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DRIEEN1WINTIGSTE CONFERENTIE NUMERIEKE WISKUNDE 

Doel van de conferentie 

De Conferentie van Numeriek Wiskundigen wordt eenmaal per jaar gehouden onder auspicien 
van de Werkgemeenschap Numerieke Wiskunde en de Wetenschappelijke Onderzoeksgemeen­
schap (WOO) 'Numerieke methoden voor wiskundige modellering' (FWO-Vlaanderen). Het 
doe! van de conferentie is kennis te nemen van recente ontwik.kelingen binnen de numerieke 
wiskunde. Hiertoe worden jaarlijks twee thema's vastgesteld. Intemationaal bekende deskun­
digen worden uitgenodigd over deze thema's lezingen te houden. 

Thema's 

1. aspecten van de integratie van beginwaardeproblemen 
2. wavelets en hierarchische bases 

Organisatie 

De organisatie is in handen van de voorbereidingscommissie bestaande uit 
P. Wesseling (TUD) (voorzitter), D. Roose (KU Leuven), M. Spijker (RU Leiden), en J. Kok 
(CWI) (secretaris). Organisatorische medewerking is verleend door bet Centrum voor Wis­
kunde en Informatica. Financiele ondersteuning is gegeven door de Stichting Wiskunde Onder­
zoek Nederland (SWON) en de WOO. 

Adres organisatie 

Jan Kok 
CWI (cl. MAS) 
Postbus 94079 
1090 GB Amsterdam 
Fax: (020) 592 4199 / +31 20 592 4199 
Tel : (020) 592 4107 / +3120592 4107 
E-mail: Jan. Kok@cwi . nl 

Conferentie-URL: http://www . cwi.nl/-jankok/woudschoten.html 



Twenty-third Dutch Conference on Numerical Analysis 

Arrangements 

Coffee and tea during breaks will be served in the foyer, i.e. the ground level of the central part of the new wing 

Coffee at 19.30 after the dinners, and also the first day before the start of the conference: in the lounge, i.e. left of 
the lobby ( seen from the entrance) 

Bar in the lounge: open till 21.00, 
from 21 .00 - 0.30 the bar in the souterroin is open (the souterrain is below the foyer) 

Meals in the restaurant, i.e. right of the lobby (seen from the entrance) 

All guests are requested to vacate their room and return the key on the day of departure BEFORE the start of the 
first conference session 

1be conference organization does not take up costs made for the use of telephone, fax, copying machine, and for 
drinks during dinner or at the bars. All participants are requested to pay for these costs directly with the confer­
ence centre staff. 

Bus Info (bus 81) (i,,fo for 1998) 

From Utrecht (streekbusstation) to "Zeist (busstop Woudschoten I Oud London) 
10.09, 11.09 (takes 34 minutes) 

From Woudschoten to Utrecht ( smekbusstation) 
15.47, 16.19, 16.47 (takes 35 minutes) 
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Twenty-third Dutch Conference on Numerical Analysis 

Themes and Speakers 

Theme I. 

Theme 2. 

aspects of the integration of initial-value problems 

Kevin Burrage (University of Queensland) 
Andrew Stuart (Stanford University) 
Marino Z.Cnnaro (UniversitA di Trieste) 

wavelets and hierarchical bases 

Jean-Pierre Antoine (Universilt Catholique de Louvain), 
Wolfgang Dahmen (RWTH Aachen), 
Peter Oswald (Bell Labs) 

Contributed presentations by: 

Jos van Dorsselaer, CWI (Theme I) 
Tanja Van Hecke, University of Gent (Theme I) 
Karel in 't Hout, Leiden University (Theme I) 
Rob Stevenson, University of Nijmegen (Theme 2) 

3 



Twenty-third Dutch Conference on Numerical Analysis 

Programme and titles of lectures 

Wt'dnt'sday, Septembt'r 23, 1998 

10.00 - I 1.05 

11.10 

11.15 

12.20 

13.45 

14.50 

15.50 

16.15 

17.20 

18.15 

20.00 

arrival, coffee 

opening 

J-P. Antoine 
11.15 - 12.05: 

12.05 - 12.15: 

lunch 

M.Zennaro 
13.45 - 14.35: 

14.35 - 14.45: 

K. Burrage 
14.50 - 15.40: 

15.40 - 15.50: 

tea 

W.Dahmen 
16.15 - 17.05: 
17.05 - 17.15: 

J. YU DonRlaer 
17.20- 17.45: 
17.45 - 17.50: 

dinner 

The continuous wavelet transform, wavelet packets and fast 
algorithms 
discussion 

An introduction to the numerical solution of delay differential 
equations 
discussion 

An introduction to the numerical solution of stochastic ordinary 
differential equations 
discussion 

Wavelets and adaptivity in numerical analysis, I 
discussion 

Inertial manifolds of parabolic pcle's under time discretization 
discussion 

WNW Committee meeting, 
followed by Woudschoten Committee meeting 

4 



Twenty-third Dutch Conference on Numerical Analysis 

Thursday, Sepumber 24, 1998 

08.00 

()()_()() 

10.00 

10.35 

11.40 

12.45 

14.25 

15.30 

16.00 

16.25 

17.30 

18.15 

breakfast 

A.Stuart 
()().00-W.50: 
()().50 - 10.00: 

coffee 

P. Oswald 
10.35 - 11.25: 

11.25 - 11.35: 

J-P. Antoine 
11.40 - 12.30: 
12.30 - 12.40: 

lunch 

M.Zennaro 
14.25 - 15.15: 
15.15 - 15.25: 

T. Van Hecke 
15.30 - 15.55: 

15.55 - 16.00: 

tea 

R. Stevenson 
16.25- 17.15: 

17.15 - 17.25: 

Long-tenn integration of stochastic differential equations 
discussion 

Multilevel frames and subspace splittings with 
applications to iterative methods 
discussion 

Directional 2-D wavelets and applications 
discussion 

Some stability problems for delay differential equation solvers 
discussion 

Deferred Correction with mono-implicit Runge-Kutta methods 
for first order IVPs 
discussion 

Element-by-element construction of wavelets satisfying stability 
and moment conditions 
discussion 

General Assembly of the Dutch "Werlcgemeenschap Numerieke Wiskunde" 

dinner 
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Twenty-third Dutch Conference on Numerical Analysis 

Friday, September 25, 1998 

08.00 

O'J.00 

10.05 

10.35 

11.10 

12.15 

13.30 

14.35 

breakfast 

K. Burrage 
O'J.00 - O'J.50: 

O'J.50 - 10.00: 

K. In 'tHout 
10.05- 10.30: 

10.30 - 10.35: 

coffee 

W. Dabmen 
11.10 - 12.00: 
12.00- 12.10: 

lunch 

A.Stuart 
13.30 - 14.20: 
14.20 - 14.30: 

P.Oswald 
14.35 - 15.25: 

15.25 - 15.35: 

Implementation issues in solving stochastic ordinary differential 
equations 
discussion 

The convergence of Runge-Kutta methods for delay differential 
equations 
discussion 

Wavelets and adaptivity in numerical analysis, II 
discussion 

Long-term integration of large coupled systems of oscillators 
discussion 

Multilevel discretization schemes for the single layer 
potential equation 
discussion 

15.35 dosuR, tea, departure 
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Page numbers of abstracts 
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J-P. Antoine The continuous wavelet transform, theory and applications 2 8 
K. Burrage An introduction to the numerical solution of stochastic ordinary 

differential equations 12 
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Jos van Dorssclacr Inertial manifolds of parabolic p<lc's under time discretization 16 
T. Van Hecke Deferred Correction with mono-implicit Rungc-Kutta methods 

for first order IVPs 17 
Karel in 't Hout The convergence of Runge-Kutta methods for delay 

differential equations 24 
Peter Oswald Multilevel frames and subspace splittings with applications 

to iterative methods 2 26 
Peter Oswald Multilevel discretization schemes for the single layer potential 

equation 2 32 
Rob Stevenson Element-by-clement construction of wavelets satisfying 

stability and moment conditions 2 36 
Andrew Stuart Stiff oscillatory systems with random initial data 38 
Andrew Stuart Perturbation theory for ergodic Markov chains 44 
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equations 48 
M. :ZCnnaro Some stability problems for delay differential equation solvers 52 

7 



The Continuous Wavelet Transform, theory and applications 

J-P. Antoine 
lnstitut de Physique Theorique 

Universite Catholique de Louvain 

B-1348 Louvain-la-Neuve, Belgium 

e-mail: antoine«lfyma . ucl. ac. be 

Lecture #1 - The CWT : definitions, implementation, applications 

The one-dimensional wavelet transform has found nowadays many applications to 

various fields of physics, mathematics and signal processing. The original motivation 

was to design a method of analysis suitable for nonstationary, highly inhomogeneous 

signals (such as speech), for which Fourier analysis is inadequate. The outcome is a 

time-scale analysis, based on the wavelet transform (WT): 

(1) 

where a > 0 is a scale parameter and b E R a translation parameter. In the relation 

(1) , s is a finite energy signal, the function VJ, the analyzing wavelet, is assumed 

to be well localized both in the time domain and in the frequency domain, and the 

bracket denotes the usual scalar product in L2 (R, dt) . In addition VJ must satisfy 

an admissibility condition, which in most cases may be reduced to the requirement 

that VJ has zero mean (hence it is sufficiently oscillating): J VJ(t) dt = 0. Combining 

this condition with the localization properties of VJ(t) and its Fourier transform 

¢(w), one sees that the WT s >-t S provides a local filtering, both in time (b) 

and in scale (a), which works at constant relative bandwidth, D.w/w = constant. 

Thus it is more efficient at high frequency, i.e. small scales, in particular for the 

detection of singularities in the signal. In addition, the transformation s(x) >-t 

S(a, b) may be inverted exactly and yields a reconstruction formula, which amounts 

to a decomposition of the signal in terms of dilated, translated copies VJb,a of the 

basic wavelet VJ. 
Of course, the numerical implementation requires the discretization of integrals. 

In particular, the reconstruction formula expresses the signal as a linear superposi­

tion of a discrete family { VJb, ,a;}. However, in general, this approach does not lead 

8 



to an orthonormal basis. In order to achieve this, it is nee~ to exploit a totally 

different approach, based on multiresolution analysis, thus leading to the discrete 

wavelet transform (DWT). 

Both the DWT and the continuous wavelet transform (CWT) extend to 2 (or 

more) dimensions, with exactly the same properties as in the 1-D case. Here again 

the mechanism of the WT is easily understood from its very definition as a convo­

lution: 

(2) 

where s is the signal and 1/; is the analyzing wavelet, which is translated by b E R2 , 

dilated by a > 0 and rotated by an angle (} (r -B is the rotation operator). Since 

the wavelet 1/; is required to have zero mean, we have again a filtering effect, i.e. 

the analysis is local in all four parameters b, a, fJ, and here too it is particularly 

efficient at detecting discontinuities in images. When compared to the 1-D case, 

the new fact here is the presence of the rotation degree of freedom. This is crucial 

for detecting oriented features of the signal, that is, regions where the amplitude 

is regular along one direction and has a sharp variation along the perpendicular 

direction, for instance, edges or contours . The CWT is a very efficient tool in this 
respect, provided one uses a directional wavelet, that is, a wavelet which has itself 

an intrinsic orientation (for instance, it contains a plane wave) . 

It is a quite common opinion that the CWT is too time consuming for any 

practical use in image processing. This is, we think, a misconception. Not only is it 

better adapted in a number of situations,_ but in addition fast algorithms have been 

designed recently that make it truly competitive numerically. 

In this first lecture, we will survey the theory and some applications of the 

continuous WT, both in 1-D and in 2-D. The following points will be developed: 

1. Definition and general properties: covariance, norm conservation, reconstruc­

tion formula (inverse CWT), reproducing kernel. 

2. Interpretation of the CWT as a singularity scanner. 

3. Practical implementation of the 2-D CWT: The position and scale-angle rep­

resentations; standard wavelets. 

4. Discretization of the CWT, comparison with the DWT. 
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5. Fast algorithms for the CWT: continuous wavelet packets, pseudo-QMFs. 

6. Some applications of the CWT, mostly in 2-D. 

Lecture #2 - Directional 2-D wavelets and applications 

As mentioned above, the analysis of oriented features in an image requires the use of 

the full 2-D CWT, including the rotation degree of freedom, and also a directional 

wavelet t/J. By this we mean that the effective support of its Fourier transform :(/; is 

contained in a convex cone in spatial frequency space {k}, with apex at the origin. 

Two standard examples are : 

(i) The Morlet wavelet: 

The parameter k0 is the wave vector, and A = diag[c112 , 1],t 2'. 1, is a 2 x 2 

anisotropy matrix. 

(ii) The Cauchy wavelet: 

~(k) = · e,; · _e-,; e , E -o,o 
{ 

(k- - )1 (k- - )m -f-;; k- C( ) 

0, otherwise. 
(4) 

Here C = C(-o,o) = {k E R2 I - o ~ argk ~ o} is the convex cone determined 

by the unit vectors e_0 ,e0 , a = -o + rr/2 (thus e_0 • er, = ea · e_0 = 0) and 

fj = (17, 0), 77 > 0 is a fixed vector. 

In the second lecture, we will describe in detail these directional wavelets and 

some of their properties. The following points will be developed: . 

1. Generalities on directional wavelets: definition, examples. 

2. Calibration of directional wavelets: scale and angular resolving power, bench­

mark tests. 

3. Specific applications: 

• Directional filtering. 

• Fluid dynamics: visualization and measurement of a velocity field in a 

turbulent flow, disentangling of a wave train. 
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• Detection of symmetries: directional wavelets may be used for detecting 

(hidden) dilation-rotation symmetries in patterns, such as Penrose tilings, 

twisted fractals or the diffraction spectrum of a quasi-crystal. The tool 
here is the so-called scale-angle measure of the signal, namely the positive 

function 

where S(b, a, 0) is the WT of the pattern s with a directional wavelet, 

usually a Cauchy wavelet. This includes an algorithm for testing whether 

all symmetries have been detected. 

If time permits, a few indications will be given towards other generalizations of the 

CWT, such as 3-D wavelets, wavelets on a sphere, or time-dependent wavelets, as 

needed for analyzing motions, as in video sequences. 
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An introduction to the numerical solution of Stochastic Ordinary 
Differential Equations 

by 
K. Burrage 

Department of Mathematics, University of Queensland, Brisbane, 4072, Australia 
kb@maths.uq.edu.au 

Abstract: 

In recent years considerable attention has been paid to the numerical solution of stochastic 
ordinary differential equations (SODES), as SODEs are often more appropriate than their 
deterministic counterparts in many modelling situations. However, unlike the deterministic case 
numerical methods for SODEs are considerably less sophisticated due to the difficulty in 
representing the (possibly large number of) random variable approximations to the stochastic 
integrals. 
Although Burrage and Burrage (1996) were able to construct strong order 1.5 stochastic Runge­
Kuna methods for certain cases, in a more recent paper (Burrage and Burrage (1997)) it was 
shown that all known stochastic Runge-Kuna methods suffer an order reduction down to strong 
order 0.5 if there is non-commutativity between the functions associated with the multiple 
Wiener processes. This order reduction down to that of the Euler-Maruyama method imposes 
severe difficulties in obtaining meaningful solutions in a reasonable time frame, but these 
difficulties can be overcome by some new techniques involving Lie bracket evaluations. 

An additional difficulty in solving SODEs arises even in the linear case, since it is not possible 
to write the solution analytically in terms of matrix exponentials unless there is again a 
commutativity property between the functions associated with the multiple Wiener processes. 
However, the work of Magnus (1954) (applied to deterministic non-commutative linear 
problems) can be applied to non-commutative linear SODEs and methods of strong order 1.5 
for arbitrary, linear, non-commutative SODE systems can be constructed - hence giving an 
accurate approximation to the general linear problem. 

Furthermore, for general nonlinear non-commutative systems with an arbitrary number of (d) 
Wiener processes it can shown that strong order 1 stochastic Runge-Kuna methods must 
evaluate a set of Lie brackets as well as the standard function evaluations and have at least d+ 1 
stages. A method can then constructed which can be efficiently implemented in a parallel 
environment for this arbitrary number of Wiener processes. 

This introductory talk will attempt to address these issues described above. In doing so, no prior 
knowledge of stochastic processes will be assumed. 

Note: at 
http://www.cwi.nl/-jankok/kbpb4_ps.ps 

a background paper by K. Burrage and P.M. Burrage: High strong order methods for non­
commutative stochastic ordinary differential equation systems and the Magnus formula is 
available till one week after the conference. 
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Implementation issues in solving Stochastic Ordinary Differential 
Equations 

by 
K. Burrage 

Department of Mathematics, University of Queensland, Brisbane, 4072, Australia 
kb@maths.uq.edu.au 

Abstract: 

There are many issues that have to be addressed in developing an efficient implementation of a 
stochastic numerical method including the efficient and effective simulation of the stochastic 
integrals needed in the method formulation, the nature of the problem (non-commutative, stiff 
etc) and the selection of an appropriate method, as well as a means of providing effective 
variable stepsize strategies - which hitherto have been very poorly addressed. These issues will 
be discussed and some numerical results are presented which illustrate the efficacy of these new 
methods and techniques. At all times comparisons will be made with the deterministic situation 
in order to illustrate the relative paucity of suitable algorithms and codes in the stochastic case. 
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Wavelets and Adaptivity in Numerical Analysis - I, II 
Wolfgang Dahmen, RWTH Aachen 

The essence of multiscale techniques and wavelet concepts is the ability 
of separating effects associated with different scales of resolution. Moreover, 
significant coefficients in a wavelet expansion indicate the location and type 
of singularities. The mathematical foundation lies in cancellation properties 
of wavelet-type functions and the fact that in some range weighted sequence 
norms of expansion coefficients are equivalent to function norms of Sobolev 
or Besov type. This accounts for the potential of such concepts with regard 
to the analysis as well as to the efficient numerical treatment of problems 
involving the interaction of a wide range of scales. 

Part I addresses the basic underlying concepts centering upon the above 
mentioned cancellation properties and norm equivalences, their background 
and main consequences in terms of preconditioning and matrix compression. 
These facts, which are exemplified in the context of some elliptic problems 
covering differential and singular integral operators, are also the main pre­
requisites for the design and analysis of adaptive techniques. 

Part II is to focus on wavelet based adaptive techniques. First some ap­
plications of wavelet concepts within conventional discretizations in terms of 
finite element or finite volume schemes for transport dominated problems are 
outlined. This covers the design of problem adapted multigrid ingredients 
for convection diffusion equations with dominating convection or the accel­
eration of flux calculations for finite volume discretizations of conservation 
laws. In both cases adaptive refinements are based on monitoring quanti­
ties that can be viewed as wavelet coefficients. The performance of these 
schemes is illustrated by some numerical examples. The rest of the lecture 
is then concerned with a rigorous convergence analysis of such wavelet based 
adaptive schemes for a general class of elliptic problems again covering also 
operators of negative orders. In this setting it can be shown that a certain 
scheme provides optimal approximation rates. This means that whenever for 
a certain range of smoothness indices s the solution of the operator equation 
can be recovered with accuracy tin the ideal case (i.e., with complete a-priori 
knowledge) by a linear combination of the order of N(t) := c 1/a wavelets 
then the adaptive algorithm produces an approximation using the same order 
of terms to achieve that accuracy. Moreover, the computational work can be 
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shown to remain proportional to order N(t) as well. The approximability of 
the solution with the above order can be reinterpreted as Besov regularity of 
order ds (d the spatial dimension). The point here is that Besov regularity 
is a weaker scale than classical Sobolev regularity so that the approximation 
rate achieved by such an adaptive scheme is asymptotically better than that 
produced by ordinary uniform refinements precisely when the solution has 
deficient Sobolev regularity, e.g. as in the presence of reentrant corners for 
second order elliptic boundary value problems. 

The underlying analysis brings up the following interesting points. In the 
course of the refinement process a well-quantified intermediate threshold­
ing strategy (which actually results in intermediate coarsening) is essential 
for the claimed optimality. In this point the scheme differs from preced­
ing ones. The numerical realization hinges on a new scheme for approximate 
matrix/vector multiplication suggested by the analysis that exploits not only 
the near sparseness of the stiffness matrices but also of the arrays of wavelet 
coefficients. 
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Inertial manifolds of parabolic pde's under time discretization 

Jos van Dorsselaer 
CWI 

P.O. Box 94079 
1090 GB Amsterdam. 

The Netherlands 
email: dorsselalcvi . nl 

Abstract: Finite time error bounds may not lead to UBeful estimates when 
applied to time-stepping methods on long-time intervals. In order to analyse 
the qualitative behaviour of time-stepping methods in these cases, one has to 
proceed differently. For some parabolic equations the long-time behaviour is 
determined by invariant sets, such as periodic orbits, attractors and inertial 
manifolds (a finite dimensional set which attracts the solutions of a given par­
tial differential equation exponentially). In this lecture we show that inertial 
manifolds can be approximated accurately for a large class of Runge-Kutta 
methods and BDF methods. As an application to the theory, the Ginzburg­
Landau equation is considered. 

References 
F. Demengel & J.-M. Ghidaglia: Inertial manifolds for partial differential 

evolution equations under time-discretization: existence, convergence, and ap­
plications. J. Math. Anal. Appl. 155, 177-225 (1991). 

J .L.M. van Dorsselaer: Inertial manifolds under multistep discretization. 
Universitat Tiibingen, 1998. 
Available from http:/ /na. uni-tuebingen. de/na/preprints. shtml 

J.L.M. van Dorsselaer & Ch. Lubich: Inertial manifolds of parabolic differ­
ential equations under higer-order discretizations. Universitat Tiibingen, 1998. 
To appear in IMA J. Numer. Anal. 
Available from http:/ /na. uni-tuebingen. de/na/preprints. shtml 

C. Foias, G.R. Sell & R. Temam: Inertial manifolds for nonlinear evolution­
ary equations. J. Diff. Eq. 73, 309-353 (1988). 

D.A. Jones & A.M. Stuart: Attractive invariant manifolds under approxi­
mation. Inertial manifolds. J. Diff. Eq. 123, 588-637 {1995). 

T. Shardlow: Inertial manifolds and linear multi-step methods. Numer. 
Algor. 4, 189-209 (1997). 

A.M. Stuart: Perturbation theory for infinite dimensional dynamical sys­
tems, in Theory and Numerics of Ordinary and Partial Differential Equations 
(M. Ainsworth, J. Levesley, W.A. Light and M. Marietta, eds), 181-290. Ox­
ford: Clarendon Press, 1995. 
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Deferred Correction with mono-implicit 
Runge-K utta methods for first order IVPs 

T. Van Hecke* 

Vakgroep Toegepaste Wiskunde en Jnfonnatica, Universiteit Gent 
Krijgslaan 281 - S9, B9000 Gent, Belgium 

Keywords : Deferred Correction; Mono-implicit Runge-Kutta method; Stability 
AMS classification : 65L05, 65L06, 65L20 

Abstract 

To reach a high order of accuracy for numerical solutions of IVPs with Mono-Implicit 
Runge-Kutt& (MIB.K) methods, the technique of deferred correction is used. Special atten­
tion is paid to the possible increase of the order and the stability of such schemes. Several 
schemes are given. 

1 Introduction 

For the numerical solution of first order IVPs 

y' = I (x, y), y(xo) = Yo, y E 1R0 and f: 1R x JRD ➔ JRD, (1.1) 

the following representation of s-stage implicit Runge-Kutta methods (IRK), known as param­
eterized IRK methods, was presented by Burrage et al. [1): 

• 
Yn+I Yn + h Lb; f(xn + c; h, Y;) 

Y; 

i=l • 
(1 - v;) Yn + v; Yn+I + h L x;; /(xn + c; h, Y;), 

j=l 

i = 1, ... , s . 

Hence, a s-stage parameterized IRK method is completely determined by the tableau 

C1 V1 xu X12 Xia 

C2 tl2 X21 X22 x2, 

c, v, X,1 x,2 x., 
b1 ~ b, 

(1.2) 

Comparing this representation with the description of a general IRK method by means of its 
Butcher tableau (c, A, b) [2), it is easy to verify that the relationship A= X + u.bT holds. For 
all methods considered, we will assume that the row-sum condition holds, i.e. A.e = c where e 

•Research assistent of the University of Gent 
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is the s-vector with unit entries. By imposing that X (or X after a rearrangement of its rows 
and columns according to a same permutation) is a strictly lower triangular matrix one obtains 
mono-implicit Runge-Kutta (MIRK) methods [l]. 
Several results concerning MIRK methods have been established. Well-known are the following 
bounds : the order p ::; s + 1 and the stage order is 3 at most. Also, in [l] a complete 
characterization is given of methods of order p ::; 6 with s ::; p stages. Another family of MIRK 
methods is given in [7] : here s = p and c; = 0, 1, ... , s - 1. 
Also, there is no problem to find stable MIRK methods : when a MIRK method is applied to 
the test problem y' = Ay, y(xo) = Yo with fixed stepsize h, one obtains Yn = Rn(Ah)yo where 
R(z) = P(e - v, z)/ P(-v, z) with P(w, z) = 1 + Ef=1 zi bT.xi- 1.w. This reveals one of the 
main problems one is confronted with when using MIRK methods : the Jacobian of the implicit 
system to be solved (which is of dimension n), is in practice approximated by the following 
non-linear expression in J = U : 

• 
I - L hi .I' bT.xi-1 _v. 

i:::::::l 

This requires the computation of powers of J (an operation with complexity O(n3)). To avoid 
the computation of high powers of J , we propose to use the technique of defen-ed correction 
(DC). While Cash [3, 4] used this technique for BVPs, we will apply it for IVPs. 

2 The DC algorithm 

Suppose we want to approximate the solution of the IVP (1.1) on the mesh xo < x 1 < x2 < . . . 
and let h = max; h; where h; := Xi+J - x; . Let Ay be the restriction of the continuous solution 
y(x) to the grid and let f'/ and f'/* be an approximation to Ay. 

We rely on a theorem proven by Skeel [6], which we reformulate in a slightly modified 
form. 

Theorem 2.1 Consider the DC scheme 

{ 
</>('I)= 0, 
,p(,,·) = </>('I) - </>*('I) . 

(2.3) 

Suppose {i) 'I = Ay + O(hP), (ii) ,p(Ay) = </>(Ay) + O(hP•) , and {iii) ,p(Aw) = O(h') for 
arbitrary functions w having at least r continuous derivatives, then 

,,• = Ay + O(hmin(p• ,p+r)). (2.4) 

As already mentioned, in our case ¢, will correspond to a MIRK method of order p and 
,p := ,p• - <p where ,p• corresponds to a MIRK method of order p* > p (we will systematically 
denote the quantities that relate to ,p• with a •-superscript: s•, at;, bt, ct, . . . ). The interesting 
thing about ,t,• being a MIRK method is that 1/J('I) = </>*('I) can be computed directly. Although 
one could argue that </> can be any RK method, we also choose it to be a MIRK method since 
in that case all systems to be solved have dimension n . 
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1 • 
For <P we have </J(Lly)n := h (Yn+l - Yn) - Lb; /(xn + c; hn, Y;), with Yi := y(x;) and 

n i=l 

i-1 

Y; = (1 - v;) Yn + v; Yn+l + hn L Xij /(Xn + Cj hn , Y;) 
j=I 

• 
Yn + hn La;; f(xn + Cj hn, Y;) + O(h~). 

j=I 

The assumption (i) is a representation of the global error of the method </J with p the order of 
the method. If y'(x) = f(x, y(x)), then a Taylor series expansion gives 

</J({).y)n = (1 - bT.e) fn + G(l -2 bT.A.e) fn YJ n + (1 - 2 bT.c) xf n) hn + O(h~) 

whereby the superscript denotes the derivation and the subscript n means that all evaluations 
are taken in x = Xn, One notices that, if the series expansion is carried out as far as O(h~), 
in this way all the order conditions to achieve order p can be recognised. It thus becomes 
clear that the term in h~, 0 :::; i :::; p - 1 becomes zero when the method is of order p. We 
thus have </J(Lly) = O(h~) . In the same way the condition (ii) of Theorem 2.1 expresses the 
order of the residual with the higher order method </J*. Analogous to the previous derivation, 
</J*(Lly)n = O(hf) can be deduced. The valuer from assumption (iii) follows from the expansion 
of . ~ 

tµ(Llw)n =Lb; /(xn + c; hn, Y;) - Lb; /(xn + c; hn, Y;*). 

One finds that tµ(Llw) = <fJ(Llw) - </J*(Llw) is O(h~) where r = min(p, q) and 

1 if bT.v f- b*T.v• 
2 if bT.v = b*T_v• 

but lbT.(cv) - b*T.(c• v*)I + lbT.(X v) - b*T.(X*.v*)I + lbT.v2 - b*T_v* 2
1 t- 0 

q = 3 if bT.v = b*T.v• 
and lbT.(cv) - b*T.(c* v*)I + lbT.(X v) - b*T.(X*.v*)I + lbT.v2 - b*T.v*2

1 = 0 
but ... 

We thus find that, while the value r in condition (iii) is 1 in general, it can be raised to 2 
or even higher. In [3, 4], where sy=etric methods are used, the value r = 2 is obtained 
since for all sy=etric methods bT.v = 1/2. Combining the three conditions of Theorem 2.1, 
is it clear that there will be a gain O(h9) with the DC technique based on </J and </J*, where 
g = min(r, p• - p) = min(p, q,p• - p). Since one may expect that, if p = q = p• - q, the ratio 
accuracy/ computational cost is optimal, we will call these schemes optimal. 

The basis of coupling two methods by DC, can be enlarged to several methods. The 
general scheme of DC by coupling m methods is of the following form. 

{ 
</J1(77i) = o, (2.5) 
</11(11;) = </11(11;-d - </J;(11;-d, i = 2, ... , m 

We will call <Pt the basic method while </J;, i = 1, 2 ... , m are called the composing methods. 
Coupling several methods can be interesting for reasons of accuracy and/or stability. In this 
paper, we will restrict ourselves to schemes for which each method is used to raise the accuracy 
rather than to correct the stability properties. 
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3 Linear stability of DC-schemes 

To analyze the linear stability properties of the method obtained, we introduce some new nota­
tions. Let R;(z) = N;(z)/ D;(z) whereby N;(0) = D;(0) = 1 denote the linear stability function 
associated to method </J;, then the linear stability function Zm associated to the scheme (2.5) is 
recursively defined by 

.- R1(z), 

Z;(z) .-
(D1(z) - D,(z)) Z,-1(z) + N,(z) 

D1(z) 
i = 2, ... , m. 

In this way, it is clear that the denominator of Zm(z) is D?'(z). 
Several stability properties can be proven. A property which is useful in the construction 

of optimal DC schemes is given in the following theorem : 

Theorem 3.1 If R;(z) = exp(z) + O(z9i+I ), i = 1, ... , m then Zm(z) = exp(z) + O(z9m+I) if 
and only if D1(z) - D;(z) = O(z9), i = 1, ... , m . 

If a DC scheme is set up consisting of m MIRK methods this condition means that, for 
i = 0, 1 . . . ,g - 1, bT.x•.v has the same value for all m methods. 

We recall that our first aim is to reduce the computational work associated to the com­
putation of high powers of J . Since the number of powers is determined by the degree of D1 ( z), 
we may want to choose a method <Pl for which D1 (z) is linear. In this respect, the trapezoidal 
rule looks very interesting since it is the only A-stable MIRK method for which D1 (z) is linear 
which allows g = 2. Unfortunately, we have the following result : 

Theorem 3.2 The DC scheme {2.3) where <P is based on the trapezoidal rule and </J* is a Runge­
Kutta method M of order p:::: 3, cannot be A-stable. 

From the above result, it follows that if D1 is linear, <P1 can only be of first order if A­
stability is required and thus only g = 1 is possible. If one looks for accurate A-stable schemes, it 
is thus necessary to consider schemes for which the denominator of the basic method is quadratic 
at least. In this case, it is still possible to avoid the computation of J2 if D1 is factorizable in 
linear terms. Then several systems (for which the iteration matrices are linear in J) have to be 
solved consecutively. 

4 An Example 

Case A : We select MIRK methods for which e; = i - 1, i = 1, 2, ... , s. These methods, which 
still contain some parameters, are described in Section 3 of [7]. Since D1 has to be quadratic 
at least, we look for a method <P1 which is already of third order. It turns out that within the 
family considered it is possible to construct a L-stable fifth order method M345, based on a 3 
methods of orders 3, 4, and 5 respectively for which D1 is factorizable and, if we call M3 (resp. 
M34) the method based on the third order (resp. third and fourth order) method alone, M3 and 
M34 are A-stable. The values of the parameters to obtain this are t = 2 ( v'3 + 1) for m = 3, 
t = 0 ands= 2(v'3+ 1) form= 4 ands= -2-4v'3/19 and t = 7/2+2v'3 form= 5 (with 
stage order 3) . 
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Figure 1: -log2 h vs. log10 of the global error in x = 1 with (a) A= 0 (left) , (b) A= - 1 (middle) 
and (c) A= -1000 (right) for the methods of case A. 

As it is the case with RK methods in general, one can expect a possible order reduction 
when applying the method to stiff problems. Therefore, we apply the method to the Prothero­
Robinson test problem [5) 

y'(x) = A (y(x) - g(x)) + g'(x) , y(O) = g(O) , (4.6) 

with g(x) = 10 - (10 + x) exp(-x) . We integrate this problem whose solution is y(x) = g(x), 
up to x = 1 and we consider the global error for different values of the stiffness parameter A 
and different values of the constant stepsize h. For A = 0 the problem becomes explicit and the 
results obtained with deferred correction are those obtained with the last method used. The 
slopes of the lines in Figure 1 (a) confirm the theoretical order of the methods M3, M4, Ms. 

For A R: 0, the problem is non-stiff and from Figure l(b) one can easily deduce the 
expected order behaviour of the three methods M3, M34 and M34s . However, as A decreases, 
the behaviour changes. In Figure l(c) we show the case where A= -1000, in which case the 
problem is moderately stiff. One notices that M34 does not perform better than M3, while M34s 
performs very badly. To understand the behaviour of the different schemes, we consider the 
LTEs and we look at the behaviour in the case z = -Ah ➔ oo and h ➔ 0 (this is what Prothero 
et al. call the stiff order). 

5 The stiff order of DC schemes 

When a parameterized RK method is applied to (4.6) with steplength hone obtains, 

(1 + hBT.(e - v)) y + BT.(hG'(O) - hG(O)) 
Yi= 1-hBT.v · (5.7) 

where h := Ah, BT := bT.(J -hX)-1 and G(x) and G'(x) are the s-vectors with entries g(c;x) 
and g'(c; x). 

Theorem 5.1 If a parameterized RK method of order p with stage order q ~ p is applied to 
(4.6) , then 

hq+l 
y(h) -y1 = (q + l)! C9+1(h) y<9+1l(o) + O(h9+2

), (5.8) 

h C (h. ) _ l ( 1) bT 9 hBT_(cfl+l - (q + 1) A.c'l) 
w ere q+l - - q + .c + -----. -----

1 - hBT.v 
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If a method is fitted to solve stiff problems, the rational function C(z) ~ z- P, with p, ~ 0 
as z ➔ oo. For DC-schemes we need to know how the corresponding expression grows out of the 
expressions for the composing methods. Therefore, we define S(h, h) := BT.(h G'(0) - h G{0)) , 
such that we obtain from (5.7) that y1 = [N{h) y + S(h, h)]/ D(h). When the scheme {2.5) 
is applied to problem {4.6), one obtains the approximations ii1 ,i = Z;(h) y + W;(h, h) , i = 
1, 2 . . . , m, where 

Ifwe now consider the case where h ➔ 0 and h ➔ oo and we define iim := min {q;ICq+1(h) -f 0} 
1$ i :5m • 

where q; and C;,q;+1(h) follow from (5.8) for method</>;, then 

- h'im+I C- +I) - • - +2 
y(h) -y1 ,m = (iim + l)!y q,. (0) Cm,q,.+1(h) + OW'" ) , 

where G\,;,.+1{z) := c,,,;,.+1{z) and 

C _ ( ) ·- (D1(z) -D;(z))6i-l,q,.+1(z) + D;(z)Ci,qm+l(z) 
,,q,.+1 z .- D1(z) . 

If we now return to Case A, we find that ij3 = 2 since q1 = 2 and q2 = q3 = 3 and from 
which one easily finds that that for z ➔ oo 61,3 ~ z-1 and 62,3 ~ z- 1 but 63,3 ~ z 1

. 

Case B : A third and last example illustrates the possibility to have a stable DC-scheme 
with gain g = 3 with a stable s1-stage method of order 3 and a s2-stage method of order 6 who 
both have the maximum stage-order 3. To construct this scheme, we first examined the cases 
where the total number of stages s1 + s2 is minimal, taking into account that s2 ~ 5 to obtain 
order 6 and and s1 ~ 3 to obtain order 3 and stage order 3 and we made use of the fact that 
expressions of the form bT.Xi.v and bT.Xi.e are connected to each other by the order equations. 
This technique showed that it was impossible to have A-stability for s1 = 3 and s2 = 5 or s2 = 6. 
We thus chose s1 = 4 and s2 = 5. For the sixth order method, we used the family in [l] . This 

family contains 2 parameters J.i5l and ci6) . A family of third order methods with 4 stages which 
has stage order 3 and for which the denominator of the stability function has fixed linear and 
quadratic coefficients also contains 2 parameters c~3) and ci3l, whereby stability requires that 

I ( c~3) - 1) / J.i3l I < 1. There is one possibility, ci6) = 1 - c~6
) , to make the DC scheme A-stable 

and L-stability can be obtained for c~3
) = J2. Considering the C-expressions reveals that both 

the basic method and the DC-scheme are ~ z-1 irrespective of the choice made for c~3
) . The 

two remaining conditions, which express that bT.(cv) and bT.(v2) should have a fixed value for 

both methods, are then used to determine c~6
) and ci3) . We mention the following solution : 

0 
1 

. 7071067812 
- .2670411948 

0 
1 

.7928932188 
- .2606042131 

0 
.0606601718 

- .2932210260 
1.0863664648 
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- .1464466094 
- .1257432186 .4125272629 

.3492484895 .0353379297 -.4709528840 



Figure 2: - log2 h vs. log10 of the global error in x = I with (a) >. = - 1 (left) and (b) >. = -1000 
(right) for the methods of case B. 

0 
1 46) 

1-46
) 

.5 

0 
1 

vl6) 
1-vi&) 

.5 

0 

- 1.249716874 
.4341220130 
.1410807817 
.1871016491 

-.4341220130 
1.249716874 

- .1410807817 
.1871016491 

where r:J.i6l = - .5322765429 and vi6 ) = 1.151562344. 

0 
- .0077889892 .0077889892 
- .0047942664 - .0047942664 .6353852345 

A final analysis shows that, apart from small regions of instability along the imaginary 
axis, the basic method of order three is A-stable and the DC-scheme itself is L-stable. 

6 Conclusion 

High order DC schemes can be constructed, but that it is insufficient to consider only linear 
stability. One can make sure that the stability of the DC scheme is ensured also for non-linear 
systems of equations. For the non-stiff case, there is a natural mechanism present in the DC 
scheme to perform error control and stepsize selection. But for the stiff case, this mechanism is 
no longer present due to order reduction. 
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The convergence of Runge-Kutta methods 
for delay differential equations 

Karel in 't Hout 
Mathematical Institute, Leiden University 

In this talk we consider the numerical solution of initial value problems for 
delay differential equations, 

(1) U'(t) = J(t, U(t), U(t - r)) (t > 0), U(t) = g(t) (-r ~ t ~ 0), 

where f, g denote given (vector-valued) functions, r denotes a given, fixed, 
positive real number, and U(t) (fort > 0) is unknown. Initial value problems 
of the type (1) arise in many branches of science and engineering, such as 
physiology, epidemiology, and electrical circuit simulation. A popular ap­
proach to obtain numerical (step-by-step) methods for (1) consists of the 
adaptation of known step-by-step methods for the numerical solution of ini­
tial value problems (1) without a delay argument U(t-r) . The adaptation to 
general problems (1) is done by means of an interpolation procedure, which 
computes, in each (time-)step of the numerical process, approximations to 
the exact solution of (1) at a certain number of previous time-points t. 

In this talk we shall consider the class of numerical step-by-step methods 
for (1) that is obtained by adaptation of the well-known class of Runge­
Kutta methods (see e.g. [1]) using the interpolation procedure that has 
been introduced in [2) . We are interested in the convergence behaviour of 
this class of methods in the numerical solution of general, non-stiff initial 
value problems (1). In [1] the result was obtained that if the stepsizes are 
constant and equal to an integer fraction of the delay r, then any given 
method from the class under consideration has order of convergence p, where 
pis the order (of consistency) of the underlying Runge-Kutta method. Up to 
now the important problem has been completely open, however, whether for 
any given method under consideration the same (high) order of convergence 
holds for general cases of variable stepsize sequences, whenever the number of 
support points for the interpolation procedure is sufficiently large. (We note 
that in the case of [1] there is in fact no interpolation error.) In this talk we 
will present a main result on this problem, which substantially extends the 
result obtained in [1]. We will illustrate our (convergence) result by various 
numerical experiments. 
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Talk I: Multilevel Frames and Space Splittings 
with Applications to Iterative Methods 

Talk II: Multilevel Discretization Schemes 
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Ab■tract 

This is the support material for two talks given at the 1998 Dutch Conference of Numerical 
Mathematicians. 1n Talk I (sections 1-3 below), we review the notions of frames and stable space 
splittings in a Hilbert space setting. While the frame concept was developed as part of (non­
harmonic) Fourier analysis, mainly in connection with signal processing applications, the latter 
theory of stable subspace splittings has led to a better understanding of iterative solvers (multi­
grid/multilevel resp. domain decomposition methods) for large-scale discretizations of symmetric 
elliptic variational problems in Sobolev spaces. In Talk II (see section 4) , several aspects (apriori 
and aposteriori compression, preconditioning, resolution of singularities) of solving the single layer 
potential equation by multiscale methods are discussed. Although our analysis is restricted to the 
unit square [0, 1] 2

, some observations generalize, and are worth further investigation. 

1 Frames 

The notion of a frame in a Hilbert space V was introduced in [12] . A first survey with emphasis on 
frames was (16], see also (5, Chapter 3], (9, Chapter 3] . A more recent and comprehensive source is the 
collection (29] which we recommend for further reading. 

Definition 1 Let F = {/k} be an at most countable system of elements in V . 
a) F i., a frame in V if there are two constants O < A $ B < oo such that 

All/11 2 
$ L 1(1, /kll 2 

$ Bllfll 2 't/fEV . 
k 

(1) 

The optimal constants A, B in {1} are the lower and upper frame bounds, respectively, their ratio B/A 
defines the condition of F and will be denoted by 1t( F) . 
b) F i., a Rlesz basis in V if F i., dense in V and there are constants O < A $ iJ < oo such that 

Allfll2 
$ L c~ $ Bllfll2 (2) 

k 
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Assuming b), it can indeed be proved that any/EV possesses a unique V-converging series represen­
tation 

f = L ctfi , c = (ci) E t2 . (3) 
k 

Any complete orthonormal systems { e;} C V (CONS) is obviously both a frame and a lliesz basis. Any 
lliesz basis is a frame (with A= 1/B, B = 1/A.). This follows from comparing (2) with the following 
result : 

Theorem 2 [12] A system F satifies (1) (i.e., is a frame) if and only if 

B- 1 11/112 $ 111/111 2 = inf llcll~ $ A- 111/112 V /EV . 
c:/=E,.c•/t. 

(4) 

For ( 4) to hold, it is implicitly required that any / E V possesses at least one V-converging series 
representation (3) . Unless a frame F is a lliesz basis, such a series is nonunique. Nevertheless, frames 
can be used to represent elements from V in essentially the same way as CONS or lliesz bases. To 
produce a representation formula, we need some standard definitions. Let F be a frame in V . Then 
the synthesis operator R given by 

R : c = (ci) E l 2 >--+ Re= L ctfi E V 
k 

is well-defined and bounded. Its adjoint R" : V -+ t2 takes the form 

/EV >--+ R"f=((f,/k))Et2 

and is called analysis operator. The boundedness of R and R• follows exclusively from the upper 
estimate in the definition (1) . The two-sided inequality (1) can be rephrased as 

A(!,!) $ 1/R" Ill~ = (RR" f, !) $ B(f, !) V/E V , 

which shows that the frame operator 'P = RR" : V -+ V is symmetric and has a bounded inverse: 

'P = p•, Aid$ 'P $ Bid, 11-Pllv-+V = B, ½Id$ p-• $ ¼id, l/'P- 11/v-+V = ¼ . 

Here, A,B are the frame bounds of F. As a consequence, the spectral condition number of'P coincides 
with the frame condition: 

Obviously, 
V/E V . (5) 

The system F = {11 = p - 1 J1 } is called dual frame. It is easy to see that Fis indeed a frame, with 
frame operator p - 1. Finally, note that there is another interesting operator 'P = R" R : fl -+ t2 which 
is also symmetric (in t2) but not necessarily invertible. Its matrix representation 'P = ('Pk,; = (/;, f•)) 
suggests the name Gramian of F for 'P . 'P can also be used for characterizing properties of a frame. 

(5) is the desired canonical decomposition-reconstruction formula. It even gives the beat represen­
tation (3) with respect to F such that the infimum in ( 4) is achieved. Its practical use requires, in 
one way or the other, to compute p- 1 on certain elements of V, or equivalently, to solve the operator 
equation 

'Pg= h 

for given h E V. It was already proposed in [12] (see also [30, Section 8.2]) that Richardson iteration 

(6) 
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could be used. The convergence rate of the iteration (6) is given by 

2 
PR = p(Id - w-P) = 1 - l + 11:(F) , 

it exclusively depends on the frame condition. Since -P is symmetric, Richardson iteration can be 
replaced by the conjugate gradient method which would result in an even better convergence rate and 
avoid knowledge of good bounds for A, B . Other iterative methods might be tried as well. 

There is another tricky point. In many applications, the theoretical investigations are for infinite 
frames (in infinite-dimensional V) while the algorithms work with sections Fn = {/1, ... , f n} of the 
frame. An example from [4) shows that one should be cautious. Let 

F = {/1 = e1,h = e1 +e2/2, ... ,ft = et- 1 +et/k, ... }, 

where {et} is a CONS in V . Fis a frame. However, if one considers its sections Fn as frames in the 
subspaces span Fn C V, then the corresponding lower frame bounds An deteriorate as n ➔ oo. It can 
be shown that 11:(Fn) ~ (n!) 2 • Thus, working with the sections Fn of a frame F needs special care. In 
contrast, if Fis a lliesz basis then the inequalities in (2) are automatically preserved for any subsystem, 
with the same (or better) constants, which yields 11:(Fn) :5 11:(F). 

Frames have been considered mainly in connection with image and signal processing applications. 
The most prominent investigations are connected with irregular sampling ([12),[30, Chapter 8]), 
Gabor frames ([30, Chapter 3 and 7),(14),(13)), and multilevel systems originating from some kind 
of multiresolution analysis of subspaces {V; }. E.g., given a nonzero function t/J E L2(R), we can define 
wavelet-like system& by using integer shifts and dyadic dilation: 

More information can be found in [9, 5, 29, 30]. The classical counterparts of this construction are the 
Haar and the Faber-Schauder system. These are obtained if the functions t/J depicted in Figure 1 a) 
and b) are used, respectively. Both choices lead to linearly independent systems. In the Haar case, the 
resulting wavelet system F., is even a CONS in L2(R) . Moreover, after suitable scaling it is a lliesz 
basis for the Sobolev spaces H'(R) with -1/2 < s < 1/2. The Faber-Schauder system associated with 
the t/J in Figure 1 b) is not a lliesz basis in L2(R) but in H'(R), 1/2 < 11 < 3/2. The system F., 
resulting from the hat function in Figure 1 c) leads to a system which contains redundancy, and yields 
frames (not lliesz bases) in H'(R) if 0 < s < 3/2. All these systems have generalizations to higher 
dimensions and to the finite element setting on bounded domains. See (22, 6, 21, 8) for further results. 

a) Haar wavelet 

1/2 

b) Fabcr-Schaudcr 'wavelet ' 
(hierarchical basis) 

-1 

c) BPX 'wavelet' 
(multilevel nodal basis frame) 

Figure 1: Three basic 'wavelets' t/J 
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2 Stable space splittings 

We come to the concept of stable space splittings which originated from work on the theoretical founda­
tion of fictitious domain, domain decomposition methods, and multigrid methods [11, 32] for variational 
problems. It generalizes the frame concept in two directions: The individual / 1 are replaced by Hilbert 
spaces V;, and the assumption / 1 E V is relaxed (instead of requiring V; C V we only assume the exis­
tence of suitable mappings R, : V; -+ V , the scalar product on V; need not be inherited from V). This 
allows for a broader range of applications to be covered ( outer approximation schemes, block-iterative 
schemes, etc.). However, many basic ideas remain the same (this will be expressed by the notation used 
below) . 

Again, let V be the basic Hilbert space, with ( ·, ·) resp. ( ·, ·} = ( ·, ·} v• xv as basic scalar product 
resp. duality pairing. Consider a symmetric V -elliptic 11ariational problem 

ueV : a(u,11)=(/,v} Vve V (7) 

to be solved. (7) is equivalent to the operator equation Au = f, where f E V' and A V -+ V' 
is defined by (Au,v} = a(u,v) . Since symmetry and V-ellipticity require symmetry, continuity, and 
coercillity of the bilinear form a(•,•}, {V;a(·, •)} (i.e., the space V equipped with the scalar product 
a(·, •}} is an isomorphic copy of {V; (·, -)}. 

Let V;, j = 1, 2, ... , be an at most countable family of Hilbert spaces, with (·, •),, (·, ·}, introduced 
similarly. To each V; we assign its own symmetric V;-elliptic bilinear form b;(·,-) : V; x V; -+ R 
which in particular means that {V;; b1(·, ·)} are Hilbert spaces. The V; and b,(·, •) will be used to create 
auxiliary variational problems, and to compose from their solution operators an approximate inverse to 
A. The latter is then used as a preconditioner in an iterative method for solving (7), see section 3 for 
the details. It is not assumed that the V; are subspaces of V (but it is implicit that they correspond to 
certain portions of V, see below). 

Denote the Hilbert sum of this family by V, i.e., for 

u = (u,), ii= (v1), u1, v1 EV; Vj 

set 

which makes sense as a scalar product on 

V={u: ii(u,u)<oo} . 

Finally, consider bounded linear mappings R, : V; -+ V. Formally, they can be considered as the 
components of an operator R : V-+ V given by Ru= E, R,u,. 

Definition 3 {[22]} The system {{V;;b1},R1} gi11es rise to a stable splitting of {V;a} which will be 
expressed by the short-hand notation 

(8) 

if there are two constants O < A :5 iJ < oo such that 

A.a(u, u) :5 lllullJ2 = _inf ii(u, u) :5 Ba(u, u) Vu E V . 
UEV: u=RU 

(9) 

The optimal constants A, iJ in (9) will be called lower and upper stability constants, and their mtio 
tt = Bf A condition of the splitting (8) . 
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It should be noted that {9) implicitly requires that R makes sense (convergence of the sum if infinitely 
many V; are involved) and yields a bounded operator from V onto V, i.e., ran(R) = V. The similarity 
of this definition with (4) in Theorem 2 is obvious. The adjoint R• : V ➔ Vis defined as 

R• : u E V >---t R•u = (R~u, R;u, .. . ) E V , 

where the components R; : V ➔ V; are determined by solving the auxiliary variational problems: 

b;(R;u, 11;) = a(u, R;v;) 

Introduce the bounded linear operators 

V llj EV; . 

P = RR• : u E V >---+ Pu= L T;u E V (T; = R;R; : V ➔ V) 

and 
P = R• R : u --+ Pu E v 

(11) 

(12) 

where P can be considered as operator matrix with entries F';1 = R;R1 . Following some tradition 
(11 , 32), P is called Schwarz opemtor associated with the stable splitting (8) while the operator matrix 
associated with P will be called extended Schwarz opemtor (it is nothing but the generalization of the 
Gramian for frames discussed in Section 1, and the abstract analog of the matrix of the semi-definite 
system (17]) . 

Theorem 4 The Schwarz opemtor {11) associated with a stable splitting {8) is symmetric positive 
definite and has a bounded inverse. Moreover, 

VuE V , 

and 
1 1 B Id '.5 p '.5 id , Ald '.5 p-l '.5 Eld , ic(P) = IC . 

With ,p = R4, E V, 4, E V defined from f in an ' 'appropriate way, u E V solves the variational problem 
(7) if it solves the opemtor equation 

Pu= ,p, (13) 

or, equivalently, u = Ru for any solution u E V of the opemtor equation 

(14) 

The computational aspect of these reformulations of (7) will be discussed in section 3. Standard 
examples of stable space splittings are discussed in [22, 26, 27) . A particularly important example, with 
deep connections to approximation, function space and interpolation theory, are multilevel splittings 
associated with a hierarchy of spaces 

Vo ➔ Vi ➔ ... ➔ V;-1 ➔ V; ➔ ... ➔ V , (15) 

where the relation V;-1 ➔ V; is described by an embedding operator l; : V;- 1 ➔ V; (these 11 are also 
called prolongations or interyrid tmnsfer opemtors) . H the spaces are nested, i.e., if V;- 1 CV;, then the 
natural embeddings are often the prefered choice. Define Rf = lJ ... 11_ 1 : V; ➔ VJ , 0 :5 j :5 J , and 
R1 = limJ-,00 Rf : V ➔ V {the existence of the latter operators needs verification) . The multilevel 
splittings of interest are 

J 00 

{Vi ;ai} ~ LRf {V;;b;} , {V;a} ~ LR,{V;;b1 } . (16) 
j = O j=O 
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In applications to differential and integral equations on a domain fl, where (7) is related to energy 
minimization in Sobolev norms, the b; are given by scaled £ 2,icalar products. Then the verification 
of the stability of the splittings in (16) can be reduced to the study of Jackson-Bernstein inequalities 
and approximation spaces associated with (15) [2, 22, 6] . Other techniques (e.g., using information on 
strengthened Cauchy-Schwarz inequalities 

a(R;u;,R.iu1) ~ 'Y;1b;(u;,u;)112b1(u1,u1)112 Vu; EV;, u1 EV,) (17) 

can be found in [32, 34, l]. 
We can introduce some general operations on stable space splittings which allow us to modify a 

given one, in order to adapt it to a specific application or to optimize the implementation with respect 
to a given hardware platform. In [18, 22), we described refinement (replace some of the components 
{V;; b;} of a splitting by stable splittings of their own), clustering (the inverse operation), and selection 
(replace some V; by subspaces V; C V; or drop some components; this operation corresponds to se­
lecting subsystems of a frame, and may lead to a detoriation of the condition number of the splitting). 
Furthermore, tensor-product techniques can be explored [19] to obtain splittings for higher-dimensional 
applications. Another variation is to consider mappings of stable splittings to produce stable splittings 
for the range of a certain operator T : V ➔ V = ran(T}. This applies, e.g., to problems associated 
with trace spaces [25] . 

3 Iterative solvers 

We come to some consequences of the notion of stable space splittings for the construction of iterative 
solution methods for solving the variational problem (7). Theorem 4 provides the tools. Assume that 
the splitting (8) is stable, and recall that 

a(u,v) = (Au,v), b;(u;,v;) = (B;u;,v;);, 

defines invertible operators A : V ➔ V' , B; : V; ➔ VJ . Introduce the dual operators Ri V' ➔ VJ 
by 

(lf;/,v;); = (/,R;v;) V /EV', v; EV; . 

It follows that R1 = B;1 RiA. Note that~; = B;1 Rif is the right choice in (13-14). Thus, the additive 
Schwarz operator has the representation 'P = CA, where 

C = LR;B;'lf; = Li'; : V' ➔ V (18) 
; 

satisfies C' = C . Obviously, C can be considered as a (symmetric) preconditioner or approximate 
inverse for A, and the switch from (7) to the equivalent formulation (13} as a preconditioning method, 
the quality of which critically depends on the condition K of the splitting. 

Following this setup, several iterative methods for solving (7) based on auxiliary subproblems asso­
ciated with the given stable splitting can be introduced and analyzed (see [32, 34, 1, 22, 18)). To be 
practical, consider a finite stable splitting 

J 

{V;a} Sa! L R;{V;;b;} ( dim V; = N; < oo, dim V = N < oo) . 
j=O 

The following basic algorithms associated with (19) have been formulated in [32]: 

(AS) Additive Schwarz method. Starting with an initial guess u<0> EV, repeat 

J 

u(nH) = u<n) + w LT;(/ - Au(n)) , 

j=I 

until a stopping criteria is satisfied. 
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(MS) Multiplicative Schwarz method. Starting with an initial guess u<0) EV, repeat 

v(J+I ) = u<n) ' 

vW = vCi+I) + wT;(f - AvCi+I)), j = J, .. . , 0, 

tl (n+I) = V(O) > 

unt il a stopping criteria is satisfied. 

Variations (peg-iterations, symmetric multiplicative methods) are possible. Note that the ordering of 
the subproblems has impact only on the multiplicative method (MS). The relaxation parameterw > 0 
can be used to properly scale the subproblems, and to enhance the convergence behavior. A special 
case of (AS) is the iteration (6) mentioned in connection with frame decompositions. 

An elegant way to analyze the above iterations is to rewrite them in terms of classical iterative 
methods applied to the operator matrix i> ( which is now of size J + 1) as proposed in [17, 18]. Richardson 
iteration and the SOR-method applied to the "matrix" problem (14) in V transform into the iterations 
(AS) and (MS) in V, respectively, if the mapping R is applied. This leads to the following convergence 
result: 

Theorem 5 Let (19) be a finite stable space splitting, with stability constants A,B, and condition K. . 

a) The additive method (AS) converges for 0 < w < 2A. The optimal convergence rate is achieved for 
w• = 2AB/(A + B) : 

• . f 2 PAs= m _PAs,w=l--- . 
0<w<2/ A 1 + K. 

(20) 

b) For the multiplicative algorithm (MS) , convergence is guaranteed if O < w < 2h, where "f 
max; "/;; $ 1/ A (the"/;; are defined in (17)) . The optimal convergence rate can be estimated by 

( • )2 - inf ( • )2 < 1 -
1 

PMS - 0<w<2/-r PMS,w - log2(4(J + 1)) . K. • 
(21) 

In this generality, these estimates are the best possible ones (see [23]). They show the importance 
of having well-conditioned splittings. Improved results for the multiplicative method can be found 
in, e.g., (32, 34, l]. ff the splitting is of multilevel type (16) then the iterations (AS) and (MS) 
can be interpreted as a V-cycle preconditioner and a V-cycle multigrid algorithm, respectively. For a 
comprehensive treatment of multigrid theory in the framework of subspace correction algorithms, see [l] . 
Additive multilevel preconditioning, especially based on multilevel frames and lliesz bases in Sobolev 
spaces, is emphasized in [22, 6, 7, 27] . Domain decomposition algorithms are treated in [3, 31, 33]. 
The concept of space splittings has also been applied to discretizations for elliptic systems (Stokes and 
Maxwell equations) . Generalizations to nonsymmetric, indefinite, and unstructured problems have been 
attempted, with mixed success. 

4 Multilevel schemes for the single layer potential equations 

The single layer potential equation 

- 1 1 f(y) 
Tf=-

4 
-, -,dy=g(x), ,,. r x-y 

(22) 

is the prototype of an operator equation associated with a symmetric elliptic pseudodifferential operator 
T : n - 1/ 2 (r) ➔ H 112 (f) of order -1. One concrete application are capacity calculations of electrically 
charged bodies in R 3 where r is the surface of the body, g(x) = 1 on r , and f(x) represents the charge 
density. The capacity itself is defined by 

C = C(f) = 2_ f f(y)dy 
4,,. lr 
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Similar problems arise for interface problem,i for second order elliptic boundary value problems when 
Neumann data have to be determined from Dirichlet data. 

The numerical analysis of an integral equation such as {22) faces a number of difficulties: 

• The solution theory "lives" in n - 1/ 2 (f!), the natural energy space for (22). Sobolev norms of 
negative order are not so well-investigated in connection with standard discretization schemes. 

• For non-smooth bodies , e.g., if r contains corners and edges, the solutions exhibit strong singu­
larities. 

• The stiffness matrices AN associated with any typical discretization space VN (e.g., boundary 
element or spectral approximations) are dense matrices. Moreover, almost independently of the 
used discretization spaces and methods, the reliable numerical computation of the entries of the 
stiffness matrices represents a serious bottleneck. The singularity of the kernel k(x, y) = 1/lx -yl 
along the 'diagonal' x = y and the parametrization of the surface r represent additional challenges. 

• The condition of AN grows with dim V N. Although this growth is moderate compared with second 
order elliptic equations, preconditioning needs to be considered. 

These challenges have attracted many researchers. In particular, hp-methods and wavelet methods 
( combined with matrix compression) are under investigation. See (6, 201 for some references. 

In Talk 2, we first report theoretical and numerical results [241 on preconditioning low-order bound­
ary element ducretizations for (22) using semi-orthogonal wavelet splittings. This material is closely 
related to Talk 1, and further illustrates the machinery of stable splittings in the Sobolev context. In 
particular, we derive the exact asymptotical properties of multilevel preconditioners based on Haar-type 
£:!-orthogonal bases in the case of piecewise constant elements. 

The main part of this talk is devoted to our recent joint work with Griebel and Schiekofer (20, 281 
on using sparu grid spaces to partly overcome the above-mentioned difficulties. This second part is 
restricted to the case of a square screen r = [0, 112 ( and generalizes to r composed of a few tensor­
product faces) . In this case, sparse grid spaces can be constructed by looking at special sections 
of tensor-product system,i obtained from univariate spline systems. E.g., if { H;,;} denotes the one-­
dimensional Haar system on [0, ll (the level index j is determined by the requirement that H;,, is 
constant on dyadic intervals of length 2-i) then 

V; = span{HJ,1 = H;, ,,, ® H;.,,, : Jt + 12 $ J}, J ~ 0, 

is the definition of standard sparse grid spaces for piecewise constant functions on (0, 112• ff V; denotes 
the standard full grid spaces (piecewise constant functions on a square grid of sidelength 2-J) then V; C 
V; and, most importantly, dim V; ,::; J2J << 22J = dim V;. As is well-known for H•-approximation 
with s ~ 0, under additional regularity assumptions ( existence of certain higher order mixed derivatives) 
the use of V; instead of V; leads to good approximation rates with a small number of degrees of freedom. 
We make the approximation power of V; precise for s < 0, and observe some reduced efficiency of the 
sparse grid approach for this case. 

Our numerical experiments for Galerkin discretizations of (22) in the case s = -1/2, however, 
looked much more promising than predicted by the error analysis. We traced this phenomenon back 
to the favorable properties of tensor-product systems ( as considered in the construction of sparse grid 
spaces) for the resolution of edge singularities. It is shown in (281 to which extent optimally constructed 
adaptive sparse grid spaces may be superior over traditional adaptive wavelet spaces in the case of (22). 
In particular, we can show that we can choose $ N Haar functions HJ,I such that using them as ansatz 
functions in a Galerkin scheme for the capacity problem (g(x) = 1, r = (0, 112 in (22)) leads to capacity 
approximations CN with an error rate of 

N ➔ oo . 
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Traditional adaptive wavelet schemes cannot reach rates better than O(N- 1 ) for the same problem. 
The practical results for capacity computations are very impressive if moderate accuracy (relative error 
::::, 10-3) suffices ( asymptotically, for very high resolution, hp-methods will be superior}. This topic is 
related to investigations on nonlinear best N-term approximation [10], and to the problem of how to 
properly incorporate anisotropic refinement. It should be mentioned that most of our observations are 
not yet fully practical, and need further evaluation. 
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Element-by-element construction of wavelets satisfying 
stability and moment conditions 

Rob Stevenson, University of Nijmegen 

Multiscale- or wavelet bases can be viewed as improved hierarchical bases, 
known from finite element spaces, in the sense that they are stable in a range 
of Sobolev norms. As a consequence, stiffness matrices corresponding to 
elliptic problems with respect to these wavelet bases have uniformly bounded 
condition numbers not only for problems of second order, as is (almost) the 
case with the hierarchical basis (in 2D), but also for problems of lower or 
even negative orders, for example for various integral equations arising from 
the application of the boundary integral method. 

In addition, unlike hierarchical basis functions, wavelets have vanishing 
moments, i.e., they are orthogonal to all polynomials of degree less than m, 
where m is the number of vanishing moments. A well-known disadvantage of 
the boundary integral method is that it gives rise to dense matrices. Yet, as a 
consequence of the vanishing moments, when wavelet bases are applied many 
elements in the matrix appear to be small. It has been shown that, dependent 
on the order of the equation and the order of approximation of the discrete 
space, when the number of vanishing moments is large enough, the stiffness 
matrix can be compressed to a sparse one, where the order of convergence 
of the resulting solution is retained. Since the compressed stiffness matrix is 
also well-conditioned, a method of optimal complexity is obtained for solving 
integral equations. 

"Classical" wavelet spaces are spanned by the translates and dilates of 
one, or in more dimensions a few "mother wavelets". This means that appli­
cations are restricted to uniform meshes. Even the adaption of such wavelets 
to a bounded interval is a far from trivial task. 

In this talk, we demonstrate a construction of wavelet bases of standard 
Lagrange finite element spaces on non-uniform meshes on n dimensional do­
mains or manifolds. The wavelet bases are stable in the Sobolev spaces H' for 
Isl < J (Isl ~ 1 on Lipschitz' manifolds), and the wavelets can, in principal, 
be arranged to have any desired order of vanishing moments. 

Based on the affine equivalence of the finite elements the construction of 
the wavelets consists of two parts: An implicit part involving some computa­
tions on a reference element which, for each type of finite element space, have 
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to be performed only once. In addition there is an explicit part which takes 
care of the necessary adaptations of the wavelets to the actual mesh. The 
only condition we need for this construction to work is that the refinements 
of initial elements are uniform. 

We will show that the wavelet bases can be implemented efficiently. 
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STIFF OSCILLATORY SYSTEMS 
WITH RANDOM INITIAL DATA 

Introduction 

Andrew Stuart 
Scientific Computing and 

Computational Mathematics Program, 
Durand 257, 

Stanford University, 
Stanford CA94305-4040, USA. 

In the field of computational molecular dynamics stiff oscillatory systems, 
with broad frequency spectra, often arise. It is hence of interest to develop a 
theory of the numerical analysis for such problems. In the area of stiff dissi­
pative systems the understanding of numerical algorithms has been greatly 
enhanced by the study of a variety of simple model problems [1]; here we 
introduce, and then study numerical methods for, several model problems in 
stiff oscillatory systems. 

We start by introducing two very simple model problems for stiff oscil­
latory systems. Both comprise a linear superposition of N ~ I harmonic 
oscillators used as a forcing term for a scalar ODE. In the first case the initial 
conditions are chosen so that the forcing term approximates a delta function 
as N -t oo and in the second case so that it approximates white noise. In 
both cases the fastest natural frequency of the oscillators is O(N). 

The model problems are integrated numerically in the stiff regime where 
the t ime-step t::i.t satisfies 

N !::i.t = 0(1). 

The convergence of the algorithms is studied in this case in the limit 

N -t oo and t::i.t -t 0. {2) 

For the white noise problem both strong and weak convergence are con­
sidered. This work may be found in [3]. 
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We then describe a model for a particle immersed in a heat bath. This 
simple mechanical model is prototypical of many models in statistical me­
chanics: the overall system has large dimension 2N + 2 but for N ~ 1 the 
projection of the solution onto a low dimensional subspace, of dimension 2 
here, is governed by an equation of dimension 2 in which several parameters 
characterizing the overall statistics of the remaining 2N variables remain but 
no other details appear. Since the 2N variables play this simple role in the 
projected variables it is natural to ask whether it is necessary to resolve ac­
curately those 2N variables if information in the projected space is all that is 
required. These ideas are closely related to those studied for the two simple 
model problems and we present numerical experiments to show that underre­
solved computations for the heat bath/particle model can still yield accurate 
simulations for certain projections of the solution. This work may be found 
in [4] . 

The Two Simple Model Problems 

Consider the equations 

ii.1 + j2u1 = 0, 

u1(0) = a1, u1(0) = 0, j = 0, .. . , N 

and 

where 

ZN = J(ZN) + HN(t), 

ZN(O) = Zo 

N 

HN(t) := L Uj(t). 
j=O 

We consider two choices for the { a1 }f=0 : the first is 

1 
ao = 2, a1 = 1, j ~ 1. [MPl] 

The second is 

/2 . 
a1 = y ;r,1, 1 ~ 1; [MP2] 
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here the 1/i are IID Gaussian random variables with mean O and variance l. 
Throughout the following we assume that f E C 00 (l!F, l!F) satisfies the 

global bounds 

{ 
llf(x) - f(y)II ~ Lllx - YII } 

llf(x)II ~ K[l + llxll] Vx,y E ]Ir. 

Formal calculations indicate that for [MPl], 0 ~ t ~ 1r and N large, ZN 
should behave like z solving 

i = f (z), 
7r 

z(O) = zo + 2. 

For [MP2] the analogous formal limit is the SDE 

dz= f(z)dt + dW, z(O) = Zo 

(8) 

{9) 

where W is a standard Brownian motion on O ~ t ~ 1r. The following three 
results make this intuition precise. 

Theorem 1 Consider ZN(t) solving [MPl] and z(t) solving (8) . Then, for 
TE [0, 1r], 

Theorem 2 Consider ZN(t) solving [MP2] and z(t) solving (9) . Then, for 
TE [0, 1r], 

2 C(T) 
Eliz(·) - ZN(·)IILoo(o,T) ~ -;;;-· 

It is often the case that weak convergence results can be obtained at faster 
rates than strong convergence and we now demonstrate this. We consider 
expectations of functions g : R --+ R whose Fourier transform g satisfies 

Hypothesis H There exists a real number {3 > 1 and a positive constant C1 

such that 
Vk ER. (10) 

In t he following Theorem we consider the case f = 0. Thus z solving (9) 
is a pure Brownian motion. This allows relatively straightforward analysis 
using Fourier techniques; more complicated methods would be required to 
analyze the case of non-zero f. 
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Theorem 3 Let f ( z) = 0 and let g : JR ➔ JR satisfy Hypothesis H. Consider 
ZN(t) solving [MP2] and z(t) solving (9). Then, for TE [O, 1r], 

{ 

CN(l-/3)/2 1 < /3 < 3, 
sup IJEg(z(T)) - JEg(zN(T))I ~ CN- 1 log('1 + N), /3 = 3, 
zoER cN-1, /3 > 3 

' 
where C = C(/3, Ci) with /3 and C1 as in Hypothesis H. 

The Heat Bath Model 

(11) 

In this section we describe a simplified model for the statistical mechanics 
of a heat bath, taken from [2] . Consider the Hamiltonian for a single distin­
guished particle of unit mass moving in a potential V and attached by linear 
springs to N harmonic oscillators each with mass m; and stiffness k; : 

(12) 

The Hamiltonian (12) gives rise to Hamilton's equations 

i> = -V'(q) + I:f:1 k;(u; - q), 
q P, 

(13) 
il; = -kj(Uj - q), 

'Uj = v1/m1. 

Here the u1, v; represent the heat bath and the variables p, q the particles 
which is in thermal contact with the bath. 

Under certain natural conditions on the spring constants and masses, 
and for certain random initial data (from the Boltzmann distribution) it 
may be shown, by eliminating the heat-bath variables u1, v1, that q satisfies 
the equation 

where 

ij + V'(q) + lot KN(t - s)q(s)ds = -KN(t)q(O) + ZN(t) (14) 

KN(t) = , 2 I:f:1 cos(jt), 

ZN(t) = 7$ I:f:1 µ1 cos(jt) 

41 

(15) 



where {µ1}~1 are IID random variables distributed as N(O, 1). 
Formally (and this can be made precise) taking the limit N ➔ oo yields 

the candidate limit problem 

Q + :Y:Q + V'(Q) - :r;.Q = W, 
Q(O) = Qo, Q(O) = Po - :Y:Qo-

(16) 

Here W (the limit of ZN) is closely related to white noise so that a precise 
interpretation of this equation requires reformulation as an integral equation. 

We can now ask questions analogous to those considered in the previous 
section. We solve the large system generated by the Hamiltonian (12) in 
the regime (1) and consider the limit (2). Numerical experiments will show 
that the theory developed for the simple model problems is instructive in 
understanding this more complicated model of a heat bath. 

We study a parameterized family of numerical methods applied to the 
Hamiltonian system of dimension 2N + 2. These methods are constructed 
to be energy conserving for the homogeneous part of the heat bath. We 
fix the product of the time-step and largest natural frequency at 0(1) . The 
dimension of the problem is then increased (N ➔ oo) and the computed 
solutions for the distinguished particle are compared with the exact motion 
given by the SDE (N = oo). In this set-up the fastest scales are not accu­
rately resolved and it is of interest to ask whether the (macroscopic) motion 
of the distinguished particle is, nonetheless, accurately resolved. We show 
formally that, in the underresolved regime, the computed motion of the dis­
tinguished particle approximately satisfies an SDE whose coefficients depend 
on the parameters defining the method. For certain combinations of pa­
rameters this SDE agrees with the true SDE governing the motion of the 
distinguished particle and these are the methods which compute the correct 
limiting behaviour as N ➔ oo. For other combinations of parameters the 
computed SDE limit has different damping (possibly negative) and different 
initial conditions from the true SDE limit. We give numerical experiments 
which support these results, together with experiments demonstrating the 
fact that the backward Euler method reproduces the correct behaviour un­
der the aforementioned limit process with N ➔ oo and tit ➔ 0. Note that 
the backward Euler method allows far larger time-steps to be taken than for 
the other methods considered here, and this is the motivation for its study. 
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We consider approximation of the SDE in Rm 

du= J(u)dt + a(u)dW, u(O) = x. 

Here f : Rm -+ Rm, W is ad-dimensional Brownian motion and, for each u E 

JR'7I, a(u) : R'1 -+ llF. Our aim is to understand the approximation of such 
equations over long time intervals. To be definite consider the approximation 
un ~ u(tn), tn = nLit with 

where LiWn is the (d-dimensional Gaussian) increment W(tn+l) - W(tn). 
For background materials on numerics for SDEs see [1]. We refer to the 
original SDE as (P) and its approximation as (PD). 

The Deterministic Case a = 0 

Even in the deterministic case (a= 0) understanding the effect of approx­
imation on long-time behaviour is a hard problem and we start be surveying 
briefly some of the known results in that case, concerning approximation 
of long-time properties - see [4] and [5] for details. The key point is that 
trajectories of the equation (P) and its approximation, in general, diverge: 
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Thus we must look at other objects if we wish to understand the sense 
in which (P) and (PD) are close over long time-intervals. Invariant sets I 
satisfy 

S(I, t) = I 
and play a fundamental role in the dynamics of (P) - equilibria, periodic 
solutions, invariant manifolds and general attractors are all invariant sets. 
Thus rather than looking at trajectories attention is focussed on the objects 
around which the dynamics are organized. 

Many strong results can be proved about the existence and closeness of 
approximating invariant sets IA.t in (PD) when some form of local hyperbolic­
ity is present in for I. These results apply to, for example, periodic solutions, 
quasi-periodic solutions, invariant manifolds etc. A natural non-hyperbolic 
object to study is an attractor A: a compact invariant set which attracts a 
neighbourhood of itself. If (P) has an attractor A then (PD) has an attractor 
AA.t and, for any£> 0, there is b.tc(t) such that 

This upper semicontinuity result is the best that can be said, in general, and 
obstruction to further generality is caused by a lack of hyperbolicity. The 
techniques are similar to those encountered for parametric perturbations of 
vector fields, but care is required, especially for PDEs, to ensure that error 
estimates in appropriate spaces are used. 

To prove lower semicontinuity: 

it is necessary to make further assumptions about the attractor A. The 
simplest is that A comprises the closure of the union of unstable manifolds 
of equilibria. 

Ergodicity - Deterministic Case 

Many dynamical systems are thought to be ergodic in the sense that, as 
T ➔ oo, 

~ 1T g(S(x, t))dt ➔ l g(x)µ(dx) 

where Xis some invariant set of (P) (e.g. A, an attractor) andµ is a measure 
supported on X. In such an instance it is natural to revisit the question of 

45 



convergence of trajectories and study whether 

11T 1 N - 1 
E := "r g(S(x,t))dt- N Lg(S1i(x))II 

0 n = O 

is small for T = N flt » 1; note that this is certainly not implied by the 
standard finite time convergence result. However, intuitively, time-averaging 
should help to prevent accumulation of errors. 

Proving results of this type appears to be extremely hard in the deter­
ministic case, even though there is strong numerical evidence to suggest that 
positive results are likely in a wide range of situations. The only result cur­
rently available in this area is due to Reich [2] who works in the context 
of certain hyperbolic flows governed by Hamiltonian systems. Reich uses 
the ideas of shadowing and backward error analysis to show that symplec­
tic methods approximate time averages well for exponentially long (in flt) 
periods of time: 

- far better than the logarithmic time (in flt) implied by standard error 
estimates. 

Ergodicity - Stochastic Case 

It turns out that randomness actually makes the study of ergodicity easier. 
For problem (P) the equation governing propagation of probability densities 
(given random initial data and/or random stochastic forcing through o-) is of 
the form 

8p r• 
&t = J.., p 

and for t he SDE C has some parabolic features whilst in the deterministic 
case a = 0 it is purely hyperbolic. The operator C is known as the generator 
of the stochastic process. 

Our starting point is a generalization of the classical estimate for errors 
in the numerical approximation of ODEs: we assume that 

The question is whether we can go from this assumption to deduce long-time 
approximation properties for time-averages. In the random case considerably 
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more can be said concerning this question for ergodic problems, than in the 
deterministic case. 

If we define 
B(u) = o-(u)o-(ut 

then the SDE has a uniformly parabolic generator£ if 

it is shown by Talay [6] that in this case, a.s., 

for all T = N 6.t » 1. For SD Es with non-uniformly parabolic generators, 
but for which exponential ergodicity holds, the weaker result that , a.s., 

E = O(fl.fYr), 

for all T = N 6.t » 1 and some 'Y E (0, 1). This is proved in [3] . 
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1 FIRST LECTURE: An introduction to the 
numerical solution of delay differential equa­
tions 

A large number of real life mathematical models are based on initial value 
problems (IVPs) for ordinary differential equations (ODEs) of the type 

{ 
y'(t) = f(t,y(t)), 
y(to) = Yo, 

(1.1) 

where the function y(t) represents some physical quantity which evolves in time. 
However, in order to make the model more consistent with the real phe­

nomenon, it sometimes is necessary to modify the right-hand side of (1.1) to 
include the dependence of the derivative y' also on y computed at some past 
value t - r . According to the complexity of the phenomenon, the delay r, which 
always is nonnegative, may be just a constant ( constant delay), or a function of 
t ( variable delay), or even a function of t and y itself ( state dependent delay). 
In any case, equation (1.1) modifies to 

{ 
y'(t) = f(t,y(t),y(t- r)), 
y(t) = <J,(t), t ~ to, 

which is called delay differential equation (ODE). 

(1.2) 

In more general models, the derivative y' may depend on y and y' itself at 
some past value t - r. In this case (1.1) changes into 

{ 
y'(t) = f(t,y(t),y(t - r),y'(t- r)), 
y(t) = <J,(t), t ~ to, (1.3) 

where the function <J,(t) is supposed to be at least C 1-continuous. Equation 
(1.3) is called a delay differential equation of neutral type (NODE). 

A first difference between equations (1.1) and (1.2) - (1.3) is that the solution 
of the lat ter ones is determined by an initial function <J,(t) rather than by a 
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simple initial value Yo, as happens for the former . As a consequence, even if the 
functions f, T and</) in (1.2) - (1.3) are C00-continuous, in general the solution 
y(t) is not smoothly linked to the initial function </)(t) at the point t0, where 
only C°-continuity can be assured. Such discontinuity is spread forward along 
the integration interval and a set of discontinuity points is generated, whose 
location is determined by the delayed argument t - T . 

In these lectures we assume that the delay T is either constant or variable, 
but not state dependent. Moreover, if it is variable, the following properties are 
assumed to be satisfied: 

(Hi) there exists a constant To > 0 such that T(t) 2:: To for all t 2:'. t0 ; 

(H2 ) the delayed argument t-T(t) is a strictly increasing function for all t ~ t0 • 

Under these hypotheses, the discontinuity points are generated inductively 
by the recursion 

(1.4) 

where fo = to, and an increasing sequence {(1:h>o is determined which can 
actually be computed a priori by using (1.4). In this way, a sequence of intervals 
[{A: - l, {1:] is also defined. Moreover, each pair of consecutive discontinuity points 
satisfies {A: - {1:- 1 ~ To . 

The hypotheses (H1 ) and (H2 ) yield existence and uniqueness of the solution 
quite easily. In fact, they can be proved just by using induction on the intervals 
[{1:-i,{1:] and the well known existence and uniqueness theorem for ODEs (1.1) 
under the hypothesis of uniform Lipschitz continuity of the right-hand side. 

The discontinuity points (A: are sometimes called primary discontinuities. If 
the functions f , T and </) in (1.2) - (1.3) have some discontinuities with respect 
to t in some of their derivatives, then such discontinuities are also propagated 
by the delayed argument t - T following the rule (1.4) and are called secondary 
discontinuities. However, in order to simplify the discussion, we assume that 
all the functions in (1.2) are C 00-continuous. Therefore, in the interior of each 
interval [(1:-i , (1:] the solution y is C00-continuous as well, and no secondary 
discontinuities are present. 

Moreover, it can easily be seen that, at each discontinuity point (1:, the 
solution y of the DDE (1.2) is at least k times continuously differentiable. In 
other words, there is a smoothing of the solution y at the discontinuity points 
(1: as the index k increases. 

The situation is different for the the solution y of the NDDE (1.3) , since the 
smoothing, in general, does not take place, leaving it only C°-continuous at all 
discontinuity points (1: . 

The first approaches to the numerical solution of DDEs and NDDEs go 
back to the early sixties and were characterized by the straight application of 
well known formulae for ODEs, essentially linear multistep (LM) methods. In 
particular, a set ~ = {to, ti , .. . , tn, .. . } of mesh points was assumed to exist 
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such that, for all tn E A, either tn - r(tn) < to or tn - r(tn) E A. Once we have 
such a mesh available, any discrete method making use of nodal points only can 
be implemented directly. For example, the forward Euler method for equation 
(1.2) looks like 

Yn+I = Yn + hn+if(tn,Yn,Yq), 

whereas, for equation (1.3), it looks like 

Yn+l = Yn + hn+if(tn, Yn, Yq, Y~), 
Y~ = f(tn, Yn, Yq, Y~), 

for some integer q < n. This approach entails a severe constraint on the mesh 
which, in some cases, makes the method impracticable. 

Later it was proposed to free the mesh selection from the delay, and to use 
extranodal points for the approximation of the delayed term y(t - r). 

For the numerical solution of the DDE (1.2), the most elegant approach 
aimed to avoid the need of interpolation was proposed by Bellman. It was first 
developed for constant delay and, successively, for variable delays subject to 
the hypotheses (H1 ) and (H2)- Although Bellman's method is probably not the 
most convenient approach for solving DDEs numerically, it is certainly attractive 
because it allows the use of variable stepsize without any interpolation. 

Nowadays, the most common approach for solving (1.2) - (1.3) is to proceed 
step-by-step across a mesh A = { t0 , t1 , ... , tn, ... } as follows. Once a continuous 
approximation 17(t) is obtained fort ~ tn, the (n + 1)-st step consists in solving 
numerically, by means of a continuous numerical method, the equation 

{ 
w'(t) = f(t,w(t),x(t - r(t))), 
w(tn) = 17(tn), 

(in case of (1.2)) or 

{ 
w'(t) = f(t,w(t),x(t - r(t))),z(t - r(t))), 
w(tn) = 17(tn), 

(in case of (1.3)), where 

x(s) = { 
</>(s) 
17(s) 
w(s) 

for 
for 
for 

s ~ to, 
to~ s ~ tn, 
tn ~ 8 ~ tn+l, 

(1.5) 

(1.6) 

and z(s) is the derivative of x(s) or any other approximation of y'(s) such as, 
for example, z(s) = f(s, 17(s), x(s - r(s))), z(s - r(s))) . 

Observe that, for t - r(t) ~ tn, (1.5) - (1.6) reduce to an ODE. On the 
contrary, when t - r(t) > tn for some t E [tn, tn+1], they are true functional 
differential equations, requiring a more complicate approach for their numerical 
treatment. However, under hypotheses (H1 ) and (H2 ) it is always possible to 
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select the stepsize in order that this case does not occur. For example, it is 
sufficient to choose a stepsize ~ r0 • 

Once the equations (1.5) - (1.6) are solved for w(t), the approximation Yn+i 
is set equal to the approximate solution Wn+i of w(tn+1) and the continuous 
extension 77( t) is prolonged up to tn+i. 

In these lectures we address ourselves to the analysis of continuous Runge­
Kutta (CRK) methods applied to (1.2) - (1.3). 

We recall that, given a mesh .6. = { to, t1 ... , tn, .. . }, the CRK method for 
the solution of the ODE (1.1) is defined as follows: 

• 
Y~+l =yn+hn+1L:>ij/(t!i+1,Yj+1), i= l, . .. ,s, (1.7) 

j=l 

• 
Yn+l = Yn + hn+l :~::)d(t~+1, Y~+1), (1.8) 

i=l 

. ~· where t~+l := tn + Cihn+l, Ci := L..Jj=l Oij, i = 1, . .. , s, hn+l := tn+l - tn and s 
is the number of stages. The bi's are called weights of the quadrature formula 
(1.8) and the Ci 's are called abscissae. For most of common methods and, in 
any case, for the methods considered in these lectures, the abscissae belong to 
(0, l]. 

The continuous extension 77(t) is defined, in each subinterval of the mesh .6., 
by a one-step continuous quadrature rule of the form 

• 
17(tn + Ohn+1) = Yn + hn+l L bi(O)f(t~+l, Y~+l), 0 ~ 9 ~ 1, (1.9) 

i=l 

where the bi ( 9) 's are polynomials of suitable degree ~ d satisfying the continuity 
condition 

bi(O) = 0 and bi(l) = bi, i = 1, ... , s. 

When applied to the DDEs (1.2), the CRK method assumes the following 
form: 

• 
Y~+l = Yn + hn+l L Oij/(t!i+l, Yj+l, 11(t!i+1 - r)), i = 1, ... , s, (1.10) 

j=l 

• 
17(tn + Ohn+1) = Yn + hn+l L bi(O)f(t~+l, Y~+l' 77(t~+l - r)), 0 ~ 9 ~ 1, 

i=l 
(1.11) 

where the delay r has to be evaluated at the relevant points t!i+l. Of course, 
for t ~ to we define 77(t) = </>(t) . 
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Analogously, for the NDDE (1.3) the method looks like 

• 
Y~+1 = Yn + hn+l L ai;/(f,.+1, Y1+1, 77(f..+1 - r), t/J(f..+1 - r)), i = 1, .. . , s, 

i=l 

• 
77(tn +8hn+1) = Yn+hn+l L bi(O)/(t~+l, Y~+l, 17(t~+1 -r), t/J(f,.+1 -r)), 0 ~ 8 ~ 1, 

i=l 

where 'f/,(t) is either the derivative 77'(t) of the continuous numerical solution or 
another continuous approximation to y' ( t). 

We discuss the effect of the discontinuity points { ~k} on the order of conver­
gence of the methods and discuss how to handle them in order to prevent the 
loss of accuracy. 

We give a general theorem about the global order p' of convergence of CRK 
methods for (1.2) - (1.3) which relates it to the global order p of the discrete 
RK method (applied to ODEs) and to order of uniform convergence of the 
continuous approximations 77(t) and t/J(t). 

2 SECOND LECTURE: Some stability problems 
for delay differential equation solvers 

For applications, sometimes it may be interesting to consider some mathematical 
models based on delay differential equations (DDEs), possibly of neutral type 
(NDDEs), whose solutions show a stable asymptotic behaviour. Clearly, in such 
situations, also the numerical methods used for the approximate solution of the 
model equation should preserve the same qualitative characteristic. 

In this lecture we present some of the simplest linear stable problems and 
discuss the main tools used to test the stability properties of numerical methods. 

Linear problems may be divided into two main classes, either of which re­
quires a different tool for the analysis of stability properties: autonomous and 
nonautonomous problems. This dichotomy holds both for the analytic problem 
and for the numerical method. 

As it will be illustrated, autonomous problems may be treated by analyzing 
the characteristic equation, whereas the treatment of nonautonomous problems 
requires to pass through contractivity. For this reason, it is often possible to 
find sharper results for the former class of problems. 

Indeed, stability results for nonautonomous problems can be obtained also 
by using suitable Lyapunov functionals, but we do not consider this technique 
in our lecture. 

The simplest autonomous test problem for DDEs is represented by the fol­
lowing scalar equation with constant delay: 

{ 
y'(t) = >.y(t) + µy(t - r), 
y(t) = q,(t), t ~ to, 
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where A and µ are complex parameters. 
It is known that the condition 

(2.2) 

implies 
lim y(t) = 0. 

t-++oo 
(2.3) 

The stability analysis may be done directly by studying the roots of the char­
acteristic equation 

(2.4) 
Such an equation has infinitely many solutions (i, each of which with a certain 
multiplicity mi, that do not accumulate anywhere in the complex plane. 

It is known that the solution to (2.1) has an expansion of the form 

oo m,-1 

y(t) = L L O!in,tn•e'•t, (2.5) 
i=l n,=O 

where the coefficients Oin, are determined by the initial function </>(t). In view of 
the representation (2.5), it is easy to understand that a necessary and sufficient 
condition for the asymptotic stability of (2.1) is that all the roots (i of {2.4) be 
such that ~((i) < 0. It is easy to verify that such a condition is guaranteed if 
(2.2) holds. 

The successive step is to consider linear autonomous systems of the form 

{ 
y'(t) = Ly(t) + My(t - r), 
y(t) = </>(t), t ~ to, 

t 2: to, 

where L and M are constant complex m x m-matrices. 
The characteristic equation is 

det((J - L - e-T( M) = 0. 

(2.6) 

(2.7) 

The discussion of the sign of the real part of the roots of (2. 7) is more 
difficult than for (2.4). However, it can be seen that, if the matrices L and M 
are simultaneously diagonalizable, then a suitable change of variable involving 
the common eigenvectors leads to a decoupled system of m independent scalar 
equations of the form (2.1). Therefore the asymptotic stability of the system 
(2.6) is, in this case, completely described by the eigenvalues of the two matrices. 
More complicated is the case when the eigenspaces of L and M are different. It 
has been proved that a sufficient condition for the asymptotic stability of {2.6) 
is: 

~(A) < 0 V eigenvalues A of L and sup p[(O - L)-1 MJ < 1, {2.8) 
R(()=O 
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where p(·] denotes the spectral radius of a matrix. 
It is worth remarking that the sufficient conditions (2.2) and (2.8) are not 

necessary for asymptotic stability of (2.1) and (2.4), respectively, if the constant 
delay r has a fixed value. On the contrary, they become (almost) necessary when 
we want to assure stability for all possible positive constant delays. 

The method of the characteristic equation can be applied also to the analysis 
of neutral test equations. Similar results have, in fact , been proved for the 
following linear autonomous problems: 

{ 
y'(t) = ).y(t) + µy(t - r) + vy'(t - r) , 
y(t) = <f,(t) , t ~ to , 

where ). , µ and v are complex parameters, and 

{ 
y'(t) = Ly(t) + My(t - r) + Ny'(t - r), 
y(t) = <f,(t) , t ~ to , 

(2.9) 

(2.10) 

where L, Mand N are constant complex m x m-matrices. In particular, it has 
been proved that the condition 

implies the asymptotic stability for all the solutions of (2.9). 
Among the simplest nonautonomous problems are the following scalar linear 

equations: 

and 

{ 
y'(t) = ).y(t) + µ(t)y(t - r(t)), 
y(t) = <f,(t), t ~ to, 

{ 
y'(t) = ).y(t) + µ(t)y(t - r(t)) + v(t)y'(t - r(t)) , 
y(t) = <f,(t) , t ~ t0 , 

(2.11) 

(2.12) 

where A is a complex number with !R(A) < 0, µ(t) and v(t) are continuous 
complex functions and the delay r(t) satisfies the hypotheses (H1 ) and (H2 ). 

By using induction on the sequence of intervals [{k-l , {k] , for the DOE (2.11) 
it is possible to show that the condition 

implies the contractivity property (with respect to the initial data) 

ly(t)I ~ max l</J(x)I , t ~ to , 
z$to 

and that the stronger condition 

R · !R().) + jµ (t)I ~ 0, t ~ to , 
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for some R < 1, imply the asymptotic stability property (2.3). 
As for the NDDE (2.12), it is possible to show that the condition 

lR(.X)(l - jv(t)I) + lv(t)~ + µ(t)I $ 0, t ~ to, 

implies the contractivity property 

jy(t)I $ max{l4>(to)I; max jµ(x)q,(x - r(x)) + v(x)4>'(x - r(x))I }, t ~ to, 
to:'.Sz:'.S{1 -lR(.X) 

(2.14) 
and that the stronger conditions 

lv(t)I $ Vo < 1 and R · lR(.X)(l - lv(t)I) + lv(t).X + µ(t)I $ 0 t ~ to, 

for some R < 1, again imply the asymptotic stability property (2.3). 
For both test equations (2.11) and (2.12), the proof of the above results is 

based on the fact that, for the scalar ODE with forcing term 

{ 
y'(t) = .Xy(t) + g(t), t ~ to, 
y(to) = Yo, 

where g(t) is a continuous function and lR(.X) < 0, it holds that 

jy(t)I $ eR(A)(t-to)IYol + (1 - eR(A)(t-to)) max jg(x)I ' t ~ to. 
to:'.Sz:'.St -lR(.X) 

(2.15) 

In fact, the DDE (2.11) can be equivalently rewritten in the form (2.15) with 
Yo = ¢(to) and 

(t) - { µ(t)q,(t - r(t)), to$ t $ ei, 
9 - µ(t)y(t - r(t)), t ~ 6, (2.16) 

whereas the NDDE (2.12) can be equivalently rewritten in the form {2.15) with 
Yo = ¢(to) and 

{ 
µ(t)q,(t - r(t)) + v(t)q,'(t - r(t)), 

g(t) = (v(t).X + µ(t))y(t - r(t)) + v(t)g(t - r(t)), 
to$ t $ ei, 
t ~6-

(2.17) 

As far as numerical methods are concerned, considering the test equation 
(2.1) leads to the following generalization of the concept of A-stability. 

Definition 2.1 The P-stability region of a numerical step-by-step method for 
DDEs is the set Sp of the pairs of complex numbers (a, {3), a = h.X, {3 = hµ, 
such that the discrete numerical solution {yn}n~o of {2.1} obtained with the 
constant stepsize h under the constraint 

h = r/m, (2.18) 
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where m is a positive integer, satisfies 

lim Yn = 0 
n-+oo 

for all constant delays T and all initial functions <l>(t) . In particular, a numerical 
step-by-step method for DDEs is P-stable if 

Sp 2 {(a, ,8) E c2 I R(a) + I.Bl < O}. 

In other words, a numerical method for DDEs is P-stable if it preserves the 
asymptotic stability properties of the solution y(t) of {2.1), under the constraint 
(2.18) on the stepsize. 

Removing the constraint (2.18) leads to the similar but stronger concepts of 
GP-stability region and GP-stable method. 

Analogous definitions, namely NP-stability and GNP-stability, are given with 
respect to the neutral test equation (2.9). 

In this lecture we present some of the main results regarding the CRK meth­
ods for DDEs and NDDEs. We shall see that the key point is always the analysis 
of the solutions of vector difference equations ( with constant coefficients) of ar­
bitrarily high order and, in turn, of the roots of their characteristic equations. 
We shall also see that a suitable choice of the continuous extension 17(t) is suf­
ficient to assure that any A-stable RK method {for ODEs) is also P-stable and 
NP-stable and, by using a special kind of multistep interpolation procedure, 
even GP-stable and GNP-stable. 

Then we shall briefly illustrate how these results extend to the test systems 
(2.6) and (2.10). 

The last part of the lecture is devoted to the analysis of the contractivity 
and asymptotic stability properties of CRK methods applied to the problems 
(2.15) - (2.16) and {2.15) - (2.17), which are equivalent to the test DDE {2.11) 
and NODE {2.12), respectively. 

This time, the nonautonomous character of the resulting difference equations 
makes characteristic equations useless for studying stability. Therefore, like for 
the analysis of the true solutions, induction on the sequence of intervals [~k-l, ~k] 
must be employed, together with the following particular contractivity property 
of the numerical method. 

Definition 2.2 The continuous RK method (1. 7) - {1.8} - (1.9} is Ar-stable if 
the continuous numerical solution 17(t) of {2.15} satisfies 

l11(tn + Bhn+i)I ~ max{IYnl, 
1
~~. lg~;(;;'}, 0 ~ 8 ~ l, 

whenever R(A) < 0 and for any mesh~-

We shall see that A rstability assures that the CRK method preserves the 
contractivity properties {2.13) and (2.14) and, also, asymptotic stability. 
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