
P.J. Nada House

CONFERENTIE VAN NUMERIEK WISKUNDIGEN

24 - 26 september 1997

CONFERENTIECENTRUM WOUDSCHOTEN ZEIST

Werkgemeenschap Numerieke Wiskunde

TWEEENTWINTIGSTE CONFERENTIE NUMERIEKE WISKUNDE

Doel van de conferentie

De Conferentie van Numeriek Wiskundigen wordt eenmaal per jaar gehouden onder auspiciën van de Werkgemeenschap Numerieke Wiskunde. Het doel van de conferentie is kennis te nemen van recente ontwikkelingen binnen de numerieke wiskunde. Hiertoe worden jaarlijks meestal twee, voor dit jaar drie, thema's vastgesteld. Internationaal bekende deskundigen worden uitgenodigd over deze thema's lezingen te houden.

Thema's

- nietlineaire randwaardeproblemen (met aandacht voor aspecten als continueringsmethoden en bifurcatie)
- 2. gegeneraliseerde-eigenwaardeproblemen
- 3. numerieke behandeling van financiële modellen

Organisatie

De organisatie is in handen van de voorbereidingscommissie bestaande uit P.J. van der Houwen (CWI/UvA) (voorzitter), D. Roose (KU Leuven), P. Wesseling (TUD), en J. Kok (CWI) (secretaris). Organisatorische medewerking is verleend door het Centrum voor Wiskunde en Informatica. Financiële ondersteuning is gegeven door de Stichting Wiskunde Onderzoek Nederland (SWON).

Adres organisatie

Jan Kok
CWI (cl. MAS)
Postbus 94079
1090 GB Amsterdam
For: (020) 592 4190 / +31

Fax: (020) 592 4199 / +31 20 592 4199 Tel: (020) 592 4107 / +31 20 592 4107 E-mail: Jan.Kok@cwi.nl

Conferentie-URL: http://www.cwi.nl/~jankok/woudschoten.html

Themes and Speakers

Theme 1. nonlinear boundary-value problems (with special attention to

continuation methods and bifurcation)

Eusebius Doedel (Concordia University, Montreal)

Herbert B. Keller (CalTech, Pasadena)

Hans Mittelmann (Arizona State University, Tempe)

Theme 2. generalized eigenvalue problems and singular-value decomposition

Alan Edelman (M.I.T.)

Danny Sorensen (Rice University, Houston)

Theme 3. numerical treatment of financial models

Michel Hoevenaars (ING-bank, Amsterdam)

Half-hour, contributed presentations by:

Johan Cambré, KU Leuven (Theme 2)

Laurence Cherfils, Université J. Fourier, Grenoble (Theme 1)

Koen Engelborghs, KU Leuven (Theme 1)

Hilda van der Veen, Delft University of Technology (Theme 1)

Programme and titles of lectures

Wednesday, September 24, 1997

10.00 - 11.05	arrival, coffee	
11.10	opening v.A.A	11 st to 2 cm.
11.15	H.B. Keller 11.15 - 12.05: 12.05 - 12.15:	Path following and bifurcations in scientific computing, I discussion
12.20	lunch Massel	ing v.d. Vorst s
13.45	A. Edelman 13.45 - 14.35: 14.35 - 14.45:	Algorithms for nearest canonical forms discussion
14.50	D.C. Sorensen 14.50 - 15.40: 15.40 - 15.50:	New approaches to large scale eigenanalysis, I discussion
15.50	tea Re	0094 3
16.15	H.D. Mittelmann 16.15 - 17.05: 17.05 - 17.15:	A software tool for nonlinear parameter-dependent PDE's discussion
17.20	L. Cherfils 17.20 - 17.45: 17.45 - 17.50:	A parallel and adaptive continuation method for semilinear bifurcation problems discussion
18.15	dinner	
20.00	WNW Committee followed by Wouds	meeting, choten Committee meeting

Thursday, September 25, 1997

08.00	breakfast A	xeloom g
09.00	H.B. Keller 09.00 - 09.50: 09.50 - 10.00:	Path following and bifurcations in scientific computing, II discussion
10.05	K. Engelborghs 10.05 - 10.30: 10.30 - 10.35:	Continuation and bifurcation analysis of periodic solutions of delay differential equations discussion
10.35	coffee Y. d	Nort Walle 8
11.10	A. Edelman 11.10 - 12.00: 12.00 - 12.10:	The geometry of eigenvalue algorithms discussion
12.15	J. Cambré 12.15 - 12.40: 12.40 - 12.45:	Algorithms for the structured total least squares problem based on the Riemannian SVD discussion
12.50	lunch	Rich &
14.45	M. Hoevenaars 14.45 - 15.35: 15.35 - 15.45:	Financial modeling and numerical techniques, I discussion
15.45	tea	nadlanj Spijkus
16.15	E.J. Doedel 16.15 - 17.05: 17.05 - 17.15:	Collocation methods for ODE bifurcation problems discussion
17.20	General Assembly	of the Dutch "Werkgemeenschap Numerieke Wiskunde"
18.00	dinner	

Friday, Septembe	er 26, 1997	2 - 1 1
08.00	breakfast	spigher Matthey Schildes :
09.00	H.D. Mittelmann	,
	09.00 - 09.50:	Solution of continuation and bifurcation problems for PDE's
	09.50 - 10.00:	discussion
10.05	H. van der Veen	
	10.05 - 10.30:	Post-bifurcation analysis of soil plasticity with eigenvector perturbations
	10.30 - 10.35:	discussion
10.35	coffee	
11.10	M. Hoevenaars	Veldman &
11.10	11.10 - 12.00:	Financial modeling and numerical techniques, II
	12.00 - 12.10:	discussion
12.15	lunch	eline s
13.30	D.C. Sorensen	, ,
	13.30 - 14.20:	New approaches to large scale eigenanalysis, II
	14.20 - 14.30:	discussion
14.35	E.J. Doedel	
	14.35 - 15.25:	New collocation methods for PDEs
	15.25 - 15.35:	discussion
15.35	closure, tea, depa	rture

Page numbers of abstracts

	abstract	theme	page			
Johan Cambré, Bart De Moor						
	Algorithms for the structured total least squares problem based					
	on the Riemannian SVD	2	7			
Laurence Cherfils	A parallel and adaptive continuation method for semilinear					
	bifurcation problems	1	8			
Eusebius Doedel	Collocation methods for ODE bifurcation problems	1	9			
Eusebius Doedel	New Collocation Methods for PDEs	1	10			
Alan Edelman	Algorithms for Nearest Canonical Forms	2	11			
Alan Edelman	The Geometry of Eigenvalue Algorithms	2	12			
Koen Engelborghs	Continuation and bifurcation analysis of periodic solutions of					
	delay differential equations	1	13			
Michel Hoevenaars	Financial modeling and numerical techniques	3	14			
Herbert B. Keller	Path Following and Bifurcations in Scientific Computing I, II	1	17			
Hans D. Mittelmann	A Software Tool for Nonlinear Parameter-Dependent PDE's	1	18			
Hans D. Mittelmann	Solution of Continuation and Bifurcation Problems for PDE's	1	19			
Danny C. Sorensen	New approaches to large scale eigenanalysis, I	2	20			
Danny C. Sorensen	New approaches to large scale eigenanalysis, II	2	21			
Hilda van der Veen, Ke	es Vuik and René de Borst					
	Post-Bifurcation Analysis of Soil Plasticity with Eigenvector					
	Perturbations	1	22			

Algorithms for the structured total least squares problem based on the Riemannian SVD Cambré Johan, Bart De Moor

The Structured Total Least Squares problem (STLS) can be formulated as follows:

Given A matrix A with a given affine structure (e.g. Hankel, Toeplitz, symmetric,...) find a **rank deficient** approximation B of A such that $||A - B||_F$ is **minimal**.

The natural way to tackle constrained optimization problems is through Lagrange multipliers. Careful treatment of these equations leads to a set to the so called **Riemannian SVD** equations, which can be seen as a nonlinear generalization of the ordinary SVD equations.

Let B_1, \ldots, B_n be the basis of the linear structure of our matrix such that A can be written as $A = a_1B_1 + a_2B_2 + \ldots + a_nB_n$, with $\operatorname{rank}(A) = q$ and we are looking for a matrix $B = b_1B_1 + b_2B_2 + \ldots + b_nB_n$ with the desired properties stated above. Then the Riemannian SVD equations look as follows:

$$\begin{cases} Av &= D_v u\tau \\ A^t u &= D_u v\tau \end{cases} \text{ under the conditions } \begin{cases} u^t D_v u &= 1 \\ v^t v &= 1 \end{cases}$$

where $D_v = \sum_{k=1}^n \frac{1}{W(i)} B_k v(B_k v)^t$ and $D_v = \sum_{k=1}^n \frac{1}{W(i)} B_k^t u(B_k^t u)^t$ are square positive definite matrices that are quadratic in v and u respectively, and W(i) is the Frobenius norm of the i-th basis matrix B_i .

These equations are identical to the ordinary SVD equations except for the square matrices D_u and D_v .

As solving the SVD equations is equivalent to finding the minimal eigenvalue of a symmetric matrix, solving the Riemannian problem.

In our talk we will present a series of algorithms that converge to a suboptimal solution along with some examples.

A parallel and adaptive continuation method for semilinear bifurcation problems

Laurence Cherfils

LMC-IMAG, Université J. Fourier, Grenoble, France

In the structural mechanics area for instance, predictor-corrector continuation methods are frequently used for the following of solution branches of parametrized nonlinear elliptic systems. In spite of their usefulness, these methods have a serious disadvantage: the exploration, without any *a priori* information, of one or more branches, requires the generation of many solution points, and therefore yields to a large computation time.

We present a continuation method for the resolution of parametrized two-dimensional nonlinear PDE. It has been elaborated with a double aim: to allow the exploration, at a low computation time, of an entire branch of accurate solutions, and to be especially suited to problems whose solutions contain boundary layers or singularities. To this end, we introduce two different tools to improve the usual Allgower-Georg's continuation method (see [1]). Firstly we use an adaptive finite element strategy, as in the software PLTMG [2], in order to handle minimal meshes, and thereby to limit the size of the nonlinear systems without a loss of accuracy for the solutions. Such approach can also be found in the software AUTO [3]. Moreover, the time required for the computation of an accurate solution branch can be noticeably reduced with an implementation on a computer network. One computer is devoted to the continuation on a sequence of a posteriori refined meshes.

A numerical example illustrating the performance of the method is given.

References

- [1] Allgower E.L., Georg K., Numerical continuation methods, an introduction, Springer Verlag, Berlin, 1990.
- [2] BANK R.E., PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, User's guide 6.0, SIAM, 1990.
- [3] DOEDEL E., AUTO: Software for continuation and bifurcation problems in ordinary differential equations, User's guide, 1986.

Collocation Methods for ODE Bifurcation Problems

Eusebius Doedel Concordia University, Montreal

Woudschoten Conference, 24 – 26 September 1997

Abstract

The method of orthogonal collocation with piecewise polynomials is recalled. A particular implementation is described, with emphasis on the numerical linear algebra. Application to a singularly perturbed boundary value problem and to the computation of periodic solutions in Plant's model of bursting nerve cells are described in some detail.

We also formulate an efficient algorithm for computing loci of period-doubling bifurcations. Time permitting, the numerical computation of connecting orbits will also be discussed.

Key references will be given in the lecture. Part of the material covered can be found in the following tutorial articles:

E. J. Doedel, H. B. Keller, J. P. Kernevez,

Numerical Analysis and Control Of Bifurcation Problems,

Part I: Int. J. Bifurcation and Chaos, Vol. 1, No. 3. 1991, 493–520. Part II: Int. J. Bifurcation and Chaos, Vol. 1, No. 4. 1991, 745–772.

New Collocation Methods for PDEs

Eusebius Doedel Concordia University, Montreal

Woudschoten Conference, 24 – 26 September 1997

Abstract

Algorithmic aspects of a class of finite element collocation methods for the approximate numerical solution of elliptic partial differential equations are described. Locally, for each finite element, the approximate solution is a polynomial. Polynomials corresponding to adjacent finite elements need not match continuously, but their values and normal derivatives match at a discrete set of points on the common boundary. High order accuracy can be attained by increasing the number of matching points and the number of collocation points for each finite element. For linear equations the collocation methods can be equivalently defined as generalized finite difference methods. The linear (or linearized) equations that arise from the discretization lend themselves well to solution by the method of nested dissection. An implementation is described and some numerical results are given.

References:

W.-J. Beyn, E. J. Doedel, **Stability and multiplicity of solutions to discretizations of nonlinear ordinary differential equations**, SIAM J. Sci. Stat. Comput. 2, No. 1, 1981, 107–120.

E. J. Doedel, On the construction of discretizations of elliptic partial differential equations, J. Difference Equations and Applications, 1997, (to appear).

Algorithms for Nearest Canonical Forms

Prof. Alan Edelman Massachusetts Institute of Technology

Woudschoten Conference, 24 – 26 September 1997

Abstract

Nearness of a matrix to a multiple eigenvalue is indicated by a small cosine between left and right eigenvectors, as for example is computed by MATLAB's condeig routine or the RCONDE variable in LAPACK. What can we supply the user who wishes to *exactly* obtain the nearest matrix with a multiple eigenvalue or more generally the nearest matrix (or pencil) with a particular canonical form? Such problems have been motivated from problems in systems and control, and have been studied by many experts in numerical linear algebra. We are working towards solving these problems so that the information could be available easily to users of library software.

In this talk, we will indicate how new geometrical approaches are being successfully applied towards the solution of this problem. Our proposed solution combines the power of a new understanding of the perturbation theory of so-called "staircase algorithms" with manifold techniques for optimization on the Grassmann and Stiefel manifolds.

The Geometry of Eigenvalue Algorithms

Prof. Alan Edelman Massachusetts Institute of Technology

Woudschoten Conference, 24 – 26 September 1997

Abstract

We show how the geometrical framework, specifically the knowledge of geodesics, covariant derivatives, and the geometry of the Grassmann manifold gives penetrating new insights into algorithms allowing us to create, understand, and compare algorithms not as isolated entities, but as objects with a coherent mathematical structure. This understanding may never replace the value of numerical experiments, but does provide a top level view of so many algorithms that can circumvent the need for some experiments. It is our hope that developers of new algorithms and perturbation theories will benefit from the theory, methods, and examples that we propose.

In particular we will show how knowledge of the geometry allows us to clearly understand in new ways such algorithms as Rayleigh Quotient Iteration (and also Davidson's method), any number of conjugate gradient algorithms for the linear and nonlinear eigenvalue problem, sequential quadratic programming and eigenvalue optimization.

[These lectures survey joint work with Demmel, Elrmoth, Kagstrom, Ma, and Ripper.]

Continuation and bifurcation analysis of periodic solutions of delay differential equations

Koen Engelborghs
Koen.Engelborghs@cs.kuleuven.ac.be
Computer science department
Celestijnenlaan 200A
B-3001 Leuven

August 18, 1997

Abstract

In this talk we consider a numerical method to compute periodic solutions of delay differential equations and their stability. A periodic solution can be computed by a 'shooting' approach in a functional space. In each Newton step a linear operator equation must be solved which contains the linearized Poincare operator. When discretizing the state on the delay interval a high-dimensional system is obtained. However zero is the only cluster point of the spectrum of the linearized Poincare operator and thus only a few eigenmodes of this operator are important. Our numerical method exploits this fact by combining shooting with straightforward time integration. Especially in a continuation procedure the method is very efficient. The method also computes all dominant, stability determining Floquet multipliers and thus allows robust detection and calculation of bifurcations.

Financial Modeling and Numerical Techniques

Michel Hoevenaars ING Nederland, ITResearch Amsterdam, July 1997

Contribution to the Dutch Conference of Numerical Mathematicians, 24 - 26 September 1997

Abstract: Different mathematical models have been developed for example to forecast the behaviour of stocks and bonds but also the value at risk in option portfolios, to show dependencies between different stocks and clusters of stocks or to find dependencies between market and social/economic factors and the value of stocks. In an early stage, implementation of these models made clear that high performance computers would be required to process the amount of data encountered in 'real life'. This paper concentrates on the mathematical aspects and on the parallel implementation of forecasting models, not on the economic validity.

A Stock Market Forecasting Model

A stock market forecasting model aims to preview the rates or the trend of stocks in the future. Different techniques are available today to do this, for example 'self-building' neural networks, 'Feed-forward' networks or combinations of neural networks, statistical techniques and algorithms. Most of these solutions do have drawbacks which mainly have to do with long learning cycles and availability of the right data. In the worst-case scenario this requires a trained network for each stock, for each marketplace and for each particular question. The models under discussion here, are built under the assumption that price building of stocks is not a random walk and that stock markets do have the best information concerning stock price building. So a forecasting model cannot produce a better stock price than the stock exchange can, for example the Amsterdam or New York Stock Exchange.

Two characteristics are of general interest; forecasting trends or prices and tracing dependencies or so-called 'leader-follower' relation. We will discuss here the forecasting model. 'Leader-follower' and other models will be discussed during the presentations. For an outline of the model see figure 5.1, 'The enhanced forecasting model'. Having established a clear model, its inherent parallelism was exploited in order to implement most of the steps in such a way that no inter-node communication was needed. Out of the four algorithms that did fit a parallel implementation, the computation of the eigen-values an eigen-vectors, needed for the principal components analysis turned out to be the system's critical stage. Taking into account the hyper-cube architecture, the parallel block Jacobi algorithm was selected and implemented. As it turned out, each of the resulting sub-problems constituted a significant implementation problem in its own. In particular the parallel ordering to be used for a hyper-cube architecture was hard to grasp and to implement. All of these problems were solved resulting in a performance, that is comparable to highly optimized implementations of the sequential Jacobi algorithm. At a glance the performance of the parallel block Jacobi algorithm seems to offer just a small

improvement over the sequentially superior combination of Householder plus QL algorithms. However, as the forecasting system will be executed on a daily basis and most of the data used in the computation will change only slightly from day to day, 'yesterday's' rotation matrix can be used to boost the performance of the Jacobi algorithm to that of the Householder plus QL algorithms. Parallel execution then results in a significant improvement of the performance.

The Model

Basically, each of the stocks is split into a number of orthogonal signals, each representing a specific frequency band. Then, all signals of a frequency band are taken together and the principal components of these signals are calculated. As these components are ortogonal as well, the stocks are now represented by a set of signals that are all independent of each other. Subsequently, for each of these signals a forecast is constructed. Finally, the stocks are reconstructed again, using inverse transforms. The different algorithms that have to be implemented for a practical implementation of the model are:

- 1. Regression analysis; to eliminate the linear component,
- Discrete Wavelet Transform; the first algorithm computes the filtered series of signals, the second algorithm computes the trends and fluctuations given time series and wavelet filters.
- 3., 4. Normalization and Covariance,
- 5. Eigen-values and Eigen-vectors or principal components analysis, the purpose of this stage is to find the smallest set of (statistically independent) linear combinations of stocks, that explain a particular part of the variance present in all stocks. The linear combinations that make up this smallest set are called the principal components. Determining the n-th principal component is equivalent to solving the eigen-value problem. Because of the characteristics of the forecasting problem, all eigen-values found are of interest for further research.
- 6. Determining the number of principal components,
- 7. Inverse discrete Wavelet Transform,
- 8. The prediction phase, the type and length of the forecast depends on the type of indicators that have to be predicted and the length of the history that was taken into account. Different types of extension are possible, a very common one is a sine-wave type of extension.
- 9. Reconstruction of the filtered values,
- 10. De-normalization,
- 11., 12. Reconstruction of the unfiltered stocks and adding the linear component.

Results

Concerning the results there are two important issues:

- 1. Are the forecasts produced by the system in line with the model,
- 2. What resources does the system need in order to produce these forecasts. Both items will be discussed during the presentations.

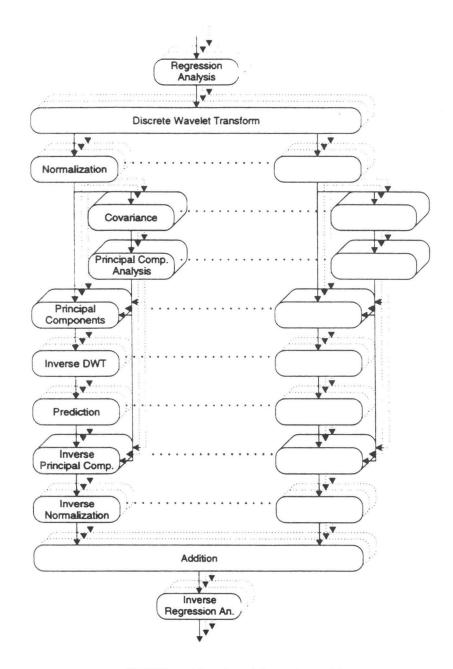


FIGURE 5.1. The enhanced forecasting model

Path Following and Bifurcations in Scientific Computing, I and II

Herbert B. Keller CalTech, Pasadena

Woudschoten Conference, 24 – 26 September 1997

Abstract

- I. General techniques for following regular paths will be introduced. Several different methods for introducing continuation parameters are shown. Global results and the sign-change lemma are covered. Degree theory and the homotopy invariance of degree follow with applications such as a constructive proof of the Brouwer fixed point theorem and the computation of periodic orbits.
- II. The study of steady state bifurcations and several ways to switch branches at bifurcations are covered. The bordering algorithm and its applications in path following are introduced. Fold following and related matters in higher co-dimension bifurcations will be discussed.

A Software Tool for Nonlinear Parameter Dependent PDE's

Hans D. Mittelmann Arizona State University Department of Mathematics P.O. Box 871804 Tempe, AZ 85287-1804, USA

September 8, 1997

Abstract

In this talk we introduce a package for the finite element solution of single, nonlinear elliptic partial differential equations. We have contributed to its feature of treating equations that in a general way may depend on several real parameters. Since the program is rather complex, it includes multilevel techniques, adaptivity, continuation, a graphical user interface etc, this description will go somewhat into detail which seems necessary even for a general audience.

References

[1] R. E. Bank, PLTMG: A Software Package for Solving Elliptic Partial Differential Equations, User's Guide 7.0, SIAM, Philadelphia, 1994. (The version considered will be 7.8)

Solution of Continuation and Bifurcation Problems for PDE's

Hans D. Mittelmann Arizona State University Department of Mathematics P.O. Box 871804 Tempe, AZ 85287-1804, USA

September 8, 1997

Abstract

In continuation of the first talk, we will look in detail at the continuation features of the package. Some of both the basic underlying mathematical principles as well as implementation issues will be addressed. While the type of bifurcation problems that can be treated is not as general as those solvable by some ODE packages, the crucial point is that through the integration of the treatment of parameter—dependence with the other features of the program and through its interactive use via a convenient graphical user interface, this program overall represents a powerful tool to solve parameter—dependent PDE problems well. This will be demonstrated with a number of examples.

References

- [1] H. D. Mittelmann, A pseudo-arclength continuation method for nonlinear eigenvalue problems, SIAM J. Numer. Anal. 23(1986), 1007–1016.
- [2] R. E. Bank and H. D. Mittelmann, Stepsize selection in continuation procedures and damped Newton's method, *J. Comp. Appl. Math.* 26(1989), 67–77.

New Approaches to Large Scale Eigenanalysis - I Introduction to Krylov Projection Methods

The past few years have seen significant advances in our abilities to compute partial eigendecompositions of large matrices. These new approaches have led to critical advances in several application areas including computational chemistry, semi-conductor laser design, linear stability analysis, and reduced basis techniques for large state space control systems.

This introductory talk will develop the background for Krylov subspace projection methods and then survey some of these new techniques. In particular, we shall discuss the implicitly restarted Arnoldi method which is the basis for the softare package ARPACK. This package has been used extensively in many application areas that require the solution of large scale symmetric and nonsymmetric (generalized) eigenvalue problems.

Introductory topics will include: Subspace Projection, The Lanczos/Arnoldi Process, Implicit Restarting, Spectral Transformation, Polynomial Preconditioning.

Prof. Danny C. Sorensen Dept. Computational and Applied Mathematics Rice University Houston, TX 77251-1892

New Approaches to Large Scale Eigenanalysis - II Truncated QZ-methods

Recent research in large scale eigenanalysis has focused on the generalized eigenvalue problem

 $\mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{x}\lambda$.

The emphasis has been on intoducing pre-conditioning (or spectral enhancement) ideas that accelerate convergence without accurate solution to shift-invert equations. This talk will briefly survey some of these new approaches and then develp two algorithms for the generalized problem. These new methods are developed within a subspace projection framework as a truncation and modification of the QZ-algorithm for dense problems that is suitable for computing partial generalized Schur decompositions of the pair (\mathbf{A},\mathbf{B}) . A generalized partial reduction to condensed form is developed by analogy with the Arnoldi process. Then truncated forward and backward QZ iterations are introduced to derive generalizations of the Implicitly Restarted Arnoldi Method and the Truncated RQ method for the large scale generalized problem. Preliminary computational experience is presented along with a discussion of possibilities for inexact solutions of shift-invert equations.

Prof. Danny C. Sorensen Dept. Computational and Applied Mathematics Rice University Houston, TX 77251-1892

Post-Bifurcation Analysis of Soil Plasticity with Eigenvector Perturbations.

Hilda van der Veen¹, Kees Vuik² and René de Borst¹.

¹Faculty of Civil Engineering, PO. Box 5048, 2600 GA Delft,
 ²Faculty of Technical Mathematics and Informatics, PO. Box 356, 2600 AJ Delft,
 Delft University of Technology, the Netherlands.

Numerical modeling of soil deformation is a difficult task. However, it is technically important because of numerous applications, for example in the tunneling and oil drilling industry. In this contribution, attention is focused on the computation of post-failure behavior of soil bodies.

For the numerical treatment of material nonlinearities in soil, it is common practice to use an incremental formulation. Typically, the material behavior is described by incremental constitutive laws. These laws together with kinematic and equilibrium equations and the appropriate boundary conditions form the boundary value problem [1].

The deformation of soil is described by the evolution of stresses and strains. The relation between them, in the case of elasto-plasticity, is described by the elasto-plastic stiffness tensor \mathbf{D}_{ep} . In the considered case of non-associative plasticity, this tensor is non-symmetric. As a consequence, the global tangential stiffness matrix, that relates the nodal displacements to the external forces, will also be non-symmetric.

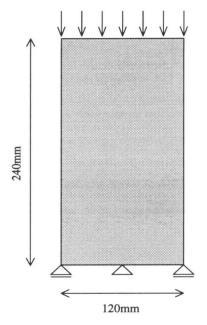

As an example, we modeled a biaxial compression test on soil, Figure 1. The structural and material data are summarized in Table 1. Up to failure the eigenvalues of the tangent stiffness matrix \mathbf{K} are real and positive. At the precise moment of failure, due to loss of uniqueness of the solution, one or more eigenvalues of \mathbf{K} are zero. This is called a bifurcation point. In numerical computations this point is never exactly found, but once a negative eigenvalue appears, we assume that a bifurcation point has been passed. The eigenvectors associated with negative eigenvalues are now computed,

Figure 2, and will be used to find a new solution related to a stable path. Such a path is characterized again by a tangent stiffness matrix with only real and positive eigenvalues. Several perturbation techniques have been examined, that make use of eigenvectors [2, 5]. Deformation after bifurcation is no longer homogeneous, but will have localized into a shear band of which the size and direction depends on the perturbation method used, Figure 3.

For the computation of the eigenvalues and eigenvectors we use the bi-Lanczos method with partial orthogonalization [3, 4]. This allows for efficient computation of the left and right eigenvectors that are both used in the computation of post-bifurcation behavior.

References

- [1] BATHE, K.-J. Finite element procedures in engineering analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.
- [2] BORST, R. D. Computation of post-bifurcation and post-failure behavior of strain- softening solids. *Computers and Structures* 25 (1987), 211–224.
- [3] DAY, D. M. Semi-Duality in the two-sided Lanczos algorithm. PhD thesis, University of California at Berkeley, 1993. Third decendent.
- [4] VEEN, H. V. D., AND VUIK, K. Bi-Lanczos with partial orthogonalization. Computers & structures 56, 4 (1995), 605-613.
- [5] VEEN, H. V. D., VUIK, K., AND BORST, R. D. Computation of post-bifurcation behavior in soil plasticity with eigenvector perturbation. In Finite elements in engineering and science; Proceedings of the second international DIANA conference on computational mechanics (1997), pp. 529-536.

 $Figure \ 1: \ Biaxial \ compression.$

Size	120mmx240mm
Elements	12x24 8-noded plane strain
Degrees of freedom	1847(1823)
Gauss integration	3x3
Cohesion	0.01 MPa
Young's modulus E	1.8625 MPa
Poisson's ratio ν	0.3
Friction angle	17.46 degrees
Dilatancy angle	11.54 degrees

Table 1: Structural & Material data.

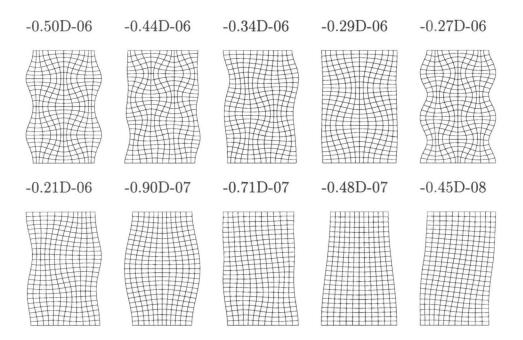


Figure 2: Eigenvalues and related eigenmodes.

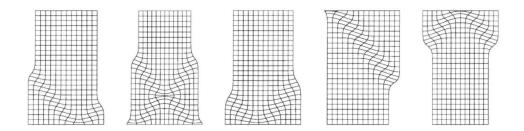


Figure 3: Deformation modes for different perturbation techniques.

List of participants Woudschoten Conference 24-26 September 1997

1	Werner	Aernouts	KU Leuven	Leuven
1. 2.		Anthonissen	TU Eindhoven	Eindhoven
3.	Martijn Owe	Anthonissen	KU Nijmegen	Nijmegen
<i>3</i> . 4.	Wim	Bomhof	Univ Utrecht	Utrecht
5.	Natalia	Borovykh	RU Leiden	Leiden
6.	Mikhail A.		Univ Utrecht	Utrecht
7.		Botta	RU Groningen	Groningen
8.	Eugen Johan	Cambré	KU Leuven	Leuven
9.	Laurence	Cherfils	Univ. J. Fourier	Grenoble (F)
9. 10.	Gorik	De Samblanx	KU Leuven	Leuven
11.	Eusebius	Doedel	Concordia Univ.	Montreal
12.	Harald	van Drummelen	CWI	Amsterdam
13.	Alan	Edelman	MIT	Cambridge (Mass.)
14.	Koen	Engelborghs	KU Leuven	Leuven
15.	Jan	van Eykeren	RIVM	Bilthoven
16.	J.E.	Frank	TU Delft	Delft
17.	Arjan	Frijns	TU Eindhoven	Eindhoven
18.	Menno	Genseberger	CWI	Amsterdam
19.		Goossens	KU Leuven	Leuven
20.	Serge	van de Griend	RU Leiden	Leiden
20.	Jaap Pieter	de Groen	VU Brussel	Brussel
22.	Duncan	v.d. Heul	TU Delft	Delft
23.	Guido	v.d. Heur van den Heuvel		Leiden
24.	Michel	Hoevenaars	RU Leiden ING-bank	Amsterdam
25.	Walter	Hoffmann	UvA	Amsterdam
26.	Jiri		CWI	
27.	Karel	Hoogland in 't Hout	RU Leiden	Amsterdam Leiden
28.	P.J.	van der Houwen	CWI	
29.	F.J. Eelco	Jansen	350 ALC 150	Amsterdam
29. 30.	Jos K.M.		KU Nijmegen	Nijmegen
31.	Rik	Jansen Kaasschieter	TU Eindhoven	Eindhoven
32.			TU Eindhoven	Eindhoven
33.	Herbert Jan	Keller	CalTech CWI	Pasadena
33. 34.	Michiel	Kok		Amsterdam
34. 35.		Kooper	Philips Natlab	Eindhoven
	Barry	Koren	CWI	Amsterdam
36.	E. Jurjen	Kranenborg	VU Amsterdam	Amsterdam
37.	Konstantin		TU Eindhoven	Eindhoven
38.	Domenico	•	KU Leuven	Leuven
39.	Debby	Lanser	CWI	Amsterdam
40.	Alain	Leger	EDF - DER	Clamart (F)
41.	Bob	Mattheij	TU Eindhoven	Eindhoven
42.	Ellen	Meijerink	Univ Utrecht	Utrecht
43.	Wim	Michiels	KU Leuven	Leuven
44.	Hans	Mittelmann	Arizona State Univ.	Tempe
45.	Charles	Moulinec	TU Delft	Delft
46.	Seva	Nefedov	TU Eindhoven	Eindhoven
47.	Margreet	Nool	CWI	Amsterdam

48.	Α.	van der Ploeg	CWI	Amsterdam
49.	Arnold	Reusken	TU Eindhoven	Eindhoven
50.	Herman	te Riele	CWI	Amsterdam
51.	Dirk	Roose	KU Leuven	Leuven
52.	W.H.A.	Schilders	Philips Research	Eindhoven
53.	Jo	Simoens	KU Leuven	Leuven
54.	Gerard	Sleijpen	Univ Utrecht	Utrecht
55.	Ben	Sommeijer	CWI	Amsterdam
56.	Danny	Sorensen	Rice University	Houston
57.	Stefan	Spekreijse	NLR	Amsterdam
58.	Marc	Spijker	RU Leiden	Leiden
59.	Jacques	de Swart	CWI	Amsterdam
60.	Stefan	Vandewalle	KU Leuven	Leuven
61.	Hilda	van der Veen	TU Delft	Delft
62.	Arthur E.P.	Veldman	RU Groningen	Groningen
63.	Menno	Verbeek	Univ Utrecht	Utrecht
64.	Jan	Verwer	CWI	Amsterdam
65.	Leendert	Vijfvinkel	KU Nijmegen	Nijmegen
66.	Henk A.	van der Vorst	Univ Utrecht	Utrecht
67.	Pauline	Vosbeek	TU Eindhoven	Eindhoven
68.	Kees	Vuik	TU Delft	Delft
69.	Kaichun	Wang	TU Eindhoven	Eindhoven
70.	Piet	Wesseling	TU Delft	Delft
71.	Freddy	Wubs	RU Groningen	Groningen
72.	Paul	de Zeeuw	CWI	Amsterdam
73.	Paul	Zegeling	Univ Utrecht	Utrecht
74.	Zheng	Zuochang	KU Leuven	Leuven