Yelume 3. number §

INFORMATION PROCESSING LETTERS

May 1975

THE MEMBERSHIP QUESTION FOR ETOL-LANGUAGES
IS POLYNOMIALLY COMPLETE*

Jan Van LEEUWEN
Matheiratisch Centrum, 2€ Boerhaave Straav 49, Amsterdam 1005, the Netherlands

Received 22 August 1974
Revised version received 24 April 1975

complexity of computations
1. introduction

Cook {3] showed four yeass ago that problems
with an essy, polynomial-time solution on a non-
deterministic Turinv-machine may be extremely hard
to solve in: polynomial time on a deterministic device.
Karp {7} gave a long list of combinatorial problems
which are all “complete” in the seise that when one
of them is do-able in deterministic polynomial time
then al! of them are and P = NP.

Shamis has looked for NP-complete probleriz which
are merabership questions for as narrow a language
famnilv F as possible. Shamir and Beeri [14] proved
that when F is equal to the family of 1-way chacking-
stack sutomaton languages (a proper subset of the
indexed languages) or equal to the A-free context-
free programmed languages then NP-completeness
can already be embedded in F.

In this paper we solve a question of Shamir posed
at the 2nd Colloquium on Automata, Languages and
Programming (Saarbriicken, 1974) how one can
smbed NP compieteness in families of simple develop-
men”«: fanguages, and in particular whether or not
une can do it in ETOL-languages. We shall answer
the question affirmatively and obtain therefore a
language family quite “low” in the Chomsky-hierarchy
whose membership question is NP-complete.

Since we shall also prove *hat all ETOL-languages
{possibly up to the empty word) can be generated by
2 A-free unconditional transfer contect-{ree pro-

* This work has been partly supported by NSF grant GJ 998
and by NATO grant 574.

1i8

ETOL languages

grarnmed grainmar, it immediately follows that we
can strengkthen some results of Shamir and Beeri [14]
and conclude that NP-completeness can already be
embedded into the A-free unconditional transfer
context-free programmed languages.

2. Preliminaries

Most notations and terminology will be as in stan-
dard texts on language theory like Aho and Ullman
[1], or Salomaa [13]. It was only recently that paral-
lel rewriting systems enjoyed increased attention and
we shall have to mention some of the pertinent defi-
nitions. The area where we shall draw some results
from is nicely surveyed in Herman and Rozenberg
[5] and we shall therefore only present the concepts
that .>re strictly needed here.

The idea behind ETOL-grammars is to have a finite
set of tables with production-rules (or: substitutions
if you like) which are iterated in some order or an-
other on an initial string and applied as parallel re-
placement opzrations. Only the words over a desig-
nated terminal alphabet which we can derive are
counted and collected into a language.

Definition. An ETOL-grammar is a 4-tuple G =
(V,Z,{81,...8;}, 5} where ¥, Z,and § are as usual
and 8, ..., 8 are finite substitutions from V into V",
When all §;’s are A-free then G is called A-free.

Definition. A language L is called an ETOL-language
iff there is some ETOL-grammar G =(V, Z, {5, ..., §; 1,
SYsuch that L =U8;, ... 5; () O Z*, the union taken
over all sequences §;, ... §; of substitutions from G.

Volume 3, number §

The family of ETOL-languages(called ETOL here-
after) has nice properties, for instance one can always
effectively find a A-free ETOL-grammar for each ETOL-
language. One can easily show that ETOL properly
contains the context-free languages [5] but is itself
no more powerful than the indexed languages [4].
Using rather involved arguments it was recently even
shown that ETOL is strictlv included in the family
of indexed languages [6]. ,

One can easily sizuulate ETOL-grammars with con-
text-free programme grammars but the resuit can be
made stronger. Recall that in cfpg-grarmmars all pro-
ductions are uniquely identifiable by some label r and
look like

NA->w S(Dy) AD,),

where Dy and D, are the “success” and “failure”
domains. If in all productions Dy and D, are equal,
then the cfpg-grammar is called “unconditional trans-
fer” ([8], p. 125), and such grammars define a quite
restricted subclass of the cfpg-languages.

Theorem 2.1. All ETOL-languages are A-free uncon-
ditional transfer context-free programmed languages.
Proof. (We should in fact be more precise and always
exclude the emptv word.) Let L be an ETOL-language
and G a \-free ETOL-grammar generating L. Let

V= {0y, ..., 0,}, and introduce new symbols ¢ and
" for each o € V. We construct an utcfpg-grammar
whose terminal alphabet is still Z but which usc: all
other symbols as variables and in addition requires a
new symbol T for starting. Each table 8 :hall be
written out line by line in two versions:

&', in which we make all productionsa - w in § into
13 "
ad->w

8", in which we make all productionsa - w in § into
[!
a">w.

Also, there will ba blocks CHECK' for '—symbols and
CHECK" for "—symbols, and similar blocks TERM'
and TERN:".

When we list the name of a block in a success or
failure field we actually mean all names of the produc-
tions in that block. ¢ will be used as a standard non-
terminal symbol not equal to any of before, and is
written when we need tc escape a wrong production-
sequence.

INFORMATION PROCESSING LETTERS

May 191§

ticic s how the utcfpg-granmar tooks like. The idea

is that we alternately have the intermediate string in

— and "—symbols, simulate an arbitrarily selected
table by rewriting "~ (or "~) symbols into "~ (or '-)
symbols and always.check at each step that we reall:s
converted ALL "— (or ") symbols. Instead of selecr-
ing a next iable one may choose to print-out the
result and hope that it is built from only terminals.

- (1) TS’ S(8}, ..., 5, TERM") F(8}, ..., 5}, TERM')
— for each 8 in G there is a block &' that looks like

[() &' w" 5(8', CHECK'1) F(s', CHECK'1), for all 6~ we€ §

— blocks 8" are defined similarly with ' replacing " and
vice versa

— in the block CHECK' productic=s are numbered
1, ..., n and are definad as follows

(i) o; > ¢ S(CHECK'i +1) F(CHECK'i +1)

(1) o, > ¢ S(5....5}, TERM") (8., 5§, TERM")

— the block CHECK" is as CHECK' with obvious
modifications
— the block TERM' looks as

[() 0~ 0; S(TERM') (TERM)

— and finally, TERM" is similar to TERM’, this time
reading out “—symbols.

The terminal words which tl:is A-free grammar
generates are exactly all the words from L, possibly
excluding the empty word. (]

One can show that ETOL is in fact properly in-
cluded in the A-free unconditional transfer context-
free programmed languages [12].

Although the membership question for ETOL-
languages is easily seen to be algorithmically solvable,
the fundamental problem we address is how hard
it is in terms of time complexity. In particular, we
want to know about procedures fo: this job which
are possible polynomial-time boundzc since that, as
is nowadays widely accepted, would be a good stancard
for feasibility [2]. We shall essentially prove tha- there

139

Volume -, number §

is no hope for such an aigorithm by relating the pro-
tlem to the P = NP question.

Recsll that we always work with sc ne encoding
nf a problem that can be written on a Turing-machine
tepe. L is p-reducible to M iff there exists a polynomial-
tune compuiable transformation f such that x EL &
Ax)€ M. In somewhat informal way we formulate

Theorem 2.2, (ref. [3]). All NP-problems are p-reduc-
fble to the satisfishility problem for conjunctive nor-
mal form propesitional fornulae with at most 3 literals
per clar.se.

There is a coding problem since Cook [3] used bina-
ry notstion in the reduction-procedure while we need
3 unary version of the satisfiability problem. As
Stiamir and Beeri [14] point out, the mere fact of
polynomial boundedness makes however that one
can equally give a p-reduction to the satisfiability
problem in unary code and Cook’s theorem is represen-
tatic n independent. Let SAT denote the satisfiability-
problem referred to in 2.2,

Definition. A problem (or language) * s called NP-
complete if and only if L € NP and SAT is p-reducible
tol.

Practically from the definition follows that P = NP
ifT there is an NP-complete problem that can be done
in deterministic polynomial time.

We shall finaiiy call a problem (which is not neces-
sarily in NP) NP-hard if SAT is p-reducible to it. (See

ref.[8] for a documented discussion on the terminology).

3. The membership question for ETOL-languages

We shall prave that the P= NP question is equivalent
to the membership problem for languages generated
by such a simple device as the iterated context inde-
pendent substitution imminent to ETOL-grammars.

Theorem 5.1. The membership-question for A-free
ETOL languages is NPcomplete.

FProof. First we argue that membership for ETOL-
languages is an NP-problem. All ETOL languages have
an essentially A-free generating ETOL-grammar. In
the derivation § = wy = - = w, = w of a word one
can distinguish stationary leveis (when {w;l = [w; ;1)

140

INFORMATION PROCESSING LETTERS

May 1975

and splitting levels (when (w;1 > {w;_; [). By a periodicity-
argument (as in {15]) there must be a constant ¢ such
that no sequence of consecutive stationary levels need

be longer than c. Hence all words have a derivation
linearly bounded in their length. An NP-algorithm for
deciding membership would first guess the sequence

of tables and then evaluate it starting from S: when

the finally produced string matches the input we are
done, otherwise we reject. (Evaluating the substitu-

tions is essentially an O(n2) task.)

Now the harder part, we have to embed SAT in an
ETOL-language. Like Shamir and Beeri [14] we use
unary notation but it is better that we set it up from
the beginning. The formulas we consider look like

E‘I\... AE’C

where each E; is of the form (4, v 4;, v 4;,). The
A ij are either some A4 or some “14, an& all A?s like
tha;c_ occurring in the formula are referred to as liter-
alsT).

Each literal will be uniquely encoded into a sequence
of ones, but we leave the other symbols (logical con-

nectives and brackets) as they are. As an example
(AvBvO)A CNAVBVTIO) A ...

will be encoded as

(viiviiD A ClIviIvIIID A ..

an encoding which, by the way, is clearly do-able in
polynomial time.

We shall make an ETOL-language precisely con-
taining all formulae that are satisfiable, but with one
further degree of freedom. Instead of an ““initial seg-
ment” code (as in the given example), the language
shall in fact contain ALL possible, unary encoded
representations, but then certainly the “decent” ones.

The idea bchind the ETOL-grammar that we give
is to build the logical evaluation-trees upside down,
that is, we first build the regular set of well-formed
and satisfiable formulae with each literal replaced
by the explicit truth assignment that makes the
formula “true” and then write in code for real literals
in conflici-free manner.

Let the axiom e a symbol T’ (““true’), and use
T (“true”) and F (“false™) for assigned values.

¥ It is easy to modify 2.2. so as to require that in the expres-
sions in SAT there indeed occu: precisely three (not neces-
sarily distinct) literals.

Volume 3, number 5 INFORMATION PROCESSING LETTERS

The first table has productions:
> (TVIVT) A T

T-(TvTvT)
T->(TVvTvH AT
T->(TvTVvF)
T->(TVvFVDAT
'lI'-r(TvFvT)!‘
T->(TvFVF) ., T
T->(TVvFVvF)
T->FvIVD AT
T—+(FvTvT
T->FVvFvD AT
T-(FvFvD
T->(FVvIVHAT

T->(FVvTVF

|_o —* o for all other symbols.

In all further tables we include a production
T ~ ¢ (the only one for T, with ¢ a non-terminal
which can never lead to a terminal), so we are forced
to iterate this table until we got rid of the T. We
necessarily end up with a well-formed, “true” assign-
ment and prepare for replacing T’s and F’s by occur-
rences of (negations of) literals.

We sl.all have to distinguish quite specifically be-
tween variables which occur as “A” and get the value
“T” (or “F”) and which occur as “"14” and get the
value “T” (or “F”), because that turns out to be a

"main source of conflicts. We shall use symbols [., true],
[., false], [, true], and {71, false] to keep track of
it respectively.
The next table then will be

May 1975

[T {.. true]
T -71[7, true]
F - [., false]
F > T[T, false]

T~>¢

|_o ~ o for all other symbols.

Since T and F then disappear entirely we can list
identity productions for them in all subsequent tables.

We can now expand the unary representations with
the table

1., true] 1., true]
[, true] = 1], true]
[, flalse] - 1[., false]
[, false] = 1[71, false]

T->¢

0 = o for all other symbols

L

or decide tc terminate some of them. In that case we
may terminate both a “normal™ variable and its nega-
tion (if it occurs) and we need two tables to avoid
conflicts.

1., true] ~1

[, false] =1

[.,true] - 1], true]
[, true] > 17, true]
[, false] - 1[., false}
[, false] = 1[0, false]

T->¢

o -+ ¢ for all other symbols

141

Volume 3, number 5§

and
M, true] 1

., false] > 1

[, true] —1[., true]
|
L, true] - 1], true]

{-, false] - 1[., false]

{77, false) - l [, false]

1

T+

t_ o - ¢ for all other symbols .

Note that now the third table is superfiuous and may
be omitted since the effect it has can always be attained
with the fourth or the fifth table, and we leave it as

an exercise to the reader to condense the number of
tables needed even further down to 2.

Ifwelet £ ={—, v, A),(,1}, then all terminal
strings generated by the gammar are clearly just all the
unary encoded instances of SAT and the theorem
follows.]

Considering the given proof, we observe that there
never are sentential forms which in the coding; that we
used represent non-satisfiable formulae (they are either
of the wrong form or over the desired terminal alpha-
bet). We may then actually conclude NP-completeness
for an even narrower class, the T?L-languages (see [11]
or [5]) which are exactly the sentential form languages
of ETOL-grammars.

Corollary 3.2. The membership-question for (A-free)
TOL-languages is NP-complete.

We can make further conclusions and relate our
restlts to recent observations of Shamir and Beeri [14].

Corollary 2.3. The membership-question for A-free un-

conditional transfer context-free programmed languages
ig NP-hard.

By a further argument one can prove that the
membership question for A-free unconditional transfer

142

INFORMATION PROCESSING LETTERS

May 1975

context-free programmed grammars is solvable in non-
deterministic polynomial time by showing that words
need never have a derivation longer than polynomial
in their length [15], and it follows that in the A-free
case one may improve 3.3. to NP-completeness.

Acknowledgement

I wish to thank Arto Salomaa, Eli Shamir and
Amir Pnueli, and Jaroslav Opatrny for useful com-
ments.

References

{1] A.V. Aho an¢ J.D. Ullman, The theory of parsing,
translating and compiling, vol. I (Prentice Hall,
Englewood Cliffs, N.J., 1972).

[2] A. Cobham, The intrinsic computationat difficulty of
functions, in: Y. Bar-hillel (ed.): Proc. 1964 Intern.
Congress on Logic, Methodology, and Philosophy of
Science (North-Holland Publ. Comp., Amsterdam.
1965), 24-30.

[3] S.A. Cook, The complexity of theorem-proving proce-
dures, Proc. 3rd Annval ACM Symp. on Theory of
Computing (1971) 151-158.

{4} K. Culik II, On some families of languages related to
developmental systems, Techn. Rep. CS-73-12, Dept.
of Appl. Analysis and Computer Science, Waterloo,
Canada (1973).

{51 G.T. Herman and G. Rozenberg, Developmental sys-
tems and languages (North-Hollend Publ. Comp.,
Amsterdam, 1975).

[6] A. Ehr:nfeucht, G. Rozenberg and S. Skyum, A rela-
tionship betwzen ETOL and EDTOL languages, Theor.
Computer Science (to appear).

{71 R.M. Karp, Reducibility among combinatorial problems,
in: R.E. Miller and J.W. Thatcher (2d.), Complexity of
Computer Computations (Plenum Press, New York,
1973), 85-104.

[8] D.E. Knuth, A tenninological proposal, SIGACT NEWS
6, January 1974, 1218 (see also SIGACT NEWS 6,
April 1974, 15-16).

[9] D.J. Rosenkrantz, Programmed grammars and classes
of formal languages, JACM 16 (1969) 107--131.

[10] W.C. Rounds, Complexity of interinediate level languages,
Conf. Record 14¢th Ann. Symp. on Switching and
Automata Theory, lowa (1973) 145 -158.

[11} G. Rozenberg, TOL systems and languages, Inform. and
Control 23 (1973) 357-381.

{12]) G. Rozenberg, Personal commizaication (1974).

{13] A Salomnaa, Formal Languages, /icad. Press. New York
(1973).

Volume 3, number § INFORMATION PROCESSING LETTERS May 1975

{14] E. Shamir and C. Beeri, Checking stacks and context-free {1-' J. % :r Leenwen, Extremal p. operties of non-detzrministic

programmed grammars accept p-cqmplete languages, in: time-coniplexity classes, Proc. Inwern. Computing Sym-
J. Loeckx (ed.), ¥roc. 2nd Colloquium on Automata, posium 1975, Antibes-Juar le. Pins (North-Holland Publ.
Languages, and Programming, Springer Lecture Notes in Comp.) to appear.

Computer Science 14 (1974) 27-33.

143

