
v-..J . .-,.s INFORMATION PROCESSING LETTERS May 1975

THE MEMBERSHIP QUESTION FOR ETOL-LANGUAGJES
IS POLYNOMIALLY COMPLETE*

Jan Van LEEUWEN
Moth,11'.lltilch Centrum, ie Boerluzave Straat 49, A msterdtrm 1005, the Netherlands

Received 22 August 1974
Revised version received 24 April 1!'>75

complexity of computations

Cook (3) showed four years ago that problems
trith M '*')'. polynomiaJ.tilne sol!Jtion on a non-
4ec«miailtk Turin1·machine may be '""tremely hard
to 10ttt In polynomial time on a deterministic device.
Karp 17! pYe a long list of combmatoriaJ problems
which ire all "complete" in the seuse that when one
of them is do-able iii d·eterministic polynomial time
then ill of them are and P = NP.

Sharru1 has looked for NP-complete problem~ which
ate m«:1bership questii:ms for as narrow a language
Csmfy f as possible. Shamir and Beeri [! 4 J proved
that when F is equal tc1 the family of 1 ·way chacking­
stad automaton languages (a proper subset of the
mdexed languages) or equal to the A-free context-
free prOlflmnted languages then NP-completeness
can already be embedded in f.

In this paper we sol111e a question of Shamir posed
II the 2nd Colloquium on Automata, Languages and
~ing (Saarbriicken. 1974) how one caJI
embed NP-rompleteness in families of simple develop­
metr ,. 1a,,guages, and in particular whether or not
.:,oe can do it in ETOL-languages. We sl1all answer
the que11;,1n affirmatively and obtain therefore a
~ family quite "low .. in the Chomsky-hierarchy
whose membership quest ion is NP-complete.

Sinu we shall also prove •hat all EI'OL-languages
(posibly up to the empty word) can be; gener~ted by
a >.-free unconditional transfer contect·free pro-

• Thi& work bu been partly gi1pport~ by NSF grant GJ 998
Md ti,- NATOsrant 574.

ETOL languages

grammed grammar, it immediately follows that we
can strengbthen some results of Shamir and Beeri [14]
and conclude that NP-completeness can already be
embedded into the ~-free unconditional transfer
context-free programmed languages.

2. Preliminaries

Most notations and terminology will be as in stan­
dard texts on language theory like Aho and Ullman
[1], or Salomaa [13]. It was only recentlY. that paral·
let rewriting systems enjoyed increased attention and
we shall have to mention some of the pertinent defi­
nitioii:~s. The area where we shall draw some results
from is nicely surveyed in Herman and Rozenberg
[5] and we shaH therefore only present the concepts
that .. ~re strictly needed here.

The idea behind ETOL-grammars is to have a finite
set of tables with production-rules (or: substitutions
if you like) which are iterated in some order or an·
other on an initial string and applied as parallel re­
placement oparations. Only the words over a desig·
natecl terminal alphabet which we can derive are
counted and collected into a language.

Definition. An ETOL-grammar is a 4-tuple G =
<V, I:, {61, ... , 5k}, S>, where V, l:, and Sare as usual
and 6 1, •.. , 6 k are finite substitutions from V into v•.
When all 6/s are X-free then G is called X-free.

Definition. A language L is called an ETOIAanguage
iff there is some ETOL-grammar G = (Tl, I, {6 1, ... , 6k},
S> such that L = ~f>;n .•. 611 (S) Cl t*, the union taken
over all sequences tJ;n ... 6;1 of substitutions from G.

Volume 3, number S INFORMATION PROCESSING LETTERS May 19 rs

The family of ETOL-languages(caRled ETOL here­
after) has nice properties, for instanc1e one can always
effectively find a 71.-free ETOL-grammar for each ETOL­
language. One can easily show that ETOL properly
contains the context-free languages [:5] but is itself
no more powerful than the indexed languages [4] .
Using rather involved arguments it was recently even
shown that ETOL is strictly included in the family
of indexed languages (6).

One can easily sir.1ulate ETOL-grammars with.con­
text.free progra.mmeti grammars but the result can be
made stronger. Recall that in cfpg-grammars all pro­
ductions are uniquely identifiable by some label r and
look like

(r)A ~ w S(D1) F(D1) ,

whereD1 and D2 are the "success" and "failure"
domains. If in all productions D1 and D2 are equal,
then the cfpg-grammar is called "unconditional trans­
fer., ([8], p. 125), and such grammars define a quite
restricted subclass of the cfpg-Ianguages ..

Theorem 2.1. All ETOL-languages are /\-free uncon·
ditional transfer context-free programmed languages.
Proof. (We should in fact be more precise and always
exclude the emptv word.) Let L be an ETOl.Aanguage
and G a >..-free ETOL-grammar generating L. Let
V= {o1, ... ,on}, and introduce new symbols o' and
o" for each o E V. We construct an utcfpg-grammar
whose terminal alphabet is still ~ but which usi.:.~ all
other symbols as variables and in addition requires a
new symbol T for starting. Each table 6 .hall be
written out line by line in two versions:

6', in which we make all productions a 'w in 6 into
a'-+ w"

6", in which we make all productions a~ win S into
a"~w'.

Also, there will be blocks CHECK' for '-symbols and
CHECK" for "-symbols, and similar blocks TERM'
and TER!·,".

When we list the name of a block in a success or
failure field we actually mean all names of the produc­
tions in that block. ~'will be used as a standard non­
terminal symbol not equlll to any of before, and is
written when we need to escape a wrong production·
sequence.

di;,::; :show the utcfpg-grnmm'li looks like. The i:iea
is that we alternately have the intermediate: string in
' - and "-sym bots, simulate an arbitrarily selected
table by rewriting' -- {or"-) symbols into" - (or' -)
symbols and always.check at each step that we reall:r
convert1~d ALL ' - (or " -) symbols. Instead of selecr •
ing a next table one may choose to print-out the
result and hope that it is built from only terminals.

-· (1) T'S' S(oi •... ,Ok, TERM')fl6i •... , ot. TERM')
- for each 6 in G there is a block 1J' th:1.t looks like

[() ~·-+ w" S(•'. CHECK' I) F(•'. CllECl<'l).fon• •-we •

- blocks 6" are defined similarly with ' replacing " ar.d
vice wersa

- in the block CHECK' productiO:'S are numbered
1, ... , n and are defined as follows

[
(l) ~i-+ ~ S(CHECK'i+ l)F(CHECK'i+ l)

I (,, ,, E ") F(~'' •:" TERM") (n)on-+ .,.s o1, .•. ,6k,T RM u1····•{,lk•

- the block CHECK" is as CHECK.' with ob11ious
modifications

- the block TERM' looks as

[() f;-+ o1S(TERM')F(TERM'J

- and finally, TERM" is similar to TERM', this time
reading out "-symbols.

The terminal words which this A-free grammar
generates are exactly all the words from l, possibly
excluding the empty word. D

One can show that ETOL is in fact pcoperly in­
cluded in the A-free unconditional transfer context·
free programmed languages [12] .

Although the membership question for ETOL­
languages is easily seen to be algorithmh;ally solvable,
the fundamental problem we address is how hard
it is in terms of time complexity. In particular, we
want to know about procedures fo" this job which
are possible polynomial-time bound ~ci since that, as
is nowadays widely accepted, would be a good sl anclard
for feasibility [2). We shall essentially pro'W·e d•a· th1ere

139

V~ : • number 5 INFORMATION PROCESSING LETI'ERS May 1975

~ no ho<pt' for iUch an aigorithm by re1ating the pro·
bftm 10 t~ P • NP question.

R«dJ that we always work with sc11e encoding
of a ptoblem that Ct\n be written on a Turing-machine
tape. L ts /Meducible to Miff there exists a polynomial·
usnc compu1abte transformation f such that x E L *
JbJE M. In somewhat infonna1 way we fonnulate

"Arornn 2.2. (ref. fll). All NP-problems are p-reduc·
ihte co the satisft&'>ility problem for conjunctive nor­
mal form prop<..!ritional formulae with at most 3 literals

Pf"~·"·

Thete ts a coding problem since Cook (3) used bina­
ry oot•tff>n in the reduction-procedure while we need
., umsry version of the satisfiability problem. As
Sf;am1t and Beeri (i4) point out, the mere fact of
pofynomitl boundedness makes however that one
can eqmlfy give 1 p-reduction to the satisfiability
ptobkm in unary code and Cook's theorem is represen·
\.lfkdn mdependawl. Ut SAT denote the satisfiability·
pr~ ref tired to in 2.2.

Definition.. A problem (or language) ' ,s called NP·
compltte if and only if L E NP and ~AT is p-reducible
(() L.

PrarcticalJy from the definition follows that P = NP
t« tM-re ts an NP-complete problem that can be done
In deterministic polynomial time.

We ihaU finally call a problem (which is not neces·
uri:ly in NP) NP-hard if SAT isp·reducible to it. (See
ref.181 for a do;:i.:mented discuslsion on the terminology).

3. The membetrsbip question for ETOL-languages

We shall prove that the P = NP question is equivalent
to the nwmbership problem for languages generated
try such a mnp~e device as the iterated context inde·
pendent substitution imminent to ETOJ.....grammars.

Theorem .) I. The membership-question for X-free
ETOL-languages is NP-complete.
Pr>. »of fir~.t we argue that membership for ETOJ.,.
languages ~ an NP-problem. All ETOLlanguages have
an essentially A-free generating ETOJ.....grammar. In
!he derivation S = w0 => ••• => wn = i.v of a word one
can distinguish stationary levds (when lw;I = lw; _11)

140

and splitting levels (when lw11 > lwi_1 I). By a periodicity·
argument (as in [15]) there must be a constant c such
that no sequence of consecutive stationary levels need
be longer than c. Hence all words have a derivation
linearly bounded in their length. An NP-algorithm for
deciding membership would first guess the sequence
of tables and then evaluate it starting from S: whe~
the finally produced string matches the input we are
done, otherwise we reject. (Evaluating the substitu-
tions is essentially an O(n2) task.)

Now the harder part, we have to embed SAT in an
ETOIAanguage. Like Shamir and Beeri (14) we use
unary notation but it is better that we set it up from
the beginning. The formulas we consider look like

£ 1A ... /\Ek

where each E; is of the form (A11 v A;2 v A;~)- The
Aij are either some A or some IA, and fill A s like
that occurring in the formula are referred to as Jiter­
als t).

Each literal will be uniquely encoded into a sequence
of ones, but we leave the other symbols (logical con­
nectives and brackets) as they are. As an example

(A v B v C) /\ (lA v B v -IC) A ...

will be encoded as

(lvltvlll)A (ltvllvllll)A ...

an encoding which, by the way, is clearly do-able in
polynomial time.

We shall make an ETOL-language precisely con·
taining all fonnulae that are satisfiable, but with one
further degree of freedom. Instead of an "initial seg­
ment" code (as in the given example), the language
shall in fact contain ALL possible, unary encoded
representations, but then certainly the "decent" ones.

The idea behind the ETOL-grammar that we give
is to build the logical evaluation-trees upside down,
that is, we first build the regular set of well-formed
and satisfialile formulae with each literal replaced
by the explicit truth assignment that makes the
formula ''true" and then write in code fo,. real literals
in conflict-free manner.

Let the axiom he a symbol n· (.. true"), and use
T ("true") and F (''false") for assigned values.

t It is easy to modify 2.2. so as tc1 require that in the expres­
sions in SAT there indeed occu1 precise1y three (not neces­
sarily distinct) literals.

Volume 3, number S INFORMATION PROCESSING LETI'ERS May 197S

The first table has productions:

'If-+ (Tv TvT) A 11'

'If-t>(TVTVT)

'If-t>(TvTvF) A 11'

11'-+(TvTvF)

11'-+(TvFvT) /\ 11'

11'-+(TvFvT) i

11'-+(TvFvF) 1: 11'

11'-t>(TvFvF)

11'-t>(fvTvT) A 11'

'D'-+(FvTvT)

'D'-t>(f vFvT) A 11'

'II'-+ (F v F v T)

11'-+ (F vTv F) /\ 11'

11'-+ (F v T v F)

a -+ a for all other symbols.

In all further tables we include a production
11'-+ ~(the only one for 11', with ~a non-terminal
which can never lead to a terminal), so we are forced
to iterate this table until we got rid of the 'If. We
necessarily end up with a well-formed, "true" assign·
ment and prepare for replacing r.s and F's by occur·
rences of (negations of) literals.

We ~.all have to distinguish quite specifically be­
tween variables which occur as "A" and get the value
"T" (or "F") and which occur as "IA" and get the
value "T" (or "F"), because that turns out to be a

·main source of conflicts. We shall use symbols(., true],
[.,false}, ["l, true}, and {"l, ·false) to keep track of
it respectively.

The next table then will be

IT··~ i .. true)
!

T -i-1(""1, true]

F-. [., false)

F ~-in, ra1se1

11'-+ ~

a -+ a for all other symbols.

Since T and F then disappear entirely we can list
identity productions for them in all subsequent tables.

We can now expand the unary representations with
the table

[.,true] -+ 1 [.,true)

[I, true) -+ 1 n. true]

[.,false] -+ 1 [.,false]

n. false) -+ 1 (I, false]

11'-+ ~

o -+ a for all other symbols

or decide to terminate some of them. In that case we
may terminate both a "nonnal .. variable and its nega­
tion (if it occurs) and we need two tables to avoid
conflicts.

[.,true] -+- l

[I, false] -+ 1

[.,true] -.1[.,true]

fl, true] ... 1 (I, true)

[., false] -+ 1 [., false 1"

[I, false] .-. 1 {I, false]

1f ... ~

o _. a for all other symbols

141

Volume 3, number S INFORMATION PROCESSING LETl'ERS May 1975

and

f(1, true) -+ I

: (.• false] 1

'. [.• true) -+ 1 (.,true)
i
i n. true) -+ 1 n. true)

· (•• false) -+ 1 [.,false)

: l,, false I -+ 1 n. false]

11' + ~

L o -+ o for all other symbols .

No~e that now the third table is superfluous and may
be omitted since the effect it has can always be attained
with the fourth or the fifth table, and we leave it as
an exercise to the reader to condense the number of
tables needed even further down to 2.

If we let :t = { - , v , A), (, 1}, then all terminal
strings generated by the gammar are clearly just all the
unary encoded instances of SAT and the theorem
follows. 0

Considering the given proof, we observe that there
nev~r are sentential forms which in the codinc': that we
used represent non-satisfiable formulae (they are either
of the wrong form or over the desired terininal alpha·
bet). We may then actually conclude NP-completeness
for an even narrower class, the TOLlanguages (see [11]
or (5)) which are exactly the sentential form languages
of ETOL-grammars.

CoTollary 3.2. The membership-question for (A-free)
TOL-languages is NP-complete.

We can make furti1er conclusions and relate our
results to recent obst>rv'ations of Shamir and Beeri (14].

CoTollary !.3. The membership·question for ~-free un­
conditional transfer context-free programmed languages
~NP-hard.

By a further argument one can prove that die
membership question for >.-free unco11ditional transfer

142

context-free programmed grammars is solvable in non­
deterministic polynomial time by showing that words
need never have a derivation longer than polynomial
in their length [l S]. and it follows that in the A-free
case one may improve 3.J. to NP-completeness.

Acknowledgement

I wish to thank Arto Saloinaa, Eli Shamir and
Amir Pnueli, and Jaroslav Opatrny for useful corn·
ments.

References

(1) A.V. Abo ane J.D. Ullman, The theory of parsing,
translating and compiling. vol. I (Prentice Hall,
Englewood Cliffs, N.J., 1972).

(2) A. Cobham, The intrinsic computational difficulty of
functions, in: Y. Bar-hillel (ed.): Proc. 1964 Intern.
Congress on Logic, Methodology, and Philosophy of
Science (North-Holland PubL Comp., Amsterdam.
1965), 24-30.

[3J S.A. Cook, The complexity of theorem-proving proce­
dures, Proc. 3rd Annual ACM Symp. on Theory of
Computing (1971) 151-158.

[4) K. Culik II, On some families of languages telated to
developmental systems, Teclm. Rep. CS-73·12, Dept.
of Appl. Analysis and Computer Science, Waterloo,
Canada (l 9"73).

[SI G.T. Hennan and G. Rozenberg, Developmental sys­
tems and languages (Nortb·HoU.nd Publ. Comp.,
Amsterdam, 1975).

(6 J A. Ebr•::nfeucht, G. Rozenberg and S. Skyum. A rela­
tionship between E'fOL and EDTOL languages, 'lbeor.
Computer Science (to appear).

(7) R.M. Kup, Reduci"bility among combinatorial problems.
in: R.E. Miller and J.W. Thatcher (ted.), Complexity of
Computer Computations (Plenum Press, New York,
1973). 85-104.

[8) D.E. Knuth, A tenninological proposal, SIGACT NEWS
6, January 1974, 12-18 (see also SIGACTNEWS 6,
April 1974, 15-161.

(9) DJ. Rosenkrantz, Programmed grammars and clanes
of formal languages. JACM 16 (1969) 107-131.

[10) W.C. Rounds, Complexity of intermediate level languages,
Conf. Record 14th Ann. Slmp. on Switching and
Automata ThMry, Iowa (1973) 14~ -158.

(11 I G. Rozenberg, TOL systems and languages, Inform. and
Control 23 (1973) 357-381.

(12) G. Roz~nberg. Personal commullication (1974).
(13] A. Salomaa, Formal Languages, iLcad. Press. New York

(1973).

Vulume 3, number 5 INFORMATION PROCESSING LETTERS May 1975

(14) E. Shamir and C. Beeri, Checking stacks 3nd context-free
programmed grammars accept p-complete languages, in:
J. Loeckx (ed.:;, hoe. 2nd Colloquium on Automata,
Languages, and Programming, Springer Lecture Notes in
Computer Science 14 (1974) 27-33.

! I'' J. ~- :r. lcc"wen, Extremal P• operties of non·det3rministic
tune-con!Dlexity classes, Pro(in.em. Computing Sym­
posium 197 5, Antibes-JuaI' le. Pins (North·Holland ~ubl.

.comp.) to appear.

143

