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Abstract. In this paper, we study the geometry of units and ideals of cy-
clotomic rings, and derive an algorithm to find a mildly short vector in any
given cyclotomic ideal lattice in quantum polynomial time, under some plausi-
ble number-theoretic assumptions. More precisely, given an ideal lattice of the
cyclotomic ring of conductor m, the algorithm finds an approximation of the
shortest vector by a factor exp(Õ(

√
m)). This result exposes an unexpected

hardness gap between these structured lattices and general lattices: the best
known polynomial time generic lattice algorithms can only reach an approx-
imation factor exp(Õ(m)). Following a recent series of attacks, these results
call into question the hardness of various problems over structured lattices,
such as Ideal-SVP and Ring-LWE, upon which relies the security of a number
of cryptographic schemes.

Note. This article is an extended version of the conference paper [CDW17].
The results are generalised to arbitrary cyclotomic fields. In particular, we also
extend some results of [CDPR16] to arbitrary cyclotomic fields. In addition,
we prove the numerical stability of the method of [CDPR16]. These extended
results appeared in the Ph.D. dissertation of the third author [Wes18a].

1. Introduction

1.1. Cyclotomic ideal lattices. Fix an integer m > 2 and a primitive m-th root
of unity ζm ∈ C. Let K = Q(ζm) be the cyclotomic field of conductor m. By the
cyclotomic ring of conductor m, we shall mean OK = Z[ζm], the ring of integers
of K. The trace Tr : K → Q induces an inner product on K as 〈a, b〉 = Tr(abτ ),
where τ is complex conjugation. The field K is then a Hermitian vector space, and
ideals in OK are Euclidean lattices, which are referred to as cyclotomic ideal lattices.
In this article, we consider the problem of finding short vectors in such ideal lattices.

The problem of finding short vectors of a Euclidean lattice (the shortest vec-
tor problem, SVP, or its approximated version, approx-SVP) is a central hard
problem in complexity theory. It is presumed to be hard even for quantum algo-
rithms, and thanks to the worst-case to average-case reductions of Ajtai [Ajt99] and
Regev [Reg09], it has become the theoretical foundation for many ‘post-quantum’
cryptographic constructions — cryptosystems that are meant to resist an adver-
sary equipped with a quantum computer. Instantiations of these problems over
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2 R. CRAMER, L. DUCAS AND B. WESOLOWSKI

ideal lattices have attracted particular attention, as they allow very efficient imple-
mentations. The Ring-SIS [Mic07, LM06, PR06] and Ring-LWE [SSTX09, LPR13,
PRSD17] problems were introduced, and shown to reduce to worst-case instances
of Ideal-SVP (the specialisation of approx-SVP to ideal lattices). Both problems
Ring-SIS and Ring-LWE have shown very versatile problems for building efficient
cryptographic schemes. Typically, Ring-SIS, Ring-LWE and Ideal-SVP are instan-
tiated over cyclotomic rings.

For some time, it seemed plausible that the ideal versions of lattice problems
should be just as hard to solve as the unstructured ones: only some (almost) linear-
time advantages were known. This was challenged by a series of works, initiated
by Campbell et al. [CGS14], and followed by [BS16] and [CDPR16]. They show
that in a cyclotomic ring of prime-power conductor, given a principal ideal, one
can retrieve a short generator in quantum polynomial time. As a consequence,
some cryptographic schemes were broken [SV10, GGH13, LSS14, CGS14], but it
had a limited impact on the more general Ideal-SVP since principal ideals are a
very sparse family of ideals for those fields.

1.2. Main result. In this paper, we tackle the general case of Ideal-SVP, for arbi-
trary ideal lattices in any cyclotomic ring. Studying the geometry of units and
ideals of cyclotomic rings, we devise a quantum algorithm that given an ideal
lattice of the cyclotomic ring of conductor m, finds an approximation of one of
the shortest non-zero vectors (henceforth, the shortest vector, abusing language)
by a factor exp(Õ(

√
m)). Under some plausible (and carefully justified) number-

theoretic assumptions, the algorithm runs in polynomial time. This is our main
result, formalised as Theorem 5.1. In contrast, the best known polynomial time
generic lattice algorithms can only reach an approximation factor exp(Õ(m)). This
unexpected hardness gap between approx-SVP in generic lattices and in cyclotomic
ideal lattices is illustrated in Figure 1.

1.3. Overview. An integer m > 2 is fixed for the entire paper, as well as a primi-
tive m-th root of unity ζm ∈ C. The cyclotomic field of conductor m is K = Q(ζm),
and the cyclotomic ring of conductor m is OK = Z[ζm], the ring of integers of K.
The degree of K over Q is ϕ(m) (where ϕ is Euler’s totient function). Let ∆K be
the absolute value of the discriminant of K. The field K+ = Q(ζm + ζ−1

m ) is the
maximal real subfield of K. The algebraic norm of an ideal h is denoted N(h). Let
ClK be the class group of OK . The class of an ideal h is denoted [h], and if two
ideals h and h′ are in the same class, we write h ∼ h′. Let G denote the Galois
group of the extension K/Q, and let τ ∈ G be the complex conjugation of K.

1.3.1. Short vectors in ideal lattices. The field K is a Hermitian vector space over
Q for the inner product 〈a, b〉 = Tr(abτ ). The corresponding Euclidean norm is
denoted ‖a‖, and coincides with the `2-norm induced by the Minkowski embedding

K −→ Cϕ(m) : a 7−→ (aσ)σ∈G.
We also denote the `1-norm and `∞-norm by ‖a‖1 and ‖a‖∞. The volume of an
ideal h as a lattice relates to its algebraic norm by Vol(h) =

√
|∆K |N(h). The

length λ1(h) of the shortest vector of h is determined by its algebraic norm up to a
polynomial factor:

(1) 1
poly(m)N(h)1/ϕ(m) ≤ λ1(h) ≤ poly(m)N(h)1/ϕ(m).
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For ideal lattices of cyclotomic fields, the re-
sults of the present paper give a quantum
polynomial runtime (i.e., t = 0) for any
a ≥ 1/2.

Figure 1. Best known (quantum) time–approximation factor
tradeoffs to solve approx-SVP in arbitrary lattices (on the left)
and in cyclotomic ideal lattices (on the right), in the worst case.
The integer n is the dimension of the lattice; for a cyclotomic field
of conductor m, this dimension is n = ϕ(m). The approximation
factors (A.f.) upon which the security of cryptographic schemes re-
lies are typically between polynomial poly(n) and quasi-polynomial
exp(polylog(n)) (represented as the grey area).

The right inequality is an application of Minkowsky’s second theorem, whereas the
left one follows from the fact that the ideal vOK generated by a shortest non-zero
vector v of h is a multiple (a sub-ideal) of h, and that Vol(vOK) ≤ ‖v‖ϕ(m). The
approximated Ideal-SVP in h for some approximation factor α consists in finding a
vector in h of length at most αλ1(h). Our method is divided into two main steps.
First, we show how to find a short vector in the case where the ideal in principal;
then, we show how to reduce the general case to the principal case.

1.3.2. Approx-SVP for principal ideals. The principal case is dealt with in Sec-
tion 3, via a study of the geometry of cyclotomic units. Following in the footsteps
of [CDPR16], we generalise their method to cyclotomic fields of arbitrary conduc-
tor. Let a be a principal ideal in OK . The idea is to find a short generator of a
(rather than just a short element). First, the algorithms of [BS16] allow to find
an arbitrary generator g of a in quantum polynomial time. This generator g is
typically extremely long, but it provides us with a convenient search space: the set
of all generators of a is gO×K . We are looking for a short element of gO×K . The
logarithmic embedding (see Definition 3.1) allows to transform this into a lattice
problem: the image Log(O×K) is a lattice of dimension ϕ(m)−1, and the logarithmic
embedding of gO×K is the translation

Log(g) + Log(O×K)
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of this lattice. We exhibit a full-rank set of short elements in Log(O×K), which can
be used to find a short vector in the translated lattice Log(g) + Log(O×K). This
short vector gives rise to a short element of gO×K , i.e., a short generator. We show
in Theorem 3.7 that this method allows to find in quantum polynomial time an
approximation of the shortest vector of a for the subexponential approximation
factor exp(Õ(

√
m)).

We note that this approach involves manipulating real numbers, leading to deli-
cate numerical stability considerations. While [CDPR16] glosses over this issue, we
provide a full, rigorous analysis.

1.3.3. The close principal multiple problem. To reduce the problem from arbitrary
ideals to principal ideals, we introduce the close principal multiple problem (or
CPM): given an arbitrary ideal a, find an integral ideal b such that ab is principal,
and N(b) is small. Suppose one can solve CPM with N(b) ≤ exp(Õ(m1+c)), for
some constant c > 0. Then, one can apply the aforementioned results to find a
generator g of the principal ideal ab such that

‖g‖ ≤ N(ab)1/ϕ(m) exp
(
Õ
(√
m
))
≤ N(a)1/ϕ(m) exp

(
Õ
(
mmax(1/2,c)

))
.

Since g ∈ ab ⊂ a, one has found an approximation of the shortest vector of a for an
approximation factor exp(Õ(mmax(1/2,c))). This is asymptotically as good as the
principal case when c = 1/2, and better than LLL for any c < 1.

1.3.4. Existence of close principal multiples. Before searching for a solution to the
CPM problem, let us discuss wether a exp(Õ(m1+c))-close principal multiple exists
in general. A positive answer follows from the results of [JW15, Corollary 6.5]
refining [JMV09, Corollary 1.3] for large degree number fields. setting a factor base
of prime ideals B = {p | Np ≤ m4+o(1)}, for any class C ∈ ClK , there exists a
non-negative small solution e ∈ ZB

≥0 to the class equation [
∏

pep ] = C, of `1-norm
‖e‖1 ≤ O(m1+o(1)). This proves, assuming the generalised Riemann hypothesis
(GRH), the existence of a solution b =

∏
pep to the CPM problem as small as

exp(Õ(m1+c)) for c = o(1).
This argument is based on the analysis of the expander properties of certain

Cayley graphs on the class group. For our purpose, existence is not enough, as we
wish to efficiently find a close principal multiple.

1.3.5. Intermezzo: short discrete logarithms and lattices. Our approach to solving
the CPM problem is based, in part, on a judicious application of the following
generic paradigm.

Let H be a finite Abelian group (denoted multiplicatively). Let k be a positive
integer and let G = (g1, ..., gk) ∈ Hk be a vector such that g1, ..., gk constitute a
generating set for H as a Z-module. Consider the surjective Z-linear map

φG : Zk −→ H,

α = (α1, ..., αk) 7−→ Gα =
k∏
i=1

gαii .

The representation problem for H (given G) is to find, given an arbitrary h ∈ H,
some vector α ∈ Zk such that

φG(α) = Gα = h.
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Note that this is in fact a discrete logarithm problem in H, with respect to the
generators g1, ..., gk; this kind of problem can typically be solved in quantum poly-
nomial time following Shor [Sho97] and subsequent generalizations [EHKS14, BS16].

Now, suppose such solution is also required to be “short”: this is the short
representation problem. This new constraint translates into a lattice problem as
follows. Write ΛG = Ker φG . We have that H ∼= Zk/ΛG and that ΛG is a full-rank
lattice in Zk. If one can find β ∈ ΛG such that (α − β) ∈ Zk is “small”, where
α ∈ Zk is just any solution to the representation problem, then α− β is a solution
to the short representation problem since

Gα−β = Gα = h.

Finding this β is known as the close vector problem in the lattice ΛG with respect
to α. In all generality, this problem is not known to be solvable in (quantum)
polynomial time. However, it can be solved efficiently if a “short” basis of ΛG (or
a full-rank sublattice) is known1.

The special case we have identified as being particularly relevant to our purposes
is the following. Suppose G is a finite group (also written multiplicatively) acting
on H, i.e., there is a morphism mapping G to the automorphism group of H. Then
H may be viewed naturally as a module over the group ring Z[G]. Note that Z[G] is
a free Z-module of finite rank |G|, the elements of G forming a basis. For simplicity,
say G is Abelian (so that Z[G] is commutative).

For g ∈ H and σ ∈ G, write the group action as σ ·g = gσ. Let λ =
∑
σ∈G λσσ ∈

Z[G], with coefficients λσ ∈ Z, and write

gλ :=
∏
σ∈G

(gλσ )σ.

Suppose temporarily that H is cyclic as a Z[G]-module and suppose g ∈ H is a
generator. Note that the latter is equivalent to H being generated as a Z-module
by {gσ | σ ∈ G}. Suppose furthermore that some nontrivial ideal S ⊂ Z[G] is given
that annihilates H, i.e., hs = 1H for any h ∈ H and s ∈ S. Writing G = (gσ)σ∈G
(i.e., a vector defined by the G-orbit of g ∈ H), it follows that S naturally defines
a sublattice of ΛG , by sending each element of S to its integer coordinate vector
(under the stated basis of Z[G]).

If this annihilating sublattice S is full-rank and if a short basis can be found,
the strategy described above may be applicable so that, for any given h ∈ H,
an α ∈ Z[G] with “short” coordinate vector may be found such that gα = h, or,
equivalently, a “short” α ∈ ZG (identifying the previous with its coordinate-vector)
such that Gα = h, as desired.

This generalizes to the case where G is generated as a Z[G]-module by a larger
set of elements (so H need not be Z[G]-cyclic), instead of a single one, essentially
by applying the same strategy for each generator.

1.3.6. Application to CPM: class groups and the Stickelberger Theorem. Our idea
for solving CPM is based on an application of the above paradigm to the class
group ClK of the Galois number fields K of our interest. For the discussion, it is

1Note that if a lattice is not of full rank, no close-vector algorithm can guarantee any distance
bound, as any fundamental domain is unbounded.
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convenient to recall that the Galois group G of the number field K acts on OK as
well as on ClK in the natural way, so that each may be viewed as a Galois module,
i.e., as a Z[G]-module.

In fact, we first solve CPM under the condition that the class of the target OK-
ideal of CPM is an element of the subgroup Cl−K , the minus-part of the class group
ClK . This choice is benefical for technical reasons that will become clear shortly.
Afterwards, we show how this can be extended to solving the general case, using
additional ideas. Along the way, we make several assumptions that are only in-
formally stated, so as not to detract from the conceptual aspects of our approach.
These assumptions will be discussed in detail, together with the precise bounds
achieved, in Section 5.

Let ClK+ be the class group of the maximal real subfield K+ = K ∩ R. The
relative norm map NK/K+ : ClK → ClK+ on ideal classes (which sends the class of
h to the class of h1+τ ∩K+) is a surjection, and its kernel is the relative class group
Cl−K . By definition, if a is an OK-ideal, it holds that [a] ∈ Cl−K if and only if the
OK+ -ideal NK/K+(a) is principal. Furthermore, for each OK-ideal a, it holds that
a · aτ = NK/K+(a) · OK . 2 Hence, if [a] ∈ Cl−K , then [a]−1 = [aτ ]. This property is
very useful when one wants to work only with integral ideals of “small” norm: if
a is integral, aτ is an integral representative of [a]−1 of same norm as a. Finding
integral inverses in ClK with a good control on the norm is in general more difficult.

An immediate application to the representation problem in Cl−K is the following.
Suppose we have an identity

m∏
i=1

[pi]αi = [a]−1,

where all the classes are in Cl−K , the pi’s are integral OK-ideals, and the αi’s are
in Z. Then, for each index i such that αi < 0, we may redefine pi as the integral
OK-ideal pτi (having the same norm as pi) and redefine αi by taking its absolute
value. Thus, without loss of generality, this gives us the result that the OK-ideal

a ·
m∏
i=1

pαii

is principal, and
∏m
i=1 p

αi
i is integral (αi ≥ 0). Also note that, if the exponent vec-

tor is “short” and if the respective algebraic norms of the pi’s are “small,” then by
multiplicativity of norm,

∏m
i=1 p

αi
i is also “small” and would constitute a solution

to CPM with target a. This is how, in essence, the short representation problem
connects to the CPM problem.

Now, Biasse and Song [BS16] have shown that there is a quantum algorithm for
computating discrete logarithms in the class group in quantum polynomial time.
Therefore it remains to discuss

2For ideals of this form, the claim follows from Dedekind factorization in combination with
basic theory of Galois extensions.
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• how to get a small number of small-norm generators for Cl−K , i.e., their
classes are presented by small-norm OK-ideals, and

• how to extract a short solution from a solution of the representation problem
as produced by the algorithm of [BS16].

We start with the latter. The crucial property of Cl−K that furthers our purpose
is the following. Consider the group ring Z[G] and the so-called Stickelberger ideal
S ⊂ Z[G]. It has the property that it annihilates ClK and, therefore, it annihilates
Cl−K as well. Moreover, when considered as a lattice (in the way discussed in Sec-
tion 1.3.5), it can be shown to have a relatively short basis which can be effectively
computed. However, this lattice does not satisfy our earlier requirement to be of
full-rank |G|, which presents an impediment to using close-vector algorithms with
respect to S.

Fortunately, this issue can be solved by working with a quotient of Z[G]. By
construction, the element 1 + τ ∈ Z[G] acts trivially on Cl−K . So Cl−K is, in fact,
a Z[G]/(1 + τ)-module. The latter can be shown to be a free Z-module of rank
|G|/2. For instance, take a maximal subset of G such that no two elements are
conjugate under τ ; then their classes form a Z-basis. Furthermore, the image S− of
the Stickelberger ideal S under the canonical ring morphism Z[G]→ Z[G]/(1 + τ)
annihilates Cl−K . But this time, S′ can be shown to be of full-rank |G|/2 when
considered as a lattice. Moreover, effective computation of a relatively short basis
can be shown to carry over from that of S.

Putting everything together, we get a solution for CPM in the case that the class
of the target a is in Cl−K , assuming that we are given a small generating set of Cl−K
as a Z[G]-module consisting of classes represented by small-norm ideals.

Concluding formally on which value of c can be achieved by the CPM algo-
rithm sketched above is not straightforward, as it relies on the structure of Cl−K
as a Z[G]-module. The structure of Cl−K remains in general quite elusive but it
appears that it admits a small minimum number of generators as a Z[G]-module.
For instance, Schoof [Sch98] computed that for all prime conductors m ≤ 509, it is
Z[G]-cyclic, i.e., it is generated by a single element as a Z[G]-module. In fact, we
introduce a hypothesis stating that, asymptotically, few generators should suffice.
Furthermore, we show that if Cl−K is generated by r classes, then r ·polylog(n) many
uniformly randomly selected classes in Cl−K will generate it as a Z[G]-module with
overwhelming probability. As it is expected that classes of small random ideals
behave similarly to uniformly random classes, that would settle the issue. Based
on these heuristic arguments, we strongly believe that c = 1/2 is reachable at least
for a dense family of conductors m, if not all. This leads to the main result of this
paper: Approx-SVP in arbitrary ideals, Theorem 5.1.

Finally, to remove the condition that the target OK-ideal a satisfies [a] ∈ Cl−K ,
our goal is to first find a small-norm integral OK-ideal a′ such that [a · a′] ∈ Cl−K ,
followed by application of the strategy above. So it remains to discuss this first
step. We exploit the fact that random walks in certain Cayley graphs of ClK ,
where the generators are ideals of small norm, will land rather quickly in Cl−K with
high probability if the index of Cl−K in ClK is “small.” This index is equal to h+

K ,
the class number of K+. Taking the class of a as the starting point for the random
walk, the desired a′ is found efficiently (under GRH) as a product of random ideals
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of small norm. Note that there is strong theoretical and computational evidence
that h+

K is indeed small. In fact, there is a well-known conjecture that for certain
classes of fields it equals 1, in which case Cl−K and ClK are identical, and the random
walks can be omitted altogether.

1.4. Related works. The idea of exploiting the logarithmic unit-lattice to obtain
shorter generators of a principal ideal can be traced back to Rekaya, Belfiore and
Viterbo [RBV04]. The first cryptanalytic claim exploiting this idea [CGS14] con-
cerned a specific distribution of principal ideals, for which an exceptionally small
generator (the secret key) could be recovered exactly. This was proved for cyclo-
tomic number fields of prime-power conductor in [CDPR16], by showing that the
standard bases of logarithmic cyclotomic units is good enough to solve instances
of the bounded-distance decoding (BDD) problem. The second result of [CDPR16]
treats the case of arbitrary principal ideal (as opposed to principal ideals that admit
an exceptionally small generator), by relating it to the close-vector problem (CVP)
in the same lattice. Note that in this article, we only generalized this second result
of [CDPR16], as the first one does not play a role in our final result. The first
result has also been the object of a generalization to more (but not all) cyclotomic
fields [HWB17]. The case of multi-quadratic fields was also studied in [BBdV+17],
for which no quantum algorithms are required.

Since the conference version [CDW17] of the present article, this line of research
has developed in several directions. By allowing exponential time pre-computation
depending only on the number field, new trade-offs between the efficiency of the
algorithm and the shortness of the resulting vector were obtained [PHS19]. This
article considers both the classical and quantum settings, and applies to any number
field. It was also shown that finding short vectors in module lattices of rank 2 could
be reduced to the close vector problem in lattices constructed in a similar fashion
but with a much larger dimension [LPSW19].

The results of [CDPR16, CDW17] have recently also been the object of a more
concrete study, both using non-asymptotic analysis of the regulators and class
numbers for formal lower bounds, and numerical experiments for empirical upper
bounds [DPW19].

1.5. Roadmap. The rest of the paper is structured as follows. A few preliminaries
on lattice and number theoretic algorithms are recalled in Section 2. In Section 3,
we show how to exploit the geometry of cyclotomic units to solve Approx-SVP
for principal ideals, generalising the results of [CDPR16]. In Section 4, we study
the geometry of the Stickelberger ideal, with applications to the CPM problem.
Our main result on Approx-SVP for arbitrary cyclotomic ideals is the object of
Section 5. The Galois module structure of Cl−K is studied in Section 6.

2. Preliminaries

2.1. Close vector algorithms. If B = [b1, . . . , bk] ∈ Rn×k is a matrix composed of
linearly independent column vectors bi ∈ Rn, we denote by B̃ = [̃b1, . . . , b̃k] ∈ Rn×k
its Gram-Schmidt orthogonalization. Moreover, we denote by P(B) the centered
parallelepiped spanned by B, defined as

P(B) = B · [−1/2, 1/2)k =
{∑

xibi

∣∣∣xi ∈ [−1/2, 1/2)
}
.
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We recall that if B is the basis of a full-rank lattice L ⊂ Rn, both P(B) and
P(B̃) are fundamental domains for L on Rn. These fundamental domains ad-
mit polynomial-time reduction algorithms. For the latter fundamental domain
P(B̃), this algorithm is referred to as Size-Reduction or as the Nearest-Plane algo-
rithm [LLL82, Bab86].

Lemma 2.1. There is a classical deterministic polynomial time algorithm NP(B, t),
that given the basis B ∈ Qn×k of a lattice L ⊂ Rn, and a target t ∈ L⊗Q, outputs
a pair (v, d) where v ∈ Zk, d ∈ P(B̃) and t = Bv + d.

Given a short basis B of a lattice L, the above algorithm can be used to find a
close lattice point v to any target t. In fact, it is even sufficient to know a set of
short vectors of L that span L⊗ R.

Corollary 2.2. There is a classical deterministic polynomial time algorithm CV(W, t),
that given a finite set W of k vectors of a lattice L ⊂ Qn that spans L⊗Q, and a
target t ∈ L⊗Q, outputs a vector v ∈ Zk such that

‖W · v − t‖ ≤ 1/2 ·
√
n · max

w∈W
‖w‖(2)

‖W · v − t‖1 ≤ 1/2 · n · max
w∈W

‖w‖.(3)

Proof. First, we construct a maximal set of linearly independent vectors C ⊂ W ,
which can be done in deterministic polynomial time in a greedy manner. It holds
that C generates a full-rank sub-lattice of L, in particular setting (v′, d) = NP(C, t)
it holds that Cv′ − t = d ∈ P(C̃), and by Euclidean additivity

‖d‖2 ≤ 1/4 ·
∑
i ‖c̃i‖2

≤ 1/4 · n ·maxi‖c̃i‖2

≤ 1/4 · n ·maxw∈W ‖w‖2.

It remains to pad v′ to v with appropriately placed zeros to conclude the proof of
the first item. The second item is simply derived from the first by Cauchy-Schwartz
inequality. �

We also require an algorithm to find a close vector with respect to the `∞-norm,
yet in the worst-case the algorithm may not provide a close enough vector. This
can be improved by resorting to a probabilistic approach, thanks to the following
proposition.

Proposition 2.3. If X ∈ Rn×k has orthogonal rows, and if x is uniformly dis-
tributed over P(X), then

‖x‖∞ ≤ τ ·maxi‖xi‖
holds except with probability at most 2n · exp(−2τ2).

Proof. First, let us write (, 0) = QD where D is a diagonal matrix with coefficients
(‖x1‖, . . . , ‖xk‖, 0, . . . 0) and Q is an orthogonal matrix (i.e., QQt = QtQ = I).

We write x = QDy where y is uniform in [−1/2, 1/2)k. In particular, for each j we
have xj =

∑
iQj,iDi,iyi. Hoeffding’s bound states that the probability that |xj | ≥ s

is less than 2 exp(−2s2/
∑

(Qj,iDi,i)2). Note that
∑
i(Qj,iDi,i)2 ≤ maxi‖xi‖2.

Taking s = τ ·maxi ‖xi‖, one concludes by the union bound over all j’s. �
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Lemma 2.4. There is a classical randomized polynomial time algorithm CV∞(W, t)
that given a set W of k vectors of a lattice L ⊂ Rn that spans L⊗Q, and a target
t ∈ L⊗Q, outputs a vector v ∈ Zk such that

‖W · v − t‖∞ ≤
√

2 · ln(8n) · max
w∈W

‖w‖(4)

with probability at least 1/2.
Proof. First, we construct a set of linearly independent vectors C ⊂ W , and
consider the lattice L′ generated by C. Sample a uniform p ∈ P(C̃), compute
(v, d) = NP(C, t + p). Note that ‖W · v − t‖∞ ≤ ‖W · v − (t + p))‖∞ + ‖p‖∞.
Because p is uniform over a fundamental domain of L′, it holds that t + p mod L′
is uniform, therefore (W · v − (t+ p)) is uniform over P(C̃).

We apply Proposition 2.3 to p (resp. W · v − (t + p)) with τ =
√

1/2 · ln(8n):
‖p‖∞ (resp. ‖W · v − (t + p)‖∞) is less than

√
1/2 · ln(8n) · maxw∈W ‖w‖ except

with probability at most 1/4. One concludes by a union bound. �

2.2. Representation of elements of OK . The standard representation of an
element α ∈ OK is the vector ~α = (α0, . . . , αϕ(m)−1) in the standard power Z-basis
of OK , i.e., the sequence of coefficients of the polynomial α =

∑
αiX

i mod Φm(X)
where Φm denotes the m-th cyclotomic polynomial. A fractional element α ∈ K is
uniquely represented as 1

q · ~α
′ where q is a positive integer coprime to the greatest

common divisor of the coefficients of α′.
Often, algorithms for OK have to manipulate very large elements, so large that a

standard representation would have an exponential length. It is the case for instance
for the quantum polynomial time algorithms of [BS16]. This issue is resolved by
using a compact representation: a compact representation of an element α ∈ K is a
sequence of elements in γ1, . . . , γ` ∈ OK in the standard representation and integers
k1, . . . , k` such that α =

∏`
i=1 γ

ki
i .

If it is guaranteed that α ∈ K is short, one can efficiently recover a standard
representation from a compact one. In [CDPR16], this is dealt with by resorting to
floating-point approximations, yet Biasse [Bia18] suggested to instead perform fast
modular exponentiation.
Lemma 2.5 (Formalized from [Bia18]). Given elements γ1, . . . , γ` ∈ K in stan-
dard representation and integers k1, . . . , k`, q, B ∈ Z, assuming that α =

∏`
i=1 γ

ki
i

satisfies qα ∈ OK and ‖α‖ ≤ B, one can compute α in standard representation in
polynomial time in the size of the input.
Proof. Choose Q ≥ 2qB, and compute qα = q

∏`
i=1 γ

ki
i mod Q using fast modular

exponentiation. Recover qα as the representative of qα mod Q with coefficients in
[−qB, qB). �

2.3. Quantum algorithms for class groups. Searching for a principal multiple
of the ideal a in OK will require to perform computations in the class group in
an efficient way. Classically, problems related to class group computations remain
difficult, and the best known classical algorithms run in sub-exponential time (for
example, see [BF14, BEF+17]). Yet, building on the recent advances on quantum al-
gorithms for the Hidden Subgroup Problem in large dimensions [EHKS14, dBDF20],
Biasse and Song [BS16] introduced a quantum algorithm to perform S-unit group
computations. It implies class group computations, and solution to the principal
ideal problem (PIP) in quantum polynomial time.
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Theorem 2.6 ([BS16, Theorem 1.3]). There is a quantum algorithm for deciding
if an ideal a ⊆ O of an order O in a number field K is principal, and for computing
α ∈ O in compact representation such that a = (α), in polynomial time in the
parameters log(N(a)) and log(|∆|), where ∆ is the discriminant of O.

The Biasse-Song [BS16] algorithm for S-unit group computations also allows
to solve the class group discrete logarithm problem3: given a basis B of ideals
generating a subgroup of the class group ClK containing the class of a, express the
class of a as a product of ideals in B.

Proposition 2.7 ([BS16]). Let B be a set of prime ideals generating a subgroup
H of ClK . There exists a quantum algorithm ClDLB which, when given as input
any ideal a in OK such that [a] ∈ H, outputs a vector y ∈ ZB such that

∏
pyp ∼ a,

and runs in polynomial time in maxp∈B log(Np), log(Na), |B| and log(∆K), where
∆K is the absolute value of the discriminant of K.

Proof. Given Theorem 1.1 of [BS16] the proof of this corollary is standard, and
known as the linear-algebra step of index calculus methods.

The prime factorization a = qa1
1 . . . qakk can be obtained in polynomial time in n,

log(∆K) and log(Na), by Shor’s algorithm [Sho97, EH10]. Let C = B∪{q1 . . . , qk},
and one can assume without loss of generality that this union is disjoint. Let
r = n1 + n2 − 1, where n1 is the number of real embeddings of K, and n2 is the
number of pairs of complex embeddings. Consider the homomorphism

ψ : ZB × Zk −→ ClK : ((ep)p∈B, (f1, . . . , fk)) 7−→

∏
p∈B

pep

 · [ d∏
i=1

qfii

]
.

As described in [BS16, Section 4], solving the C-unit problem provides a generat-
ing set of size c = r+ |B|+k for the kernel L of ψ. From [BS16, Theorem 1.1] such
a generating set {~vi}ci=1 can be found by a quantum algorithm in time polynomial
in n, maxp∈C{log(Np)}, log(dK) and |C| = O(|B| + log(Na)). For each i, write
~vi = ((wi,p)p∈B, (vi,1, . . . , vi,k)). Since [a] ∈ H and B generates H, the system of
equations {

∑c
j=1 xjvj,i = ai}ki=1 has a solution ~x ∈ Zc which can be computed in

polynomial time. We obtain

0 = ψ

(
c∑
i=1

xi~vi

)
=

∏
p∈B

p

∑
j
xjwj,p

 · [ d∏
i=1

q

∑
j
xjvj,i

i

]
=

∏
p∈B

p

∑
j
xjwj,p

 · [a].

Then, the output of ClDLB is ~y =
(
−
∑
j xjwj,p

)
p∈B

. �

3. The geometry of cyclotomic units

In this section, we study the geometry of cyclotomic units, and as an application,
we provide a quantum algorithm for approx-SVP in principal ideals, Algorithm 2.
Suppose g is a generator of some principal ideal a. Then, gO×K is the set of all
generators of a. Generators of short Euclidian norm can be studied and found
by investigating the geometry of the unit group O×K , and more specifically of the
lattice Log(O×K) obtained via the logarithmic embedding. The main results exploit

3Proposition 2.7 is a corollary of [BS16, Theorem 1.1]. We only include technical details for
completeness.
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the subgroup C ⊂ O×K of cyclotomic units, whose corresponding lattice Log(C)
admits an efficiently computable set of short generators.

3.1. The logarithmic embedding and cyclotomic units. Recall that G de-
notes the Galois group Gal(K/Q), which is isomorphic to (Z/mZ)×, and τ ∈ G is
complex conjugation.

Definition 3.1 (Logarithmic embedding). The logarithmic embedding of K is

Log : K× −→ R[G]/(1− τ)

a 7−→
∑
σ∈G

log(|aσ|) · σ−1.

It is easy to check that this is a morphism of Z[G]-modules. The ring R[G]/(1−τ)
also has a geometric structure: given any set B ⊂ G of representatives of G/〈τ〉, the
projection of B to R[G]/(1− τ) forms an R-basis (which does not actually depend
on the choice of B) and we consider the (vector space) norms on R[G]/(1 − τ)
coming from the induced isomorphism with Rϕ(m)/2.

The kernel of the logarithmic embedding restricted to O×K is the subgroup gen-
erated by −1 and ζm. Dirichlet’s unit theorem implies that Log(O×K) is a full-rank
lattice in the linear subspace of R[G]/(1− τ) orthogonal to s(G) =

∑
σ∈G σ.

Definition 3.2 (Cyclotomic units). Let V be the multiplicative group generated by

{±ζm} ∪ {1− ζjm | j = 1, . . . ,m− 1}.

The group of cyclotomic units of K is the intersection C = V ∩ O×K .

Theorem 3.3. The lattice Log(C) has full rank in Log(O×K).

Proof. From [Sin78], the group C+ = C ∩K+ has finite index in the group of real
units E+ = O×K ∩K+. Let W be the multiplicative group generated by −1 and ζm.
From [Was12, Th. 4.12], the group WE+ has index 1 or 2 in O×K . Since W is the
kernel of Log : O×K → R[G], we get

[Log(O×K) : Log(C+)] = [Log(O×K) : Log(E+)][Log(E+) : Log(C+)]
= [O×K : WE+][E+ : C+],

which is finite. Therefore [Log(O×K) : Log(C)] is also finite. �

3.2. Short generating vectors of the cyclotomic units. We are interested in
finding short generators of the lattice Log(C). Let m = pα1

1 . . . pαkk be the prime
factorization of m, and for any index i let mi = mp−αii . For 0 < j < m, let

vj =


1− ζjm, if for all indices i, we have mi - j,
1− ζjm
1− ζmim

, otherwise, for the unique i such that mi | j.

Theorem 3.4 ([Kuč92, Th. 4.2]). The lattice Log(C) is generated by a subset of
{Log(vj) | 0 < j < m}.

Lemma 3.5. For any integer j not divisible by m, we have ‖Log(1 − ζjm)‖ =
O(
√
m).
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Proof. Write j = ab, where a divides m and (b,m/a) = 1.

‖Log(1− ζjm)‖2 =
∑

i∈(Z/mZ)×

(
log |1− ζijm|

)2 =
∑

i∈(Z/mZ)×

(
log |1− ζibm/a|

)2
.

The natural group homomorphism (Z/mZ)× → (Z/(m/a)Z)× is a surjection, so
its kernel has cardinality ϕ(m)/ϕ(m/a), and we obtain

‖Log(1− ζjm)‖2 = ϕ(m)
ϕ(m/a)

∑
i∈(Z/(m/a)Z)×

(
log |1− ζim/a|

)2

= ϕ(m)
ϕ(m/a)

∑
i∈(Z/(m/a)Z)×

(log |2 sin(πia/m)|)2

≤ 2a
bm/2ac∑
i=1

(log(2 sin(πia/m)))2

= 2a
bm/2ac∑
i=1

f(ia/m),(5)

where f : [0, 1/2] → R is defined as f(x) = (log(2 sin(πx)))2. The inequality
ϕ(m)/ϕ(m/a) ≤ a follows from the observation that for any positive integers x and
y, we have x/ϕ(x) ≤ (xy)/ϕ(xy) (it follows from the simple case where y is prime).
Since f(x) ≤ (log 2)2 for 1/6 ≤ x ≤ 1/2, the terms in Equation (5) coming from
i > bm/6ac sum to at most O(m). It remains to estimate the contribution of the
remaining terms. Since sin(πx) ≥ 2x for 0 ≤ x ≤ 1/2, we have

2a
bm/6ac∑
i=1

f(ia/m) ≤ 2a
bm/6ac∑
i=1

(log(4ia/m))2 ≤ 2am
a

∫ 1/6

0
(log(4x))2dx = O(m),

where the last equality follows from
∫ y

0 (log x)2dx = y((log y)2 − 2 log y + 2). �

3.3. Finding a short generator of a principal ideal.

Theorem 3.6. There is a randomized algorithm ShortGenerator (Algorithm 1)
that for any g ∈ OK (in compact representation), finds an element h ∈ OK (in
compact representation) such that gOK = hOK and

‖h‖ = exp
(
O
(√

m logm
))
·N(g)1/ϕ(m),

and runs in polynomial time in the size of the input.

Proof. A technical hurdle for this algorithm is the need to resort to approximate
computations. We sketch here the proof ignoring this issue, by assuming that all
operations on R can be performed in polynomial time. The full proof accounting
for precision issues is deferred to Section 3.4.

Recall that g is given in compact representation (γi, ki)`i=1, where g =
∏`
i=1 γ

ki
i .

Using the notation from Algorithm 1, t = t′ − t′′ is the orthogonal projection of
t′ =

∑`
i=1 ki Log(γi) on the subspace Log(O×K)⊗R. LetW = (w1, . . . , wm−1) where

wi = Log(vi). From Theorem 3.4, W is a set of generators of Log(C), and each wi
writes either as Log(1− ζim) or Log(1− ζim)− Log(1− ζmim ); Applying Lemma 3.5
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Algorithm 1 ShortGenerator(g): finds a short generator of gOK .

Require: An element g ∈ OK in compact representation (γi, ki)`i=1.
Ensure: The compact representation of a short element generating gOK .
1: W = (w1, . . . , wm−1) where wi = Log(vi); s(G) =

∑
σ∈G σ ∈ R[G]/(1− τ);

2: t′ ←
∑`
i=1 ki Log(γi);

3: t′′ ← 1/ϕ(m) · log(N(g)) · s(G);
4: t← t′ − t′′ ∈ Log(O×K)⊗ R;
5: repeat
6: x← CV∞(W, t); {randomized, see Lemma 2.4}
7: until ‖W · x− t‖∞ ≤

√
2 · log(4ϕ(m)) ·maxw∈W ‖w‖

8: return concatenation of (γi, ki)`i=1 and (vi,−xi)m−1
i=1 .

once or twice for each wi, we get maxw∈W ‖w‖ = O(
√
m). Calls to the randomized

algorithm CV∞(W, t) are repeated until the output x satisfies

‖W · x− t‖∞ ≤
√

2 · log(4ϕ(m)) · max
w∈W

‖w‖.

According to Lemma 2.4, this procedure terminates in average polynomial time. Let
h be the element with compact representation (γi, ki)`i=1

_ (vi,−xi)m−1
i=1 (where _

denotes the concatenation of sequences). We have
‖h‖∞ ≤ exp(‖Log(g)−W · x‖∞)

≤ exp(‖t+ t′′ −W · x‖∞)
≤ exp(‖t′′‖∞) · exp(‖t−W · x‖∞)

≤ exp (‖1/ϕ(m) · log(N(g)) · s(G)‖∞) · exp
(√

2 · log(4ϕ(m)) · max
w∈W

‖w‖
)

≤ N(g)1/ϕ(m) · exp
(
O
(√

m logm
))

.

We conclude from the inequality ‖h‖ ≤
√
ϕ(m)‖h‖∞. �

Theorem 3.7 (Approx-SVP for cyclotomic, principal ideals). There is a quan-
tum algorithm PrincipalIdealSVP (Algorithm 2) that, when given a principal
ideal a in the cyclotomic ring of conductor m, finds a generator of Euclidean norm
exp(O

(√
m logm

)
) · N(a)1/ϕ(m), in expected polynomial time in m and logN(a).

This generator approximates SVP in the lattice a with an approximation factor
exp(O

(√
m logm

)
).

Algorithm 2 PrincipalIdealSVP(a): solves Approx-SVP in a principal ideal a.
Require: A principal ideal a of OK .
Ensure: The compact representation of a short generator of a.
1: g ← PIP(a); {PIP algorithm [BS16, Theorem 1.3]}
2: h← ShortGenerator(g); {Algorithm 1}
3: return h.

Proof. First apply the quantum algorithm of [BS16, Theorem 1.3] on a. Since a
is principal, it returns an element g ∈ OK in compact representation such that
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a = gOK , in polynomial time in log(N(a)) and m. From Theorem 3.6, Algorithm 1
returns another generator h of a such that

‖h‖ = exp
(
O
(√

m logm
))
·N(a)1/ϕ(m),

also in polynomial time. It follows from (1) that h approximates SVP in a with an
approximation factor exp(O

(√
m logm

)
). �

3.4. Numerical stability. In this section, we prove that we can round all the
logarithms Log(γi) and Log(vi) to Q with polynomially many bits of precision and
still obtain a small generator h. Let n = ϕ(m)/2 and suppose without loss of
generality that the first n− 1 vectors w1, . . . , wn−1 are linearly independent.

3.4.1. The algorithm. Fix a set of n representatives of the cosets G/〈τ〉; they form
an R-basis for R[G]/(1− τ). In this basis, consider the matrices

L = (Log(γi))`i=1, and
W = (wi)n−1

i=1 = (Log(vi))n−1
i=1 .

Write k = (ki)`i=1. Set

p =
⌈
log2

(
max

(
‖L · k‖, ‖k‖∞, 10

√
n‖W‖2n−3))⌉

and note that p is polynomial in the size of the input (Lemma 3.5, together with the
Cauchy-Schwarz inequality, implies ‖W‖ = O(m)). Let ε = 2−(p+m2), and compute
an approximation L with coefficients in εZ such that ‖L−L‖∞ ≤ ε. Now, we want
an approximation W of W with coefficients in εZ such that ‖W −W‖∞ ≤ ε and
each vector wi still lies in Log(O×K) ⊗ R. To do so, find some approximation W̃

such that ‖W − W̃‖∞ ≤ ε/2, and let

wi = w̃i −
1
n

n∑
j=1

w̃i,js(G) ∈ Log(O×K)⊗ R,

which satisfies ‖W − W̃‖∞ ≤ ε/2.
We proceed with the same computation as in the proof of Theorem 3.6, using

these approximate values. Compute t′ = L · k, and project t′ orthogonally to s(G),
that is decompose t′ = t + t

′′ such that t ∈ Log(O×K) ⊗ R and t
′′ ∈ s(G) · R.

Repeatedly call the randomized algorithm x ← CV∞(W, t) until the output x
satisfies
(6) ‖W · x− t‖∞ ≤

√
2 · log(8n) · max

w∈W
‖w‖.

According to Lemma 2.4, this procedure terminates in average polynomial time.
We output the compact representation (γi, ki)`i=1

_ (vi,−xi)n−1
i=1 of h.

3.4.2. Analysis. We now prove that the output h is short. We have
‖h‖∞ ≤ exp(‖L · k −W · x‖∞)

≤ exp(‖t′ −W · x‖∞) · exp(‖(L− L) · k‖∞ + ‖(W −W ) · x‖∞)

From Lemma 3.5, we have maxw∈W ‖w‖ ≤ O(
√
m) +

√
nε ≤ O(

√
m), and together

with (6) we can bound the first factor as

exp(‖t′ −W · x‖∞) ≤ exp(‖t′′‖∞) · exp(O(
√
m logm)).
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Secondly, since t′′, t′′ are respectively the projections of t′ = Lk and t
′ = Lk, it

holds that ‖t′′ − t′′‖∞ ≤ n‖t′ − t
′‖∞. So we get that ‖h‖∞ is at most

N(g)1/ϕ(m) · exp(O(
√
m logm)) · exp((n+ 1)‖(L− L) · k‖∞ + ‖(W −W ) · x‖∞).

Next, note that we have ‖(L− L) · k‖∞ ≤ ‖k‖∞ · ε ≤ 2−m2 , so:

‖h‖∞ ≤ N(g)1/ϕ(m) · exp(O(
√
m logm)) · exp(2−m

2+o(m) + ‖(W −W ) · x‖∞).
(7)

It remains to bound ‖x‖. For any matrix A, write A+ for its pseudoinverse.

Lemma 3.8. We have ‖W+‖ ≤ 5 · ‖W‖ϕ(m)−3.

Proof. The elements w1, . . . , wn−1 generate a sublattice of Log(O×K), so

det(W tW ) ≥ det(Log(O×K)) = RK
√
n,

where RK denotes the regulator of the field K. Writing λ1 ≤ · · · ≤ λn−1 = ‖W‖2
the eigenvalues of W tW , we have

‖(W tW )−1‖ = 1
λ1

=
∏n−1
i=2 λi

det(W tW ) ≤
‖W‖2(n−2)

RK
√
n

.

From [Fri89, Theorem B], we have RK > lcm(2,m)/10 (except for m = 10, for
which we have RK > 0.96). Since W has full column rank, W+ = (W tW )−1W t.
We conclude that

‖W+‖ ≤ ‖W‖‖(W tW )−1‖ ≤ 5‖W‖2n−3
√
n

≤ 5 · ‖W‖2n−3.

�

Lemma 3.9. We have ‖W+‖ ≤ 2‖W+‖.

Proof. Let E = W −W . First observe that W = AW , with A = I + EW+. Now,
we have

‖I −A‖ = ‖EW+‖ ≤ ‖E‖‖W+‖ ≤
√
n‖E‖∞‖W+‖ ≤ ε ·

√
n · 5 · ‖W‖ϕ(m)−3.

Our choice of ε ensures that ‖I − A‖ < 1/2, so the matrix A is invertible and
‖A−1‖ ≤ 1

1−‖I−A‖ ≤ 2 (an application of the Neumann series). Therefore, ‖W+‖ ≤
‖A−1‖‖W+‖ ≤ 2‖W+‖. �

Note that the above proof shows that W has full column rank (because W does,
W = AW , and A has full rank). We deduce that W+

W is the identity, and

(8) ‖x‖ ≤ ‖W+‖‖W · x‖ ≤ ‖W+‖
(
‖W · x− t‖+ ‖t‖

)
.

It follows from the two above lemmata that ‖W+‖ ≤ 2Õ(m) (recall that ‖W‖ =
O(m)). Since we have that ‖W · x− t‖ ≤ 2o(m) and

‖t‖ ≤ ‖t′‖ = ‖L · k‖ ≤ ‖(L− L) · k‖+ ‖L · k‖ ≤ 2p+o(m),
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we deduce from (8) that ‖x‖ ≤ 2p+Õ(m), and therefore ‖(W−W )·x‖∞ ≤ 2−m2+Õ(m).
Applying this inequality to (7), we conclude that

‖h‖∞ ≤ N(g)1/ϕ(m) · exp(O(
√
m logm)) · exp(2−m

2+Õ(m))

≤ N(g)1/ϕ(m) · exp(O(
√
m logm)).

4. The geometry of the Stickelberger ideal

In this section, we study the geometry of the Stickelberger ideal, and as an ap-
plication, we provide an algorithm for the close principal multiple problem in any
Z[G]-cycle of the relative class group Cl−K , Theorem 4.8.

The group ring Z[G] acts on the ideals of OK as follows: if a is an ideal of OK ,
and α =

∑
σ∈G ασσ ∈ Z[G], we write

aα =
∏
σ∈G

(aσ)ασ .

If a ∼ b, then aα ∼ bα, thereby inducing an action of Z[G] on ClK . The norms ‖ · ‖
and ‖ ·‖1 denote the usual `2 (Euclidean) and `1 norms over Rϕ(m), and are defined
over Z[G] via the natural isomorphism Z[G] ∼=Z Zϕ(m). The `1-norm is of particular
interest here, since N(aα) = N(a)‖α‖1 when the coefficients of α are non-negative.

Given an ideal in the form aα, one could build an equivalent ideal of smaller
norm by finding an element β ∈ Z[G] of smaller `1-norm such that aα ∼ aβ . One
can hope to achieve this in the following way. Suppose Λ is a lattice of full rank
in Z[G] such that for any ideal h, and any λ ∈ Λ, the ideal hλ is principal (we say
that Λ is a lattice of class relations). Given aα and a good basis for Λ, one could
find an element γ ∈ Λ close to α. Then, α− γ is small, and aα ∼ aα−γ . Therefore
we are interested in finding a lattice of class relations with a good basis.

4.1. The Stickelberger ideal. The Galois group G is canonically isomorphic to
(Z/mZ)× via a 7→ σa, where σa is the automorphism sending ζm to ζam. The
fractional part of a rational x ∈ Q is denoted {x}, it is defined as the unique rational
in the interval [0, 1) such that {x} = x mod Z; equivalently, {x} = x− bxc.

Definition 4.1 (The Stickelberger ideal). For any integer a ∈ Z, let

θ(a) =
∑

b∈(Z/mZ)×

{
−ab
m

}
σ−1
b ∈ Q[G].

Let S′ be the Z-module generated by {θ(a) | a ∈ Z} in Q[G]. The Stickelberger
ideal is defined as S = Z[G] ∩ S′. It is an ideal in Z[G], and we will refer to the
Stickelberger lattice when S is considered as a Z-module.

This is the definition from [Sin78], while some references (such as [Was12]) call
Stickelberger ideal the smaller ideal Z[G]∩θ(1)Z[G]. Note that the definitions coin-
cide when m is a power of a prime number. The Stickelberger ideal provides some
class relations, thanks to the following theorem. A proof can be found in [Wei74].

Theorem 4.2 (Stickelberger’s theorem). The Stickelberger ideal annihilates the
ideal class group of K. In other words, for any ideal h of OK and any s ∈ S, the
ideal hs is principal.
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4.2. Short generating vectors of the Stickelberger lattice. For any integer
a ∈ Z, let va = aθ(1)− θ(a) ∈ Q[G].

Lemma 4.3. The set {va | a = 2, . . . ,m} generates the Stickelberger lattice.

Proof. Let L be the lattice generated by {va | a = 2, . . . ,m} in Q[G]. A simple
calculation shows that va ∈ Z[G] for any integer a, so L ⊆ S. Let γ be an arbitrary
element of S. Since θ(0) = 0, and θ(a) = θ(b) for any integers a and b such that
a ≡ b mod m, we can write γ =

∑m−1
a=1 xaθ(a) where the xa’s are integers. Now,

γ =
m−1∑
a=1

xaθ(a) =
m−1∑
a=1

xa

 ∑
b∈(Z/mZ)×

{
−ab
m

}σ−1
b

=
∑

b∈(Z/mZ)×

(
m−1∑
a=1

xa

{
−ab
m

})
σ−1
b .

Therefore, for all b, the coefficient of σ−1
b in γ is

∑m−1
a=1 xa

{
−abm

}
, and it is an

integer since γ is in the group ring Z[G], so the sum
∑m−1
a=1 xaa is divisible by m.

Let q be the integer such that
∑m−1
a=1 xaa = qm. We obtain

γ =
m−1∑
a=1

xaθ(a) =
m−1∑
a=1

xaaθ(1) +
m−1∑
a=1

xa(θ(a)− aθ(1)) = qvm −
m−1∑
a=2

xava ∈ L,

which concludes the proof. �

We are now ready to construct our set of short generators for S. Let wa =
va − va−1 for a ∈ {2, . . . ,m}, and let

W = {w2, . . . , wm}.

Lemma 4.4. The set W is a set of short generators of S. More precisely,
(1) W generates the Stickelberger lattice S,
(2) For any a ∈ {2, . . . ,m}, wa =

∑
b∈(Z/mZ)× εa,b · σ

−1
b , with εa,b ∈ {0, 1},

(3) For any w ∈W , we have ‖w‖ ≤
√
ϕ(m).

The second item essentially generalizes [Sch10, Prop. 9.4] from prime conductors
to arbitrary conductors.

Proof. Point 1 is a direct consequence of Lemma 4.3 and the construction of W .
Point 3 follows from Point 2, so we focus on proving Point 2. Similarly to the proof
of [Was12, Lem. 6.9], we have

va = aθ(1)− θ(a) =
∑

b∈(Z/mZ)×

(
a

{
− b

m

}
−
{
−ab
m

})
σ−1
b

=
∑

b∈(Z/mZ)×

⌊
a

{
− b

m

}⌋
σ−1
b

using the identity x{y}−{xy} = bx{y}c for any integer x and real number y, since
this difference is an integer and the term {xy} is in the range [0, 1). It remains to
rewrite wa =

∑
b∈(Z/mZ)× εa,bσ

−1
b , where

εa,b =
⌊
a

{
− b

m

}⌋
−
⌊

(a− 1)
{
− b

m

}⌋
≤
{
− b

m

}
+ 1 < 2.
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Therefore εa,b ∈ {0, 1} for every index a and b. �

4.3. Class relations for the relative class group. We cannot directly use the
Stickelberger ideal S ⊂ Z[G] as a lattice of class relations since it does not have
full rank in Z[G] as a Z-module (precisely, its Z-rank is ϕ(m)/2 + 1 when m ≥ 2).
Indeed, if the lattice is not full rank, a given vector does not necessarily have a short
representative modulo the lattice. To resolve this issue, we restrict our attention
to the subgroup Cl−K .

Recall that K+ = Q(ζm + ζ−1
m ) is the maximal real subfield of K, with class

group ClK+ , and Cl−K is the relative class group (the kernel of the relative norm map
NK/K+ : ClK → ClK+). By construction, the element 1+τ ∈ Z[G] annihilates Cl−K ,
so the action of Z[G] on Cl−K factors through the quotient ring

R = Z[G]/(1 + τ).
The ring R also has a geometric structure. Let π : Z[G] → R be the natural
projection. Let B ⊂ G be any set of representatives of G/〈τ〉. Then, the projection
π(B) forms a Z-basis of R. The induced isomorphism R ∼= Zϕ(m)/2 naturally
induces an `1 and `2-norm on R, and these norms do not actually depend on the
choice of B.

Lemma 4.5. The projected Stickelberger lattice π(S) has full rank ϕ(m)/2 in R.

Proof. A generalisation due to Sinnott [Sin78] of a theorem from Iwasawa states
that (1−τ)S is of full rank in (1−τ)Z[G]. We conclude by noting that the projection
of (1− τ)Z[G] into R is equal to 2R, which has full rank. �

The set of elements π(W ) has full rank in R. One can easily deduce from
Lemma 4.4 that ‖π(w)‖ ≤ 2

√
ϕ(m) for any w ∈W , but we can show the following

slightly stronger bound.

Lemma 4.6. For any w ∈W , we have ‖π(w)‖ ≤
√
ϕ(m)/2.

Proof. Using the notations of Lemma 4.4, we have

π(wa) =
∑
b∈B

(εa,bσ−1
b + εa,−bσ

−1
−b ) =

∑
b∈B

(εa,b − εa,−b)σ−1
b ,

hence it is sufficient to show that for any a ∈ {2, . . . ,m} and b ∈ B, we have
εa,b − εa,−b ∈ {−1, 0, 1} since B has cardinality ϕ(m)/2. For a = m, we have
εa,b = εa,−b = 1, so π(wm) = 0. Suppose a 6= m. Then, since ab/m 6∈ Z,⌊

a

{
− b

m

}⌋
=
⌊
a

(
1−

{
b

m

})⌋
= a+

⌊
−a
{
b

m

}⌋
= a−

⌊
a

{
b

m

}⌋
,

Then, εa,b − εa,−b = 1− 2εa,−b ∈ {−1, 1}. �

4.4. The close principal multiple problem in a Z[G]-cycle of Cl−K . We now
show how to exploit the previously constructed set W of short relations to reduce
class representations. More precisely, for any large α ∈ Z[G] we will find a short
β ∈ Z[G] such that Cβ = Cα, for any class C ∈ Cl−K . We rely on the following close
vector algorithm.

Theorem 4.7. There is an algorithm Reduce (Algorithm 3), that given α ∈ Z[G],
finds an element β ∈ Z[G] such that ‖β‖1 ≤ 1

4 · ϕ(m)3/2, and Cα = Cβ for any
C ∈ Cl−K , and runs in polynomial time in m and log(‖α‖).
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Algorithm 3 Reduce(α): finds a reduction of α.
Require: An element α ∈ Z[G].
Ensure: An element β ∈ Z[G] such that ‖β‖1 ≤ 1

4 ·ϕ(m)3/2, and Cα = Cβ for any
C ∈ Cl−K .

1: Let W be the generating set of S as in Lemma 4.4;
2: v ← CV(π(W ), π(α)); {close vector algorithm of Corollary 2.2}
3: γ ← π(W ) · v;
4: Write π(α)− γ =

∑
σ∈B aσπ(σ) using the basis π(B) of R;

5: β =
∑
σ∈B aσσ;

6: return β.

Proof. Recall that π : Z[G] → R is the canonical projection, W is the generating
set of S as in Lemma 4.4, and B ⊂ G is any set of representatives of G/〈τ〉.
From Lemma 4.5, π(W ) has full rank in R. So the close vector algorithm from
Corollary 2.2 finds an element v such that γ = π(W ) · v ∈ π(S) satisfies

‖π(α)− γ‖1 ≤
ϕ(m)

2 · max
w∈W

‖π(w)‖ ≤ 1
4 · ϕ(m)3/2

.

The bound on the maxw∈W follows from Lemma 4.6. Then, the element β returned
by Algorithm 3 satisfies

‖β‖1 = ‖π(α)− γ‖1 ≤
1
4 · ϕ(m)3/2

.

Furthermore, for any C ∈ Cl−K , Stickelberger’s theorem implies that Cγ = [OK ],
and therefore Cα = Cβ . �

Theorem 4.8 (Close principal multiple algorithm for Z[G]-cycles of Cl−K). Let p be
an ideal such that [p] ∈ Cl−K . There is an algorithm ClosePrincipalMultiple−
(Algorithm 4) that given an element α ∈ Z[G], finds an integral ideal b such that
pαb is principal and

N(b) = N(p)O(ϕ(m)3/2),

and runs in polynomial time in m, log(N(p)) and log(‖α‖).

Remark 4.9. If one is given the ideal a = pα ∈ pZ[G] instead of the element α,
one could try to recover α by solving a discrete logarithm problem in the relative
class group. This is doable in quantum polynomial time (as in Section 5.2), but we
choose to have α given in Theorem 4.8 to obtain a classical algorithm.

Proof. Consider β, γ and b as in Algorithm 4. From Theorem 4.7, we have ‖β‖1 ≤
0.5 · ϕ(m)3/2, and pα ∼ pβ . Since [p] ∈ Cl−K , we have p−1 ∼ pτ , so

pγ ∼ p
∑

σ∈G
(τb+σ+b−σ )σ ∼ p

∑
σ∈G

(−b+σ+b−σ )σ ∼ p−α,

hence pαb is principal. Since γ has only positive coefficients, the ideal b is integral.
Finally, N(b) = N(p)‖γ‖1 = N(p)O(ϕ(m)3/2). �
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Algorithm 4 ClosePrincipalMultiple−(p, α): solves CPM for the ideal pα.

Require: An ideal p such that [p] ∈ Cl−K , and an element α ∈ Z[G].
Ensure: An integral ideal b such that pαb is principal and N(b) = N(p)O(ϕ(m)3/2).

1: β ← Reduce(α); {Algorithm 3}
2: Write β =

∑
σ∈G bσσ;

3: for all σ ∈ G do

4: (b+σ , b−σ )←
{

(bσ, 0) if bσ ≥ 0,
(0,−bσ) otherwise;

5: end for
6: γ ←

∑
σ∈G(τb+σ + b−σ )σ;

7: return b = pγ .

5. Finding short vectors in cyclotomic ideals

Let a be an arbitrary ideal in the cyclotomic ring OK of conductor m. In this
section, we prove the following theorem.

Theorem 5.1 (Approx-SVP for cyclotomic ideals). Under GRH and Assumption 1,
there is a quantum algorithm IdealSVP (Algorithm 7) that, when given an ideal a
in the cyclotomic ring of conductor m, finds an element in a of Euclidean norm

exp
(
Õ
(√
m
))
·N(a)1/ϕ(m),

and runs in polynomial time in m, h+
K and logN(a), where h+

K is the class number
of the maximal totally real subfield K+. This element approximates SVP in a with
an approximation factor exp(Õ (

√
m)).

The strategy is the following. Suppose that we have a set {p1, . . . , pd} of ideals
of norm poly(m) that generate the relative class group Cl−K as a Z[G]-module.

(1) First, we find an (integral) ideal b of small norm such that the class of ab
is in the relative class group Cl−K . This is done via a random walk in the
class group in Section 5.1.

(2) Second, we find α1, . . . , αd ∈ Z[G] such that ab ∼ pα1
1 . . . pαdd , and ap-

ply the results of Section 4 to find ideals bi ∼ p−α1
1 such that N(bi) =

exp(Õ(m3/2)). This is done in Section 5.2.
(3) Finally, the ideal c = abb1 . . . bd is principal. Applying the results of Sec-

tion 3 allows to find an element g ∈ c ⊂ a of norm exp(Õ(d
√
m)). This is

done in Section 5.3.
The above steps work under GRH, given a generating set {p1, . . . , pd} as above.
The construction of the generating set is where further number theoretic heuristics
are required. Assumption 1 is a statement on the Galois-module structure of Cl−K
which allows to take d = polylog(m), and obtain the targeted approximation fac-
tor exp(Õ (

√
m)). The above three steps together with Assumption 1 lead to the

claimed quantum polynomial time algorithm.

Assumption 1. There are integers d ≤ polylog(m) and B ≤ poly(m) such that the
following holds. Choose uniformly at random d prime ideals p1, . . . , pd among the
finitely many ideals p satisfying N(p) ≤ B and [p] ∈ Cl−K . Then, the factor basis
B = {pσi | σ ∈ G, i = 1 . . . d} generates Cl−K with probability at least 1/2.
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This assumption is arguably new, and can be read as a strengthened version of
a theorem of Bach [Bac90, Theorem 4] and its generalizations to subgroups of the
class group [JW15, Corollary 6.5]. This assumption, and its justification, is the
object of Section 6.

Note that for the algorithm of Theorem 5.1 to really be efficient, one would also
require h+

K to be polynomially bounded in m. This Assumption 2 is discussed in
Section 5.1.2. Unlike the previous one, this assumption is a well-known question in
algebraic number theory, and is related to important conjectures.

5.1. Random walk to the relative class group. As previously, let K+ denote
the maximal real subfield of K, and ClK+ the class group of K+.

The core of the method to find a close principal multiple of an ideal a works
within the relative class group Cl−K ⊂ ClK . Therefore, as a first step, we need to
“send” the ideal a ∈ ClK into this subgroup. More precisely, we want an integral
ideal b of small norm such that ab ∈ Cl−K ; the rest of the method then works with
ab. Let hK = |ClK | be the class number of K, and h−K = |Cl−K | its relative class
number. The difficulty of this step is directly related to the index of Cl−K inside
ClK , which is the real class number h+

K = |ClK+ | of K+ (indeed, the relative norm
map NK/K+ : ClK → ClK+ induces the isomorphism ClK+ ∼= ClK/Cl−K), and is
expected to be very small.

5.1.1. The random walk algorithm. For any x > 0, consider the set Sx of ideals
in OK of prime norm at most x, and let Sx be the multiset of its image in ClK .
Let Gx denote the induced Cayley (multi)graph Cay(ClK , Sx). From [JW15, Corol-
lary 6.5] (under GRH), for any ε > 0 there is a constant C and a bound

B = O
(
(ϕ(m) log ∆K)2+ε) = O

(
(ϕ(m)2 logϕ(m))2+ε

)
such that any random walk in GB of length at least C log(hK)/ log log(∆K), for any
starting point, lands in the subgroup Cl−K with probability at least 1/(2h+

K).
A random walk of length ` = dC log(hK)/ log log(∆K)e = Õ(n) is a sequence

p1, ..., p` of ideals chosen independently, uniformly at random in SB , and their
product b =

∏
pi has a norm bounded by

N(b) =
∏̀
i=1

N(pi) ≤ B` = exp(polylog(m) · Õ(log hK)) = exp(Õ(m)),

If [a] is the starting point of the random walk in the graph, the endpoint [ab]
falls in Cl−K with probability at least 1/(2h+

K), and therefore an ideal b such that
[ab] ∈ Cl−K can be found in probabilistic polynomial time in h+

K . Note that the
quantum algorithm of Biasse and Song [BS16] for PIP allows to test the membership
[ab] ∈ Cl−K , simply by testing the principality of NK/K+(ab) as an ideal of O+

K .
The procedure is summarized as Algorithm 5, and the effiency is stated below.

Under GRH and Assumption 2, this procedure runs in polynomial time.

Lemma 5.2. Assuming the GRH, the quantum algorithm WalkToCl− (Algo-
rithm 5) runs in expected time O(h+

K) · poly(m, logN(a)) and is correct.
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Algorithm 5 WalkToCl−(a): random walk to Cl−K .
Require: An ideal a in OK .
Ensure: An integral ideal b such that [ab] ∈ Cl−K and N(b) ≤ exp(Õ(m)).
1: ` = Õ(m); B = poly(m);
2: repeat
3: for i = 1 to ` do
4: Choose pi uniformly among the prime ideal of norm less than B;
5: end for
6: b←

∏d
i=1 pi;

7: until NK/K+(ab) is principal; {using the PIP algorithm of [BS16]}
8: return b.

5.1.2. The real class number. The time complexity of Algorithm 5 has a linear
factor h+

K the class number of the real subfield K+. Assumption 2 below claims
that this factor is not a problem. For any integer m, let h+(m) be the class number
of the maximal totally real subfield of the cyclotomic field of conductor m.

Assumption 2. For any integer m, it holds that h+(m) ≤ poly(m).

The literature on h+
K provides strong theoretical and computational evidence

that it is indeed small enough. First, the Buhler, Pomerance, Robertson [BPR04]
formulate and argue in favor of the following conjecture, based on Cohen-Lenstra
heuristics.

Conjecture 5.3 (Buhler, Pomerance, Robertson [BPR04]). For all but finitely
many pairs (`, e), where ` is a prime and e is a positive integer, we have h+(`e+1) =
h+(`e).

A stronger version for the case ` = 2 was formulated by Weber.

Conjecture 5.4 (Weber’s class number problem). For any e, h+(2e) = 1.

A direct consequence of Conjecture 5.3 is that for fixed ` and increasing e,
the quantity h+(`e) is O(1), implying that Assumption 2 holds over the class of
cyclotomic fields of conductor a power of `.

But even for increasing primes `, the quantity h+(`) itself is also small: Schoof
[Sch03] computed all the values of h+(`) for ` < 10, 000 (correct under heuristics
of type Cohen-Lenstra, and Miller proved in [Mil15] its correctness under GRH at
least for the primes ` ≤ 241). According to this table, for 75.3% of the primes
` < 10, 000 we have h+(`) = 1 (matching Schoof’s prediction of 71.3% derived
from the Cohen-Lenstra heuristics). All the non-trivial values remain very small,
as h+(`) ≤ ` for 99.75% of the primes.

5.2. Close principal multiple algorithm. Combining the random walk from the
previous section, the close principal multiple algorithm in Cl−K from Section 4.4, and
the quantum algorithms for class group computations discussed in Section 2.3, one
can construct an algorithm for the general close principal multiple problem in OK .

Theorem 5.5 (Close principal multiple algorithm). Under GRH and Assump-
tion 1, there is a quantum algorithm ClosePrincipalMultiple (Algorithm 6)
that given an ideal a in the cyclotomic ring of conductor m, finds an integral ideal
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b such that ab is principal and

N(b) = exp
(
Õ
(
m3/2

))
,

and runs in polynomial time in m, h+
K and log(N(a)).

Algorithm 6 ClosePrincipalMultiple(a): solves CPM for the ideal a.
Require: An ideal a in OK .
Ensure: An integral ideal b such that ab is principal and N(b) = exp

(
Õ
(
m3/2)).

1: d = polylog(m); B = poly(m);
2: b′ ←WalkToCl−(a); {Algorithm 5}
3: M← {p | N(p) ≤ B, [p] ∈ Cl−K};
4: repeat
5: Choose p1, . . . , pd uniformly at random in M;
6: B← {pσi | σ ∈ G, i = 1 . . . d};
7: (yq)q∈B ← ClDLB(ab′), if it exists; {Proposition 2.7}
8: until the discrete logarithm (yq)q∈B has been found;
9: for i = 1 to d do
10: αi ←

∑
σ∈G ypσi σ ∈ Z[G];

11: bi ← ClosePrincipalMultiple−(pi, αi); {Algorithm 4}
12: end for
13: b← b′

∏d
i=1 bi;

14: return b.

Proof. The running time of Algorithm 6 follows from Lemma 5.2, Proposition 2.7
and Theorem 4.8. Note that this algorithm might fail when the chosen B does not
generate Cl−K , but following Assumption 1, it will succeed after an constant expected
number of trials. Let us prove that it is correct. The algorithm WalkToCl−
outputs an integral ideal b′ such that [ab′] ∈ Cl−K and N(b) ≤ exp(Õ(m)). When B

generates Cl−K , the algorithm ClDLB finds a sequence of elements α1, . . . , αd ∈ Z[G]
such that ab′ ∼

∏d
i=1 p

αi
i . Now, applying the algorithm from Theorem 4.8 to

each pαii , we obtain ideals b1, . . . , bd such that pαii bi is principal and N(bi) =
exp

(
Õ
(
m3/2)) for any i = 1, . . . , d. It follows that the output b = b′

∏d
i=1 bi has

the desired properties. �

5.3. Proof of Theorem 5.1. The algorithm is summarized in Algorithm 7. The
running time and correctness follow from Theorem 3.7 and Theorem 5.5. �

Algorithm 7 IdealSVP(a): finding mildly short vectors in the ideal a.
Require: An ideal a in OK .
Ensure: An element v ∈ a of norm ‖v‖ ≤ exp

(
Õ (
√
m)
)
·N(a)1/ϕ(m).

1: b← ClosePrincipalMultiple(a); {Algorithm 6}
2: v ← PrincipalIdealSVP(b); {Algorithm 2}
3: return v.
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6. Constructing small factor bases for the relative class group

To argue for Assumption 1, we prove (in Proposition 6.1) that if Cl−K can be gen-
erated by r ideal classes, then r · polylog(m) uniformly random classes in Cl−K will
generate it.

Proposition 6.1. Let K be a cyclotomic field of conductor m, with Galois group
G and relative class group Cl−K . Let r be the minimal number of Z[G]-generators
of Cl−K . Let α ≥ 1 be a parameter, and s be any integer such that

s ≥ r(log2 log2(h−K) + α)
(note that log2 log2(h−K) ∼ log2(ϕ(m)))4. Let x1, . . . , xs be s independent uniform
elements of Cl−K . The probability that {x1, . . . , xs} generates Cl−K as a Z[G]-module
is at least exp

(
− 3

2α
)

= 1−O(2−α).

In other words, a set of Θ(r log(ϕ(m))) random ideal classes in Cl−K will generate
this Z[G]-module with very good probability. This proposition is proven at the end
of this section.

To justify Assumption 1, we first argue that r is admittedly as small as polylog(m).
For the case m = 2e, this can be argued by just looking at the value of h−(2e) com-
puted up to e = 9 in [Was12, Table 3]. These values are square-free, so Cl−K is
Z-cyclic and therefore Z[G]-cyclic; in other words, r = 1. The case of prime con-
ductors was also studied by Schoof [Sch98]: he proved that Cl−K is Z[G]-cyclic for
every prime conductor m ≤ 509; again, r = 1. While it is unclear that this cyclic-
ity should be the typical behavior asymptotically, it seems reasonable to assume
that r remains as small as polylog(m), at least for a dense class of prime power
conductors.

Once it is admitted that r ≤ polylog(m), Assumption 1 simply assumes that
Proposition 6.1 remains true when imposing that the random classes g1 . . . gs are
chosen as the classes of random ideals of small norm, i.e. gi = [pi] where N(pi) ≤
poly(m). This restriction on the norms seems reasonable considering that it has
been proven that prime ideals of norm poly(m) that fall in Cl−K are sufficient
to generate Cl−K , assuming GRH and Assumption 2 (see [JW15, Corollary 6.5]).
Explicitly, is has been proved in [Wes18b] that prime ideals of norm at most
(2.71h+

K log ∆K + 4.13)2 are sufficient to generate Cl−K .

We now show a series of results leading to the proof of Proposition 6.1.

Lemma 6.2. Let R be a finite commutative local ring of cardinality `n, for some
prime number `. A set of s independent uniformly random elements in R generates
R as an R-module with probability at least 1− `−s.

Proof. An element generates R if and only if it is invertible, meaning that it is not
in the maximal ideal of R. This ideal is a fraction at most `−1 of R, so an element
does not generate R with probability at most `−1. Among s independent elements,
the probability that none of them is a generator is at most `−s. �

Lemma 6.3. Let R be a finite commutative local ring of cardinality `n, for some
prime number `. Let M be a cyclic R-module. A set of s independent uniformly
random elements in M generates M with probability at least 1− `−s.

4Here, the notation f ∼ g denotes the standard asymptotic equivalence limx→∞ f(x)/g(x) = 1.
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Proof. Let g be a generator of M , and consider the homomorphism ϕ : R → M :
α 7→ αg. Let x1, . . . , xs be s independent uniformly random element in M . For
each i, let αi be a uniformly random element of the coset ϕ−1(xi). The elements αi
are independent and uniformly distributed in R, so from Lemma 6.2, they generate
R with probability at least 1 − `−s. If the αi’s generate R, then the xi’s generate
M , and we conclude. �

Lemma 6.4. Let R be a finite commutative local ring of cardinality `n, for some
prime number `. Let M be an R-module, and let r be the smallest number of R-
generators ofM . A set of s independent uniformly random elements inM generates
M with probability at least

(
1− `−bs/rc

)r.
Proof. Proceed by induction on r. The case r = 1 is Lemma 6.3. Suppose that
for any R-module M ′ generated by r − 1 elements, and any positive s′, a set of s′
random elements in M ′ generates M ′ with probability at least(

1− `−bs
′/(r−1)c

)r−1
.

Choose s independent uniformly random elements x1, . . . , xs in M , and let t =
bs/rc. Let g1, . . . , gr be a generating set forM . The quotientM/(Rgr) is generated
by r − 1 elements, so the first s − t random elements generate it with probability
at least (

1− `−b(s−t)/(r−1)c
)r−1

≥
(

1− `−bs/rc
)r−1

.

Now assume that these s−t elements indeed generateM/(Rgr). It remains to show
that adding the remaining t random elements allows to generate the full module M
with probability at least 1−`−bs/rc. Let N ⊂M be the submodule ofM generated
by the first s− t random elements. Observe that the module M/N is generated by
gr. Indeed, let m be an arbitrary element of M . Since M/(Rgr) is generated by
N , there is an n ∈ N such that m+ Rgr = n+ Rgr. This implies that there is an
element αgr ∈ Rgr such that m + N = αgr + N , proving that M/N is generated
by gr. From Lemma 6.3, M/N is generated by the last t random elements with
probability at least 1 − `−bs/rc. So M is generated by x1, . . . , xs with probability
at least

(
1− `−bs/rc

)r. �

Theorem 6.5. Let R be a finite commutative ring, M be a finite R-module of
cardinality m, and r be the minimal number of R-generators of M . A set of s
independent uniformly random elements in M generates M with probability at least(
1− 2−bs/rc

)log2 m .

Proof. The ring R decomposes as an internal direct sum
⊕k

i=1Ri of finite local
subrings Ri. For each i, define ei ∈ R the idempotent which projects to the unity
of Ri and to zero in all other components of the decomposition (then, Ri = eiR). In
particular, we have that M =

⊕
i eiM , and eiM may be viewed as an Ri-module.

Let x1, . . . , xs be s independent uniformly random elements inM . They generate
M as an R-module if and only if for any i, the projections eix1, . . . , eixs generate
Mi as an Ri-module. Let pi be the probability that eix1, . . . , eixs generateMi, and
let ri be the minimal number of generators of Ri. From Lemma 6.4, pi is at least(
1− 2−bs/ric

)ri
. We have the two bounds ri ≤ r and ri ≤ log2 |Mi|, and we deduce

pi ≥
(

1− 2−bs/rc
)log2 |Mi|

.
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Therefore x1, . . . , xs generate M with probability at least
k∏
i=1

pi =
(

1− 2−bs/rc
)∑

i
log2 |Mi|

=
(

1− 2−bs/rc
)log2 m

,

concluding the proof. �

Proof of Proposition 6.1. Note that a set of elements in Cl−K generate it as a
Z[G]-module if and only if they generate it as a (Z/h−KZ)[G]-module. We de-
duce from Theorem 6.5 that x1, . . . , xs generate Cl−K with probability at least
(1 − 2−bs/rc)log2 h

−
K . For any 0 < x ≤ 1/2, we have ln(1 − x) > −(3/2)x. We

have 2−bs/rc ≤ 2−bαc ≤ 1/2, so(
1− 2−bs/rc

)log2 h
−
K = exp

(
log2 h

−
K ln

(
1− 2−bs/rc

))
≥ exp

(
−3

2 log2(h−K)2−bs/rc
)
.

With s ≥ r(log2 log2(h−K) + α), we get bs/rc ≥ log2 log2(h−K) + α− 1 and(
1− 2−bs/rc

)log2 h
−
K ≥ exp

(
− 3

2α

)
,

proving the proposition. �
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