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ABSTRACT

In this paper, we present a cost-effective low-rank factorized
form of computing the full subsurface extended image volumes
without explicitly calculating the receiver wave�elds. The pro-
pose approach is computationally feasible, which exploits the
low-rank structure of full subsurface extended image volumes
organized as a matrix, thus avoiding the customary loop over
sources. Using carefully selected stylized examples, we show
how conventional migration images can be extracted from the
low-rank factorized form. We also present a velocity continua-
tion procedure that uses the same low-rank form and allows us
to map the extended image for one velocity model to another
velocity model without recomputing all the source wave�elds.

INTRODUCTION
Extended image volumes contain rich sources of information,
which can aside from creating images for arbitrary subsurface
offset be used for the inference of rock properties, velocity
analysis, and redatuming in areas of complex geology (Symes,
2008; Vasconcelos et al., 2010). Traditionally, subsurface offset
or angle gathers are formed by taking multidimensional correla-
tions of the source and receiver wave�elds, as a function of all
subsurface offsets (see Sava and Vasconcelos, 2011,and refer-
ences therein for a recent overview). If we use a kinematically
correct velocity model to form the full subsurface extended
image volume, then the energy in this image volume is mainly
focused at zero offset. This observation forms the basis of many
migration velocity analysis schemes, where velocity model up-
dates are calculated by minimizing an objective function that
focusses the energy at zero subsurface offset (Sava and Biondi,
2004; Shen and Symes, 2008,and many others).

Unfortunately, it is computationally infeasible to compute and
store extended images for all subsurface offsets and all sub-
surface points. For example, in 2D seismic data acquisition,
the monochromatic full subsurface extended image volume is
a 4-dimensional object. Moreover, in classical methods, we
need to loop over all the shots to compute the source and re-
ceiver wave�elds, which can easily become computationally
prohibitively expensive. Therefore, the image gathers are typi-
cally only computed for a limited number of subsurface points
and for a limited range of subsurface offsets, which may cause
problems in complex geological areas with large geologic dips.

To overcome this computational and memory bottleneck,
van Leeuwen and Herrmann (2012) proposed to probe full
subsurface offset extended image volumes for information
by computing the action of these image volumes on vectors
that can be encoded with a certain subsurface position. By
doing this, the authors avoided the expensive operation

of looping over all sources by only evaluating two partial
differential equations (PDEs) for each subsurface point to form
a full subsurface offset image volume corresponding to that
subsurface point, thus making it computationally more feasible.
van Leeuwen et al. (2016) further showed the advantages
of using the random Gaussian probing vectors to perform
wave-equation migration velocity analyses without requiring
prior information on the geologic dips.

Although probing techniques circumvent the computational bot-
tleneck of extracting information from the full subsurface offset
extended image volumes, we only have very limited access to
the information from these volumes because we are restricted
to the physical locations of the probing vectors. If we want to
form the full subsurface extended image volumes for all the sub-
surface points then we have to use the classical methods to form
the image volume, which can as we mention before become
prohibitively expensive especially for industrial scale problems
in 2D and 3D. To overcome this, we propose to exploit the low-
rank structure of the monochromatic full subsurface extended
image volumes organized as a matrix, where low-rank structure
refers to a fast decay of the singular values. To accomplish this,
we propose a randomized singular value decomposition (Halko
et al., 2011) that gives us the needed low-rank factorized form
of full subsurface extended image volumes. We will show that
using the randomized singular value decomposition, we can
form the full subsurface extended image volumes for all the
subsurface offsets and all subsurface points where the cost of re-
quired PDE solves is proportional to the rank of that matrix and
not the number of sources. There are indications that the rank
of image volume is typically lower than the rank of the data
when organized as a matrix. Apart from the computational cost,
the low-rank factorization also drastically reduces the memory
storage that one incurs in classical shot-pro�le approaches. Of
course, this only holds true if the image volume can be well
approximated by a low-rank factorization.

The paper is organized as follows: First, we introduce the multi-
dimensional correlation-based extended imaging conditions in a
two-way wave equation setting. Next, we propose the random-
ized singular value decomposition approach to approximate
full subsurface image volumes in a computationally ef�cient
manner. We then present a low-rank factorization based ve-
locity continuation procedure that enables us to map the full
subsurface extended image volumes from one velocity model to
another velocity model at small additional cost without looping
over all the sources. Finally, we demonstrate the ef�cacy of
the proposed approach to extract various subsurface attributes
(e.g. a classical RTM image). We also perform velocity con-
tinuation on Marmousi model (Brougois et al., 1990) with this
approach.



FULL SUBSURFACE EXTENDED IMAGE VOLUME
We start with a brief overview of full subsurface offset extended
image volumes for all subsurface points. Let U and V represent
the monochromatic forward and adjoint wave�elds, which are
obtained by solving

H(m)U = P>s Q; and H�(m)V = P>r D: (1)
Here H(m) is a discretization of the Helmholtz operator with
absorbing boundary conditions, m is the gridded squared slow-
ness; the matrices Ps;Pr restrict the full subsurface wave�elds
at the source and receiver locations. Finally, the symbols > and
� denote matrix transpose and conjugate-transpose, receptively.
The Ns�Ns matrix Q contains the source weights, where Ns
is the number of sources. Similarly, the Nr�Ns matrix D rep-
resents monochromatic frequency slice, where each column
is a single source experiment, and Nr denotes the number of
receivers. Following van Leeuwen and Herrmann (2012), we
denote the full subsurface monochromatic extended image vol-
ume as E = VU�: (2)
By substituting equations 1 into equation 2, we can rewrite E
as a function of Q and D as follows:

E = H��P>r D(H�1P>s Q)�: (3)
Practically, we can never hope to evaluate equation 3 to form
matrix E since it requires 2Ns wave-equation solves. Moreover,
we need to store a dense Nx�Nx matrix, where Nx represents
the total number of grid points. Clearly, this is a very large
object especially in 3D suggesting a need to exploit possible
redundancies living in these volumes.

Our aim now is to build the accurate representation of the
extended image volumes for the reasonable cost in memory
storage and computational time. To achieve this, we analyze
the decay of the singular values of the full subsurface extended
image volumes. We are particularly interested to see whether
these singular decay fast so that these volumes can be approxi-
mated accurately by a rank r matrix. Note that the rank of E is
at most Ns (due to equation 2) so we are looking for approxi-
mation with r� Ns singular vectors.

LOW-RANK FACTORIZATION OF IMAGE VOLUMES
To illustrate that image volumes indeed permit low-rank fac-
torizations at low to mid range frequencies, we analyze E on a
small but geologically complex subset of the Marmousi model,
which consists of strongly dipping re�ectors and strong lateral
variations (Figure 1a). The velocity model is 0:6km deep and
2km wide, sampled at 5m. The synthetic data consists of 100
sources and receivers sampled at 10m, respectively. Figure 1b
shows the full subsurface image volume matrix at 5Hz and
Figure 1c displays its associated singular values decay. We can
clearly see the fast decay of the singular values, which suggest
that the underlying matrix of interest can well be approximated
by a low-rank factorization. For instance, If we approximate
the matrix E with its top 10 singular vectors we �nd a signal-to-
noise (SNR) ratio of about 50dB. This implies that we capture
most of the coherent energy with a low-rank approximation.
This observation is crucial for our approach because it demon-
strates that even for complex velocity models full subsurface
extended image volumes exhibit a low-rank structure.

(a) (b) (c)

Figure 1: Low-rank approximation of full subsurface extended
image volume: (a) a subsection of the Marmousi model, which
is highly complex in nature with steeply dipping events, (b)
corresponding full subsurface extended image volume E at
5Hz, (c) decay of the singular values that illustrates the low-
rank nature of E. To approximate the image volume, we select
top 10 singular vectors, which results in 50dB signal-to-noise
ratio.

In the above example, we approximate the extended image
volume E by computing its top 10 singular vectors using the
singular value decomposition (SVD). Although a naive SVD
approach can compress E, some important limitations remain�
i.e., (i) we need to solve 2Ns PDEs, which are computationally
prohibitively expensive for large-scale 2D and 3D, and (ii)
the cost of naive singular value decomposition (SVD) of the
full subsurface image volume is of the order of O(N3

x ) using
LAPACK based SVD algorithms (Holmes et al. (2007)).

To circumvent the computational cost of SVD, we propose to
use the randomized SVD based approach (Halko et al., 2011)
to compute the low-rank approximation of full subsurface ex-
tended image volumes. We emphasize that this algorithm, re-
called as Algorithm 1, is signi�cantly cheaper than computing
an SVD of the full matrix. The computational cost of the pro-
posed framework is 4r PDEs, instead of 2Ns PDEs, apart from
computing the SVD at line 4, and a QR decomposition in line
2. Since the matrices Y 2 CNx�r and Z 2 Cr�Nx are tall and
thin matrices, hence, computing the SVD and QR decomposi-
tion is computationally feasible and cheaper than solving the
extra (2Ns�4r) PDEs. As long as 4r� 2Ns, we gain orders
of magnitude while computing the low-rank approximation of
image volumes using the randomized SVD. Given the random-
ized SVD framework, we can now represent the full subsurface
extended image volumes in terms of two low-rank factors, i.e.
E� eE = LR�, where L = T

p
X and R = F

p
X. This matrix fac-

torization is much smaller than the full extended image volume,
but still contains most of the energy of E. Hence, the random-
ized SVD framework is computationally feasible for large-scale
2D and 3D seismic problems. Once we estimate the low-rank

Algorithm 1 Low-rank SVD algorithm Halko et al. (2011)
applied for image volumes
1. Y = EW, here, W is (Nx� r) Gaussian random matrix
2. [N;R] = qr(Y), 3. Z = N�E
4. [T;X;F] = svd(Z) (Z 2 Cr�Nx is a small ma-
trix), where svd computes the top r singular vectors of Z
5. T NT, 6. L = T

p
X and R = F

p
X

7. E� eE = LR�, here L and R are (Nx� r) matrices

factorized form of the extended image volumes, we can extract
any subsurface image attributes out of it. For example, the
diagonal of the monochromatic full subsurface extended image
volume corresponds to the monochromatic reverse-time mi-
gration image (RTM). To compute the conventional migration



images, we can apply the zero-time/offset imaging condition as
follows:

RTM =
N fX

j=1
�w2

j diag(eEw j ) =
N fX

j=1

rX

i=1
�w2

j (Lw j (:; i)�Rw j (:; i));

(4)where � is the Hadamard product or the entrywise product
(Davis (1962)), N f represents the number of frequencies, and
w is the temporal frequency . Similarly, we can extract in a
computationally ef�cient manner common-image point gathers
(CIPs) and common-image gathers (CIGs) from the factors L
and R.

INVARIANCE FORMULATION OF IMAGE VOLUME
Apart from extracting various subsurface image attributes from
full subsurface extended image volumes, the linear algebraic
structure of the extended image volumes (equation 3) provide an
invariance relationship with respect to the underlying velocity
model. This invariance relation (van Leeuwen and Herrmann,
2012) can be used to map the extended image for one velocity
model to another velocity model. To understand this, we rewrite
equation 3 as a function of Q and D as follows:

H(m)�EH(m)� = P>r DQ�Ps: (5)
Equation 5 represents a generalization of the double square-root
(DSR) equation, which uses a one-way approximation. We can
indeed observe that, for a seismic data acquisition, the kernel
on right hand side P>r DQ�Ps of equation 5 remains invariant
under changes of the velocity model. Thus, we can map the full
subsurface extended image volume from velocity model m1 to
model m2, which we can express as

H(m2)�E(m2)H(m2)� = H(m1)�E(m1)H(m1)�: (6)
Although, we can map from one velocity to another, we need to
solve 2Ns PDEs, which is computationally expensive. To over-
come these computational cost, we propose to use the low-rank
factorization of the extended image volumes (Algorithm 1),
and replace E with eE in equation 6 to evaluate the invariance
relationship. Given the low-rank approximation of full sub-
surface extended image volume, i.e., L and R, we can rewrite
equation 6 as
H(m2)�L(m2)R(m2)�H(m2)�= H(m1)�L(m1)R(m1)�H(m1)�:

(7)Once we compute the low-rank factors of full subsurface ex-
tended image volume for any initial velocity model, we can then
compute the subsequent low-rank factors for another velocity
model as we describe below

L(m2) = H(m2)��H(m1)�L(m1);

R(m2) = H(m2)��H(m1)�R(m1):
(8)

It is evident from equation 8 that we only need to solve 2r PDEs
to map one full subsurface extended image volume to another
image volume pertaining to a different velocity model. So in
effect, our low-rank factors allow us to replace the costumery
loop over 2Ns PDEs by a loop over 2r. As a result, we can
use equation 8 to quickly scan over different velocity models
without recomputing the source and receiver wave�elds and the
full subsurface extended image volumes.

NUMERICAL RESULTS
To illustrate the ef�cacy of the low-rank factorization of the
full subsurface extended image volumes, we use a small
but complex section of the Marmousi model, sampled at

5m. We use a Ricker wavelet with a central frequency of
20Hz, and simulate a dataset with 301 co-incident sources
and receivers sampled at 20m. We show three different
examples here. The purpose of these examples is twofold: (i)
demonstrate the computational and memory advantages of
forming the full subsurface extended image volumes (EIV)
using the proposed approach, and (ii) compare the quality of
subsurface attributes, such as reverse-time migration images
(RTM), as if computed using the traditional techniques.
Computational Aspects
In the �rst example, we report the computational time and
memory usage of forming full subsurface image volumes using
the classical approach and our randomized SVD (Algorithm 1).
To show the bene�ts over the full bandwidth of the underlying
signal, we extract four frequency slices from the data ranging
from 5 to 50Hz. As summarized in Table 1, the savings in
computational time and memory are highly signi�cant. For this
example, we �nd a factor of more than 400 in time and more
than 1500 in memory storage.
Reverse-time migration

With the second example, we aim to demonstrate the bene-
�ts of performing reverse time migration with full subsurface
extended image volumes, and compare these results with con-
ventional shot-pro�le reverse-time migration. We again work
on a subset of Marmousi model. In both cases we are inter-
ested in reducing the costs of reverse-time migration (RTM) by
either working with simultaneous shots or with extended im-
age volumes obtained by probing. For conventional RTM this
corresponds to working with r� Ns simultaneous shots in the
data space (Herrmann and Li, 2012). For the randomized SVD
approach, we probe with model space simultaneous shots in-
stead. We keep the number of PDE solves for both approaches
the same, which means that the number of probing vectors
for randomized SVD is half that of the simultaneous shots for
conventional RTM. Figures 2(a,c) show the conventional RTM
image for r = 10 and 100, respectively, whereas, Figures 2(b,d)
show the diagonal of the approximated full subsurface extended
image volumes for r = 5 and 50 using the randomized SVD.
We can clearly see that the simultaneous sources in the classi-
cal approach create more artifacts as highlighted with yellow
markers, whereas, we preserve continuity using the proposed
framework. We believe that this empirical observation may
have important consequences on how to solve this imaging
problem. At this point we have two possible explanations for
this phenomena. First, there are indications that the singular
values of image volumes decay faster than the observed data
organized as a matrix in the canonical organization. Second,
and this is deeper argument, one can argue that the extended
Born scattering operators, linking our extended image volumes
to the data, are near isometries (Symes, 2008; Hou and Symes,
2016; ten Kroode, 2012), so migration acts more as an inverse.
In either case, these results are very encouraging.
Velocity continuation

The �nal example illustrates advantages of the afore mentioned
invariance formulation. To do so, we extract two different sub-
sections from the Marmousi model and represent them as m1
and m2, where m1 is the wrong initial background velocity
model, and m2 is the true velocity model (Figure 3). We per-



frequency (Hz) real rank full time (s) estimated rank reduced time (s) SNR (dB) memory ratio

5 301 4832 7 11 29 2100
20 301 4864 11 12 20 1380
30 301 5335 16 15 22 950
50 301 4825 25 21 20 608

Table 1: Signal-to-noise ratio between the full extended image volume using the classical methods and the randomized SVD approach,
for four different frequencies. Comparison of the computational times and memory storage ratio in both cases.

Figure 2: Comparison of performing the reverse time migration
(a,c) using the conventional shot-pro�le migration, and (c,d)
using the proposed approach. For comparison purpose, we
extract the diagonal from the low-rank factorization of E using
the equation 4. We can see that for the same computational
cost, we get high-quality of the imaging results as indicated by
the locations of the yellow markers.

form the following steps to carry out velocity continuation: (i)
for a �xed rank r, we compute the EIV for m1 and store the
associated L(m1) and R(m1) factors, which will cost 4r PDEs
solves; (ii) we apply equation 8 to compute L(m2) and R(m2),
which will cost 2r additional PDEs, (iii) we use equation 4
to extract the zero-offset image and compare it with the diag-
onal of the image volume computed directly from m2 using
Algorithm 1. We display the resulting RTM images in Fig-
ures 4(a,b,c) and CIP gathers in Figures 4(d,e,f). We see clearly
that the initial RTM image 4(a) is far from the correct RTM
image 4(c) for the true model. However, with the proposed
invariance relationship, we can recover the correct image in
Figure 4(b). The same observation can be made for the CIP
gathers. Thus, with the extra cost of 2r PDEs, instead of 2Ns
PDEs, we extract full subsurface image volume for any velocity
model, and replace the expensive customary loops over sources
in classical methods by probing with low-rank factors L and R.

CONCLUSIONS
We presented a randomized singular value decomposition
framework to get a low-rank factorized form of full subsurface
extended image volumes. The proposed factorization approach
exploits the linear algebraic structure of the extended image
volumes, thus making it computationally feasible to form
extended images for all subsurface offsets and for all subsurface
points. Using the randomized singular value decomposition,
we showed that the cost of required number of PDE solves
is proportional to the rank of the underlying full subsurface

a b

Figure 3: Subsections of the Marmousi model to test Invariance
formulation. (a) True background to compute the data set, (b)
initial background model used to generate L(m1) and R(m1).
We then map L(m1);R(m1) to L(m2);R(m2) using the true
background model and equation 8.

a b c

d e f

Figure 4: Top row: diagonal extracted from the full subsurface
image volumes. Bottom row: common image-point gather at
x = 1000m and z = 600m. (a,d) Initial background model, (b,e)
using equation 8, we map the image volume computed using the
wrong background model to the true background model, and
(c,f) solving the Algorithm 1 directly using the true background
model. Clearly, the invariance formulation enables us to recover
any component of the EIV with only 2r PDEs cost from a �rst
initial guess of the background, even though the initial guess is
far from the true model.

image volumes and not the number of sources. By means of
concrete examples, we demonstrated how we can extract the
conventional migration images from the low-rank factorized
form of the image volumes. We also proposed a cost-effective
formulation to perform velocity continuation, which can be
used to map the extended image for one velocity model to
another velocity model.
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