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Rationale In my thesis, I developed implementations of safe statistics: a new
framework for collecting evidence for hypotheses, particularly suitable for online
and sequential learning [1]. Currently, p-values and (frequentist) confidence in-
tervals are the most widely-used methods for collecting evidence for hypotheses.
However, with these methods, error bounds are only guaranteed if the number
of samples for each experiment and the number of experiments are fixed in ad-
vance. This means these statistics should not be used in an online setting (a
prototypical example is A/B testing); would one do this anyway, the probability
of obtaining false “significant” results would approximate 1 as the number of
data points collected grows. Since feasible, easily implementable methods that
are robust under online use have not been available to the research community,
classical methods have been used anyway, with many expensive false-positive
findings as a consequence.

Similarly, standard statistics also do not provide guarantees in the common
situation that experiments (e.g. randomised trials) are conducted sequentially,
when the decision to start a new experiment is based on previous results [3].
It directly follows that meta-analysis results, and even combined evidence from
multiple experiments performed within the same research group can be mis-
leading. The safe statistics framework provides methods that can be used to
analyse data in real-time, and to effortlessly combine statistics from sequential
experiments.

Safe statistics Within the safe statistics framework, random variables called E-
variables4 are used to represent the evidence for a hypothesis in the data. By
definition, an E-variable is a nonnegative random variable that has an expected
value of at most 1 under the null hypothesis H0. The higher an E-value, the more
evidence there is in the data in favour of the alternative hypothesis H1. From
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the definition of E-variables, it can straightforwardly be derived that when we
use the rule that we reject H0 when the E-value exceeds 1

α for some α ∈ [0, 1],
we have a test where the probability of falsely rejecting the null is bounded by
α. The definition also implies that all E-variables can be used in the sequential
setting simply by multiplying them. It also turns out that a special subset of
E-variables can be used in the online testing setting [1].

To optimise the amount of evidence collected, an information-theoretic cri-
terion for good E-variables was defined: GROW, which stands for Growth Rate
Optimal in the Worst case [1]. GROW E-variables tend to grow fastest for some
alternative hypothesis H1,δ : {Pθ1 : θ1 ∈ Θ1(δ)} defined by a distance metric
δ, even in the worst case scenario where data are generated by a distribution
in H1,δ that yields little evidence. It turns out that these GROW E-variables
have the form of Bayes factors and can be derived for any pair of hypotheses H1

and H0 [1], but the corresponding prior distributions are sometimes completely
different from what Bayesian machine learners or statisticians would normally
use.

Results and short discussion For this thesis, I developed GROW E-variables
equivalent to two classical frequentist hypothesis tests: the two-by-two contin-
gency table test and its stratified version, the Cochran-Mantel-Haenszel test.
Two versions of the E-variable were developed. For the first version, H1,δ was
defined with δ the Kullback-Leibler divergence. This E-variable could be useful
when one wants to design a test optimised for distributions that would yield
a certain minimal growth rate if they would generate the data. For the second
version, H1,δ was defined with δ the absolute difference between the proportions.
Such an E-variable is useful when one has more clear ideas about the applied
goal of the experiment and wants to detect a minimal difference between two
groups.

For the ‘minimal absolute difference’ version, the GROW E-variable was de-
rived analytically. I showed that when using this E-variable in an online, real-time
fashion, the expected sample size needed to achieve a desired power can be lower
than when using its classical equivalent, Fisher’s exact test. No analytic expres-
sion could be found for the Kullback-Leibler version: this GROW E-variable has
to be found through numerical optimisation. Nevertheless, the Kullback-Leibler
version could still be preferred in some cases: it was shown to gain higher power
for certain data-generating distributions compared to the absolute difference E-
variable.

Both E-variables were implemented in the Safestats R package, a collabora-
tive project with other machine learning researchers from Amsterdam [2]. The
work in this thesis gave rise to some interesting follow-up questions, such as the
development of ‘most powerful’ GROW E-variables, safe confidence sequences
for proportions, and applications of E-variables for healthcare research, and is
continued in my current PhD project.
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