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For given neN and HE<{1,2,...,n} we investigate whether the collection of subsets
Ac{1,2,...,n} with |A|e H possesses a parallelism (1-factorization). A complete solution for
the case H={1,2,..., R} is given.

0. Introduction

Let x be some fixed set of n elements. For H<={1,2,..., n} let K¥ denote the
hypergraph (x, E) with vertex set x and collection of edges

E={ycx|lyleH}.

(Since we never need symbols for the vertices of a hypergraph, but do use
collections of collections of edges, we denote sets of vertices by lower case
symbols, sets of edges by capitals and collections of sets of edges by upper case
script letters.)

When H is non empty its largest element is denoted by h. When H={h} we
write K" instead of K"}, the complete h-uniform hypergraph on n vertices. When
H=:{1,2,..., h} then, following Berge and Johnson, we write K" for K¥, the
hereditary closure of the complete h-uniform hypergraph on n vertices.

Baranyai [1] proved that K* has a 1-factorization if and only if h | n. Bermond,
Berge & Johnson [2, 5] then considered the case of K% which they solved for
h =<4 and in several other special cases. Our main vesult is

Theorem 1. K" possesses a 1-factorization exactly in the following cases:
() n=<2h and K2~ is 1-factorizable (or n—h—1<0).
(i) n=kh+1l k=2,-1<I<h-2 and
(iia) =0 and k=h-2,
or (iib) I=~1 and k=3h—1.

[Note that in case n =2h or n=2h—1 the conditions given under (i) and (ii)
agree.]
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In the course of proving this theorem we derive many results for general H.
{Theorems 2 and 3 reduce the problem to the cases n =kh and n=kh—1 with
k=3. Now we have:

(A) Let n=:k} with k=3 and h—1€ H. Then K} is 1-factorizable if and only
if either k=k—_ or(k=h—2 and h—-2eH). ’

(B) Let n=kh -1 with k=3 and h—2e H. Then K¥ is 1-factorizable if and
only if h—ie H end k=3h—1 and m(F) is odd (where the notation m(H) is
explained below).

All the existence results follow from Baranyai’s theorem, which roughly says
that a 1-factorization exists if (and only if) the numbers fit. For precise statements
of this theorem sce [1], [3] or [4]. It implies that a 1-factorization exists if and
only if there exist non-negative numbers ¢; with i=1,...,¢ and je H such that

i1 =(forjeHand Y, yje;=nfori=1,..., (For this application of the
theorem see [2], [3] or [5].)

For example K3 is 1-factorizable, since (3)=8, (§)=28, (§)=56 and one can
realize a 1-fartorization consisting of one 1-factor containing the eight singletons,
and 28 1-faciors each containing two triples and a pair.

On the other hand, as was remarked by R.M. Wilson, K3 is not 1-factorizable
since ()=7, (3)=21, (3)=35 and any 1-factor not containing a singleton must
contain two pairs and a triple, so that there are at most 10 triples in a 1-factor
without singleton and at most 14 triples in a 1-factor with singleton, which leaves
11 triples not in any 1-factor.

All the non-existence results are proved with a similar argument: Assume that
there exists a 1-factorization & of K. For each 1-factor Pe & let

n(g):=np(g):=HaeP|lal=g}l.
Suppose that G < H and il.at for each Pe &% we have

Y an(i)= ¥, n().

ieH jieG
Then 1t foliows that

Y aM=1 ¢

ieH ieG
Using inequalities on binomial ccefficients we then derive a contradiction.
[E.g. in the above example n=7, h=3 we have n(3)<2n(1)+in(2), hence
35 = (};=<2(]) +5() =243, a contradiction.]

1. Auxiliary lemma’s

Let g, h, k, n be positive integers with k=2.
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Lemma 1. Let n=kh—1 and g<h. Then

(g)=te-()

Proof. Use induction on h~g. if h =g the lemma is true. Next

(" ‘)=__§___(")< h (n)s 1 (n)
g—1/ n—-g+l1\g “n—h+1\g k__l':ﬂ.g.- P

provides the induction step. [

Lenysma 2. Let n=2h. Then

Z ()< ()

Proof. As before we find
n " h i'fn
(h—j)s(n-—h-i—l) (h)
S AR h  Nfm\_ _ h 'n) '
pX (i)<,.?;1 (n—h+1)(h)"n-—2h+1 (h - O,

We shall use these lemma’s throughout the sequel without explicit reference. In
Section 5 we shall use the following observations: ‘

so that

Lemma 3. Let p, q, m be positive integers with (p, q) | m. If
_m__ (_.P___l)(__ﬂ___l)
.9} \p.q) (.9 |
then there exist nonnegative integers a, b such thqt‘m =ap+bq.
Proof. Easy exercise. [

Lemma 3a. Let p,q,m be integers with p<0<q and (p,q)|m. There =xist
nonnegative integers a, b such that m = ap + bq, and one may choose them in such a
way that when m =0, then

m+p P
-1 and bs—————,
{p,q) a (a

and wien m=<0, then

m-+
as q+ 9

—< a
qa @a (p, q)

= ——
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Consequently we can always obtain
+ +
a +bsmax(%—e,ﬂ1—f)+q-p— 1.

Proof. Trivial. (]

2. The reflection principle

Theorem 2. Let n<2h. Then K} has a 1-factorization if and only if {=n or
n—heH) and K¥*N"""" is 1-factorizable.

Proof. First assume n—h e 4. Given a 1-factorization of K¥\h"~*'we ¢btain a
1-factorization of KX by adding the 1-factors {z,x\a} for all acx, |a|=h.
Converseiy, if there exists a 1-factorization of K then suppose that & is one such
with the maximum number of 1-factors of the form {a, x\a}, |la]=Fk. Let ac
x, |a} = h. If the 1-factor P, containing a is not {a, x\a} but, say, {a, a,, ..., a,}
and thz 1-factor P, containing x\a is {x\a, by, ..., b}, then

(g\{Pli -PZ})U{{av X\a}, {al’ vy Gy bl’ ey bs}}

is a 1-factorization containing one more pair of complementary sets, a contradic-
tion. Hence & contains all complementary pairs {a, x\a} for acx, |a|=h, and
removing these yields a 1-factorization of K\rn-h)

If h =n one passes back and forth between 1-factorizations of K and KX\
by adding or removing the 1-factor {x}.

Finally, suppose 0#n—h¢ H, and assume that K has a 1-factorization %.
Each 1-factor in & containing an h-set contains at least two small sets, hence at
least one set of cardinality at most 3(n — h). Therefore

L0

isnh)2 M/

but, writing g = n—h, we have for g=2

2 02 )=l <C)- )
i il n—g=1\3g+1)/ \l3g+1)/ g/ \n
(where |a] denotes the integral part of a; note that g <n—g), while of course
X (n‘)< (n\
2\
is true also for g =1. Contradiction. [
Corollary. Let n<2h. Then K" is 1-factorizable if and only if K»™" 1 is.

This proves case (i) of Theorem 1. From now on we shall often tacitly assume
n>2h.
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3. Nonexistence for [=1
Theorem 3. Let n=kh+1, k=2, 1<I<h—2. Then KX is not I;facﬁorizable.

Proof. Suppose KX hac a 1-factorization. Each partmon (1-factor) eontams at
least one {-set or at least tvo other small sets (with size <h),.and at‘most k h-sets

) ()

Using Lemmas 1 and 2 we find

w1 ;__1___)
1<2k(k-—2+(k-—1)2

so that k=<4. In fact we found

A 1 |
1<"‘(k—2+(1+1)/h"’(k—1)"-')

and since h=1+2>3 this is a contraliction also for k=4. (One gets
31 <2+4n/(1+1)<4+2(h—-1).) .

Now let n =3h + [ Note that each partition containing an h-set also contains a
set of cardinality at most 4(2h +1), while if it contains two h-sets it must contain a
set of cardinality at most 4(h + [), and finally if it contains three h-sets and not two
smaller sets then itis n=3*h+1*[. Hence

=0 Z,. (O L Z.n )

For I<h—4 we find (estimating both sums by ¥,._> (3}):

1 h-1 1
Iss=+2 9053 2

which is a contradiction.
For n=4h—3 we find (in the same way, this tlme dividing by {,2)):

also a contradici:z...
For n =4h—2 we obtain (examining the possible partitions of n)

(:)62,3,:_2 (,:)“L (h'-l-z)“L (htl)
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from which it follows that

3h-1 _ h-1 h-1
S TP BT

+1,

again a con.radiction.
The only remainisig case is k = 2. But from now familiar considerations it follows

that
n {1 (n) _1_( n )
(h)i(,?i,),z\s)* 2wy

wher> the last term is absent when k+1 is odd. Subsequently we obtain the
follc -:.ng inequalities:

(:)<n -%((::::11))“ (l%(h +n1+1)J)+ (?)"*% ([%(h,:- 1)1)’
- —:+ 1 (h—ril)<ﬂiz—lizﬂ (h21)+ (?)‘L% (hfl)’

Sl )<()=5 ()
2h \n—-1/"\1)"2n \1+1/)

h—-1<Ii+1,

which gives a contradiction. [0

By the remark at the end of the previous section, and this theorem, we may and
shall assume henceforth that n=kh+1 where k=3 and [=0 or I=-1.

4. A iew other ronexistence results
Theorem 4. Let n=kh, 3<k<h-3. Then if K¥ is 1-factorizable, (h—1)¢ H.
Provf. Assume K[ is 1-factorizable. A partition contairﬁng (h — 1)-sets contains

either a g-set with g=<k or at least two g-sets with k+1<g<h-2 (for:
n=kh=k(h-1)+k). Hence

()= 2 ()5 2 ()

SO
k41 kK h-1
< — (k-1 — 1)
Ly AL 2 n—2h+3’ &

and, since h—2=k+1:

ko k1 1 k1
1<=. S .
2 (k+Dk-1 k-1 2 k-2
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a contradiction for k=35. Returning to (1) we-ﬁndfor k=4:

10 1. h-1
e o
150932 2h53"

1 _ 2 2
2h+3 3(n-9) 12h-27°

h<4,

a contradiction. Hence k = 3. Again examining the poSsible,partitions of n we find

(ht1)$,<§_2 (?)+ (;)+2(;) n-— h2h1+3 (h "1) 3(3)

hence, since h=6,

4 (n 4 n n 3-4-5 (n
h+3(5)sh+3 (h—1)$3(3)=(n-—3)('7:75 _ )
(h—=1DBh—-4<5(h+3),
h<5,

a contradiction. [J

Just the opposite conclusion holds when n=kh—1:
Theorem 5. Le: n=kh—1, k=3. If K¥ is 1-factorizable, then (h—1)c H.

Proof. Suppose h—1¢ H. Each partition containing an k-set must also contain
smaller sets, hence

1 /(n n h—-1 n) n) 1 n)
k—1(h)$,‘:£'_2()<n 2h+3(h-—1 <(h 1)5%- 1(
a contradiction. O

More generally we have (for k=3):

Lemma 4. Let F be any 1-factorization of K}'. For each g € H there are partitions
in & not containing any f-set for f<g—1.

Proof. Assume the contrary, then there is some element he H (where for the
duration of this proof we drop the convention that h=max H) such that any
partition containing an h-set- also. contains’ sets of size at most h—2. Write
n=kh+| with -1<I<h-2 and k=3. f | =--1, then the proof of the previous
theorem . produces a contradiction. Hence O0<I<h--2. By assumption each
partition containing an h-set also contains a ‘small’ set, and if it contains k h-sets
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and only one ‘small’ set, the latter must have size | Hence

G=e-n. T () () G G)

n— 3h+4(;) (n) z+1( <z_ﬂ(n)
1—2h+3f \ 1+1) kh \n/
l-|-4 c!+1<l+4

n—2h+3  kh _ kh’

a contradiction. O

For k =h -2 the conclusion of Theorem 4 no longer holds. But we can say the
following:

Theorem 6. Let n=(h—2)h, and suppose that KI' is 1-factorizable. Then if
(h—1)zH, also (h—2)e H.

Proof. For any partiticn n=a * h+b * (h—1) we have b=0 {mod h), and, since
n<h(h—-1), b =0. Therefore any partition containing (h — 1)-sets also contains
smaller sets. Now the conclusion follows from Lemma 4. O

Theorem 7. Let n=kh—1, 3sk<%}h-3). Then if K is 1-factorizable
(h—2)¢ H.

Proof. Suppose K}' is 1-factorizable, and (h—2j€ H. Consider the partitions
containing (h —2)-sets. Since

n=k(h—-2)+2k-1<(k+1)(h—-2)-2 )

the number of (h—2)-sets in such a partition is at mosi k. Moreover, such a
partition cannot contain only h-, (h—1)- or (h—2)-sets sincs

n=ah+bh—1)+c(h-2)
implies

b+2c=1 (modh);
but by (2) a+b+c¢ <k, so that b+2c =<2k <h, and it follows that b+2c=1 and
s0 ¢ =0, i.e., the partition did not contain any (I: —2)-sets.

Likewise for 2k<g<h—2 a partition n=a*h+b*(h—1)+c*(h—-2)+g is
impossible. (Again we find b +2c=g+1 (moah and b+2c<h, so b+2c=g+
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1=2k+1; but by (2) b+c =<k, which is impossible.) Hence -

(hnz)‘:zcmk-, \x) 2,2'.4( )+k 1(1: 3)

For k=5 we find

n n\ k—-1/ n k k-1  1 [ n
<t T (7 Goa)< ) 2 ()
(h—Z) i<§~4 i 2 \n-3 k-—2+ 2 k-1 \h-2/
a contradiction.
For k =4 the above inequality implies

3:3 (h23)= (hﬁz)si{% (:)*(Lg ;)(h:l-s)
<Grazs)lls)

(since h =2k +3=11), and so produces the reqmred qonttadlchon
Finally, let k=3, n=3h—-1, h=9. By thensual argumﬁntsweﬁnd

(h —2)s (1)+ (z)+ (s)+i‘(,§,),2 (i)+;<§,.,3 (i).S (g(zmn)

where terms (%) with ¢ not an integer are zero. [As follows: If a partition contains
three (h —2)-sets then by n =3(h—2)+5 it also contains a g-set for g=1,2, or S.
If a partition ccntains two (h —2)-sets then by n =2(h—2)+ h +3 it also contains
a g-set for g<ih+2) or two 3(h+3)-sets. Finally if it contains only one
(h—2)-set and ;i does not contain a g-set' for g=<%h, then it was n=
(h—2)+3 *1(2k +1).] Estimating roughly we find for g = |32h+2)|:

n n n 3g )(n) ( n )
< + )J<{———+ <
(h—-2)<3i<§_1 (l) (g) (n—2g+1 1 g g+1
and it follows that

h-2<|32h+2)] +1,
a contradiction. O

At this point we have shown that the conditions of Theorem 1 are necessary.
The next section is devoted to the prcof of the sufficiency.

5. Paositive results

Theorem 8. Let n=hk and k=h—1. Then K¥ is 1-factorizable.
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Preof. Use 1-factors of the form
h ( )
k-————— h
e Ve

for ge H\{n}. In order {~ accommodate all g-sets we need

N,: _(h,hg) (g)

such 1-factors for each g, and

1 R g
Wt () 2 )
Tk h) certtun VU (h,g)

1-factors of the type
n=kx*h

are needed for the remaining h-sets.
By Baranyai’s theorem this setup will produce a solution if
() N, is integral for each ge H,
(i1) N, =0 for each ge H,
(iif) k=g/(h, g) for each ge H\{h}.
Ad(i): if a and b are integers with (h, g) = ah+ bg, then

n- S8 ()

is integral for ge H, g# h. Also, since Y.y N; = Yoen (G71), it follows that N, is
integral.

Ad(ii): Since N, <3(7) for g<h it suffices to prove that

(n)7 % se-n(?)
2 O rmiz ()

and for k=3 we indeed have

h 1k 1
g —
AU T LY A
(For k<2, h=<k+1 one may verify directly that N, =0.)
Adfiii): gith, g)<sg<h—1<k O

n=

But

In fact we proved the more general

Theorzm 8a. Let n=hk and let k=g/(h,g) for each ge H. Then K! is 1-
factorizabie. O
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(Strictly speaking we proved this for k=3, For.k <2, however, the condition
g/(h, g)<k is equivalent to g|n and we find a. L-factonzatnon with partmons of
the form n= (nlg) * g for each g € H.)

of the l-factors Hence “there .are always enpugh h-sets” or:. “zf thcre isa

1-factorization of KX with possibly repeated K-sets then mere is a proper 1-
factorization”. For: a 1-factor not containing only h-sets contains at most k-1
h-sets and at least two smaller sets. But we proved

=16)3,2,()

Proposition 1. fetn=hk—1 and k=h—1 or (k=1h~1 and h even). Then K" is
1-factorizeble.

This proposition is an immediate consequence of Theorem 8 (or Theorem 8a)
and the following proposition. - .

Proposition 2. Let H contain no two consecutive integers, and let H' =
HU(H-1D\{0}. Then if KE., is 1-factorizable, K¥ is 1-factorizable too.

Proo( Let x"=x U{ec} be some set of n+1 elements. Given a 1-factorization of
KH,, (with vertex set x’), remove the point « from each set containing it. This
yields a 1-factorization of K¥'. O O

Theorem 9. If (h—2)e H, then K}, is 1-factorizable.

Proof. If (h—1)¢ H then this follows immediately from Theorem 8a. Hence
assume that (h—1)eH and let H'=H\(h—1, h—2}. By Theorem 8a K’ is

1-factorizable and by Proposition 2, K&~-#~2 is 1-factorizable (note that n=
(h—1)>—1 so that K*;} is 1-factorizable) hence K¥=KH UKH1*2 js 1-
factorizable toc. [J ‘ '

This finishes the proof of part (iia) of Theorem 1. In fact statement (A) of the
introduction follows from the Theorems 4, 6, 8 and 9. .

What rersains to be proved in Theorem 1 is the 1-factorizability of K for
n=kh—1 and h odd and ¥(h—1)<k=<h-2. The general idea is that just as in
the above remark for n = kh also here we have plenty of h-sets: each partition
differing from n=(k—1)*h+1+*(h—1) contains at most (k— 1) h-sets and at
least two smaller sets. Bat if the g-sets for g<h—-2. are used up, the only way to
get rid of the remaining h-sets is to use the partition n=(k—1)* h+1*(h—1).
Therefore it is necessary that at this moment the number of remaining h-sets be
exactly k — 1 times the number of remaining (h — 1)-sets. On the oiier hand, if we
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keep the numbers of (h--1)-sets and h-sets in proportion 1:k—1, then we can
never run short of (h —1)-sets, since the number of h-sets remains positive. (Note
that initially (,*,)=G)/k - 1.)

Lcoking for partitions n=a*xh+b*x(h—1)+c *(h—2) with ¢c#0 we find
(since |nj(h—2)] =k+1) b+c<k+1 and b+2c=1 (mod h), so b+2c=h+1.
With b =10 we have a unique partition

(B) n'.=(k—%:l)*h+h;1*(h—2)

and partitions with b# 0 exist if and only if k=4h+1), e.g.,
h—1
2

= (k- rr2e - p+ B e o)

2

Hence if k=1(h +1) we can first get rid of all the small sets in an almost arbitrary
way, next use 1-factors () and (+) to cover the (h —2)-sets, where (8) and (y) are
taker in such a proportion as to make the proportion of the remaining (h - 1)- and
it-sets 1:k—1, and finally covar the rest with 1-factors (a): )

() n=(k-1)*h+1*(h-1).

The case k =4(h—1) will be dealt with separately.
So,let n=kk—-1and h odd, h=5, k=4, +1),{h—2.h—1,h}<H. For ge H,
g<h—4 we us: (3) partitions of type

(8) n=(k-3g-1)*h+1*x(h—1)+ig*x(h-2)+1*g
if g is even, and of type
(e) n=(k-3eg+1)*h+¥g+1)*x(h-2)+1=*g
if g is odd.
If h—3 € H then we cannot use partitions (8) only, since this would disturb the
propostion of remaining h- and (h - 1)-sets too much. Therefore, besides

(8¢) n=(k-3h-1))*h+1xh-1)+{h-3)*(h—-2)+1*(h—=3)
we ais use
(p) n=(k-3h-3)*h+ih-5)*(h-2)+2+* (h-3).

If we take

. h-3 /' n
No:= k+h~3(h—3)J

partitions of type (p) and Ny :=(,"3) — 2N, partitions of type (8,), then we cover
2ll (h—3)-sets, and we have '

(53 T wl0-G-Dmeik-1)<n

P.onp(h—3)»0
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(recall that for a partition P, we defined ns(g) as the number of g-sets it contains).
Let dp:=np(h)— (k- Dnp(h— 1) and D: Z{dp | np(g)#0 for some g<h-—3}.

Now , ‘ . o
() g a0)ene 2 (50
SO
-2 G )<e< ()
Also '

Y {np(h— 2)|np(g)%0forsome g<h-— 3}su ) (n)

2 ish-3 i
EE BARRAREN
k—-1\h—-2/ \h-2 h-3

so that there are still some (h —2}-sets left.

As explained above we would like to make ) dp zero by takmg a suitable
combination of partitions of types (8) and (v). '

If P is a l1factor of type B, then dg:=dp=k—3(h—1); likewise d, =
—(k +4(h —3)). Let a, b be a nonnegative integers such that adg + bd, = ~D. The
existence of such integers follows (by Lemma 3a) from

D:= ; (np(h)—(k—Dnp(h—1))=k ; (hne(h)+(h—Dnp(h— 1»

=k§(n— Yy gn,,(g))E—k Y g;np(g)

g=h-3 gwh-3

- -1
=k | (")=—k " )so d(n, h—2

zc‘%—s & 4 nzs%—-s (g—'l (mo (n’ ))
and

(dg,d,))=(k—¥h-1),k+}h+3)=2k-h+1,h—2)=(n,h—2)| D.

Hence if we take a partitions of type (B) and b partitions of type (y), then
Y. dp =0 where the sum is taken over all 1-factors chosen thus far.
Lermma 3a guarantees us that we can have

a+bsmax(—ded“,_Dd:d’)+ds—d.,—1

s0 that we need at most

hel ([ 1 ( n ) h— h~-3( n ))
i< e h=3,h-
(@+b)= <(‘““(k+§(h-3) h-3) T2 T2 \h-4s

h+1 ( no\

+2k- z) (" 3)
(h—72)-sets, i.e., zot more than was available. (Note that h=5 implies (;*5)>
4(k --1)? and h =6 implies (") >4k(k —1).) At this moment the number of R of
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remaining (h —2)-sets is divisible by n/(n, h-—-2) (for:

R(h—2)= ((,1'_‘2)@: np(h—ZJ)(h _2)

n—1
= n( )—"Z (n— ) gnp(g))EO (mod n)

h-3 P g#h—-2
because Yp gnp(g) =n(C21)=0 (mod n) for g<h—2 and Y dp =0) and we cover
all remaining (h —2)-sets by taking —Rd,/n times a 1-factor of type (B) and Rdg/n
times a 1-factor of type (y). Since this leaves } dp zero, the rest is done by
1-factors of type (a).

This settles the case k=1(h+1). Now look at the case k=%i(h—1),
n=kh-1=2k’+k-1=(k+1)Q2k—-1)=(k+1)(h-2).

We use partitions
() n=(k-1)*h+1*(h—-1),
B) n=k+1)*(h-2)
and for odd g, geH,g<h-4:

() n=(k-Xg+D)*h+3g+1)*x(h—2)+1=*g,
(3) n=(k-3g+3))*h+2*(h—-1)+3(g-1*(h—-2)+1*g
and for even g, ge H,g<h-—3:

(6)  n=(k-ig-D*h+ix(h-D+igxh-2)+1xg
(p) n=a*h+b*x(h—2)+c=xg

where

h-- —
c:=|--—g-1-.|, a:=h-2-3cg, b:-=%cg-b——l.

(Note ihat cg=h—1 and ‘cgsi(h—1+g-1)<h-2 so that a,b and ¢ are
nonr >gative integers.)
Take 1-factors of types (y) and (8) with frequencies

_k+i(g-1) (n)
N, = 2k—1

g
and

k—3(g+1)

2k—-1
(Note that N,-~N;=(3) and N,—N; =(g/Qk—1))() =1tk +1'(37}) are integral,
while 2k —1 is oda; therefore N, and N; are integral.)

We have d, =k—3(g+1) end ds=—(k+3(g—1)) so that ior these 1-factors
Y dp=N,d, +N;ds =0, i.e., tte h- and (h— 1)-sets remain in the correct oropor-

Ns= (Z) for each odd ge H, g=ssh—4.
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tion. 7 ake 1'-factoxs of typ¢s~(e)r and (p) with frequ‘eﬁéiés

N, = cg+2a

and

g
N =
® cg+2a

(:) for each even ge H, ;gsu‘h -3

(Note that N, +cN, =(;) and that

N =_£__(")=l‘.il("-i
® 2h-2)\g 2 \g-1
is integral since g is even and h is odd.)
We have d,=-g and d,=a so that also for these 1-factors T dp=
N.d, + N,d, =0. Cover the remaining h- and (h—1)-sets with 1-factors of type

() and the remaining (h —2)-sets with 1-factors of type (B8). (Note that N, =0: in
the other partitions we used less than

h=3 (u) /(hn ) -
—_ <
2 i‘§3 i -2 _
(h —2)-sets. Also that it is impossible thai at the end some (h —2)-sets are left: all
sets together cover a number of points that is a multiple of n, and each partition

takes away sets with a total size of n, so that as soon as the total drops below n it
must have become zero.) This completes the proof of Theorem 1. [0

More generally we proved:

Theorem 10. Let n=kh—1, k=3(h— 1),hodd,{h -2, h—1,h}<H. Then KH is
1-factorizable. O

In order to give necessary and sufficient conditions for the case h even,
{ti, h—1, h—2}< H we first need some defiritions.

For an integer i, let i (the buddy of i)} be the integer such that for some j
(namely, j = [3i]) {i, i} ={2i -1, 2j}.

For H<={1,2,. .., n} let m(H):=max{ic H | i¢ H} if there are i ¢ H witk 1¢H
and put m(H)= -1 otherwise.

Now we can formulate

Theorem 11. Let n=kh-1, k=3, {h—-2,h—1,h}cH Then K" is 1-
factorizable if and only if

(@) k=3ih-1, and

(ii) m(H) is odd.
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Proof. Necessity. The 1ecessity of (i) is shown by Theorem 7. Let m:=m(H) be
even. Then h is even (‘or if h is odd then m(H) = h), so that n is odd, and each
1-factor contains at lezst one set of odd size. Consequently the total number of
partition.:

v Ze)-2.C0))

is at most the number of sets of odd size:

5,02 (C2)-07)

It follows that

)= 2,00)<00)

a contradiction.

Sufficiency. For odd / the sufficiency is shown by Theorem 10. Let h be even
and choose some decomposition H = |J,;r {2i—1,2i}UG with G=0 or m=
m(H)=max G odd. We use the following partitions (note that (h—3)e H):

(a) n=(k-1)*h-1*x(h-1),

(Bo) n=(k-3h+1)*xh+3Gh—-1)*h-2)+1*(h-3),

(o) n=(k—3th)* h+1*(h—1)+3h * (h—2),

(80) n=(k-3h)*h+2*(h—-1)+Gh-2) * (h—2)+1 = (h—3),
furrhermore for fe F, f<h—4:

B) n—( —Ggﬁ) h+(m—1) f+1=(f-1),

—(——L__1). )L
v  n (k i 1) h1s-D+ploes
Note that (h, f)=2 when fe F so that

k-—a{ﬁ?k—%f?%(h~2—f)31 for f<h--4.

It foliows that all coefficients are nonnegative except for the k —3h in (y,) and
(8, int case k =3h — 1. Taking for f € F with f < h — 4 pa-titions (B) exactly (;*,) times
and (v) exactly

(8- 20)-Gwn-1)()
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times (note. that tlme numbers .are. posmve mtegers) we cover all- - 1)- and
f-sets.

I G=0 we do the same for f h= 2 (netc that if k “h—lithen (kif)
(h,)—1=0 so that 'we do not take (y,) in this case) a ﬁnal_ln”_aover ‘the
remaining h- and (h 1}-set§ wnth partmons (a) [In fact th 1s Pl'OpOSlthll 2

applied to Theorem 8a.]
I G#@ we need some (h— 2) and h-sets to acoommodate the g-sets with
g€ G: For g odd use partitions v :
(€) n=(k~§(g+1))*hﬂ-%(g+l)f(h-—-2)+1*g.
For g even, gS2k—m-?1 use
(p) n=(k—-3m+g+1))*h+im+g+1)*(h—2)+1*m+1#*g,

and for g even, g=h—m—1 use

(n) n=(k— %(m+g+’1)+§(h 2)*h
+3m+g+1—h)*(h— 2)+1xm+2 *g

(Note that g<m=<h—-5 so that 2k—(m+3+1)+h— 2>0 next that we
exhausted all possibilities: 2k —m —1<h—m -1 is impossible for g even.)
Take for ge G, g# m exactly () times one of these partitions, and then cover
the remaining m-sets with partitions of type (g) (with g=m). (If
h—-m-1<2k—m—1 we take partitions of type (p)) Note that there ‘are enough
m-sets: each time we cover a’g-set wnth g<m we use only one m-set, and
Yeem—1 ($)<(); also, that we do not use more than

kX, Q)(i{i’:'(}z:ﬁ% (h il-4)< (1:4)

of the h-sets or (h—2)-sets.

Now suppose k#3h—1, i.e., k =1h, so that partitions of type (v,) and (8,) are
available. For i e H we denote by

2= (7)- L o)
the number of i-sets not yet covered at the moment under consideration, and
define

A=r(W)—-(k-Dr(h—1)+(1A -2k Yr(h—2)—(k—1+2h Hir(h-3).

Initially r(i) =(}) and 4 =0. Taking partitions (8) and (y) in the stated propor-
tions (for f=h —4) does not change A, while after having taken partitions (e, p, 1)
as indicated we have —(,) <A =0 and r(i)=0 for i<h-3, _

Taking partitions (a), (8o) or (vo) also does not change A, while taking (3)
increases A by 2k —2h™, Since

hA=hr(h)+(h-Dr(h—1)+(h-2)r(h—2)+(h—3)r(h—3)=0 (modn)
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and n is odd, A/(2k —2h")=hA/2n is an integer. Hence take (-4)/(2k—2h™")
nartitions of type (8,) in order to make A zero, and then take care of the
remaining (h —3)-sets with partitions of type (B,). :

At this moment

r(h=2)> (hfz)—(%h—l)(hf3)" (;:4)

1 n
—1 —
=(k=h+1 k—-l)(h—3)>0'
Also A=r(h—3)=0 so that 2h~'r(h—2) is an integer. Hence take r(h—2)5h
partitions of type (v,) so as to make r(h —2)=0. Finally we use partions of type
(a) for the remaining h- and (h—1)-sets. This completes the proof in case
k#3h-1. O

The case k =3h—1, n=2k?>+2k —1 is treated along the same lines, but since
we cannot use (y,) and (8,), we hsve to keep track of D=
Y (np(h)—(k—Dnp(h—1)) and D'=Y (np(h—2)—kng(h—3)) separately. (Note
that {,,) = k(,* 5).) We may assume m > 1, since if m =1 then G ={1}, and after
treating H\{1} we add the partition
(¢) n=n#1l

to complete the !-factorization. This time we use the partitions (8) and (y) for
f-sets and (f—1)-sets with fe F, fsih—4; the partitions (&), (p) and (n) for the
g-sets, g€ G\{m} and then use the following partitions for the i-sets with
ie{h,h—1,h—2,h—-3, m}:

(@) n:= (k-D*h+1%(h—1)

(Bo) n= kx(h-2)+1%x(h-3)

(€6) n=(k-¥m+1)*h+ +3(m+1) *(h—-2) +1*m
(6) n=(k-3m-30N*h+2xh-1)+3(m-1)*h--2)+ +1*m
() n= 1x(h—-1D+ (k=2 *(h—2)+2* (h-3)

A) n= 1*xh + (k—=3)*(h~2)+3 *(h-3)

In order to cover the g-sets for g€ G\{m} we used less than () h-sets, and less
than (2)/k m-sets.

Initially D =0 and after use of the partitions (8), (y), (¢), (p) and (n) we have
osD<(}).

Taking a 1-factor (g,) ircreases D with d, =k—3(m+1)=1 and taking a
1-factor (@) decreases D, adding dy:= —(k+3(m—1)) to it. We need no more
than (})/k 1-factors (8) to reduce D to about zero, and we have enough m-sets
left to do so. After this we cover the remaining m-sets by tacing a 1-factor (g,)
when D <9 and (9) when D >0 "ntil r(m)=0. We now have

-2k+3<1—(k+3(m-1)sD<k-im+1)<k-2,
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<6

e

and

and on the other hand

D= np(h-2)><=2 (':)>-"-'-1 | ")>n+2k+3.

k k
Next we make D' small by taking 1-factors («) and (A) in proportion 1: k-1 until
n+2k+3<sD'<2n+2k+2.

(Note that (k) adds d.=—(k+2) to D' while d{=—(2k+3) so that taking (x)
once and (A) k—1 times leaves D invariant and decreases D’ by (k —1)(2k +3)+
k +2=n.) Now make D’ zero by taking an appropriate combination of 1-factors
(x) and (). (Note that (k+2,2k +3)=1 and (k+1)2k+2)=n+2k+3 so that
this is possible by Lemma 3.) We need no more than 2k +2 partitions of type ()
and no more than |(2n+ 2k +2)/(2k +2)| =2k pattitions of type (1) so that now

n<—(k—1)2k+2)—2k +3<D=2k+k—2<n,

But hD+(h—2)D'=0 (mod n), D'=0 and (h, n)=1 so that D=0 (mod n) and
therefore D =0. Therefore we can cover the remainicg (h—2)- and (h—3)-sets
with 1-factors (B,) and the remaining h- and (h—1)-sets with 1-factors (a). This
finishes the proof of Theorem 11. []

Because of Theorem 5, statement (B) in the introduction is just a reformulation
of Theorem 11.

6. Miscel'aneous remarks

Up to now we concentrated on the case (h—1)eH. It seems difficult to
formulate a necessary and sufficient condition on H in order that K¥ be
1-factorizable.

A plausible conjecture is that if g¢ H and K¥ is 1-factorizable, then so is K,
where H'={ie H| > g} (assuming of course that n>2h).

Looking at sets H with small cardinality we have that K}, is 1-factorizable, and
that K is 1-factorizable if and only if h | n. The next step is provided by

Theorem 12. Let H ={g, h} with 0<g<h. K¥ is 1-factorizable if and only if one
of the following holds:
(i) n=-1 (mod h) and g=h—1,
(i) n=0 (mod h) and n=gh/(g, h),
(iii) n=g+h.
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Proof. If n <2h then by Theorem 2 K/ is 1-factorizable if and only if (ii) or (jii).
If n>2h and K} is 1-factorizabie then by Theorem 3 and 5 either n=kh or (i)
holds. Moreover, when n = kh, then (i) is necessary, since if g|n then certainly
n=gh/(g, h) while if g ¥ n then any partition n=a * h+b * g must contain at
least h/(g, h) g-sets, hence again n=gh/(g, h). Conversely, (i) is sufficient by
Proposition 2, and (ii) is sufficient by Theorem 8a. O

Generalizing the necessary part of Theorem 11 we have that if n =kh—1 then
for a fixed orime p| h:

# of partitions = Z (n )s# of sets with size not a

geH -
. n
multiple of p= Z ( )
pte ‘8

geH
For instance, K{y° is not 1-factorizable. (In fact if KX is 1-factorizable and
H={g. h—1,h}, n=kh—1, g<h—1 then (g, h)=1, and if g’ is the smallest
positive integer such that gg'=—1 (mod h) then n=gg’.)

As another example, K{°* is not 1-factorizable, this time because each
partiiion must contain at least two 10-sets, but 2-# of partitions > (23). (What is
wrong here is not so much that (g, h — 1) # 1; one may verify that for H ={g, 9, 10}
with g <9 we have that Kj; is 1-factorizatle exactly when g=1 or 3 or 7.)
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