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Abstract
Correlation clustering is a widely used technique
in unsupervised machine learning. Motivated by
applications where individual privacy is a concern,
we initiate the study of differentially private cor-
relation clustering. We propose an algorithm that
achieves subquadratic additive error compared
to the optimal cost. In contrast, straightforward
adaptations of existing non-private algorithms all
lead to a trivial quadratic error. Finally, we give
a lower bound showing that any pure differen-
tially private algorithm for correlation clustering
requires additive error of Ω(n).

1. Introduction
Correlation clustering is a fundamental task in unsupervised
machine learning. Given a set of objects and information
about whether each pair is “similar” or “dissimilar,” the goal
is to partition the objects into clusters that are as consistent
with this information as possible. The correlation clustering
problem was introduced by Bansal et al. (2002) and has
since received significant attention in both the theoretical
and applied machine learning communities. It has been
successfully applied in numerous domains, being used to
perform co-reference resolution (Zheng et al., 2011), image
segmentation (Kim et al., 2014), gene clustering (Ben-Dor
et al., 1999), and cancer mutation analysis (Hou et al., 2016).

In many important settings, the relationships between the
objects we wish to cluster may depend on sensitive personal
information about individuals. For example, suppose we
wish to perform entity resolution on a collection of com-
panies by clustering those that likely belong to the same
organizational structure. For example, we would like to
group Amazon Marketplace, Amazon Fresh, and less ob-
viously, Twitch into the same cluster. The identities of the
companies are public information, but our information about
the relationships between them may come from sensitive
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information, e.g., from transaction records and personal
communications. Moreover, the information we have on
a relationship could be dramatically affected by individual
data records. We initiate the study of differentially private
correlation clustering, using edge level privacy, to address
individual privacy concerns in such scenarios.

In this work, we design efficient algorithms for several dif-
ferent formulations of the private correlation clustering prob-
lem. In all of these variants, objects are represented as a
set of vertices V in a graph. Two vertices are connected
by an edge with either positive or negative label if we have
information about their similarity, e.g., coming from the
output of a comparison classifier. Of special interest is when
the graph is complete, i.e., we possess similarity informa-
tion about all pairs of vertices, though we also consider the
problem for general graph topologies. Edges in the graph
may be either unweighted or weighted, where the weight
of an edge can be viewed as the confidence with which its
endpoints are similar (positive label) or dissimilar (negative
label).

A perfect clustering of the graph would be a partition of V
into clusters C1, . . . , Ck such that all positive-labeled edges
connect vertices in the same cluster and all negative-labeled
edges connect vertices in different clusters. In general, simi-
larity information may be inconsistent, so no such clustering
may exist. Thus, we define two problems corresponding to
optimizing two related objective functions. In the Minimum
Disagreement (MinDis) problem, we aim to minimize the
total weight of violated edges, i.e., the sum of the weights of
positive edges that cross clusters plus the sum of the weights
of negative edges within clusters. The Maximum Agree-
ment (MaxAgr) problem is to maximize the sum of weights
of positive edges within clusters plus the sum of weights
of negative edges across clusters. Note that the number of
clusters k is generally not specified in advanced. For both
problems, we study algorithms with mixed multiplicative
and additive guarantees, i.e., algorithms that report cluster-
ings with MinDis≤ α·OPT +β or MaxAgr≥ α·OPT−β.

1.1. Our results and techniques

All the formulations of private correlation clustering we con-
sider admit algorithms with low additive error (and no mul-
tiplicative error) based on the exponential mechanism (Mc-
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Sherry & Talwar, 2007), a generic primitive for solving
discrete optimization problems. Observing that both the
MinDis and MaxAgr objective functions have global sensi-
tivity 1, instantiating the exponential mechanism over the
search space of all possible partitions gives an algorithm
with additive error O(n log n), where n is the number of
vertices.

Our first result shows that the error achievable by the expo-
nential mechanism is nearly optimal for path graphs.
Theorem 1 (Informal). Any ε-differentially private algo-
rithm for correlation clustering on paths with either the
MinDis or MaxAgr objective function has an additive error
of Ω(n).

This lower bound raises the natural question of whether
we can sample efficiently from the exponential mechanism
for correlation clustering. Unfortunately, we do not know
if this is possible. Moreover, the APX-hardness of both
MinDis and MaxArg (Bansal et al., 2002) suggests that even
non-private algorithms require multiplicative error larger
than one. We aim to design polynomial-time algorithms
achieving a comparable additive error to the exponential
mechanism and with minimal multiplicative error.

A natural place to start is to modify the existing algorithms
for the problem from the non-private setting. Correlation
clustering has been studied extensively in the approxima-
tion algorithms, online algorithms, and machine learning
communities (Bansal et al., 2002; Mathieu et al., 2010; Pan
et al., 2015), and many algorithms are known with strong
provable guarantees. Consider the algorithm of Ailon et al.
(2005), which solves the MinDis problem on unweighted
complete graphs with multiplicative error at most 3. It is an
iterative algorithm that proceeds as follows. In each itera-
tion, pick a random vertex to be a pivot. All the neighbors
of the pivot vertex connected to it with a positive edge are
added to form a new cluster, and removed from the graph.
The process is repeated until there are no more vertices left
in the graph. Ailon et al. (2005) show via a careful charging
argument on the triangles of the graph that this produces a
3-approximation to the optimal solution.

One way to make the algorithm of Ailon et al. (2005) dif-
ferentially private is to use the exponential mechanism with
an appropriate scoring function – a strategy reminiscent of
the approach used in submodular maximization problem
(Mitrovic et al., 2017) – or to use the randomized response
algorithm to decide whether a neighbor of the pivot vertex
should be added to the new cluster in each iteration. How-
ever, these strategies could lead to Ω(n2) error as can be
seen by running the algorithm of Ailon et al. (2005) on a
complete graph with all edges having negative labels. We
hit similar roadblocks for other approaches to correlation
clustering based on metric space embedding (Chawla et al.,
2015). Despite our efforts, we could not make existing al-

gorithms for correlation clustering achieve any non-trivial
sub-quadratic error.

Our main result is an efficient differentially private algo-
rithm for correlation clustering with sub-quadratic error.
The following theorem is our main technical contribution.
Theorem 2. There is an ε-DP algorithm for correlation
clustering on complete graphs guaranteeing

dis(C, G) ≤ 2.06 dis(C∗, G) +O

(
n1.75

ε

)
,

where dis(C∗, G), dis(C, G) denote the MinDis costs of
an optimal clustering and of our algorithm’s clustering,
respectively. Moreover, there is an (ε, δ)-DP algorithm for
general graphs with

dis(C, G) ≤ O(log n) dis(C∗, G) +O

(
n1.75

ε

)
.

The multiplicative approximation factors in the above the-
orem match the best known approximation factors in the
non-private setting (Bansal et al., 2002; Chawla et al., 2015),
which are known to be near optimal. Our results also extend
to other objective functions such as MaxAgr, and to other
variants of the problem where one requires that the number
of clusters output by the algorithm is at most some small
constant k. We discuss the extensions of our main theorem
to these settings in Section 5.

The techniques we use to prove Theorem 2 are based on pri-
vate synthetic graph release. We use recent work of Gupta
et al. (2012) and Eliáš et al. (2020) to release synthetic
graphs preserving all of the cuts on the set of all positive
edges, and on the set of all negative edges. We then appeal
to non-private approximation algorithms to obtain good clus-
terings on these synthetic graphs. Finally, our sub-quadratic
error bound is obtained by coarsening the clusters produced
by our algorithm, and establishing a structural property that
any instance of the problem has a good solution with a small
number of clusters.

There are relatively few problems in graph theory that ad-
mit accurate differentially private algorithms. Our result
adds to this short list, by giving the first non-trivial bounds
for the problem. However, we believe that there is a DP-
correlation clustering algorithm that runs in polynomial time
and matches the additive error of the exponential mecha-
nism. This is an exciting open problem given the prominent
position correlation clustering occupies both in theory and
practice.

2. Preliminaries
2.1. Correlation clustering

We survey the basic definitions and most important results
on correlation clustering in the non-private setting.
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Definition 3. Let G be a weighted graph with non-negative
weights and let E+ and E− denote the sets of edges with
positive and negative labels, respectively. Given a cluster-
ing C = {C1, . . . , Ck}, we say that an edge in e ∈ E+

agrees with C if its both endpoints belong to the same clus-
ter. Similarly, e ∈ E− agrees with C if its endpoints belong
to different clusters. We define the agreement agr(C, G)
between C and G as the total weight of edges agreeing with
C, and the disagreement dis(C, G) as the total weight of
edges which do not agree with C.

In MinDis problem, we want to find a clustering C which
minimizes dis(C, G) on the input graph G. Similarly, in
MaxAgr, we want to maximize agr(C, G).

Correlation clustering is known to be much easier on un-
weighted complete graphs, where there are several constant-
approximation algorithm for MinDis (Bansal et al., 2002;
Ailon et al., 2005; Chawla et al., 2015) and a PTAS for
MaxAgr (Bansal et al., 2002).

Proposition 4 (Chawla et al. (2015)). There is a polynomial-
time algorithm for MinDis on unweighted complete graphs
with approximation ratio 2.06.

Proposition 5 (Bansal et al. (2002)). For every constant
γ > 0, there is a polynomial-time algorithm for MaxAgr
on unweighted complete graphs with approximation ratio
(1− γ).

On weighted graphs (with edges of weight 0 being especially
problematic; see Jafarov et al. (2020)), there are algorithms
achieving an approximation ratio of O(log n) for MinDis
(Demaine et al., 2006; Charikar et al., 2003) and 0.7666 for
MaxAgr (Swamy, 2004; Charikar et al., 2003).

Proposition 6 (Demaine et al. (2006)). There is a
polynomial-time algorithm for MinDis on general weighted
graphs with approximation ratio O(log n).

Proposition 7 (Swamy (2004)). There is a polynomial-time
algorithm for MaxAgr on weighted graphs possibly having
two parallel edges (one positive and one negative) between
each pair of vertices. This algorithm achieves an approx-
imation ratio of 0.7666 and always produces a clustering
into at most 6 clusters.

There is a variant of the problem where, for a given parame-
ter k ∈ N, we optimize the MinDis and MaxAgr objectives
over all clusterings into at most k clusters. We denote these
variants MinDis[k] and MaxAgr[k] respectively.

Proposition 8 (Giotis & Guruswami (2006)). For constant
γ > 0, there are polynomial-time algorithms for MinDis[k]
and MaxAgr[k] on unweighted complete graphs achieving
approximation ratio of (1 + γ) and (1− γ) respectively.

Proposition 9 (Swamy (2004)). There is a polynomial-time
algorithm for MaxAgr[k] on general weighted graphs with
approximation ratio 0.7666.

For general and weighted graphs, Giotis & Guruswami
(2006) propose an O(

√
log n)-approximation for MinDis[2]

and show that MinDis[k] is inaproximable for k > 2.

2.2. Differential privacy

Differential privacy was first defined by Dwork et al. (2006).
We refer the reader to Dwork & Roth (2014) for a textbook
treatment.
Definition 10 (Neighboring graphs). Let G,G′ be two
weighted graphs on the same vertex set V with weights
w,w′ ∈ R(V

2) and sign labels σ, σ′ ∈ {−1,+1}(
V
2). We

say that G and G′ are neighboring, if∑
e∈(V

2)

|σewe − σ′ew′e| ≤ 2.

This is equivalent to switching the sign of a single edge in
an unweighted graph. In weighted graphs, an edge with
a different label in G and G′ may contribute only a small
amount to the total difference, if both labels were acquired
using measurements with a low confidence (i.e., we and w′e
are small).
Definition 11 (Differential privacy). Let ALG be a ran-
domized algorithm whose domain is the set of all weighted
graphs with edges labeled by ±1. Let µG denote the dis-
tribution over possible outputs of ALG given input graph
G. We say that ALG is (ε, δ)-differentially private, if the
following holds: For any measurable S ⊆ Range(ALG)
and any pair of neighboring graphs G and G′, we have

µG(S) ≤ exp(ε)µG′(S) + δ.

If ALG fulfills this definition with δ = 0, we call it ε-
differentially private.

In other words, the output distributions of ALG on two
neighboring graphs are very similar. This implies that the
output distributions are very similar for any pair of graphs
which are relatively close to each other, as shown in the
following proposition.
Proposition 12 (Group privacy). Let ALG be an ε-
differentially private algorithm. Then, for any G and G′

with distance k, i.e., such that∑
e∈(V

2)

|σewe − σ′ew′e| ≤ 2k,

we have
µG(S) ≤ exp(kε)µG′(S)

for any measurable S ⊆ Range(ALG).

An important property of differential privacy is robustness
to post-processing, i.e., applying a function which does not
have access to the private data cannot make the output of
ALG less differentially private.
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Figure 1. Optimal clustering of a path

Proposition 13 (Post-processing). Let ALG be an (ε, δ)-
differentially private algorithm and let f be an arbitrary
randomized function whose domain is Range(ALG). Then,
the composition f ◦ALG is (ε, δ)-differentially private.

3. Linear lower bound for paths
In this section, we prove a lower bound on the additive error
of ε-DP algorithms for clustering paths. Let σ ∈ {−1,+1}n
be a sign vector and Pn(σ) denote a path on n+ 1 vertices
v0, . . . , vn with n edges, such that the label of the edge
vi−1vi is σi for i = 1, . . . , n. We use the following simple
fact.

Lemma 14. Let σ, σ′ ∈ {−1,+1}n be two arbitrary sign
vectors. The following hold:

1. There is an optimal clustering of Pn(σ) with error 0.
The same holds, of course, also for Pn(σ′).

2. If σ and σ′ differ in at least d coordinates, no clustering
can have less than d/2 disagreements on both Pn(σ)
and Pn(σ′).

Proof. To show the first statement, consider a clustering C
whose clusters are formed by vertices adjacent to sequences
of positive edges in the path, as in Figure 1. Then the
endpoints of any positive edge belong to the same cluster
while endpoints of any negative edge belong to different
clusters, implying that dis(C, Pn(σ)) = 0.

To show the second statement, let D denote the set of edges
with different sign in σ and σ′ and let C be an arbitrary
clustering. For any edge e ∈ D, the endpoints of e either
belong to the same cluster in C or belong to different ones.
Since σ(e) 6= σ′(e), C disagrees with e either in Pn(σ) or
Pn(σ′). By the pigeonhole principle, C has at least |D|/2
disagreements with either Pn(σ) or Pn(σ′).

Asymptotically good codes. We use the following termi-
nology from coding theory. Let A ⊆ {0, 1}n be a code
consisting of M codewords of length n and let α, β ∈ [0, 1]
be constants. We say that A has rate α and minimum rel-
ative distance β if M = 2αn and every pair of distinct
codewords c, c′ ∈ A differ in at least βn coordinates. Con-
sider a family of codes A = {Ai|i ∈ N}, where Ai has
length ni, for ni ≥ ni−1, rate αi, and minimum relative

distance βi. We say that A is asymptotically good if its
rate R(A) = lim infi αi and its minimum relative distance
d(A) = lim infi βi are both strictly positive. The following
theorem proves the existence of such code families.
Proposition 15 (Asymptotic Gilbert-Varshamov bound).
For any β ∈ [0, 1/2), there is an infinite family A of codes
with minimum relative distance β with rate

R(A) ≥ 1− h(β)− o(1),

where h(β) = β log2
1
β + (1 − β) log2

1
1−β is a constant

smaller than 1 for the given β.

See, e.g., (Alon et al., 1992) for a construction of such
codes.
Corollary 16. Given a constant β ∈ [0, 1/2) and n large
enough, there is a binary code whose codewords have pair-
wise distance at least βn of size larger than 2αn for some
constant α depending only on β. In particular, for β = 0.1,
we can choose α = 0.4.

Lower bound construction.
Theorem 17. Let ε > 0 be a constant and ALG be a fixed
ε-DP algorithm for MinDis. Then the expected additive
error of ALG on weighted paths is Ω(n/ε). If ε ≤ 0.2, then
its expected error is Ω(n) already on unweighted paths.

Since agr(C, Pn) = n − dis(C, Pn) for any C, the same
error bound holds also for MaxAgr.

Proof. Let α = 0.4/ log2 e and β = 0.1. By Corollary 16,
there is n ∈ N and a code A ⊆ {0, 1}n of size larger than
exp(αn) = 20.4n and minimum relative distance βn. We
use this code to construct a family of sign vectors Σ ⊆
{−1,+1}n of the same size such that two distinct sign
vectors σ, σ′ ∈ Σ differ in at least βn coordinates: for any
c ∈ A, we add a vector σ to Σ, where σ(ei) is +1 whenever
ci = 1 and −1 whenever ci = 0.

Let λ denote the weight of all the edges in Pn which will be
chosen later. Then, for two distinct σ, σ′ ∈ Σ, the distance
between input graphs Pn(σ) and Pn(σ′) is at least λβn. We
denote Bσ a set of clusterings with error less than λβn/2
on Pn(σ). By Lemma 14, the sets Bσ and Bσ′ are disjoint
for distinct σ, σ′ ∈ Σ.

We perform a standard packing argument as in Hardt &
Talwar (2010). Let µσ denote the probability measure over
the outputs of the algorithm ALG given the input σ. For
the expected error of the algorithm to be less than λβn/2,
we need to have µσ(Bσ) ≥ 1/2 for any σ. Let us fix an
arbitrary input graph Pn(σ). The distance between Pn(σ)
and any Pn(σ′) is at most λn (sum of weights of all edges).
Therefore, by group privacy (Proposition 12), we have

µσ(Bσ′) ≥ µσ′(Bσ′) · exp(−ε · λn) ≥ 1

2
exp(−ε · λn)
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for any σ′. On the other hand, since the sets Bσ are disjoint,
we have

1 ≥ µσ
( ⋃
σ′∈Σ

Bσ′
)
≥ 1

2
+

∑
σ′∈Σ\{σ}

µσ(Bσ′)

≥ 1

2
+ (|Σ| − 1) · 1

2
exp(−ελn)

≥ 1

2
+ exp(αn) · 1

2
exp(−ελn).

If ε < α, we already achieve a contradiction with λ = 1,
showing that the expected error of the algorithm on un-
weighted graphs is at least βn/2. To get a stronger error
bound for weighted graphs, we choose λ = α/2ε in order
to get error ε−1αβn/4.

4. Synthetic graph release for correlation
clustering

We describe mechanisms for complete unweighted graphs
and for weighted (or incomplete) graphs. They are based on
existing graph release mechanisms by Gupta et al. (2012)
and Eliáš et al. (2020).

4.1. Unweighted complete graphs

For unweighted graphs, we describe a graph release mecha-
nism based on the result of Gupta et al. (2012) which pre-
serves the number of agreements and disagreements of any
correlation clustering up to an additive error of O(kn3/2),
where k is the number of clusters in the clustering.

The mechanism of Gupta et al. (2012) works by adding
independent Laplace noise to the weight of each edge. See
Algorithm 1 for details.

Algorithm 1 Release of unweighted graphs (Gupta et al.,
2012)

Input: G with w(e) ∈ {0, 1} ∀e ∈
(
V
2

)
for all e ∈

(
V
2

)
do

ζe ∼ Lap(1/ε)
w′(e) = w(e) + ζe

end for
Release graph with weights w′

Given a graph G on a vertex set V , we denote by wG the
weights of its edges where edges absent in G have weight
0. For any F ⊆

(
V
2

)
and S, T ⊆ V , we define wG(F ) =∑

e wG(e) and wG(S, T ) =
∑
u∈S,v∈T wG(uv).

Proposition 18 (Gupta et al. (2012)). Algorithm 1 is ε-
differentially private, runs in polynomial time, and given an
input graph G, outputs a weighted graph H such that

E[wH(F )] = wG(F )

minλ, s. t.∣∣ ∑
e∈S×T

xe −
∑

e∈S×T
W+
e

∣∣ ≤ λ ∀S, T

∣∣ ∑
e∈S×T

(1− xe)−
∑

e∈S×T
W−e

∣∣ ≤ λ ∀S, T

xe ∈ [0, 1] ∀e ∈
(
V

2

)

Figure 2. Postprocessing LP

for any F ⊆
(
V
2

)
. Moreover, the following bound holds with

high probability for all S, T ⊆ V simultaneously:

|wG(S, T )− wH(S, T )| ≤ Õ(ε−1n3/2).

In our notation, Õ hides terms polylogarithmic in n and is
only needed for the high-probability result. This mecha-
nism produces a weighted graph with potentially negative
weights. Gupta et al. (2012) also describe a postprocessing
procedure which produces an unweighted graph with the
same guarantees.

Our mechanism splits the original graph G into subgraphs
G+ and G− on the same vertex set containing all posi-
tive and negative edges respectively. We release these two
graphs using Algorithm 1. Since the resulting graphs H+

and H− may overlap and contain edges of negative weight,
we use a postprocessing step described below to merge them
into a single unweighted graph H . See Algorithm 2 for an
overview.

Algorithm 2 Release of unweighted complete graphs
Split G into G+ and G−

Release weighted H+ and H− using Algorithm 1
Merge H+ and H− using the postprocessing step

Postprocessing step. We adapt the procedure proposed
by (Gupta et al., 2012). Let W+ and W− be the adjacency
matrices of H+ and H− respectively. We formulate the
linear program in Figure 2. This LP has exponential number
of constraints and can be solved up to a constant factor in
polynomial time using the algorithm of Alon & Naor (2006)
as a separation oracle.

Having a solution x to the LP, we construct the output graph
H . H is a complete unweighted graph and we label its
edges in the following way: for any e ∈

(
V
2

)
, we label it

positive with probability xe and negative otherwise. The
following fact, e.g., in Vershynin (2018) will be useful to
analyse the properties of the resulting graph.
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Proposition 19 (Hoeffding inequality for bounded random
variables). Let X1, . . . , XN be independent random vari-
ables such that Xi ∈ [0, 1] for each i = 1, . . . , N . For
SN =

∑N
i=1Xi and any t > 0, we have

P (|SN − E[SN ]| ≥ t) ≤ 2 exp(−2t2/N).

Lemma 20. Let w+
G(S, T ) and w−G(S, T ) denote the num-

ber of positive and negative edges respectively between the
vertex sets S and T in graph G. With high probability, we
have

|w+
H(S, T )− w+

G(S, T )| ≤ Õ(ε−1n3/2) and

|w−H(S, T )− w−G(S, T )| ≤ Õ(ε−1n3/2)

for any S, T ⊆ V .

Proof. By definition of G+ and G−, we have w+
G(S, T ) =

wG+(S, T ) and w−G(S, T ) = wG−(S, T ). Proposition 18
implies that

|wG+(S, T )− wH+(S, T )| ≤ Õ(ε−1n3/2) and

|wG−(S, T )− wH−(S, T )| ≤ Õ(ε−1n3/2).

Moreover, by construction of the graph H , we have

E[w+
H(S, T )] =

∑
e∈S×T xe and

E[w−H(S, T )] =
∑
e∈S×T (1− xe).

Note that E[w+
H(S, T )] differs from wH+(S, T ) by at most

λ∗, and the same holds for E[w−H(S, T )] and wH−(S, T ),
where λ∗ is the optimal value of the LP in Figure 2. We
claim that λ∗ is at most O(n3/2), since graph G satisfies all
the constraints for λ = Õ(n3/2). Note however that G is
not used when solving this LP.

Using Proposition 19 with N = |S||T | ≤ n2, we can
show thatw+

H(S, T ) deviates from its expectation by at most
n3/2 log n with probability at least 1 − 2 exp(−2n log n).
The same holds for w−H(S, T ). Therefore, by union bound
and using the preceding relations, the following holds

|w+
H(S, T )− w+

G(S, T )| ≤ Õ(ε−1n3/2) and

|w−H(S, T )− w−G(S, T )| ≤ Õ(ε−1n3/2)

for all S, T ⊆ V at the same time with high probability.

Theorem 21. Algorithm 2 is ε-differentially private and
runs in polynomial time. Give input graph G, it produces
graph H , such that for any clustering C = {C1, . . . , Ck},
we have

|dis(C, G)− dis(C, H)| ≤ Õ(ε−1kn3/2) and

| agr(C, G)− agr(C, H)| ≤ Õ(ε−1kn3/2)

with high probability.

Proof. Since we do not use G in the post-processing part,
the privacy of the algorithm follows from Theorem 1 and
post-processing (Proposition 13). It runs in polynomial time,
since each step can be implemented in polynomial time.

We can express the number of disagreemnents between C
and G as

dis(C, G) =

k∑
i=1

(
w−G(Ci, Ci) + w+

G(Ci, V \ Ci)
)
.

Similarly, we can express the number of agreements:

agr(C, G) =

k∑
i=1

(
w+
G(Ci, Ci) + w−G(Ci, V \ Ci)

)
.

Using Lemma 20, we can bound both |dis(C, G) −
dis(C, H)| and | agr(C, G) − agr(C, H)| by Õ(ε−1kn3/2).

4.2. Weighted and incomplete graphs

We describe a graph release mechanism for weighted graphs
which preserves the cost of any correlation clustering up to
an additive error of O(k

√
mn), where k is the number of

clusters in the clustering. It is based on the graph release
mechanism by Eliáš et al. (2020). For graphs G and H on
the same vertex set V , we define the cut distance between
them as follows:

dcut(G,H) = max
S,T⊆V

|wG(S, T )− wH(S, T )|,

Note that the sets S and T in the definition can be overlap-
ping and even identical.

Proposition 22 (Eliáš et al. (2020)). Let G be the class
of weighted graphs with sum of edge weights at most m.
For 0 ≤ ε ≤ 1/2 and 0 ≤ δ ≤ 1/2, there is an (ε, δ)-
differentially private mechanism wich runs in polynomial
time and, for any G ∈ G, outputs a weighted graph H such
that the following holds:

E[dcut(G,H)] ≤ O
(√

mn
ε log2(nδ )

)
.

Note that the edges of the output graph H have always
non-negative weights.

Given an input graph G whose edge weights sum up to
m, let G+ and G− be its subgraphs containing only edges
with positive and negative sign respectively. We output
a weighted graph H with possible parallel edges which
consists of edges of H+ with a positive sign and edges of
H− with a negative sign.

Theorem 23. Algorithm 3 is (ε, δ)-differentially private and
runs in polynomial time. Given input graph G, it produces
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Algorithm 3 Release of weighted graphs
Split G into G+ and G−

Release H+ and H− using mechanism in Proposition 22
Output union H = H+ ∪H−

graph H , such that for any clustering C = {C1, . . . , Ck},
we have

E[|dis(C, G)− dis(C, H)|] ≤ k ·O
(√

mn
ε log2(nδ )

)
and

E[| agr(C, G)− agr(C, H)|] ≤ k ·O
(√

mn
ε log2(nδ )

)
.

Proof. The privacy properties of the graph H follow from
Propositions 22 and 13. Moreover, all steps of the algorithm
can be implemented in polynomial time.

The disagreement between C and G can be expressed as

dis(C, G) =

k∑
i=1

(
wG−(Ci, Ci) + wG+(Ci, V \ Ci)

)
.

Similarly, the agreement between C and G can be written as

agr(C, G) =

k∑
i=1

(
wG+(Ci, Ci) + wG−(Ci, V \ Ci)

)
.

Therefore, both |dis(C, G)− dis(C, H)| and | agr(C, G)−
agr(C, H)| are bounded by

k
(
dcut(G

−, H−) + dcut(G
+, H+)

)
.

Together with Proposition 22, this concludes the proof.

5. Differentially private algorithms for
correlation clustering

We produce a private correlation clustering as follows:

1. Release a synthetic graph H using one of the differen-
tially private mechanisms in Section 4.

2. Find an approximately optimal clustering C of H using
some non-private approximation algorithm.

The following simple observation will be useful later.

Observation 24. Let G be an input graph and C∗ its opti-
mum clustering. Let H be a graph such that for any cluster-
ing C we have |dis(C, H) − dis(C, G)| ≤ η(|C|) for some
function η. If C′ is an α-approximation to MinDis on H ,
then dis(C′, G) ≤ α dis(C∗, G) + η(|C′|) + αη(|C∗|).

Similarly, if we have | agr(C, H)− agr(C, G)| ≤ η(|C|) for
any C and C′ is an α-approximation to MaxAgr on H , then
we have agr(C′, G) ≥ α agr(C∗, G)− η(|C′|)− αη(|C∗|).

Proof. For the optimal solution to MinDis on H , we have

dis(C∗H , H) ≤ dis(C∗, H) ≤ dis(C∗, G) + η(|C∗|).

On the other hand, we can bound the disagreement of C′ as

dis(C′, G) ≤ dis(C′, H)+η(|C′|) ≤ α dis(C∗H , H)+η(|C′|).

Combining these two relations concludes the proof for
MinDis. The proof for MaxAgr is analogous.

5.1. MinDis on unweighted complete graphs

For unweighted complete graphs, we can achieve sub-
quadratic additive error for an arbitrary number of clusters.
We release G using Algorithm 2, letting H denote its output.
Now, we find an 2.06-approximate solution to MinDis on H
using the algorithm by Chawla et al. (2015). If |C| ≤ n1/4,
we output C. Otherwise, we transform C into a clustering
of k′ = n1/4 clusters by packing the clusters smaller than
n/k′ into bins of at most 2n/k′ vertices and merging each
bin into a single cluster. See Algorithm 4 for details.

Algorithm 4 DP Correlation Clustering for unweighted
complete graphs
H = Released synthetic graph using Algorithm 2
C = 2.06-approximate solution to MinDis on H
if |C| ≤ k′, where k′ = n1/4 then

Output C
end if
CS = clusters in C of size smaller than n/k′

B = packing of CS into bins of at most 2n/k′ vertices
for all B ∈ B do
CB = merged clusters in the bin B

end for
Output (C \ CS) ∪ {CB ;B ∈ B}

Theorem 25. Let G be an unweighted complete graph and
C∗ be the optimal solution to MinDis on G. Algorithm 4 is
ε-DP, runs in polynomial time, and finds a clustering C such
that

dis(C, G) ≤ 2.06 · dis(C∗, G) + Õ(ε−1n1.75).

Proof. The privacy properties of the algorithm follow from
the privacy of Algorithm 2 and the post-processing rule
(Proposition 13). Algorithm runs in polynomial time, since
all steps, including the packing, which can be done greedily,
can be implemented in polynomial time.

If |C| ≤ n1/4, we choose C′ = C. Otherwise, we transform
C into a clustering C′ of k′ = n1/4 clusters in the following
way. All clusters in C of more than n/k′ vertices remain
separate clusters and the smaller ones are packed into bins of
at most 2n/k′ vertices. Merging of each bin into one cluster
introduces error due to negative edges of at most (2n/k′)2,
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with all k′ bins causing the total error of O(n2/k′). The
total number of clusters in C′ is at most k′. Therefore, by
Proposition 4, we have

dis(C′, H) ≤ 2.06 · dis(C∗H , H) +O(n2/k′),

where C∗H is the optimal clustering of the graph H . Us-
ing the same argumentation, we also get dis(C′G, G) ≤
dis(C∗G, G) + n2/k′, for the best clustering C′G of G into k′

clusters. We have

dis(C∗H , H) ≤ dis(C′G, H) ≤ dis(C′G, G) + Õ(ε−1k′n3/2)

by optimality of C∗H and Theorem 21. By combining the
preceding relations and using Theorem 21 once more to
relate dis(C′, G) to dis(C′, H), we finally get

dis(C′, G) ≤ 2.06 dis(C∗G, G) + Õ(ε−1k′n3/2 + n2/k′),

where the last term can be bounded by Õ(ε−1n1.75).

5.2. MaxAgr on unweighted complete graphs

The algorithm is the same as Algorithm 4, except for C
being the approximate solution to MaxAgr problem on H .
We find C using the PTAS by Bansal et al. (2002) (Proposi-
tion 5). The analysis follows the same lines as the proof of
Theorem 25. Note that the loss in the objective due to the
packing of small clusters into bins is the same as in the case
of MinDis: it is the number of negative edges between the
clusters packed in the same bin.

Theorem 26. Let G be an unweighted complete graph and
C∗ be optimal solution to MaxAgr on G. For any γ > 0,
there is an ε-DP algorithm which runs in polynomial time
and finds a clustering C such that

agr(C, G) ≥ (1− γ) · agr(C∗, G)− Õ(ε−1n1.75).

5.3. Algorithms for weighted and incomplete graphs

We use Algorithm 3 as a release mechanism, whose output
may have two weighted edges between a single pair of
vertices: one with a positive and one with a negative label.

Minimizing disagreement. Given input graph G, we re-
lease its approximation H using Algorithm 3. We split each
vertex v of H into two vertices v+ and v−, attaching the
positive edges adjacent to v to v+ and negative ones to v−.
We connect v+ and v− by an edge of infinite weight to
ensure they remain in the same cluster. Then, we find an
O(log n)-approximate solution C on the modified graph us-
ing the algorithm by Demaine et al. (2006) (Proposition 6).
We eliminate duplicate vertices from C and pack clusters of
less than n/k′ vertices into at most k′ = n1/4 bins of size
at most 2n/k′, like in Algorithm 4. See Algorithm 5 for
details.

Algorithm 5 MinDis on weighted graphs
H = Released synthetic graph using Algorithm 3
for all v ∈ V (H) do

add vertices v+ and v− to H ′

add edge v+v− to H ′ with weight +∞
end for
for all e ∈ E(H) do
u, v be endpoints of e; σ = sign of e; w = weight of e
add edge vσuσ with weight w to H ′

end for
C = O(log n)-apx solution on H ′.
C′ = merge duplicate vertices in C, pack small clusters

into bins, and merge each bin into a single cluster
Output C′

Theorem 27. LetG be a weighted graph such thatW is the
weight of its heaviest edge, and the sum of its edge weights
is at most m ≤ O(n2). Let C∗ be the optimal solution to
MinDis on G. Algorithm 5 is (ε, δ)-DP, runs in polynomial
time, and finds a clustering C such that

dis(C, G) ≤ O(log n) · dis(C∗, G) + β,

where β = O
(
Wn1.75 · ε− 1

2 log2(n/δ)
)
.

Proof. The optimum solution on H ′ is the same as on H ,
since any optimum solution has to put v− and v+ to the
same cluster, for any vertex v of H . Therefore, if C is an
O(log n)-apx solution on H ′, it has to be an O(log n)-apx
solution also on H .

Due to packing of small clusters, we misclassify at most
n2/k′ negative edges, each of them of weight at most W .
Since the additive error due to the release of the original
graph G using Algorithm 3 is O(

√
mn/ε log2(n/δ), the

total additive error is O
(
Wn1.75 · ε− 1

2 log2(n/δ)
)
.

Maximizing agreement. Again, we release the input
graph G using Algorithm 3. However, we do not need
to do any postprocessing, since the algorithm of Swamy
(2004) supports graphs with one positive and one negative
weighted edge between each pair of vertices.

Algorithm 6 MaxAgr for weighted graphs
H = Released input graph using Algorithm 3
C = solution on H found by algorithm of Swamy (2004)

Theorem 28. Let G be an input graph and C∗ be the op-
timal solution to MaxAgr on G. Algorithm 6 is (ε, δ)-DP,
runs in polynomial time, and finds a clustering C such that

agr(C, G) ≥ Ω(1) agr(C∗, G)−O(
√

mn
ε log2 n

δ ).

If |C∗| = k, then we have

agr(C, G) ≥ 0.7666 agr(C∗, G)−O(k
√

mn
ε log2 n

δ ).
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Proof. The proof of the second statement follows from Ob-
servation 24 and the fact that the algorithm of Swamy (2004)
always returns clustering of at most 6 clusters, see Proposi-
tion 7.

To show the first part, note that Proposition 7 also implies,
that there is a solution C′ of at most k clusters, such that
agr(C′, G) ≥ 0.7666 agr(C∗, G). Therefore, we have

agr(C, G) ≥ 0.76662 agr(C∗)−O(

√
mn

ε
log2 n

δ
).

5.4. Fixed number of clusters

For a fixed k, we look for a clustering into k clusters which
minimizes the disagreements or maximizes agreements.
This problem was studied by Swamy (2004) and Giotis
& Guruswami (2006).

Unweighted complete graphs. There are PTAS algo-
rithms by Giotis & Guruswami (2006) for MinDis[k] and
MaxAgr[k], for a constant k. We use them to find a corre-
lation clustering of size k on a graph released using Algo-
rithm 2. The following theorems are implied by Observa-
tion 24 and Proposition 8.
Theorem 29. Let G be an unweighted complete graph and
let C∗ be the optimal solution to MinDis[k] on G. There is
an ε-DP algorithm for MinDis[k] which runs in polynomial
time and produces a clustering C of size k, such that

dis(C, G) ≤ (1 + ε) dis(C∗, G) +O(kn3/2).

Theorem 30. Let G be an unweighted complete graph and
let C∗ be the optimal solution to MaxAgr[k] on G. There is
an ε-DP algorithm for MaxAgr[k] which runs in polynomial
time and produces a clustering C of size k, such that

agr(C, G) ≥ (1− ε) agr(C∗, G)−O(kn3/2).

Weighted and incomplete graphs. We use the algorithm
by Swamy (2004), which allows two edges between each
pair of vertices (one positive and one negative), to find clus-
tering on a graph released by Algorithm 3. The following
theorem follows from Observation 24 and Proposition 9.
Theorem 31. LetG be a graph and let C∗ be the optimal so-
lution to MaxAgr[k] on G. There is an (ε, δ)-DP algorithm
for MaxAgr[k] which runs in polynomial time and produces
a clustering C of size k, such that

agr(C, G) ≥ 0.7666 agr(C∗, G)−O(k
√

mn
ε log2 n

δ ).
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