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MULTIPLE CORRELATION SEQUENCES NOT

APPROXIMABLE BY NILSEQUENCES

JOP BRIËT AND BEN GREEN

Abstract. We show that there is a measure-preserving system
(X,B, µ, T ) together with functions F0, F1, F2 ∈ L∞(µ) such that
the correlation sequence CF0,F1,F2

(n) =
∫

X
F0 · T

nF1 · T
2nF2dµ is

not an approximate integral combination of 2-step nilsequences.

1. Introduction

Let (X,B, µ, T ) be a measure-preserving system, and let F0, F1, . . . ,
Fk ∈ L∞(µ). Motivated in large part by applications in combinatorics
and in particular to questions about arithmetic progressions, there has
been much interest in multiple correlation sequences

CF0,...,Fk
(n) :=

∫

X

F0 · T
nF1 · · ·T

knFkdµ.

In fact, much more general types of correlation sequences in which the
powers T, T 2, . . . , T k appearing here are replaced by measure-preserving
maps T1, . . . , Tk have been studied, but here we restrict attention here
to this special form.

In the case k = 1, there is a very satisfactory spectral theory of such
sequences and indeed one has

CF0,F1
(n) =

∫ 1

0

e−2πintdσ(t) (1.1)

for some complex Borel measure σ of bounded total variation. This
follows from the Herglotz theorem on positive definite sequences (which
applies directly in the case F0 = F1) and a depolarization identity.

It is natural to ask to what extent this generalises to k > 2. In the
words of Frantzikinakis [7],
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2 BRIËT AND GREEN

“Finding a formula analogous to (1.1), with the multiple correlation
sequences in place of the single correlation sequences, is a problem of
fundamental importance which has been in the mind of experts for
several years. A satisfactory solution is going to give us new insights
and significantly improve our ability to deal with multiple ergodic av-
erages.”

A result of Bergelson, Host and Kra [2] describes the structure of
multiple correlation sequences up to an error in ℓ1 or ℓ2. To state their
result, we need to recall the notion of a nilsequence.

Definition 1.1 (Nilsequence). Let k > 1 be an integer. A k-step
nilsequence is a sequence (φ(gnx0))n∈Z. Here, φ : G→ C is a continuous
function satisfying the automorphy1 condition φ(xγ) = φ(x) for all
x ∈ G and all γ ∈ Γ, where G is a simply-connected k-step nilpotent
Lie group with discrete and cocompact subgroup Γ, and g, x0 are fixed
elements of G.

A careful discussion of this notion may be found in many places, for
instance [2]. The following result is [2, Theorem 1.9].

Theorem 1.1. Suppose that (X,B, µ, T ) is a measure-preserving sys-

tem and that F0, F1, . . . , Fk ∈ L∞(µ). Suppose that ‖Fi‖∞ 6 1. Then

we have a decomposition

CF0,F1,...,Fk
(n) = a(n) + b(n),

where a(n) is a uniform limit of k-step nilsequences with ‖a‖∞ 6 1,
and b is small in the sense that

lim
|I|→∞

1

|I|

∑

n∈I

|b(n)| = 0

as I ranges over all subintervals of N.

For applications involving the behaviour of correlation sequences at
a sparse sequence of n, the error term here is too big. Frantzikinakis
[7, Problem 1] has suggested, in the context of seeking a generalisation
of (1.1), that a variant of Theorem 1.1 should hold with an ℓ∞ error
term. Note that in (1.1), we have not just one nilsequence (e2πint)n∈N,
but an integral combination of (1-step) nilsequences. Frantzikinakis’s
formulation generalises this concept to higher-step nilsequences.

1Essentially equivalently, φ is a function on the nilmanifold G/Γ.
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Definition 1.2. An integral combination of k-step nilsequences is a
sequence of the form

a(n) =

∫

M

am(n)dσ(m).

Here, M is a compact metric space, σ is a complex Borel measure of
bounded variation, and the am are k-step nilsequences, and with the
map m 7→ am(n) being measurable for each n.

Our main theorem states that, even in the case k = 2, one cannot
hope for a version of Theorem 1.1 in which the error b is small in ℓ∞,
even if one allows a to be an integral combination of nilsequences.

Theorem 1.2. There is a measure-preserving system (X,B, µ, T ),
functions F0, F1, F2 ∈ L∞(µ) and an ε > 0 such that the correlation

sequence

CF0,F1,F2
(n) :=

∫

X

F0 · T
nF1 · T

2nF2dµ

cannot be written as a(n) + b(n), where ‖b‖∞ 6 ε and a is an integral

combination of 2-step nilsequences.

This theorem casts some serious doubt on the existence of a formula
generalising (1.1).

Theorem 1.2 does not provide a negative answer to [7, Problem 1],
because Frantzikinakis allows the automorphic functions φ in the def-
inition of a nilsequence to be merely Riemann-integrable, rather than
continuous. He calls these generalised nilsequences. An explanation
of why our construction does not allow one to establish an analogue
of Theorem 1.2 for generalised nilsequences is given in Appendix A.
Note, however, that the Riemann-integrable functions φ appearing in
Appendix A are very singular and we certainly do not expect that the
corresponding generalised nilsequences have any important role to play
in the theory.

One reason for considering Riemann-integrable functions rather than
just continuous ones is that there is a somewhat natural and well-
studied class of nilsequences in which φ is not continuous, namely the
bracket polynomial phases [3]. In this case, the corresponding φ have
only mild discontinuities, and our argument adapts easily to show that
Theorem 1.2 remains true even if one allows a to be an integral com-
bination of this more general class of nilsequences. We sketch the
argument at the end of Section 3.

A key motivation for Frantzikinakis in formulating [7, Problem 1] was
that it provides a potential route to understanding Szemerédi’s theorem
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with common difference in a sparse random set, a problem for which
our current understanding is extremely incomplete for progressions of
length 3 or longer (see [4] for recent progress). Whilst Theorem 1.2
seems to rule this out as a viable strategy, our example unfortunately
does not give any new information about Szemerédi’s theorem with
common differences from a random set, which remains a tantalising
open problem.

Notation. Our notation is standard. We will occasionally write Ex∈A

for 1
|A|

∑

x∈A, where A is a finite set. We write [N ] = {1, 2, . . . , N} as

usual, and sometimes we will write [0, N − 1] = {0, 1, 2, . . . , N − 1}.
For real t, we write e(t) = e2πit.

Acknowledgements. JB would like to thank Xuancheng Shao for
helpful discussions and pointers to the literature. The authors would
like to thank Bryna Kra for pointing them to a reference for Proposition
5.1, and Nikos Frantzikinakis for helpful comments on the first draft of
the paper.

2. Outline of the argument

Our argument is part deterministic and part random. It is random
in the sense that we do not explicitly construct a system (X,B, µ, T )
and functions F0, F1, F2 for which the correlation sequence CF0,F1,F2

(n)
is not approximable by an integral combination of nilsequences, but
rather we show there are too many possibilities for the correlation func-
tions CF0,F1,F2

(n) for this to be so.

To do this, we first explicitly construct a certain infinite sequence
S ⊂ N whose growth is slower than exponential in the sense that

lim
N→∞

|S [N ]|

logN
= ∞, (2.1)

where S [N ] := #{n ∈ S : n 6 N}.

We show that for any choice of function η : S → {1,−1
3
} there is

a system (X,B, µ, T ) and functions F0, F1, F2 such that CF0,F1,F2
(n) =

η(n) for n ∈ S .

For a random choice of η, such a function will almost surely not be
approximable by an integral combination of nilsequences. We give the
details of this deduction, which uses nothing about S other than the
growth property (2.1), in Proposition 3.1.

The heart of the argument, then, is the construction of the system
(X,B, µ, T ) and the functions F0, F1, F2, given η : S → {1,−1

3
}. This

is assembled from a sequence of finitary examples, via a (well-known)
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variant of Furstenberg’s correspondence principle, and here the specific
nature of S is critical.

The idea behind the construction of these finitary examples ulti-
mately comes from coding theory, and in particular a construction of
Yekhanin [9]. We will only need the most basic form of these ideas; for
instance, we can replace all the finite-field theory in Yekhanin’s work
with the simple observation that the function ψ : Z → {−1, 1} defined
by ψ(0) = 1, ψ(1) = ψ(2) = −1, and periodic mod 3 has the property
that

ψ(x)ψ(x+ d)ψ(x+ 2d) =

{

ψ(x) d ≡ 0(mod 3)
1 d 6= 0(mod 3).

The idea of using Yekhanin’s construction to give interesting examples
in the additive combinatorics of higher-order correlations first arose in
the finite field setting, in joint work of the first author and Labib [5].
Those ideas have inspired the present work.

3. Entropy and nilsequences

Proposition 3.1. Let S be an increasing sequence of natural numbers

such that

lim
N→∞

|S [N ]|

logN
= ∞. (3.1)

Then there is a function η : S → {1,−1
3
} such that

lim
N→∞

1

|S [N ]|

∑

n∈S [N ]

η(s)a(s) = 0 (3.2)

for all nilsequences a.

Proof. The space of C∞-functions on G/Γ is dense in the space of con-
tinuous functions; to approximate a continuous function by a smooth
function, average with respect to a smooth kernel supported near the
identity on G. It therefore suffices to verify (3.2) for a(n) = φ(gnx)
with φ ∈ C∞(G/Γ). Now we use the fact that there is a map

Complexity : {smooth nilsequences} → (0,∞)

and a function M : (0,∞)× (0, 1) → (0,∞) such that the set

{a : Complexity(a) 6 C}

can be covered by NM(C,ε) balls of radius ε in ℓ∞[N ].

Results of this type were first observed by Frantzikinakis [6, Propo-
sition 6.2], and in fact Proposition 3.1 and its proof are very closely
related to [6, Theorem 1.4]. A discussion which gives what we need here
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is in the appendix of Altman [1] (note that (gnx0)n∈Z is a particular
example of a polynomial sequence as considered by Altman).

We will pick the values of η(n) at random, choosing η(n) = −1
3
with

probability 3
4
, and η(n) = 1 with probability 1

4
, these choices being

independent for different values of n ∈ S . Then Eη(n) = 0. By well-
known large deviation estimates (Hoeffding’s inequality), for any fixed
1-bounded functon b, and for any distinct n1, . . . , nm,

P(|
m
∑

i=1

η(ni)b(ni)| > t) ≪ e−ct2/m, (3.3)

where c > 0 is absolute.

Let ω : N → (0,∞) be some function tending to infinity, to be
specified later.

For each N , let EN be the following event: for all 1-bounded nilse-
quences a of complexity 6 ω(N),

|
∑

n∈S [N ]

η(n)a(n)| 6
1

ω(N)
|S [N ]|. (3.4)

We estimate P(EN) as follows. Pick some collection {a1, . . . , aJ}, J 6

NM(ω(N),1/2ω(N)) of functions such that, for every 1-bounded nilsequence a
of complexity at most ω(N), there is some ai with ‖a − ai‖ℓ∞[N ] 6

1/2ω(N). Note that we do not need to assume that the ai are nilse-
quences (though this could be arranged if desired) and they are auto-
matically 2-bounded.

If we are not in EN , there is some ai such that

|
∑

n∈S [N ]

η(n)ai(n)| >
1

2ω(N)
|S [N ]|. (3.5)

By (3.3), the probability of (3.5) happening, for some fixed i, is

bounded above by e−c′|S [N ]|/ω(N)2 for some c′ > 0. Summing over i, it
follows that

P(¬EN ) 6 NM(ω(N),1/2ω(N))e−c′|S [N ]|/ω(N)2 .

Choose ω (with ω(N) → ∞) so that

|S [N ]|

logN
>
ω(N)2

c′
(

10 +M(ω(N), 1/2ω(N))
)

for N sufficiently large. (Here, of course, we have used the assumption
on S ). This then means that

P(¬EN ) 6 N−10
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for large N . In particular,
∑

N P(¬EN) <∞ which, by Borel-Cantelli,
implies that almost surely only finitely many of the ¬EN occur. In
particular, there is some particular choice of η such that (3.4) holds for
all sufficiently large N . Since every nilsequence has finite complexity,
this implies the result. �

Remark. There is of course nothing special about {1,−1
3
}; any set

containing both positive and negative numbers would do.

To conclude this section, let us quickly sketch how one could extend
Proposition 3.1 to include the case where a() is a bracket polynomial
or a product of such (and hence not a nilsequence with a continuous

automorphic function φ). Write χα,β(n) := e(αn⌊βn⌋). The key point
is that the set of functions χα,β(n), like the set of nilsequences of fixed
complexity, has polynomially-bounded covering numbers in ℓ∞[N ].

To see why this is so, first note that χα,β depends only on α(mod 1),
so we may assume 0 6 α < 1. Next, replacing β by β+k for k ∈ Z has
the effect of multiplying by a quadratic phase e(γn2) (where γ = αk).
However, the set of all quadratic phases e(γn2) is covered by ≪ε N

2

balls of radius ε in ℓ∞[N ], since we may assume 0 6 γ < 1 and changing
γ by ε

N2 only changes e(γn2) by O(ε), uniformly for n 6 N .

It therefore suffices to show that the covering numbers of the set
Ξ := {χα,β : 0 6 α, β < 1} are polynomially bounded in ℓ∞[N ]. Now,
restricted to n 6 N , there are only polynomially many functions ⌊βn⌋
as β ranges in [0, 1). Indeed, the map β 7→ (⌊βn⌋)n6N is only discon-
tinuous at the points where βn ∈ Z for some n 6 N , of which there are
no more than N2 with 0 6 β < 1. Thus χα,β = χα,β′, with β ′ varying
in a set of size N2. Changing α by ε

N2 only changes χα,β(n) by O(ε),
uniformly for n 6 N . Therefore the covering number of Ξ in ℓ∞[N ] is
≪ε N

4.

It follows immediately that, for fixed C, the set of functions of type
e(
∑k

i=1 αin[βin]), where k 6 C, is covered by NM(C,ε) balls of radius
ε in ℓ∞[N ]. One could include various types of 1-step nilsequence or
bracket polynomial and obtain a similar result.

Bounds on covering numbers were all we needed to know about nilse-
quences, and the rest of the argument goes over verbatim.

4. The heart of the construction

Define ψ : Z → {−1, 1} to be the function with ψ(0) = 1, ψ(1) =
ψ(2) = −1, and periodic mod 3. The crucial property of this function
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we will use is the following, which is easily checked:

ψ(x)ψ(x+ d)ψ(x+ 2d) = ψ(x) (4.1)

if d ≡ 0(mod 3), and 1 if d 6= 0(mod 3).

Fix, once and for all, a sequence M1 < M2 < · · · be a sequence of
positive integers such that

(1) Each Mi is a multiple of 3;

(2) limn→∞ k−2
∑k

i=1 logMi = 0;
(3)

∏∞
i=1(1−

3
Mi

) = γ > 0.

For instance, one could take Mi = 3i2.

Define

Ωk := {(x1, x2, . . . ) : 0 6 xi < Mi, xk+1 = xk+2 = · · · = 0}.

Later on we will need the technical variant

Ω̃k := {(x1, x2, . . . ) : 0 6 xi < Mi − 3, xk+1 = xk+2 = · · · = 0}.

Define also Σk to consist of all sequences (x1, x2, . . . ) with precisely two
nonzero entries xa, xb, both of which equal 1, and with xk+1 = xk+2 =
· · · = 0. Write

Ω :=
⋃

k

Ωk, Ω̃ :=
⋃

k

Ω̃k, Σ :=
⋃

k

Σk.

We have a bijective map

β : Ω → Z>0

defined by

β(x1, x2, . . . ) = x1 +M1x2 +M1M2x3 + · · · .

Let S = β(Σ). Thus S consists of the sums of two distinct elements
of the sequence {1,M1,M1M2,M1M2M3, . . . }. We claim that S satis-

fies the hypothesis (3.1) of Lemma 3.1, that is to say limN→∞
|S [N ]|
logN

=
∞.

To see this, let k be maximal so that M1 · · ·Mk 6 N/2. Then

|S [N ]| >
(

k
2

)

, whilst log(N/2) 6
∑k+1

i=1 logMi. Therefore it is enough
that

lim
k→∞

k−2
k+1
∑

i=1

logMi = 0,

which follows immediately from assumption (2) above.
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We now apply Lemma 3.1 to get a function η : S → {1,−1
3
} satis-

fying (3.2). Define

Σ+
k := {x ∈ Σk : η(β(x)) = 1} and Σ−

k := {x ∈ Σk : η(β(x)) = −
1

3
}.

Thus Σk = Σ−
k ∪ Σ+

k .

We introduce one more piece of notation. If z ∈ Σk and if x ∈ Ωk

then we write
σz(x) :=

∑

i∈[k]:zi=0

xi.

Now we come to the crucial definition. Let k ∈ N. For x ∈ Ωk define

fk(β(x)) =
∏

z∈Σk
−

ψ(σz(x)). (4.2)

Note that β(Ωk) = [0, Nk − 1], where

Nk :=M1 · · ·Mk, (4.3)

and so fk is a well-defined function on [0, Nk − 1], taking values in
{−1, 1}. Define also the technical variant

f̃k(β(x)) := 1x∈Ω̃k
fk(β(x)). (4.4)

Thus f̃k is defined on [0, Nk−1] and takes values in {−1, 0, 1}. Extend

both fk and f̃k to functions on all of Z>0 by defining fk(n) = f̃k(n) = 0
for n > Nk.

The following lemma is the heart of the argument. Here, recall that
γ > 0 is just a positive constant (appearing in point (3) of the list of
properties satisfied by the Mi).

Lemma 4.1. For d ∈ Z>0, write

Sk(d) :=
1

Nk

∑

n∈[0,Nk−1]

f̃k(n)fk(n + d)fk(n+ 2d).

Then for d ∈ S we have limk→∞ Sk(d) = γη(d).

Proof. Let d ∈ S = β(Σ). For k large enough, d ∈ β(Σk), and we will
assume this is so in what follows.

From the definition of f̃k, we see that the sum over n ranges over
n = β(x), x ∈ Ω̃k. Now for n of this form and for d = β(y), y ∈ Σk, we
have x+ y, x+ 2y ∈ Ωk and moreover

β(x+ y) = β(x) + β(y) = n+ d,

β(x+ 2y) = β(x) + 2β(y) = n+ 2d.
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Note that this “lack of carries” was precisely the reason for defining
the set Ω̃k. It follows that

Sk(d) = Ex∈Ωk
f̃k(β(x))fk(β(x+ y))fk(β(x+ 2y)),

for d = β(y), y ∈ Σk. Substituting the definitions of fk, f̃k (and noting
that σz is linear), we see that

Sk(d) = Ex∈Ωk
1x∈Ω̃k

∏

z∈Σk
−

ψ(σz(x))ψ(σz(x) + σz(y))ψ(σz(x) + 2σz(y)).

From (4.1) it follows that

Sk(d) = Ex∈Ωk
1x∈Ω̃k

∏

z∈Σk
−
:σz(y)≡0(mod 3)

ψ(σz(x)).

Now both y and z here are vectors with only two nonzero entries and
so σz(y) takes only the values 0, 1, 2 with σz(y) = 0 iff y = z. Therefore

Sk(d) =

{

Ex∈Ωk
1x∈Ω̃k

ψ(σy(x)) if y ∈ Σk
−

Ex∈Ωk
1x∈Ω̃k

if y ∈ Σk
+.

(4.5)

The second expression is

Ex∈Ωk
1x∈Ω̃k

=
|Ω̃k|

|Ωk|
=

k
∏

i=1

(1−
3

Mi
) → γ

as k → ∞. The first expression in (4.5) may be written explicitly as

|Ω̃k|

|Ωk|
Ex∈Ω̃k

ψ(x1 + · · ·+ x̂i + · · ·+ x̂j + · · ·+ xk), (4.6)

where y has nonzero coordinates at i, j and the hat means that x̂i does
not appear in the sum. Note, however, that Ω̃k is a box with sidelengths
Mi − 3, each of which is a multiple of 3. Therefore x1+ · · ·+ x̂i + · · ·+
x̂j + · · · + xk is uniformly distributed mod 3, as x ranges uniformly

over Ω̃k, and the average in (4.6) is

|Ω̃k|

|Ωk|
· (−

1

3
) = −

1

3

k
∏

i=1

(1−
3

Mi
) → −

γ

3
.

This completes the proof. �



CORRELATION SEQUENCES NOT APPROXIMABLE BY NILSEQUENCES 11

5. Putting everything together

Our final task is to build a measure-preserving system from the func-
tions constructed in the last section. For this we will need a slight
variant of the usual Furstenberg correspondence principle, proven in a
very similar way. An essentially equivalent statement may be found,
for instance, in [8, Proposition 3.3].

Proposition 5.1. Let A ⊂ R be a finite set. Suppose that for each

k ∈ N we have functions f0,k, · · · , fr,k : Z>0 → A, and that (Nk)
∞
k=1 is

an increasing sequence of positive integers. Then there is a measure-

preserving system (X,B, µ, T ) and functions F0, F1, . . . , Fr ∈ L∞(µ)
such that the following is true: if (d1, · · · , dr) is a tuple of distinct

positive integers such that

S(d1, . . . , dr) := lim
k→∞

1

Nk

∑

n∈[0,Nk−1]

f0,k(n)f1,k(n+ d1) · · · fr,k(n+ dr)

exists, then

S(d1, . . . , dr) =

∫

X

F0 · T
d1F1 · T

d2F2 · · ·T
drFrdµ.

We will apply this with the functions constructed in the last section,
taking r = 2, f0,k := f̃k, f1,k = f2,k = fk, and Nk = M1 · · ·Mk as
before.

By Proposition 5.1 and Lemma 4.1, there is a measure-preserving
system (X,B, µ, T ) together with functions F0, F1, F2 ∈ L∞(µ) such
that, writing CF0,F1,F2

(d) :=
∫

X
F0 · T

dF1 · T
2dF2dµ, we have

CF0,F1,F2
(d) = η(d) for d ∈ S . (5.1)

(Note it is clearly possible to scale the Fi to remove γ factor appearing
in Lemma 4.1.) We claim that it is impossible to write

CF0,F1,F2
(n) = a(n) + b(n)

with a an integral combination of 2-step nilsequences and ‖b‖∞ 6 1
100

.
Suppose that this were possible. Then, from (5.1) and the fact that η
takes values in {1,−1

3
}, we would have (a(d) + b(d))η(d) ∈ {1

9
, 1} for

all d ∈ S . However, |b(d)η(d)| 6 1
100

, and therefore

ℜ(a(d)η(d)) >
1

9
−

1

100
>

1

10
(5.2)

for all d ∈ S .

Suppose that
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a(n) =

∫

M

am(n)dσ(m).

Here, M is a compact metric space, σ is a complex Borel measure of
bounded variation and the am are nilsequences, with the map m 7→
am(n) being in L∞(σ).

Then (5.2) implies that

∣

∣

1

|S [N ]|

∑

n∈S [N ]

a(n)η(n)
∣

∣ >
1

10
.

On the other hand we have
∣

∣

1

|S [N ]|

∑

n∈S [N ]

a(n)η(n)
∣

∣ 6

∫

M

∣

∣

1

|S [N ]|

∑

n∈S [N ]

am(n)η(n)
∣

∣d|σ|

However, by the choice of η (Lemma 3.1) we have

lim
N→∞

1

|S [N ]|

∑

n∈S [N ]

am(n)η(n) = 0

for all m. Therefore, by the dominated convergence theorem,

lim
N→∞

∫

M

∣

∣

1

|S [N ]|

∑

n∈S [N ]

am(n)η(n)
∣

∣d|σ| = 0.

Putting these statements together gives a contradiction, and this
completes the proof of Theorem 1.2.

Appendix A. Generalised nilsequences

In this appendix we explain why our example does not seem to give a
negative solution to [7, Problem 1]. That is, we explain why our exam-
ple (or similar ones) do not seem to be able to rule out the possibility
that CF0,F1,F2

(n) is an approximate integral combination of generalised
2-step nilsequences, in which the automorphic function φ is allowed to
be merely Riemann-integrable. In fact, our examples agree with 1-step
generalised nilsequences on the crucial set S .

Recall that S = A +̂A , where

A = {N0, N1, N2, . . . } and Ni :=
∏

j6i

Mj

(thus N0 = 1, N1 = M1, N2 = M1M2 and so on). Here, A +̂A means
the restricted sumset of A with itself, that is to say the set of sums of
two distinct elements of A .
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Proposition A.1. There is θ ∈ R/Z such that the following is true.

Let η : S → [−1, 1] be any function. Then there is a Riemann-

integrable function φ : R/Z → [−1, 1] such that φ(θn) = η(n) for

all n ∈ S .

Proof. Set θ :=
∑∞

i=1
1
Ni
. Since M1 < M2 < · · · , we certainly have

Mj > j. As a consequence, the usual proof that e is irrational may be

adapted easily to show that θ is irrational: if θ = p
q
then α := M1···Mqp

q
∈

1
q
Z, but on the other hand the fractional part of α satisfies

0 < {α} =
1

Mq+1
+

1

Mq+1Mq+2
+ · · · 6

1

q + 1
+

1

(q + 1)(q + 2)
+ · · · <

1

q
.

Now define φ : R/Z → [−1, 1] as follows: φ(θn) = η(n) for all n ∈ S ,
and φ(x) = 0 if x /∈ θS . Since θ is irrational, this is a well-defined
function.

We claim that it is Riemann-integrable, with integral zero. It is
enough to show that for every ε > 0 there is some finite collection of
intervals, of total length < ε, whose union covers θS .

Note that for every j we have

‖θNj‖R/Z =
1

Mj+1

+
1

Mj+1Mj+2

+ · · · <
1

Mj+1 − 1
. (A.1)

Moreover, condition (3) in the definition of the Mjs implies that

lim sup
j→∞

Mj

j
= ∞. (A.2)

In particular we may choose k so that 1
Mk+1−1

< ε
10k

, and by (A.1) it

follows that

‖θNj‖R/Z <
ε

10k
for j > k.

It follows that

θA ⊆ {θN0, . . . , θNk−1} ∪ I,

where I = (−ε/10k, ε/10k) ⊆ R/Z. Therefore

θS ⊆ θA + θA ⊆
⋃

i,j<k

{θ(Ni +Nj)} ∪
⋃

i<k

(θNi + I) ∪ (I + I),

which makes it clear that θS is contained in a finite union of intervals
of length < ε. �
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