
Accurate online training of dynamical spiking neural1

networks through Forward Propagation Through Time2

Bojian Yin1,*, Federico Corradi2,3, and Sander M. Bohté1,4,5
3

1CWI, Machine Learning group, Amsterdam, The Netherlands4

2Eindhoven University of Technology, Electrical Engineering, Eindhoven, The Netherlands5

3Stichting IMEC Netherlands, Holst Centre, Eindhoven, The Netherlands6

4Univ of Amsterdam, Faculty of Science, Amsterdam, The Netherlands7

5Rijksuniversiteit Groningen, Faculty of Science and Engineering, Groningen, The Netherlands8

*byin@cwi.nl (corresponding author)9

ABSTRACT10

With recent advances in learning algorithms, recurrent networks of spiking neurons are achieving performance competitive
with vanilla recurrent neural networks. Still, these algorithms are limited to small networks of simple spiking neurons and
modest-length temporal sequences, as they impose high memory requirements, have difficulty training complex neuron models,
and are incompatible with online learning. Here, we show how recently developed ‘Forward-Propagation-Through-Time’ (FPTT)
learning combined with novel Liquid Time-Constant spiking neurons resolves these limitations. Applying FPTT to networks of
such complex spiking neurons, we demonstrate online learning of exceedingly long sequences while outperforming current
online methods and approaching or outperforming offline methods on temporal classification tasks. FPTT’s efficiency and
robustness furthermore enables us to directly train a deep and performant spiking neural network for joint object localization
and recognition, demonstrating the ability to train large-scale dynamic and complex spiking neural network architectures.
With recent advances in learning algorithms, recurrent networks of spiking neurons are achieving performance competitive
with vanilla recurrent neural networks. Still, these algorithms are limited to small networks of simple spiking neurons and
modest-length temporal sequences, as they impose high memory requirements, have difficulty training complex neuron models,
and are incompatible with online learning. Here, we show how recently developed ‘Forward-Propagation-Through-Time’ (FPTT)
learning combined with novel Liquid Time-Constant spiking neurons resolves these limitations. Applying FPTT to networks of
such complex spiking neurons, we demonstrate online learning of exceedingly long sequences while outperforming current
online methods and approaching or outperforming offline methods on temporal classification tasks. FPTT’s efficiency and
robustness furthermore enables us to directly train a deep and performant spiking neural network for joint object localization
and recognition, demonstrating the ability to train large-scale dynamic and complex spiking neural network architectures.

11

Introduction12

The binary, event-driven and sparse nature of communication between spiking neurons in the brain holds great promise13

for flexible and energy-efficient AI. Recent work has demonstrated effective and efficient performance from spiking neural14

networks (SNNs)1, enabling competitive and energy-efficient applications in neuromorphic hardware2 and novel means of15

investigating biological neural architectures3, 4. This success stems principally from the use of approximating surrogate16

gradients5, 6 to integrate networks of spiking neurons into auto differentiating frameworks like Tensorflow and Pytorch7,17

enabling the application of standard learning algorithms and in particular Back-Propagation Through Time (BPTT).18

The imprecision of the surrogate gradient approach however expounds on the existing drawbacks of BPTT. In particular,19

BPTT has a linearly increasing memory cost as a function of sequence length T , Ω(T) and suffers from vanishing or exploding20

backpropagating gradients, which limits its applicability on long time sequences8 and large-scale SNN models9. Alternative21

approaches like real-time recurrent learning (RTRL)10 similarly exhibit excessive computational complexity, and low complexity22

approximations to BPTT like e-prop11 or OSTL12 at best approach BPTT performance. Training on long temporal sequences23

in SNNs is of particular importance when the tasks require a high temporal resolution, for instance to match the physical24

characteristics of low-latency clock-less neuromorphic hardware2, 13.25

Kag et al.8 recently introduced an algorithm for online learning in recurrent networks, Forward Propagation Through Time26

(FPTT), demonstrating better generalization on many temporal classification benchmark tasks compared to BPTT. In particular,27

FPTT improved over BPTT on long sequence training in Long Short-Term Memory networks (LSTMs). FPTT differs from28

BPTT in that it does not calculate a gradient through time, and instead considers learning-through-time as a coordinated29

consensus problem. Using regularized synaptic tags, FPTT enables immediate, online learning in RNNs similar to feedforward30

networks, eliminating the problematic dependence of the gradient calculation in BPTT on the products of partial gradients31

along the time dimension: FPTT exhibits linear Ω(T) computational cost per sample. For training recurrent SNNs however, as32

we demonstrate, a straightforward application of FPTT on long sequence training does not improve performance as it does in8,33

and we observed this also with vanilla RNNs. Therefore, we deduce that FPTT particularly benefits from the gating structure34

inherent in LSTM-style gated RNNs, which is lacking in vanilla RNNs and SRNNs.35

Taking inspiration from the concept of Liquid Time-Constant (LTCs)14, we introduce a class of spiking neurons, the Liquid36

Time-Constant Spiking Neuron (LTC-SN), where time-constants internal to the neuron are dynamic and input-driven in a37

learned fashion, resulting in functionality similar to the gating operation in LSTMs. We integrate these neurons in networks38

that are trained with FPTT and demonstrate that the resulting LTC-SNNs outperform various SNNs trained with BPTT on39

long sequences while enabling online learning and drastically reducing memory complexity. We show this for several classical40

benchmarks that can easily be varied in sequence length, like the Add-task and the DVS-GESTURE benchmark15, 16. We41

also show how FPTT-trained LTC-SNNs can be applied to large convolutional SNNs, where we demonstrate state-of-the-art42

for online learning in SNNs on a number of standard benchmarks (S-MNIST, R-MNIST, DVS-GESTURE) and to near43

(Fashion-MNIST, DVS-CIFAR10) or exceeding (PS-MNIST, R-MNIST) state-of-the-art performance as obtained with offline44

BPTT.45

Finally, the training and memory efficiency of FPTT enables us to directly train SNNs in an end-to-end manner at network46

sizes and complexity that was previously infeasible. We demonstrate this in a large-scale You-Look-Only-Once (YOLO)47

LTC-SNN architecture for object detection on the Pascal Visual Object Classes (Pascal VOC) dataset17. Object detection48

is a challenging task, as it involves accurate multi-object identification and precise bounding box coordinate computation;49

previous SNN approaches have been limited to either ANN-to-SNN conversions18–20, requiring many thousands of time-steps50

at inference time, or small scale and inefficient SNNs with performance far removed from that of modern ANNs 21. Our51

FPTT-trained YOLOv422 implementation – SPYv4 – uses 21 layers, 6.2M LTC spiking neurons, and 14M parameters to52

achieve state-of-the-art for SNNs, exceeding the performance of converted ANNs while achieving extremely low latency.53

With FPTT and LTC spiking neurons, we demonstrate end-to-end online training of large and high-performance SNNs54

comprised of complex spiking neuron models that were previously infeasible.55

Related Work56

The problem of training recurrent neural networks has an extensive history23–25. To account for past influences on current57

activations in a recurrent network, the network can be unrolled, and errors are computed along the paths of the unrolled network.58

The direct application of error-backpropagation to this unrolled graph is known as Backpropagation-Through-Time23. BPTT59

needs to wait until the last input of a sequence before being able to calculate parameter updates and, as such, cannot be applied60

in an online manner. Alternative online learning algorithms for RNNs have been developed, including Real-Time Recurrent61

Learning (RTRL)10 and approximations thereof26. RTRL however is prohibitive in time and memory complexity, and while62

approximations improve complexity (see12, and Table 1a), they yield variable and task-dependent accuracy deficits compared63

to exact gradients11, 27.64

Spiking neural networks are neural networks composed of spiking neurons: stateful neural units that communicate using65

binary values, i.e. spikes. Their state is determined by current and past inputs, and this state then determines the (binary) value66

of the emitted output through a spiking mechanism. The discontinuity of the spiking mechanism challenges the application67

of error-backpropagation, which can be overcome using continuous approximations5, 28, so-called “surrogate gradients”6.68

Recurrent SNNs trained with surrogate gradients and BPTT now achieve competitive performance compared to classical69

RNNs1, 16, 29. In these and other studies, more intricate spiking neuron models, like those including adaptation, outperformed70

less complex models such as standard Leaky-Integrate-and-Fire neurons11. Additionally, training internal spiking neuron’s71

model parameters like the time-constants of adaptation and membrane-potential decay then further improves performance1, 29.72

Still, the application of BPTT in SNNs has several drawbacks: in particular, BPTT accumulates the approximation error of73

surrogate gradients along time. Moreover, the spike-triggered reset of some state variables in typical spiking neuron models (e.g.74

the membrane potential) causes a vanishing gradient when applying BPTT. We found these effects to be particularly problematic75

when training networks with complex and more biologically detailed neuron models like Izhikevich and Hodgkin-Huxley76

models (unpublished). Furthermore, because the SNN training accuracy heavily depends on hyperparameters, obtaining77

convergence using BPTT in SNNs is non-trivial.78

For spiking neural networks, approximations to BPTT like e-prop11 and Online Spatio-Temporal Learning (OSTL)12
79

achieve linear time complexity and have proven effective for many small-scale benchmark problems, ATARI GAMES and80

also large-scale networks like cortical microcircuits30. In terms of trained accuracy, however, none of these approximations81

have been shown to outperform standard BPTT and, applications to deeper networks use approximate spatial credit assignment82

approaches like learning-to-learn11.83

2/S6

a

e

b

d

c

Wx

Input xt

Output st

LIF

τm

Soma
Wx

Potential ut

xt Output st

Wτ

σ()

Liquid Time-Constant

Input

Target

Loss

Prediction

Spike

Potential

Inputs xt−1 xt xt+1

ut−1 ut ut+1

̂yt−1 ̂yt ̂yt+1

ut−2

yt−1 yt yt+1

lt−1 lt lt+1

st−1 st st+1st−2

BPTT FPTT

xt−1 xt xt+1

ut−1 ut ut+1

̂yt−1 ̂yt ̂yt+1

ut−2

yt−1 yt yt+1

lDR
t−1 lDR

t lDR
t+1

st−1 st st+1st−2

Figure 1. a, Computational complexity of gradients, parameter updates and memory storage per sample, with N the batch-size.
Computational expense increases as the length T of the sequence grows. b, Roll-out of the computational graph of a spiking
neuron as used for BPTT (left) and FPTT (right); c, Illustration of LIF (left) and LTC (right) spiking neurons as recurrent
network structures. d, F-I curve of a LTC spiking neuron for combinations of effective LTC weights Wτ = {Wτm ,Wτad p}:
Wτm = {−1−0.5,0.5,1} and Wτad p = {−1−0.5,0.5,1} associated with respective dynamic time-constant functions σ subject
to input current I. e, Response firing rate Fr of LTC spiking neuron to varying current input I (top) for combinations of
effective LTC weights Wτm = {−1,1} and Wτad p = {−1,1} .

FPTT in SNNs84

As introduced in8, FPTT can be implemented directly on the computational graph of SNNs, similar to BPTT approaches. This85

is illustrated in Fig. 1b; the gradient calculation and corresponding algorithms are given in the Methods section and Alg. SA1.86

FPTT intuitively provides a more robust and efficient gradient approximation for spiking recurrent neural networks than BPTT,87

as FPTT simplifies the complex gradient computation path in SNNs. This potentially lessens surrogate gradients’ cumulative88

effect, avoiding or reducing the gradient vanishing or explosion problem.89

As we will show, FPTT applied directly to SNNs like the Adaptive Spiking Recurrent Neural Networks (ASRNNs)1
90

converges but without the learning improvements reported for RNN architectures8 – and we observed this also for vanilla91

non-spiking RNNs (not shown). As FPTT was successfully applied to RNNs with gating structures (LSTM), we introduce the92

Liquid Time-Constant Spiking Neuron (LTC-SN) as a spiking neuron model with a similar gating structure. We observe that in93

spiking neurons, the time-constant of the membrane potential acts similar to the forget-gate in LSTMs; the LSTM forget-gate94

however is dynamically controlled by learned functions of inputs. Inspired also by Hasani et al.14, the LTC-SN’s internal95

time-constants are a learned function of the inputs and hidden states of the network (illustrated in Fig. 1c; see also Methods).96

I.e., for adapting spiking neurons, the time-constant of the membrane potential decay, τm and the time-constant of the adaptation97

decay, τad p can be made dynamic. A spiking neuron with such varying internal dynamics can respond in flexible and unexpected98

ways to input currents: as shown in Fig. 1d, depending on the effective weights Wτ , the current-spike-frequency response curve99

can be muted-and-saturating, near-linear, or rapidly increasing-and-then-saturating; when subject to a dynamically varying100

3/S6

input current, a higher input current into LTC-SN units can result in a reduced firing rate, and transient dynamics can be absent101

or present (Fig. 1e, samples of trained behavior are shown in Fig. S5).102

Experiments103

We demonstrate the effectiveness of FPTT training for LTC-SNNs on several well-known temporal classification benchmarks,104

including the Add-task as in8 and several established SNN benchmarks (the DVS-GESTURE and DVS-CIFAR10 classification105

tasks, and the Sequential, Sequential-Permuted, rate-based and Fashion MNIST classification tasks). We moreover demonstrate106

how the memory efficiency of FPTT enables training large-scale LTC-SNNs for applications like object localization.107

The Add-task31 is used to evaluate the ability of RNN architectures to maintain long range memory. An example data108

point consists of two sequences (x1,x2) of length T and a target label y. The sequence x1 contains values sampled uniformly109

from [0, 1], x2 is a binary sequence containing only two 1s, and the label y is the sum of the two entries in the sequence x1,110

where x2 = 1. The IBM DVS Gesture dataset15 consists of 11 kinds of hand and arm movements of 29 individuals under111

three different lighting conditions captured using a DVS128 camera. DVS-CIFAR10 is a widely used dataset in neuromorphic112

vision, where the event stream is obtained by displaying moving images of the CIFAR-10 dataset32. The Sequential and113

Permuted-Sequential MNIST (S-MNIST, PS-MNIST) datasets were developed to measure sequence recognition and memory114

capabilities of learning algorithms: the S-MNIST dataset is obtained by reshaping the classical MNIST 28x28 pixel images115

into a set of one-dimensional sequences consisting of 784 time-steps per sample, where pixels are then sequentially entered116

one-by-one as input to the network; the PS-MNIST dataset is generated by performing a fixed permutation on the S-MNIST117

dataset. Theoretically and in practice, PS-MNIST is a more complex classification task than S-MNIST because it lacks118

temporally correlated patterns. The rate-coded MNIST (R-MNIST) is an SNN-specific benchmark where a biologically119

inspired encoding method is used to generate the network input that produces streaming events (a spike train), by encoding120

the grey values of the image with Poisson rate-coding33. We also applied FPTT-trained LTC-SCNNs to the traditional static121

MNIST and Fashion-MNIST datasets for comparison with other models trained offline. Here, we input pixel values directly122

as injected current into the spiking input layer of the network, repeated 20 times to mimic a constant input stream. For object123

localization, we used the PASCAL VOC benchmark17 which is comprised of standard 416×416 RBG images with 20 different124

objects and corresponding bounding box locations.125

FPTT-SNN requires Liquid Time-Constant Spiking Neurons. We apply both BPTT and FPTT to the Add-task as originally126

studied in8 to illustrate the need for more complex spiking neurons like LTC-SNs when applying FPTT learning. We do this for127

various network types, including non-spiking LSTMs as a baseline, ASRNNs1, and LTC-SNNs.128

For a long adding sequence of length 1000, example loss-curves are plotted in Fig. 2a and averaged converged losses129

in Fig. 2b. We find that as in8, a standard LSTM network trained with BPTT fails to converge to zero loss, while the same130

network does converge using FPTT. For SNNs, we find that ASRNNs trained with either FPTT or BPTT do not fully converge,131

and for the LTC-SNNs trained with BPTT learning rapidly diverges due to exploding gradients. LTC-SNNs trained with132

FPTT however successfully minimize the loss: ablating the LTC-SN dynamics, we find that the input-dependent dynamic133

gating of the membrane-potential time-constant is critical for convergence (Tab. S4), and the memory provided by the LTC-SN134

self-recurrence does in fact suffice for solving this task for shorter sequences, though not for longer ones (Fig. S4).135

FPTT allows for longer sequence training. Next, we study the ability of FPTT-trained LTC-SNNs to learn increasingly long136

sequences. For this, we use the DVS-GESTURE dataset and systematically investigate the performance of a fixed architecture137

shallow SRNN model on increasingly many frames sampled from the same gesture signals as in16, ranging from 20 to 1000138

frames. For each frame-encoded dataset, we train various networks types for a fixed number of epochs with an identical number139

of neural units, and report the best performance for BPTT and FPTT trained networks; networks either converged before the140

final epoch or diverged (Fig S1a,b).141

The results for different sampling frequencies are shown in Fig. 2c. Of all methods and networks, the LTC-SNN trained142

using FPTT achieves the best accuracy in all cases, also outperforming standard (BPTT-trained) LSTMs. Furthermore, the143

FPTT-trained LTC-SNNs and the ASRNNs exhibit constant accuracy over the whole range of sequence lengths, where the144

LTC-SNNs consistently outperform the ASRNNs.145

In contrast, the accuracy of both LTC-SNNs and ASRNNs trained with BPTT quickly deteriorates as sequence length146

increases. For the LTC-SNNs, the networks failed to converge for frame-lengths 200 and 500, and best validation accuracy is147

reported in Fig. 2c. For the baseline standard LSTM, this effect is also there, albeit more moderate, as performance decreases148

from 88.9% at 100 frames to 82.5% at 500 frames. This suggests that indeed the gradient approximation errors in SNNs add up149

when training with BPTT. The plot also illustrates the memory-intensiveness of BPTT: when applied to the 1000 frame-length150

data, GPU-memory (24GB) was insufficient for training LSTM, ASRNN and LTC-SNN.151

Comparing sparsity (average firing rate) for the different SNN models, we find no meaningful differences (Fig. S1c);152

parameter-matched networks showed similar performance as unit-matched networks, and the inclusion of an auxiliary loss8
153

4/S6

a

ed

b

c

������������������

Figure 2. a, Example loss-curves for networks trained on the Add-task with sequence length T = 1000. The loss of
BPTT-trained LTC-SNN becomes NaN after 2000 iterations. b, corresponding average loss and std of the last 100 training
iterations (obtained from 5 runs). c, Plot of test accuracy for BPTT and FPTT trained shallow networks on the DVS-GESTURE
dataset. Accuracy bar average and std over 3 runs and individual data points are inserted; (*): training diverged; reported
accuracy is the best accuracy before divergence; (+): out-of-GPU-memory when training. d,e, GPU-memory use when training
the DVS-GESTURE dataset (d) or R-MNIST dataset (e) for different sequence lengths with BPTT or FPTT.

only aided BPTT-trained LSTMs but not BPTT-trained SRNNs. Making only the membrane-decay time-constant dynamic has154

a small negative impact (ASRNN− Table S1).155

FPTT Requires Less Memory. FPTT-trained LTC-SNNs require increasingly less memory as sequence length increases156

as measured on GPU. For the DVS-GESTURE dataset (Fig. 2d), FPTT memory-use is both less and increases less rapidly157

compared to BPTT as a function of the number of frames used per data sample. FPTT’s increasing memory use can be attributed158

to the rapidly inflating size of the frame-encoded dataset, increasing in size from 7.4 GB for 20 frames to 368.1 GB for 1000159

frames. We validated this by training an LTC-SNN network on the R-MNIST classification problem, where longer sequences160

are simulated by showing the same sample for an increasing number of frames. We then find, as expected, that the memory161

required for FPTT training remains fixed. At the same time, BPTT memory-use linearly increases (Fig. 2e).162

FPTT with LTC Spiking Neurons improves over Online Approximate BPTT. To demonstrate the power of FPTT as an online163

training method, we used state-of-the-art deep spiking convolutional network architectures (SCNNs) for standard sequential164

benchmarks from the literature and trained these architectures with LTC-SN neurons and FPTT.165

In Table 1, we compare the LTC-SNNs to existing state-of-the-art online and offline SNNs. We find that LTC-SCNNs166

5/S6

Table 1. Test accuracy of deep SRNNs/SCNNs on various tasks. Bold-faced denotes state-of-the-art (SoTa) online
performance, slanted bold denotes overall SNN state-of-the-art. We apply FPTT-trained LTC-SNNs with one recurrent layer
comprised of 512 neurons on the (P)S-MNIST tasks. For RMNIST, an identical network structure as in12 is used, and for the
remaining benchmarks the network structures match16.

Task Online baseline This work Offline SoTa
S-MNIST - FPTT+LTC 97.37% BPTT+ASRNN1 98.7%
PS-MNIST - FPTT+LTC 93.23% BPTT+ASRNN1 94.3%
RMNIST OSTL + SNU12, 34 95.34% FPTT+LTC 98.63% BPTT+SNU34 97.72%
MNIST DECOLLE+SNN35 98.0% FPTT+LTC 99.62% BPTT+PLIF16 99.72%
Fashion MNIST EMSTDP+SNN36 85.3% FPTT+LTC 93.58% BPTT+PLIF16 94.38%
DVS-GESTURE DECOLLE+SNN37 95.54% FPTT+LTC 97.22% BPTT+PLIF16 97.57%
DVS-CIFAR10 - FPTT+LTC 73.2% BPTT+PLIF16 74.8%

Figure 3. a, Mean Average Precision (mAP) and components for classification and recognition of 20 different kinds of objects
in SPYv4 on the PASCAL VOC07 dataset. b, An example of object recognition with Spiking-YOLO on a sequence of images.
Objects are localized and identified for each image independently. c, SPYv4 applied to streaming video. Top: example images,
bottom: raster plot of spiking activity for 100 spiking neurons randomly drawn from the shallow and deep layer.

trained with FPTT consistently and substantially outperform SNNs trained with online BPTT approximations like OSTL and167

e-prop. Compared to offline BPTT approaches, the FPTT-trained LTC-SNNs achieve state-of-the-art for SNNs (R-MNIST)168

or achieve close to similar performance (PS-MNIST,S-MNIST, DVS-GESTURE), DVS-Cifar10); additionally, the memory169

requirements for FPTT vs. BTTP trained networks were lower by up to a factor of 5 (Table S3) while the training time was only170

slightly longer (Table S4).171

Large-scale Object-detection: Spiking YOLO172

The memory efficiency of FPTT-trained LTC-SNNs enables us to train SNNs of comparable complexity as modern ANNs: we173

demonstrate this by training a large spike-based object-detection model based on the Tiny YOLO-v4 architecture22, 38. The174

6/S6

‘You-Only-Look-Once’ (YOLO) architecture calculates both bounding boxes locations and object identities for all identifiable175

objects in an image using a single pass through a deep neural network.176

Our SPiking tiny Yolo-v4 network - SPYv4 - has 19 spiking convolutional layers with about 6.2M spiking neurons, 2177

convolutional output layers and 14M parameters in total, illustrated in Fig. S2a. This makes it both larger and deeper than178

previous end-to-end trained spiking models. Training a single time-step in the network requires less than 14GB of GPU-memory,179

and as BPTT scales linearly with the number of time-steps, learning with BPTT in such a large network over multiple time-steps180

is infeasible.181

To carry out object detection, the network uses multiple reads of the input image, e.g. 4 or 8 times, as time-steps in the182

network to obtain the final result; trained with FPTT, SPYv4 achieves a mean Average Precision (mAP) of 51.38% at 4 reads183

and 53.25% at 8 reads (Fig. 3a) on the VOC dataset (see Methods); Fig. 3b shows examples of the detected and classified184

objects. Neural activation in the network is highly sparse, with about 10% of neurons active on average at each time-step.185

When receiving direct camera inputs images, inference achieves about 60 time-steps per second on an NVIDIA RTX3090186

equipped workstation, corresponding to processing 7 or 15 images per second. Fig. 3c shows example activity from neurons187

from respectively a shallow (near input) and deep network layer: neurons in the deeper layer fall silent when irrelevant stimuli188

are shown, while neurons closer to the inputs remain active. Earlier work like Spiking-YOLO18 achieved mAP 51.83% with189

8000 simulation time-steps; our SPYv4 network thus outperforms these networks in performance, sparseness, and latency.190

Discussion191

We showed how a recently proposed training approach for recurrent neural networks, FPTT, can be successfully applied to192

long sequence learning with recurrent SNNs using Liquid Time-Constant Spiking Neurons. Compared to BPTT, FPTT is193

compatible with online training, has constant memory requirements, and can learn longer sequences. The increased memory194

efficiency of FPTT allows for training much larger SNNs as was previously feasible, as we demonstrated in the SPYv4 network195

for object detection. In terms of accuracy, FPTT outperforms online approximations of BPTT like OSTL and e-prop, and196

enabled a demonstration of online learning in tasks like DVS-CIFAR10. When training large convolutional LTC-SNNs with197

FPTT, excellent performance is achieved, approaching or exceeding offline BPTT-based solutions using corresponding network198

architectures – LTC-SNN specific architecture searches may improve results further.199

To achieve efficient and accurate online learning with FPTT, we introduced Liquid Time-Constant Spiking Neurons200

(LTC-SNs), where the neuron’s time-constants are calculated as a learned dynamic function of the current state and input.201

When training on various tasks, BPTT failed to converge when applied to LTC-SNNs on long sequences due to diverging202

gradients, while FPTT consistently converged. As we speculated, this suggests that FPTT provides for a more robust learning203

signal. While LTC-SNs provide additional memory in the networks, and LTC-SNNs without recurrent connections were able to204

solve shorter sequences, though not longer (Fig. S4), the optimal degree of network recurrency remains to be determined and205

may allow for further efficiency and accuracy improvements39. LTC-SNs maintain binary communication between neurons,206

but impose additional calculations to determine the neuron state. In neuromorphic implementations, LTC-SNs could be207

implemented as multi-compartment neurons or require novel spiking neuron model implementations.208

The LTC-SN is inspired by multi-compartment modeling of pyramidal neurons in brains. Pyramidal neurons are known to209

have complex non-linear interactions between different morphological parts far exceeding the simple dynamics of LIF-style210

neurons40, 41, where the neuron’s apical tuft may calculate a modulating term acting on the computation in the soma42 that could211

act similar to the trainable Liquid time-constants used in this work. In a similar vein, learning rules derived from weight-specific212

traces may relate to synaptic tags43, 44 and are central to biologically plausible theories of learning working memory45. In213

general, we find that FPTT, unlike BPTT, can also train networks of complex biologically realistic spiking neuron models, like214

Izhikevich and Hodgkin-Huxley models (e.g. for the DVS-GESTURE task, Table S5). These considerations suggest variations215

of FPTT may be potential candidates for temporal credit assignment mechanisms in the brain. As a candidate for biologically216

plausible learning, the spatial error-backpropagation employed in FPTT would need to be replaced with a plausible spatial credit217

assignment solution, where we anticipate that at least some of the current proposals46, 47 may be compatible. With such local218

spatial credit-assignment, FPTT-training of LTC-SNNs can also likely be implemented efficiently on neuromorphic hardware.219

Taken together, our work suggests that FPTT is an excellent training paradigm for large-scale SNNs comprised of complex220

spiking neurons, with implications for both decentralized AI based on local neuromorphic computing and investigations of221

biologically plausible neural processing.222

Methods223

Forward Propagation through Time. FPTT considers learning as a consensus problem between the network updates at224

different time-steps, where the network update at each single time-step needs to move toward the same converged optimal225

weights. To achieve this, FPTT updates the network parameters W by optimising the instantaneous risk function ℓdyn
t ,226

7/S6

which includes the ordinary objective Lt and also a dynamic regularisation penalty Rt based on previously observed losses227

ℓdyn
t = Lt +Rt (see Appendix A in the SI for details). In FPTT, the empirical objective L (yt , ŷt) is the same as for BPTT,228

representing a function of the gap between target values yt and real time predictions ŷt .229

As in8, the FPTT-specific dynamic regularization is controlled by a form of running average of all the weight-updates
calculated so far W̄ , where the update schema of this regularizer Rt is as follows:

R(Wt) =
α

2
∥Wt −W̄t −

1
2α

∇lt−1(Wt) ∥2 (1a)

Wt+1 =Wt −η∇W l(Wt) (1b)

W̄t+1 =
1
2
(W̄t +Wt+1)−

1
2α

∇lt(Wt+1). (1c)

Here, the state vector W̄t summarises past losses: the update is first a normal update of parameters Wt based on gradient230

optimization with fixed W̄t , after which W̄t is optimized with fixed Wt . This approach allows the RNN parameters to converge to231

a stationary solution of the traditional RNN objective8. Note that in Eq. 1c, the loss ∇lt(Wt+1) is estimated as in8, avoiding232

propagating the gradient through Eq. 1b, where the ∇W l(Wt) calculates the direct spatial gradient.233

The plain FPTT learning process requires the acquisition of an instantaneous loss lt at each time step. This is natural for
sequence-to-sequence modeling tasks and streaming tasks where a loss is available for each time step; for temporal sequence
classification tasks however, the target value is only determined after processing the entire time series. To apply FPTT to
learning such tasks in an online manner, a divergence term was introduced8 in the form of an auxiliary loss to reduce the
distance between the prediction distribution P̂ and target label distribution Q:

lt = β lCE
t (ŷy,y)+(1−β)ldiv

t , (2)

where β ∈ [0,1]; lCE
t is the classical cross-entropy for a classification loss and ldiv

t =−∑ȳ Q(ȳ) log P̂(ȳ) is the divergence term.234

We use the auxiliary loss in all experiments as in8 with β = t
T , where T is the sequence length. Note that variants of FPTT,235

FPTT-K8, update K times during the sequence rather than every time-step, plain FPTT corresponds to FPTT-T. Absent the236

dynamic regularization through W̄ FPTT-T amounts to spatial error-backpropagation (BP) without backpropagation-through-237

time – the absence of these regularization terms drastically reduces accuracy, both for plain BP as well as for truncated BPTT238

(Fig. S6).239

Training networks of spiking neurons. To apply FPTT to SNNs, we define the spiking neuron model and specify how BPTT240

and FPTT are applied to such networks. All networks were trained using batches as in8 to exploit GPU parallelism; reduction241

to batch-size=1 yielded similar results (e.g. Fig. S3).242

An SNN is comprised of spiking neurons which operate with non-linear internal dynamics. These non-linear dynamics243

consist of three main components:244

(1) Potential Updating: the neurons’ membrane potential ut updates following the equation:

ut = f (ut−1,xt ,st−1∥W,τ) (3)

where τ is the set of internal time constants and W is the set of associated parameters, like synaptic weights. The membrane245

potential evolves based on previous neuronal states (e.g. potential ut−1 and spike-state st−1 = {0,1}) and current inputs xt .246

Training the time constants τ in the spiking neurons is known to optimize performance by matching the neuron’s temporal247

dynamics of the task16, 29.248

(2) Spike generation: A neuron will trigger a spike st = 1 when its membrane potential ut crosses a threshold θ from
below, described as a discontinuous function:

st = fs(ut ,θ) =

{
1, if ut ≥ θ

0, otherwise
(4)

(3) Potential resting: When a neuron emits a spike (st = 1), its membrane potential will reset to resting potential ur:

ut = (1− st)ut +urst , (5)

where in all experiments, we set ur = 0.249

8/S6

BPTT for SNNs BPTT for SNNs amounts to the following: given a training example {x,y} of T time steps, the SNN generates250

a prediction ŷt at each time step. At time t, the SNN parameters are optimized by gradient descent through BPTT to minimize251

the instantaneous objective ℓt = L (yt , ŷt). The gradient expression is the sum of the products of the partial gradients, defined252

by the chain rule as253

∂ℓt

∂W
=

∂ lt
∂ ŷt

∂ ŷt

∂ st

∂ st

∂ut

t

∑
j=1

(
t

∏
m= j

∂um

∂um−1

)
∂ sm−1

∂W
, (6)

where the partial derivative of spiking ∂ st
∂ut

is calculated by a surrogate gradient associate with membrane potential ut . Here, we254

use the Multi-Gaussian surrogate gradient function f̂ ′s(ut ,θ)
1 to approximate this partial term.255

The computational graph of BPTT is illustrated in Fig1a and shows that the partial derivative term depends on two pathways,256

∂um
∂um−1

= ∂um
∂um−1

+ ∂um
∂ sm−1

∂ sm−1
∂um−1

. The product of these partial terms may explode or vanish in RNNs, and this phenomenon becomes257

even more pronounced in SNNs as the discontinuous spiking process is approximated by the continuous surrogate gradient and258

the incurred gradient error accumulates and amplifies.259

FPTT for SNNs. FPTT can be used for training SNNs by minimizing the instantaneous loss with the dynamic regularizer
ℓdyn

t = L (yt , ŷt)+R(W̄t). The update function Equation (6) then becomes:

∂ℓdyn
t

∂W
=

∂ lt
∂ ŷt

∂ ŷt

∂ st

∂ st

∂ut

∂ut

∂W
. (7)

Compared to Equation (6), Equation (7) has no dependence on a chain of past states, and can thus be computed in an online260

manner.261

Liquid Time-Constant Spiking Neurons The LTC-SN is modeled as a standard adaptive spiking neuron1, 11 where the time262

constants τ (here, membrane time constant τm and adaptation time constant τad p) are a dynamic and learned function of internal263

dynamic state variables like membrane potential u and deviation11 b. In the network, time-constants are either calculated as264

a function α = exp(−dt/τm) = σ(Dense[xt ,ut−1]), for non-convolutional networks, or using a 2D convolution for spiking265

convolutional networks, α = exp(−dt/τm) = σ(Conv([xt ,ut−1])), where we use a sigmoid function σ(·) to scale the inverse of266

the time constant to a range of 0 to 1, ensuring smooth changes when learning. This results in a Liquid Time-Constant Spiking267

Neuron i defined as:268

τad p update :ρ
i = exp(−dt/τ

i
ad p) = σ(Densead p[xt ,bi

t−1]) (8a)

τm update : α
i = exp(−dt/τ

i
m) = σ(Densem[xt ,ui

t−1]) (8b)

θt update : bi
t = ρ

ibi
t−1 +(1−ρ

i)si
t−1; θ

i
t = 0.1+1.8bi

t (8c)

ut update : dui =−ui
t−1 + xt ; ui

t = α
iui

t−1 +(1−α
i)dui (8d)

spikest : si
t = fs(ui

t ,θ
i) (8e)

resetting : ui
t = ui

t(1− si
t)+urestsi

t , (8f)

where the neuron uses an adaptive threshold θt as in the Adaptive Spiking Neurons11, resting potential urest = 0, and time-269

constants τ i
m and τ i

ad p are computed as liquid time-constants of neuron i.270

Datasets We focus on a number of datasets suitable for temporal classification, where the goal is to obtain high accuracy271

read-out on test-samples at the final time-step T of the sequence. For the Add-task, the trained networks consist of 128272

recurrently connected neurons of respective types LTC-SN (LTC-SNN), LSTM, or Adaptive Spiking Neuron11 (ASRNN), and273

a dense output layer with only 1 neuron.274

For the DVS-GESTURE dataset, each frame is a 128-by-128 size image with 2 channels. Each sample in the DVS-275

GESTURE dataset was split into fixed-duration blocks as in16, where each block is averaged to a single frame. This conversion276

results in sequences of up to 1000 frames depending on block length. As input for the shallow SRNN as used in the increasingly277

long sequence setting, we first down-sample the frame of a 128-by-128 image into a 32-by-32 image by averaging each 4-by-4278

pixel block. The 2D image at each channel is then flattened into a 1D vector of length 1024. For each channel of the image,279

the network consists of a spike-dense input layer consisting of 512 neurons as an encoder, where the information of each280

channel is then fused into a 1D binary vector through concatenation. This 1D vector is then fed to a recurrently connected281

9/S6

layer with 512 hidden neurons. Finally, a leaky integrator is applied to generate predictions, resulting in a network architecture282

[1024,1024]-[512D,512D]-512R-11I1. All networks were trained for 30 epochs using the Adam optimizer with initial learning283

rate 3e-3, using the same initialization schemes and learning-rate scheme for all networks to compare the effect of neural units.284

Hyperparameters for ASRNNs were taken from1.285

To achieve high performance with SCNNs, we applied FPTT with LTC-SNs to high-performance architectures from the286

literature, where we used hyperparameter settings for the surrogate gradient from29 and from8 for FPTT training. Specifically,287

in (P)S-MNIST, we used a shallow network with one recurrent layer comprised of 512 hidden neurons and an output layer288

consisting of 10 (number of classes) leaky integrator neurons. The FPTT-trained LTC-SNNs are optimized using Adam48 with a289

batch size of 128 using 200 training epochs. We set the initial learning rate to 3e-3 and decay by half after 30, 80, and 120 epochs.290

For the S-MNIST and PS-MNIST tasks, we also find that the leak time-constants of the output units after training averaged291

87ms ±13ms (S-MNIST) and 65ms±12ms (PS-MNIST), substantially shorter than the sequence length and demonstrating that292

the recurrent network maintains working memory. For R-MNIST, we follow the architecture from12: an SNN with two hidden293

layers of 256 neurons, each followed by 10 output neurons. The SNN is given 20 presentations of the image, after which the294

classification is determined. For the static MNIST and Fashion MNIST datasets, we apply the architecture from16: an SCNN295

with 3 convolutional layers, 1 Dense layer and 1 leaky Integrator output layer (ConvK3C32S1P1-MPK2S2-ConvK3C128S1P1-296

MPK2S2-ConvK3C256S1P1-MPK2S2-512D-10I. To describe the network structure, we follow standard conventions as follows:297

ConvK7C64S1P1 represents the convolutional layer with out put channels = 64, kernel size = 7, stride = 1 and padding = 3.298

MPK2S2 is the max-pooling layer with kernel size = 2 and stride = 2. 512D and 512R represents the fully connected299

spiking layer and recurrent spiking layer respectively with out put f eatures = 512. 10I indicates the leaky integrator with the300

out put f eature = 10.). The resulting LTC-SCNN network was then optimized using FPTT and Adamax with a batch size of 64301

and an initial learning rate of 1e-3. For the DVS-GESTURE and DVS-CIFAR10 datasets, we also follow the high-performance302

architecture from16 and use 20 sequential frames, where the network makes a prediction only after reading the entire sequence.303

The LTC-SCNN thus has a structure ConvK7C64S1P3-MPK2S2-ConvK7C128S1P3-MPK2S2-ConvK3C128S1P1-MPK2S2-304

ConvK3C256S1P1-MPK2S2-ConvK3C256S1P1-MPK2S2-ConvK3C512S1P1-MPK2S2-512D-11I. These networks were305

optimized through Adamax48 with a batch size of 16 and initial learning rate of 1e-3.306

For all networks, to measure GPU memory consumption, the GPU management interface “nvidia-smi” was used.307

Spiking Tiny YOLOv4 – SPYv4. The SPYv4 network follows the Tiny YOLO-v4 architecture22, 38. The backbone of the308

network consists of three CSP-Blocks in the cross-stage partial network. In contrast to regular additive residual connections,309

the CSP-Block is spike-based rather than event-based as residual connections are constructed by concatenation rather than310

using an adding operation, ensuring that only binary spikes are used for information transfer between layers. Raw pixel values311

are fed directly into the network as input currents. As the object recognition task necessitates a more precise output vector to312

draw the bounding box, we use a single standard conventional convolutional layer instead of a spiking convolutional layer.313

We trained and evaluated our model on Pascal VOC dataset17 as was done in18: the network was trained using a combination314

of VOC2007 and VOC2012 (16551 images), and evaluated on the validation dataset of VOC2007 (4952 images).315

For target detection, we use a threshold on the Intersection Over Union (IOU), i.e., the ratio of the intersection of the316

prediction box and the ground truth box of the target, to indicate whether the detection is correct. A target is considered to317

be correctly detected when the IOU exceeds the threshold. The average precision (AP) is then computed as the average of318

all the precision for all possible recall values, and the mAP is the average of the AP of multiple classification tasks. Training319

maximizes the mAP@ϑ : the mean average precision of the calculated bounding box exceeding an overlap threshold ϑ over the320

actual boundaries of the object in the dataset, where we use ϑ = 0.5.321

We applied both mosaic data augmentation38 and label smoothing during training to obtain better performance. In the322

mosaic enhancement, the network uses a mosaic of 4 images during training instead of a single image; this is applied only323

during the first 200 training cycles. The network was optimized by Adagrad with a batch size of 32 and an initial learning rate324

of 1e-3.325

Code Availability326

The code used in the study is publicly available from the GitHub repository https://github.com/byin-cwi/sFPTT/327

tree/v1.0.049.328

References329

1. Yin, B., Corradi, F. & Bohté, S. M. Accurate and efficient time-domain classification with adaptive spiking recurrent neural330

networks. Nat Mach Intell 3, 905–913 (2021).331

2. Stuijt, J., Sifalakis, M., Yousefzadeh, A. & Corradi, F. µbrain: An event-driven and fully synthesizable architecture for332

spiking neural networks. Front. neuroscience 15, 538 (2021).333

10/S6

https://github.com/byin-cwi/sFPTT/tree/v1.0.0
https://github.com/byin-cwi/sFPTT/tree/v1.0.0
https://github.com/byin-cwi/sFPTT/tree/v1.0.0

3. Perez-Nieves, N., Leung, V. C. H., Dragotti, P. L. & Goodman, D. F. M. Neural heterogeneity promotes robust learning.334

Nat. Commun. 12, 5791 (2021).335

4. Keijser, J. & Sprekeler, H. Interneuron diversity is required for compartment-specific feedback inhibition. bioRxiv (2020).336

5. Bohte, S. M. Error-backpropagation in networks of fractionally predictive spiking neurons. In International Conference on337

Artificial Neural Networks, 60–68 (Springer, 2011).338

6. Neftci, E. O., Mostafa, H. & Zenke, F. Surrogate gradient learning in spiking neural networks: Bringing the power of339

gradient-based optimization to spiking neural networks. IEEE Signal Process. Mag. 36, 51–63 (2019).340

7. Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. Adv. neural information processing341

systems: NeurIPS 32, 8026–8037 (2019).342

8. Kag, A. & Saligrama, V. Training recurrent neural networks via forward propagation through time. In International343

Conference on Machine Learning, 5189–5200 (PMLR, 2021).344

9. Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).345

10. Williams, R. J. & Zipser, D. A learning algorithm for continually running fully recurrent neural networks. Neural346

computation 1, 270–280 (1989).347

11. Bellec, G. et al. A solution to the learning dilemma for recurrent networks of spiking neurons. Nat. communications 11,348

1–15 (2020).349

12. Bohnstingl, T., Woźniak, S., Pantazi, A. & Eleftheriou, E. Online spatio-temporal learning in deep neural networks. IEEE350

Transactions on Neural Networks Learn. Syst. (2022).351

13. He, Y. et al. A 28.2 µw neuromorphic sensing system featuring snn-based near-sensor computation and event-driven352

body-channel communication for insertable cardiac monitoring. In 2021 IEEE Asian Solid-State Circuits Conference353

(A-SSCC), 1–3 (2021).354

14. Hasani, R., Lechner, M., Amini, A., Rus, D. & Grosu, R. Liquid time-constant networks. In Proceedings of the AAAI355

Conference on Artificial Intelligence, vol. 35, 7657–7666 (2021).356

15. Amir, A. et al. A low power, fully event-based gesture recognition system. In Proceedings of the IEEE Conference on357

Computer Vision and Pattern Recognition, 7243–7252 (2017).358

16. Fang, W. et al. Incorporating learnable membrane time constant to enhance learning of spiking neural networks. In359

Proceedings of the IEEE/CVF International Conference on Computer Vision, 2661–2671 (2021).360

17. Everingham, M., Van Gool, L., Williams, C. K., Winn, J. & Zisserman, A. The pascal visual object classes (voc) challenge.361

Int. journal computer vision 88, 303–338 (2010).362

18. Kim, S., Park, S., Na, B. & Yoon, S. Spiking-yolo: spiking neural network for energy-efficient object detection. In363

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 11270–11277 (2020).364

19. Chakraborty, B., She, X. & Mukhopadhyay, S. A fully spiking hybrid neural network for energy-efficient object detection.365

IEEE Transactions on Image Process. 30, 9014–9029 (2021).366

20. Royo-Miquel, J., Tolu, S., Schöller, F. E. & Galeazzi, R. Retinanet object detector based on analog-to-spiking neural367

network conversion. In 8th International Conference on Soft Computing & Machine Intelligence (2021).368

21. Zhou, S., Chen, Y., Li, X. & Sanyal, A. Deep scnn-based real-time object detection for self-driving vehicles using lidar369

temporal data. IEEE Access 8, 76903–76912 (2020).370

22. Jiang, Z., Zhao, L., Li, S. & Jia, Y. Real-time object detection method based on improved yolov4-tiny. arXiv preprint371

arXiv:2011.04244 (2020).372

23. Werbos, P. J. Backpropagation through time: what it does and how to do it. Proc. IEEE 78, 1550–1560 (1990).373

24. Elman, J. L. Finding structure in time. Cogn. science 14, 179–211 (1990).374

25. Mozer, M. C. Neural net architectures for temporal sequence processing. In Santa Fe Institute Studies in the Sciences of375

Complexity-Proceedings Volume-, vol. 15, 243–243 (1993).376

26. Murray, J. M. Local online learning in recurrent networks with random feedback. ELife 8, e43299 (2019).377

27. Knight, J. C. & Nowotny, T. Efficient GPU training of LSNNs using eprop. In Neuro-Inspired Computational Elements378

Conference, NICE 2022, 8–10 (Association for Computing Machinery, New York, NY, USA, 2022).379

28. Bohte, S. M., Kok, J. N. & La Poutre, H. Error-backpropagation in temporally encoded networks of spiking neurons.380

Neurocomputing 48, 17–37 (2002).381

11/S6

29. Yin, B., Corradi, F. & Bohté, S. M. Effective and efficient computation with multiple-timescale spiking recurrent neural382

networks. In International Conference on Neuromorphic Systems 2020, 1–8 (2020).383

30. Scherr, F. & Maass, W. Analysis of the computational strategy of a detailed laminar cortical microcircuit model for solving384

the image-change-detection task. bioRxiv (2021).385

31. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural computation 9, 1735–1780 (1997).386

32. Li, H., Liu, H., Ji, X., Li, G. & Shi, L. Cifar10-dvs: an event-stream dataset for object classification. Front. neuroscience387

11, 309 (2017).388

33. Gerstner, W., Kreiter, A. K., Markram, H. & Herz, A. V. Neural codes: firing rates and beyond. Proc. Natl. Acad. Sci. 94,389

12740–12741 (1997).390

34. Woźniak, S., Pantazi, A., Bohnstingl, T. & Eleftheriou, E. Deep learning incorporating biologically inspired neural391

dynamics and in-memory computing. Nat. Mach. Intell. 2, 325–336 (2020).392

35. Zou, Z. et al. Memory-inspired spiking hyperdimensional network for robust online learning. Sci. reports 12, 1–13 (2022).393

36. Shrestha, A., Fang, H., Wu, Q. & Qiu, Q. Approximating back-propagation for a biologically plausible local learning rule394

in spiking neural networks. In Proceedings of the International Conference on Neuromorphic Systems, 1–8 (2019).395

37. Kaiser, J., Mostafa, H. & Neftci, E. Synaptic plasticity dynamics for deep continuous local learning (decolle). Front.396

Neurosci. 14, 424 (2020).397

38. Bochkovskiy, A., Wang, C.-Y. & Liao, H.-Y. M. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint398

arXiv:2004.10934 (2020).399

39. Kalchbrenner, N. et al. Efficient neural audio synthesis. In International Conference on Machine Learning, 2410–2419400

(PMLR, 2018).401

40. Sacramento, J., Ponte Costa, R., Bengio, Y. & Senn, W. Dendritic cortical microcircuits approximate the backpropagation402

algorithm. Adv. Neural Inf. Process. Syst. NeurIPS 31, 8721–8732 (2018).403

41. Beniaguev, D., Segev, I. & London, M. Single cortical neurons as deep artificial neural networks. Neuron 109, 2727–2739404

(2021).405

42. Larkum, M. E., Senn, W. & Lüscher, H.-R. Top-down dendritic input increases the gain of layer 5 pyramidal neurons.406

Cereb. Cortex 14, 1059–1070 (2004).407

43. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).408

44. Moncada, D., Ballarini, F., Martinez, M. C., Frey, J. U. & Viola, H. Identification of transmitter systems and learning tag409

molecules involved in behavioral tagging during memory formation. Proc. Natl. Acad. Sci. 108, 12931–12936 (2011).410

45. Rombouts, J. O., Bohte, S. M. & Roelfsema, P. R. How attention can create synaptic tags for the learning of working411

memories in sequential tasks. PLoS computational biology 11, e1004060 (2015).412

46. Pozzi, I., Bohte, S. & Roelfsema, P. Attention-gated brain propagation: How the brain can implement reward-based error413

backpropagation. Adv. Neural Inf. Process. Syst. NeurIPS 33 (2020).414

47. Scellier, B. & Bengio, Y. Equilibrium propagation: Bridging the gap between energy-based models and backpropagation.415

Front. computational neuroscience 11, 24 (2017).416

48. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. ICLR (2015).417

49. Yin, B. Code of paper, DOI: 10.5281/ZENODO.7498559 (2023).418

12/S6

10.5281/ZENODO.7498559

Supplementary Information419

Algorithm 1: Training SNN with BPTT

// Dataset B = {xt ,yt}T
t=0, # Epochs E

// Set Optimizer and learning rate η

// Initialize Weight W = {W h,W y}
for i = 1 to E // Training Loop
do

Initialize neuron states ut ,st ; Randomly Shuffle B
for t = 0 to T // For each sample
do

sh,t ,uh,t = f̂s(xt , [uh,t−1,sh,t−1]∥W h)

ŷt = f̂s(sh,t , [uo,t ,so,t]∥W y)

Loss:
ℓ(W) = ∑

T
t=1 ℓ(yt , ŷt)

Update:
W =W −η∇W ℓ(W)|W

Algorithm 2: Training SNN with FPTT

// Dataset B = {xt ,yt}T
t=0,# Epochs E

// Set Optimizer and learning rate η

// Initialize weight W = {W h,W y}, and
W̄ =W

for i = 1 to E // Training Loop
do

Initialize neuron states ut , st ; Randomly Shuffle B
for t = 0 to T // For each sample
do

sh,t ,uh,t = f̂s(xt , [uh,t−1,sh,t−1]∥W h
t)

ŷt = f̂s(sh,t , [uo,t ,so,t]∥W y
t)

Loss: ℓt(Wt): ℓt(Wt) = ℓ(yt , ŷt)
Dynamic Loss: ℓdyn(Wt) =
ℓt(Wt)+

α

2 ∥Wt −W̄t − 1
2α

∇ℓt−1(Wt)∥2

Update W :
Wt+1 =Wt −η∇W ℓdyn(Wt)

Update W̄ :
W̄t+1 =

1
2 (W̄t +Wt+1)− 1

2α
∇ℓt(Wt+1)

420

Algorithms SA1. BPTT (left) and FPTT algorithm. Adapted from8 where ∇lt(Wt+1)) is estimated as in8, avoiding propagating421

the gradient through Equation 1b. The algorithms are described for batch-size 1, while in our experiments we relax this to422

larger batch-sizes as in8.423

Frames
BPTT FPTT
LSTM+Aux LSTM LTC-SRNN+Aux LTC-SRNN ASRNN+Aux ASRNN++Aux LTC− LTC-SRNN ASRNN

20 86.69±0.43 82.29±2.46 83.42±1.35 84.37±2.27 86.82±0.31 80.78±1.99 87.83±1.21 89.31±0.59 87.51±0.85
40 88.77±1.71 84.95±0.71 85.96±1.16 84.37±1.24 87.29±0.87 82.99±0.70 88.53±0.57 90.39±0.71 87.61±0.43
60 87.61±0.86 85.15±0.75 85.62±1.18 83.91±0.71 87.02±1.19 81.77±0.34 88.08±1.40 90.74±0.16 87.62±1.15
80 87.97±0.14 84.83±1.42 85.30±0.71 80.44±3.6 86.34±0.87 76.84±0.85 88.66±1.14 91.31±0.98 87.60±1.06
100 88.89±0.49 83.79±0.71 83.21±0.43 78.70±0.91 86.22±0.71 74.61±1.25 89.93±1.13 91.89±0.16 87.40±0.28
200 85.76±0.49 81.87±2.58 51.39±6.0 (43.98±2.35)∗ 79.62±1.89 65.89±1.69 89.24±1.56 92.13±0.87 88.31±1.33
500 82.52±1.82 78.81±1.5 38.89±3.22 (36.46±1.5)∗ 49.03±1.52 52.43±1.32 86.69±0.43 90.64±1.56 85.76±1.30

1000 + + + + + + 90.05±1.56 91.28±1.05 84.24±1.23
Param 4.2M 4.2M 4.7M 4.7M 1.6M 4.7M 3.2M 4.7M 1.6M

Table S1. Performance comparison between BPTT and FPTT on the DVS gesture dataset. Each number in the table is
the average of three runs. All networks have an equal number of neural units unless indicated otherwise. (*) denotes that
training diverged; reported accuracy is the best accuracy before divergence. (+) denotes out-of-GPU-memory when training.
The ASRNN+ is an ASRNN with the same number of parameters as the LTC-SRNN. LTC− denotes an LTC-SRNN network
where only the membrane time constant is dynamic, and the adaptation time constant is a learned fixed parameter. We remark
that with a parameter-matched single recurrent layer ASRNN with 1400 neurons trained w/ BPTT, we achieved accuracy of
81.134%±0.71 on 100 frames DVS-gestures dataset, while the same network trained with eProp achieved 75.45%±1.15.
Results for Truncated BPTT including plain spatial error-backpropagation are illustrated in Fig S6.

Loss τm τm(x) τm(x,u)
τad p 0.17 0.0027 0.0025
τad p(x) 0.17 0.0024 0.003
τad p(x,b) 0.16 0.0021 0.0019

Table S2. Ablation study of LTC-SN performance on Add Task where either τm, τad p, or both, are trained (τm,τad p), dynamic
from external input x (τm(x),τad p(x)) or both external and internal input (τm(x,u),τad p(x,b)).

a b
c

Figure S1. Learning curve of ASRNN trained via FPTT and BPTT on a 100 frames, and b 500 frames. Plotted is average and
std over 3 run; c, Bar chart of mean firing rate (fr) comparison between BPTT and FPTT on the DVS gesture dataset. Each
number in the table is the average of three runs.

CSP Block

Spike [52,52,128]

Maxpool 2x2 / stride : 2

Concat [26,26,384]

滚滚长江东逝水滚滚长江东逝水

Conv 75 x 1 x 1 / stride : 1

Conv 75 x 1 x 1 / stride : 1

Conv 32 x 3 x 3 / stride : 2

Spike [208,208,32]

Conv 64 x 3 x 3 / stride : 2

Spike [104,104,64]

Conv 512 x 3 x 3 / stride : 1

Spike [13,13,512]

Conv 256 x 3 x 3 / stride : 1

Spike [26,26,256]

Conv 512 x 3 x 3 / stride : 1

Spike [13,13,512]Conv 512 x 3 x 3 / stride : 1

Spike [13,13,512]

CSP Block

Spike [26,26,256]

Maxpool 2x2 / stride : 2

CSP Block

Spike [13,13,512]

Maxpool 2x2 / stride : 2

Conv 128 x 1 x 1 / stride : 1

UpSample

Spike [26,26,128]

Input: [416,416,3]

Input Spike [w, h, c]

Conv 3 x 3 / stride : 1

Spike [w, h, c]

Conv 3 x 3 / stride : 1

Spike [w, h, c/2]

Concat [w, h, c]Conv 1 x 1 / stride : 1

Spike [w, h, c]

Conv 1 x 1 / stride : 1

Spike [w, h, c/2]

Concat [w, h, 2c]

Back Bone
CSPBlock

y1 [26,26,75]

y2 [13,13,75]

�
������

Figure S2. Spiking YOLOv4 (SPYv4) neural network architecture. The dash line read the "Feature" tensor which calculated
before the last concatenation in CSP BLOCK

S2 S2/S6

Figure S3. Example learning curves on the Add-task of LTC-SRNN trained with BPTT, FPTT, FPTT and batch-size 1
(“LTC-SRNN_bz1”, red curve).

Figure S4. Ablation study of recurrent connections on the DVS Gesture dataset. Plot for test accuracy of LTC-SRNN on
DVS Gesture dataset. The label “W/O Rec” denotes the LTC-SNN corresponding to the baseline recurrently connected
LTC-SRNN but with the recurrent connections in the recurrent layer removed; “W/O Rec++” denotes an LTC-SNN with the
same number of parameters as the LTC-SRNN (increasing the number of neural units and without recurrent connections). Test
accuracy bars show mean ± std over 3 runs and individual data points are inserted.

Table S3. Memory efficiency. (*): the reported number is obtained using a halved batch size compared to the other entries to
fit into GPU memory,

S-MNIST R-MNIST MNIST DVS-Gesture
BPTT 11.1GB 1.5GB 9.67GB 15.72GB(*)
FPTT 1.9GB 1.4GB 2.23GB 3.75GB

Table S4. Total training time per epoch

S-MNIST R-MNIST MNIST DVS gesture
BPTT 2518s 192s 362s 108s
FPTT 1233s 204s 384s 112s

S3 S3/S6

Frames Izhikevich Hodgkin Huxley
100 84.03% 87.50%

Table S5. Performance of SNNs with Izhikevich and Hodgkin Huxley models on DVS-Gesture dataset. The network structure
is same as the network in Table S1, where for the Izhikevich the a and b parameters are trainable and we kept c and d fixed, for
the Hodgkin-Huxley model all neuron parameters were kept fixed; the network structure and the training-related
hyperparameters were not further fine-tuned.

Avg over sequencedt/τm

Av
g

 o
ve

r s
eq

ue
nc

e
ρ

=e
xp

(−
dt

/τ a
dp

)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

a c

b

d

dt
/τ m

76%

Figure S5. Dynamic neural responses of LTC-SNs. (a) an MNIST sample is sequentially fed into the LTC-SNN,
pixel-by-pixel along the row-direction. (b) for illustration, we calculated the histograms of the resulting average dt/τ values
after training for this single sample (c) average responses of neurons in terms of firing rate binned by dt/τm,exp(−dt/τad p)
values (d) Example of dynamics of inverse time constant dt/τm for four randomly selected neurons during presentation of the
sequence.

S4 S4/S6

a b

Figure S6. Ablation study of Truncated-BPTT-k (T BPT T − k) on DVS Gesture dataset of 200 frames where k is number of
updates in the sequence resulting in truncation period subL. TBPTT-1, with truncation length 1, is functionally equivalent to BP.
(a) Appropriate segmentation in time by truncation assists the network to achieve better results in long sequence classification
problems. Compared to BPTT, T-BPTT has fixed consumption proportional to the truncation length. (b) For TBPTT-1,
performance on the same network architecture is essentially constant as a function of sequence length.

S5 S5/S6

Appendix A: FPTT theory424

For conciseness, we briefly summarize the theory underlying FPTT as developed by Kag et al.8.425

Back-propagation-through-time Back-propagation-through-time (BPTT) uses backpropagation to calculate the gradient of426

the accumulated loss along the spatial-temporal dimension with respect to the parameters of the recurrent networks. Let us427

define a recurrent network described by differential equation (ŷt ,ht) = NN(xt ,ht−1) where xt is the input , ŷt is the prediction428

and ht is the hidden states. The gradient of time t is then computed by considering the effect of the state xt on all future losses429

lt , lt+1,lT :430

∂L
∂w

=
T

∑
t=1

∂ lt

∂w
=

T

∑
t=1

t

∑
i=1

∂ lt

∂hi

∂hi

∂w
=

T

∑
t=1

(
T

∑
i=t

∂ li

∂ht
)

∂ht

∂w
=

T

∑
t=1

(
T

∑
i=t

∂ li

∂ht
)

∂ht

∂w
=

T

∑
t=1
{

T

∑
i=t

(
T−1

∏
j=i

∂ l j+1

∂ l j)
∂ li

∂ht
}∂ht

∂w
, (A.1)

and a weight is then updated as: wnew← wold− ∂L
∂w . At the end of training, the loss L will be minimized via optimal solution431

w∗, where ∂

∂w L(w∗)∼= 0.432

For online update based on BPTT, we will have wt+1← wt −∑
t
i=1

∂

∂w li(ŷi,yi,wt) where li(ŷi,yi,wt) is the cost of time step
i with parameter wt , ŷi and yi are the prediction and target label of the time step i. When the algorithm converges to an optimal
solution w∗ at time step ϕ , we will have an optimal solution where:

w∗−wt =−∇w(lt) =
∂

∂w
lϕ(ŷϕ ,yϕ ,w∗)− ∂

∂w
lt(ŷt ,yt ,wt) (A.2)

and, for one step optimization:

wt+1−wt = ∇wlt+1−∇wlt . (A.3)

This demonstrates that for any timestep, the change of weight update is proportional to the change of the gradient; this433

observation (Equation (A.3)) is the foundation of Forward Propagation Through Time.434

Forward Propagation Through Time FPTT aims to derive an online weight update mechanism with guaranteed convergence
to optimal solution w∗. To have a smooth solution, FPTT learns from the historical information of weight changes by introducing
a running mean w̄t to summarize the historical information of weight evolution:

wt+1−wt = ∇w(lt+1)−∇w(lt) (A.4)

⇒ w̄t −wt ∼ ∇w(lt+1)−∇w(lt) (A.5)

⇒ ∇w(lt+1)−∇w(lt) = α[(w̄t −wt)− (wt+1−wt)] = α(w̄t −wt+1) (A.6)

From this, the convergence-guaranteed loss function for online update is derived, based on Eq. (A.6).

∇w(lt+1)−∇w(lt) = α(w̄t −wt+1) ⇔ ∇w(lt+1)−∇w(lt)−α(w̄t −wt+1) = 0 (A.7)

we define the constraint into the function f (wt+1) = ∇w(lt+1)−∇w(lt)−α(w̄t −wt+1). We now consider a convex function
F(w) which approached its minimum when f (wt+1) = 0; we then have

F(w) =
∫

w
f (w)dw – searching wt+1 over parameter space (A.8)

= lt(w)+
α

2
∥w− w̄t −

1
2α

∇w(l(wt))∥2 (A.9)

In this form, Eq A.7 is the first order condition for F(w). So, the weight optimization is to minimize the new objective function

wt+1 = argmin
w

lt(w)+
α

2
∥w− w̄t −

1
2α

∇w(l(wt))∥2 (A.10)

S6 S6/S6

	References

