Then, we provide the user with the masked query, after removing all wildcards, and with
its matching strings from the dictionary. Query term dropping is a relevant application for
our techniques, because existing techniques [58] do not minimize the number of dropped
terms. Rather, they drop keywords randomly, which may unnecessarily shorten the query,

1 The notation used for such privacy models is generally k instead of z, e.g. k-anonymity [55, 57].
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or drop keywords based on custom rules, which is not sufficiently generic to deal with all
queries. More generally, our techniques can be applied to drop terms from any top-z database
query [33] to ensure there are z results in the query answer.

Related Algorithmic Work. Let us denote the wildcard symbol by ⋆ and provide a brief
overview of works related to PMDM, the main problem considered in this paper.

Partial Match: Given a dictionary D of d strings over an alphabet Σ = {0, 1}, each of
length ℓ, and a string q over Σ ⊔ {⋆} of length ℓ, the problem asks whether q matches any
string from D. This is a well-studied problem [14, 18, 35, 46, 50, 51, 53]. Patrascu [50]
showed that any data structure for the Partial Match problem with cell-probe complexity
t must use space 2Ω(ℓ/t), assuming the word size is O(d1−ϵ/t), for any constant ϵ > 0.
The key difference to PMDM is that the wildcard positions in the query strings are fixed.
Dictionary Matching with k-errors: A similar line of research to that of Partial Match
has been conducted under the Hamming and edit distances, where, in this case, k is the
maximum allowed distance between the query string and a dictionary string [11, 12, 15,
17, 25, 64]. The structure of Dictionary Matching with k-errors is very similar to Partial
Match as each wildcard in the query string gives |Σ| possibilities for the corresponding
symbol in the dictionary strings. On the other hand, in Partial Match the wildcard
positions are fixed. The PMDM problem is a generalization of the decision version of
the Dictionary Matching with k-errors problem (under Hamming distance): by querying
a data structure for PMDM with string q and z = 1, one obtains the minimum number
of mismatches of q with any string from D, which suffices to answer the decision version
of the Dictionary Matching with k-errors problem. The query time or space of all known
data structures for Dictionary Matching with k-mismatches incurs some exponential
factor with respect to k. In [24], Cohen-Addad et al. showed that, in the pointer machine
model, for the reporting version of the problem, one cannot avoid exponential dependency
on k either in the space or in the query time. In the word-RAM model, Rubinstein showed
that, conditional on the Strong Exponential Time Hypothesis [16], any data structure
that can be constructed in time polynomial in the total size ||D|| of the strings in the
dictionary cannot answer queries in time strongly sublinear in ||D||.

We next provide a brief overview of other algorithmic works related to PMDM.
Dictionary Matching with k-wildcards: Given a dictionary D of total size N over an
alphabet Σ and a query string q of length ℓ over Σ ⊔ {⋆} with up to k wildcards, the
problem asks for the set of matches of q in D. This is essentially a parameterized variant of
the Partial Match problem. The seminal paper of Cole et al. [25] proposed a data structure
occupying O(N logkN) space allowing for O(ℓ+2klog log N+|output|)-time querying. This
data structure is based on recursively computing a heavy-light decomposition of the
suffix tree and copying the subtrees hanging off light children. Generalizations and slight
improvements have been proposed in [13], [43], and [28]. In [13] the authors also proposed
an alternative data structure that instead of a logkN factor in the space complexity has
a multiplicative |Σ|k2 factor. Nearly-linear-sized data structures that essentially try all
different combinations of letters in the place of wildcards and hence incur a |Σ|k factor in
the query time have been proposed in [13, 44]. On the lower bound side, Afshani and
Nielsen [3] showed that, in the pointer machine model, essentially any data structure for
the problem in scope must have exponential dependency on k in either the space or the
query time, explaining the barriers hit by the existing approaches.
Enumerating Motifs with k-wildcards: Given an input string s of length n over an alphabet
Σ and positive integers k and z, this problem asks to enumerate all motifs over Σ ⊔ {⋆}
with up to k wildcards that occur at least z times in s. As the size of the output is
exponential in k, the enumeration problem has such a lower bound. Several approaches
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exist for efficient motif enumeration, all aimed at reducing the impact of the output’s size:
efficient indexing to minimise the output delay [7, 30]; exploiting a hierarchy of wildcards
positions according to the number of occurrences [10]; or defining a subset of motifs of
fixed-parameter tractable size (in k or z) that can generate all the others [5, 48, 49].

Our Contributions. We consider the word-RAM model of computations with w-bit machine
words, where w = Ω(log(dℓ)), for stating our results. We make the following contributions:
1. (Section 3) A reduction from the k-Clique problem to a decision version of the PMDM

problem, which implies that PMDM is NP-hard, even for strings over a binary alphabet.
2. (Section 4) A combinatorial O((dℓ)k/3 + dℓ)-time and O(dℓ)-space algorithm for PMDM

if k = |K| = O(1), which is optimal if the combinatorial k-Clique hypothesis is true.
3. (Section 5) We consider a generalized version of PMDM, referred to as MPMDM: we

are given a collection M of m query strings (instead of one query string) and we are
asked to compute a smallest set K so that, for every q from M, if q[i], for all i ∈ K, is
replaced by a wildcard, then q matches at least z strings from dictionary D. We show an
O((dℓ)k/3zm−1 + dℓ)-time algorithm for MPMDM, for k = |K| = O(1) and m = O(1).

4. (Section 6) A data structure for PMDM that answers queries over D in O(2ℓ/2(2ℓ/2 + τ)ℓ)
time and requires space O(2ℓd2/τ2 + 2ℓ/2d), for any parameter τ ∈ [1, d].

5. (Section 7) A polynomial-time O(d1/4+ϵ)-approximation algorithm for PMDM, which
we show to be tight under a plausible complexity conjecture.

Let us now discuss why our data structure results (Section 6) cannot be directly obtained
using data structures for Dictionary Matching with k-wildcards. Conceivably, one could
construct such a data structure, and then iterate over all subsets of {1, . . . , ℓ}, querying for
the masked string. Existing data structures for dictionary matching with wildcards (cf. [13,
Table 1], [44], and [28]), that allow querying a pattern with at most ℓ wildcards, have
(a) either Ω(min{σℓ, d}) query time, thus yielding Ω(2ℓ ·min{σℓ, d}) query time for our prob-

lem, and space Ω(dℓ), a trade-off dominated by the Small-ℓ algorithm (cf. our Table 1);
(b) or Ω(ℓ) query time, thus yielding Ω(2ℓℓ) query time for our problem, and Ω(dℓ logℓ log(dℓ))

space, a trade-off dominated by the DS Simple (cf. our Table 1).

2 Definitions and Notation

Strings. An alphabet Σ is a finite nonempty set whose elements are called letters. We
assume throughout an integer alphabet Σ = [1, |Σ|]. Let x = x[1] · · · x[n] be a string of length
|x| = n over Σ. For two indices 1 ≤ i ≤ j ≤ n, x[i . . j] = x[i] · · · x[j] is the substring of x

that starts at position i and ends at position j of x. By ε we denote the empty string of
length 0. A prefix of x is a substring of x of the form x[1 . . j], and a suffix of x is a substring
of x of the form x[i . . n]. A dictionary is a collection of strings. We also consider alphabet
Σ⋆ = Σ ⊔ {⋆}, where ⋆ is a wildcard letter that is not in Σ and matches all letters from Σ⋆.
Then, given a string x over Σ⋆ and a string y over Σ with |x| = |y|, we say that x matches y

if and only if x[i] = y[i] or x[i] = ⋆, for all 1 ≤ i ≤ |x|. Given a string x of length n and a
set S ⊆ {1, . . . , n}, we denote by xS = x ⊗ S the string obtained by first setting xS = x and
then xS [i] = ⋆, for all i ∈ S. We then say that x is masked by S.

The main problem considered in this paper is the following.

ISAAC 2021
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Pattern Masking for Dictionary Matching (PMDM)
Input: A dictionary D of d strings, each of length ℓ, a string q of length ℓ, and a positive
integer z.
Output: A smallest set K ⊆ {1, . . . , ℓ} such that qK =q⊗K matches at least z strings
from D.

We refer to the problem of computing only the size k of a smallest set K as PMDM-Size.
We also consider the data structure variant of the PMDM problem in which D is given for
preprocessing, and q, z queries are to be answered on-line. Throughout, we assume that
k ≥ 1 as the case k = 0 corresponds to the well-studied dictionary matching problem for
which there exists a classic optimal solution [4]. We further assume z ≤ d; otherwise the
PMDM has trivially no solution. In what follows, we use N to denote dℓ.

Tries. Let M be a finite set containing m > 0 strings over Σ. The trie of M, denoted by
R(M), contains a node for every distinct prefix of a string in M; the root node is ε; the set
of leaf nodes is M; and edges are of the form (u, α, uα), where u and uα are nodes and α ∈ Σ
is the label. The compacted trie of M, denoted by T (M), contains the root, the branching
nodes, and the leaf nodes of R(M). Each maximal branchless path segment from R(M) is
replaced by a single edge, and a fragment of a string M ∈ M is used to represent the label
of this edge in O(1) space. The size of T (M) is thus O(m). The most well-known example
of a compacted trie is the suffix tree of a string: the compacted trie of all the suffixes of
the string [62]. To access the children of a trie node by the first letter of their edge label in
O(1) time we use perfect hashing [27]. In this case, the claimed complexities hold with high
probability (w.h.p., for short), that is, with probability at least 1 − N−c (recall that N = dℓ),
where c > 0 is a constant fixed at construction time. Assuming that the children of every
trie node are sorted by the first letters of their edge labels, randomization can be avoided at
the expense of a log |Σ| factor incurred by binary searching for the appropriate child.

3 PMDM-Size is NP-hard

We show that the following decision version of PMDM-Size is NP-complete.

k-PMDM
Input: A dictionary D of d strings, each of length ℓ, a string q of length ℓ, and positive
integers z ≤ d and k ≤ ℓ.
Output: Is there a set K ⊆ {1, . . . , ℓ} of size k, such that qK =q⊗K matches at least z

strings from D?

Our reduction is from the well-known NP-complete k-Clique problem [37]: Given an
undirected graph G on n nodes and a positive integer k, decide whether G contains a clique
of size k (a clique is a subset of the nodes of G that are pairwise adjacent).

▶ Theorem 1. Any instance of the k-Clique problem for a graph with n nodes and m edges
can be reduced in O(nm) time to a k-PMDM instance with ℓ = n, d = m and Σ = {a, b}.

Proof. Let G = (V, E) be an undirected graph on n = |V | nodes numbered 1 through n, in
which we are looking for a clique of size k. We reduce k-Clique to k-PMDM as follows.
Consider the alphabet {a, b}. Set q = an, and for every edge (u, v) ∈ E such that u < v, add
string au−1bav−u−1ban−v to D. Set z = k(k − 1)/2. Then G contains a clique of size k, if
and only if k-PMDM returns a positive answer. This can be seen by the fact that cliques of
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1 2

3 4

n=4
k=3

Instance of k-PMDM
e1

e3

e4

e2

Instance of k-CLIQUE
D : s1 = bbaa <-> e1 s3 = abba <-> e3

s2 = baba <-> e2 s4 = aabb <-> e4
q = aaaa z = 3{1,2,3} is

a 3-Clique K = {1,2,3} as qK =         a  matches 3=k(k-1)/2=z strings in D

Figure 1 An example of the reduction from k-Clique to k-PMDM. The solution for both is
{1, 2, 3} as shown. Note that, for k = 4, the instance of 4-PMDM would need z = 6 matches; neither
this many matches can be found in D nor a 4-clique can be found in the graph.

size k in G are in one-to-one correspondence with subsets K ⊆ {1, . . . , n} of size k for which
qK matches z strings from D: the elements of K correspond to the nodes of a clique and the
z strings correspond to its edges. k-PMDM is clearly in NP and the result follows. ◀

An example of the reduction from k-Clique to k-PMDM is shown in Figure 1.

▶ Corollary 2. k-PMDM is NP-complete for strings over a binary alphabet.

Our reduction (Theorem 1) shows that solving k-PMDM efficiently even for strings over
a binary alphabet would imply a breakthrough for the k-Clique problem for which it is
known that, in general, no fixed-parameter tractable algorithm with respect to parameter k

exists unless the Exponential Time Hypothesis (ETH) fails [19, 34]. That is, k-Clique has
no f(k)no(k) time algorithm, and is thus W[1]-complete (again, under the ETH hypothesis).
On the upper bound side, k-Clique can be trivially solved in O(nk) time (enumerating all
subsets of nodes of size k), and this can be improved to O(nωk/3) time for k divisible by 3
using square matrices multiplication (ω is the exponent of square matrix multiplication).
However, for general k ≥ 3 and any constant ϵ > 0, the k-Clique hypothesis states that there
is no O(n(ω/3−ϵ)k)-time algorithm and no combinatorial O(n(1−ϵ)k)-time algorithm [2, 45, 63].

In particular, assuming that the k-Clique hypothesis is true, due to Theorem 1, we
cannot hope to devise a combinatorial algorithm for k-PMDM requiring O((dℓ)(1−ϵ)k/3)
time, for any k ≥ 3 and ϵ > 0, since dℓ = nm. In Section 4, we show a combinatorial
O((dℓ)k/3)-time algorithm, for constant k ≥ 3, for the optimization version of k-PMDM
(seeking to maximize the matches), which can then be trivially applied to solve k-PMDM in
the same time complexity, thus matching the above conditional lower bound.

Given an undirected graph G, an independent set is a subset of nodes of G such that no
two distinct nodes of the subset are adjacent. Let us note that the problem of computing
a maximum clique in a graph G, which is equivalent to that of computing the maximum
independent set in the complement of G, cannot be n1−ϵ-approximated in polynomial time,
for any ϵ > 0, unless P = NP [31, 65].

Any algorithm solving PMDM-Size can be trivially applied to solve k-PMDM.

▶ Corollary 3. PMDM-Size is NP-hard for strings over a binary alphabet.

4 Exact Algorithms for a Bounded Number k of Wildcards

We consider the following problem, which we solve by exact algorithms.

Heaviest k-PMDM
Input: A dictionary D of d strings, each of length ℓ, a string q of length ℓ, and a positive
integer k ≤ ℓ.
Output: A set K ⊆ {1, . . . , ℓ} of size k such that qK = q⊗K matches the maximum
number of strings in D.

ISAAC 2021
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We will show the following result, which we will employ to solve the PMDM problem.

▶ Theorem 4. Heaviest k-PMDM for k = O(1) can be solved in O(N +min{Nk/3, ℓk})
time, where N = dℓ.

A hypergraph H is a pair (V, E), where V is the set of nodes of H and E is a set of
non-empty subsets of V , called hyperedges – in order to simplify terminology we will simply
call them edges. Hypergraphs are a generalization of graphs in the sense that an edge can
connect more than two nodes. Recall that the size of an edge is the number of nodes it
contains. The rank of H, denoted by r(H), is the maximum size of an edge of H.

We refer to a hypergraph H × K = (K, {e : e ∈ E, e ⊆ K}), where K is a subset of V , as
a |K|-section. H × K is the hypergraph induced by H on the nodes of K, and it contains all
edges of H whose elements are all in K. A hypergraph is weighted when each of its edges is
associated with a weight. We define the weight of a weighted hypergraph as the sum of the
weights of all of its edges. In what follows, we also refer to weights of nodes for conceptual
clarity; this is equivalent to having a singleton edge of equal weight consisting of that node.

We define the following auxiliary problem on hypergraphs (see also [20]).

Heaviest k-Section
Input: A weighted hypergraph H = (V, E), with E given as a list, and an integer k > 0.
Output: A subset K of size k of V such that H × K has maximum weight.

When k = O(1), we preprocess the edges of H as follows in order to have O(1)-time
access to any queried edge. We represent each edge as a string, whose letters correspond
to its elements in increasing order. Then, we sort all such strings lexicographically using
radix sort in O(|E|) time and construct a trie over them. An edge can then be accessed in
O(k log k) = O(1) time by a forward search starting from the root node of the trie.

A polynomial-time O(n0.697831+ϵ)-approximation for Heaviest k-Section, for any ϵ > 0,
for the case when all hyperedges of H have size at most 3 was shown in [20] (see also [6]).

Two remarks are in place. First, we can focus on edges of size up to k as larger edges
cannot, by definition, exist in any k-section. Second, Heaviest k-Section is a generalization
of the problem of deciding whether a (c, k)-hyperclique (i.e. a set of k nodes whose subsets
of size c are all in E) exists in a graph, which in turn is a generalization of k-Clique.
Unlike k-Clique, the (c, k)-hyperclique problem is not known to benefit from fast matrix
multiplication in general; see [45] for a discussion on its hardness.

▶ Lemma 5. Heaviest k-PMDM can be reduced to Heaviest k-Section for a hypergraph
with ℓ nodes and d edges in O(N) time, where N = dℓ.

Proof. We first compute the set Ms of positions of mismatches of q with each string s ∈ D.
We ignore strings from D that match q exactly, as they will match q after changing any set
of letters of q to wildcards. This requires O(dℓ) = O(N) time in total.

Let us consider an empty hypergraph (i.e. with no edges) H on ℓ nodes, numbered 1
through ℓ. Then, for each string s ∈ D, we add Ms to the edge-set of H if |Ms| ≤ k; if this
edge already exists, we simply increment its weight by 1.

We set the parameter k of Heaviest k-Section to the parameter k of Heaviest k-
PMDM. We now observe that for K ⊆ V with |K| = k, the weight of H × K is equal to the
number of strings that would match q after replacing with wildcards the k letters of q at the
positions corresponding to elements of K. The statement follows. ◀
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Instance	of	HEAVIEST	k-SECTION	Instance	of	HEAVIEST	k-PMDM	
D	:	 	s1	=	abcda 	q	=	aaaaa	

	s2	=	aadba 	k	=	3	
	s3	=	acaba 	d=6	
	s4	=	adaca 	l=5	
	s5	=	bbaac	
	s6	=	acdaa	

K={2,3,4}	of	size	k=3	has	maximum		
number	of	matches	(5)	as	qK	=	a									a	

matches	s1,	s2,	s3,	s4,	and	s6.	 K	=	{2,3,4}	of	size	k=3	is	s.t.	H	x	K	has	maximum	weight	5	

1	

e1	(1)	e3	(2)	

e5	(1)	

e2	(1)	

5	

e6	(1)	

Hypergraph	H	with	l =	5	nodes		
a	weight-2	edge	(e3)	and	
4	weight-1	edges	

4	
3	

2	

e1={2,3,4}	from	s1	
e2={3,4}	from	s2	
e3=e4={2,4}	from	s3	and	s4	
e5={1,2,5}	from	s5	
e6={2,3}	from	s6	

Figure 2 An example of the reduction from Heaviest k-PMDM to Heaviest k-Section. The
solutions are at the bottom. Each edge has its weight in brackets and the total weight is d = 6.

An example of the reduction in Lemma 5 is shown in Figure 2.
The next lemma gives a straightforward solution to Heaviest k-Section. It is analogous

to algorithm Small-ℓ, presented in Section 6, but without the optimization in computing
sums of weights over subsets. It implies a linear-time algorithm for Heaviest 1-Section.

▶ Lemma 6. Heaviest k-Section, for any constant k, can be solved in O(|V |k + |E|) time
and O(|V | + |E|) space.

Proof. For every subset K ⊆ V of size at most k, we sum the weights of all edges correspond-
ing to its subsets. There are

(|V |
k

)
= O(|V |k) choices for |K|, each having 2k − 1 non-empty

subsets: for every subset, we can access the corresponding edge (if it exists) in O(1) time. ◀

We next show that for the cases k = 2 and k = 3, there exist more efficient solutions. In
particular, we provide a linear-time algorithm for Heaviest 2-Section.

▶ Lemma 7. Heaviest 2-Section can be solved in O(|V | + |E|) time.

Proof. Let K be a set of nodes of size 2 such that H × K has maximum weight. We
decompose the problem in two cases. For each of the cases, we give an algorithm that
considers several 2-sections such that the heaviest of them has weight equal to that of H × K.

Case 1. There is an edge e = K in E. For each edge e ∈ E of size 2, i.e. edge in the classic
sense, we compute the sum of its weight and the weights of the nodes that it is incident to.
This step requires O(|E|) time.

Case 2. There is no edge equal to K in E. We compute H × {v1, v2}, where v1, v2 are
the two nodes with maximum weight, i.e. max and second-max. This step takes O(|V |) time.

In the end, we return the heaviest 2-section among those returned by the algorithms for
the two cases, breaking ties arbitrarily. ◀

We next show that for k = 3 the result of Lemma 6 can be improved when |E| = o(|V |2).

▶ Lemma 8. Heaviest 3-Section can be solved in time O(|V | · |E|) using O(|V | + |E|)
space.

Proof. Let K be a set of nodes of size 3 such that H × K has maximum weight. We
decompose the problem into the following three cases.

Case 1. There is an edge e = K in E. We go through each edge e ∈ E of size 3 and
compute the weight of H × e in O(1) time. This takes O(|E|) time in total. Let the edge
yielding the maximum weight be emax.

Case 2. There is no edge of size larger than one in H × K. We compute H × {v1, v2, v3},
where v1, v2, v3 are the three nodes with maximum weight, i.e. max, second-max and third-
max. This step takes O(|V |) time.
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Case 3. There is an edge of size 2 in H × K. We can pick an edge e of size 2 from E in
O(|E|) ways and a node v from V in O(|V |) ways. We compute the weight of H × (e ∪ {v})
for all such pairs. Let the pair yielding maximum weight be (e′, u′).

Finally, the maximum weight of H × K ′ for K ′ ∈ { emax, {v1, v2, v3}, e′ ∪ {u′} } is equal
to the weight of H × K, breaking ties arbitrarily. ◀

▶ Lemma 9. Heaviest k-Section for an arbitrarily large constant k ≥ 4 can be solved in
time O((|V | · |E|)k/3) using O(|V | + |E|) space.

Proof. If |E| > |V |2, then the simple algorithm of Lemma 6 solves the problem in time

O(|V |k + |E|) = O(|V |k/3(|V |2)k/3 + |E|) = O((|V | · |E|)k/3)

and linear space. We can thus henceforth assume that |E| ≤ |V |2.
Let K be a set of nodes of size at most k such that H ×K has maximum weight. If H ×K

contains isolated nodes (i.e. nodes not contained in any edge), they can be safely deleted
without altering the result. We can thus assume that H × K does not contain isolated nodes,
and that |V | ≤ k|E| since otherwise the hypergraph H would contain isolated nodes.

We first consider the case that the rank r(H × K) > 1, i.e. there is an edge of H × K of
size at least 2. We design a branching algorithm that constructs several candidate sets; the
ones with maximum weight will have weight equal to that of H × K. We will construct a set
of nodes X, starting with X := ∅. For each set X that we process, let ZX be the superset
of X of size at most k such that H × ZX has maximum weight. We have the following two
cases:

Case 1. There is an edge e in H × ZX that contains at least two nodes from ZX \ X. To
account for this case, we select every possible such edge e, set X := X ∪ e, and continue the
branching algorithm.

Case 2. Each edge in H × ZX contains at most one node from ZX \ X. In this case
we conclude the branching algorithm as follows. For every node v ∈ V \ X we compute its
weight as the total weight of edges Y ∪ {v} ∈ E for Y ⊆ X in O(2k) = O(1) time. Finally,
in O(|V |k) = O(|V |) time we select k − |X| nodes with largest weights and insert them into
X. The total time complexity of this step is O(|V |). This case also works if |X| = k and
then its time complexity is only O(1).

The correctness of this branching algorithm follows from an easy induction, showing that
at every level of the branching tree there is a subset of K.

Let us now analyze the time complexity of this branching algorithm. Each branching in
Case 1 takes O(|E|) time and increases the size of |X| by at least 2. At every node of the
branching tree we call the procedure of Case 2. It takes O(|V |) time if |X| < k.

If the procedure of Case 2 is called in a non-leaf node of the branching tree, then its O(|V |)
running time is dominated by the O(|E|) time that is required for further branching since
we have assumed that |V | ≤ k|E|. Hence, it suffices to bound (a) the total time complexity
of calls to the algorithm for Case 2 in leaves that correspond to sets X such that |X| < k

and (b) the total number of leaves that correspond to sets X such that |X| = k.
If k is even, (a) is bounded by O(|E|(k−2)/2|V |) and (b) is bounded by O(|E|k/2). Hence,

(b) dominates (a) and we have

O(|E|k/2) = O(|E|k/3|E|k/6) = O(|E|k/3|V |k/3). (1)

If k is odd, (a) is bounded by O(|E|(k−1)/2|V |) and (b) is bounded by O(|E|(k−1)/2),
which is dominated by (a). By using (1) for k − 3 we also have:

O(|E|(k−1)/2·|V |) = O(|E|(k−3)/2·|E|·|V |) = O((|E|·|V |)(k−3)/3·|E|·|V |) = O((|E|·|V |)k/3).
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We now consider the case that r(H × K) = 1. We use the algorithm for Case 2 above
that works in O(|V |) time, which is O(|V | · |E|). ◀

Lemmas 5-9 imply Theorem 4, which we employ iteratively to obtain the following result.

▶ Theorem 10. PMDM can be solved in time O(N + min{Nk/3, ℓk}) using space O(N) if
k = O(1), where N = dℓ.

Proof. We apply Lemma 5 to obtain a hypergraph with |V | = ℓ and |E| = d. Starting with
k = 1 and for growing values of k, we solve Heaviest k-Section until we obtain a solution
of weight at least z, employing either only Lemma 6, or Lemmas 6, 7, 8, 9 for k = 1, 2, 3 and
k ≥ 4, respectively. We obtain O(N + min{Nk/3, ℓk}) time and O(N) space. ◀

5 Exact Algorithms for a Bounded Number m of Query Strings

Recall that masking a potential match (q1, q2) in record linkage can be performed by solving
PMDM twice and superimposing the wildcards (see Section 1). In this section, we consider
the following generalized version of PMDM to perform the masking simultaneously. The
advantage of this approach is that it minimizes the final number of wildcards in q1 and q2.

Multiple Pattern Masking for Dictionary Matching (MPMDM)
Input: A dictionary D of d strings, each of length ℓ, a collection M of m strings, each
of length ℓ, and a positive integer z.
Output: A smallest set K ⊆ {1, . . . , ℓ} such that, for every q from M, qK = q ⊗K

matches at least z strings from D.

Let N = dℓ. We show the following theorem.

▶ Theorem 11. MPMDM can be solved in time O(N + min{Nk/3zm−1, ℓk}) if k = O(1)
and m = O(1), where N = dℓ.

We use a generalization of Heaviest k-Section in which the weights are m-tuples that
are added and compared component-wise, and we aim to find a subset K such that the
weight of H ×K is at least (z, . . . , z). An analogue of Lemma 6 holds without any alterations,
which accounts for the O(N + ℓk)-time algorithm. We adapt the proof of Lemma 9 as follows.
The branching remains the same, but we have to tweak the final step, that is, what happens
when we are in Case 2. For m = 1 we could simply select a number of largest weights, but for
m > 1 multiple criteria need to be taken into consideration. All in all, the problem reduces
to a variation of the classic Multiple-Choice Knapsack problem [38], which we solve using
dynamic programming. Overall, we pay an additional O(zm−1) factor in the complexity of
handling of Case 2, which yields the complexity of Theorem 11.

6 A Data Structure for PMDM Queries

We next show algorithms and data structures for the PMDM problem under the assumption
that 2ℓ is reasonably small. We measure space in terms of w-bit machine words, where
w = Ω(log(dℓ)), and focus on showing space vs. query-time trade-offs for answering q, z

PMDM queries over D. A summary of the complexities of the data structures is shown
in Table 1. Specifically, algorithm Small-ℓ and data structure Simple are used as building
blocks in the more involved data structure Split underlying the following theorem.

▶ Theorem 12. There exists a data structure that answers q, z PMDM queries over D in
time O(2ℓ/2(2ℓ/2 + τ)ℓ) w.h.p. and requires space O(2ℓd2/τ2 + 2ℓ/2d), for any τ ∈ [1, d].
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Table 1 Basic complexities of the data structures from Section 6.

Data structure Space Query time
Algorithm Small-ℓ O(dℓ) O(2ℓℓ + dℓ)

DS Simple O(2ℓd) O(2ℓℓ)
DS Split, any τ O(2ℓd2/τ2 + 2ℓ/2d) O(2ℓ/2 · (2ℓ/2 + τ)ℓ)

DS Split for τ = 2ℓ/4√
d O(2ℓ/2d) O(2ℓℓ + 23ℓ/4√

dℓ)

Algorithm Small-ℓ: O(dℓ) Space, O(2ℓℓ + dℓ) Query Time. No data structure on top
of the dictionary D is stored. In the query algorithm, we initialize an array A of size 2ℓ with
zeros. For an ℓ-bit vector m, by Km ⊆ {1, . . . , ℓ} let us denote the set of the positions of set
bits of m. Now for every possible ℓ-bit vector m we want to compute the number of strings
in D that match qKm = q ⊗ Km.

To this end, for every string s ∈ D, we compute the set K of positions in which s and
q differ. For m that satisfies K = Km, we increment A[m]. This computation takes O(dℓ)
time and O(1) extra space. Then we apply a folklore dynamic-programming-based approach
to compute array B, which is defined as follows:

B[m] =
∑

j∈S(m)

A[j], where S(m) = {j ∈ [1, 2ℓ] : Kj ⊆ Km}.

In other words, B[m] stores the number of strings from D that match qKm
. It takes O(ℓ2ℓ)

time and O(2ℓ) extra space. Thus, overall, the (query) time required by algorithm Small-ℓ
is O(ℓ2ℓ+dℓ), the data structure space is O(dℓ), and the extra space is O(2ℓ).

We first present Simple, an auxiliary data structure, which we will apply later on to
construct DS Split, a data structure with the space/query-time trade-off of Theorem 12.

DS Simple: O(2ℓd) Space, O(2ℓℓ) Query Time. We initialize an empty set Q. For each
possible subset of {1, . . . , ℓ} we do the following. We mask the corresponding positions in
all strings from D and then sort the masked strings lexicographically. By iterating over the
lexicographically sorted list of the masked strings, we count how many copies of each distinct
(masked) string we have in our list. We insert each such (masked) string to Q along with
its count. After processing all 2ℓ subsets, we construct a compacted trie for the strings in
Q; each leaf corresponds to a unique element of Q, and stores this element’s count. The
total space occupied by this compacted trie is thus O(2ℓd). Upon an on-line query q (of
length ℓ) and z, we apply all possible 2ℓ masks to q and read the count for each of them from
the compacted trie in O(ℓ) time per mask. Next, we show how to decrease the exponential
dependency on ℓ in the space complexity when 2ℓ = o(d), incurring extra time in the query.

DS Split: O(2ℓd2/τ 2 + 2ℓ/2d) Space, O(2ℓ/2 · (2ℓ/2 + τ)ℓ) Query Time, for any τ .
This trade-off is relevant when τ = ω(

√
d); otherwise the DS Simple is better. We split each

string p ∈ D roughly in the middle, to prefix pL and suffix pR; specifically, p = pLpR and
|pL| = ⌈ℓ/2⌉. We create dictionaries DL = {pL : p ∈ D} and DR = {pR : p ∈ D}. Let us now
explain how to process DL; we process DR analogously. Let λ = ⌈ℓ/2⌉. We construct DS
Simple over DL. This requires space O(2ℓ/2d). Let τ be an input parameter, intuitively
used as the minimum frequency threshold. For each of the possible 2λ masks, we can have at
most ⌊d/τ⌋ (masked) strings with frequency at least τ . Over all masks, we thus have at most
2λ⌊d/τ⌋ such strings, which we call τ -frequent. For every pair of τ -frequent strings, one from
DL and one from DR, we store the number of occurrences of their concatenation in D using
a compacted trie as in DS Simple. This requires space O(2ℓd2/τ2).
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Figure 3 Let τ = 3. If both q′
L and q′

R are 3-frequent (we check this using the counts of DS
Simple), we read the count for q′

Lq′
R from the compacted trie of DS Split. If q′

L is 3-infrequent, we
apply Small-ℓ on qR and the dictionary consisting of at most τ = 3 strings from DR corresponding
to the right halves of strings in DL that match q′

L.

Consider DL. For each mask i and each string pL ∈ DL, we can afford to store the
list of all strings in DL that match pL ⊗ i. Note that we have computed this information
when sorting for constructing DS Simple over DL. This information requires space O(2ℓ/2d).
Thus, DS Split requires O(2ℓd2/τ2 + 2ℓ/2d) space overall.

Let us now show how to answer an on-line q, z query. Let q = qLqR with |qL| = ⌈ℓ/2⌉.
We iterate over all possible 2ℓ masks.

For a mask i, let q′ = q ⊗ i. We split q′ into two halves, q′
L and q′

R with q′ = q′
Lq′

R and
|q′

L| = ⌈ℓ/2⌉. First, we check whether each of q′
L and q′

R is τ -infrequent using the DS Simple
we have constructed for DL and DR, respectively, in time O(ℓ). We have the following two
cases (inspect also Figure 3).

If both halves are τ -frequent, we can read the frequency of their concatenation using the
stored compacted trie in time O(ℓ).
Else, at least one of the two halves is τ -infrequent. Assume without loss of generality
that q′

L is τ -infrequent. Let F be the dictionary consisting of at most τ strings from DR

that correspond to the right halves of strings in DL that match q′
L. Naïvely counting

how many elements of F match q′
R could require Ω(τℓ) time, and thus Ω(2ℓτℓ) overall.

Instead, we apply algorithm Small-ℓ on qR and F . The crucial point is that if we ever
come across q′

L again (for a different mask on q), we will not need to do anything. We can
maintain whether q′

L has been processed by temporarily marking the leaf corresponding
to it in DS Simple for DL. Thus, overall, we perform the Small-ℓ algorithm O(2ℓ/2)
times, each time in O((2ℓ/2 + τ)ℓ) time. This completes the proof of Theorem 12.

Efficient Construction. For completeness, we next show how to construct DS Split in
O(dℓ log(dℓ) + 2ℓdℓ + 2ℓℓd2/τ2) time. We preprocess D by sorting its letters in O(dℓ log(dℓ))
time. The DS Simple for DL and DR can then be constructed in O(2ℓ/2dℓ) time. We then
create the compacted trie for pairs of τ -frequent strings. For each of the 2ℓ possible masks,
say i, and each string p ∈ D, we split p′ = p ⊗ i in the middle to obtain p′

L and p′
R. If both

p′
L and p′

R are τ -frequent then p′ will be in the set of strings for which we will construct the
compacted trie for pairs of τ -frequent strings. The counts for each of those strings can be
read in O(ℓ) time from a DS Simple over D, which we can construct in time O(2ℓdℓ) – this
data structure is then discarded. The compacted trie construction requires time O(2ℓℓd2/τ2).

Comparison of the Data Structures. DS Simple has lower query time than algorithm
Small-ℓ. However, its space complexity can be much higher. DS Split can be viewed as an
intermediate option. For τ as in Table 1, it has lower query time than algorithm Small-ℓ for
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d = ω(23ℓ/2), while keeping moderate space complexity. DS Split always has higher query
time than DS Simple, but its space complexity is lower by a factor of 2ℓ/2. For example, for
d = 22ℓ we get the complexities shown in Table 2.

Table 2 Basic complexities of the data structures from Section 6 for d = 22ℓ.

Data structure Space Query time
Algorithm Small-ℓ O(22ℓℓ) O(22ℓℓ)

DS Simple O(23ℓ) O(2ℓℓ)
DS Split for τ = 25ℓ/4 O(25ℓ/2) O(27ℓ/4ℓ)

7 Approximation Algorithm for PMDM

Clearly, PMDM is at least as hard as PMDM-Size because it also outputs the positions of
the wildcards (set K). Thus, PMDM is also NP-hard. In what follows, we show existence of
a polynomial-time approximation algorithm for PMDM whose approximation factor is given
with respect to d. Specifically, we show the following approximation result for PMDM.

▶ Theorem 13. For any constant ϵ > 0, there is an O(d1/4+ϵ)-approximation algorithm for
PMDM, whose running time is polynomial in N , where N = dℓ.

Our result is based on the Minimum Union (MU) problem [21], which we define next.

Minimum Union (MU)
Input: A collection S of d sets over a universe U and a positive integer z ≤ d.
Output: A collection T ⊆ S with |T | = z such that the size of ∪S∈T S is minimized.

To illustrate the MU problem, consider an instance of it where U = {1, 2, 3, 4, 5},
S = {{1}, {1, 2, 3}, {1, 3, 5}, {3}, {3, 4, 5}, {4}, {4, 5}, {5}}, with d = |S| = 8, and z = 4.
Then T = {{3}, {3, 4, 5}, {4}, {4, 5}} is a solution because |T | = z = 4 and | ∪S∈T S| = 3 is
minimum. The MU problem is NP-hard and the following approximation result is known.

▶ Theorem 14 ([21]). For any constant ϵ > 0, there is an O(d1/4+ϵ)-approximation algorithm
for MU, whose running time is polynomial in the size of S.

▶ Theorem 15. PMDM can be reduced to MU in time polynomial in N .

Proof. We reduce the PMDM problem to MU in polynomial time as follows. Given
any instance IPMDM of PMDM, we construct an instance IMU of MU in time O(dℓ) by
performing the following steps:
1. The universe U is set to {1, . . . , ℓ}.
2. We start with an empty collection S. Then, for each string si in D, we add member Si

to S, where Si is the set of positions where string q and string si have a mismatch. This
can be done trivially in time O(dℓ) for all strings in D.

3. Set the z of the MU problem to the z of the PMDM problem.

Thus, the total time O(dℓ) needed for Steps 1 to 3 above is clearly polynomial in the size
of IPMDM.

▷ Claim 16. For any solution T to IMU and any solution K to IPMDM, |K| = | ∪S∈T S|.
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Proof. Let F ⊆ D consist of z strings that match qK . Further, let the set F∗ consist of the
elements of S corresponding to strings in F . We have | ∪S∈T S| ≤ | ∪S∈F∗ S| ≤ |K|.

Now, let C = ∪S∈T S. Then, qC = q⊗C matches at least z strings from D and hence
|K| ≤ |C| = | ∪S∈T S|. ◁

To conclude the proof, it remains to show that given a solution T to IMU we can obtain
a solution K to IPMDM in time polynomial in the size of IMU. This readily follows from the
proof of the above claim: it suffices to set K = ∪S∈T S. ◀

Proof of Theorem 13. The reduction in Theorem 15 implies that there is a polynomial-time
approximation algorithm for PMDM. In particular, Theorem 14 provides an approximation
guarantee for MU that depends on the number of sets of the input S. In Step 2 of the
reduction of Theorem 15, we construct one set for the MU instance per one string of the
dictionary D of the PMDM instance. Also, from the constructed solution T to the MU
instance, we obtain a solution K to the PMDM instance by simply substituting the positions
of q corresponding to the elements of the sets of T with wildcards. This construction implies
the approximation result of Theorem 13 that depends on the size of D. ◀

Sanity Check. Theorem 1 (reduction from k-Clique to k-PMDM) and Theorem 13
(approximation algorithm for PMDM) do not contradict the inapproximability results for the
maximum clique problem (see Section 3), since our reduction from k-Clique to k-PMDM
cannot be adapted to a reduction from maximum clique to PMDM-Size.

Two-Way Reduction. Chlamtáč et al. [21] also show that their polynomial-time O(d1/4+ϵ)-
approximation algorithm for MU is tight under a plausible conjecture for the so-called
Hypergraph Dense vs Random problem. In what follows, we also show that approximating
the MU problem can be reduced to approximating PMDM in polynomial time and hence
the same tightness result applies to PMDM.

▶ Theorem 17. MU can be reduced to PMDM in time polynomial in the size of S.

Proof. Let ||S|| denote the total number of elements in the d members of S. We reduce the
MU problem to the PMDM problem in polynomial time as follows. Given any instance IMU
of MU, we construct an instance IPMDM of PMDM by performing the following steps:
1. Sort the union of all elements of members of S, and assign to each element j a unique

rank rank(j) ∈ {1, . . . , |U |}. Set ℓ = |U |. This can be done in O(||S|| log ||S||) time.
2. Set the query string q equal to the string aℓ of length ℓ. For each set Si in S, construct a

string si = aℓ, set si[rank(j)] := b if and only if j ∈ Si, and add si to dictionary D. This
can be done in O(dℓ) time.

3. Set the z of the PMDM problem equal to the z of the MU problem. This can be done
in O(1) time.

Thus, the total time O(dℓ log(dℓ)) needed for Steps 1 to 3 above is clearly polynomial in
the size of IMU as ℓ ≤ ||S||.

A proof of the following claim is analogous to that of Claim 16.

▷ Claim 18. For any solution T to IMU and any solution K to IPMDM, |K| = | ∪S∈T S|.

To conclude the proof, it remains to show that, given a solution K to IPMDM, we can
obtain a solution T to IMU in time polynomial in the size of IPMDM. It suffices to pick z

sets in S that are subsets of K. Their existence is guaranteed by construction, because such
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sets correspond to the at least z strings in D that have b in a subset of the positions in K.
This selection can be done naïvely in O(||S||) time. Finally, the above claim guarantees that
they indeed form a solution to IMU. ◀
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