
Deriving Explicit Control Policies for Markov
Decision Processes Using Symbolic Regression

A. Hristov
Center for Mathematics and Computer Science,

Stochastics Group
asparuhvh@gmail.com

J.W. Bosman
Center for Mathematics and Computer Science,

Stochastics group
joost.bosman@gmail.com

S. Bhulai
Vrije Universiteit Amsterdam,
Department of Mathematics

s.bhulai@vu.nl

R.D. van der Mei
Center for Mathematics and Computer Science,

Stochastics group
mei@cwi.nl

ABSTRACT
In this paper, we introduce a novel approach to optimizing
the control of systems that can be modeled as Markov deci-
sion processes (MDPs) with a threshold-based optimal policy.
Our method is based on a specific type of genetic program
known as symbolic regression (SR). We present how the per-
formance of this program can be greatly improved by taking
into account the corresponding MDP framework in which
we apply it.

The proposed method has two main advantages: (1) it re-
sults in near-optimal decision policies, and (2) in contrast
to other algorithms, it generates closed-form approximations.
Obtaining an explicit expression for the decision policy gives
the opportunity to conduct sensitivity analysis, and allows in-
stant calculation of a new threshold function for any change
in the parameters. We emphasize that the introduced tech-
nique is highly general and applicable to MDPs that have a
threshold-based policy. Extensive experimentation demon-
strates the usefulness of the method.

CCS CONCEPTS
• Mathematics of computing→ Stochastic processes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7646-4/20/05. . . $15.00
https://doi.org/10.1145/3388831.3388840

KEYWORDS
Markov Decision Processes, Genetic program, Symbolic re-
gression, Threshold-type policy, Optimal control, Closed-
form approximation

ACM Reference Format:
A. Hristov, J.W. Bosman, S. Bhulai, and R.D. van der Mei. 2020.
Deriving Explicit Control Policies for Markov Decision Processes
Using Symbolic Regression. In 13th EAI International Conference
on Performance Evaluation Methodologies and Tools (VALUETOOLS
’20), May 18–20, 2020, Tsukuba, Japan. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3388831.3388840

1 INTRODUCTION
In practice, many control problems exhibit an optimal policy
that is of a threshold type. In most cases, this structure can
be shown theoretically by monotonicity and submodularity
arguments combined with mathematical induction within
the framework of Markov decision processes (MDPs). In real
applications, however, one does not only need to know the
structure of the optimal policy, but also the threshold value
for implementation purposes. Unfortunately, deriving this
value explicitly remains a hard problem and has to be solved
by numerical computation.

There are many advantages of having the threshold value
in an explicit form in a practical setting. It allows one to
easily implement a threshold for different system parameters
without having to resolve the MDP. This becomes even more
relevant in an environment with time-varying parameters.
Moreover, the robustness of the threshold function can be
assessed through sensitivity analysis. This is important when
system parameters are estimated from data.

In this paper, we develop a new approach to obtain an an-
alytic expression for threshold-based policies in MDPs. The
main idea of our method is to combine the field of Markov
decision theory with a specific genetic program, namely, the
symbolic regression (SR) algorithm, to learn the threshold

41

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan A. Hristov, J.W. Bosman, S. Bhulai, and R.D. van der Mei

function.We outline guidelines and useful practices when tai-
loring the algorithm. Although the obtained solution might
not be the optimal one, the threshold-based decision pol-
icy is, nevertheless, given in a closed-form expression and
near-optimal.

An introduction to MDPs and the well-known numerical
techniques to solve such problems (e.g., value iteration and
function iteration) are described in [10, 13, 18]. As discussed,
next to the numerical approach, one might tackle the chal-
lenge of optimal control also by using algebraic techniques.
However, due to the complexity of most of the MDP prob-
lems, obtaining an algebraic solution is not feasible. There-
fore, the vast body of literature (e.g., [3, 6, 14]) deals with
proving structural properties of various Markov decision
problems rather than finding the explicit structure of the
decision policy.

On the other hand, mostly due to practical reasons, there
is a need for an efficient procedure that yields an MDP solu-
tion, which can be implemented afterward. There are several
papers that show how one can make use of machine learning
techniques to obtain such a solution. Most of the research in
this domain is focusing on one of the following two types
of algorithms: reinforcement learning [16, 17], or genetic
programs [1, 4, 9, 19].
We believe that our paper can serve as a link between

the above described two major, and fundamentally different,
approaches. Our technique exploits certain structural prop-
erties of the given MDP to produce a closed-form solution.
Namely, it requires the optimal policy to be of a threshold
type. To obtain the function characterizing this decision pol-
icy, we use SR. An introduction to this genetic program can
be found in [5, 7]. A related research that applies SR within
an MDP framework is the one conducted in [11]. However,
in contrast to [11], our research aims at finding the control
policy rather than the value function. Therefore, with our ap-
proach one can directly incorporate insights into the optimal
policy in the SR implementation.
As an additional remark, we note that the results in this

paper were obtained using the gplearn [15] Python package,
which provides an SR implementation. Its efficiency together
with the scikit-learn [12] inspired and compatible API,
made this package our choice for representative SR solution.
The remainder of this paper is organized as follows. We

first outline our implementation of the SRmethod for solving
a given MDP with a threshold-based policy in Section 2. To
present our guidelines more comprehensibly, we introduce
in Section 3 an MDP that will serve as a running example. In
Sections 4 and 5, we discuss our findings and our approach
in the following two crucial procedures: preparing the data
and adjusting the settings of the algorithm. We evaluate
our threshold function discovery technique in two ways:
‘How does the approximated policy perform compared to the

Figure 1: The formula (𝑥 − 2 + 4𝑥) expressed as a tree.

Figure 2: An example of generating a new individual by a
combination of two others.

optimal one?’ and ‘Howmuch does the generated expression
resemble the real closed-form solution?’ We conclude with a
summary and discussion in Section 8.

2 OUTLINE OF THE TECHNIQUE
In this section, we introduce our method of finding a closed-
form solution for the control policy of a given MDP. As
mentioned, our technique uses SR. Therefore, we briefly
present the main concepts of this regression algorithm. The
reader is referred to [5, 7, 15] for more details on SR.

The goal of SR is to find an algebraic expression that best
fits a given dataset. Like any other genetic program, SR forms
an initial population of individuals, which in this case rep-
resent mathematical formulas. Next, it iteratively generates
a new offspring of individuals (e.g., a new generation) by
combining and/or mutating already existing individuals. The
underlying idea is that over time the population’s accuracy
increases due to evolving the good performing individuals.
Within the SR framework, an individual represents a spe-
cific formula, which is expressed as a tree (for an example
we refer to Fig.1). Note that each leaf contains a parameter,
whereas each node gives the mathematical operator. In Fig. 2,
we illustrate one of the few possible combination/mutation
schemes.
In the following, we list the four main steps of our tech-

nique.
Step 1: Modeling an MDP with a threshold-based pol-
icy: as a first step, one should model the problem as an MDP
by defining the system states and the corresponding transi-
tion probabilities, associated operational costs and possible

42

Control Policies with Symbolic Regression VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

Figure 3: The ‘write behind’ mechanism as a queueing
model.

control decisions. Note that the studied MDP should have
an optimal policy which is of a threshold type.
Step 2: Preparing the data: the regression program re-
quires a dataset on which the individuals will be tested.
Therefore, one needs to numerically solve a number of sys-
tem instances, e.g., to obtain the optimal decision policy with
regards to specific parameter values.
Step 3: Specifying the algorithmsettings: there aremany
settings that determine the duration of the evolution, the
initial population, and perhaps most importantly the way
the generations evolve.
Step 4: Evaluating the results: different setting configu-
rations lead to different results. There are certain choices
that we believe are optimal, but nevertheless, we advise one
to iteratively analyze the obtained expressions and further
adjust certain settings that might lead to a better result.

To evaluate the performance of the algorithm, we examine
two MDP models. The first one defines a system for which
the analysis is very challenging and, to the best of our knowl-
edge, there is still no efficient technique for obtaining the
optimal policy. Furthermore, there is no analytic solution
available even for specific cases of this system. Therefore, we
take the corresponding MDP model as a running example
and as a benchmark for evaluating the algorithm’s accuracy
in terms of achieved system performance. In contrast, the op-
timal policy for our second MDP example, namely, an𝑀 |𝑀 |1
queue, can be derived in closed-form. Hence, by comparing
the expressions generated by our technique to the optimal
formula, we can study how well the algorithm approximates
the algebraic form of the threshold function.

3 MODELING AN MDPWITH A
THRESHOLD-BASED POLICY

In this section, we present our first MDP problem. We con-
sider a single-server queuing system with features inspired
by the ‘write behind’ caching mechanism (see Fig. 3). Namely,
the server has to complete a two-step process for each re-
quest that arrives in the system. Jobs receive an initial service

in a First Come First Served (FCFS) fashion and are subse-
quently accumulated in a buffer. The second phase consists
of serving those requests that are in the buffer as a batch,
i.e., perform a flush of the cache. In such a way, the server
can accumulate requests in the buffer to some level before
serving them all together as a group.

In the following, we denote themaximum size of the server
queue and the buffer as 𝑄 and 𝐵, respectively. Next to that,
jobs are assumed to arrive according to a Poisson process
with rate _ and join the queue if they find the server busy at
this moment. Furthermore, the time to store a request in the
buffer is taken to be exponentially distributed, with mean
𝛽1. This corresponds to the required time to write a request
to the cache. The service time required for the second phase
is also assumed to be exponentially distributed, with mean
𝛽2,𝐾 , and stands for the time required to write to the cache
and consequently perform a flush of size 𝐾 . We model 𝛽2,𝐾
to increase proportionally to the batch size and therefore
we take 𝛽2,𝐾 = 𝑎 + 𝑏𝐾 , where 𝑎 and 𝑏 are parameters. One
can interpret 𝑎 ≥ 𝛽1 as the time required to write the 𝐾-th
request to the cache and subsequently initialize the flush,
i.e., the batch service. On the other hand, 𝑏 > 0 stands for
the average time to write a single update to the storage. As
the flush requires an initialization time, accumulating jobs
and serving them at once might greatly improve the overall
performance by reducing the number of initialization steps.
On the other hand, the bigger the group size is, the larger the
waiting times during the batch service will be. This implies
that requests can be grouped to an optimal level. Motivated
by this, we analyze the control policy that minimizes the
average waiting time.

In addition, we note that the system load, 𝜌 , is dependent
on the batch size and hence the decision policy. Therefore,
in the following as an approximation of 𝜌 we use the case of
a batch size 1. Hence, we take 𝜌 = 0.5_(𝛽1 + 𝑎 + 𝑏).

Optimizing the above described queuing systemhas proven
to be challenging. Due to the complexity of the problem [8],
there are studies on the simpler case of a static system control
- the requests in the buffer are served whenever they reach
a predefined number 𝐾 , regardless of the number of jobs at
the server queue. However, even in this case, there is still
no analytic solution. Therefore, we believe that finding an
analytic expression for the dynamic threshold policy would
greatly facilitate managing such systems. At the same time,
it promises a far better performance than the static one as it
takes into account also the number of requests at the server
queue.

4 PREPARING THE DATA
As discussed, we use SR to derive an expression for the thresh-
old policy function for a given MDP. To produce an estimate,
the regression needs training data set as an input. Once

43

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan A. Hristov, J.W. Bosman, S. Bhulai, and R.D. van der Mei

trained on the corresponding samples, the approximation’s
accuracy can be obtained by comparing the predictions on a
given set of test samples with the actual, real values.
There are a few ways to solve an instance of a given

MDP problem, e.g., by running the value iteration tech-
nique [13, 18] or by Temporal Difference (TD) learning [16].
Once the optimal threshold policy is obtained, one can trans-
form it into a function 𝑓 (𝑃𝑠 , 𝑥) = 𝑦, where 𝑃𝑠 denotes the spe-
cific system parameters and𝑦 gives the corresponding thresh-
old level for 𝑥 . Note that for an MDP with an 𝑁 -dimensional
state space the vector 𝑥 would be (𝑁 − 1)-dimensional and
𝑦 an integer. In our example, 𝑥 is an integer and stands for
the number of jobs at the server queue, whereas 𝑦 is the
number of requests that are already in the buffer. Next to
that, we believe that in addition to the initial core parameters
of the system (e.g., the local variables), one might also con-
sider including self-composed ones (e.g., structured features).
In such a way, one can facilitate the algorithm in discover-
ing important dependencies between the parameters. For
example, in most of the cases, the system load, 𝜌 , greatly
influences the behavior of the MDP, and hence, the optimal
control. Therefore, in some of the generated SR instances we
include 𝜌 as a structured feature.
In the following, we outline the procedure we have per-

formed to generate the data set for our running example. Our
objective is to obtain approximation that can be used for a sys-
tem with any parameters set, 𝑃𝑠 = (_, 𝛽1, 𝑎, 𝑏). Therefore, we
design model instances with the idea of generating samples
for systems as diverse as possible: 𝛽1 ∈ {1.2, 2.4, 3.6, ..., 12},
𝑎/𝛽1 ∈ {1, 1.4, 1.8, ..., 5}, and𝑏/𝛽1 ∈ {0.01, 0.014, 0.18, ..., 0.5}.
In all cases we take _ = 1 to reduce the number of parame-
ters without loss of generality. In such a way, we produce
examples of systems with a load ranging from 0.1 to 0.9. Note
that for a given set of system parameters, 𝑃𝑠 , we have 𝑄 + 1
samples in the data. Namely, one for each 0 ≤ 𝑥 ≤ 𝑄 (the
number of requests at the queue cannot exceed the queue
length) together with the corresponding threshold value 𝑦
indicating the optimal batch size.

Next to that, in the analyzed MDP system, scaling the ar-
rival rate and the service rates does not influence the optimal
decision policy. Therefore, we incorporate this insight by
multiplying/dividing (1/_, 𝛽1, 𝑎, 𝑏) by a factor of 100, append
the already derived 𝑥 and 𝑦 and use the result as additional
data samples. In such a way, we assist SR in finding an ex-
pression that is scale-free with regards to (1/_, 𝛽1, 𝑎, 𝑏), and
therefore less probable to be over-fitting the specific range
of training values.

For the majority of cases, we took 𝑄 = 100 and 𝐵 = 50, so
that we could solve the above-described systems with the
value iteration technique in terms of seconds. Nevertheless,
we did also generate samples with 𝑄 = 1000 and 𝐵 = 500
and included them in the test set. As a final remark, we note

that we have split the obtained dataset in a training and test
set by a 70/30 ratio, including MDP instances with various
loads in both subsets.

5 SPECIFYING THE ALGORITHM SETTINGS
Once the MDP problem is modeled, and a dataset is gen-
erated by solving instances of this problem, one needs to
specify the desired algorithm settings. An extensive list of
the possible settings for the gplearn’s SR implementation
is described in the corresponding package documentation
(see [15]). Therefore, in this paper, we focus only on the
features that we find particularly interesting with regards
to our technique, i.e., when one uses the genetic program
within an MDP framework. Namely, settings that one should
consider adjusting in a way different than the default one
are listed in the following subsections.

Set of operators
The set of operators contains a list of the mathematical op-
erators that are allowed in building and evolving the trees.
Due to a trade-off between the complexity of the formulas
and their accuracy, our approach is to start with the four ba-
sic binary operations – addition, subtraction, multiplication,
and division. Next to that, we believe that often the thresh-
old function might contain square root operation, inverse
function and/or logarithm. Therefore, we suggest running
a few SR instances where trees can use various subsets of
those mathematical operators. Comparing the outcomes of
the configurations one can decide which results suit better
one’s goal. Note that there is no benefit in implicitly allowing
exponentiation if one does not expect an exponent higher
than 2, as the trees 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 (𝑎, 2) and𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 (𝑎, 𝑎) have
the same depth and length.

Initial depth and parsimony coefficient
One can control the length and the depth of the trees, i.e.,
the complexity of the expressions, by adjusting the initial
depth (init_d) and the parsimony coefficient (pc). More pre-
cisely, the init_d is given by a tuple that defines the minimum
and the maximum size allowed for the first generation of
trees, whereas the pc is influencing how the further gen-
erations evolve by penalizing longer expressions. In such
a way, one can control the “bloating” effect – an increase
in the trees’ size which corresponds to a not significant in-
crease in their fitness. Greater values of the pc penalize larger
trees more and make them less favorable for selection. In
our MDP example, we generated instances with values for
the pc between 0.001 and 0.1 and init_d in ranges varying
from as low as (2, 3) to the higher values of (7, 8). Based on
the conducted tests, we believe that setting the pc to 0.01
in combination with init_d range containing the number
of system parameters, |𝑃𝑠 |, would be a reasonable default

44

Control Policies with Symbolic Regression VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

choice for our technique. In particular, we conclude that for
our MDP problem init_d = (3, 6) tends to produce the best
results as the first generation consists of relatively simple
expressions that nevertheless are complex enough to capture
all system parameters.

Fitness function
The fitness of a given tree is calculated based on the accuracy
of its predictions on the training samples. This implies that
there are two important components of the fitness function –
the way the error on a single training sample is defined and
the way the overall fitness is obtained from those accuracy
scores. Note that if one’s aim is to produce the best fit of
the real threshold function solely, one can simply apply one
of the common accuracy measurement metrics, e.g., mean
absolute error or mean squared error. In contrast, in the fol-
lowing guidelines, we assume that the primary goal of a
person using our technique is to minimize the costs associ-
ated with a certain MDP problem. In such a case, we find it
crucial to assign appropriate weights to the various training
samples. The reason is that the more probable a system state
is, the greater impact an error in the corresponding decision
has. Therefore, one might consider using the steady-state
probability of each state as its weight. However, in some
systems, it is difficult to obtain the steady-state distribution.
As a consequence, in our running example, we tested the two
simpler weight functions: 𝜌𝑥 and (𝑄 − 𝑥)2, where 𝜌 is the
load of the system from the corresponding sample (𝑃𝑠 , 𝑥,𝑦).
Note that the second function does not require any additional
computations as the maximum queue length 𝑄 is given as a
system parameter.

Next to that, we believe that in the context of estimating a
control policy of a threshold-type one should consider fitness
function that computes the relative error on a given sample
instead of the absolute one. In conclusion, we recommend
the weighted version of a relative accuracy measurement,
e.g., weighted mean absolute percentage error (wMAPE) or
weighted root mean squared error (wRMSE).

6 EVALUATING THE RESULTS
As discussed, the output of the algorithm depends on the
specific settings. Therefore, one has to decide whether it is
possible to further adjust one or more of those features to
produce an expression that fits better one’s goal – a simpler
threshold function or a more accurate one. Nevertheless, we
believe that certain settings result in both better performing
and less complex threshold decision policies. For that reason,
next to the provided setting recommendations, we advise
that one initially explores a larger number of various SR
configurations and only afterward further evolve a few of
the best ones. In such a case, it might become important to
optimize the running time of each algorithm’s instance. One

Table 1: Setting configurations

𝑁 Operators 𝜌 feature? Fitness Weights
I +,−, ∗, / No RMSE
II +,−, ∗, / No wMAPE 𝜌𝑥

III +,−, ∗, / Yes wMAPE 𝜌𝑥

IV +,−, ∗, / Yes wRMSE 𝜌𝑥

V +,−, ∗, / Yes wRMSE (𝑄 − 𝑥)2
VI +,−, ∗, /,√ Yes wRMSE (𝑄 − 𝑥)2
VII +,−, ∗, /,√ Yes wRMSE (𝑄 − 𝑥)2

way to achieve this is to train and/or test the first couple of
configurations only on a subset of the corresponding data
instead of the full one. Next to that, one can keep track of
the best fitness score for each generation and terminate the
instance earlier if there is not much of an increase in the
score for a few generations in a row.

In the following, we discuss the accuracy of our technique
for our running example. We configure the SR algorithm
in accordance with the guidelines that we described in the
previous sections. In such a way, we incorporate the insights
from analyzing the system as an MDPmodel. To evaluate the
added value of our approach we compare it to SR instances
with default settings. Next to that, we also include cases
where only part of our recommendations were implemented.
In Table 1, we list some of these instances, numbered with
Roman numerals and the corresponding parameters. The
first column, 𝑁 , is used for a reference purpose, whereas the
other columns are self-explanatory.
As it is also most often the case in practice, our goal is

to find the decision policy which minimizes the average
costs of the system. Therefore, although the algorithm is
approximating the threshold function, in this section, we
will not examine how good of a fit the estimation is. Instead,
we present the relative difference, 𝐸𝑟 , between the acquired
costs if one uses the threshold policy from the generated
expression, 𝑔𝑒𝑠𝑡 , and the optimal one, 𝑔𝑜𝑝𝑡 . More precisely,
we calculate

𝐸𝑟 =
|𝑔𝑒𝑠𝑡 − 𝑔𝑜𝑝𝑡 |

𝑔𝑜𝑝𝑡
× 100%.

The generated expressions and their accuracy are shown in
Table 2. Next to the median, we also state the 95th percentile
of 𝐸𝑟 . Based on the results for formulas I to V, we conclude
that incorporating the various guidelines in accordance with
the MDP framework greatly improves the accuracy of the
expressions without adding complex terms. Next to that, we
note that including the square root operator can decrease
the error even further. However, the remarkable accuracy
of the threshold functions VI and VII come with the cost of
expressions that are hard to interpret.

45

VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan A. Hristov, J.W. Bosman, S. Bhulai, and R.D. van der Mei

Table 2: Numerical results

𝑁 Threshold function 𝐸𝑟 perc.
50th 95th

I 3𝑎_−0.37
_𝛽1

− _
_−1/𝛽1 + 0.27𝑥 + 0.96 1.31 5.05

II _(𝛽1 + 𝑎) + 𝑎−𝑏𝑥
𝛽1
+ 𝑥 0.32 1.65

III _(𝛽1 + 𝑎 + 𝑏) + 𝑎−2𝑏
𝛽1
+ 0.75𝑥 + 0.4 0.30 1.10

IV 2_(𝛽1 + 𝑎 + 𝑏) + 0.75(𝑎−2𝑏)
𝛽1

+ 0.5𝑥 0.26 1.28
V 1.5_(𝛽1 + 𝑎 + 𝑏) + 𝑎(2_ + 1/𝛽1) + 0.33𝑥 0.27 0.93
VI

√
0.4(𝑎_ + 𝑥) (1.6

√
𝑎/𝛽1 + 0.6_) 0.03 0.34

VII 𝑎_ + √𝑥 (𝑎_ + 1.5) +
√√

𝑥 (𝑎_ + 1.5) 0.01 0.18

7 OBTAINING ALGEBRAIC RESULTS
Next to numerically evaluating the performance of the gen-
erated functions, we are also interested in how well these
symbolic expressions resemble the optimal one. Therefore, in
this section, we apply our technique to an MDP system that
has a closed-form solution. In such a way, we can compare
the derived expressions to the real one. Moreover, we use this
example to once again go through the steps of our approach.
In the following, we implement the algorithm according to
the guidelines described in Sections 4 and 5. Furthermore, we
apply the default settings in order to examine our technique
in its general form, without any adjusting and tailoring to a
specific model.

1. Modeling anMDPwith a threshold-based policy:We
study a single server queue with Poisson arrivals with rate _
and exponentially distributed service timeswith rate `. There
are holding costs, 𝑐ℎ , associated with each customer in the
queue. Furthermore, one can decide to reject a customer upon
arrival. In such a case, there is a rejection cost, 𝑐𝑟 acquired.
Even for such a simple system, obtaining the closed-form
expression of the decision policy is very challenging. In [2],
it was shown that the long-run average cost, 𝑔, for a system
with 𝑐ℎ = 𝑐𝑟 = 1 is given by:

𝑔 =
𝜌 − (𝜏+1) (1−𝜌)𝜌(1/𝜌)𝜏−𝜌

1 − 𝜌 + (1 − 𝜌)_(
1
𝜌

)𝜏
− 𝜌

,

where 𝜌 = _/` is the system load and 𝜏 is the threshold
value. Now, minimizing 𝑔 with respect to 𝜏 gives the optimal
threshold value 𝜏𝑜𝑝𝑡 :

𝜏𝑜𝑝𝑡 = ` − _ − 1

− 1
log(𝜌)
− 𝐿 (−𝜌 exp (log (𝜌) (` − 1 − _) − 1))log(𝜌) ,

(1)

where 𝐿(.) is the Lambert-W function.

2. Preparing the data: Note that the state space of this
MDP is one dimensional, i.e., the number of customers in
the queue, and therefore each system configuration results
in exactly one data sample (_, `, 𝜌,𝑦) where 𝑦 denotes the
threshold value. We generated samples for systems with 100
equally spread values of ` in the range [1..1000] and 100
values of _ for each ` resulting in 𝜌 from 0.05 to 0.95.

3. Specifying the algorithm settings: Three different set-
ting configurations were tested. In the first one we used
only the four basic mathematical operators (addition, sub-
traction, multiplication, and division), whereas in the second
configuration we added two more that are present in the
closed-form expression: inversion and natural logarithm. Fi-
nally, we generated a third program instance including also
the Lambert-W function as a possible mathematical opera-
tor. In all of the configurations, the init_d and the pc were
assigned to the suggested default values, namely (1, 3) and
0.01, respectively. Furthermore, since each system instance
is associated with exactly one sample, there is no need of
using weights in the fitness function.

4. Evaluating the results:The outcomes of the above-described
three setting configurations are given by the following ap-
proximations 𝜏1, 𝜏2, and 𝜏3 for the optimal threshold policies,
respectively:

𝜏1 = ` − _ − 0.657 + _

` − _ ; (2)

𝜏2 = ` − _ − ` − _
` − _ −

1
log(𝜌) = ` − _ − 1 −

1
log(𝜌) ; (3)

𝜏3 = ` − _ − 0.597 + _

` − _ . (4)

The results show that the technique is able to find the most
influential terms (namely, ` − _) in all three configurations.
Furthermore, in the first case (Eq. (2)) it approximated (−1 −
1/log(𝜌)) using the term _/(_− `) and a constant. It is inter-
esting to note that this is indeed a very good estimation as
it is exactly the first (and most important) term, 𝜌 − 1, from
the Taylor expansion of log(𝜌) around 0. Namely:

1
log(𝜌) ≈

1
𝜌 − 1 =

`

_ − ` =
_

` − _ − 1.

In addition, we believe that the high accuracy of this ap-
proximation led the algorithm to use it also in 𝜏3, although
the log and the inverse operands were allowed by the third
settings configuration. The fact that 𝜏2 contains the exact
term −1−1/log(𝜌) shows that given more evolutionary time
(e.g., more generations, and/or different random seeds) would
have helped the third configuration to discover this term.

46

Control Policies with Symbolic Regression VALUETOOLS ’20, May 18–20, 2020, Tsukuba, Japan

Finally, we note that the last part of the exact threshold
expression that involves the Lambert-W function was not
included by the algorithm. After further analysis, we found
that the mean and the variance of this term across the sam-
pled systems were −0.005 and 0.003, respectively. Therefore,
given that the mean threshold was 1252, we believe that this
additional term is indeed negligible. Based on these findings,
we conclude that one might use our technique not only for
deriving a very well-performing decision policy, but also
the reason for its structure, and therefore, the importance of
certain parameters and the relations between them.

8 CONCLUSION
This paper is a pioneering contribution, and presents a new
and promising technique to obtain an analytic solution to
MDPs that have a threshold-based optimal policy. Themethod
makes use of a specific machine learning algorithm - the
symbolic regression. Therefore, we showed how one can ap-
ply and tailor this genetic program to the MDP framework.
Although the obtained solution might not be the optimal
one, the decision policy is nevertheless near-optimal and
furthermore given in a closed-form expression.

The technique introduced in this paper was tested on two
MDP models, resulting in highly accurate approximations
both in terms of the achieved system performance and the
form of the expression. We believe that the first next step
would be to extend the algorithm to a broader range of MDP
problems.
The results also raise a number of other questions for

further research. For example: (1) How do the generated
approximations relate to the size of the training data set?,
(2) What is a good experimental setup for the specific pa-
rameter settings used in the training set?, (3) How does the
choice of the hyper-parameters (the set of basis functions,
the set of operators, the set of features) of the SR-algorithm
influence the approximations?, (4) How does inaccuracy in
the calculations of of the value functions affect the quality
of the approximations?, and (5) To what extent is this gen-
eral methodology applicable to other models, and beyond
approximating control policies in MDPs?

REFERENCES
[1] D. Barash. A genetic search in policy space for solvingMarkov decision

processes. In AAAI Spring Symposium on Search Techniques for Problem
Solving under Uncertainty and Incomplete Information. AAAI Press,
1999.

[2] S. Bhulai. Markov decision processes: The control of high-dimensional
systems, 2002.

[3] S. Bhulai andG. Koole. On the structure of value functions for threshold
policies in queueing models. J. Appl. Probab., 40(3):613–622, 09 2003.

[4] H.S. Chang, H.-G. Lee, M.C. Fu, and S.I. Marcus. Evolutionary policy
iteration for solving Markov decision processes. IEEE Transactions on
Automatic Control, 50(11):1804–1808, Nov 2005.

[5] M.W. Khan and M. Alam. A survey of application: Genomics and
genetic programming, a new frontier. Genomics, 100(2):65 – 71, 2012.

[6] G. Koole. A simple proof of the optimality of a threshold policy in a two-
server queueing system. Syst. Control Lett., 26(5):301–303, December
1995.

[7] J.R. Koza, D. Andre, F.H. Bennett, and M.A. Keane. Genetic Program-
ming III: Darwinian Invention & Problem Solving. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition, 1999.

[8] Y. Levy. A class of scheduling policies for real-time processors with
switching system applications. 1985.

[9] Z.-Z. Lin, J.C. Bean, and C.C. White. A hybrid genetic/optimization
algorithm for finite-horizon, partially observed Markov decision pro-
cesses. INFORMS Journal on Computing, 16(1):27–38, 2004.

[10] J.M. Norman. Heuristic procedures in dynamic programming. Manch-
ester University Press Manchester, 1972.

[11] M. Onderwater, S. Bhulai, and R.D. van der Mei. Value function discov-
ery in Markov decision processes with evolutionary algorithms. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 46(9):1190–
1201, Sept 2016.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[13] M.L. Puterman. Markov decision processes: discrete stochastic dynamic
programming. New York, NY, USA: John Wiley & Sons, 1994.

[14] D. Roubos and S. Bhulai. Approximate dynamic programming tech-
niques for the control of time-varying queuing systems applied to
call centers with abandonments and retrials. Probab. Eng. Inf. Sci.,
24(1):27–45, January 2010.

[15] T. Stephens. Gplearn version 0.2.0. https://gplearn.readthedocs.io/en/
stable/, 2016.

[16] R.S. Sutton. Learning to predict by the methods of temporal differences.
Mach. Learn., 3(1):9–44, August 1988.

[17] R.S. Sutton and A.G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[18] H. Tijms. A First Course in Stochastic Models. Wiley, 2003.
[19] A. Yener and C. Rose. Genetic algorithms applied to cellular call

admission: local policies. IEEE Transactions on Vehicular Technology,
46(1):72–79, Feb 1997.

47

