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ABSTRACT KEYWORDS

We consider consensus protocols in the model that is most com-
monly considered for use in state machine replication, as initiated
by Dwork-Lynch-Stockmeyer, then by Castro-Liskov in 1999 with
“PBFT”. Such protocols guarantee, assuming n players out of which
t < n/3 are maliciously corrupted, that the honest players output
the same valid value within a finite number of messages, after the
(unknown) point in time where both: the network becomes synchro-
nous, and a designated player (the leader) is honest. The state of the
art (Hotstuff, PODC’19), achieves linear communication complexity,
but at the cost of additional latency, due to one more round-trip
with the leader. Furthermore, it relies on constant-size threshold
signatures schemes (TSS), for which all prior-known constructions
require a costly interactive (or trusted) setup.

We remove all of these limitations. The communication bottle-
neck of PBFT lies in the subprotocol, denoted as “view change”, in
which the leader forwards 2t + 1 signed messages to each player.
Then, each player checks that these 2t + 1 messages satisfy some
predicate, which we denote “non-supermajority”. We replace this
with a responsive subprotocol, with linear communication com-
plexity, that enables players to check this predicate. Its construction
is elementary, since it requires only black box use of any TSS.

In the full version of our paper [5] we achieve three things. Firstly,
we further optimize this subprotocol from succinct arguments of
many signed messages, which we instantiate from Attema-Cramer-
Rambaud [8, 2021-3-9 version]. As an introduction to these methods,
we discuss here the simplest case, which is the construction in [8]
of the first logarithmic-sized TSS with transparent setup. Second,
we also address another complexity challenge pointed in Hotstuff,
namely, that protocols with fast termination in favorable runs, have
so far quadratic complexity, due to an even more complex view
change. Third, we enable halting in finite time with (amortized)
linear complexity, which was an unsolved question so far when
external validity is required.
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1 THE SO-FAR TRADE-OFFS IN COMPLEXITY

The problem of consensus is the oldest and most studied task in
distributed systems [10, 11, 21-23, 28]. We consider deterministic
algorithms for consensus, where n = 3¢ +1 players want to agree on
some value in the presence of a malicious adversary that corrupts up
to t of them. Each player inputs a value, and the goal is for the honest
(i.e., non-corrupted) players to output the same value (consistency),
while also ensuring that the output value satisfies some publicly
checkable validity predicate. This constraint, known as “external
validity” ([18, Def 4.1]), naturally shows up in the related problem
of fault-tolerant state machine replication, which can be seen as
an ordered sequence of consensus instances [20, 27, 33]. Typical
predicates are a proof of work, or the signature of a request by some
authorized client.

Players are connected through an asynchronous network con-
trolled by the adversary, that may inspect all messages, and arbi-
trarily alter, reroute, drop, delay, or replay them. We assume a plain
bulletin board where players can publish public keys (PKI). This
enables digital signatures, and thus in turn guarantees the integrity
and authenticity of messages. In this model, asynchronous consen-
sus is not solvable ([22]). Various ways around this exist [1, 13, 19]
that assume a negligible probability of failure, but these protocols
require a shared key or a common coin, whose implementation
requires a cubic communication complexity ([4, 25]). This is why,
instead, we consider the classical conditional termination condition
known as partial synchrony ([21]), that is used most of the deter-
ministic state machine replication algorithms [9, 20, 24, 33]. These
protocols proceed by consecutive timeframes which we denote as
“phases”. Each phase corresponds to a publicly known player known
as the “leader”, that may or not stay the same throughout the pro-
tocol. Termination in these protocols guarantees that, if from some
point in time the leader is honest and the network fast enough, then
all honest players will output in this phase. This is why both the bit
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communication complexity and latency to output, are traditionally
measured from this particular moment in time. Indeed, nothing is
guaranteed as long as both of these conditions are not satisfied.

The apparent latency cost of responsiveness with linear communica-
tion complexity in every phase. In this model, [33, PODC’19] observe
that the communication complexity was so far at least quadratic in
the number n of players since [20]. They write: “This scaling chal-
lenge plagues not only PBFT, but many other protocols developed
since then, e.g., Prime, Zyzzyva [26], Upright, BFT-SMaRt, 700BFT
[9], and SBFT [24]” They observe that this complexity comes from
the subprotocol denoted “view change” in PBFT, which “requires
the new leader to relay [to all n players] information from (n — t)
[players]”. The main contribution of [33] is to circumvent this re-
quirement, to achieve communication complexity linear in n. But
they pay the price to sacrifice the latency. Namely, as they write:
“HotStuff achieves these properties by adding another [round trip]
to each [phase], a small price to latency in return for considerably
simplifying the leader replacement protocol” Their argument tends
to show that this price is unavoidable, namely, they write about
previous protocols with better latency: “Unfortunately, [phase]-
change based on the [two round trips] paradigm is far from simple,
is bug-prone [3], and incurs a signicant communication penalty
for even moderate system sizes.” To further show that this price
may be unavoidable, they insist that ways around preserving linear
complexity and two-round trips latency do exist: Tendermint [16],
Casper [17] (and also the first version Hotstuffv1 [2]), but that all of
them sacrifice, on the other hand the important property denoted
“responsiveness”, which guarantees output at the actual network’s
speed. Indeed, in [2], the leader is instructed to wait at the begin-
ning of a phase for some fixed delay A, which is the upper bound
on the network delay after some (unknown) in unknown some
point in time, because their termination requires that the leader
collects messages from all the honest players. This inefficiency is
pointed in [33] as follows: “However, these systems are built around
a synchronous core, where in proposals are made in pre-determined
intervals that must accommodate the worst-case time it takes to
propagate messages”. Then, later page 9 of [33], they emphasize
that termination in the previous systems would not be guaranteed
without waiting for A (under the paragraph “Livelessness with
two-phases”).

2 A SIMPLE SOLUTION, FROM ANY TSS
2.1 Further Model, Definitions and Notations

Baseline protocol. We provide, in 2.2, a rephrasing of the protocol
denoted as “linear PBFT” in [24]. Borrowing the classical terminol-
ogy of [12], the protocol proceeds in intervals denoted “phases”,
which are controlled by a global clock. We assume given by the
model, in each phase ¢ > 1, the publicly known identity of a player,
denoted Ly: the “leader”. The first phase ¢ = 1 differs from the
higher ones ¢ > 2, in that it does not contain the first instruction
0 Report. Players in a phase ¢ perform these instructions as soon
as they can, and the numbered steps do not denote any waiting
instruction. The three message types that need to be made explicit
in the description of the protocol below, are denoted as: propose,
lock vote, decision vote.
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A k-threshold signature scheme (TSS). is defined in [8, §5] as fol-
lows. Considering a baseline digital signature scheme, a k-threshold
signature provides, for any integer k, an algorithm AGGREGATEj
which, on input a set S of k messages of identical content m, signed
by any distinct k out of n players, outputs a proof of knowledge of
such a set S (including the predicate that the k signers are distinct).
This new definition of a TSS implies the classical one, e.g., of [32].

The TSS of [8, §5] proves knowledge of k out of n signatures
of the type BLS [15]. Their sizes are in O(log(n)), and it has the
additional properties that k can actually be dynamically chosen by
the prover, and that the identities of the signers are hidden. They
require no interactive (nor trusted) setup.

By contrast, let us recall the following approach used by the de-
centralized transaction system Diem [29] and by [30]. Every player
generates its own public-private key-pair. A threshold signature
is computed as the sum of k individual BLS signatures, and it can
be verified by running the BLS verification algorithm using the
sum of the public keys of the k signers. Hence, the threshold signa-
ture should contain a list of the k signers, i.e., it is of size O(n) or
O(klog(n)) depending on the exact encoding of this list.

2.2 Baseline protocol: instructions in a phase ¢

For clarity, we denote as lock certificate the data type output by
AGGREGATE2; +1 on messages of type lock vote, and decision certificate

the data type output by AGGREGATE2;+1 on messages of type decision vote.

0 Report Every player P; sets ¢; < ¢ the highest phase up to ¢
for which he received a lock certificate. By convention ¢; = 0
if he did not so far. He sends to the leader Ly: a report(¢;, ¢),
appended with a lock certificate(v;, ¢;) if ¢p; > 1.

1 Propose The leader Ly, upon receiving a set R of report mes-
sages from 2t +1 distinct players, then, letting ¢max be the highest
$jin R:

(i) If0 < ¢Pmax, he received at least one lcmax := lock certificate(vmax, Pmax)-

Then he multicasts propose(vmax, ¢), appended with the jus-
tification {R, lcmax}-

(if) Otherwise, he sets vy equal to his own input and multicasts
propose(vr, ) appended with the justification R.

2 Lock vote Players, upon receiving propose(v, ¢) from Ly for
the first time (whatever v is), appended with a set R of report
messages relative to ¢, check if:

(i) Either the justification comes with some lock certificate(v, ¢)
for v, such that ¢’ is the highest ¢; reported in R;

(if) Or the justification contains no lock certificate, and all mes-
sages in R report ¢; = 0;

then if the check passes, they reply with a signed lock vote(v, ¢).

3 Lock certificate Leader Ly, upon receiving lock votes for the
same (v, §) from 2t + 1 distinct players, AGGREGATEy;4+1 them
into a “lock certificate(v, ¢)”, which he multicasts.

4 Decision vote Players, upon receiving from Ly a lock certificate(v, ¢)

for the first time (for whatever value of v), reply with a signed
decision vote(v, ¢).
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5 Decision certificate Leader Ly, upon receiving decision vote(, ¢)

from 2t + 1 distinct players for the same v, AGGREGATES;+1 them
into a decision certificate(v), which he multicasts.

6 Output Upon receiving a decision certificate for v, output v.

2.3 Linear Complexity, from a PnS subprotocol

The forwarding of the 2t + 1 messages of R to all players, done
in 1, has quadratic bit complexity. The key to remove this, is the
observation that the steps 0,1,2 contain a subprotocol whose pur-
pose is to prove players that the value proposed in 1 is such that: it
comes with a lock certificate formed in some phase ¢’, and that at
most ¢ honest players could possibly have received lock certificates
formed in phases strictly higher than ¢’. We specify this as follows:

Definition 1 (PnS). For every honest player i in phase ¢ , denote
¢i < ¢ the highest phase number, up to ¢, for which i saw a valid
lock certificate Ic;. Then a Proof of non Supermajority: PnS(¢max, ¢)
for some valid (@max, Icmax) is the data of: ¢y < ¢, along with
some data proving that no t+1 honest players have their ¢; > ¢max-

Relatively to such a specific set of inputs (¢;, Ic;): a PnS protocol
is one in which honest players in phase ¢ send one message to a
designated prover Ly among them, such that, upon receiving 2¢ + 1
well-formed messages, a (honest) prover is able to output: a phase
number ¢pmax(< @), a lock certificate Ic ;g5 relative to Ppmax, and
a PnS(¢max, 9)-

The following is easily seen to be a PnS protocol in one round
trip, as proven in [31, §6], with total bit complexity O(n$|TSS|),
where |TSS| denotes the size of a |TSS|.

1 Every player P; sends to Ly a report ($;, ¢), appended with a
lock certificatein ¢; if 1 < ¢;; along with, for each ¢’ € [¢i, ..., @],
one signed testimony consisting of the string: “my locked phase
number up to ¢ is lower thanorequalto ¢’”.

Prover Ly, upon receiving from 2t + 1 players such well formed
messages, i.e., containing a lock certificate for the claimed ¢;, a
list of testimonies which is consistent with the claimed ¢;, and
such that all the messages specify “up to ¢” with ¢ the current
phase number. Then, define @,qx the lowest value for which
there exists 2¢+1 identical testimonies: “my locked phase number
upto ¢islowerorequal to ¢pmax " Leader Ly then:

- extracts this ¢, a5 and alock certificate ¢y, qx relative to grmax
from one of the 2t + 1 messages received. Claim I: he is always
able to do so;

- AGGREGATES3;+1 the testimonies. Claim 2: this constitutes a
PnS on (dmax, §)-

In conclusion, plugging the above PnS protocol in the steps 0,1
of the baseline consensus of §2.2 makes useless the forwarding of
R, and thus yields:

Theorem 1. There exists a consensus with communication O(n$|TSS|)
per phase, such that players output within 6 actual message delays,
as soon as both the leader is honest and the network synchronous.

3 A LOGARITHMIC SETUP-FREE TSS

Let us give the intuition of the setup-free and logarithmic-sized TSS
of the other work [8, §5]. This TSS is a short argument of knowledge
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of k out of n signed messages, in the simplest case (all messages are
the same), and thus provides a warmup for our long version [5].

The TSS is instantiated with the BLS signature scheme [15]
defined over a bilinear group (g, G1, Ga, GT, e, G, H). Let us now
briefly recall the BLS signature scheme, instantiated in our n-player
setting. All players i, 1 < i < n, generate their own private key u; €
Zg, and publish the associated public key P; = u;H € G,. To sign a
message m € {0, 1}, player i computes signature o; = u;H(m) €
G1, where H: {0,1}* — Gy is some public hash function. The
public verification algorithm accepts a signature o; if

1 e(oi, H) = e(H(m), P;).

By the bilinearity of e, all honestly generated signatures are ac-
cepted. The unforgeability follows from the co-CDH assumption [14].
The AGGREGATE} algorithm takes as input a message m, along with

the signatures from a subset S of k out of n signers on m, and

simply outputs a proof of knowledge of this input, namely, of the

following relation:

{(Pl,...,Pn,m;S, (6i)ies) : |S| =k, e(oi, H) = e(H(m), P;) Vi € S}.

The main challenge is that the prover only knows k-out-of-n
signatures. This k-out-of-n case is reduced to the n-out-of-n, using a
recent result on k-out-of-n proofs of partial knowledge [7] as follows.
Let p(X) =1+ Z]'?:_lk anj € Zg[X] be the unique polynomial of
degree at most n — k with p(i) = 0 for all i € {1,...,n}\S. Note
that this polynomial defines an (n — k, n) secret sharing of 1, with
shares s; = 0 for all i ¢ S. The k-aggregator defines ¢; = p(i)o;,
where o; is understood to be equal to 0 for i ¢ S, i.e., the secret
sharing defined by p(X) eliminates the signatures (0;);¢s that the k-
aggregator does not know. Subsequently, the k-aggregator commits
to

~ ~ -k
X:(al,...,an_k,al,...,an)EZ; XG?.

Now note that the committed vector x satisfies
2 fi® = fila1,....ap_k,01,...0n) = e(H(m), P;) Vi € [n],

n—k
where f; :ZZ_kXG? — G, x— e(Ei,H)—Z ajije(W(m), P;).
j=1
Hence, by proving that the committed vector satisfies these rela-
tions, it follows that the k-aggregator knows a non-zero polynomial
p(X) of degree at most n — k and group elements a1, ...0, € Gy
such that e(c;, H) = p(i)e(H(m), P;) for all 1 < i < n. Therefore,
the k-aggregator must know valid signatures for all indices i with
p(i) # 0, and since p(X) is non-zero and of degree at most n — k at
least, k of its evaluations are non-zero.

It remains to prove the n relations of (2) with low communication.
Since they are n linear relations on the same committed vector x, a
random linear combination technique ([6]) enables to prove them
for the price of only one relation. The relation is then proven using
the compressed X-protocol I1. of [8, §4].
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