
Hybrid Linkage Learning for Permutation Optimization with
Gene-pool Optimal Mixing Evolutionary Algorithms

Michal W. Przewozniczek

Dep. of Computational Intelligence

Wroclaw Univ. of Science and Techn.

Wroclaw, Poland

michal.przewozniczek@pwr.edu.pl

Marcin M. Komarnicki

Dep. of Computational Intelligence

Wroclaw Univ. of Science and Techn.

Wroclaw, Poland

marcin.komarnicki@pwr.edu.pl

Peter A.N. Bosman

Centrum Wiskunde & Informatica

Amsterdam, The Netherlands

peter.bosman@cwi.nl

Dirk Thierens

Utrecht University

Utrecht, The Netherlands

d.thierens@uu.nl

Bartosz Frej

Fac. of Pure and Applied Mathematics

Wroclaw Univ. of Science and Techn.

Wroclaw, Poland

bartosz.frej@pwr.edu.pl

Ngoc Hoang Luong

University of Information Technology

Vietnam National University

Ho Chi Minh City, Vietnam

hoangln@uit.edu.vn

ABSTRACT
Linkage learning techniques are employed to discover dependencies

between problem variables. This knowledge can then be leveraged

in an Evolutionary Algorithm (EA) to improve the optimization

process. Of particular interest is the Gene-pool Optimal Mixing

Evolutionary Algorithm (GOMEA) family, which has been shown

to exploit linkage effectively. Recently, Empirical Linkage Learn-

ing (ELL) techniques were proposed for binary-encoded problems.

While these techniques are computationally expensive, they have

the benefit of never reporting spurious dependencies (false link-

ages), i.e., marking two independent variables as being dependent.

However, previous research shows that despite this property, for

some problems, it is more suitable to employ more commonly-used

Statistical-based Linkage Learning (SLL) techniques. Therefore, we

propose to use both ELL and SLL in the form of Hybrid Linkage

Learning (HLL). We also propose (for the first time) a variant of

ELL for permutation problems. Using a wide range of problems

and different GOMEA variants, we find that also for permutation

problems, in some cases, ELL is more advantageous to use while

SLL is more advantageous in other cases. However, we also find

that employing the proposed HLL leads to results that are better

or equal than the results obtained with SLL for all the considered

problems.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence;

KEYWORDS
Genetic Algorithm, Estimation-of-Distribution Algorithm, Linkage

Learning, Model Building, Empirical linkage learning

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’21 Companion, July 10–14, 2021, Lille, France
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8351-6/21/07. . . $15.00

https://doi.org/10.1145/3449726.3463152

ACM Reference Format:
Michal W. Przewozniczek, Marcin M. Komarnicki, Peter A.N. Bosman, Dirk

Thierens, Bartosz Frej, and Ngoc Hoang Luong. 2021. Hybrid Linkage Learn-

ing for Permutation Optimization with Gene-pool Optimal Mixing Evolu-

tionary Algorithms. In 2021 Genetic and Evolutionary Computation Confer-
ence Companion (GECCO ’21 Companion), July 10–14, 2021, Lille, France.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3449726.3463152

1 INTRODUCTION
Many real-world problems thatmay be represented in a permutation-

based manner are NP-hard [8, 12]. Genetic Algorithms (GAs) were

shown to be effective in solving some of these problems and are

frequently employed for this purpose [9, 16]. The model-based Evo-

lutionary Algorithms (EAs) were shown to outperform the classic

EAs that do not use problem decomposition techniques [3, 11, 13,

15, 22, 23]. However, the body of literature on model-based EAs for

permutations is far smaller than for binary or real-valued spaces.

Nevertheless, the recent advances reveal the significant potential

brought by such optimizers, e.g., Generalized Mallows Estimation

of Distribution Algorithm (GM-EDA) [5], Linkage Tree GOMEA

(LT-GOMEA) for permutations [2], and the Parameter-less Popula-

tion Pyramid for Permutation problems (P4) [37]. Therefore, in this

paper, we take the next step in this promising direction.

LT-GOMEA and P4 employ SLL based on aDependency Structure

Matrix (DSM). Linkage learning based on a DSM is a part of various

state-of-the-art GAs that were shown to be effective for binary

[11, 15, 32] and non-binary [22] discrete optimization problems as

well. Recently, Linkage Learning based on Local Optimization (3LO)

was found to be a promising new approach to linkage learning [28].

3LO does not work with a DSM and can be classified as an ELL

technique rather than an SLL technique. A key advantage of 3LO

is that it has been proven that it does not detect false linkages.

However, this increase in linkage quality comes at a price: 3LO is

computationally expensive. Consequently, based on results reported

so far, SLL remains a better choice for some problems, especially

those with many inter-gene dependencies [28].

Therefore, the main objectives of this paper are as follows. First,

we propose a form of 3LO for permutation problems. Second, we

hybridize this technique with an existing SLL technique for per-

mutation problems to arrive at a novel HLL technique. Based on

1442

GECCO ’21 Companion, July 10–14, 2021, Lille, France

experiments using SLL and HLL within two state-of-the-art EAs,

namely LT-GOMEA and P4, we show that using HLL is better or

equal to using SLL for all considered problems. Similarly, we show

that using HLL is also better or equal to using the proposed ELL for

all considered problem-EA combinations with only one exception.

The remainder of this paper is organized as follows. In Section

2, we present related work. Sections 3 and 4 describe the proposed

pbELL and linkage hybridization, respectively. The results of our

experiments are presented in Section 5. Finally, the last section

presents key conclusions and promising future work directions.

2 RELATEDWORK
2.1 DSM-based linkage learning
In EAs, a DSM is a square matrix that represents a degree of de-

pendence between variables (genes) [15]. Mutual information is

frequently used to estimate a DSM from the evolving population

[11, 28, 32, 35, 37, 38], which is defined as follows:

𝐼 (𝑋 ;𝑌) =
∑
𝑥 ∈𝑋

∑
𝑦∈𝑌

𝑝 (𝑥,𝑦) log
2

𝑝 (𝑥,𝑦)
𝑝 (𝑥)𝑝 (𝑦) (1)

where 𝑋 and 𝑌 are random variables.

In the context of an EA, 𝑋 and 𝑌 represent genes, and the proba-

bilities 𝑝 (·) are estimated using frequencies of (pairs of) gene values

in the population. A DSM is often used as the basis of information

upon which we identify higher-order dependency structures. For

both methods considered in this paper, a clustering algorithm cre-

ates a Linkage Tree (LT) based on DSM. In an LT, nodes represent

clusters of genes that are considered to be dependent on each other.

Starting from the leaves that contain only one gene, higher nodes

concatenate the clusters of genes represented by their two children-

nodes. Finally, the root of an LT contains all genes. More infor-

mation and examples considering the LT creation process may be

found in [25, 28, 34]. Other means of computing a DSM from a pop-

ulation are possible as well. In particular, for permutation problems,

a first proposal for doing so involved also a measure of adjacency

of two genes in terms of the permutation being represented [2].

2.2 Linkage Learning based on Local
Optimization

Linkage learning techniques employing statistical measures (such

as presented in the previous subsection) to estimate dependencies

between genes may be classified as statistical linkage learning (SLL)

techniques. A significantly different approach, called Linkage Learn-

ing based on Local Optimization (3LO), was proposed in [28]. 3LO

employs perturbations and a local optimization algorithm to empir-

ically check if two genes are dependent. Therefore, it is classified

as an ELL technique. Specifically, linkages are discovered on the

basis of a single individual (𝒙 = [𝑥1, ..., 𝑥𝑛], where 𝑛 is the problem

size). For each gene m, a so-called linkage scrap is discovered. A

linkage scrap is defined as follows.

LScrap(𝒙,𝑚) =

OR
(
𝑋𝑂𝑅

(
𝒙, 𝒙 (𝑚)

)
,XOR

(
opt (𝒙), opt

(
𝒙 (𝑚)

)))
(2)

where 𝒙 (𝑚)
is an individual 𝒙 in which the𝑚th gene is perturbed

and opt (𝒙) is the individual 𝒙 that results from optimization using

First Improvement Hill Climber (FIHC) [11, 28]. The order of the

genes as considered within FIHC optimization is chosen randomly

but is the same for each linkage scrap discovery operation. In other

words, the results of applying local optimization to individuals

𝒙 and 𝒙 (𝑚)
are compared. Since FIHC with a given order works

deterministically, information is obtained on how perturbation

of the 𝑚th gene influences the optimization result. All genes of

opt (𝒙) and opt
(
𝒙 (𝑚)

)
that differ together with the𝑚th gene create

a linkage scrap and are considered to be dependent.

A linkage learning procedure results in perfect linkage if it suffers
neither from false linkage reporting nor missing linkage reporting.
False linkage concerns reporting two genes that are independent to

be dependent, whereas missing linkage concerns failing to report

that two genes are dependent when in fact they are dependent.

Contrary to most SLL methods, the procedure in 3LO is proven

to never report false linkage. However, 3LO may still suffer from

missing linkage [28].

In 3LO, linkage scraps are used to create a DSM-like matrix.

Then, for each pair of genes, the number of times it is reported in

a linkage scrap collection is counted and stored in the DSM. This

DSM is then used to create an LT in the same way as in SLL. Since

3LO is computationally expensive, it is highly inefficient to use it

in the same way that SLL techniques are used in EAs since they

frequently update their linkage model (typically every generation).

Therefore, a specific 3LO Algorithm (3LOa) dedicated to using 3LO

was proposed in [28].

2.3 Linkage Diversity and Conditional Linkage
The authors of [35] stress that the SLL-based GA they have proposed

successfully solves the Hierarchical-If-And-Only-If (HIFF) problem

because it can perfectly recognize the underlying problem structure.

However, as pointed out in [28, 33], for overlapping problems in

general, a single model that exhibits perfect linkage described in

groups of genes may not be enough to solve the problem efficiently.

This is mainly due to the representation of linkages in terms of

multiple groups (or clusters) of genes, either some linkages must

be broken in order to be still able to obtain smaller linkage sets or

very large linkage groups are required. Hence, the correct linkages

are respectively not effectively or efficiently processed. In either

case, this results in poor scalability of the EA in terms of finding

the optimum as the problem length increases. Therefore, to go

beyond the current state-of-the-art in linkage learning, new avenues

should be explored. Along one avenue, recently, the concept of

conditional linkages was proposed [4]. The conditional linkage

allows representing overlapping dependencies, which was shown

to be beneficial in case of overlapping problems with real-valued

variables. However, the definition of the linkage model in that work

was still pre-determined and not learned online, which is what is

needed for successful black-box optimization, which is what we

focus on here. The novel avenue in linkage learning that we consider

in this paper is using more than one linkage model at the same time.

With such a mixture of linkage models, any misrepresentations in

one model may be alleviated through the use of another linkage

model.

1443

Hybrid Linkage Learning for Permutation Optimization with GOMEAs GECCO ’21 Companion, July 10–14, 2021, Lille, France

2.4 Modern evolutionary permutation-based
optimization

For optimization problems in discrete Cartesian spaces, a candidate

solution 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) can be directly represented using 𝑛 dis-

crete variables, i.e., 𝒙 ∈ ×𝑛
𝑖=1
D𝑖 , where D𝑖 is the domain of variable

𝑖 . For optimization problems in permutation spaces, a solution 𝒙 is a

permutation of (1, 2, . . . , 𝑛). A key issue using such a representation

directly is that crossover operations almost always result in a solu-

tion that is not a permutation. One general-purpose solution to this

issue is to make use of the random keys encoding. Permutations

are then encoded by an 𝑛-dimensional vector 𝒓 = (𝑟1, 𝑟2, . . . , 𝑟𝑛)
of 𝑛 real-valued random keys, i.e., 𝒓 ∈ ×𝑛

𝑖=1
[0, 1]. The encoded

permutation is found by sorting 𝒓 in ascending order, such that

𝑟𝑥1 < 𝑟𝑥2 < . . . < 𝑟𝑥𝑛 . For example, 𝒓 = (0.05, 0.62, 0.92, 0.80, 0.24)
encodes 𝒙 = (1, 5, 2, 4, 3). Any crossover in random-keys space

always results in a valid encoding of a permutation.

GOMEA is a modern family of EAs which, at the core, revolve

around the use of the Optimal Mixing (OM) variation operator. OM

transforms an existing individual 𝒓 in an iterative genetic-local-

search-like manner. In the case of an LT model, OM goes through

every node in the LT in random order. For each node, the variables

identified in the node are copied from a donor individual 𝒅 to

𝒓 . For instance, when individual 𝒓 = (0.05, 0.62, 0.92, 0.80, 0.24) is
recombined with donor 𝒅 = (0.91, 0.14, 0.33, 0.45, 0.60) using the LT
node (1, 3, 4), it will be changed into 𝒓 = (0.91, 0.62, 0.33, 0.45, 0.24).
If the partially-altered individual is not worse than its previous

state, the change is kept; otherwise, the change is undone. After all

the nodes in the LT are traversed, the original individual has been

transformed into a new individual that has an equal or better fitness

value. Most commonly, the donor individual is selected (randomly)

anew for each node in the LT. In that case, we speak of Gene-pool

Optimal Mixing (GOM).

P4 [37] is a recently proposed version of the Parameter-less Pop-

ulation Pyramid (P3) [11] that was adjusted to solving permutation-

based problems. Like P3, P4 employs a pyramid-like structured

population rather than a classical vector (or set) structured popu-

lation. A new individual is added in every iteration. Initially, the

new (randomly generated) individual is added to the first level of

the pyramid. Then, GOM is used to transform the solution, using

the solutions from the same pyramid level as potential donors. If

the individual is improved through GOM, it is added to the next

level of the pyramid. This repeats until the solution is no longer im-

proved or the top of the pyramid is reached. P3 and P4 share many

mechanisms with LT-GOMEA [2]. Specifically, the same linkage

learning techniques are used. Moreover, the use of GOM makes

them part of the GOMEA family. Specifically for P4, further simi-

larities with the permutation version of LT-GOMEA are random

keys encodings and the incorporation of the random rescaling and

re-encoding operators. The difference is that the parameterless

version of LT-GOMEA scales its populations using an interleaved

multi-start population-growing scheme [14], while P4 maintains

multiple populations in the form of pyramid levels. In both cases, a

separate linkage model is learned for each population, albeit that

in P4 a new linkage model is learned every time a single new solu-

tion is added. As a consequence, P4 generates many more linkage

trees during a single run than LT-GOMEA, which results in a more

diverse set of linkage groupings, thus increasing the exploration

capacity of the Optimal Mixing operator. Both GOMEA variants,

were shown competitive to other state-of-the-art methods designed

to solve permutation-based problems [2, 37].

3 EMPIRICAL LINKAGE LEARNING FOR
PERMUTATION-BASED PROBLEMS

In this section, we propose a new linkage learning technique, in-

spired by 3LO [28]: Empirical Linkage Learning for Permutation-

based Problems (pbELL). The motivation and intuition behind the

pbELL proposition are as follows. First, pbELL (same as 3LO) should

not propose any false linkage because, intuitively, a proper linkage
model that is free of false linkage may be the key to effectiveness

and efficiency. This intuition is confirmed by results obtained for

3LO on binary-encoded problems [28], by research on gray-box

optimization [4, 36] - showing that the effectiveness of evolutionary

methods can be increased significantly when knowledge concern-

ing the problem structure decomposition is known a priori - and

recent research concerning the relationship between linkage quality

(i.e., the quality of problem decomposition supported by linkage)

and the effectiveness of state-of-the-art evolutionary methods [26].

The second motivation behind proposing pbELL was to make its

computational cost as low as possible. 3LO is so computationally

expensive that it is not feasible to apply it in conjunction with the

current state-of-the-art EAs that employ OM (e.g., LT-GOMEA [2],

P3 [11], and DSMGA-II [15]). It was shown recently, for real-valued

variables, that it is possible to achieve much more efficient ELL

through fitness-based probing, leading to high-quality linkage mod-

els and much better results from GOMEA than when SLL methods

are used [19]. Therefore, we wish to propose an ELL technique for

permutation-based problems that can find high-quality linkage at a

computational cost that is low enough to make pbELL applicable

to state-of-the-art GAs like LT-GOMEA and P4.

Trying to capture the precise meaning of dependence or linkage,
we propose the following approach. In the forthcoming descrip-

tion, we identify each gene with its initial number and use the

language of permutations (rather than the language of random

keys encoding), assuming that the domain of a fitness function

𝑓 𝑖𝑡 is a set of permutations (rather than some Cartesian product).

By a permutation of a finite set, we mean a bijective self-map of

this set. Assuming that each individual is characterized by 𝑛 genes,

we will be mainly concerned with permutations of {1, ..., 𝑛}. Let
𝐵 = {𝑏1, ..., 𝑏𝑟 } and 𝐶 = {𝑐1, ..., 𝑐𝑠 } be a partition of {1, ..., 𝑛}, i.e.,
𝐵 and 𝐶 are disjoint and 𝐵 ∪𝐶 = {1, ..., 𝑛}. We will interpret 𝐵 as

a block of interesting genes and 𝐶 as a context. We say that per-

mutations 𝜋 and 𝜌 have the same order of 𝐵 if 𝜌−1𝜋 is increasing

on 𝜋−1 (𝐵) (or, equivalently, 𝜋−1𝜌 is increasing on 𝜌−1 (𝐵)). For in-
stance, permutations

(
1 2 3 4 5 6 7

3 5 6 4 7 2 1

)
and

(
1 2 3 4 5 6 7

1 2 3 7 4 5 6

)
have the same

order of {3, 5, 6}.

Definition 1. Genes from the block 𝐵 are independent of the
context𝐶 if 𝑓 𝑖𝑡 (𝜋) = 𝑓 𝑖𝑡 (𝜌) for any two permutations 𝜋 and 𝜌 which
have the same order of 𝐵 and of 𝐶 . Because of the symmetry of the
roles of 𝐵 and𝐶 , we will also say simply that 𝐵 and𝐶 are independent.

1444

GECCO ’21 Companion, July 10–14, 2021, Lille, France

Roughly speaking, this means that changes introduced exclu-

sively in 𝐵 are likely to change fitness, but transposing adjacent

elements of 𝐵 and 𝐶 has no effect on fitness.

Figure 1: pbELL - linkage discovery for a single pair of genes

In Figure 1, we present the pbELL procedure of checking if two

genes are dependent. The example considers a 5-gene permutation

problem. First, the order resulting from the random keys values

is obtained. Same as in 3LO, linkage is discovered on the basis of

a single individual. To check if genes 1 and 4 are dependent, we

modify the order resulting from the individual’s genotype to make

these genes adjacent, and we make the first fitness check. Then,

we swap the order of the considered genes, and we do the second

fitness check. If the fitness value of two fitness checks differs, then

we find the two considered genes dependent. Otherwise, we do

not report the dependency. The following theorem is a precise

formulation that pbELL will never report a false linkage.

Theorem 1. If 𝐵 is a block independent of the context 𝐶 then no
two genes 𝑖 ∈ 𝐵 and 𝑗 ∈ 𝐶 will be reported dependent by pbELL.

Proof. In the first step pbELL changes the order of genes to

obtain a permutation 𝜋 with adjacent 𝑖 and 𝑗 , i.e.,

{𝜋−1 (𝑖), 𝜋−1 (𝑗)} = {𝑚,𝑚 + 1}.
Let 𝜏𝑖 𝑗 be the transposition of 𝑖 and 𝑗 , i.e., 𝜏𝑖 𝑗 (𝑖) = 𝑗 , 𝜏𝑖 𝑗 (𝑗) = 𝑖 ,

𝜏𝑖 𝑗 (𝑘) = 𝑘 for 𝑘 different than 𝑖 and 𝑗 . pbELL performs fitness check

for 𝜋 and 𝜏𝑖 𝑗𝜋 . We have

𝜋−1𝜏𝑖 𝑗𝜋 (𝜋−1 (𝑖)) = 𝜋−1 (𝑗)
𝜋−1𝜏𝑖 𝑗𝜋 (𝜋−1 (𝑗)) = 𝜋−1 (𝑖)

and

𝜋−1𝜏𝑖 𝑗𝜋 (𝑘) = 𝑘 if 𝜋 (𝑘) ∉ {𝑖, 𝑗}.
In other words, 𝜋−1𝜏𝑖 𝑗𝜋 is the identity permutation with two ad-

jacent elements flipped. The flipped elements belong to distinct

sets 𝜋−1 (𝐵) and 𝜋−1 (𝐶), so 𝜋−1𝜏𝑖 𝑗𝜋 is increasing both on 𝜋−1 (𝐵)
and 𝜋−1 (𝐶). Hence, 𝜋 and 𝜏𝑖 𝑗𝜋 have the same order of 𝐵 and 𝐶

implying that 𝑓 𝑖𝑡 (𝜋) = 𝑓 𝑖𝑡 (𝜏𝑖 𝑗𝜋) and, consequently, dependence is
not reported. □

pbELL will not report false linkage for any permutation-based

problem type: relative, absolute, and neighbor. However, it is im-

portant to note that, like 3LO, pbELL may miss some linkage (i.e.,

pbELL may fail to detect some true gene dependencies) because the

lack of independence may be revealed in permutations different

from the one used by pbELL.

Table 1: Example of a pbELL-based DSM for five genes.

Gene number 1 2 3 4 5
1 x 1 1 0 0

2 1 x 1 0 0

3 1 1 x 1 0

4 0 0 1 x 1
5 0 0 0 1 x

The pbELL procedure described above is executed for all available

pairs of genes. Since this operation is expensive, it is performed

only during the initialization phase, and it does not change during

the run of the EA.

The proposed pbELL may be found similar to Differential Group-

ing (DG) [20, 21, 30], which was also the inspiration for the recently

proposed ELL method for the real-valued GOMEA [19]. DG is a

problem decomposition technique dedicated to continuous search

spaces. The core idea of DG is to perturb the genotype and analyze

fitness changes triggered by the perturbation. Although pbELL be-

haves similarly, there are also significant differences. First, pbELL

changes the original genotype to make the considered genes ad-

jacent. Second, pbELL considers a specific perturbation designed

to assure that the perturbation will only influence two selected

genes. On the other hand, when DG perturbs the genotype, it may

influence many genes. Moreover, its recent version, namely RDG

[30], perturbs the whole groups of genes at once.

The number of fitness function evaluations (FFE) spent by pbELL

is 𝑛(𝑛 − 1) (for each of the

(𝑛
2

)
available gene pairs, we perform

two fitness checks). Since pbELL is executed only once before the

optimizer run, its computational cost seems reasonable.

The proposed pbELL returns information about whether two

genes were found dependent or not. Therefore, we can represent

this information in a DSM-like structure. An example of such a DSM

is shown in Table 1. Note that genes 1, 2, and 3 are all dependent on

each other. The situation is different for genes 3, 4, and 5. Although

the pairs of genes (3,4) and (4,5) are dependent, no dependency was

found between genes 3 and 5. Such linkage does not have to be

incorrect. If we assume that the underlying problem structure is

built from two blocks of dependent genes: (3,4) and (4,5), genes 3

and 5 are not directly dependent. Their dependency is determined

only by gene 4. If the value of gene 4 is constant, then there is no

dependency between genes 3 and 5.

The above example shows how pbELL-DSM may be used to

discover the overlapping dependencies. The DSM entries take only

values 0 or 1. To avoid any bias when using the DSM to construct

higher-order linkage structures such as the LT, when pbELL is used,

a small random value is added to each DSM entry.

4 HYBRIDIZED LINKAGE LEARNING
In this paper, we propose to hybridize our pbELL-DSM with an SLL

based-approach as first published in [2]. We do so by adding the

two DSM matrices. The entries of the SLL-DSM are all normalized

to the range [0;1). Thus, in the proposed hybridization, the signal

coming from the pbELL-DSM is dominating since it can only take

the extreme values 0 and 1. The intuition behind the proposed

hybridization approach is as follows. pbELL is useful in discovering

if a particular pair of genes is dependent or not. However, it does

not measure the strength of the dependency. This information

1445

Hybrid Linkage Learning for Permutation Optimization with GOMEAs GECCO ’21 Companion, July 10–14, 2021, Lille, France

is supplemented by predictive-DSM. When we hybridize pbELL-

linkage with predictive-linkage, we do not add a random value to

pbELL-DSM entries.

5 THE RESULTS
5.1 Test Problems
We consider three different problems. The first is the Permutation

Flowshop Scheduling Problem (PFSP) [31] (also considered in the

papers proposing LT-GOMEA [2] and P4 [37]). Each PFSP instance

is defined by 𝐽 jobs and𝑀 machines. Jobs are divided into operations

that are processed on machines. Each machine can process only

one operation type and only one operation at the same time. The

main goal is to find a job-processing sequence 𝜋 that minimizes the

Total Flow Time (TFT) measure defined as follows:

𝑇𝐹𝑇 (𝜋) =
𝐽∑

𝑖=1

𝑐𝜋 (𝑖),𝑀 (3)

where 𝑐𝜋 (𝑖), 𝑗 indicates the completion time of the 𝑖th job’s operation

on the 𝑗 th machine. In this paper, we consider PFSP test cases using

{100, 200, 500} jobs and {5, 10, 20} machines. The same test cases

were considered in [2, 5, 37].

Another considered test problem is Linear Ordering Problem

(LOP) [7]. LOP is NP-hard [6, 18] and is known for its many real-

world applications [12]. The definition of LOP may be formulated

using its graph representation [29]. Each LOP instance of size 𝑛 can

be represented by a directed graph 𝐺 = (𝑉 , 𝐸), where 𝑉 (|𝑉 | = 𝑛)
denotes a set of vertices and 𝐸 indicates a set of edges. For each

edge (𝑢, 𝑣) ∈ 𝐸, a cost 𝑐𝑢,𝑣 is given. When an edge between two

vertices does not exist, then its corresponding cost is equal to 0. A

sample problem solution is a permutation 𝜋 of vertices, and its cost

is defined by the following formula.

𝑐𝑜𝑠𝑡 (𝜋) =
𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

𝑐𝜋 (𝑖),𝜋 (𝑗) (4)

In this paper, we consider the randomly generated instances pro-

posed in [29]
1
. We chose test cases of size 500 and all available

densities 𝑑 , i.e., {1%, 5%, 10%, 50%, 100%} where the density is the

probability that there is an edge between any vertices pair.

The third considered problem is the ordering deceptive prob-

lem [17]. Ordering deceptive problems are built from𝑚 separable

deceptive subproblems. The solution quality is the sum of sub-

problems values. Thus, contrary to PFSP and LOP, this problem

is additively separable. Like binary deceptive functions [10], each

subproblem has two optima (global and local), which are maximally

distant. The subproblem was designed to attract optimizers to the

local optima. We consider ordering deceptive problems consisting

of𝑚 ∈ {10, 20, 40, 80, 160, 320} subproblems of size four. The sin-

gle subproblem values are dependent on relative ordering and are

reported in [17].

5.2 Experiments setup
We consider two state-of-the-art model-based EAs dedicated to

optimizing permutation-based problems, both from the GOMEA

1
http://www.al.cm.is.nagoya-u.ac.jp/~yagiura/lop

family – LT-GOMEA [2] and P4 [37]. Both methods are considered

in four different versions:

• Standard that employs SLL proposed in [2]. Both LT-GOMEA

and P4 were originally proposed in this form.

• Empirical that employs pbELL proposed in this paper.

• Hybrid that employs HLL.

• Random. In this version, the DSM entries are generated ran-

domly at every method iteration. This version is employed to

show the difference that is made by using linkage learning.

The source codes of LT-GOMEA
2
and P4

3
were obtained from

the repositories of their authors. All the source codes were joined

in one program and, if possible, share all the appropriate source

code parts. The full source codes with the settings files and the

detailed results of all the runs may be downloaded from GIThub
4
.

Each experiment was executed 20 times. The statistical significance

of the reported results was verified by the unpaired Wilcoxon test,

we employ a significance level of 5%.

For PFSP, we have employed the same FFE-based stop condi-

tion as in [2, 5, 37]. For the LOP test cases, the situation was as

follows. For the test cases of the length below 500 genes, all three

considered LT-GOMEA and P4 versions that employed linkage

learning (Standard, Empirical, and Hybrid) were finding results of

the same quality. Therefore, we do not report these results in the

paper. However, for 500-gene test cases, the number of FFE was

not a reliable measure to terminate the computation – for these

test cases, LT-GOMEA and P4 computation time was not linearly

dependent on FFE. Some LT-GOMEA runs with the same FFE-based

stop condition were finishing within few hours, but the other runs

required days to finish. The reason for this situation was as follows.

Depending on the run, LT-GOMEA may add very large populations

sooner or later (it is dependent on the moment smaller populations

are found useless and deleted). Computing DSM-based linkage for

very large population sizes consumes no FFE, but it may be very

time-consuming. Thus, the computational cost of FFE computation

becomes similar or lower than the cost of other method activities.

In such a situation, FFE is not a reliable computation load measure,

whichmakes the FFE-based stop condition not reliable as well. More

details about the non-linear relation between FFE and computation

time, together with the fairness of the FFE-based stop condition,

may be found in [24, 27]. Therefore, for the considered 500-gene

LOP test cases, we have used a time-based stop condition set to

36 hours. All LOP-related experiments were executed on a DELL

PowerEdge R7425 2xAMD Epyc 7601 256GB server. To make the

comparison fair, the number of computation processes was equal to

the number of available physical processor cores, no other resource-

consuming processes were running. A similar experiment setup

was employed in [28]. In Table 2, we report the median FFE spent

on the whole experiment for each d (two experiments per each d).
If the𝐺𝑜𝑚𝑒𝑎𝐹𝐹𝐸/𝑃4𝐹𝐹𝐸 ratio is below 1, it indicates that for these

test cases, LT-GOMEA-Hybrid quickly increased the population

size of the largest population it maintained (i.e., the smaller popula-

tions are quickly found useless and deleted) and spent a significant

amount of computation time on updating linkage. P4-Hybrid has

2
https://homepages.cwi.nl/~bosman/source_code.php

3
https://github.com/przewooz/P4

4
https://github.com/przewooz/hybbridLinkagePermut.git

1446

GECCO ’21 Companion, July 10–14, 2021, Lille, France

Table 2: The comparison of median FFE average for LOP

d P4-Hybrid LT-GOMEA-Hybr. Ratio
1 1.42E+08 1.04E+08 2.25E+08 1.51E+08 0.63 0.69

5 1.11E+08 1.05E+08 1.71E+08 1.36E+08 0.65 0.77

10 1.14E+08 1.09E+08 1.49E+08 9.16E+07 0.77 1.20
50 1.13E+08 1.41E+08 2.00E+08 9.92E+07 0.56 1.43

100 1.10E+08 1.48E+08 1.31E+08 9.76E+07 0.84 1.51

outperformed LT-GOMEA-Hybrid for all considered LOP test cases,

despite the lower or higher FFE per experiment (see Table 8 in

Section 5.4). For one experiment (marked in bold), the results were

not statistically significant. For the ordering deceptive problems,

same as for LOP, we have employed the time-based stop condition.

The computation time was 8 hours, which was enough to converge

for all considered EAs.

5.3 The Influence of Linkage Learning
In this section, we compare the effectiveness of all the considered

LT-GOMEA and P4 versions that employ linkage learning (Standard,

Empirical and Hybrid) with their versions that randomly generate

linkage. The results for PFSP are reported in Table 3. For both

considered methods, the Standard, and Hybrid versions outperform

the version employing random linkage for all considered test cases.

The results of the comparison between Random and Empirical
versions may seem surprising – the version that employs random

linkage performs significantly better. However, taking into con-

sideration the issue of linkage diversity [28] and the usefulness

of conditional linkages [4] (see Section 2.3), these results seem

intuitive. Due to the computational cost of pbELL, Empirical ver-
sions of LT-GOMEA and P4 employ the predetermined linkage

model (linkage is discovered only once, before the optimization).

Thus, in these versions, linkage remains the same for the whole

run. PFSP is an overlapping problem (all genes are dependent on

each other, although the strength of the dependency may differ).

For such problems, using a single LT during a whole optimization

process is unfavorable [25] and may prevent an EA from reach-

ing high-quality results. P4 is less affected by the lack of linkage

diversity than LT-GOMEA because it generates and maintains a

more diverse population, which may partially alleviate the lack of

linkage diversity.

For the considered LOP test cases (Table 4), the results obtained

for P4 show that P4-Hybrid and P4-Standard outperformP4-Random

for all test cases with 𝑑 < 100%. Similarly, P4-Empirical outper-

forms P4-Random for 𝑑 = 1% and is less effective for 𝑑 = 100%.

These results seem to be consistent with the results obtained for

P4 for PFSP test cases. However, they also indicate that larger d
decreases the advantage of linkage learning. This observation is

confirmed by the results obtained for LT-GOMEA. For 𝑑 ≥ 5%,

LT-GOMEA-Random outperforms Standard and Hybrid versions.

This situation is surprising because of the following reasons.

• If LT-GOMEA-Empirical performs better than LT-GOMEA-

Random, then LT-GOMEA-Hybrid that is also using pbELL

and pbELL is a dominating linkage (see Section 4) should

outperform LT-GOMEA-Random as well.

• The results for P4 and LT-GOMEA differ significantly.

• The influence of linkage learning seems to depend on pa-

rameter d rather than on the problem type itself

40 80 160 320 640 1280
10

3

10
4

10
5

10
6

10
7

10
8

10
9

Problem sizeM
ed

ia
n
FF

E
un

ti
lo

pt
im

al
so
lu
ti
on

Hybrid

Empirical

Standard

Random

(a) LT-GOMEA

40 80 160 320 640 1280
10

3

10
4

10
5

10
6

10
7

10
8

10
9

Problem sizeM
ed

ia
n
FF

E
un

ti
lo

pt
im

al
so
lu
ti
on

Hybrid

Empirical

Standard

Random

(b) P4

Figure 2: LT-GOMEA and P4 scalability for ordering decep-
tive problems (results with ≥ 50% optimal solutions found)

Explaining the above observations will be the objective of future

research. Nevertheless, in Section 5.5, we propose an analysis that

gives some insights into the reasons behind these surprising results.

In Figure 2, we present the scalability of all the considered LT-

GOMEA and P4 versions for ordering deceptive problem. For this

problem, all linkage learning versions outperform Random versions

significantly. Such results are expected because to solve these prob-

lems successfully, it is necessary precisely to discover the subgroups

of dependent genes [17]. The larger the problem size is, the less

likely it is to point at least some of the existing gene groups by

randomly generated linkage. Thus, linkage learning methods are

significantly more effective in solving such problems.

5.4 Main Results
In Table 5, we present the comparison between all considered link-

age learning versions for both considered methods for PFSP. For

both methods, the Standard version outperforms the Empirical one
significantly, which is expected in spite of the comparison with

Random versions. LT-GOMEA-Hybrid and LT-GOMEA-Standard

are equal for most of the considered test cases. However, for six

test cases, the Hybrid version outperforms Standard. For P4, both
versions seem equal.

For LOP, for both methods, the Hybrid version outperforms Stan-
dard for four out of ten test cases. The Standard version was found

better than Hybrid only for one test case for LT-GOMEA. Thus, we

may state that for LOP Hybrid version outperforms Standard for

both considered methods. For P4, Hybrid and Standard versions

outperform the Empirical. For LT-GOMEA, the Empirical version
outperforms the Standard and Hybrid ones. These observations are

consistent with the results presented in Table 6, although the results

for LT-GOMEA remain surprising due to the reasons pointed out

in the previous subsection.

Finally, for the ordering deceptive problems, as shown in Figure

2, Hybrid and Empirical versions significantly outperform all other

for both methods. To successfully solve the ordering deceptive

problems, it is necessary to discover gene dependencies precisely.

The ordering deceptive problems are equivalent to problems built

from deceptive function concatenations in binary search spaces. As

shown in [26], SLL is fast and precise in decomposing such problems

for binary search spaces. However, the results presented in this

paper show that SLL (employed in Standard versions) does not

have this advantage concerning the permutation-based problems.

Therefore, for both methods, Standard versions scale significantly

1447

Hybrid Linkage Learning for Permutation Optimization with GOMEAs GECCO ’21 Companion, July 10–14, 2021, Lille, France

Table 3: The comparison for the PFSP test cases between those versions of the consideredmethods that employ linkage learning
and the versions with randomly generated linkage based on the p-values reported by the Wilcoxon Test

LT-GOMEA P4
Test case Stand. vs Rand. Hybr. vs Rand. Emp. vs Rand. Stand. vs Rand. Hybr. vs Rand. Emp. vs Rand.
group Stand./eq./Rand. Hybr./eq./Rand. Emp./eq./Rand. Stand./eq./Rand. Hybr./eq./Rand. Emp./eq./Rand.
100 jobs 30 / 0 / 0 30 / 0 / 0 0 / 0 / 30 30 / 0 / 0 30 / 0 / 0 1 / 28 / 1

200 jobs 20 / 0 / 0 20 / 0 / 0 0 / 8 / 12 20 / 0 / 0 20 / 0 / 0 0 / 18 / 2

500 jobs 10 / 0 / 0 10 / 0 / 0 0 / 10 / 0 10 / 0 / 0 10 / 0 / 0 0 / 9 / 1

Table 4: The comparison for the LOP test cases between
those versions of the considered methods that employ link-
age learning and the versionswith randomly generated link-
age based on the p-values reported by the Wilcoxon Test

LT-GOMEA P4
Random vs... Random vs...

Exp. Stand. Hybr. Emp. Stand. Hybr. Emp.
no. (d) dec. dec. dec. dec. dec. dec.
1 (1) equal Hybr. Emp. Stand. Hybr. Emp.
2 (1) Stand. Hybr. Emp. Stand. Hybr. Emp.
3 (5) equal equal equal Stand. Hybr. equal
4 (5) Rand. equal equal Stand. Hybr. Emp.
5 (10) Rand. Rand. equal Stand. Hybr. equal
6 (10) Rand. equal equal Stand. Hybr. Emp.
7 (50) Rand. Rand. equal Stand. Hybr. equal
8 (50) Rand. equal Emp. Stand. Hybr. equal
9 (100) Rand. Rand. Emp. equal equal Rand.
10 (100) Rand. Rand. Emp. Stand. Hybr. equal

better than Random but are significantly outperformed by Hybrid
and Empirical. The performance of both versions that employ pbELL

is the same because pbELL is the key to precise linkage discovery

for ordering deceptive problems.

In Table 7, we summarize the comparison between the different

linkage learning versions. For both methods, the Hybrid version

is better or equal to Standard for all considered problem types.

In some cases (e.g., for ordering deceptive problems), Hybrid is

as effective as the best of the two linkage learning techniques it

hybridizes. However, for some method-problem combinations (e.g.,

for P4 applied to LOP or for LT-GOMEA applied to PFSP), the

effectiveness of the Hybrid version is higher than Standard and

Empirical. This shows that hybridization of various linkage learning
techniques may lead to joining their pros rather than cons. Thus,

this idea seems to be a highly promising research direction.

In Table 8, we present the direct comparison between the two

most effectivemethods considered in this paper, namely LT-GOMEA-

Hybrid and P4-Hybrid. For PFSP and LOP, we report the number

of test cases for which a particular method reported statistically

better results than the results of the other method. For ordering

deceptive functions, we report the largest problem size, for which

a method has found the optimal solution in at least 50% of the runs.

For PFSP, LT-GOMEA significantly outperforms P4. The situation is

the opposite for LOP. Such results are expected and confirm that P4-

Hybrid is more suitable in solving LOP, while LT-GOMEA-Hybrid

is more suitable in solving PFSP. The results for ordering deceptive

problems show that no matter which method is used, they scale

similarly (thanks to the employed linkage).

Due to paper size limitations, we the compare LT-GOMEA-Hybrid

and P4-Hybrid with the competing methods only on the base of

PFSP. We use the Average Relative Percentage Deviation (ARPD)

[1, 5, 37]. As the competing methods we employ GM-EDA [5] and

Random Key-based EDA (RK-EDA) [1]. The comparison given in

Table 9 shows that both methods considered here are highly com-

petitive to other state-of-the-art optimizers. Additionally, all results

reported by the Hybrid versions of LT-GOMEA and P4 are of higher

quality than the best solutions reported in [29] for LOP.

5.5 Results Discussion
The results reported in this paper show that the use of empiri-

cal linkage learning techniques is a promising research direction

for permutation-based problems. We have also shown that link-

age hybridization may significantly improve the results of two

different GOMEA variants. The most significant difference between

LT-GOMEA and P4 is in the way that they organize their adaptive

population size and, as a consequence, in the number of diverse

linkage trees they generate during the search. LT-GOMEA employs

a classic population model, while P4 maintains a population that

resembles a pyramid, and its size continuously increases during the

method run.

The results obtained for LT-GOMEA solving LOP were surpris-

ing – for 𝑑 ≥ 5%, the Random version outperformed Standard and

Hybrid, although it was less effective than Empirical. The full expla-
nation of this phenomenon requires further investigation. However,

it seems that the nature of the considered test cases changes with

the increase of d. The nature of the solved test case may depend on

the test case rather than on the solved problem type. For instance,

the LOP instances with 𝑑 = 100% may be more similar in nature to

PFSP instances with 100 jobs than LOP instances with 𝑑 = 5%. This

issue requires further investigation and illustrates the importance

of being able to apply landscape analysis techniques to guide the

choice of the most suitable linkage learning technique for a specific

problem instance.

6 CONCLUSION AND FUTUREWORK
In this paper, we have proposed pbELL, a new empirical link-

age learning technique for permutation-based problems. pbELL

was added to two state-of-the-art GOMEA optimization methods,

namely LT-GOMEA and P4. For some of the considered problems,

GOMEAs using pbELL were more effective than their original ver-

sions employing SLL. Finally, based on pbELL, we have proposed

an HLL technique that joins linkage information obtained by pbELL

and SLL. For all considered test problems and both GOMEA vari-

ants, the results obtained by the Hybrid version were better than

or equal to the results obtained by the Standard one. Thus, we

may state that this paper proposes two new GOMEA extensions,

1448

GECCO ’21 Companion, July 10–14, 2021, Lille, France

Table 5: The influence of considered linkage learning techniques on the effectiveness of LT-GOMEA and P4 on the base of
PFSP and the p-values reported by the Wilcoxon Test

LT-GOMEA P4
Test case Hybr. vs Stand. Hybr. vs Emp. Stand. vs Emp. Hybr. vs Stand. Hybr. vs Emp. Stand. vs Emp.
group Hybr./eq./Stand. Hybr./eq./Emp. Stand./eq./Emp. Hybr./eq./Stand. Hybr./eq./Emp. Stand./eq./Emp.
100 x 05 0 / 10 / 0 10 / 0 / 0 10 / 0 / 0 0 / 10 / 0 10 / 0 / 0 10 / 0 / 0

100 x 10 0 / 10 / 0 10 / 0 / 0 10 / 0 / 0 0 / 10 / 0 10 / 0 / 0 10 / 0 / 0

100 x 20 0 / 10 / 0 10 / 0 / 0 10 / 0 / 0 1 / 9 / 0 10 / 0 / 0 10 / 0 / 0

200 x 10 3 / 7 /0 10 / 0 / 0 10 / 0 / 0 0 / 10 / 0 10 / 0 / 0 10 / 0 / 0

200 x 20 0 / 10 / 0 10 / 0 / 0 10 / 0 / 0 0 / 9 / 1 10 / 0 / 0 10 / 0 / 0

500 x 20 3 / 7 / 0 10 / 0 / 0 10 / 0 / 0 1 / 8 / 1 10 / 0 / 0 10 / 0 / 0

Table 6: The comparison for the LOP test cases between those versions of the consideredmethods that employ linkage learning
and the versions with randomly generated linkage based on the p-values reported by the Wilcoxon Test

LT-GOMEA P4
Exp. Hybr. vs Stand. Hybr. vs Emp. Stand. vs Emp. Hybr. vs Stand. Hybr. vs Emp. Stand. vs Emp.
no. d equal decision equal decision equal decision equal decision equal decision equal decision
1 1 0.0001 Hybrid 0.0438 Empirical 0.0001 Empirical 0.0015 Hybrid 0.0001 Hybrid 0.0001 Standard
2 1 0.0034 Hybrid 0.0003 Empirical 0.0001 Empirical 0.0522 Hybrid 0.0124 Hybrid 0.5461 equal
3 5 0.0401 Hybrid 0.9702 equal 0.0674 equal 0.1615 equal 0.0001 Hybrid 0.0001 Standard
4 5 0.9405 equal 0.0028 Empirical 0.0025 Empirical 0.8813 equal 0.0002 Hybrid 0.0001 Standard
5 10 0.7938 equal 0.0036 Empirical 0.0169 Empirical 0.3507 equal 0.0002 Hybrid 0.0001 Standard
6 10 0.0859 equal 0.9702 equal 0.1354 equal 0.9553 equal 0.0003 Hybrid 0.0006 Standard
7 50 0.0137 Standard 0.0001 Empirical 0.0028 Empirical 0.0006 Hybrid 0.0001 Hybrid 0.0004 Standard
8 50 0.0479 Hybrid 0.0001 Empirical 0.0001 Empirical 0.0032 Hybrid 0.0001 Hybrid 0.0004 Standard
9 100 0.1672 equal 0.0001 Empirical 0.0001 Empirical 0.7369 equal 0.0001 Hybrid 0.0003 Standard

10 100 0.1790 equal 0.0001 Empirical 0.0002 Empirical 0.5755 equal 0.0009 Hybrid 0.0001 Standard

Table 7: The comparison of considered linkage learning
techniques

LT-GOMEA P4
PFSP LOP Dec. PFSP LOP Dec.

Hybrid Best Med. Best Best Best Best
Stand. Med. Worst Worst Best Med. Worst
Empir. Worst Best Best Worst Worst Best
Table 8: LT-GOMEA-Hybrid and P4-Hybrid comparison

LT-GOMEA-Hybrid equal P4-Hybrid
PFSP 23 37 0

LOP 0 1 9
Deceptive 1280 N/A 1280

Table 9: The ARPD-based comparison between Hybrid ver-
sions of LT-GOMEA and P4 with other methods (the results
of RK-EDA and GM-EDA are taken from [1] and [5], respec-
tively)

Testcase LT-GOMEA-H P4-H RK-EDA GM-EDA
tai20-20-0 0.00 0.00 0.22 0.65

tai20-20-1 0.00 0.00 0.28 0.29

tai50-20-0 0.47 0.42 1.81 1.76

tai50-20-1 0.25 0.34 1.11 1.58

tai100-20-0 0.96 0.97 1.96 2.03

tai100-20-1 0.80 0.85 1.82 1.80

tai200-20-0 1.24 1.30 1.07 1.59

tai200-20-1 1.12 1.35 1.32 1.45

tai500-20-0 1.07 1.38 0.29 8.90

tai500-20-1 1.21 1.34 0.68 8.58

namely LT-GOMEA-Hybrid and P4-Hybrid, that are more effective

in solving the permutation-based problems than their original SLL

versions.

The effectiveness of the Hybrid versions is based on the hy-

bridized linkage discovery technique that seems to be more success-

ful in finding better linkage models for a wider range of problems

than SLL or ELL alone.

The most important directions of future research are as follows.

• Proposing other hybrid linkage learning techniques for other

than permutation-based search spaces.

• Investigation why LT-GOMEA with linkage learning is less

effective than LT-GOMEA-Random for LOP with 𝑑 ≥ 5%.

• Proposing linkage quality measures for permutation-based

problems and investigating the linkage quality influence

on the effectiveness of evolutionary methods designed to

solving permutation-based problems.

Finally, one of the conclusions that arise from the results pre-

sented in this paper is that two test cases of different problems may

be more similar in their nature, than the two test cases of the same

problem. This observation shows the importance of having fitness

landscape techniques that can assist in choosing or adjusting the

linkage learning technique applied.

ACKNOWLEDGMENTS
We thank Jerzy Sas for his help in performing the experiments.

REFERENCES
[1] M. Ayodele, J. McCall, O. Regnier-Coudert, and L. Bowie. 2017. A Random

Key based Estimation of Distribution Algorithm for the Permutation Flowshop

1449

Hybrid Linkage Learning for Permutation Optimization with GOMEAs GECCO ’21 Companion, July 10–14, 2021, Lille, France

Scheduling Problem. In 2017 IEEE Congress on Evolutionary Computation (CEC).
2364–2371. https://doi.org/10.1109/CEC.2017.7969591

[2] Peter A.N. Bosman, Ngoc Hoang Luong, and Dirk Thierens. 2016. Expanding from

Discrete Cartesian to Permutation Gene-pool Optimal Mixing Evolutionary Al-

gorithms. In Proceedings of the Genetic and Evolutionary Computation Conference
2016 (GECCO ’16). ACM, 637–644.

[3] Anton Bouter, Tanja Alderliesten, Cees Witteveen, and Peter A. N. Bosman.

2017. Exploiting Linkage Information in Real-Valued Optimization with the Real-

Valued Gene-Pool Optimal Mixing Evolutionary Algorithm. In Proceedings of the
Genetic and Evolutionary Computation Conference (Berlin, Germany) (GECCO
’17). Association for Computing Machinery, New York, NY, USA, 705–712. https:

//doi.org/10.1145/3071178.3071272

[4] Anton Bouter, Stefanus C. Maree, Tanja Alderliesten, and Peter A. N. Bosman.

2020. Leveraging Conditional Linkage Models in Gray-Box Optimization with the

Real-Valued Gene-Pool Optimal Mixing Evolutionary Algorithm. In Proceedings
of the 2020 Genetic and Evolutionary Computation Conference (Cancún, Mexico)

(GECCO ’20). Association for ComputingMachinery, New York, NY, USA, 603–611.

https://doi.org/10.1145/3377930.3390225

[5] J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano. 2014. A Distance-Based

Ranking Model Estimation of Distribution Algorithm for the Flowshop Sched-

uling Problem. IEEE Transactions on Evolutionary Computation 18, 2 (2014),

286–300.

[6] Stefan Chanas and Przemysław Kobylanski. 1996. A New Heuristic Algorithm

Solving the Linear Ordering Problem. Comput. Optim. Appl. 6, 2 (Sept. 1996),

191–205. https://doi.org/10.1007/BF00249646

[7] Hollis B. Chenery and Tsunehiko Watanabe. 1958. International Comparisons of

the Structure of Production. Econometrica 26, 4 (1958), 487–521.
[8] A. Colorni, M. Dorigo, F. Maffioli, V. Maniezzo, G. Righini, and M. Trubian.

1996. Heuristics from nature for hard combinatorial optimization problems.

International Transactions in Operational Research 3, 1 (1996), 1–21. https://doi.

org/10.1016/0969-6016(96)00004-4

[9] Paulo Roberto de Oliveira da Costa, Stefano Mauceri, Paula Carroll, and Fabi-

ano Pallonetto. 2018. A genetic algorithm for a green vehicle routing problem.

Electronic notes in discrete mathematics 64 (2018), 65–74.
[10] Kalyanmoy Deb and David E. Goldberg. 1993. Sufficient Conditions for Deceptive

and Easy Binary Functions. Ann. Math. Artif. Intell. 10, 4 (1993), 385–408.
[11] Brian W. Goldman and William F. Punch. 2014. Parameter-less Population

Pyramid. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation (Vancouver, BC, Canada) (GECCO ’14). ACM, 785–792.

[12] Martin Grötschel, Michael Jünger, and Gerhard Reinelt. 1984. A Cutting Plane

Algorithm for the Linear Ordering Problem. Operations Research 32 (12 1984),

1195–1220.

[13] N. Hansen, S. D. Müller, and P. Koumoutsakos. 2003. Reducing the Time

Complexity of the Derandomized Evolution Strategy with Covariance Matrix

Adaptation (CMA-ES). Evolutionary Computation 11, 1 (2003), 1–18. https:

//doi.org/10.1162/106365603321828970

[14] Georges R. Harik and Fernando G. Lobo. 1999. A Parameter-less Genetic Algo-

rithm. In Proceedings of the 1st Annual Conference on Genetic and Evolutionary
Computation - Volume 1 (Orlando, Florida) (GECCO’99). 258–265.

[15] Shih-Huan Hsu and Tian-Li Yu. 2015. Optimization by Pairwise Linkage De-

tection, Incremental Linkage Set, and Restricted / Back Mixing: DSMGA-II. In

Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO ’15). ACM, 519–526.

[16] Sašo Karakatič and Vili Podgorelec. 2015. A survey of genetic algorithms for

solving multi depot vehicle routing problem. Applied Soft Computing 27 (2015),

519–532. https://doi.org/10.1016/j.asoc.2014.11.005

[17] Hillol Kargupta, Kalyanmoy Deb, and David E. Goldberg. 1992. Ordering genetic

algorithms and deception. In Parallel Problem Solving from Nature – PPSN II.
Springer, 47–56.

[18] Richard M. Karp. 1972. Reducibility among Combinatorial Problems. Springer US,
Boston, MA, 85–103.

[19] Chantal Olieman, Anton Bouter, and Peter A. N. Bosman. 2020. Fitness-based

Linkage Learning in the Real-Valued Gene-pool Optimal Mixing Evolutionary

Algorithm. IEEE Transactions on Evolutionary Computation (2020). https://doi.

org/10.1109/TEVC.2020.3039698

[20] M. N. Omidvar, X. Li, Y. Mei, and X. Yao. 2014. Cooperative Co-Evolution

With Differential Grouping for Large Scale Optimization. IEEE Transactions on

Evolutionary Computation 18, 3 (2014), 378–393.

[21] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao. 2017. DG2: A Faster and More

Accurate Differential Grouping for Large-Scale Black-Box Optimization. IEEE
Transactions on Evolutionary Computation 21, 6 (Dec 2017), 929–942.

[22] Kalia Orphanou, Dirk Thierens, and Peter A. N. Bosman. 2018. Learning Bayesian

Network Structures with GOMEA. In Proceedings of the Genetic and Evolutionary
Computation Conference (Kyoto, Japan) (GECCO ’18). Association for Computing

Machinery, New York, NY, USA, 1007–1014. https://doi.org/10.1145/3205455.

3205502

[23] Martin Pelikan and David E. Goldberg. 2001. Escaping Hierarchical Traps with

Competent Genetic Algorithms. In Proceedings of the 3rd Annual Conference on
Genetic and Evolutionary Computation (San Francisco, California) (GECCO’01).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 511–518.

[24] M. W. Przewozniczek. 2017. Problem Encoding Allowing Cheap Fitness Compu-

tation of Mutated Individuals. In 2017 IEEE Congress on Evolutionary Computation
(CEC). 308–316.

[25] Michal Witold Przewozniczek, Piotr Dziurzanski, Shuai Zhao, and Leandro Soares

Indrusiak. 2021. Multi-Objective parameter-less population pyramid for solving

industrial process planning problems. Swarm and Evolutionary Computation 60

(2021), 100773. https://doi.org/10.1016/j.swevo.2020.100773

[26] Michal W. Przewozniczek, Bartosz Frej, and Marcin M. Komarnicki. 2020. On

Measuring and Improving the Quality of Linkage Learning in Modern Evolu-

tionary Algorithms Applied to Solve Partially Additively Separable Problems. In

Proceedings of the 2020 Genetic and Evolutionary Computation Conference (Cancún,
Mexico) (GECCO ’20). Association for Computing Machinery, New York, NY,

USA, 742–750.

[27] Michal W. Przewozniczek and Marcin M. Komarnicki. 2018. The Influence of

Fitness Caching on Modern Evolutionary Methods and Fair Computation Load

Measurement. In Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion (GECCO ’18). ACM, 241–242.

[28] Michal W. Przewozniczek and Marcin M. Komarnicki. 2020. Empirical Linkage

Learning. IEEE Transactions on Evolutionary Computation 24, 6 (Dec 2020), 1097–

1111.

[29] Celso S. Sakuraba and Mutsunori Yagiura. 2010. Efficient local search algorithms

for the linear ordering problem. International Transactions in Operational Research
17, 6 (2010), 711–737. https://doi.org/10.1111/j.1475-3995.2010.00778.x

[30] Y. Sun, M. Kirley, and S. K. Halgamuge. 2018. A Recursive Decomposition Method

for Large Scale Continuous Optimization. IEEE Transactions on Evolutionary
Computation 22, 5 (2018), 647–661. https://doi.org/10.1109/TEVC.2017.2778089

[31] E. Taillard. 1993. Benchmarks for basic scheduling problems. European Journal of
Operational Research 64, 2 (1993), 278 – 285. Project Management anf Scheduling.

[32] Dirk Thierens. 2010. The Linkage Tree Genetic Algorithm. In Parallel Problem
Solving from Nature, PPSN XI: 11th International Conference, Kraków, Poland,
September 11-15, 2010, Proceedings, Part I. 264–273.

[33] Dirk Thierens and Peter Bosman. 2012. Predetermined versus Learned Linkage

Models. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary
Computation (Philadelphia, Pennsylvania, USA) (GECCO ’12). Association for

Computing Machinery, New York, NY, USA, 289–296.

[34] Dirk Thierens and Peter A.N. Bosman. 2011. Optimal Mixing Evolutionary Algo-

rithms. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation (Dublin, Ireland) (GECCO ’11). ACM, New York, NY, USA, 617–624.

[35] Dirk Thierens and Peter A.N. Bosman. 2013. Hierarchical Problem Solving with

the Linkage Tree Genetic Algorithm. In Proceedings of the 15th Annual Conference
on Genetic and Evolutionary Computation (GECCO ’13). ACM, 877–884.

[36] L. Darrell Whitley, Francisco Chicano, and Brian W. Goldman. 2016. Gray Box

Optimization for Mk Landscapes Nk Landscapes and Max-Ksat. Evol. Comput.
24, 3 (Sept. 2016), 491–519. https://doi.org/10.1162/EVCO_a_00184

[37] Szymon Wozniak, Michal W. Przewozniczek, and Marcin M. Komarnicki. 2020.

Parameter-Less Population Pyramid for Permutation-Based Problems. In Parallel
Problem Solving from Nature – PPSN XVI, Thomas Bäck, Mike Preuss, André

Deutz, Hao Wang, Carola Doerr, Michael Emmerich, and Heike Trautmann (Eds.).

Springer International Publishing, Cham, 418–430.

[38] Adam M. Zielinski, Marcin M. Komarnicki, and Michal W. Przewozniczek. 2019.

Parameter-less Population Pyramid with Automatic Feedback. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion (Prague, Czech

Republic) (GECCO ’19). ACM, New York, NY, USA, 312–313. https://doi.org/10.

1145/3319619.3322052

1450

