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We propose a component-based semantic model for Cyber-Physical Systems (CPSs) wherein the no-

tion of a component abstracts the internal details of both cyber and physical processes, to expose

a uniform semantic model of their externally observable behaviors expressed as sets of sequences

of observations. We introduce algebraic operations on such sequences to model different kinds of

component composition. These composition operators yield the externally observable behavior of

their resulting composite components through specifications of interactions of the behaviors of their

constituent components, as they, e.g., synchronize with or mutually exclude each other’s alternative

behaviors. Our framework is expressive enough to allow articulation of properties that coordinate

desired interactions among composed components within the framework, also as component behav-

ior. We demonstrate the usefulness of our formalism through examples of coordination properties in

a CPS consisting of two robots interacting through shared physical resources.

1 Introduction

Compositional approaches in software engineering reduce the complexity of specification, analysis, ver-

ification, and construction of software by decomposing it into (a) smaller parts, and (b) their interactions.

Applied recursively, compositional methods reduce software complexity by breaking the software and its

parts into ultimately simple modules, each with a description, properties, and interactions of manageable

size. The natural tendency to regard each physical entity as a separate module in a Cyber-Physical Sys-

tem (CPS) makes compositional methods particularly appealing for specification, analysis, verification,

and construction of CPSs. However, the distinction between discrete versus continuous transformations

in modules representing cyber versus physical processes complicates the semantics of their specification

and their treatment by requiring: (1) distinct formalisms to model discrete and continuous phenom-

ena; (2) distinct formalisms to express composition and interactions of cyber-cyber, cyber-physical, and

physical-physical pairs of modules; and (3) when to use which formalism to express composition and

interactions of hybrid cyber-physical modules. Our work is distinguished from existing work in the

following sense.

First, we make coordination mechanisms explicit and exogenous to components. Components are

standalone entities that exhibit a behavior (which may be described by a finite state automaton, hybrid

automaton, or a set of differential equations), and the interaction between component is given by a set

of constraints on behaviors of each component. One such composition operation, also widely used in

the design of modular systems [4] is set intersection: each component interacts with other component by

producing a behavior that is consistent with shared events. We generalize such composition operations
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to ease the specification of interaction between cyber-physical components. We also show the benefit in

modeling interaction exogenously when it comes to reasoning about, say asymmetric product operations,

or proving some algebraic properties.

Then, we unify cyber and physical aspects within the same semantic model. While this feature is

present in some other works (e.g., signal semantics for cyber-physical systems [16, 24], time data streams

for connectors [4]), we add a structural constraint by imposing an observable to be a set of events that

happen at the same time. As a result, we abstract the underlying data flow (e.g., causality rules, input-

output mechanism, structural ports) that must be implemented for such observable to happen in other

models. We believe that this abstraction is different from traditional approaches to design cyber-physical

systems and, for instance, may naturally compose a set of observations occurring at the same time to a

new observation formed by the union of their observables. The TES model proposed in this paper dif-

fers from the trace semantics in [4] in that it explicitly and directly expresses synchronous occurrences of

events. Like the one in [4] but unlike many other trace semantics that effectively assume a discrete model

of time, the TES model is based on a dense model of time. These distinctions become significant in en-

abling a compositional semantic model where the sequences of actions of individual components/agents

are specified locally, not necessarily in lock-step with those of other entities. It is on this basis that

we can define our expressive generic composition operators with interesting algebraic properties. The

advantages of this compositional semantics include not just modular, reusable specification of compo-

nents, but also modular abstractions that allow reasoning and verification following the assume/guarantee

methodology.

Finally, we give an alternative view on satisfaction of trace and behavioral properties of cyber-

physical systems. We expose properties as components and show how to express coordination as a

satisfaction problem (i.e., adding to the system of components a coordinator that restricts each compo-

nent to a subset of their behavior to comply with a trace property). We show that trace properties are not

adequate to capture all important properties. We introduce behavioral properties, which are analogous

to hyperproperties [6]. We show, for instance, how the energy adequacy property in a cyber-physical

system requires both a behavioral property and a trace property.

Contribution

• we propose a semantic model of interacting cyber and physical processes based on sequences of

observations,

• we define an algebraic framework to express interactions between time sensitive components,

• we give a general mechanism, using a co-inductive construction, to define algebraic operations on

components as a lifting of some constraints on observations,

• we introduce two classes of properties on components, trace properties and behavior properties,

and demonstrate their application in an example.

Our approach differs from more concrete approaches (e.g., operational models, executable specifi-

cations, etc.) in the sense that our operations on components model operations of composition at the

semantic level.

We first intuitively introduce some key concepts and an example in Section 2. We provide in Sec-

tion 3 formal definitions for components, their composition, and their properties. We describe a detailed

example in Section 4. We present some related and our future work in Section 5, and conclude the paper

in Section 6.
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2 Coordination of energy-constrained robots on a field

In this work, we consider a cyber-physical system as a set of interacting processes. Whether a process

consists of a physical phenomenon (sun rising, electro-chemical reaction, etc.) or a cyber phenomenon

(computation of a function, message exchanges, etc.), it exhibits an externally observable behavior re-

sulting from some internal non-visible actions. Instead of a unified way to describe internals of cyber

and physical processes, we propose a uniform description of what we can externally observe of their

behavior and interactions.

In this section, we introduce some concepts that we will formalize later. An event may describe

something like the sun-rise or the temperature reading of 5◦C. An event occurs at a point in time,

yielding an event occurrence (e.g., the sun-rise event occurred at 6:28 am today), and the same event can

occur repeatedly at different times (the sun-rise event occurs every day). Typically, multiple events may

occur at “the same time” as measured within a measurement tolerance (e.g., the bird vacated the space at

the same time as the bullet arrived there; the red car arrived at the middle of the intersection at the same

time as the blue car did). We call a set of events that occur together at the same time an observable. A

pair (O, t) of a set of observable events O together with its time-stamp t represents an observation. An

observation (O, t) in fact consists of a set of event occurrences: occurrences of events in O at the same

time t. We call an infinite sequence of observations a Timed-Event Stream (TES). A behavior is a set of

TESs. A component is a behavior with an interface.

Consider two robot components, each interacting with its own local battery component, sharing a

field resource. The fact that the robots share the field through which they roam, forces them to somehow

coordinate their (move) actions. Coordination is a set of constraints imposed on the otherwise possible

observable behavior of components. In the case of our robots, if nothing else, at least physics prevents

the two robots from occupying the same field space at the same time. More sophisticated coordination

may be imposed (by the robots themselves or by some other external entity) to restrict the behavior of the

robots and circumvent some undesirable outcomes, including hard constraints imposed by the physics

of the field. The behaviors of components consist of timed-event streams, where events may include

some measures of physical quantities. We give in the sequel a detailed description of three components,

a robot (R), a battery (B), and a field (F), and of their interactions. We use SI system units to quantify

physical values, with time in seconds (s), charging status in Watt hour (Wh), distance in meters (m),

force in newton (N), speed in meters per second (ms−1).

A robot component, with identifier R, has two kinds of events: a read event (read(bat,R);b) that

measures the level b of its battery or (read(loc,R); l) that obtains its position l, and a move event

(move(R);(d,α)) when the robot moves in the direction d with energy α (in W). The TES in the Robot

column in Table 1 shows a scenario where robot R reads its location and gets the value (0;0) at time 1s,

then moves north with 20W at time 2s, reads its location and gets (0;1) at time 3s, and reads its battery

value and gets 2000Wh at time 4s, ....

A battery component, with identifier B, has three kinds of events: a charge event (charge(B);ηc),
a discharge event (discharge(B);ηd), and a read event (read(B);s), where ηd and ηc are respectively

the discharge and charge rates of the battery, and s is the current charge status. The TES in the Battery

column in Table 1 shows a scenario where the battery discharged at a rate of 20W at time 2s, and reported

its charge-level of 2000Wh at time 4s, ....

A field component, with identifier F , has two kinds of events: a position event (loc(I); p) that obtains

the position p of an object I, and a move event (move(I);(d,F)) of the object I in the direction d with

traction force F (in N). The TES in the Field column in Table 1 shows a scenario where the field has the

object I at location (0;0) at time 1s, then the object I moves in the north direction with a traction force
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Table 1: Each column displays a segment of a timed-event stream for a robot, a battery, and a field com-

ponent, where observables are singleton events. For t ∈ R+, we use R(t),B(t), and F(t) to respectively

denote the observable at time t for the TES in the Robot, the Battery, and the Field column. An explicit

empty set is not mandatory if no event is observed.

Robot (R) Battery (B) Field (F)
Robot-Battery-

Field

1s {(read(loc,R);(0;0))} {(loc(I);(0;0))} R(1)∪F(1)
2s {(move(R);(N,20W))} {(discharge(B);20W)} {(move(I);(N,40N))} R(2)∪B(2)∪F(2)
3s {(read(loc,R);(0;1))} {(loc(I);(0;1))} R(3)∪F(3)
4s {(read(bat,R);2000Wh)} {(read(B);2000Wh)} R(4)∪B(4)
... ... ... ... ...

of 40N at time 2s, subsequently to which the object I is at location (0;1) at time 3s, ....

When components interact with each other, in a shared environment, behaviors in their composition

must also compose with a behavior of the environment. For instance, a battery component may constrain

how many amperes it delivers, and therefore restrict the speed of the robot that interacts with it. We

specify interaction explicitly as an exogenous binary operation that constrains the composable behaviors

of its operand components.

The robot-battery interaction imposes that a move event in the behavior of a robot coincides with

a discharge event in the behavior of the robot’s battery, such that the discharge rate of the battery is

proportional to the energy needed by the robot. The physicality of the battery prevents the robot from

moving if the energy level of the battery is not sufficient (i.e., such an anomalous TES would not exist

in the battery’s behavior, and therefore cannot compose with a robot’s behavior). Moreover, a read

event in the behavior of a robot component should also coincide with a read event in the behavior of its

corresponding battery component, such that the two events contain the same charge value.

The robot-field interaction imposes that a move event in the behavior of a robot coincides with a

move event of an object on the field, such that the traction force on the field is proportional to the energy

that the robot put in the move. A read event in the behavior of a robot coincides with a position event

of the corresponding robot object on the field, such that the two events contain the same position value.

Additional interaction constraints may be imposed by the physics of the field. For instance, the constraint

“no two robots can be observed at the same location” would rule out every behavior where the two robots

are observed at the same location.

A TES for the composite Robot-Battery-Field system collects, in sequence, all observations from

a TES in a Robot, a Battery, and a Field component behavior, such that at any moment the interaction

constraints are satisfied. The column Robot-Battery-Field in Table 1 displays the first elements of such a

TES.

3 Components, composition, and properties

Each lemma of the section has its proof in the technical report [15].

3.1 Notations

An event is a simplex (the most primitive form of an) observable element. An event may or may not have

internal structure. For instance, the successive ticks of a clock are occurrences of a tick event that has

no internal structure; successive readings of a thermometer, on the other hand, constitute occurrences of
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a temperature-reading event, each of which has the internal structure of a name-value pair . Similarly,

we can consider successive transmissions by a mobile sensor as occurrences of a structured event, each

instance of which includes geolocation coordinates, barometric pressure, temperature, humidity, etc. Re-

gardless of whether or not events have internal structures, in the sequel, we regard events as uninterpreted

simplex observable elements.

Notation 1 (Events). We use E to denote the universal set of events.

An observable is a set of event occurrences that happen together and an observation is a pair (O, t)
of an observable O and a time-stamp t ∈ R+.1 An observation (O, t) represents an act of atomically

observing occurrences of events in O at time t. Atomically observing occurrences of events in O at time

t means there exists a small ε ∈R+ such that during the time interval [t − ε , t + ε ]:

1. every event e ∈ O is observed exactly once2, and

2. no event e 6∈ O is observed.

We write 〈s0,s1, ...,sn−1〉 to denote a finite sequence of size n of elements over an arbitrary set S,

where si ∈ S for 0 ≤ i ≤ n− 1. The set of all finite sequences of elements in S is denoted as S∗. A

stream3 over a domain S is a function σ : N → S. We use σ(i) to represent the i+ 1st element of σ ,

and given a finite sequence s = 〈s0, ...,sn−1〉, we write s ·σ to denote the stream τ ∈ N → S such that

τ(i) = si for 0 ≤ i ≤ n− 1 and τ(i) = σ(i− n) for n ≤ i. We use σ ′ to denote the derivative of σ , such

that σ ′(i) = σ(i+1) for all i ∈N.

A Timed-Event Stream (TES) over a set of events E and a set of time-stamps R+ is a stream σ ∈N→
(P(E)×R+) where, for σ(i) = (Oi, ti):

1. for every i ∈N, ti < ti+1, [i.e., time monotonically increases] and

2. for every n ∈ N, there exists i ∈ N such that ti > n [i.e., time is non-Zeno progressive].

Notation 2 (Time stream). We use OS(R+) to refer to the set of all monotonically increasing and non-

Zeno infinite sequences of elements in R+.

Notation 3 (Timed-Event Stream). We use TES(E) to denote the set of all TESs whose observables are

subsets of the event set E with elements in R+ as their time-stamps.

Given a sequence σ = 〈(O0, t0),(O1, t1),(O2, t2), ...〉 ∈ TES(E), we use the projections pr1(σ)∈N→
P(E) and pr2(σ) ∈N→R+ to denote respectively the sequence of observables 〈O0,O1,O2, ...〉 and the

sequence of time stamps 〈t0, t1, t2, ...〉.

3.2 Components

The design of complex systems becomes simpler if such systems can be decomposed into smaller sub-

systems that interact with each other. In order to simplify the design of cyber-physical systems, we

abstract from the internal details of both cyber and physical processes, to expose a uniform semantic

model. As a first class entity, a component encapsulates a behavior (set of TESs) and an interface (set of

events).

Like existing semantic models, such as time-data streams [4], time signal [24], or discrete clock [8],

we use a dense model of time. However, we allow for arbitrary but finite interleavings of observations. In

1Any totally ordered dense set would be suitable as the domain for time (e.g., positive rationals Q+). For simplicity, we use

R+, the set of real numbers r ≥ 0 for this purpose.
2A finer time granularity may reveal some ordering relation on the occurrence of events in the same set of observation.
3The set N denotes the set of natural numbers n ≥ 0.
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addition, our structure of an observation imposes atomicity of event occurrences within an observation.

Such constraints abstract from the precise timing of each event in the set, and turn an observation into an

all-or-nothing transaction.

Definition 1 (Component). A component is a tuple C = (E,L) where E ⊆ E is a set of events, and

L ⊆ TES(E) is a set of TESs. We call E the interface and L the externally observable behavior of C.

More particularly, Definition 1 makes no distinction between cyber and physical components. We

use the following examples to describe some cyber and physical aspects of components.

Example 1. Consider a set of two events E = {0,1}, and restrict our observations to {1} and {0}. A

component whose behavior contains TESs with alternating observations of {1} and {0} is defined by the

tuple (E,L) where

L = {σ ∈ TES(E) | ∀i ∈ N. (pr1(σ)(i) = {0} =⇒ pr1(σ)(i+1) = {1})∧
(pr1(σ)(i) = {1} =⇒ pr1(σ)(i+1) = {0})}

Note that this component is oblivious to time, and any stream of monotonically increasing non-Zeno real

numbers would serve as a valid stream of time stamps for any such sequence of observations. �

Example 2. Consider a component encapsulating a continuous function f : (D0×R+)→ D, where D0 is

a set of initial values, and D is the codomain of values for f . Such a function can describe the evolution

of a physical system over time, where f (d0, t) = d means that at time t the state of the system is described

by the value d ∈ D if initialized with d0. We define the set of all events for this component as the range

of function f given an initial parameter d0 ∈ D0. The component is then defined as the pair (D,L f ) such

that:

L f = {σ ∈ TES(D) | ∃d0 ∈ D0. ∀i ∈N. pr1(σ)(i) = { f (d0,pr2(σ)(i))}}

Observe that the behavior of this component contains all possible discrete samplings of the function f at

monotonically increasing and non-Zeno sequences of time stamp. Different instances of f would account

for various cyber and physical aspects of components. �

3.3 Composition

A complex system typically consists of multiple components that interact with each other. The example

in Section 2 shows three components, a robot, a battery, and a field, where: a move observable of a

robot must coincide with a move observable of the field and a discharge observable of its battery. The

design challenge is to faithfully represent the interactions among involved components, while keeping

the description modular, i.e., specify the robot, the battery, and the field as separate, independent, but

interacting components. We present in this section a mechanism to describe composability constraints

on behavior, and composition operators to construct complex components out of simpler ones. Such

construction opens possibilities for modular reasoning both about the interaction among components

and about their resulting composite behavior.

We express composability constraints on behaviors using relations4 . we introduce a generalized no-

tion of a composability relation to capture the allowed interaction among two components. By modeling

composability constraints explicitly, we expose the logic of the interaction that governs the formation of

a composite behavior between two components.

Definition 2 (Composability relation on TESs). A composability relation is a parametrized relation R

such that for all E1,E2 ⊆ E, we have R(E1,E2)⊆ TES(E1)×TES(E2).

4Also non binary relations could be considered, i.e., constraints imposed on two components.
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Definition 3 (Symmetry). A parametrized relation Q is symmetric if, for all (x1,x2) and for all (X1,X2):
(x1,x2) ∈ Q(X1,X2) ⇐⇒ (x2,x1) ∈ Q(X2,X1).

A composability relation on TESs serves as a necessary constraint for two TESs to compose. We

give in Section 3.4 some examples of useful composability relations on TESs that, e.g., enforce synchro-

nization or mutual exclusion of observables. We define composition of TESs as the act of forming a new

TES out of two TESs.

Definition 4. A composition function ⊕ on TES is a function ⊕ : TES(E)×TES(E)→ TES(E).

We define a binary product operation on components, parametrized by a composability relation and

a composition function on TESs, that forms a new component. Intuitively, the newly formed component

describes, by its behavior, the evolution of the joint system under the constraint that the interactions in

the system satisfy the composability relation. Formally, the product operation returns another compo-

nent, whose set of events is the union of sets of events of its operands, and its behavior is obtained by

composing all pairs of TESs in the behavior of its operands deemed composable by the composability

relation.

Definition 5 (Product). Let (R,⊕) be a pair of a composition function and a composability relation on

TESs, and Ci = (Ei,Li), i ∈ {1,2}, two components. The product of C1 and C2, under R and ⊕, denoted

as C1 ×(R,⊕)C2, is the component (E,L) where E = E1 ∪E2 and L is defined by

L = {σ1 ⊕σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1,σ2) ∈ R(E1,E2)}

Definition 5 presents a generic composition operator, where composition is parametrized over a com-

posability relation and a composition function.

Lemma 1. Let ⊕1 and ⊕2 be two composition functions on TESs, and let R1 and R2 be two composability

relations on TESs. Then:

• if R1 is symmetric, then ×(R1,⊕1) is commutative if and only if ⊕1 is commutative;

• if, for all Ei ⊆ E and σi ∈ TES(Ei) with i ∈ {1,2,3}, we have

(σ1,σ2 ⊕2 σ3) ∈ R1(E1,E2 ∪E3)∧ (σ2,σ3) ∈ R2(E2,E3) ⇐⇒

(σ1,σ2) ∈ R1(E1,E2)∧ (σ1 ⊕1 σ2,σ3) ∈ R2(E1 ∪E2,E3)

then ×(R1,⊕1) and ×(R2,⊕2) are associative if and only if σ1 ⊕1 (σ2 ⊕2 σ2) = (σ1 ⊕1 σ2)⊕2 σ3

• if for all E ⊆ E and σ ,τ ∈ TES(E), we have (σ ,τ) ∈ R1(E,E) =⇒ σ = τ , then ×(R1,⊕1) is

idempotent if and only if ⊕1 is idempotent.

The generality of our formalism allows exploration of other kinds of operations on components, such

as division. Intuitively, the division of a component C1 by a component C2 yields a component C3 whose

behavior contains all TESs that can compose with TESs in the behavior of C2 to yield the TESs in the

behavior of C1.

Definition 6 (Division). Let R be a composability relation on TESs, and ⊕ a composition function on

TESs. The division of two components C1 = (E1,L1) and C2 = (E2,L2) under R and ⊕, denoted as

C1/(R,⊕)C2, is the component C = (E1,L) such that:

L = {σ ∈ TES(E1) | ∃σ2 ∈ L2. (σ ,σ2) ∈ R(E1,E2)∧σ ⊕σ2 ∈ L1}
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If the dividend is C1 =C′
1 ×(R,⊕)C

′
2, and the divisor is an operand of the product, e.g., C2 =C′

2, then

the behavior of the result of the division, C, contains all TESs in the behavior of the other operand (i.e.,

C′
1) composable with a TES in the behavior of C2.

Lemma 2. Let C1 = (E1,L1) and C2 = (E2,L2) be two components. Let (C1 ×(R,⊕) C2)/(R,⊕)C2 =
(E3,L3), with (R,⊕) a pair of a composability relation and a composition function on TESs. Then,

{σ1 ∈ L1 | ∃σ2 ∈ L2. (σ1,σ2) ∈ R(E1 ∪E2,E2)∩R(E1,E2)} ⊆ L3

Corollary 1. In the case where R =⊤ (see Definition 9) then L1 ⊆ L3.

The results of Section 3.3 show a wide variety of product operations that our semantic model offers.

Given a fixed set of components, one can change how components interact by choosing different com-

posability relations and composition functions. We also give some sufficient conditions for a product

operation on components to be associative, commutative, and idempotent, in terms of the algebraic prop-

erties of its composability relation and its composition function. Such results are useful to simplify and

to prove equivalence between component expressions.

3.4 A co-inductive construction for composition operators

In Section 3.3, we presented a general framework to design components in interaction. As a result, the

same set of components, under different forms of interaction, leads to the creation of alternative systems.

The separation of the composability constraint and the composition operation gives complete control to

design different interaction protocols among components.

In this section, we provide a co-inductive construction for composability relations on TESs. We

show how constraints on observations can be lifted to constraints on TESs, and give weaker conditions for

Lemma 1 to hold. The intuition for such construction is that, in some cases, the condition for two TESs to

be composable depends only on a composability relation on observations. An example of composability

constraint for a robot with its battery and a field enforces that each move event discharges the battery and

changes the state of the field. As a result, every move event observed by the robot must coincide with a

discharge event observed by the battery and a change of state observed by the field. The lifting of such

composability relation on observations to a constraint on TESs is defined co-inductively.

Definition 7 (Composability relation). A composability relation on observations is a parametrized rela-

tion κ s.t. for all pairs (E1,E2) ∈P(E)×P(E), we have κ(E1,E2)⊆ (P(E1)×R+)× (P(E2)×R+)

Definition 8 (Lifting- composability relation). Let κ be a composability relation on observations, and

let Φκ : P(E)2 → (P(TES(E)2)→ P(TES(E)2)) be such that, for any R ⊆ TES(E)2:

Φκ(E1,E2)(R) = {(τ1,τ2) | (τ1(0),τ2(0)) ∈ κ(E1,E2)∧
(pr2(τ1)(0) = t1 ∧pr2(τ2)(0) = t2)∧
(t1 < t2 ∧ (τ ′

1,τ2) ∈ R ∨ t2 < t1 ∧ (τ1,τ
′
2) ∈ R∨

t2 = t1 ∧ (τ ′
1,τ

′
2) ∈ R)}

The lifting of κ on TESs, written [κ ], is the parametrized relation obtained by taking the fixed point of the

function Φκ(E1,E2) for arbitrary pair E1,E2 ⊆ E, i.e., the relation [κ ](E1,E2) =
⋃

R⊆TES(E)×TES(E){R |
R ⊆ Φκ(E1,E2)(R)}.

Lemma 3 (Correctness of lifting). For any E1,E2 ⊆ E, the function Φκ is monotone, and therefore has

a greatest fixed point.
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Lemma 4. If κ is a composability relation on observations, then the lifting [κ ] is a composability relation

on TESs. Moreover, if κ is symmetric (as in Definition 3), then [κ ] is symmetric.

As a consequence of Lemma 4, any composability relation on observations gives rise to a compos-

ability relation on TESs. We define three composability relations on TESs, where Definition 10 and

Definition 11 are two examples that construct co-inductively the composability relation on TESs from a

composability relation on observations. For the following definitions, let C1 = (E1,L1) and C2 = (E2,L2)
be two components, and ⊕ be a composition function on TESs.

Definition 9 (Free composition). We use ⊤ for the most permissive composability relation on TESs such

that, for any σ ,τ ∈ TES(E), we have (σ ,τ) ∈ ⊤.

The behavior of component C1 ×(⊤,⊕)C2 contains every TES obtained from the composition under

⊕ of every pair σ1 ∈ L1 and σ2 ∈ L2 of TESs. This product does not impose any constraint on event

occurrences of its operands.

Definition 10 (Synchronous composition). Let ⊓ ⊆ P(E)2 be a relation on observables. We define two

observations to be synchronous under ⊓ according to the following two conditions:

1. every observable that can compose (under ⊓) with another observable must occur simultaneously

with one of its related observables; and

2. only an observable that does not compose (under ⊓) with any other observable can occur inde-

pendently, i.e., at a different time.

A synchronous composability relation on observations κsync,⊓(E1,E2) satisfies the two conditions above.

For any two observations (Oi, ti) ∈ P(Ei)×R+ with i ∈ {1,2}, ((O1, t1),(O2, t2)) ∈ κsync,⊓(E1,E2) if

and only if:

(t1 < t2 ∧ ¬(∃O′
2 ⊆ E2. (O1,O

′
2) ∈ ⊓)) ∨

(t2 < t1 ∧ ¬(∃O′
1 ⊆ E1. (O

′
1,O2) ∈ ⊓)) ∨

t2 = t1 ∧ ((O1,O2) = (O′
1 ∪O′′

1,O
′
2 ∪O′′

2)∧ (O′
1,O

′
2) ∈ ⊓ ∧

((∀O ⊆ E2. (O
′′
1 ,O) 6∈ ⊓)∧∀O ⊆ E1. (O,O′′

2) 6∈ ⊓)∨ (O1,O2) = ( /0, /0))

Example 3. Let E1 = {a,b} and E2 = {c,d} with ⊓= {({a},{c})}. Thus, (({a}, t1),({d}, t2)) ∈ κsync,⊓

if and only if t2 < t1. Alternatively, we have (({a}, t1),({c}, t2)) ∈ κsync,⊓ if and only if t1 = t2.

The lifting [κsync,⊓], written ⊲⊳⊓, defines a synchronous composability relation on TESs. The behavior

of component C1×(⊲⊳⊓,⊕)C2 contains TESs obtained from the composition under ⊕ of every pair σ1 ∈ L1

and σ2 ∈ L2 of TESs that are related by the synchronous composability relation ⊲⊳⊓ which, depending on

⊓, may exclude some event occurrences unless they synchronize. 5

Definition 11 (Mutual exclusion). Let ⊓⊆ P(E)2 be a relation on observables. We define two observa-

tions to be mutually exclusive under the relation ⊓ if no pair of observables in ⊓ can be observed at the

same time. The mutually exclusive composability relation κexcl,⊓ on observations allows the composition

of two observations (O1, t1) and (O2, t2), i.e., ((O1, t1),(O2, t2)) ∈ κexcl,⊓(E1,E2), if and only if

(t1 < t2)∨ (t2 < t1)∨ (¬(O1⊓O2)∧ t1 = t2)

Example 4. Let E1 = {a,b} and E2 = {c,d} with ⊓= {({a},{c})}. Thus, (({a}, t1),({c}, t2)) 6∈ κexcl,⊓

for any t2 = t1, and {a} and {c} are two mutually exclusive observables.

5If we let ⊕ be the element wise set union, define an event as a set of port assignments, and in the pair (⊲⊳⊓,⊕) let ⊓ be

true if and only if all common ports get the same value assigned, then this composition operator produces results similar to the

composition operation in Reo [4].
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Similarly as in Example 10, the lifting [κexcl,⊓] of κexcl,⊓, written ∦⊓, defines a mutual exclusion com-

posability relation on TESs. The behavior of component C1 ×(∦⊓,⊕)C2 contains TESs resulting from the

composition under ⊕ of every pair σ1 ∈ L1 and σ2 ∈ L2 of TESs that are related by the mutual exclusion

composability relation ∦⊓ which, depending on ⊓, may exclude some simultaneous event occurrences.

Similarly, we give a mechanism to lift a composition function on observable to a composition func-

tion on TESs. Such lifting operation interleaves observations with different time stamps, and compose

observations that occur at the same time.

Definition 12 (Lifting - composition function). Let + : P(E)×P(E)→ P(E) be a composition func-

tion on observables. The lifting of + to TESs is [+] : TES(E)×TES(E)→ TES(E) s.t., for σi ∈ TES(E)
where σi(0) = (Oi, ti) with i ∈ {1,2}:

σ1[+]σ2 =











〈σ1(0)〉 · (σ
′
1[+]σ2) if t1 < t2

〈σ2(0)〉 · (σ1[+]σ ′
2) if t2 < t1

〈(O1 +O2, t1)〉 · (σ
′
1[+]σ ′

2) otherwise

Definition 12 composes observations only if their time stamp is the same. Alternative definitions

might consider time intervals instead of exact times.

Besides the product instances detailed in Definitions 9, 10, 11, the definition of composability re-

lation or composition function as the lift of some composability relation on observations or function on

observables allows weaker sufficient conditions for Lemma 1 to hold.

Lemma 5. Let +1 and +2 be two composition functions on observables and let κ1 and κ2 be two com-

posability relation on observations. Then,

• ×([κ1],[+1]) is commutative if κ1 is symmetric and +1 is commutative;

• ×([κ1],[+1]) and ×([κ2],[+2]) are associative if, for all Ei ⊆ E and for any triple of observations oi =
(Oi, ti) ∈ P(Ei)×R+ with i ∈ {1,2,3}, we have (O1 +1 O2)+2 O3 = O1 +1 (O2 +2 O3) and

((o1,o2) ∈ κ(E1,E2)∧ (ι1(o1,o2),o3) ∈ κ(E1 ∪E2,E3)) ⇐⇒
((o2,o3) ∈ κ(E2,E3)∧ (o1, ι2(o2,o3)) ∈ κ(E1,E2 ∪E3))

with ιk((O, t),(P, l)) =











(O, t) if t < l

(P, l) if l < t

(O+k P, t)

, where k ∈ {1,2}.

• ×([κ1],[+1]) is idempotent if +1 is idempotent and, for all E ⊆ E we have ((O1, t1),(O2, t2)) ∈
κ1(E,E) =⇒ (O1, t1) = (O2, t2).

3.5 Properties

We distinguish two kinds of properties: properties on TESs that we call trace properties, and properties

on sets of TESs that we call behavior properties, which correspond to hyper-properties in [6]. The

generality of our model permits to interchangeably construct a component from a property and extract

a property from a component. As illustrated in Example 7, when composed with a set of interacting

components, a component property constrains the components to only expose desired behavior (i.e.,

behavior in the property). In Section 4, we provide more intuition for the practical relevance of these

properties.
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Definition 13. A trace property P over a set of events E is a subset P⊆ TES(E). A component C = (E,L)
satisfies a property P, if L ⊆ P, which we denote as C |= P.

Example 5. We distinguish the usual safety and liveness properties [3, 6], and recall that every property

can be written as the intersection of a safety and a liveness property. Let X be an arbitrary set, and P be

a subset of N→ X. Intuitively, P is safe if every bad stream not in P has a finite prefix every completion

of which is bad, hence not in P. A property P is a liveness property if every finite sequence in X∗ can be

completed to yield an infinite sequence in P.

For instance, the property of terminating behavior for a component with interface E is a liveness prop-

erty, defined as:

Pfinite(E) = {σ ∈ TES(E) | ∃n ∈ N.∀i > n. pr1(σ)(i) = /0}

Pfinite(E) says that, for every finite prefix of any stream in TES(E), there exists a completion of that prefix

with an infinite sequence of silent observations /0 in Pfinite(E). �

Example 6. A trace property is similar to a component, since it describes a set of TESs, except that it

is a priori not restricted to any interface. A trace property P can then be turned into a component, by

constructing the smallest interface EP such that, for all σ ∈P, and i∈N, pr1(σ)(i)⊆EP. The component

CP = (EP,P) is then the componentized-version of property P. �

Lemma 6. Let E be a set of events, and let ⊓ be the smallest relation such that for all non empty O ⊆ E,

(O,O) ∈ ⊓. Given a property P over E, its componentized-version CP (see Example 6), the product ⊲⊳⊓
as in Definition 10, and a component C = (E,L), then C |= P if and only if C×(⊲⊳⊓,[∪])CP =C.

Example 7. We use the term coordination property to refer to a property used in order to coordinate

behaviors. Given a set of n components Ci = (Ei,Li), i ∈ {1, ...,n}, a coordination property Coord

ranges over the set of events E = E1 ∪ ...∪En, i.e., Coord ⊆ TES(E).
Consider the synchronous interaction of the n components, with ⊓ a symmetric relation on ob-

servables, ⊕ an associative and commutative composition function on TESs, and let C = ((C1 ×(⊲⊳⊓,⊕)

C2)...×(⊲⊳⊓,⊕)Cn) be their synchronous product. Typically, a coordination property will not necessarily

be satisfied by the composite component C, but some of the behavior of C is contained in the coor-

dination property. The coordination problem is to find (e.g., synthesize) an orchestrator component

Orch = (EO,LO) such that C×(⊲⊳⊓,⊕) Orch |= Coord. The orchestrator restricts the component C to ex-

hibit only the subset of its behavior that satisfies the coordination property. In other words, in their

composition, Orch coordinates C to satisfy Coord. The coordination problem can be made even more

granular by changing the composability relations or the composition functions used in the construction

of C.

As shown in Example 6, since Coord ranges over the same set E that is the interface of component

((C1 ×(⊲⊳⊓,⊕)C2)...×(⊲⊳⊓,⊕)Cn), a coordination property can be turned into an orchestrator by building

its corresponding component. �

Trace properties are not sufficient to fully capture the scope of interesting properties of components

and cyber-physical systems. Some of their limitations are highlighted in Section 4. To address this issue,

we introduce behavior properties, which are strictly more expressive than trace properties, and give two

illustrative examples.

Definition 14. A behavior property φ over a set of events E is a hyper-property φ ⊆ P(TES(E)). A

component C = (E,L) satisfies a hyper-property φ if L ∈ φ , which we denote as C ||= φ .

Example 8. A component C = (E,L) can be oblivious to time. Any sequence of time-stamps for an ac-

ceptable sequence of observables is acceptable in the behavior of such a component. This “obliviousness
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to time” property is not a trace property, but a hyper-property, defined as:

φshift(E) := {Q ⊆ TES(E) | ∀σ ∈ Q.∀t ∈ OS(R+).∃τ ∈ Q.pr1(σ) = pr1(τ)∧pr2(τ) = t}

Intuitively, if C ||= φshift(E), then C is independent of time. �

Example 9. We use φinsert(X ,E) to denote the hyper-property that allows for arbitrary insertion of ob-

servations in X ⊆ P(E) into every TES at any point in time, i.e., the set defined as:

{Q ⊆ TES(E) | ∀σ ∈ Q.∀i ∈ N.∃τ ∈ Q.∃x ∈ X .(∀ j < i. σ( j) = τ( j)) ∧
(∃ t ∈R+. τ(i) = (x, t)) ∧
(∀ j ≥ i. τ( j+1) = σ( j)) }

Intuitively, elements of φinsert(X ,E) are closed under insertion of an observation O ⊆ X at an arbitrary

time. �

4 Application

This section is inspired by the work on soft-agents [23, 12], and elaborates on the more intuitive version

this work presented in Section 2. We show in Sections 4.1 and 4.2 some expressions that represent

interactive cyber-physical systems, and in Section 4.3 we formulate some trace and behavior properties of

those systems. Through this example, we show the details of how we use component based descriptions

to model a simple scenario of a robot roaming around in a field while taking energy from its battery. We

structurally separate the battery, the robot, and the field as independent components, and we explicitly

model their interaction in a specific composed system.

4.1 Description of components

We give, in order, a description for a robot, a battery, and a field component. Each component reflects a

local and concise view of the physical and cyber aspects of the system.

Robot. A robot component R is a tuple (ER,LR) with:

ER = {(read( loc,R); l),(read(bat,R);b),(move(R);(d,α)),(charge(R);s) |
l ∈ [0,20]2, b ∈R+, d ∈ {N,E,W,S}, α ∈ R+, s ∈ {ON,OFF}}

LR = {σ ∈ TES(ER) | ∀i ∈ N.∃e ∈ ER. pr1(σ)(i) = {e}}

where the read of the position, the read of the battery, the move, and the charge events contain respectively

the position of the robot as a pair of coordinates l ∈ [0,20]2 grid; the remaining battery power b (in Wh);

the move direction as pair of a cardinal direction d and a positive number α for a demand of energy (in

W); and the charge status s as ON or OFF. Note that the set of TESs LR allows for arbitrary increasing

and non-Zeno sequences of timestamp.

Battery. A battery component B(C) with capacity C (in Wh) is a tuple (EB,LB) with:

EB = {(read(B); l),(discharge(B);ηd),(charge(B);ηc) | 0 ≤ l ≤C, ηc,ηd : R+ → R+}

LB = {σ ∈ TES(EB) | ∀i ∈N.∃e ∈ EB. pr1(σ)(i) = {e}∧PB(σ)}
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where the read, the charge, and the discharge events respectively contain the current charge status l

(in Wh), the discharge rate ηd , and the charge rate ηc. The discharge and charge rates are coefficients

that depend on the internal constitution of the battery, e.g., its current and voltage, and influence how

the battery supplies energy to its user. The integration of ηd (or ηc) on a time interval gives the power

delivered (or received) by the battery in Wh. The predicate PB(σ) guarantees that every behavior σ of the

battery satisfies the physical constraints for its acceptability. An example for the structural constraint PB

is that every read event instance returns the battery level as a function of the occurrence of prior discharge

and charge events. We introduce the lev function, that takes a sequence of observations s ∈ (P(E)×
R+)

∗ of size i > 1 and returns the cumulative energy spent: lev(s) = lev(〈s(0),s(1)〉)+ lev(〈s(1)...s(i)〉),
where

lev(〈(O1, t1),(O2, t2)〉) =











∫ t2
t1
(ηd(t)+ηI(t))dt i f (discharge(B);ηd) ∈ O1

∫ t2
t1
(ηI(t)−ηc(t))dt i f (charge(B);ηc) ∈ O1

∫ t2
t1

ηI(t)dt otherwise

and ηI is an internal discharge rate. The constraint PB is defined such that all (read(B); l) events in EB

return the current battery level of the robot, in accordance with the lev function, i.e., for all σ ∈ LB:

∀i ∈ N.(read(B); l) ∈ pr1(σ)(i) =⇒ l = min(C,max(C− lev(〈σ(0), ...,σ(i)〉),0))

where C is the maximum capacity of the battery. The property PB assumes that initially at t = 0 the battery

is at its maximum charge C, that the battery level decreases after each discharge event, increases after

each charge event, proportionally to the discharge and the charge rates. Moreover, a discharge below

0 is physically forbidden. Observe that different alternatives for the predicate PB account for different

models of batteries. Moreover, our model allows for specifications where the discharge factor depends

on external parameters (temperature, discharge level, etc), adding a non-linear aspect to the model.

Field. A field component F(l0) contains a single object that we identify as I initially at location l0, has

a fixed size of [0,20]2, and contains a charging station at location (5;5). A field component is a tuple

(EF ,LF) with:

EF = {(loc(I); p),(move(I);(d,F)) | p ∈ [0,20]2, d ∈ {N,S,E,W}, Ft ∈ R+}

LF = {σ ∈ TES(EF) | ∀i ∈ N.∃e ∈ EF . pr1(σ)(i) = {e}∧PF(σ)}

where the loc and the move events respectively contain the position of object I and the pair of a direction

d of the move of object I and a force Ft of traction applied by object I. A field has an internal friction

factor µ whose value depends on the position on the field. With a friction value of 0, the object will have

no traction and thus will stay put in place instead of moving on the field (e.g., failure to move on a layer

of ice). With a friction of 1, the move event will displace the object proportionally to the force of the

move (e.g., a move on a layer of concrete). A friction factor between 0 and 1 captures other scenarios

between those two extremes (e.g., a move on a layer of grass). The predicate PF(σ) guarantees that every

behavior σ satisfies the physics of the field component. PF models the case where the object I is initially

at position l0 and every move event changes continuously the location of the object on the field according

to the direction d, the force of traction Ft , and the friction µ . A move event has no effect if it occurs

while the position of I is on the boundary of the field: this scenario simulates the case of a fenced field,

where moving against the fence has the same observable as not moving.

The internal constraints of the field are such that the move observation triggers an internal displace-

ment of object I proportional to the force that the object has applied. We write ∆d(t, t0,(x0,y0)) to denote
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the displacement from a time t0 where the object is at rest at position (x0,y0), to a time t, defined as:

m~a = ~Ft

ma = Ft

v(t, t0) = (
Ft

m
)(t − t0)

∆d(t, t0,(x0,y0)) =
1

2
(
Ft

m
)(t − t0)

2 (1)

where ||~Ft || ≤
1

4
µmg, e.g., the traction force on a wheel (supporting one fourth of the weight of the

object) is less than the maximal friction force, with µ the friction coefficient, m the mass of the object;

and Ft is the constant traction force of the object. Observe that we chose to make the friction coefficient

dependent on the initial position x0 of the object before the move. This choice reflects the simplifying

assumption that the friction will not substantially change during the movement. Alternatively, one can

imagine a different structure for the field component to support variable friction during a move in PF .

An example for the constraint PF reflects the constraint that for each sequence of observations, the

output value of a read event corresponds to the current position of the robot given its previous moves. We

will use a function called dis to determine the cumulative displacement of the robot after a sequence of

observations. Let s ∈ (P(E)×R+)
∗ be a finite sequence of observations of size i > 1. The displacement

of the object I, at position (x0,y0), after a sequence of events s is given by dis(〈(O0, t0)〉,(x0,y0)) =
(x0,y0) and dis(s,(x0,y0)) = dis(〈s(1), ...,s(i)〉,(x′ ,y′)), where for s(0) = (O0, t0) and s(1) = (O1, t1):

(x′,y′) =































(x0,y0 +∆d(t1, t0,(x0,y0))) i f (move(I);(N,Ft)) ∈ O0

(x0,y0 −∆d(t1, t0,(x0,y0))) i f (move(I);(S,Ft)) ∈ O0

(x0 +∆d(t1, t0,(x0,y0)),y0) i f (move(I);(E,Ft)) ∈ O0

(x0 −∆d(t1, t0,(x0,y0)),y0) i f (move(I);(W,Ft)) ∈ O0

(x0,y0) otherwise

with ∆d(t, t0,(x0,y0)) defined in Equation (1). PF is defined to accept all TESs such that every read event

returns the current position of the robot on the field, according to its displacement over time. Given

σ ∈ TES(EF), PF(σ) is true if and only if

∀i ∈ N. (loc(I); p) ∈ pr1(σ)(i) =⇒ p = |dis(〈σ(0)....σ(i)〉, l0)|[−20,20]

with |(x,y)|[−20,20] = (min(max(x,−20),20),min(max(y,−20),20)), and l0 the initial position of object

I. PF models the case where the robot starts in position l0 and every move event changes the location of

the robot on the field.

Robots R1 and R2 are two instances of the robot component, where all occurrences of R have been

renamed respectively to R1 and R2 (e.g., (read(loc,R), l) becomes (read(loc,R1), l) for the robot instance

R1, etc.). Similarly, we consider B1 and B2 to be two instances of the battery component B, and F1((0;0))
and F2((5;0)) to be two instances of the field component F parametrized by the initial location for the

object I, where the objects in fields F1 and F2 are renamed to I1 and I2, and respectively initialized at

position (0;0) and (5;0).
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4.2 Interaction

We detail three points of interactions on observables among a robot and its battery, a robot and a field on

which it moves, and two instances of a field component. The composability relations that relate the events

of a robot, a battery, and a field impose some necessary constraints for the physical consistency of the

cyber-physical system. For instance, that the power requested by the robot must match the characteristic

of the battery.

Robot-battery. Interactions between a robot component and its battery are such that, for instance,

every occurrence of a move event at the robot component must be simultaneous with a discharge event of

the battery, with the discharge factor proportional to the demand of energy from the robot. Given a robot

component R and a battery component B, we define the symmetric relation ⊓RB on the set P(ER ∪EB)
to be the smallest relation such that:

{(read(bat,R);b)} ⊓RB {(read(B);b)} for all 0 ≤ b ≤C

{(move(R);(d,α))} ⊓RB {(discharge(B);ηd)} for all d ∈{N,S,W,E}
{(charge(R);ON)} ⊓RB {(charge(B);ηc)}

with ηd(t) > α for all t ∈ R+, e.g, the power delivered by the battery during a discharge is greater than

the power required by the move; and C is the maximal battery capacity.

Robot-field. Interactions between a robot component and a field component are such that, for instance,

every move event of the robot component must be simultaneous with a move event of the object I on the

field, with a variable friction coefficient. Given a robot component R and a field component F , we define

the symmetric relation ⊓RF on the set P(ER ∪EF) to be the smallest relation such that:

{(read(loc,R); l)} ⊓FR {(loc(I); l)} for all l ∈ [0,20]2

{(move(R);(d,α))} ⊓FR {(move(I);(d,Ft))} for all d ∈ {N,W,E,S},v ∈R+

{(charge(R);ON)} ⊓FR {(loc(I);(5,5))}

with Ft =
α

Rω
with R the radius of the wheels of the robot and ω the speed of rotation of the wheels

(assumed to be constant during the move). Observe that a robot can charge only if it is located at the

charging station.

Field-field. We add also interaction constraints between two fields, such that no observation can gather

two read events containing the same position value. Thus, given two fields F1 and F2, let ⊓F12
be the

smallest symmetric mutual exclusion relation on the set P(EF1
∪EF2

) such that:

{(loc(I1); l)}⊓F12
{(loc(I2); l)} for all l ∈ [0,20]2.

Observe that we interpret ⊓F12
as a mutual exclusion relation.

Product. We use set union as a composition function on observables: given two observables O1 and

O2, we define O1 ⊕O2 to be the observable O1 ∪O2. We use the synchronous and mutual exclusion
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composability relations on TESs introduced in Definition 10 and Definition 11. We represent the cyber-

physical system consisting of two robots R1 and R2 with two private batteries B1 and B2, and individual

fields F1 and F2, as the expression:

F1F2 ×(⊲⊳⊓FR12
,[∪]) (R1B1 ×(⊤,[∪]) R2B2) (2)

where F1F2 := (F1 ×(∦⊓F12
,[∪]) F2), RiBi := (Ri ×(⊲⊳⊓RiBi

,[∪]) Bi), and ⊓FR12
:= (⊓F1R1

∪⊓F2R2
), with i ∈

{1,2}.

Note that the previous expression describes the same component as:

F1R1B1 ×(∦⊓F12
,[∪]) F2R2B2

where FiRiBi := Fi ×(⊲⊳⊓FiRi
,[∪]) Ri ×(⊲⊳⊓RiBi

,[∪]) Bi with i ∈ {1,2}.

4.3 Properties

Let E = ER1
∪ER2

∪EB1
∪EB2

∪EF1
∪EF2

be the set of events for the composite system in Equation 2.

We formulate the scenarios described in Section 2 in terms of a satisfaction problem involving a safety

property on TESs and a behavior property on the composite system. We first consider two safety proper-

ties:

Penergy = {σ ∈ TES(E) | ∀i ∈ N.{(read(B1),0),(read(B2),0)}∩pr1(σ)(i) = /0}

Pno−overlap = {σ ∈ TES(E) | ∀i ∈ N.∀l ∈ [0,20]2,{(loc(I1), l),(loc(I2), l)} * pr1(σ)(i)}

The property Penergy collects all behaviors that never observe a battery value of 0Wh. The property

Pno−overlap describes all behaviors where the two robots are never observed together at the same location.

Observe that, while both Penergy and Pno−overlap specify some safety properties, they are not sufficient to

ensure the safety of the system. We illustrate some scenarios with the property Penergy. If a component

never reads its battery level, then the property Penergy is trivially satisfied, although effectively the battery

may run out of energy. Also, if a component reads its battery level periodically, each of its readings may

return an observation agreeing with the property. However, in between two read events, the battery may

run out of energy (and somehow recharge). To circumvent those unsafe scenarios, we add an additional

hyper-property.

Let Xread = {(read(B1); l1),(read(B2); l2) | 0 ≤ l1 ≤C1, 0 ≤ l2 ≤C2} be the set of reading events for

battery components B1 and B2, with maximal charge C1 and C2 respectively. The property φinsert(Xread,E),
as detailed in Example 8, defines a class of component behaviors that are closed under insertion of

read events for the battery component. Therefore, the system denoted as C, defined in Equation 2

is energy safe if C |= Penergy and its behavior is closed under insertion of battery read events, i.e.,

C ||= φinsert(Xread,E). In that case, every run of the system is part of a set that is closed under inser-

tion, which means all read events that the robot may do in between two events observe a battery level

greater than 0Wh. The behavior property enforces the following safety principle: had there been a violat-

ing behavior (i.e., a run where the battery has no energy), then an underlying TES would have observed

it, and hence the hyperproperty would have been violated.

Another scenario for the two robots is to consider their coordination in order to have them swap their

positions. Let F1 be initialized to have object I1 at position (0,0) and F2 have I2 at position (5,0). The

property of position swapping is a liveness property defined as:

Pswap = {σ ∈ TES(E) | ∃i ∈ N.{(loc(I1),(5,0)),(loc(I2),(0,0))} ⊆ σ(i)}
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It is sufficient for a liveness property to be satisfied for the system to be live. However, it may be that

the two robots swap their positions before the actual observation happens. In that case, using a similar

hyper-property as for safety property will make sure that if there exists a behavior where robots swap

their positions, then such behavior is observed as soon as it happens.

5 Related and future work

Our work offers a component-based semantics for cyber-physical systems [14, 13]. In [2], a similar aim

is pursued by defining an algebra of components using interface theory. Our component-based approach

is inspired by [4, 5], where a component exhibits its behavior as a set of infinite timed-data streams.

More details about co-algebraic techniques to prove component equivalences can be found in [20].

In [8], the authors describe an algebra of timed machines and of networks of timed machines. A

timed machine is a state based description of a set of timed traces, such that every observation has a time

stamp that is a multiple of a time step δ . The work differs from our current development in several

respects. We focus in this paper on different algebraic operations on sets of timed-traces (TESs), and

abstract away any underlying operational model (e.g., timed-automata). In [8], the authors explain how

algebraic operations on timed machines approximate the intersection of sets of timed-traces. In our case,

interaction is not restricted to input/output composition, but depends on the choice of a composability

constraint on TESs and a composition function on observables. The work in [8] denotes an interesting

class of components (closed under insertion of silent observation - r-closed) that deserves investigation.

Cyber-physical systems have also been studied from an actor perspective, where actors interact

through events [22]. Problems of building synchronous protocols on top of asynchronous means of

interaction are presented in [21].

In [11] a multiset rewriting model of time sensitive distributed systems such as cyber-physical agent,

is introduced. Two verification problems are defined relative to a given property P: realizability (is there

a trace that satisfies P), and survivability (do all traces satisfy P) and the complexity is analyzed. In [10]

the theory is extended with two further properties that concern the ability to avoid reaching a bad state.

Recent work has shown plenty of interest in studying the satisfaction problem of hyper-properties

and the synthesis of reactive systems [9]. Some works focus more particularly on using hyper-properties

for cyber-physical design [18].

The extension of hybrid automata [17] into a quantized hybrid automata is presented in [19], where

the authors apply their model to give a formal semantics for data flow models of cyber-physical systems

such as Simulink.

Compared to formalisms that model cyber-physical systems as more concrete operational or state-

based mechanisms, such as automata or abstract machines, our more general abstract formalism is based

only on the observable behavior of cyber-physical components and their composition into systems, re-

gardless of what more concrete models or mechanisms may produce such behavior.

For future work, we want to provide a finite description for components, and use our current formal-

ism as its formal semantics. In fact, we first started to model interactive cyber-physical systems as a set

of finite state automata in composition, but the underlying complexity of automata interaction led us to

introduce a more abstract component model to clarify the semantics of those interactions. Moreover, we

want to investigate several proof techniques to show equivalences of components. We expect to be able

to reason about local and global coordination, by studying how coordinators distribute over our different

composition operators. Finally, our current work serves as a basis for defining a compositional semantics

for a state-based component framework [1] written in Maude [7], a programming language based on
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rewriting logic. We will focus on evaluating the robustness of a set of components with respect to system

requirements expressed as trace or hyper-properties. The complexity of the satisfaction problem requires

some run-time techniques to detect deviations and produce meaningful diagnosis [12], a topic that we

are currently exploring.

6 Conclusion

This paper contains three main contributions. First, we introduce a component model for cyber-physical

systems where cyber and physical processes are uniformly described in terms of sequences of observa-

tions. Second, we provide ways to express interaction among components using algebraic operations,

such as a parametric product and division, and give conditions under which product is associative, com-

mutative, or idempotent. Third, we provide a formal basis to study trace and hyper-properties of com-

ponents, and demonstrate the application of our work in an example describing several coordination

problems.

The expressiveness of our semantic model provides a formal grounds to design interacting cyber-

physical systems, where interaction is defined explicitly and exogenously as an algebraic operation acting

on components. As a future step, we plan to use the semantic model introduced in this work to give a

compositional semantics for interacting (state-based) specification for cyber-physical components. We

aim to use our modular design in order to study problems of diagnosis in systems of interacting cyber-

physical components.
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