
Volume 5. number 4 INFORMATION PROCESSING LEITERS October 1976

A SPAC£-5A VING T£CHN1Ql1E FOR Am<ININC ALGOL 68 MULTIPLE VALUES•

ltmbut Mf.£RTENS
~-t~tlld Ct'JttntM,, "IWffdft S·~l'ftt1WI 49, Anutwd•m 11105, 171t Ntth~rlond1

ALGOL 61, ciplimit• tioa

··~
The 1tni&f1tforwud way of elaborating an assign•

tion d : • f m lft ALGOL 68 implementation is (I I:
• elabonte the dtstination d and the source 1.

ylelctint 1 name N and 1 \111\lt Y~
• -.. the 'flluo Y to ibt name N.
In mmy All$. tM elaboration of s will coosist of

1be cmtion of a copy on the working stack of an al
ready clCitting qlue V. This value b lllipd to N by
copytna it once mOd into the memory locadon(s)
whoee lddml ia giveft by N. In moat of 1hese cases.
simple compile-time opdmization iechniques permit
1 tnnlladon whJc:h does not make lbe ex.111 copy on
the worldna ltllck ad instead copies tbe source directly
into the memory locadon(a)ofthe destination [2].

Siad\ • optimlAtkm is of "pedal interest if a mul·
tiplt value (array) is beiftg aallfled. since an extra copy
of a lasF muldple value miatat lab up more space than
ii awilable. A multiple Wllue mltlat be copied by setting
up 1 loap copying the iadffidu.d eltmentl one by one.
Howewe1, 1 diffk:uhy ii encounteMd hete: the dntlna
uoe llld 1he ~ may O\'edap in memory.

i.r• ... umpae: Alter the declaration fl:l. 1:3) REAL
~ comidtr d'f uanatim •(,3) :••(I.), which must
llliF dw ft11t row of o to dw thifd column. Simplo
mtndld application of the opthnization would 1esult
in codt amounlina to

•(1.3) ·'"'•(1.1).
•(2,3) :• •(1.2).
•(3.3) :••(1.3].

•This P'PCr ii reai:tteted at the Mathem~tical Cenue as I\\ S6/7t..

But this is wrong! The original value of a [1,3] · is super
seded before it is assigned to a[3 .3]. Performing the as·
sienmenu in reverse order would give the correct results
in this cue. !)ut it is not. difficwt to construct examples
where neither the "nonnal .. noi the reverse order will
do. (For example, after the declaration (1 :3, 1 :3, 1 :3)
REAL b, 1he assignation b[2, ,] := b[, .2).)

A ttchnique which can be applied at run time to de·
tmnine a safe order for assigning the elements is pre·
sented below. The use of this technique may entail
$010C overhead in execution time. It assumes that the
desdnation is not "flexible". so that the old value it
refers to occupies the same amount of space as the new
value it is to receive••.

2.Preliminaries

A multiple value of n dimensions has a descriptor of
the form ((11, u 1). (:21 u2), (In• un)). where 11 and u1
are the Ith lower and upper bounds. If u1 <.. 11 for any i,
then the descriptor is "flat". This case mui:t be treated
11 a special cue. because of the so-calJed ghost element.
but there is no need to make any actual copy. Other
wise, 1he multiple value has (u 1 - 11 + 1) X (u2 - 12 + 1)
X ... X (un - In + l) elements. each of which is selected
by 1 apecific 0 index" (r 1, •.• , 'n), where 11 <: r, <; U;.

•• If the dettination it fiexible and the old value occupies less
spice than the new o.ne, it can be shown that no overlap can
occu,. It 11 not clear how this fact can be UfG.i. If the old va
lue takes at least as much 11pace, the technique described hete
could be used, Jn t.11at case there should be a means to release
the exua space,

97

INFOR.MAnON PROCESSING LETJ'ERS October 1916

· le 11 _._i i.cre that seletti<:m. makes use of a linear
Ill•• Clllculation method, so d at the add'tress a corre-
4'11 .. to• index {r1, ... , r11) iJ given by some formula
,,,, ... form

.~f+t1 X tl1 +r1 X d2 + ... +rn X dn.

..... r .. , tt will be assumed that the la..~ subscript
- More precisely, if we tab the le.xico
., JI I; •M'derlng on the indices, defined by

i.) c" I 1 1 1) ··ff < ~·
"''''2····•'11 "'''1•'1' ... ,rn 1 '1 '1 or

r1 •ri and (r2, ... ,rn)<(r;, ... ,r~).

dllnthemapping(r1, ... ,rn)-+c+r1 X d1 + ...
+ r X d,, ii strictly monotonic increasing.
~ property holds, for example, if for each newly

C-..d multiple value, d1 , dn ue chosen to satisfy
'• > l andd1_ 1 •(ut-11+ l)X d1 for i=n,n-1, ... ,2.
hii ktft iMlriaut ay Ill operations on multiple values
prowhlecl by ALGOL 68 (llicing, selecting and rowing).
If •trix tramportatlon were added, it would ·no longer
bclid! Adapting the technique to the case where the
Ant sublc:ript nms f•test should presentno problems.

J. The technique

For the mi~ment to be defined, the multiple va
hlel corretp0nmng to the destination and the source
must have the same descriptor ((11, u1), •.. ,(In, un)).
Let the respective address calculation vectors be
(c,dl' .•• , dn) and (c', di, .. ., di, ... ,d~). The follow
ing algorithm assigns the elements one by one in a safe
order:

FO:Rr1 FROM 11 TO u1

DO . .

. . .
OD;

FOR r n FROM ln TO u"

DO INTX=c+r1 Xd1 + ... +rnXdn,

INT p=c' +r1 X di+ ... +rn X d~;

IF >. < p THEN assi1;11 ()., p) FI

on

FORr1 FROMu1 BY-1 T0/1

DO . .

. .
OD.

FOR r n FROM "n BY -1 1"Hn

DO INT).=c+r1 Xd1 + ... +rnXdn,

lNTp=c'+r1 Xdi ·t ... +rnXd~;

IF X> p THENmign °'9P) FI

0[1

It can be seen that the algorithm consists of two
nested loops. The first one runs through the indices
in ascending order and performs the assigni••~nts of
those individual elements for which the direction of
transport in memory is from high to low; wheteas the
second one nms through the indices in descend!."lg or·
der and performs the assignments in the opposite direc
tion.

Remark: The computations involved in the address
calculations can be optimized in an abvious way; they
are here presented as they are only for the sake of
clarity.

4. Conectness proof

Let 'A(!) and p(J) denote the addresses corresponding
to an index I= (r 1, ... , r n). The algorithm defines a ie·
quence of statements

assign (>.(I 1), p(/ 1));

assign (>.(12>• p(/2));.

I

Each index gets its tum, either in the first or in the
second nested loop, depending on whether ">..(/t)<p(..lt)
or "A(/k)> p(/t). Thme indices for which 'AC.l1r.)=p(11)
are left out; in that case the copying is a dummy action.

'Let the indices which get their tum in the tint nested
loop be 11, •.. , Im (so that those getting their tum in the
second one are /m+l' ... ,Ii). We have

Volume S, nun oer 4 INFORMATION PROCESSING LEITERS October 1976

11 <!2 <···<Im•

1m+l >Im+l> ... >Ji,

'>..(.ft) <p(lk) fork <m,

~/A:)> p(/1) fork> m,

if A(/) < A(/'), then I < I',

if p(I) < p(I'). then I <I'.
It must be shown that an address which occurs both

as that of a source elern=nt and as t•aat of a de~tination
element is flnt used as source and thereafter only as
destination. More formally, we must show:

if p(/1) = >..(11) for some sand 1, then s < t.
We distinguish fou cases:

Case A: s < m and t <; m. We have p(/1) = 'A(/1) < p(/1),
so I 1 <11• and therefore s < t.

Case B: s <; m a11tl / > m. It .1inmediately follows that
s< r.

Case C: s > m and t ~ m. From p(/1) = X(I,) < p(J,),
we deduce 11 <1,. From X(/1) > p(/1) = 'A(/1).

we deduce 11 >11• Clearly, this is impossible,
so this case cannot arise.

Case D: s > m and : > m. We have p(I 1) = 'A(/ 1) > p(/1),

sol,> 11, and therefore s < t.

References

(I) A. van Wijngaarden, BJ. Mailloux, J.E.L Peck, C.H.A.
Kostet, M. Sintzoff, C.H. Lindsey, LG.LT. Meertens and
R.G. Fisker (eds). Revised Report on the Algorithmic Language
ALGOL 68, Acta lnformatica 5 (1975) 1-236.

(2) P. Branquut, J.-P. Cardinaet, J, Lewi, J.-P. Delescaille and
M. Vanbegin, An optimized translation process and its ap
plication to ALGOL 68, Lecture Notes in Computer Science
38 (Springei Verlag, Berlin etc., 1976).

