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Machine-learned predictors, although achieving very good results for inputs resembling training data, cannot possibly provide

perfect predictions in all situations. Still, decision-making systems that are based on such predictors need not only beneit

from good predictions, but should also achieve a decent performance when the predictions are inadequate. In this paper, we

propose a prediction setup for arbitrary metrical task systems (MTS) (e.g., caching, �-server and convex body chasing) and

online matching on the line. We utilize results from the theory of online algorithms to show how to make the setup robust.

Speciically for caching, we present an algorithm whose performance, as a function of the prediction error, is exponentially

better than what is achievable for general MTS. Finally, we present an empirical evaluation of our methods on real world

datasets, which suggests practicality.

CCS Concepts: · Theory of computation→ Online algorithms; · Computing methodologies→ Machine learning.

Additional Key Words and Phrases: metrical task systems, caching, competitive analysis

1 INTRODUCTION

Metrical task systems (MTS), introduced by Borodin et al. [12], are a rich class containing several fundamental
problems in online optimization as special cases, including caching, �-server, convex body chasing, and convex

function chasing. MTS are capable of modeling many problems arising in computing and production systems
[48, 55], movements of service vehicles [22, 25], power management of embedded systems as well as data centers
[33, 43], and are also related to the experts problem in online learning, see [10, 24].

Initially, we are given a metric space� of states, which can be interpreted for example as actions, investment
strategies, or conigurations of some production machine. We start at a predeined initial state �0. At each time
� = 1, 2, . . . , we are presented with a cost function ℓ� : � → R

+ ∪ {0, +∞} and our task is to decide either to stay at
��−1 and pay the cost ℓ� (��−1), or to move to some other (possibly cheaper) state �� and pay dist (��−1, �� ) + ℓ� (�� ),
where dist (��−1, �� ) is the cost of the transition between states ��−1 and �� . The objective is to minimize the
overall cost incurred over time.
Given that MTS is an online problem, one needs to make each decision without any information about the

future cost functions. This makes the problem substantially diicult, as supported by strong lower bounds for
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general MTS [12] as well as for many special MTS problems [see e.g. 27, 37]. For the recent work on MTS, see
Bubeck et al. [14], Bubeck and Rabani [15], Coester and Lee [23].
In this paper, we study how to utilize predictors (possibly based on machine learning) in order to decrease

the uncertainty about the future and achieve a better performance for MTS. We propose a natural prediction
setup for MTS and show how to develop algorithms in this setup with the following properties of consistency (i),
smoothness (ii), and robustness (iii).

(i) Their performance with perfect predictions is close to optimal.
(ii) With decreasing accuracy of the predictions, their performance deteriorates smoothly as a function of the

prediction error.
(iii) When given poor predictions, their performance is comparable to that of the best online algorithm which

does not use predictions.

Caching and weighted caching problems, which are special cases of MTS, have already been studied in
this context of utilizing predictors [6, 35, 46, 53, 56]. However, the corresponding prediction setups do not
seem applicable to general MTS. For example, algorithms by Lykouris and Vassilvitskii [46] and Rohatgi [53]
provide similar guarantees by using predictions of the next reoccurrence time of the current page in the input
sequence. However, as we show in this paper, such predictions are not useful for more general MTS: even for
weighted caching, they do not help to improve upon the bounds achievable without predictions unless additional
assumptions are made (see [6] for an example of such an assumption).

We propose a prediction setup based on action predictions where, at each time step, the predictor tries to predict
the action that an oline algorithm would have taken. We can view these predictions as recommendations of
what our algorithm should do. We show that using this prediction setup, we can achieve consistency, smoothness,
and robustness for any MTS. For the (unweighted) caching problem, we develop an algorithm that obtains a better
dependency on the prediction error than our general result, and whose performance in empirical tests is either
better or comparable to the algorithms by Lykouris and Vassilvitskii [46] and Rohatgi [53]. This demonstrates the
lexibility of our setup. We would like to stress that speciically for the caching problem, the action predictions
can be obtained by simply converting the reoccurrence time predictions used in [46, 53, 56], a feature that we use
in order to compare our results to those previous algorithms. Nevertheless our prediction setup is applicable to
the much broader context of MTS. We demonstrate this and suggest practicability of our algorithms also for MTS
other than caching by providing experimental results for the ice cream problem [19], a simple example of an MTS.
Finally, we extend our theoretical result beyond MTS to online matching on the line.

Action Predictions for MTS. At each time � , the predictor proposes an action, i.e., a state �� in the metric space
� . We deine the prediction error with respect to some oline algorithm Off as

� =

�︁

�=1

�� ; �� = dist (�� , �� ), (1)

where �� denotes the state of Off at time � and � denotes the length of the input sequence.
The predictions could be, for instance, the output of a machine-learned model or actions of a heuristic which

tends to produce good solutions in practice, but possibly without a theoretical guarantee. The oline algorithmOff
can be an optimal one, but also other options are plausible. For example, if the typical instances are composed of
subpatterns known from the past and for which good solutions are known, then Off could also be a near-optimal
algorithm which composes its output from the partial solutions to the subpatterns. The task of the predictor
in this case is to anticipate which subpattern is going to follow and provide the precomputed solution to that
subpattern. In the case of the caching problem, as mentioned above and explained in Section 1.3, we can actually
convert the reoccurrence predictions [46, 53, 56] into action predictions.
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Note that, even if the prediction error with respect to Off is low, the cost of the solution composed from the
predictions �1, . . . , �� can be much higher than the cost incurred by Off, since ℓ� (�� ) can be much larger than
ℓ� (�� ) even if dist (�� , �� ) is small. However, we can design algorithms which use such predictions and achieve a
good performance whenever the predictions have small error with respect to any low-cost oline algorithm. We
aim at expressing the performance of the prediction-based algorithms as a function of �/Off, where (abusing
notation) Off denotes the cost of the oline algorithm. This is to avoid scaling issues: if the oline algorithm
incurs movement cost 1000, predictions with total error � = 1 give us a rather precise estimate of its state, unlike
when Off = 0.1.

Caching Problem. In the caching problem we have a two-level computer memory, out of which the fast one
(cache) can only store � pages. We need to answer a sequence of requests to pages. Such a request requires no
action and incurs no cost if the page is already in the cache, but otherwise a page fault occurs and we have
to add the page and evict some other page at a cost of 1. Caching can be seen as an MTS whose states are
cache conigurations1. Therefore, also the predictions are cache conigurations in our setup, but as we discuss in
Section 1.3 they can be encoded much more succinctly than specifying the full cache content in each time step.
The error �� describes in this case the number of pages on which the predicted cache and the cache of Off difer
at time � .

1.1 Our Results

We prove two general theorems providing robustness and consistency guarantees for any MTS.

Theorem 1. Let � be a deterministic �-competitive online algorithm for a problem � belonging to MTS. Given

action predictions for � , there is a deterministic algorithm achieving competitive ratio

9 ·min{�, 1 + 4�/Off}

against any oline algorithm Off, where � is the prediction error with respect to Off.

Roughly speaking, the competitive ratio (formally deined in Section 2) is the worst case ratio between the cost
of two algorithms. If Off is an optimal algorithm, then the expression in the theorem is the overall competitive
ratio of the prediction-based algorithm.

Theorem 2. Let � be a randomized �-competitive online algorithm for an MTS � with metric space diameter � .

For any � ≤ 1/4, given action predictions for � there is a randomized algorithm achieving cost

(1 + �) ·min{�, 1 + 4�/Off} · Off +� (�/�),

where � is the prediction error with respect to an oline algorithm Off. Thus, if Off is (near-)optimal and � ≪ Off,

the competitive ratio is close to 1 + � .

We note that the proofs of these theorems are based on the powerful results by Fiat et al. [29] and Blum and
Burch [10]. In Theorem 20, we show that the dependence on �/Off in the preceding theorems is tight up to
constant factors for some MTS instance.

For some speciic MTS, however, the dependence on �/Off can be improved, as shown in Section 3, where we
present a new algorithm for caching whose competitive ratio has a logarithmic dependence on �/Off. One of the
main characteristics of our algorithm, which we call Trust&Doubt, compared to previous approaches, is that it
is able to gradually adapt its level of trust in the predictor throughout the instance. Showing that our general
prediction setup can be used to design such eicient algorithms for caching is the most involved result of our
paper, so the following result is proved before Theorems 1 and 2.

1A cache coniguration is the set of pages in cache.
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Theorem 3. For cachingwith action predictions, there is a randomized algorithmwith competitive ratiomin
{
� (

�

Off
), �(�)

}
against any algorithm Off, where � (

�

Off
) ≤ � (log �

Off
) is the smoothness with prediction error � and �(�) ≤

� (log(�)) is the robustness with cache size � .

We do not attempt to optimize constant factors in the proof of Theorem 3, but we remark that � can be chosen
such that � (0) = 1 + � , for arbitrary � > 0. The reason is that our algorithm in the proof of Theorem 3 can be
used as algorithm � in Theorem 2.

Although we designed our prediction setup with MTS in mind, it can also be applied to problems beyond MTS.
We demonstrate this in Section 5 by employing our techniques to provide an algorithm of similar lavor for online
matching on the line, a problem not known to be an MTS.

Theorem 4. For online matching on the line with action predictions, there is a deterministic algorithm with

competitive ratio � (min{log�, 1 + �/Off}), where � is the prediction error with respect to some oline algorithm

Off.

We also show that Theorem 4 can be generalized to give a � (min{2� − 1, �/Off})-competitive algorithm for
online metric bipartite matching.

In Section C, we show that the reoccurrence time predictions introduced by Lykouris and Vassilvitskii [46] for
caching do not help for more general MTS.

Theorem 5. The competitive ratio of any algorithm for weighted caching even if provided with precise reoccurrence

time predictions is Ω(log�).

Note that there are � (log�)-competitive online algorithms for weighted caching which do not use any
predictions [see 5]. This motivates the need for a diferent prediction setup as introduced in this paper. This lower
bound result has been obtained independently by Jiang et al. [35] who also proved a lower bound of Ω(�) for
deterministic algorithms with precise reoccurrence time predictions. However, for instances with only ℓ weight
classes, Bansal et al. [6] showed that perfect reoccurrence time predictions allow achieving a competitive ratio of
Θ(log ℓ).

We round up by presenting an extensive experimental evaluation of our results that suggests practicality. We
test the performance of our algorithms on public data with previously used models. With respect to caching,
our algorithms outperform all previous approaches in most settings (and are always at least comparable). A
very interesting use of our setup is that it allows us to employ any other online algorithm as a predictor for
our algorithm. For instance, when using the Least Recently Used (LRU) algorithm ś which is considered the
gold standard in practice ś as a predictor for our algorithm, our experiments suggest that we achieve the same
practical performance as LRU, but with an exponential improvement in the theoretical worst-case guarantee
(� (log�) instead of �). Finally we applied our general algorithms to a simple MTS called the ice cream problem
and were able to obtain results that also suggest practicality of our setup beyond caching.

1.2 Related Work

Our work is part of a larger and recent movement to prove rigorous performance guarantees for algorithms
based on machine learning. The irst main results have been established on both classical [see 38, 40] and online
problems: Lykouris and Vassilvitskii [46] and Rohatgi [53] on caching, Lattanzi et al. [41] on restricted assignment
scheduling, Purohit et al. [51] on ski rental and non-clairvoyant scheduling, Gollapudi and Panigrahi [32] on ski
rental with multiple predictors, Mitzenmacher [50] on scheduling/queuing, and Medina and Vassilvitskii [49] on
revenue optimization.
Most of the online results are analyzed by means of consistency (competitive ratio in the case of perfect

predictions) and robustness (worst-case competitive-ratio regardless of prediction quality), which was irst deined
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in this context by Purohit et al. [51], while Mitzenmacher [50] uses a diferent measure called price of misprediction.
It should be noted that the exact deinitions of consistency and robustness are slightly inconsistent between
diferent works in the literature, making it often diicult to directly compare results.

Results on Caching. Among the closest results to our work are the ones by Lykouris and Vassilvitskii [46] and
Rohatgi [53], who study the caching problem (a special case of MTS) with machine learned predictions. Lykouris
and Vassilvitskii [46] introduced the following prediction setup for caching: whenever a page is requested, the
algorithm receives a prediction of the time when the same page will be requested again. The prediction error is
deined as the ℓ1-distance between the predictions and the truth, i.e., the sum ś over all requests ś of the absolute
diference between the predicted and the real reoccurrence time of the same request. For this prediction setup,
they adapted the classic Marker algorithm in order to achieve, up to constant factors, the best robustness and

consistency possible. In particular, they achieved a competitive ratio of �
(
1 + min{

︁
�/Opt, log�}

)
and their

algorithm was shown to perform well in experiments. Later, Rohatgi [53] achieved a better dependency on the

prediction error: �
(
1 +min

{ log�
�

�

Opt
, log�

})
. He also provides a close lower bound.

Following the original announcement of our work, we learned about further developments by Wei [56] and
Jiang et al. [35].Wei [56] further reined the aforementioned results for caching with reoccurrence time predictions.
The paper by Jiang et al. [35] proposes an algorithm for weighted caching in a very strong prediction setup, where
the predictor reports at each time step the reoccurrence time of the currently requested page as well as all page
requests up to that time. Jiang et al. [35] provide a collection of lower bounds for weaker predictors (including an
independent proof of Theorem 5), justifying the need for such a strong predictor. In a followup work, Bansal
et al. [6] showed, though, that the reoccurrence time predictions2 are still useful for weighted caching when the
number ℓ of weight classes is small, allowing to achieve a competitive ratio of Θ(log ℓ) for good predictions.

We stress that the aforementioned results use diferent prediction setups and they do not imply any bounds for
our setup. This is due to a diferent way of measuring prediction errors, see Section 1.3 for details. Therefore,
we cannot compare the theoretical guarantees achieved by previously published caching algorithms in their
prediction setup to our new caching algorithm within our broader setup. Instead, we provide a comparison via
experiments.3

Combining Worst-Case and Optimistic Algorithms. An approach in some ways similar to ours was developed by
Mahdian et al. [47], who assume the existence of an optimistic algorithm and developed a meta-algorithm that
combines this algorithm with a classical one and obtains a competitive ratio that is an interpolation between the
ratios of the two algorithms. They designed such algorithms for several problems including facility location and
load balancing. The competitive ratios obtained depend on the performance of the optimistic algorithm and the
choice of the interpolation parameter. Furthermore the meta-algorithm is designed on a problem-by-problem
basis. In contrast, (i) our performance guarantees are a function of the prediction error, (ii) generally we are able
to approach the performance of the best algorithm, and (iii) our way of simulating multiple algorithms can be
seen as a black box and is problem independent.

Online Algorithms with Advice. Another model for augmenting online algorithms, but not directly related to
the prediction setting studied in this paper, is that of advice complexity, where information about the future is
obtained in the form of some always correct bits of advice (see [13] for a survey). Emek et al. [26] considered

2Their actual algorithm only needs the relative ordering of reoccurrence times, which is also true for [46, 53, 56].
3One might be tempted to adapt the algorithm of Rohatgi [53] to action predictions by replacing the page with the furthest predicted

reoccurrence in the algorithm of Rohatgi [53] by a page evicted by the predictor in our setting. However, it is not hard, following ideas

similar to the irst example about prediction errors in the Section 1.3, to construct an instance where this algorithm is Ω (log� )-competitive

although
�
Opt = � (1) in our setup.

ACM Trans. Algor.
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MTS under advice complexity, and Angelopoulos et al. [3] consider advice complexity with possibly adversarial
advice and focus on Pareto-optimal algorithms for consistency and robustness in several similar online problems.

1.3 Comparison to the Setup of Lykouris and Vassilvitskii

Although the work of Lykouris and Vassilvitskii [46] for caching served as an inspiration, our prediction setup
cannot be understood as an extension or generalization of their setup. Here we list the most important connections
and diferences.

Conversion of Predictions for Caching. One can convert the reoccurrence time predictions of Lykouris and
Vassilvitskii [46] for caching into predictions for our setup using a natural algorithm: At each page fault, evict the
page whose next request is predicted furthest in the future. Note that, if given perfect predictions, this algorithm
produces an optimal solution [7]. The states of this algorithm at each time are then interpreted as predictions
in our setup. We use this conversion to compare the performance of our algorithms to those of Lykouris and
Vassilvitskii [46] and Rohatgi [53] in empirical experiments in Section 6.

Prediction Error. The prediction error as deined by Lykouris and Vassilvitskii [46] is not directly comparable
to ours. Here are two examples.
(1) Consider a paging instance where some page � is requested at times 1 and 3, and suppose we are given

reoccurrence time predictions that are almost perfect except at time 1 where it is predicted that � reoccurs at
time � rather than 3, for some large � . Then the prediction error in the setting of Lykouris and Vassilvitskii [46]
is Ω(� ). However, the corresponding action predictions obtained by the conversion above are wrong only at
time step 2, meaning the prediction error in our setting is only 1 with respect to the oline optimum.

(2) One can create a request sequence consisting of � + 1 distinct pages where swapping two predicted times of
next arrivals causes a diferent prediction to be generated by the conversion algorithm. The modiied prediction
in the setup of Lykouris and Vassilvitskii [46] may only have error 2 while the error in our setup with respect to
the oline optimum can be arbitrarily high (depending on how far in the future these arrivals happen). However,
our results provide meaningful bounds also in this situation. Such predictions still have error 0 in our setup with
respect to a near-optimal algorithm which incurs only one additional page fault compared to the oline optimum.
Theorems 1ś3 then provide constant-competitive algorithms with respect to this near-optimal algorithm.

The irst example shows that the results of Lykouris and Vassilvitskii [46], Rohatgi [53], Wei [56] do not imply
any bounds in our setup. On the other hand, the recent result ofWei [56] shows that our algorithms from Theorems
1ś3, combined with the prediction-converting algorithm above, are � (1 + min{ 1

�

�

Opt
, log�})-competitive for

caching in the setup of Lykouris and Vassilvitskii [46], thus also matching the best known competitive ratio
in that setup: The output of the conversion algorithm has error 0 with respect to itself and our algorithms are
constant-competitive with respect to it. Since the competitive ratio of the conversion algorithm is � (1 + 1

�

�

Opt
)

by Wei [56], our algorithms are � (min{1 + 1
�

�

Opt
, log�})-competitive, where � denotes the prediction error in

the setup of Lykouris and Vassilvitskii [46].

Succinctness. In the case of caching, we can restrict ourselves to lazy predictors, where each predicted cache
content difers from the previous predicted cache content by at most one page, and only if the previous predicted
cache content did not contain the requested page. This is motivated by the fact that any algorithm can be
transformed into a lazy version of itself without increasing its cost. Therefore, � (log�) bits are enough to
describe each action prediction, saying which page should be evicted, compared to Θ(log� ) bits needed to encode
a reoccurrence time in the setup of Lykouris and Vassilvitskii [46]. In fact, we need to receive a prediction not for
all time steps but only those when the current request is not part of the previous cache content of the predictor. In
cases when running an ML predictor at each of these time steps is too costly, our setup allows predictions being
generated by some fast heuristic whose parameters can be recalculated by the ML algorithm only when needed.

ACM Trans. Algor.
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Learnability. In order to generate the reoccurrence time predictions, Lykouris and Vassilvitskii [46] used a
simple PLECO [2] predictor. In this paper, we introduce another simple predictor called POPU and show that the
output of these predictors can be converted to action predictions.

Predictors Hawkey [34] and Glider [54] use binary classiiers to identify pages in the cache which are going to
be reused soon, evicting irst the other ones. As shown by their empirical results, such binary information is
enough to produce a very eicient cache replacement policy, i.e., action predictions. In their recent paper, Liu et al.
[45] have proposed a new predictor, called Parrot, that is trained using the imitation learning approach and tries
to mimic the behaviour of the optimal oline algorithm [7]. The main output of their model, implemented using a
neural network, are in fact action predictions. However it also produces the reoccurrence time predictions in order
to add further supervision during the training process. While at irst it may seem that predicting reoccurrence
times is an easier task (in particular, it has the form of a standard supervised learning task), the results of Liu
et al. [45] show that it might well be the opposite ś e.g., when the input instance variance makes it impossible to
predict the reoccurrence times accurately yet it is still possible to solve it (nearly) optimally online. We refer to
the paper of Chłędowski et al. [17] for an extensive evaluation of the existing learning augmented algorithms
using both reoccurrence time and action predictions. Following the emergence of learning-augmented algorithms,
Anand et al. [1] even designed predictors speciically tuned to optimize the error used in the algorithms analysis.
This work has been restricted so far to a much simpler online problem, ski rental.

2 PRELIMINARIES

In MTS, we are given a metric space� of states and an initial state �0 ∈ � . At each time � = 1, 2, . . . , we receive
a task ℓ� : � → R+ ∪ {0, +∞} and we have to choose a new state �� without knowledge of the future tasks,
incurring cost dist (��−1, �� ) + ℓ� (�� ). Note that dist (��−1, �� ) = 0 if ��−1 = �� by the identity property of metrics.

Although MTS share several similarities with the experts problem from the theory of online learning [20, 30],
there are three important diferences. First, there is a switching cost: we need to pay cost for switching between
states equal to their distance in the underlying metric space. Second, an algorithm for MTS has one-step lookahead,
i.e., it can see the task (or loss function) before choosing the new state and incurring the cost of this task. Third,
there can be unbounded costs in MTS, which can be handled thanks to the lookahead. See Blum and Burch [10]
for more details on the relation between experts and MTS.
To assess the performance of algorithms, we use the competitive ratio ś the classical measure used in online

algorithms.

Definition 1 (Competitive ratio). Let A be an online algorithm for some cost-minimization problem � . We

say that A is � -competitive and call � the competitive ratio of A, if for any input sequence � ∈ � , we have

E[cost (A(� ))] ≤ � · Opt� +�,

where � is a constant independent of the input sequence, A(� ) is the solution produced by the online algorithm and

Opt� is the cost of an optimal solution computed oline with the prior knowledge of the whole input sequence. The

expectation is over the randomness in the online algorithm. If Opt� is replaced by the cost of some speciic algorithm

Off, we say that A is � -competitive against Off.

Before we prove our results for general MTS, we consider in the next section the caching problem. It corresponds
to the special case of MTS where the metric space is the set of cardinality-� subsets of a cardinality-� set (of
pages), the distance between two sets is the number of pages in which they difer, and each cost function assigns
value 0 to all sets containing some page �� and∞ to other sets.

ACM Trans. Algor.
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3 LOGARITHMIC ERROR DEPENDENCE FOR CACHING

We describe in this section a new algorithm, which we call Trust&Doubt, for the (unweighted) caching problem,
and prove Theorem 3. The algorithm achieves a competitive ratio logarithmic in the error (thus overcoming
the lower bound of Theorem 20 that holds for general MTS even on a uniform metric), while also attaining the
optimal worst-case guarantee of � (log�).

We assume that the predictor is lazy in the following sense. Let �� be the page that is requested at time � and
let �� be the coniguration (i.e., set of pages in the cache) of the predictor at time � . Then �� difers from ��−1 only
if �� ∉ ��−1 and, in this case, �� = ��−1 ∪ {�� } \ {�} for some page � ∈ ��−1. Note that any algorithm for caching
can be converted into a lazy one without increasing its cost.
We partition the request sequence into phases, which are maximal time periods where � distinct pages are

requested4: The irst phase begins with the irst request. A phase ends (and a new phase begins) after � distinct
pages have been requested in the current phase and right before the next arrival of a page that is diferent from
all these � pages. For a given point in time, we say that a page is marked if it has been requested at least once in
the current phase. For each page � requested in a phase, we call the irst request to � in that phase the arrival
of � . This is the time when � gets marked. Many algorithms, including that of Lykouris and Vassilvitskii [46],
belong to the class of so-called marking algorithms, which evict a page only if it is unmarked. The classical
� (log�)-competitive online algorithm of [28] is a particularly simple marking algorithm: On a cache miss, evict
a uniformly random unmarked page. In general, no marking algorithm can be better than 2-competitive even
when provided with perfect predictions. As will become clear from the deinition of Trust&Doubt later, it may
follow the predictor’s advice to evict even marked pages, meaning that it is not a marking algorithm. As can
be seen in our experiments in Section 6, this allows Trust&Doubt to outperform previous algorithms when
predictions are good.5 We believe that one could modify the algorithm so that it is truly 1-competitive in the
case of perfect predictions. However, formally proving so seems to require a signiicant amount of additional
technical complications regarding notation and algorithm description. To keep the presentation relatively simple,
we abstain from optimizing constants here.

3.1 First warm-up: A universe of � + 1 pages

Before we give the full-ledged Trust&Doubt algorithm for the general setting, we irst describe an algorithm for
the simpler setting when there exist only � +1 diferent pages that can be requested. This assumption substantially
simpliies both the description and the analysis of the algorithm while already showcasing some key ideas. In
Sections 3.2 and 3.3, we will explain the additional ideas required to extend the algorithm to the general case.

Our assumption means that at each time, there is only one page missing from the algorithm’s cache and only
one page missing from the predicted cache. Moreover, the irst request in each phase is an arrival of the (unique)
page that was not requested in the previous phase, and all other arrivals in a phase are requests to pages that
were also requested in the previous phase.

3.1.1 Algorithm (simplified seting). We denote by � the set of marked pages and by � the set of unmarked
pages.

In each phase, we partition time into alternating Trust intervals and Doubt intervals, as follows: When a phase
starts, the irst Trust interval begins. Throughout each Trust interval, we ensure that the algorithm’s cache is
equal to the predicted cache �� . As soon as the page missing from �� is requested during a Trust interval, we
terminate the current Trust interval and start a new Doubt interval. In a Doubt interval, we treat page faults by

4Subdividing the input sequence into such phases is a very common technique in the analysis of caching algorithms, see for example Borodin

and El-Yaniv [11] and references therein.
5There exist instances where Trust&Doubt with perfect predictions strictly outperforms the best marking algorithm, but also vice versa, see

Appendix B.
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evicting a uniformly random page from� . As soon as there have been 2�−1 arrivals since the beginning of the �th
Doubt interval of a phase, the Doubt interval ends and a new Trust interval begins (and we again ensure that the
algorithm’s cache is equal to �� ).

3.1.2 Analysis (simplified seting). Let �ℓ be the number of Doubt intervals in phase ℓ .

Claim 6. The expected number of cache misses in phase ℓ is 1 +� (�ℓ ).

Proof. Any cache miss during a Trust interval starts a new Doubt interval, so there are �ℓ cache misses during
Trust intervals. There may be one more cache miss at the start of the phase. It remains to show that there are
� (�ℓ ) cache misses in expectation during Doubt intervals.

In a Doubt interval, we can have a cache miss only when a page from� arrives. The arriving page from� is
the one missing from the cache with probability 1/|� |. Moreover, when a page from� arrives, it is removed from
� . The expected number of cache misses during Doubt intervals is therefore a sum of terms of the form 1/|� |
for distinct values of |� |. Since the total number of arrivals during Doubt intervals is at most 2�ℓ , the expected

number of cache misses during Doubt intervals is at most
∑2�ℓ

�=1 1/� = � (�ℓ ). □

Due to the claim, our main remaining task is to upper bound the number of Doubt intervals.
We call a Doubt interval error interval if at each time � during the interval, the page missing from �� is present

in the cache of the oline algorithm. Note that each time step during an error interval contributes to the error �.
Let �ℓ ≤ �ℓ be the number of error intervals of phase ℓ . Since for all � < �ℓ , the �th error interval contains at least
2�−1 time steps, we can bound the error as

� ≥
︁
ℓ

(
2�ℓ−1 − 1

)
. (2)

Denote by Offℓ the cost of the oline algorithm during phase ℓ .

Claim 7. �ℓ ≤ Offℓ + �ℓ + 1.

Proof. Consider the quantity �ℓ − �ℓ . This is the number of Doubt intervals of phase ℓ during which �� is
equal to the oline cache at some point. Since �� changes at the start of each Doubt interval, but �� changes only
if the page missing from �� is requested (since we assume the predictor to be lazy), this means that the oline
cache must change between any two such intervals. Thus, �ℓ − �ℓ − 1 ≤ Offℓ . □

Combining these claims, the total number of cache misses of the algorithm is at most (noting by #phases the
number of phases)

︁
ℓ

(1 +� (�ℓ )) ≤ �

(
Off + #phases +

︁
ℓ

(�ℓ − 1)

)
.

Each term (�ℓ − 1) can be rewritten as log2
(
1 + (2�ℓ−1 − 1)

)
. By concavity of � ↦→ log(1 + �), subject to the bound

(2) the sum of these terms is maximized when each term 2�ℓ−1 − 1 equals �

#phases . Thus, the total number of cache

misses of the algorithm is at most

�

(
Off + #phases + #phases · log

(
1 +

�

#phases

))
≤ Off ·�

(
1 + log

(
1 +

�

Off

))
,

where the last inequality uses that Off = Ω(#phases) since all � + 1 pages are requested in any two adjacent
phases, so the oline algorithm must have a cache miss in any two adjacent phases.
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3.2 Second warm-up: The predictor is a marking algorithm

We now drop the assumption from the previous section and allow the number of pages in the universe to be
arbitrary. However, we will assume in this section that the predictor is a marking algorithm (i.e., the predicted
cache �� always contains all marked pages). In this case, our algorithm will also be a marking algorithm.

Our algorithm is again based on phases, which are deined as before. Denote by� the set of unmarked pages
that were in the cache at the beginning of the phase, and by � the set of marked pages. By our assumption
that both the predictor and our algorithm are marking algorithms, at the start of a phase� is equal to both the
predicted cache as well as the algorithm’s cache as it contains precisely the pages that were requested in the
previous phase. An important notion in phase-based paging algorithms is that of clean pages. For the setting
considered in this section, where the predictor is a marking algorithm, we deine a page as clean if it is requested
in the current phase but was not requested in the previous phase. We denote by� the set of clean pages that have
arrived so far in the current phase. (In the general setting, we will need to deine clean pages slightly diferently.)

Several simultaneous interval partitions. While in the irst warm-up setting with a (� + 1)-page universe
there could be only a single clean page per phase, a main diference now is that there can be several clean pages
in a phase. For this reason, it is no longer suicient to partition the phase into Trust intervals and Doubt intervals
that are deined “globallyž. Instead, we will associate with each clean page a diferent subdivision of time into
Trust intervals and Doubt intervals: The time from the arrival of � until the end of the phase is partitioned into
alternating �-Trust intervals and �-Doubt intervals. Thus, a time � can belong to various intervals ś one associated
to each clean � that has arrived so far in the current phase. At any time, some of the current intervals may be
Trust intervals while the rest are Doubt intervals. During a �-Trust interval, we will not ensure that the entire
algorithm’s cache is equal to the predictor’s cache, but only that one particular page � (�) that is evicted by the
predictor is also predicted by the algorithm.

More precisely, we will also maintain a map � : � → � \ �� that maps each clean page � ∈ �ℓ (that has arrived
so far) to an associated page � (�) that was evicted by the predictor during the current phase (and is currently still
missing from the predictor’s cache). Intuitively, we can think of � (�) as the page that the predictor advises us to
evict to make space for �. If it happens that the page � (�) associated to some clean � is requested, the predictor
has to load � (�) back to its cache �� , and we redeine � (�) to be the page that the predictor evicts at this time.
Observe that this ensures that the pages � (�) are distinct for diferent � (in fact, since we assume the predictor to
be a lazy marking algorithm, � is a bijection in this case).

When a clean page � arrives, the irst �-Trust interval begins. Throughout each �-Trust interval, we will ensure
that the page � (�) is evicted from our algorithm’s cache. If during a �-Trust interval the page � (�) is requested,
we terminate the current �-Trust interval and start a new �-Doubt interval. In a �-Doubt interval, we ignore the
advice to evict � (�) and instead evict a uniformly random unmarked page when necessary. As soon as there have
been 2�−1 arrivals since the beginning of the �th �-Doubt interval, the �-Doubt interval ends and a new �-Trust
interval begins (and we again ensure that the page currently deined as � (�) is evicted).

We will skip a more formal description and analysis of the algorithm for this setting as it will be contained as a
special case of our algorithm in the next section.

Remark 8. At a high level, the idea of linking evictions to individual clean pages (which is explicit for the pages

� (�) evicted in Trust intervals) bears some similarities to the notion of eviction chains used in [46, 53]. However, our

algorithm and charging scheme are quite diferent. In particular, the natural adaptations of algorithms in [46, 53] to

our setting would only be Ω(log�)-competitive even when
�

Opt
= � (1), where � is the prediction error in our setting.

This can happen on instances where predictions are mostly good, but occasionally very bad. To overcome this, we use

Doubt intervals that start small and grow over time, which allows our algorithm to recover quickly from occasional

very bad predictions.
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3.3 Algorithm for the general case

We now describe our algorithm Trust&Doubt for the general case. In contrast to the previous section, we drop
here the assumption that the predictor must be a marking algorithm. Thus, the predictor may evict marked pages,
and since Trust&Doubt may trust such evictions, also Trust&Doubt may evict marked pages. Consequently,
it is no longer true that set of pages in the algorithm’s cache at the start of a phase is equal to the set of pages
requested in the previous phase. This means that some pages may be “ancientž as per the following deinition.

Definition 2. A page is called ancient if it is in Trust&Doubt’s cache even though it has been requested in

neither the previous nor the current phase (so far).

We partition each phase into two stages that are determined by whether ancient pages exist or not: During
stage one there exists at least one ancient page, and during stage two there exist no ancient pages. We note that
one of the two stages may be empty.
The algorithm for stage one is very simple: Whenever there is a page fault, evict an arbitrary ancient page.

This makes sense since ancient pages have not been requested for a long time, so we treat them like a reserve of
pages that are safe to evict. Once this reserve has been used up, stage two begins.

The algorithm for stage two is essentially the one already described in the previous section. Before we give a
more formal description, we irst ix some notation. Let� be the set of pages that were in cache at the beginning
of stage two and that are currently unmarked. Let� be the set of marked pages. We call a page clean for a phase
if it arrives in stage two and it was not in� ∪� immediately before its arrival. (Pages arriving in stage one are
not considered clean as these are easy to charge for and do not need the analysis linked to clean pages in stage
two.) By � we denote the set of clean pages that have arrived so far in the current phase.

a. . .� = 3 b a c a e b a e c . . .

t

Trust&Doubt possible cache at time � : {a,c, d }

arrivals end of phases

ancient

Fig. 1. Illustration of definitions used to describe Trust&Doubt. At time � , a new phase starts and the cache contains �, �
and � , where � is ancient. In the following phase, � is not clean because it arrives during stage one. When � is requested,
Trust&Doubt evicts the ancient page � and loads � , and then stage two begins with� = {�, �} and� = {�} initially. The
page � requested next is considered clean because, although it was also requested in the previous phase, it was not in� ∪�
immediately before its request. The next requested page � is not clean as it was already in� ∪� .

It is immediate from the deinitions that the following equation is maintained during stage two:

|� ∪� | = � + |� | (3)

Similarly to before, Trust&Doubt maintains an injective map � : � → (� ∪�) \ �� that maps each clean
page � ∈ � (that has arrived so far) to a distinct page � (�) that is currently missing from the predictor’s cache.
Note that since the predictor may evict marked pages, it is necessary to include marked pages in the codomain of
� . As before, the time from the arrival of a clean page � to the end of the phase is partitioned into alternating
�-Trust intervals and �-Doubt intervals. Depending on the type of the current interval, we will also say that � is
trusted or � is doubted. Let

� := {� (�) | � ∈ � trusted}

� := {� (�) | � ∈ � doubted}.
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To organize the random evictions that the algorithm makes, we sort the pages of� in a uniformly random order
at the beginning of stage two. We refer to the position of a page in this order as its rank, and we will ensure that
the randomly evicted pages are those with the lowest ranks.6

A pseudocode of Trust&Doubt when a page � is requested in stage two is given in Algorithm 1.
If � is clean and the request is an arrival (the condition in line 1 is true), we irst deine its associated page � (� )

as an arbitrary7 page from (� ∪�) \ (�� ∪� ∪ �). We will justify later in Lemma 10 that this set is non-empty.
We then start an � -Trust interval. (Note that this adds � (� ) to the set � .) Since � is then trusted, we ensure that
� (� ) is evicted from the cache. If it was already evicted, then we instead evict the page in cache with the lowest
rank. Either way, there is now a free cache slot that � will be loaded to in line 6. We also initialize a variable �� as
1. For each clean page �, we will use this variable �� to determine the duration of the next �-Doubt interval.

Otherwise, we also ensure that � is in cache, evicting the page in cache with the lowest rank if necessary
(lines 8ś10).

If � is a page of the form � (�), we redeine � (�), and since the previous prediction to evict the old � (�) was
bad, we ensure that � is now doubted (lines 11ś14), i.e., we start a new �-Doubt interval if � was trusted.

Finally, in lines 15ś20 we check for each clean page � whether it should reach the end of its Doubt interval. If �
is in its �th Doubt interval, then this happens if the current arrival is the 2�−1th arrival after the start of the current
�-Doubt interval. For each � for which a �-Doubt interval ends, we start a new �-Trust interval and ensure that
� (�) is evicted from the cache. If � (�) was not evicted yet, we reload the evicted page with the highest rank back
to the cache so that the cache contains � pages at all times.

Remark 9. To simplify the analysis, the algorithm is deined non-lazily here in the sense that it may load pages

even when they are not requested (in line 20). An implementation should only simulate this non-lazy algorithm in

the background and, whenever the actual algorithm has a page fault, it evicts an arbitrary (e.g., the least recently

used) page that is present in its own cache but missing from the simulated cache.

Correctness. It is straightforward to check that the algorithm’s cache is always a subset of (� ∪�) \� , since
any page added to � is evicted. Moreover, it is always a superset of� \� because pages from� are only evicted
if they are in � .

The following two lemmas capture invariants that are maintained throughout the execution of the algorithm.
In particular, they justify the the algorithm is well-deined.

Lemma 10. The set (� ∪�) \ (�� ∪� ∪ �) is non-empty before � (� ) or � (�) is chosen from it in lines 2 and 12.

Proof. It suices to show that |� ∪� | > |�� ∪� ∪ � | right before the respective line is executed.
Before line 2 is executed, it will be the case that |� | = |� ∪ � | + 1 (because � ∈ � , but � (� ) is not deined yet).

Thus, equation (3) yields |� ∪� | = � + |� ∪ � | + 1 > |�� ∪� ∪ � |.
Before line 12 is executed, it holds that |� | = |� ∪ � | and � ∈ (� ∪ �) ∩ �� . Again, the inequality follows from

equation (3). □

The next lemma justiies that reloading a page in line 20 will be possible, and the lemma will also be crucial for
the competitive analysis later.

Lemma 11. Before each request of stage two, there are |� | pages from� \� missing from the cache.

Proof. The pages in cache are a subset of � ∪� of size � . By equation (3), there are |� | = |� ∪ � | of these
pages missing from the cache. The pages in � account for |� | of those missing pages. The remaining |� | missing
pages are all in� \� (because pages from� are only evicted if they are in � ). □

6Since randomly evicted pages may be reloaded even when they are not requested, maintaining such ranks leads to consistent random

choices throughout a phase.
7e.g., the least recently used
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Algorithm 1:When page � is requested in phase ℓ and no ancient pages exist

1 if � ∈ � and this is the arrival of � then // Arrival of a clean page

2 Let � (� ) be an arbitrary page from (� ∪�) \ (�� ∪� ∪ �)

3 Start an � -Trust interval

4 if � (� ) is in cache then evict � (� )

5 else evict the lowest ranked cached page from� \�

6 Load � to the cache

7 �� := 1 // Duration of next �-Doubt interval (if it exists)

8 else if � is not in cache then // Page fault, but not arrival of clean page

9 Evict the lowest ranked cached page from� \�

10 Load � to the cache

11 if � = � (�) for some � ∈ � then // Advice to evict � (�) was bad

12 Redeine � (�) as an arbitrary page from (� ∪�) \ (�� ∪� ∪ �)

13 if � is trusted then

14 End the �-Trust interval and start a �-Doubt interval

15 foreach � ∈ � that is doubted do // Check for end of Doubt intervals

16 if the current request is the ��th arrival since the start of this �-Doubt interval then

17 End the �-Doubt interval and start a �-Trust interval

18 �� := 2 · ��
19 if � (�) is in cache then

20 Evict � (�) and load the highest ranked evicted page from� \� back to the cache

3.4 Competitive analysis.

Let �ℓ denote the set � at the end of phase ℓ . The next lemma and its proof are similar to a statement in Fiat et al.
[28]. However, since our deinition of clean pages is diferent, we need to reprove it in our setting.

Lemma 12. Any oline algorithm sufers cost at least

Off ≥ Ω

(︁
ℓ

|�ℓ |

)
.

Proof. We irst claim that at least � + |�ℓ | distinct pages are requested in phases ℓ − 1 and ℓ together. If there
is no stage two in phase ℓ , then �ℓ is empty and the statement trivial. Otherwise, all pages that are in � ∪� at
the end of phase ℓ were requested in phase ℓ − 1 or ℓ , and by equation (3) this set contains � + |�ℓ | pages.
Thus, any algorithm must sufer at least cost |�ℓ | during these two phases. Hence, Off is lower bounded by

the sum of |�ℓ | over all even phases and, up to a constant, by the according sum over all odd phases. The lemma
follows. □

By the following lemma, it suices to bound the cost of Trust&Doubt incurred during stage two.

Lemma 13. The cost during stage one of phase ℓ is at most the cost during stage two of phase ℓ − 1.
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Proof. The cost during stage one of phase ℓ is at most the number of ancient pages at the beginning of phase
ℓ . This is at most the number of marked pages that were evicted in phase ℓ − 1. Since a marked page can be
evicted only during stage two, the lemma follows. □

Let ��,ℓ be the number of �-Doubt intervals in phase ℓ . The next lemma is reminiscent of Claim 6 from our irst
warm-up section.

Lemma 14. The expected cost during stage two of phase ℓ is �
(
|�ℓ | +

∑
�∈�ℓ

��,ℓ

)
.

Proof. The cost incurred in lines 1ś7 is at most � ( |�ℓ |). In lines 8ś10, the algorithm can incur cost only if the
requested page was in� ∪� before the request (because the request is not an arrival of a clean page, so it was in
� ∪� , and if it was in� \� then it was in cache already). If the page was in � , then a new Doubt interval will
start in line 14, so the cost due to those pages is at most

∑
�∈�ℓ

��,ℓ . If the page was in� \� , then by Lemma 11

and the random choice of ranks it was missing from the cache with probability |� |
|� \� |

. To account for this cost, we

charge 1
|� \� |

to each clean � that is doubted at the time. Over the whole phase, the number of times we charge to

each � ∈ �ℓ in this way is at most the total number of arrivals during �-Doubt intervals, which is at most 2��,ℓ . By
equation (3) and since |� | = |� | + |� |, we have |� | = � + |� | + |� | − |� |, so |� \� | ≥ � + |� | − |� | ≥ � + 1 − |� |.
The quantity |� | increases by 1 after each such request to a page in |� \� |, so the value of |� \� | can be lower
bounded by 1, 2, 3, . . . , 2��,ℓ during the at most 2��,ℓ arrivals when 1

|� \� |
is charged to �. Hence, the total cost

charged to � is at most � (��,ℓ ). It follows that the overall cost incurred in lines is at most�
(∑

�∈�ℓ
��,ℓ

)
Finally, the only other time cost is incurred is in line 20. This also amounts to at most

∑
�∈�ℓ

��,ℓ because it
happens only at the end of a Doubt-interval. □

Denote by ��,ℓ the number of �-Doubt intervals with the property that at each time during the interval, the page
currently deined as � (�) is present in the oline cache. Since the current page � (�) is never in the predictor’s
cache, and the �th doubted �-interval contains 2�−1 arrivals for � < �� , a lower bound on the prediction error is
given by

� ≥
︁
ℓ

︁
�∈�ℓ

(2��,ℓ−1 − 1). (4)

Denote by Off�,ℓ the number of times in phase ℓ when the oline algorithm incurs cost for loading the page
currently deined as � (�) to its cache.

The next lemma is the generalization of Claim 7.

Lemma 15. For each � ∈ �ℓ , we have ��,ℓ ≤ Off�,ℓ + ��,ℓ + 1.

Proof. Consider the quantity ��,ℓ − ��,ℓ . This is the number of �-Doubt intervals of phase ℓ during which � (�)

is missing from the oline cache at some point. Except for the last such interval, the page � (�) will subsequently
be requested during the phase, so the oline algorithm will incur cost for loading it to its cache. The lemma
follows, with the “+1ž term accounting for the last interval. □

We are now ready to prove the main result of this section.

Theorem (Restated Theorem 3). Trust&Doubt has competitive ratio� (min{1 + log(1 + �

Off
), log�}) against

any oline algorithm Off, where � is the prediction error with respect to Off.

Proof. The � (log�) bound follows from Lemma 14, Lemma 12 and the fact that ��,ℓ ≤ � (log�) for each
� ∈ �ℓ . The latter fact holds because if ��,ℓ ≥ 2, then the (��,ℓ − 1)st �-Doubt interval contains 2��,ℓ−2 arrivals, but
there are only � arrivals per phase.

ACM Trans. Algor.



OnlineMetric Algorithms with Untrusted Predictions • 15

For the main bound, combining Lemmas 13, 14 and 15 we see that the total cost of the algorithm is at most

�
©«
Off +

︁
ℓ

|�ℓ | +
︁
ℓ

︁
�∈�ℓ

��,ℓ
ª®¬
.

The summands ��,ℓ can be rewritten as 1+ log2
(
1 + [2��,ℓ−1 − 1]

)
. By concavity of � ↦→ log(1+�), while respecting

the bound (4) the sum of these terms is maximized when each term in brackets equals
�∑

ℓ |�ℓ |
, giving a bound on

the cost of

�

(
Off +

︁
ℓ

|�ℓ |

(
1 + log

(
1 +

�∑
ℓ |�ℓ |

)))
.

Since this quantity is increasing in
∑

ℓ |�ℓ |, applying Lemma 12 completes the proof of the theorem. □

3.5 Lower bound

The � (log�) upper bound matches the known lower bound Ω(log�) on the competitive ratio of randomized
online algorithms without prediction [28]. The competitive ratio of Trust&Doubt when expressed only as a
function of the error, � (1 + log(1 + �

Off
)), is also tight due to the following theorem. It should be noted, though,

that for the competitive ratio as a function of both � and
�

Off
it is still plausible that a better bound can be achieved

when
�

Off
is relatively small compared to � .

Theorem 16. If an online caching algorithm achieves competitive ratio at most � (
�

Opt
) for arbitrary � when

provided with action predictions with error at most � with respect to an optimal oline algorithm Opt, then � (�) =

Ω(log�) as � →∞.

Proof. Fix some � + 1 pages and consider the request sequence where each request is to a uniformly randomly
chosen page from this set. We deine phases in the same way as in the description of Trust&Doubt. By a
standard coupon collector argument, each phase lasts Θ(� log�) requests in expectation. An optimal oline
algorithm can sufer only one page fault per page by evicting only the one page that is not requested in each
phase. On the other hand, since requests are chosen uniformly at random, any online algorithm sufers a page
fault with probability 1/(� + 1) per request, giving a cost of Θ(log�) per phase. Since �

Opt
= � (� log�) due to

the duration of phases, the competitive ratio of the algorithm is Ω(log�) = Ω(log �

Opt
). □

4 ROBUST ALGORITHMS FOR MTS

The goal of this section is to prove Theorem 1 and Theorem 2, which deal with algorithms substantially simpler
than Trust&Doubt, but demonstrate the usefulness of our prediction setup for the broad class of MTS problems.
In Section 4.1 we will irst describe a simple algorithm whose competitive ratio depends linearly on the prediction
error, but the algorithm is not robust against large errors. In Section 4.2 we then robustify this algorithm based on
powerful methods from the literature. Finally, in Section 4.3 we show that the linear dependency of the achieved
competitive ratio on �/Opt is inevitable for some MTS.

4.1 A non-robust algorithm.

We consider a simple memoryless algorithm, which we call FtP.

Algorithm Follow the Prediction (FtP). Intuitively, our algorithm follows the predictions, but still somewhat
cautiously: if there exists a state “closež to the predicted one that has a much cheaper service cost, then it is to be
preferred. Let us consider a metrical task system with a set of states � . We deine the algorithm FtP (Follow the
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Prediction) as follows: at time � , after receiving task ℓ� and prediction �� , it moves to the state

�� ← argmin
�∈�
{ℓ� (�) + 2dist (�, �� )}. (5)

In other words, FtP follows the predictions except when it is beneicial to move from the predicted state to some
other state, pay the service and move back to the predicted state.

Lemma 17. For any MTS with action predictions, algorithm FtP which achieves competitive ratio 1 + 4�
Off

against

any oline algorithm Off, where � is the prediction error with respect to Off.

Proof. At each time � , the FtP algorithm is located at coniguration ��−1 and needs to choose �� after receiving
task ℓ� and prediction �� . Let us consider some oline algorithm Off. We denote �0, �1, . . . , �� the states of Off,
where the initial state �0 is common for Off and for FtP, and � denotes the length of the sequence.
We deine �� to be the algorithm which agrees with FtP in its irst � conigurations �0, �1, . . . , �� and then

agrees with the states of Off, i.e., ��+1, . . . , �� . Note that cost (�0) = Off and cost (�� ) = cost (FtP). We claim
that cost (�� ) ≤ cost (��−1) + 4�� for each � , where �� = dist (�� , �� ). The algorithms �� and ��−1 are in the same
coniguration at each time except � , when �� is in �� while ��−1 is in �� . By the triangle inequality, we have

cost (�� ) ≤ cost (��−1) + 2dist (�� , �� ) + ℓ� (�� ) − ℓ� (�� )

≤ cost (��−1) + 2dist (�� , �� ) − ℓ� (�� ) + 2dist (�� , �� ) + ℓ� (�� )

≤ cost (��−1) + 4dist (�� , �� ),

The last inequality follows from (5): we have 2dist (�� , �� ) + ℓ� (�� ) ≤ 2dist (�� , �� ) + ℓ� (�� ). By summing over all
times � = 1, . . . ,� , we get

cost (FtP) = cost (�� ) ≤ cost (�0) + 4
∑�

�=1 �� ,

which equals Off + 4�. □

4.2 Combining Online Algorithms

We describe now how to make algorithm FtP robust by combining it with a classical online algorithm. Although
we only need to combine two algorithms, we will formulate the combination theorems more generally for any
number of algorithms.
Consider � algorithms �0, . . . , ��−1 for some problem � belonging to MTS. We describe two methods to

combine them into one algorithm which achieves a performance guarantee close to the best of them. Note that
these methods are also applicable to problems which do not belong to MTS as long as one can simulate all the
algorithms at once and bound the cost for switching between them.

Deterministic Combination. The following method was proposed by Fiat et al. [29] for the �-server problem,
but can be generalized to MTS. We note that a similar combination is also mentioned in Lykouris and Vassilvitskii
[46]. We simulate the execution of �0, . . . , ��−1 simultaneously. At each time, we stay in the coniguration of
one of them, and we switch between the algorithms in the manner of a solution for the�-lane cow path problem,
see Algorithm 2 for details.

Theorem 18 (generalization of Theorem 1 in Fiat et al. [29]). Given� online algorithms�0, . . . ��−1 for a

problem � in MTS, the algorithm������ achieves cost at most (
2��

�−1 + 1) ·min� {������
(� )}, for any input sequence � .

A proof of this theorem can be found in Section A. The optimal choice of � is �
�−1 . Then

2��

�−1 + 1 becomes 9 for

� = 2, and can be bounded by 2�� for larger�. Combined with Lemma 17, we obtain Theorem 1.
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Algorithm 2:������ [29]

1 choose 1 < � ≤ 2; set ℓ := 0
2 repeat

3 � := ℓ mod�

4 while cost (�� ) ≤ �
ℓ , follow ��

5 ℓ := ℓ + 1

6 until the end of the input

Randomized Combination. Blum and Burch [10] proposed the following way to combine online algorithms based
on the WMR [44] (Weighted Majority Randomized) algorithm for the experts problem. At each time � , it maintains
a probability distribution �� over the� algorithms updated using WMR. Let dist (�� , ��+1) =

∑
� max{0, ��� − �

�+1
� }

be the earth-mover distance between �� and ��+1 and let �� � ≥ 0 be the transfer of the probability mass from

��� to ��+1� certifying this distance, so that ��� =
∑�−1

�=0 �� � and dist (�� , ��+1) =
∑

�≠� �� � . If we are now following

algorithm �� , we switch to � � with probability �� �/�
�
� . See Algorithm 3 for details. The parameter � is an upper

bound on the switching cost between the states of two algorithms.

Algorithm 3:��� ���� [10]

1 � := 1 − �
2 ; // for parameter � < 1/2

2 �0
� := 1 for each � = 0, . . . ,� − 1;

3 foreach time � do

4 ��� := cost incurred by �� at time � ;

5 ��+1
� := ��

� · �
��� /� and ��+1� :=

��+1
�∑
��+1
�

;

6 ��, � := mass transferred from ��� to �
�+1
� ;

7 switch from �� to � � w.p. �� �/�
�
� ;

Theorem 19 (Blum and Burch [10]). Given� on-line algorithms �0, . . . ��−1 for an MTS with diameter � and

� < 1/2, there is a randomized algorithm��� ���� such that, for any instance � , its expected cost is at most

(1 + �) ·min
�
{cost (�� (� ))} +� (�/�) ln�.

Combined with Lemma 17, we obtain Theorem 2.

4.3 Lower bound

We show that our upper bounds for general metrical task systems (Theorems 1 and 2) are tight up to constant
factors. We show this for MTS on a uniform metric, i.e., the metric where the distance between any two points is
1.

Theorem 20. For �̄ ≥ 0 and � ∈ N, every deterministic (or randomized) online algorithm for MTS on the �-point

uniform metric with access to an action prediction oracle with error at most �̄ · Opt with respect to some optimal

oline algorithm has competitive ratio Ω (min {��, 1 + �̄}), where �� = Θ(�) (or �� = Θ(log�)) is the optimal

competitive ratio of deterministic (or randomized) algorithms without prediction.
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Proof. For deterministic algorithms, we construct an input sequence consisting of phases deined as follows.
We will ensure that the online and oline algorithms are located at the same point at the beginning of a phase.
The irstmin{� − 2, ⌊�̄⌋} cost functions of a phase always take value∞ at the old position of the online algorithm
and value 0 elsewhere, thus forcing the algorithm to move. Let � be a point that the online algorithm has not
visited since the beginning of the phase. Only one more cost function will be issued to conclude the phase, which
takes value 0 at � and∞ elsewhere, hence forcing both the online and oline algorithms to � . The optimal oline
algorithm sufers a cost of exactly 1 per phase because it can move to � already at the beginning of the phase.
The error is at most �̄ per phase provided that point � is predicted at the last step of the phase, simply because
there are only at most �̄ other steps in the phase, each of which can contribute at most 1 to the error. Thus, the
total error is at most �̄ Opt. The online algorithm sufers a cost min{� − 1, 1 + ⌈�̄⌉} during each phase, which
proves the deterministic lower bound.

For randomized algorithms, let � := ⌊log2 �⌋ and ix a subset �0 of the metric space of 2� points. We construct
again an input sequence consisting of phases: For � = 1, . . . ,min{�, ⌊�̄⌋}, the �th cost function of a phase takes
value 0 on some set �� of feasible states and∞ outside of �� . Here, we deine �� ⊂ ��−1 to be the set consisting of
the half of the points of ��−1 where the algorithm’s probability of residing is smallest right before the �th cost
function of the phase is issued (breaking ties arbitrarily). Thus, the probability of the algorithm already residing
at a point from �� when the �th cost function arrives is at most 1/2, and hence the expected cost per step is at
least 1/2. We assume that �̄ ≥ 1 (otherwise the theorem is trivial). Similarly to the deterministic case, the phase
concludes with one more cost function that forces the online and oline algorithms to some point � in the inal set
�� . Again, the optimal cost is exactly 1 per phase, the error is at most �̄ in each phase provided the last prediction of
the phase is correct, and the algorithm’s expected cost per phase is at least 1

2 min{�, ⌊�̄⌋} = Ω(min(log�, 1 + �̄)),
concluding the proof. □

In light of the previous theorem it may seem surprising that our algorithm Trust&Doubt for caching (see
Section 3) achieves a competitive ratio logarithmic rather than linear in the prediction error, especially considering
that the special case of caching when there are only � + 1 distinct pages corresponds to an MTS on the uniform
metric. However, the construction of the randomized lower bound in Theorem 20 requires cost functions that
take value∞ at several points at once, whereas in caching only one page is requested per time step.

5 BEYOND METRICAL TASK SYSTEMS

The objective of this section is to show that the prediction setup introduced in this paper is not limited to Metrical
Task Systems, but can also be useful for relevant problems not known to be inside this class. This emphasizes the
generality of our approach, compared to prediction setups designed for a single problem. We focus on the online
matching on the line problem, which has been studied for three decades and has seen recent developments.

In the online matching on the line problem, we are given a set � = {�1, �2, . . . ��} of server locations on the real
line. A set of requests � = {�1, �2, . . . ��} which are also locations on the real line, arrive over time. Once request
�� arrives, it has to be irrevocably matched to some previously unmatched server � � . The cost of this edge in the
matching is the distance between �� and � � , i.e., |� � − �� | and the total cost is given by the sum of all such edges in
the inal matching, i.e., the matching that matches every request in � to some unique server in � . The objective is
to minimize this total cost.

The best known lower bound on the competitive ratio of any deterministic algorithm is 9.001 [31] and the best
known upper bound for any algorithm is � (log�), due to Raghvendra [52].
We start by deining the notion of distance between two sets of servers.

Definition 3. Let �1
� and �2

� be two sets of points in a metric space, of size � each. We then say that their distance

dist (�1
� , �

2
� ) is equal to the cost of a minimum-cost perfect matching in the bipartite graph having �1

� and �2
� as the

two sides of the bipartition.
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In online matching on the line with action predictions we assume that, in each round � along with request �� , we
obtain a prediction �� ⊆ � with |�� | = � on the server set that the oline optimal algorithm is using for the irst �
many requests. We allow here even that �� ⊈ ��+1. The error in round � is given by �� := ���� (�� ,Off� ), where
Off� is the server set of a (ixed) oline algorithm on the instance. The total prediction error is � =

∑�
�=1 �� .

Since a request has to be irrevocably matched to a server, it is not straightforward that one can switch between
conigurations of diferent algorithms. Nevertheless, we are able to simulate such a switching procedure. By
applying this switching procedure to the best known classic online algorithm for the problem, due to Raghvendra
[52], and designing a Follow-The-Prediction algorithm that achieves a competitive ratio of 1 + 2�/Off, we can
apply the combining method of Theorem 18 to get the following result.

Theorem (Restated Theorem 4). There exists a deterministic algorithm for the online matching on the line

problem with action predictions that attains a competitive ratio of

min{� (log�), 9 +
8��

Off
},

for any oline algorithm Off.

We note that for some instances the switching cost between these two algorithms (and therefore, in a sense, also
the metric space diameter) can be as high as Θ(Opt) which renders the randomized combination uninteresting
for this particular problem.

5.1 A potential function

We deine the coniguration of an algorithm at some point in time as the set of servers which are currently
matched to a request.

For each round of the algorithm, we deine �� as the current coniguration and �� as the predicted coniguration,
which verify |�� | = |�� | = � . We deine a potential function after each round � to be Φ� = dist (�� , �� ), and let �� be
the associated matching between �� and �� that realizes this distance, such that all servers in �� ∩ �� are matched
to themselves for zero cost. We extend �� to the complete set of severs � by setting �� (�) = � for all � ∉ �� ∪ �� .
The intuition behind the potential function is that after round � one can simulate being in coniguration �� instead
of the actual coniguration �� , at an additional expense of Φ� .

5.2 Distance among diferent configurations

The purpose of this section is to show that the distance among the conigurations of two algorithms is at most
the sum of their current costs. As we will see, this will imply that we can aford switching between any two
algorithms.

We continue by bounding the distance between any two algorithms as a function of their costs.

Lemma 21. Consider two algorithms � and �, and ix the set of servers � as well as the request sequence �. Let

�� and �� be the respective conigurations of the algorithms (i.e., currently matched servers) after serving the irst �

requests of � with servers from � . Furthermore, let Opt�� (resp. Opt�� ) be the optimal matching between {�1, �2, . . . �� }

and �� (resp. �� ), and let�
�
� (resp.��

� ) be the corresponding matching produced by � (resp. �). Then:

dist (�� , �� ) ≤ cost (Opt�� ) + cost (Opt
�
� )

≤ cost (��
� ) + cost (�

�
� ).

Proof. The second inequality follows by the optimality of Opt�� and Opt�� . For the irst inequality let ��� (resp.

��� ) be the server matched to � � by Opt�� (resp. Opt�� ), for all � ∈ {1, . . . , �}. Therefore, there exists a matching
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between �� and �� that matches for all � ∈ {1, . . . , �}, ��� to ��� which has a total cost of

�︁

�=1

dist (��� − �
�
� ) ≤

�︁

�=1

dist (��� − � � ) +

�︁

�=1

dist (��� − � � )

= cost (Opt�� ) + cost (Opt
�
� ),

where the inequality follows by the triangle inequality. By the deinition of distance we have that dist (�� , �� ) ≤∑�
�=1 dist (�

�
� − �

�
� ), which concludes the proof. □

5.3 Follow-The-Prediction

Since online matching on the line is not known to be in MTS, we start by redeining the algorithm Follow-The-
Prediction for this particular problem. In essence, the algorithm virtually switches from predicted coniguration
�� to predicted coniguration ��+1.

Let �� be the actual set of servers used by Follow-The-Prediction after round � . Follow-The-Prediction computes
the optimal matching among ��+1 and the multiset �� ∪ {��+1} which maps the elements of ��+1 ∩ �� to themselves.
Note that if ��+1 ∈ �� , then �� ∪ {��+1} is a multiset where ��+1 occurs twice. Such matching will match ��+1 to some
server � ∈ ��+1 \�� . Recall that �� is the minimum cost bipartite matching between �� and �� extended by zero-cost
edges to the whole set of servers. Follow-The-Prediction matches ��+1 to the server �� (�), i.e., to the server to
which � is matched to under �� . We can show easily that � (�) ∉ �� . Since � ∉ �� , there are two possibilities: If
� ∉ �� , then � (�) = � ∉ �� by extension of �� to elements which do not belong to �� nor �� . Otherwise, � ∈ �� \ ��
and, since �� matches all the elements of �� ∩ �� to themselves, we have � (�) ∈ �� \ �� .

Theorem 22. Follow-The-Prediction has total matching cost at most Off + 2� and therefore the algorithm has a

competitive ratio of

1 + 2�/Off

against any oline algorithm Off.

Proof. The idea behind the proof is that, by paying the switching cost of ΔΦ� at each round, we can always
virtually assume that we reside in coniguration �� . So whenever a new request ��+1 and a new predicted
coniguration ��+1 arrive, we pay the costs for switching from �� to ��+1 and for matching ��+1 to a server in ��+1.
We irst show that, for every round � , we have:

���� + ΔΦ� ≤ dist (��+1, �� ∪ {��+1})

⇔ dist (��+1, � (�)) + Φ�+1 ≤ dist (��+1, �� ∪ {��+1}) + Φ� .

Note that for all � , Φ� = dist (� � , � � ) = dist (�̄ � , �̄ � ), where �̄ � and �̄ � denote the complements of � � and � �

respectively.
We have in addition dist (�̄� , �̄� ) = dist (�̄� \ {�� (�)}, �̄� \ {�}) +dist (�, �� (�)) as � ∉ �� and �� (�) ∉ �� , and (�, �� (�))

is an edge in the min-cost matching between �̄� and �̄� . Note that ��+1 = �� ∪ {�� (�)} so �̄� \ {�� (�)} = �̄�+1.
Therefore, we get:

Φ� = dist (�̄� , �̄� ) = dist (�̄�+1, �̄� \ {�}) + dist (�, �� (�)) = dist (��+1, �� ∪ {�}) + dist (�, �� (�)) .

In addition, we have dist (��+1, �� ∪ {��+1}) = dist (�, ��+1) + dist (��+1 \ {�}, �� ) because by deinition of � , � is
matched to ��+1 in a minimum cost matching between ��+1 and �� ∪ {��+1}. Now, � ∉ �� , so dist (��+1 \ {�}, �� ) =

dist (��+1, �� ∪ {�}) as this is equivalent to adding a zero-length edge from � to itself to the associated matching.
Therefore, we get:
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dist (��+1, �� ∪ {��+1}) = dist (�, ��+1) + dist (��+1, �� ∪ {�}).

Combining the results above, we obtain:

���� + ΔΦ� ≤ dist (��+1, �� ∪ {��+1})

⇔ ���� (��+1, �� (�)) + Φ�+1 ≤ dist (��+1, �� ∪ {��+1}) + Φ�

⇔ dist (��+1, �� (�)) + dist (��+1, ��+1)

≤ dist (��+1,�� ∪ {�}) + dist (�, �� (�)) + dist (�, ��+1) + dist (��+1, �� ∪ {�})

The last equation holds by the triangle inequality.
Finally, we bound dist (��+1, �� ∪ {��+1}) using the triangle inequality. In the following Off� refers to the

coniguration of oline algorithm Off after the irst � requests have been served.

dist (��+1, �� ∪ {��+1})

≤ dist (�� ∪ {��+1},Off� ∪ {��+1}) + dist (Off� ∪ {��+1},Off�+1) + dist (Off�+1, ��+1)

≤ �� + |Off� | + ��+1 .

Summing up over all rounds, and using that Φ1 = Φ� = 0 completes the proof of the theorem. □

5.4 The main theorem

The goal of this subsection is to prove Theorem 4.

Proof of Theorem 4. The main idea behind the proof is to show that we can apply Theorem 18 and virtually
simulate the two algorithms (Follow-The-Prediction and the online algorithm of Raghvendra [52]).
We need to show that we can assume that we are in some coniguration and executing the respective algorithm,

and that the switching cost between these conigurations is upper bounded by the cost of the two algorithms.
Similarly to the analysis of Follow-The-Prediction, we can virtually be in any coniguration as long as we pay
for the distance between any two consecutive conigurations. When we currently simulate an algorithm �, the
distance between the two consecutive conigurations is exactly the cost of the edge that � introduces in this
round. When we switch from the coniguration of some algorithm � to the coniguration of some algorithm �,
then by Lemma 21, the distance between the two conigurations is at most the total current cost of � and �.
This along with Theorem 24 (which is generalizing Theorem 18 beyond MTS and can be found in Appendix A)

concludes the proof. □

5.5 Bipartite metric matching

Bipartite metric matching is the generalization of online matching on the line where the servers and requests
can be points of any metric space. The problem is known to have a tight (2� − 1)-competitive algorithm, due to
Kalyanasundaram and Pruhs [36] as well as Khuller et al. [39].

We note that our arguments in this section are not line-speciic and apply to that problem as well. This gives
the following result:

Theorem 23. There exists a deterministic algorithm for the online metric bipartite matching problem with action

predictions that attains a competitive ratio of

min{2� − 1, 9 +
8��

Off
},
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against any oline algorithm Off.

6 EXPERIMENTS

We evaluate the practicality of our approach on real-world datasets for two MTS: caching and ice cream problem.
The source code and datasets are available at GitHub8. Each experiment was run 10 times and we report the
mean competitive ratios. The maximum standard deviation we observed was of the order of 0.001.

6.1 The Caching Problem

Datasets. For the sake of comparability, we used the same two datasets as Lykouris and Vassilvitskii [46].

• BK dataset comes from a former social network BrightKite [18]. It contains checkins with user IDs and
locations. We treat the sequence of checkin locations of each users as a separate instance of caching problem.
We ilter users with the maximum sequence length (2100) who require at least 50 evictions in an optimum
cache policy. Out of those we take the irst 100 instances. We set the cache size to � = 10.
• Citi dataset comes from a bike sharing platform CitiBike [21]. For each month of 2017, we consider the
irst 25 000 bike trips and build an instance where a request corresponds to the starting station of a trip. We
set the cache size to � = 100.

Predictions. We irst generate the reoccurrence time predictions, these predictions being used by previous
prediction-augmented algorithms. To this purpose, we use the same two predictors as Lykouris and Vassilvitskii
[46]. Additionally we also consider a simple predictor, which we call POPU (from popularity), and the LRU
heuristic adapted to serve as a predictor.

• Synthetic predictions: we irst compute the exact reoccurrence time for each request, setting it to the end
of the instance if it does not reappear. We then add some noise drawn from a lognormal distribution, with
the mean parameter 0 and the standard deviation � , in order to model rare but large failures.
• PLECO predictions: we use the PLECO model described in Anderson et al. [2], with the same parameters
as Lykouris and Vassilvitskii [46], which were itted for the BK dataset (but not reitted for Citi). This model
estimates that a page requested � steps earlier will be the next request with a probability proportional to
(� + 10)−1.8�−�/670. We sum the weights corresponding to all the earlier appearances of the current request
to obtain the probability � that this request is also the next one. We then estimate that such a request will
reappear 1/� steps later.
• POPU predictions: if the current request has been seen in a fraction � of the past requests, we predict it
will be repeated 1/� steps later.
• LRU predictions: Lykouris and Vassilvitskii [46] already remarked on (but did not evaluate experimentally)
a predictor that emulates the behavior of the LRU heuristic. A page requested at time � is predicted to
appear at time −� . Note that the algorithms only consider the order of predicted times among pages, and
not their values, so the negative predictions pointing to the past are not an issue.

We then transform the reoccurrence time predictions to action predictions by simulating the algorithm that
evicts the element predicted to appear the furthest in the future. In each step the prediction to our algorithm
is the coniguration of this algorithm. Note that in the case of LRU predictions, the predicted coniguration is
precisely the coniguration of the LRU algorithm.

Algorithms. We considered the following algorithms, whose competitive ratios are reported in Table 1. Two
online algorithms: the heuristic LRU, which is considered the gold standard for caching, and the � (log�)-
competitive Marker [29]. Three robust algorithms from the literature using the “next-arrival timež predictions:

8https://github.com/adampolak/mts-with-predictions
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Algorithm Competitive ratio Property Reference

LRU � [55]

Marker � (log�) Robust [28]

FtP 1 + 4
�

Opt C+S Lemma 17

L&V 2 +� (min{
︃

�′

Opt , log�}) C+S+R [46]

RobustFtP (1 + �)min{1 + 4
�

Opt ,� (log�)} C+S+R Theorem 2

LMarker � (1 +min{log
�′

Opt , log�)} C+S+R [53]

LNonMarker � (1 +min{1,
�′

� ·Opt
} log�) C+S+R [53]

Trust&Doubt � (min{1 + log(1 +
�

Opt ), log�}) C+S+R Theorem 3

Table 1. Summary of caching algorithms evaluated in experiments. Note that � and �′ are diferent measures of prediction
error, so their functions should not be compared directly. Properties C+S+R mean Consistency, Smoothness, and Robustness
respectively.

L&V [46], LMarker [53], and LNonMarker [53]. Three algorithms using the prediction setup which is the focus of
this paper: FtP, which naively follows the predicted state, RobustFtP, which is deined as��� ���� (FtP,Marker),
and is an instance of the general MTS algorithm described in Section 4, and Trust&Doubt, the caching algorithm
described in Section 3.
We implemented the deterministic and randomized combination schemes described in Section 4.2 with a

subtlety for the caching problem: we do not lush the whole cache when switching algorithms, but perform only
a single eviction per page fault in the same way as described in Remark 9. We set the parameters to � = 1 + 0.01
and � = 0.5. These values, chosen from {0.001, 0.01, 0.1, 0.5}, happen to be consistently the best choice in all our
experimental settings.
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Fig. 2. Comparison of caching algorithms augmented with synthetic predictions on the BK dataset.
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Dataset BK Citi

LRU 1.291 1.848
Marker 1.333 1.861

Predictions PLECO POPU LRU PLECO POPU LRU

FtP 2.081 1.707 1.291 2.277 1.734 1.848
L&V 1.340 1.262 1.291 1.877 1.776 1.848
LMarker 1.337 1.264 1.291 1.876 1.780 1.848
LNonMarker 1.333 1.292 1.299 1.862 1.771 1.855
RobustFtP 1.338 1.316 1.297 1.862 1.831 1.849
Trust&Doubt 1.292 1.276 1.291 1.847 1.775 1.849

Table 2. Competitive ratios of caching algorithms using PLECO, POPU, and LRU predictions on both datasets.

Results. For both datasets, for each algorithm and each prediction considered, we computed the total number
of page faults over all the instances and divided it by the optimal number in order to obtain a competitive ratio.
Figure 2 presents the performance of a selection of the algorithms depending on the noise of synthetic predictions
for the BK dataset. We omit LMarker and LNonMarker for readability since they perform no better than L&V.
This experiment shows that our algorithm Trust&Doubt outperforms previous prediction-based algorithms as
well as LRU on the BK dataset with such predictions. Figures 3 and 4 present the performance of all algorithms
on the BK and Citi datasets, respectively. On the Citi dataset (Figure 4), FtP achieves very good results even
with a noisy synthetic predictor, and therefore RobustFtP surpasses other guaranteed algorithms. LNonMarker
presents better performance for noisy predictions than the other algorithms.
In Table 2 we provide the results obtained on both datasets using PLECO, POPU, and LRU predictions. We

observe that PLECO predictions are not accurate enough to allow previously known algorithms to improve over
the Marker algorithm. This may be due to the sensitivity of this predictor to consecutive identical requests, which
are irrelevant for the caching problem. However, using the simple POPU predictions enables the prediction-
augmented algorithms to signiicantly improve their performance compared to the classical online algorithms.
Using Trust&Doubt with either of the predictions is however suicient to get a performance similar or better
than LRU (and than all other alternatives, excepted for POPU predictions on the BK dataset). RobustFtP, although
being a very generic algorithm with worse theoretical guarantees than Trust&Doubt, achieves a performance
which is not that far from previously known algorithms. Note that we did not use a prediction model tailored to
our setup, which suggests that even better results can be achieved. When we use the LRU heuristic as a predictor,
all the prediction-augmented algorithms perform comparably to the bare LRU algorithm. For Trust&Doubt
and RobustFTP, there is a theoretical guarantee that this must be the case: Since the prediction error with
respect to LRU is 0, these algorithms are � (1)-competitive against LRU. Thus, Trust&Doubt achieves both the
practical performance of LRU with an exponentially better worst-case guarantee than LRU. Note that Lykouris
and Vassilvitskii [46] also discuss how their algorithm framework performs when using LRU predictions, but did
not provide both of these theoretical guarantees simultaneously.

6.2 A Simple MTS: the Ice Cream Problem

We consider a simple MTS example from Chrobak and Larmore [19], named ice cream problem. It it an MTS with
two states, named � and � , at distance 1 from each other, and two types of requests, � and � . Serving a request
while being in the matching state costs 1 for � and 2 for � , and the costs are doubled for the mismatched state.
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Fig. 3. Comparison of caching algorithms augmented with synthetic predictions on the BK dataset.
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Fig. 4. Comparison of caching algorithms augmented with synthetic predictions on the Citi dataset.

The problem is motivated by an ice cream machine which operates in two modes (states) ś vanilla or chocolate ś
each facilitating a cheaper production of a type of ice cream (requests).

We use the BrightKite dataset to prepare test instances for the problem. We extract the same 100 users as for
caching. For each user we look at the geographic coordinates of the checkins, and we issue a � request for each
checkin in the northmost half, and a � request for each checkin in the southmost half.

In order to obtain synthetic predictions, we irst compute the optimal oline policy, using dynamic programming.
Then, for an error parameter � , for each request we follow the policy with probability 1 − � , and do the opposite
with probability � .

We consider the following algorithms: the Work Function algorithm [11, 12], of competitive ratio of 3 in this
setting (2� − 1 in general); FtP, deined in Section 4 (in case of ties in Equation 5, we follow the prediction); and
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Fig. 5. Performance on the ice cream problem with synthetic predictions.

the deterministic and randomized combination of the two above algorithms (with the same � and � as previously)
as proposed in Section 4.

Figure 5 presents the competitive ratios we obtained. We can see that the general MTS algorithms we propose
in Section 4 allow to beneit from good predictions while providing the worst-case guarantee of the classical
online algorithm. The deterministic and randomized combinations are comparable to the best of the algorithms
combined, and improve upon them when both algorithms have a similar performance.

7 CONCLUSION

In this paper, we proposed a prediction setup that allowed us to design a general prediction-augmented algorithm
for a large class of problems encompassing MTS. For the MTS problem of caching in particular, the setup requires
less information from the predictor than previously studied ones (since previous predictions can be converted
to ours). Despite the more general setup, we can design a speciic algorithm for the caching problem in our
setup which ofers guarantees of a similar lavor to previous algorithms and even performs better in most of our
experiments.
It may be considered somewhat surprising that a better bound is attainable for caching than for general

MTS, given that our lower bound instance for MTS uses a uniform metric (and caching with a (� + 1)-point
universe also corresponds to a uniform metric). We conjecture logarithmic smoothness guarantees are also
attainable for other MTS problems with a request structure similar to caching, like weighted caching and the
�-server problem. Further special cases of MTS can be obtained by restricting the number of possible distinct
requests (for example an MTS with two diferent possible requests can model an important power management
problem [33]), or requiring a speciic structure from the metric space. Several such parametrizations of MTS were
considered by Bubeck and Rabani [16] and it would be interesting to study whether an improved dependence on
the prediction error can be obtained in such settings.
With respect to matching problems, there have been recent investigations through the lens of learning

augmentation under speciic matroid constraints in [4], but this territory is still largely unexplored. It would also
be interesting to evaluate our resource augmented algorithm for online metric matchings in real-life situations.
As an example online matching algorithms are employed in several cities in order to match cars to parking spots
(for example SFpark in San Francisco or ParkPlus in Calgary). Not only have such matching problems been
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studied from an algorithmic point of view (see e.g. Bender et al. [8], [9]), but arguably it should be doable to
generate high-quality predictions from historical data making our approach very promising.
Another research direction is to identify more sophisticated predictors for caching and other problems that

will further enhance the performance of prediction-augmented algorithms.
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A DETERMINISTIC COMBINATION OF A COLLECTION OF ALGORITHMS

We consider a problem � and� algorithms �0, �1, . . . , ��−1 for this problem which fulill the following require-
ments.

• �0, . . . , ��−1 start at the same state and we are able to simulate the run of all of them simultaneously
• for two algorithms �� and � � , the cost of switching between their states is bounded by cost (�� ) + cost (� � ).

Theorem 24 (Restated Theorem 18; generalization of Theorem 1 in Fiat et al. [29]). Given� on-line

algorithms�0, . . . ��−1 for a problem � which satisfy the requirements above, the algorithm������ with parameter

1 < � ≤ 2 incurs cost at most (
2��

� − 1
+ 1

)
·min

�
{cost (�� (� ))},

on any input instance � such that Opt� ≥ 1. If we choose � =
�

�−1 , the coeicient
2��

�−1 + 1 equals 9 if� = 2 and can

be bounded by 2��.

Note that assumption on Opt� ≥ 1 is just to take care of the corner-case instances with very small costs. If we
can only assume Opt� ≥ � for some 0 < � < 1, then we scale all the costs fed to ������ by 1/� and instances
with Opt� = 0 are usually not very interesting. The value of � is usually clear from the particular problem in
hand, e.g., for caching we only care about instances which need at least one page fault, i.e., Opt� ≥ 1.

Proof. Let us consider the ℓ-th cycle of the algorithm and denote � = ℓ mod� and �′ = (ℓ − 1) mod�. We
are switching from algorithm ��′ , whose current cost we denote cost

′ (��′ ) = � ℓ−1 to �� , whose current cost we
denote cost′ (�� ), and its cost at the end of this cycle will become cost (�� ) = � ℓ . Our cost during this cycle, i.e.,
for switching and for execution of �� , is at most

cost′ (��′ ) + cost
′ (�� ) + (cost (�� ) − cost

′ (�� )) = cost′ (��′ ) + cost (�� ) = � ℓ−1 + � ℓ .

Now, let us consider the last cycle �, when we run the algorithm number � = � mod�. By the preceding
equation, the total cost of������ can be bounded as

cost (������ ) ≤ 2 ·
�−1︁

ℓ

� ℓ + cost (�� ) = 2
�� − 1

� − 1
+ cost (�� ) ≤ 2

��

� − 1
+ cost (�� ).
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If � < �, we use the fact that Opt ≥ 1 and therefore the cost of each algorithm processing the whole instance
would be at least one. Therefore, we have

cost (������ ) ≤ 2
��

� − 1
+ �� ≤ 2

��

� − 1
·min

�
{cost (�� )},

because
��

�−1 + �
�
=

��+1

�−1 and � + 1 ≤ �.

Now, we have � ≥ �, denoting � = � mod�, and we distinguish two cases.
(1) If min� {cost (� � )} = cost (�� ), then cost (�� ) ≥ �

�−� for each � , and therefore

cost (������ )

min� {cost (� � )}
≤

2 ��

�−1 + cost (�� )

min� {cost (� � )}

Note that cost (�� ) ≥ �
�−� , its cost from the previous usage. Since min� {cost (� � )} = cost (�� ), we get

cost (������ )

min� {cost (� � )}
≤ 2

��

� − 1
+ 1.

(2) Otherwise, we have min� {cost (� � )} ≥ �
�−�+1 and cost (� � ) ≤ �

� and therefore

cost (������ )

min� {cost (� � )}
≤ 2

��−1

� − 1
+ ��−1 ≤ 2

��

� − 1
.

For � =
�

�−1 we have

2
��

� − 1
+ 1 = 2(� − 1)

( �

� − 1

)�
+ 1,

which equals 9 for� = 2 and can be bounded by 2��.
□

B COMPARISON BETWEEN TRUST&DOUBT AND THE BEST MARKING ALGORITHM

The algorithm Trust&Doubt does not belong to the broad class of marking algorithms. We notice in this section
that, given perfect predictions, this property allows it to outperform all marking algorithms on some instances,
but, at the same time, it does not always perform as well as the best marking algorithm even when given perfect
predictions.

Remark 25. With perfectly accurate predictions, there exist both a caching instance on which Trust&Doubt per-

forms better than the best marking algorithm, and another caching instance on which Trust&Doubt is outperformed

by a marking algorithm.

Proof. We irst build an instance where Trust&Doubt, given predictions corresponding to the optimal
algorithm evicting the page arriving the furthest in the future, outperforms the best marking algorithm. Consider
a cache of size 3 and the request sequence 1, 2, 3; 4, 5, 6; 1, 2, 3, composed of three phases of length three (separated
by semicolons). Trust&Doubt keeps the pages 1 and 2 in cache during the second phase so sufers seven cache
misses. The best marking algorithm is not able to keep such old pages in cache so sufers nine cache misses.
Now, we build an instance where Trust&Doubt, given again predictions corresponding to the optimal

algorithm evicting the page arriving the furthest in the future, sufers more cache misses than the best marking
algorithm. Consider a cache of size 3, and the request sequence 1, 2, 3; 4, 5, 6, 5, 6; 7, 1, 4, composed of three
phases of length three, ive and three. The best marking algorithm sufers eight cache misses, the page 4 being
present in the cache for the last request. The cache of Trust&Doubt after the second phase contains 1, 5, 6, as
the page 1 is given priority over the page 4, and, at the start of the last phase, the now ancient page 1 is evicted,
so the algorithm sufers nine cache misses. □
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C LIMITATIONS OF THE REOCCURRENCE TIME PREDICTIONS

In this section, we prove Theorem 5. In previous works on caching [46, 53, 56], the predictions are the time of the
next reoccurrence to each page. It is natural to try extending this type of predictions to other problems, such as
weighted caching. In weighted caching each page has a weight/cost that is paid each time the page enters the
cache. However, it turns out that even with perfect predictions of this type for weighted caching, one cannot
improve upon the competitive ratio Θ(log�), which can already be attained without predictions [5]. Our proof is
based on a known lower bound for MTS on a so-called “superincreasingž metric [37]. Following a presentation
of this lower bound by [42], we modify the lower bound so that the perfect predictions provide no additional
information.

We call an algorithm for weighted caching semi-online if it is online except that it receives in each time step, as
an additional input, the reoccurrence time of the currently requested page (guaranteed to be without error). We
prove the following result:

Theorem (Restated Theorem 5). Every randomized semi-online algorithm for weighted caching is Ω(log�)-
competitive.

Proof. Let � > 0 be some large constant. Consider an instance of weighted caching with cache size � and � + 1
pages, denoted by the numbers 0, . . . , � , and such that the weight of page � is 2�� . It is somewhat easier to think
of the following equivalent evader problem: Let �� be the weighted star with leaves 0, 1, . . . , � and such that leaf
� is at distance �� from the root. A single evader is located in the metric space. Whenever there is a request to
page � , the evader must be located at some leaf of �� other than � . The cost is the distance traveled by the evader.
Any weighted caching algorithm gives rise to the evader algorithm that keeps its evader at the one leaf that is
not currently in the algorithm’s cache. The cost between the two models difers only by an additive constant
(depending on � and �).

Forℎ = 1, . . . , � and a non-empty time interval (�, �), wewill deine inductively a random sequence�ℎ = �ℎ (�, �)

of requests to the leaves 0, . . . , ℎ, such that each request arrives in the time interval (�, �) and

�ℎ ≥ 4�ℎ−1�
ℎ ≥ �ℎ · Optℎ, (6)

where �ℎ denotes the expected cost of an arbitrary semi-online algorithm to serve the random sequence �ℎ
while staying among the leaves 0, . . . , ℎ, Optℎ denotes the expected optimal oline cost of doing so with an
oline evader that starts and ends at leaf 0, �0 =

1+�
4� , and �ℎ = 1/2 + � logℎ for ℎ ≥ 1, where � > 0 is a constant

determined later. The inequality between the irst and last term in (6) implies the theorem. We will also ensure
that (0, 1, . . . , ℎ) is both a preix and a suix of the sequence of requests in �ℎ .

For the base case ℎ = 1, the inequality is satisied by the request sequence �1 that requests irst 0 and then 1 at
arbitrary times within the interval (�, �).
For ℎ ≥ 2, the request sequence �ℎ consists of subsequences (iterations) of the following two types (we will

only describe the sequence of request locations for now and later how to choose the exact arrival times of these

requests): A type 1 iteration is the sequence (0, 1, . . . , ℎ). A type 2 iteration is the concatenation of ⌈ �ℎ

�ℎ−1 Optℎ−1
⌉

independent samples of a random request sequence of the form �ℎ−1. The request sequence �ℎ is formed by
concatenating ⌈8�ℎ−1⌉ iterations, where each iteration is chosen uniformly at random to be of type 1 or type 2. If
the last iteration is of type 2, an additional inal request at ℎ is issued. Thus, by induction, (0, . . . , ℎ) is both a
preix and a suix of �ℎ .
We next show (6) under the assumption that at the start of each iteration, the iteration is of type 1 or 2 each

with probability 1/2 even when conditioned on the knowledge of the semi-online algorithm at that time. We will
later show how to design the arrival times of individual requests so that this assumption is satisied. We begin by
proving the irst inequality of (6). We claim that in each iteration of �ℎ , the expected cost of any semi-online
algorithm (restricted to staying at the leaves 0, . . . , ℎ) is at least �ℎ/2. Indeed, if the evader starts the iteration at
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leaf ℎ, then with probability 1/2 we have a type 1 iteration forcing the evader to vacate leaf ℎ for cost �ℎ , giving
an expected cost of �ℎ/2. If the evader is at one of the leaves 0, . . . , ℎ − 1, then with probability 1/2 we have a type

2 iteration. In this case, it must either move to ℎ for cost at least �ℎ , or ⌈ �ℎ

�ℎ−1 Optℎ−1
⌉ times it sufers expected cost

at least �ℎ−1 Optℎ−1 by the induction hypothesis. So again, the expected cost is at least �ℎ/2. Since �ℎ consists of
⌈8�ℎ−1⌉ iterations, we have

�ℎ ≥ 4�ℎ−1�
ℎ,

giving the irst inequality of (6).
To show the second inequality of (6), we describe an oline strategy. With probability 2−⌈8�ℎ−1 ⌉ , all iterations

of �ℎ are of type 2. In this case, the oline evader moves to leaf ℎ at the beginning of �ℎ and back to leaf 0 upon
the one request to ℎ at the end of �ℎ , for total cost 2(1 + �

ℎ). With the remaining probability, there is at least one
type 1 iteration. Conditioned on this being the case, the expected number of type 1 iterations is ⌈8�ℎ−1 + 1⌉/2,
and the expected number of type 2 iterations is ⌈8�ℎ−1 − 1⌉/2. The oline evader can serve each type 1 iteration

for cost 2(1 + �) and each type 2 iteration for expected cost ⌈ �ℎ

�ℎ−1 Optℎ−1
⌉ Optℎ−1, and it inishes each iteration

at leaf 0. (Thus, if the last iteration is of type 2, then the inal request to ℎ incurs no additional cost.) By the
induction hypothesis, Optℎ−1 ≤ � (�ℎ−1). Hence, we can rewrite the expected cost of a type 2 iteration as⌈

�ℎ

�ℎ−1 Optℎ−1

⌉
Optℎ−1 = (1 + � (1))

�ℎ

�ℎ−1
,

as � →∞. Since ℎ ≥ 2, the expected cost of all type 1 iterations is only an � (1) fraction of the expected cost of
the type 2 iterations. Overall, we get

Optℎ ≤ 2−⌈8�ℎ−1 ⌉2(1 + �ℎ)+

(1 + � (1))
(
1 − 2−⌈8�ℎ−1 ⌉

) ⌈8�ℎ−1 − 1⌉
2

�ℎ

�ℎ−1

≤ (1 + � (1))
[
2−⌈8�ℎ−1 ⌉2�ℎ +

(
1 − 2−⌈8�ℎ−1 ⌉

)
4�ℎ

]
= (1 + � (1))

(
1 − 2−⌈8�ℎ−1 ⌉−1

)
4�ℎ

≤
4�ℎ

1 + 2−⌈8�ℎ−1 ⌉−1
.

We obtain the second inequality in (6) by

4�ℎ−1�
ℎ

Optℎ
≥ �ℎ−1

(
1 + 2−⌈8�ℎ−1 ⌉−1

)

≥
1

2
+ � log(ℎ − 1) + 2−8� log(ℎ−1)−7

≥
1

2
+ � log(ℎ − 1) +

�

ℎ − 1

≥
1

2
+ � logℎ

= �ℎ,

where the third inequality holds for � = 2−7.
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It remains to deine to deine the arrival times for the requests of sequence �ℎ within the interval (�, �). We do
this as follows: Let� ≥ 1 be the number of requests to leaf ℎ in �ℎ . These requests to ℎ will be issued at times

� + (� − �)
∑�

�=1 2
−� for � = 1, . . . ,�.

To deine the arrival times of the other requests, we will maintain a time variable � ∈ [�, �) indicating the
current time, and a variable � > � indicating the time of the next request to leaf ℎ after time � . Initially, � := � and
� := (� + �)/2. Consider the irst iteration for which the arrival times have not been deined yet. If the iteration is
of type 2, we choose the arrival times according to the induction hypothesis so that all subsequences �ℎ−1 within
the iteration it into the time window (�, (� + �)/2), and we update � := (� + �)/2. If the iteration is of type 1,
sample a type 2 iteration � and let �1, . . . , �ℎ−1 be such that �� would be the time of the next request to page � if
the next iteration were this iteration � of type 2 instead of a type 1 iteration. We deine the arrival times of the
(single) request to leaf � < ℎ in this type 1 iteration to be �� . If this was not the last iteration, we update � := � and
increase � to the time of the next request to ℎ (as deined above).
Notice that at the beginning of each iteration within �ℎ , ordering the pages by the time of their next request

always yields the sequence 0, 1, . . . , � , and the time of the next request to each page is independent of whether
the next iteration is of type 1 or type 2. Thus, as promised, whether the next iteration is of type 1 or type 2 is
independent of the knowledge of the semi-online algorithm. □
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