Volume S, number 4

INFORMATION PROCESSING LETTERS

Octaber 1976

A SPACE-SAVING TECHNIQUE FOR ASSIGNING ALGCL 68 MULTIPLE VALUES®

Lambert MEERTENS

Barhematiseh Centrum, Twrede Doevhoavestraat 49, Amsterdam 1005, The Netherlands

Roceived 9 June 197¢

ALGOL 68, optianization

1. Introduction

The straightforward way of elaborating an assigna-
tion d :=sin an ALGOL 68 implementation is [1}:

@ ciaborate the destination d and the source s,

yielding a name N and a value V;

© assign the value ¥ to the name N,

In many cases, the elaboration of s will consist of
the creation of a copy on the working stack of an al-
ready existing value V. This value is assigned to /V by
copying it once more into the memory location(s)
whose address is given by . In most of these cases,
simple compile-time optimization techniques permit
a translation which does not make the extra copy on
the working stack and instead copies the source directly
into the memory location(s) of the destination [2].

Such an optimization is of special interest if a mul-
tiple value (array) is being assigned, since an extra copy
of a layge multiple value might take up more space than
is available. A multiple value might be copied by setting
up a loop copying the individual elements one by one.
However, a difficulty is encountered here: the destina-
tion and the source may overlap in memory.

/n exgmple: After the declaration {1:3, 1:3] REAL
a, consider the assignation af,3] := ¢[1,}, which must
assig? the first row of a to the third column. Simple-
minded application of the optimization would tesult
in code amounting to

af1,3} .=ef1,1].
.[2,3] :"[‘7219
a[3.3] :=a[1.3].

* This paper is registered at the Mathematical Centze as IW 56/7¢.

But this is wrong! The original value of a[1,3] is super-
seced before it is assigned to a{3,3]. Performing the as-
signments in reverse order would give the correct results
in this case, but it is not difficult to construct examples
where neither the “normal” nor the reverse order will
do. (For example, after the declaration {1:3, 1:3,1:3]
REAL b, the assignation b{2, ,} := b[,,2].)

A technique which can be applied at run time to de-
tarmine a safe order for assigning the elements is pre-
sented below. The use of this technique may entail
some cverhead in execution time. It assumes that the
Jestination is not “flexible”, so that the old value it
refers 10 occupies the same amount of space as the new
value it is to reccive ™.

2. Prefiminaries

A multiple value of n dimensions has a descriptor of
the form ((/,, u!), ¢y "2)’ B (A u,)), where I, and 4;
are the ith lower and upper bounds. If u; < ; for any i,
then the descriptor is “flat”. This case must be treated
as a special case, because of the so-called ghost element,
but there is no need to make any actual copy. Other-
wise, the multiple value has () — 1, + 1) X (uy — 1, + 1)
X ... X (u, —1, +1) elements, each of which is selected
by a specific “index” (rl yoaPy), Where [<1 <u;.

*® If the destination is fiexible and the old value occupies less
space than the new one, it can be shown that no overlap can
occur, It is not clear how this fact can be utcu, If the old va-
Jue takes at least as much space, the technique described here
could be used, In that case there should be a means to release
the extra space,

97

§, suniber 4

” * ¥8is sssume< isere that selection makes use of a linear
aduisess calculation method, so tl at the addiress a corre-

sponding 10 an index § {ry» -sT,) is given by some formula

dthtom
4*:#!" Xdl érz)(dz +..4r, Xd,.

dlgse over, it will be assumed that the last subscript
sues fastest. More precisely, if we taks the lexico-
m ordering on the indices, defined by

[0 OO 8 15)75 1) iff 1y <rj or

ry=ryand (ry, .., 7)) < (3, 7y,

then the mapping (7, , ..., 7)-oc+rle +..
41, X d, isstrictly monotomc increasing.

""hh property holds, for example, if for each newly
created multiple value, d,, d, are chosen to satisfy
d, >»1add,

lt s taft imarlmt oy all operations on multiple values
provided by ALGOL 68 (slicing, selecting and rowing).
If matrix transportation were added, it would no Ionger
hoid! Adapting the technique to the case where the
first subscript runs fastest should present no problems.

3. The technique

For the assiginment to be defined, the multiple va-
lues corresponding to the destination and the source
must have the same descriptor ((il Uy s (B 1))
I&t the respective address calculation vectors be

o wesd,)and(c d‘, d Hdl »)- The follow-

a{ mhm assigns the elements one by one in a safe

order

FORr, FROM I, TOu,
DO

FORr, FROMI, TOu,

DO INTA=c+r, Xdl'+ wbr, Xd,
INTp=c'+rle;+...+r"Xd,";
IF A < p THEN assigu (A, p) FI

. . .

INFORMATION PROCESSING LETTERS

,'(w-i + I)Xd fori=n,n—1,..,2.

October 1976

FORr, FROMu, BY -1 TO/,
DO

FORr, FROMu, BY —1 1711,
DO INTA=c+r Xd, +..+r,Xd,,
lNTp=c'+rl Xdyt..tr,Xd;
IF A\ > p THEN assign (\, p) FI
oL
OoD.

It can be seen that the algorithm consists of two
nested loops. The first one runs through the indices
in ascending order and performs the assigniients of
those individual elements for which the direction of
transport in memory is from high to low; wheieas the
second one runs through the indices in descending or-
der and performs the assignments in the opposite direc-
tion.

Remark: The computations involved in the address
calculations can be optimized in an abvious way; they

are here presented as they are anly for the sake of
clarity.

4. Correctness proof

Let A(/) and p(4) denote the addresses corresponding
to an index / = (rl, «s y). The algorithm defines a se-
quence of statements

assign O\, o00,));
assign (\(/ 2)' 1} 2»1.

assign (\(1,), o(1,)).

Each index gets its tum, either in the first or in the
second nested loop, depending on whether k(lk)< o)
or M{,) > p(I,.). Those indices for which A({,) = p(7})
are left out; in that case the copying is a dummy action.

‘Let the indices which get their tumn in the first nested
loop be /y, ..., ,,, (s0 that those getting their turn in the
second one are Im+l’ -»1,). We have

Volume §, nun oer 4

L <I,<..<I,

Loy Py > > 1,
M) <p(ly) for k <m,
M) > o(l,) for k> m,
ifAD)<A), then I<T',
if o) <p(l"), then I <I'.

It must be shown that an address which occurs both
as that of a source elemsnt and as that of a destination
element is first used as source and thereafter only as
destination. More formally, we must show:

if p(I,) = M(1,) for some s and 1, then s <1.
We distinguish four cases:

Case A: s < m and t <m. We have p(l‘) =N) < pl)),
so I; <1, and therefore s <.

INFORMATION PROCESSING LETTERS

October 1976

Case B: s <m au< ; 2> m. It inmediately follows that
s<r.

Case C: s>mand t <m. Fiom p({) = M/,) <r(l),
we deduce /, <[,. From A(/,) > U =M1),
we deduce 1y > 1,. Clearly, this is impossible,
so this case cannot arise.

Case D: s> m and ¢ > m. We have p(/) = M(I,)> p(l,),
so Iy > I, and therefore s <t.

References

[1] A, van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A.
Koster, M. Sintzoff, C.H. Lindsey, L.G.L.T. Meertens and
R.G. Fisker (eds), Revised Report on the Algorithmic Language
ALGOL 68, Acta Informatica § (1975) 1-236.

{2} P. Branquart, J.-P. Cardinael, J. Lewi, J.-P. Delescaille and
M. Vanbegin, An optimized translation process and its ap-
plication to ALGOL 68, Lecture Notes in Computer Science
38 (Springer Verlag, Berlin etc., 1976).

