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For given n eN and H c{l, 2, ... , n} we investigate whether the collection of subsets 
A c{l, 2, ... , n} with IAleH ~a parallelism .(1-factori:zation). A complete solution for 
t..1le case H ={1, 2, ... , h} is given. 

o. IDtredaetioa 

Let x be some fixed set of n elements. For H c{l, 2, ... , n} let K::: denote the 
hypergraph (x, E) with vertex set x and collection of edges 

E={ycx I lyle.H}. 
(Since we never need symbols for the vertices of a hypergraph, but do use 
collections of collections of edges, we denote sets of vertices by lower case 
symbols, sets of edges by capitals and collections of sets of edges by upper case 
script letters.) 

When H is non empty its largest element is denoted by h. When H = {h} we 
write K: instead of K~kl, the complete h-uniform hypergraph on n vertices. When 
H =={1. 2, ... , h} then, following Berge and Johnson, we write K~ for K:t, the 
hereditary closure of the complete h-uniform hypergraph on n vertices. 

Baranyai [1] proved that K~ has a 1-factorization if and only if h In. Bermond, 
Berge & Johnson (2, 5] then considered the case of K~ which they solved for 
h ~4 and in several other special cases. Our main ..-~~ult is 

Theorem 1. K~ possesses a 1-factorization exactly in the .following cases: 
(i) n~2.h and .K~-h-i is 1-factorizable (or n-h-1~0). 

(ii) 11 = kh + ~ k ;ai: 2, -1 ~ l ~ h -2 and 
(iia) l =O and k ;ai: h-2, 

or (itb) l = -1 and k ;ai:!h-1. 

[Note that in case n = 2h or n = 2h -1 the conditions given under (i) and (ii) 

agree.] 
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In the course of proving this theorem we derive many results for general H. 
('Theorems 2 and 3 reduce the problem to the i.:ases n = kh and n = kh - 1 with 
k ;;a=,3. Now w.e have: 

(A) Let n == k1 with k ~ 3 and h -1 e H. Then K~ is 1-factorizable if and only 
if either k~h-:. or (k=h-2 and h-2eH). 

(B) Let n =' kh ·-1 witi'!t k ;;. 3 and h - 2 e H. plben K-:: is 1-factorizablC if and 
only if h-1 EH cmd k ;i:!h-1 and m(H) is odd (where the notation m(H) is 
explained below). 

All the existen,,:e results follow from Baranyai's theorem, which roughly says 
that a l-facto1ization exists if (and only if) the numbers fit. For precise statements 
of this theorem St·e [1], [3] or [4]. It implies that a 1-factorization exists if and 
only if there exist non-negative numbers c;1 with i = l, ... , t and jeH such that 
1:! = 1 cii "'"'(j) for j e Hand LieH iGt = n for i = 1, ... , r. (For this application of the 
theorem see [2], [3] or [5].) 

For example Ki is 1-factorizable, since (~) = 8, ® = 28, ® = 56 and one can 
realize a 1-far.torization consisting of one 1-factor containing the eight singleto~ 
and 28 1-fac:ors each containing two triples and a pair. 

On the other hand, as was remarked by R.M. Wilson, K~ is not 1-factori7.able 
since CD = 7, G) = 21, G> = 35 and any 1-factor not containing a singleton must 
contain two pairs and a triple, so that there are at most 10 triples in a 1-factor 
without singleton and at most 14 triples in a 1-factor with singleton, which leaves 
11 triples not in any I-factor. 

All the r.Jn-existence results are proved with a similar argument: Assume that 
there exists a !-factorization~ of K~. For each 1-factor Pe~ let 

n(g) := np(g):= Hae P 1 lal = g}I. 

Suppose that G c H and t1 .at for each P e ~ we have 

L ain(i} ~ L n(j). 
ieH /EG 

Then it follows that 

r ai<7)~ r <i). 
ieH iEG 

Using inequalities on binomial c~~cients we then derive a contradiction. 
[E.g. in the above example n=7, 1&=3 we have n(3):Ei2n(l)+!n(2), hence 
35 = (j) :E; 2(i) +!G> = 24!, a contradiction.] 

1. Amilimy lemma's 

Let g, h, k, n be positiVt! integers with k ;;i: 2. 



The edge-colouring problem for unwns of compleu hypergr4phs 

Lemma 1. Let n ~ kh -1 and g .so;; h. Then 

Proof. Use induction on h - g. If h = g the lemma is true. Next 

(g : 1) = n - ! + 1 (;).so;; n -: + 1 (;).so;; k : l{;)' 
provides the induction step. 0 · . 

Lemma 2. Let n ~ 2h. Then 

I;1 (n) h (n) 
i =O i < n - 2h + 1 · h • 

Proof. As before we find 

so that 

hf (n) f ( h · )ifn)= h·. (·n) O 
i=o i <i=t n-h+1 \Ii n-2h-t1 h · 

We shall use these' lemma's throughout the sequel without explicit reference. In 
Section 5 we shall use the following observations: 

Lemma. 3. Let P» q, m be positive integers with (p, q) I m. If 

(p~q) ~ ((p~q) -1 )((p~q) -1) 
then there exist nonnegative integers a, b such that m = ap + bq. 

Proof. Easy exercise. D 

Lemma .3a. Let p, q, m be integers with p <O<q and (p, (jr) Im. There ~ist 
nonnegative integers a, b such that m = ap + bq, and one may choose. them in such a 
way that when m ;;l!' 0, then 

a~-q--1 and 
(p, q) 

and w:u.'1 m ~o. then 

m+p p 
b<-----

...., q (p, q)' 

m+q q 
•l :eo--+-- an.d 

q (p,q) 

-p 
b~-( -)-1. 

p,q 
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Consequently we can always obtain 

(m+p m+q) 
a+b~max -q-,-p- +q-p-1. 

Proof. Trivial. 0 

2. 'l1le re8edion principle 

'lbe.vem 2. Let n ~2h. 'Then K:; has a 1-factorizicition if and only f{ o~ =nor 
n -1: EH) and K:t\fh.n-hl fa !-factorizable. 

Proof. First assume n-h ~!:C. Given a I-factorization of K:t\{k.n-Mwe obtain a 
1-factorization of K:: by adding the 1-factors f::t, x \a} for all a c x. lal = h. 
Conve.rseiy, if there exists a 1-factorization of K::: then suppose that~ is one such 
with the maximum number of 1-factors of the form {a,x\a}, lal=h. Let ac 
x, lal =h. If the 1-factor P1 containing a is not {a, x\a} but, say, {a, at> ... , a,.} 
and th·~ 1-factor P2 containing x\a is {x\a, bi. ... , b.}, then 

(~{P1, 1'2}) U{{a. x\a}, {a1, ••• , Gr. b ... .. , bs}} 

is a 1-factorization containing one more pair of complementary sets, a contradic­
tion. Hence ~ contains all complementary pairs {a, .x\a} for a c x, lal = h, and 
removing these yields a 1-factorization of K:t\<h.n-hl. 

H h = n one passes back and forth between 1-fact•:>rizations of K~ and K~\{nl 
by adding :>r removing the 1-factor {x}. 

FinaUy, suppose 0 =/= n - h ~ H, and assume that .K~ has a 1-factorization ~­
Each 1-factor in ~ contai111ing an h-set contains at least two small sets, hence at 
least one set of cardinality at most i(n- h). Therefore 

l: (~);;s (" ), 
i"'"(n-h)/2 \I I h, 

but, writing g = n - h, we have for g ~ 2 

L (tt') b + 1 { r ) { n ) (n) {n) 
i ... g/2 i <n-g-1 Ug+lj ~\L!g+lJ ~ g = h 

(where La J denotes the integral part of a; note that g < n - g), while of course 

I: ("')< (n\ 
iCR/2 i hl 

is true also for g = 1. Con1tradiction. 0 

Corollaly. Let n ~2h. Then K! is 1-factorizable if atul only if .K:-k-t is. 

This proves ca.-;e 1J) of Theorem 1. From now on we shall often tacitly assume 
n>2h. 
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3. Ncmesillteaee for l Sl!= 1 

11aeor.em 3. Let n = kh + ~ k ;;as 2, 1 E I El h -2. Then K~ is not 1 ;.facti'Jrizable. 
.. +' _ .. · • .•· 

Proof. Suppose Kf h~ a 1-factorization. ~-parution (t~actor) :c0ntams,oat 
least one 1.:set or at letit tv6 otheismau sets (With me <hk.and atmost k h«ts, 
i.e., 

Using Lemmas 1 and 2 we find 

1<!k~~2 + (k~1y2) 
so that k E4. In fact we found 

and since h ;;is l + 2 =a= 3 this is a contradiction also for k = 4. (One gets 
311-r <2+4h/(l+ 1)<4+2(h-Z).) 

Now let n = 3h + L Note that each partition containing an h-set also contains a 
set of cardinality at ~ost i(2h +I), while if lt contains two h-setS it must contain a 
set of cardinslity at most l{h + l), and finally if'it contains three h-sets and not two 
smaller sets then it is 111 = 3 * h + 1 • · t Hence 

(~) ... (7)+ 1.a(!:l)f2 (;)+ i«a(~l)/3 (7). 
For lEh-4 we find (estimating both sums by r.,4ih-2 (';}): 

1 h-1 1 
l E 2"-1 + 2 . h + I+ 3 • Z . 

which is a contradiction. 
For n =4h-3 we find (in the same way, this time dividing by <..~1)): 

3h-2 1 h-1 
--E:-+2. --+1 

h 4 2h ' 

also a contradiCli::.:A. 
For n = 4h-2 we obtain (examining the possible partitions of n) 
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fnm whkh it follows that 

3h -- 1 h --1 h -1 ' 
---::s:2. ·---+--+ l 

h 2h + 1 3h ' 

again a con..radiction. 
The only remaining case is k = 2. But from now familiar considerations it follows 

that 

(") L '""·) (n) 1 ( n ) h ::s;; l<(h+l)/2 ~; + l +2 !(h + ,l) 

wher· · the last term ~s absent when h. + l is odd. Subsequently we obtain the 
follc ·: ~ng inequalitief,: 

( ") !(h + i + 1) { n ) (11) 1 ( n ) 
h <n-(h+l+l)+l 'l!(h+l+l)j + I +2 H(h+l)J ' 

n - h + 1 ( n ) h + l + 1 ( n ) (n) _! { n ) 
h h -1 < 2h h -1 + l + 2 \h -1 , 

';h1 (h~l)<(~)= 1;h1 c :1), 
h-1<l+1, 

which gives a contradiction. D 

By the remark at the end of tbt~ previous section, and this theorem, we may and 
shall assume henceforth flat n = kh + l where k ;;=i: 3 and l = 0 or l = -1. 

4. A iew other 111one:dstence re11dts 

Theorem 4. Let n=kh, 3::s:k::s:h-3. Then if K~ is !-factorizable, (h-l);H. 

PrO(tf. Assume K:! is 1-factorizable. A partition containing (h -1)-sets contains 
either a g-set with g ~ k or at l1east two g-sets with k + 1 ~ g ~ h - 2 (for: 
n = kh = k(h -1)+ k). Hence 

( " )::s:~ r (~)+~ r (~). 
h - 1 2 j,.;k l 2 i ... h-2 l 

so 
k k + 1 . (h k 2) k h - 1 

1~-. . 1k-1r - - +-. ----
2 n-'2k-l ' 2 n-2h+3' 

(1) 

and, since h - 2 ;;=i: k + l: 

k k+l 1 k l 
1~- "----·--+-·--

'] t(k+l)k-1 k-l 2 k-2' 



a contradiction for k;;;i:S. Returning to (1) we find fork =::4: 

1 =eil-1_0 • !+2. h -1 
n-9 3 · 2h+.3' 

1 2 2 
~~~ --·~ .. -.~~ 
2h+3 3(n-9) 12h-27' 

h~4. 
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a contradiction. Hence k = 3. Again examining the possible partitions of n we find 

hence, since h ~ 6, 

h:3 (;)~h:3 (h~l)~ 3~) (n=~~~~4) ~). 
(h-1)(3h-4)~ 5(h + 3), 

h<5, 

a contradiction. 0 

Just the opposite conclusion holds when n = kh -1: 

Theorem S. Le: n=kh-1, k~3. If K:: is 1-factorizable, then (h-l)eH. 

Preof. Suppose h - 1 ~H. Each partition contaiinfig an h-set must also contain 
smaller sets, hence 

1 (") L (n) h -1 ( n ) ( n ) . 1 (n) 
k -1 h ~ iei1t-2 i < n -2h + 3 h -1 < \h-1 ~ k-1 h ' 

a contradiction. 0 

More generally we have (for k~3); 

Lemma 4. Let fffe be any l-factorization of K::. For each g EH there are partitions 

in fffe not containing any f-set for f < g-1. 

Proof. Assume the contrary, then there is some element he H (where for the 
duration of this proof we d··op the convention that h = max H) such that any 
partition containing an h..,secalso, contains: se~ of s.ize at most h-2. Write 
n = kh + l with -1 ~ l ~ h -2 and k ~ 3 .. H l = --1, then the proof of the previous 

theorem produces a contradiction. Hence 0 :e; l ~ h --2. By assumption each 
pmition containing an h•set also contains a 'small' set, and if it contains k It-sets 
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and only one 'small' i;et, the latter must have size l. Hence 

In) ~ (n) (n) h-1 (n) ('•) 
\h ~(k-l\ .. ~_2 i + l <n-2h+3 h + l ' 

n -3h + 4 ('/;)< {") = ~ ( n )<!.!_! (") 
n - 2h + 3 f \ l kh l + L kh h ' 

1+4 11+1 1+4 
----<'-<--
n -2h + 3 · kh kh ' 

a contradiction. D 

For k = h - 2 the conclusion of Theorem 4 no longer holds. But we can say the 
following: 

Theorem 6. Let n = (h-2)h, and suppose that K:: is 1-factorizable. Then if 
(h-1) c:: H, also (h-2)e H. 

Proof. For any partition n =a* h +b * (h-1) we have b =O {mod h), and, since 
n < h(h -1), b = 0. Therefore any partition containing (h -1)-sets also contains 
smaller sets. Now the (:onclusion follows from l&mma 4. 0 

Theorem 7. Let n=lch-1, 3~k:!5:l{h-3). 'rhen if K:: is 1-factorizable 
(h-2)iH. 

ProoL Suppose K:: is 1-fac:torizable, and (h -2) e H. Consider the partitions 
containing ( h - 2)-sets. Since 

n = k(h-2)+2k-1 ~(k + l)(h-2)-2 (2) 

the number of (h -2)-sets in such a partition i~. at mo~I. k. Moreover, such a 
partition cannot contain only h-, (h-1)- or (h-2)-sets since 

n = ah+b(h-t)+c(h-2) 

implies 

b +2c a 1 (mod h); 

but by (2) a+ b + c :!50 k, so that b + 2c El 2k < h, and it follows that b + 2c = 1 and 
so c = 0, i.e., the partition did not contain any (Ii -2)-sets. 

Likewise for 2k Elg< h-2 a partition n =a* Ii +b * (h- l)+i: * (h-2)+g is 
impos:;ible. (Again we find b + 2c = g + 1 (moo f1.'. and b + 2c < h, so b + 2c = g + 
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t :ia 2k + t; but by (2) b + c ~le, which is imposswle~) ,Hence _ 

For k ;as 5 we find 
, .. ... , - ·.,'·:·'."·:·; 

In ).;;kl: (n)+k-1( n )<12._:+k-t)·.~./ n) 
\h-2 iCk-4 i 2 R-3 \k-2 2 k-1 \h-2 ' 

a contradiction. · 
For k = 4 the above inequality implies 

3Ja+2 ( n ) / n ) 4 (n) (h-·3 3)( n ) 
h-2 la-3 = \Ja-2 -=h-4 8 + h+3 +2 li-3 

~ 2 )---~n ) ~-+-· .. · h+3. • .. -3 ' 
. ·; . .~:: ', . .: :. ·. .: . '; . ' ... : .· 

(since Ja;;a.2k+3=11), and so prod1ices-the·req1dred;:~11.~-
Fmally,, let k = 3, n = 3h-1, h :ia9. By the· -.i ili'~nts we· find . . . . .. ·. . ,_ . . ~. 

where terms {:!) with o not an integer are*°· [As follows: If a partition contains 
three (h-2)•sets th.en by n =3(h-2:)+~:italso con..ms a g-set for g= 1,2, or 5. 
If a partition contai~ two (h - 2)-sets then by n = 2(h-2) + h + 3 it also contains 
a g-set for giEO~h+2) or two· ~h+3)-sets. Finally if it oontains only one 
(h-2)-set and i~ does not contain a g-set· _.f()r gEjh, th~n it was n = 
(h-2)+3•l<2h+1).] Estimating roughly we find for. g = 1}{2h+2)j: 

and it f ollo'\\'S that 

h - 2 < l.1(2h + 2)J + 1, 

a contradiction. 0 

At fM~ point we have shown that the conditions of Theorem 1 are necessary. 
The next section is devoted to the prrof of the sufficiency. 

5. Pftllithre l'fllllltl 

Theorem 8. Let n = hk and k ~ h -1. Then K!' is 1-factori~able. 
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Proof. Use 1-factors of the form 

n = _h_ * g-1 ( k __ g_) * h 
(h. g) \ (h. g) 

for g e H\{h}. In order t~ accommodate all g-sets we need 

Ng:= (hh g) (;) 

such 1-factors for each g, and 

1-factors of the type 

n=k*h 

are needed for the remaining h-sets. 
By Baranyai's theorem this setup will produce a solution if 

(i) N'i. is integral for each g E H, 
(ii) Ng ~ 0 for each g E H, 

(iii) k ;?!: g/(h, g) for each g e H\{h}. 
Ad(i): if a and b are integers with (h, g)-= ah+ bg, then 

N =(h,g) (n)=a(n)+bk("-1) 
g h g g g-1 

is integral for g EH, g-:/= h. Also, since LgeH Ng= ~geH c;:D. it follows that Nh is 
integral. 

Ad(ii): Since Ng E;;~(;) for g < h it suffices to prove that 

But 

and for k ;?!: 3 we indeed have 

1 'k h 1 k-1 
"2\ -l)·tt-2h+tE;;2k-2~1. 

(For k~2. h~k+l one may verify directly that Nh~O.) 
Ad(iii): g/(h, g) ~:;; g E;; h -1 E;; k. 0 

In fact we proved the more general 

Theor~m 8a. Let n = hk and let k ~ g/(h, g) for each g e H. Tnen K!' is 1-
f actori zabie. 0 
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(Strictly speaking we .prov~:1bis·for k~3 ... :For·:·kir&2,,,b()W~y~~i;~.CO,Qdi.tion 
g/{h, g) ~ k is equivalent to g I n and we find a.14aetorization with.;Plttlt;h>D$,Of 
the foilJl n = (n/g) • g for ~eh g e H.) . 

·. ~ a-... Let .n,= k#f.i k~3. The~.proqt.._. N, i.'.tl°did•~M~y,.e,_.,,~ 
of the 1-factors. Hence u~ are always:,;,erwug~,,~·~~_,,, ,0,: '~if !~ ,g. a 
1-factorization of K:f with l'Ossibly repeated li-Sf?fS ~ .. tl.tere is a proper l­
factorization0. For: a 1-factor not co_,lmblg QDJy -h~ ~ntains at most k -1 
h .. sets and at least two smaller sets. But we pro~ed . ' 

_!__ (")>! l: (~). 
k -1 Ji 2 i110k-l I 

Propoahloa 1. )'..et n = hk-1 and k ;;is h-1 or (k ~!h-1 and h eve11). Then K! is 
1-factoriz~le. 

This proposition is an inam~ate· consequenQe .of Theorem 8 (or Theorem 8a) 
and the following proposition. · · 

~ 2. Let H contain no two consecutive integers, and let H' = 
HU(H-1)\{0}. Then if K::+i is !-factorizable~ K~ is !-factorizable too.· 

Proof. Let x' = x U{ClO} be some set of n + t· elements. Given a 1-factorization of 
K-::+1 (with vertex set x'), .remove 1be pomt oo from each set containing it. This 
yields a 1-factorization of K:f. 0 0 

Theorem 9. If (h-2)eH, then K~11-2) is 1-faaorizable. 

Proof. H (h-1);. H then this follows immediately from Theorem Sa. Hence 
assume that (h - l)'E H and let H' == H\{h --1, h ~2}. "By 'TJierireiD. 8a K-::· is 
1-factoriz&ble and by PropOsition 2, K~ ... 1·"-2l is 1-factOrit.able-(note ·that n ::o 

(h-1)2 -1 so that K~:;i is 1-factorizable) hence K::=K:fUK~-1·"-2l is 1-
factorizable toe. 0 · 

This finishes the proof of part (iia) of Theorem 1. In fact statement (A) of the 
introduction follows from the Theorems 4, 6, 8 and 9. 

What remains to be proved in Theorem 1 is the 1-factorizability of K! for 
n = kh -1 and h odd and !(h -1) :e= k :e= h -2. The gene@} idea is that just as in 
the above remark for n = kh also here we have plenty of h-sets: each partition 
differing fro111 n = (k -1) * h + 1 * (h -1) contains at most (k -1) h-sets and at 
least two smaller se~. Bilt if the g-sets for g :e= h - 2 aj.:e llSed up_, the only way to 
get rid of the remaining h-seis is to u..~ the partition n = ( k -1) • h + 1 * (h-1). 
Therefore it is necessary that at this moment the number of remaining h-sets be 
exactly k-1 times the number. of remaining.(h-1)-sets. On the o~iler hand, if we 
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keep the numb~~:rs of (h --1 )-sets and h-sets in prop:>rtion 1: k-1, then we can 
never run short .of (h-1)-sets, since the number of h·-sets remains positive. (Note 
that initially (i.~t) = cn1k -1.) 

Looking for partitions n =a * h + b * (h -1) + c * (h-2) with c #= 0 we find 
(since Ln/(h-2)J == k+ 1) b +c ~k + 1 and b +2c = l (mod h), so b +2c =h+ L 
With b = 1() we have a unique partition 

( h-1) h+ 1 
(13) 11t = k-2 * h+-2- * (h-2) 

and partitions with bf 0 exist if and only if k ~!(h + 1), e.g., 

(y) '1!=(k-h;1)*h+2*(h-1)+h;l*(h-2). 

Hence if k ;:a=!(li + 1) we can first get rid of all the small sets in an almost arbitrary 
way, next use 1-.factors (/3) and(~ .. ) to cover the (h-2)-sets, where (/3) and (y) are 
taken in such a proportion as to make the proportion of the remaining (h-1)- and 
ii-set~ 1: k-1, and finally cover the rest with 1-factors (a): -

(a) n = (k -1) * h + 1 * (h--1). 

The case k =!{It - l) will be dealt with separately. 
So, let n = kh - l and h odd, h ;a= 5, k;;:, }(h + 1), {h -2, h-1, h} c H. For g EH, 

g ~ h - 4 we US<! C;) partitions of type 

(8) n = (k -!g-1) * h + 1 * (h- l)+!g * (h-2)+ 1 * g 

if g i~. even, and of type 

( e) n = (k -!(!! + 1)'· * h + !(g + 1) * (h - 2) + 1 * g 

if g is odd. 
If h - 3 EH then we cannot use partitions (5) only, since this would disturb the 

proportion of remaining h- and (h -1)-sets too much. 'Therefore, besides 

(80) n = (k -i(h -1)) * h + 1 * (h -1) +!(h-3) * (h-2) + l * (h-3) 

we ah,,_, use 

(p) n = (k-Hh-3)) * h +~(h-5) * (h-·2)+2"' (h-3). 

If we :ake 

I_ h-3 ' n )J N~:= L2k +h-3 'h-3 

partitions of type (p) and N8<i: = (h~3)-2NP partitions of type (80 ), then we cover 
2 II (h - 3)-sets, and we have 
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(recan that for a partition P, we defined np(g) as the nmnberof g~sets it f,!Ontains). 
Let dp:=np(h)-(k-l}np(h-1) and D:=r{4 I np(g);':O for some gE;;h-3}. 
Now 

-· ( k + h -3)- 4 ig(n) < D < ~- ·. (k-!!l)._·(n), 
2 ccfi-'S : g gch--4 2 . g 

a even godd 

so 

( h - 3) h - 5 1 ( n ) ( n ) - k+-. --- ...... - .. ·- . <D< . 
2 2 k h-4 h-3 

Also 

so that there are still some (h - 2}-sets left. 
As explained above we would like to make !: 4 zero by taking a suitable 

combination of partitions of types ({3) and (-v). 
If P is a 1-factor of type fJ, then '4 := dp = k'""'l(h ~ 1);_ likewise dy = 

-(k +!(h -3)). Let a. b be a nonnegative intege~ such that a'4 + bdy =-D. The 
existence of such integers follows (by I..Cnuna 3a} from 

D: = L (np(h)-(k - l)np(h-1)) = k L (hnp(h) +{h- l)np(h-1)) 
p p 

,... (n) ~ (n -1) =-k 1, g =-kn i., _ 1 =O (mod{n,h-2)) 
&"'"n-3 g gclt.-3 g 

and 
<4. dy) = (k-l(h-1), k +i(h+3)) = (2k-h+l, h-2) = (n, h-2) ID. 

Hence if we take a partitions of type (13) and b partitions of type h ), then 
r dp = 0 where the sum is taken over all 1-factors ch<>sen thus far. 

Lemma 3a guarantees us that we can have 

(-D+de -D+dy) 
a+bE;;max dy , ~ +4-dy-1 

so that o11e need at most 

(a +b) h; 1 E;; (max(k +i(~-3) (h:3)' k+ h;3 + \~~~ (h:4)) 
+2k-2) n;1 < (h n z) 

(h-2)-sets, i.e., n.ot mor~ than was available. (Note that Ji;;i:::; implies (""_3)> 
4(k-· 1)2 and h ..,6 implies (""_4) >4k(k-l).) At this moment the number of R of 
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remafr;ing (11-2)-sets is divisible by n/(n. h-2) (for: 

R(h-2) = ( (,1 : 2)-~ np(h-2})(h-2) 

= n(~=~)-~ (n- g,.~_2 gnp(g))=o (mod n) 

because L.. gnp(g) = n(;:D=O (mod n) for g<h-2 and L dp =O) and we cover 
all remaining (h-2)-sets by taking -Rd..,/11timesa1-factor of type ({:J) and R4fn 
times a 1-factor of type (y). Since this leaves L dp zero, the rest is done by 
1-factors of type (a). 

This settles the case k~!(h+l). Now look at the case k=~h-1), 

n = kh --1=2k2 + k -1=(k+1)(2k -1) = (k + l)(h -2). 

We use partitions 

(a) 11 = (k -1) * h + 1 * (h-1), 

(13) n = (k + 1) * (h-2) 

and for odd g, geH, g:EOh-4: 

(y) n = (k-!(g+ 1)) * h +!(g+l) * (h-2)+ 1 * g, 

(S) n = (k-!(g+ 3)) * h +2 * (h-l)+!(g-1) * (h-2)+ 1 * g 

and for even g, g e H, g EO h - 3: 

(E) 11 =(k-!g-1) * h+ 1 * (h-l)+!g * (h-2)+1 * g, 

(p) n=a*h+b*(h-2)+c•g 

c:=fh;ll a:= h-2-!cg, 

(Note ~hat cg~h-1 and lcg:EO!{h-l+g-l)E:Oh-2 so that a..b and care 
nonr ~gative integers.) 

fake 1-factors of types (y) and (8) with frequencies 

N = k +!(g-1) (") 
'Y 2k-1 g 

and 

1'.T., -- k -!(g + 1) (") 
nb ik-l g for each odd geH, g~::h-4. 

(Note that N"' -':·Na~ C;) and N-r -N8 = (g/(2k-1))(;) = (k + l~(;:D are integral, 
while 2k -1 is oda; therefore N-v and Na are integral.) 

We have d.,= k-!(g+ 1) ;ind da = -(k+i{g-1)) so tha.t ~or these 1-factors 
L dp = N-rd.., + Nad1J = 0, i.e., tt e h~ and (h-1)-sets remain in the correct wopor-
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tion. 1 ake l-facto:rS of types (s)and (p) with frequencies 

N = 2(1 -(n). 
• cg+2a g 

and 

N- g (n) 
P- cg+2a g 

. .. 
for each even g e ~· g =s;; h ...:. 3.'· 

(Note that N. + cN" = <,:) and that 

Np=2(h'l__2) (;)=k;l (;=~) 
is integral since g is even and h is odd.) 

We have d" = -!g and d" = a so that also for t)).ese 1-factors ~ dp = 
N.d. + N"d" = 0. Cover the remaining h- and (h-1)-sets with 1-factors of type 
(a) and the remaining (h-2)-sets with 1-factors of type (f:J). (Note that N~ ~O: in 
the other partitions we used less than 

h-3 l: (n) I n ) 
2 i4ih-3. i < \h-2 

(h -2)-sets. Also that it is impossible thai at the end: sopie (h-2)-sets are left: all 
sets together cover a number of points that is. a multiple of n, and each partition 
takes away sets with a total size of n, so that as soon as the total drops below n it 
must have become zero.) This completes the proof of Theorem 1. 0 

More generally we pn:>ved: 

Theorem 10. Let n = kh-1, k ;;:J:i(h-1), h odd, {h-2, h-1, h}c H. Then K:; is 
!-factorizable. 0 

In order to give necessary and sufficient conditions for the case h ev'!n, 
{ h, h - l, h - 2} c H we first need some definitions. 

For an integer i, let f (the buddy .of i) be the integer such that for some j 
(namely, j = r!il) {i, i}={2j-1, 2j}. 

For Hc{l, 2, ... , n} let m(H):==n1ax{ieHI f~H} if there are i eHwift fttH, 
and put m(H) = -1 otherwise. 

Now we can formulate 

Theorem 11. Let n=kh-1, k;;.:3, {h-2,h-1,h}c:H. Then K~ is 1-
factorizable if and only if 

(i) k ;;:J:!h-1, and 
(ii) m (H) is odd. 
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Proof. Necessity. The le<~ity of (i) is sh('iWD by The..>rem 7. Let m: = m(H) be 
even. Then h is eve11 (for if h is odd then m(H) = h), §0 that n is odd, and each 
1-factor contains at .l~.st one set of odd size. Conseq~1ently the total number of 
partitioru..: 

.!. l: g(n) = L (n -1) 
n geH g gr.ff g-1 

is at most the number of sets of odd size: 

L (n) = L ((n -1)+ (n -1)). 
geH g geH g-1 g 
godd g odd 

It follows that 

(n-=_1)~ L (n~l)<('n~l), 
m 1 i,.;m- 3 i m 2 

a rontradiction. 

Sufficiency. For odd h the sufficiency is shown by Theorem 10. Leth be even 
and choose some decomposition H = U2iel' {2i -1, 2i} U G with G = 0 or m = 
m(H)=max G odd. We use the following partitions (note that (h-3)eH): 

(a) n = (k-1) * h ..:..1 * (h-1), 

C'3o) n = (k-!h+ 1) * h+Gh-1) • {h-2)+ 1 • (h-3), 

(-y0 ) lll = (k-!h) * h + 1 * (h- l)+lh * (h-2), 

(c50 ) n = (k-!h) * h +2 * (h-l)+Gh-2) * (h-2) + 1 * (lt-3), 

furt.hennore for f e F, f ,i;;;, h -4: 

(13) n = (k--1 ) * h+ (_!!_-1) * f+l * (f-1) (h,f) h,f) ' 

( -y) n = (k-_j_-1) * h+l •(h-l)+_j_* f (h, f) (h. f) . 

Note that (h,f)';l!ll2 when /eF so that 

f k-(h,f)';l!lik-lf';l!li!<h-2-f);a.1 for f~h--4. 

It follows that all coefficients are nonnegative excc'Pt for the k -!h in ('y0) and 
(c5o) in case k =lh-1. Taking for f e Fwitllf~ h-4pa·ttiitions (fJ) exactly(,~1) times 
and ( -y) exactly 

( n + 1) (h, f j _ ( n ) = (~ (h, f)- t)( n "J 
f h f-1 f f-1 
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times (note that these numbers are. positiVe 'hltege1$) we oover: alL(f-..1)~ and 
f-sets. 

If G = ~ we do the tWD.e for f =·h ~ 2 {note· that if k::;: ih-1, then -(k/f) 
(h,f)-1 =O so that·:we do nQt ·uat~ (yo) ln '@ case}~and~)JblaiJ.y·;®.v~r '-the 
remaining h- an<I (h-1)-Sets with plµ'tiijoQS (~)-~.[In .~ 1Ns .is PiOposition 2 
applied to Theorem 8a.] · . · · '. 2 . · ··• . : · · • ,.' . · ·· 

If G:/:-1/J we need some (h-2) .. and h-sets to accommodat~ the g-sets with 
g e G: For g odd use partitions 

(s) n = (k-i(g+ 1)) * h +!(g + 1) * (h-2)+ 1 *g. 

For g even, gE02k-m-1 use 

(p) n =(k-i(m+g+l)) * h+!(m+g+l) * (h-2)+1 * m+l• g, 

and for g even, g;;ai.h-m-1 use 

(11) n =(k-i(m + g+l)+!{h-2)) • h 

+l(m+ g+l-~) * (h-2)+.1 * m+~i *g. 

(Note that g~m~h-5 so that· 2k-(m+~+l)+h-,2>0; next that we 
exheusted all possibilities: 2k - rn -1 < h-m ~ .1 is imposSil>le for g even~) 

Take for g e G, g =F :-n exactly <;) times one of these partitions, and then cover 
the remaining m-sets with partitions of type (s) (with g = m). (If 
h - m -1EO2k- m -1 we take partitions of type (p ).) Note that there are ·enough 
m-sets: each time we cover a' g-set with g < m we use only one . m-set, and 
L1..;m-1 C;)<C':.); also, that we do not use more than 

k l: (n)< k(h-4) ( n .)< ( n ) 
i4-S g 'kh-2h+8 h-4 Ji-4 

of the h-sets or (h-2)-sets. 
Now suppose ki!h,....1, i.e., k ~!h. so that partitions of type (yo) and (8o) are 

available. For i e H we denote by 

r(i) := (7)-r np(i) 

the number of i-Stts not yet covered at the moment under consideration, and 
define 

.4:= r(h)-(k-l)r(h-1)+(1-2h-1)r(h-2)-(k-1 +2h-1)r(h-3). 

Initially r(i) = (1) and .4 = 0. Takin,r partitions (fJ) and ( y) in the stated propor­
tions (for f EO h -4) does not change .4, while after having taken partitions (B, p, 1J) 
as. indicated we have -(,."-4)<4 ~O and r(i) =O for .. i <h,.,-3. 

Taking partitions (a), (~n) or (·y0) also does not change 4, while taking (80) 
increases .4 by 2k - 2h-1 • Since 

1141 =hr(h)+(h-l)r(h-l)+(h-2)r(h-2)+(h-3)r(h-3)=0 (mod n) 
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:md n is odd, J./(2k·--2h-1)=h.c1/2n is an integer. Hence t::-ike (-4)/(2k-2h-1) 

partitions of type (.50 ) in order to make .1 zero, and then take care of the 
:remaining (h-3)-sets with partitions of type (130). 

At this moment 

r(h- 2)> (h :2)-@h-l)(h:3)-C,:4) 

;;:i:(k-!h+l--1 )( n )>o. 
" k-1 h-3 

Also J. = r(h-3) = 0 so that 2h-1r(h-2) is an integer. Hence take r(h-2)/!h 
partitions of type (·110) so as to make r(h - 2) = 0. Finally we use partions of type 
(a) for the remaining h- and (h -1)-sets. This completes the proof in case 
k:f!h-1. 0 

The case k = !h --1, n = 2k2 + 2k -1 is treaterJ along the same lines, but since 
we cannot use ('Yo) and (S0), we h;-.ve to keep track of D = 
L(n"-(h)-(k-l)np(h-1)) and D'=L(np(h-2)-knp(h-3)) separately. (Note 
that (J.~2) = k(h~3).) We may assume m > l, silllce if m =-= 1 then G ={1}, and after 
treating H\{l} we add the partition 

(t) n=n•l 

to complete the 1-factorization. This time we use the partitions (13) and ('Y) for 
f-sets and (f-1)-sets with f e F, t~~ h-4; the partitions (e), {p) and (11) for the 
g-sets, g E G \ { m} and then use the following partitions for the i-sets with 
i E {h, h-· l, h-2, h -3, m}: 

n == (k -1) * h + 1 * (h -1) 

n= k •(h-2)+1 •(h-3) 

(e0 ) n=(k-!(m+l))*h+ +!(m+l) *(h-2) +l•m 

(8) n == (k-!(m--3)) * h +2 * (h- l)+!(m-l) * (h--2)+ + 1 * m 

(K) n= l*(h-1)+ (k-2)•(h--2)+2•(h-3) 
(,\) n = 1 * h + (k-3) * (h -- 2) + 3 * (h - 3) 

In order to cover the g-sets f:or ge G\{m} we used less than(~) h-sets, and less 
than (;:.)/k m-sets. 

Initially D = 0 and after us.:: of the pan'itions (13), (y), (e), (p) aL11d (11) we have 
O~D<(;:.). 

Taking a 1-factor (e0) ir-.;reases D with d.,= k--!(m + 1) ;;:i: 1 and taking a 
1-factor (8) decreases D, adding de:= -(k+!(m-1)) to it. We need no more 
than (::,)/k 1-factors (8) to reduce D to about zero, :and we ha,•e enough m-sets 
left to do so. After this we coverthe remaining m-sets !Jy ta.dug a 1-factor (e0) 

when D~O and (8) when D>O \ntil r(m)=O. \Ve now have 

-2k +3~ 1-(lc +~(m -l))~D~k-!(m+l)~k-2, 
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and 

.. D'~!n~'(h-:-2)<k''t :(·.~).<·{·~·~··'·)· .· .. 
. ' . ··· ·'1~·· I.',, .\Ji....,4 ... · 

and on the other hand 

D'=}: Rp(h-1.)> k;l (:)> k;l ~)>n+2k+3. 

Next we make D' small by taking 1-factms (K) and (,\) in proportion 1: k-1 until 

n +2k + 3~D' c2n + 2k + 2. 

(Note that (K) adds d~ =-(le+ 2) to D' while d~ = -(2k + 3) so that taking (1e) 
once and (.\) k -1 times leaves D invariant and decreases D' by (k -1)(2k + 3) + 
k + 2 = n.) Now make D' zero by taking an appropriate oombination of 1-factors 
(K) and(,\). (Note that {k+2,Zk+3)=1 and (k+1)(2k+2)=n.+2k+3 so that 
this is possible by Lemma 3.) We need no more than 2k + 2 partitions Of type (K) 
and no more than l(2ri+2k+2)/(2k+2)J =2k partitions of1fype (,\)so that now 

n<-(k-1)(2k+2)-2k+3cD.-2k+k-2<n. 

But hD+(h-2)D'=O (mod n), D'=O and (h, n)=l so that DsO (modn) and 
therefore D=O. Therefote we can cover the remaici~ (h-2)- and (h-3)-sets 
with 1-factors (/J0) and.tb.e remaining h- and (h-1)-sets With 1-factors (a). This 
finishes the proof of Theorem 11. 0 

Because of The.orem 5, statement (B) in the introduction is just a.reformulation 
of Theorem 11. 

6. Miscenaneoas remarb 

Up to now we concentrated on the case (h - 1) E; H. It seems difficult to 
formulate a necessary and sufficient condition on H in orde:r that K:t tx~ 
1-factorizable. 

A plausible conjecture is that if g~H and K:; is 1-factarizable, then so is K:;·, 
where H'={ieH\ >g} (assuming of course that n>2h). 

Looking at sets H with small cardinality we have that K! is 1-factorizable, and 
that K~"l is 1-factorizable if and only if h l n. The next step is provided by 

Theorem.12. Let H ={g, h} with O< g<h. K:: is 1-factorizable if and only if one 
of the following holds: 

(i) n=-1 (mod h) and g = h-1, 
(ii) n =O (mod h) and n;;, gh/(g, h), 

(iii) n = g + h. 



260 A.E. Brouwer, R. Tijdeman 

Proof. If n ~ 2h then by Theorem 2 K!1 is 1-factorizablt~ if and only if (ii) or (iii). 
If n > 2h and K~ is 1-factorizabi'.e then by Theorem 3 and 5 either n = kh or (i) 
holds. Moreover, when n = kh, then (ii) is necessary, since if g In then certainly 
n ~ gh/(g, h) while if g k n then any partition n =a * h + b * g must contain at 
least h/{g, h) g-sets, hence again n;;;?: gh/(g, h). Conversely, {i) is sufficient by 
Proposition 2, and (ii) is sufficfont by Theorem Sa. 0 

Generallzing the necessary part of Theorem 11 we have that if n = kh -1 then 
for a fixed prime p I h: 

# of partitions= L (n = ~) :os:; # of sets with size not a 
geff g 

multiple of p = L (n). 
p.tg g 
geH 

For instance, Ki~0·9•5} is not 1-factorizable. {In fact if K~ is !-factorizable and 
H={g.h-1,h}, n=kh-1, g<h-1 then (g,h)=l, and if g' is the smallest 
positive integer such that gg' = -1 (mod h) then n ;;!:: gg' .) 

As another example, K~1°·9•3} is not 1-factorizable, this time hecause each 
partilion must contain at least two 10-sets, but 2·# of partitions>{i~). (What is 
wrong here i~; not so much that {g, h - 1) ;. 1; one may verify that for H = {g, 9, 10} 
with g<9 we have that K~ is 1-factorizable exactly when g= 1 or 3 or 7.) 
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