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1. Introduction

This paper is a further exploration in our research on Gauss quadrature for the classical orthogonal 
polynomials; earlier publications are [3], [4], [5], [6]. Other recent relevant papers on this topic are [1], [7], 
[15].

When we assume that the degree n and the two parameters α and β of the Jacobi polynomial P (α,β)
n (x)

are large, and we consider the variable x as a parameter that causes nonuniform behavior of the polynomial, 
it can be expected that, for a detailed and optimal description of the asymptotic approximation, we need 
a function of three variables. Candidates for this are the Gegenbauer and the Laguerre polynomial. The 
Gegenbauer polynomial can be used when the ratio α/β does not tend to zero or to infinity. When it does, 
the Laguerre polynomial is the best option.
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It is possible to transform an integral of P (α,β)
n (x) into an integral resembling one of the Gegenbauer 

or the Laguerre polynomial (and similarly when we are working with differential equations). From a the-
oretical point of view this may be of interest, however, for practical purposes, when using the results for 
Gauss quadrature, the transformations and the coefficients in the expansions become rather complicated. 
In addition, computing the approximants, that is, large degree polynomials with large additional parameter 
and a variable in domains where nonuniform behavior of these polynomials may happen, gives an extra 
nontrivial complication.

Even when we use the Bessel functions or Hermite polynomials as approximants, these complications are 
still quite relevant. For this reason we consider in this paper expansions in terms of elementary functions, 
and we will see that the evaluation of a certain number of coefficients already gives quite complicated 
expressions.

For large values of β with fixed degree n we have quite simple results derived in [5], which paper is 
inspired by [2]. Large-degree results valid near x = 1 are given in [14, §28.4], and for the case that β is large 
as well, we refer to [14, §28.4.1].

2. Several asymptotic phenomena

To describe the behavior of the Jacobi polynomial for large degree and parameters α and β, with x ∈
[−1, 1], it is instructive to consider the differential equation of the function

W (x) = (1 − x) 1
2 (α+1)(1 + x) 1

2 (β+1)P (α,β)
n (x). (2.1)

By using the Liouville-Green transformations as described in [11], uniform expansions can be derived for 
all combinations of the parameters n, α, β.

Let σ, τ and κ be defined by

σ = α + β

2κ , τ = α− β

2κ , κ = n + 1
2 (α + β + 1). (2.2)

Then W (x) satisfies the differential equation

d2

dx2W (x) = −
κ2(x+ − x)(x− x−) + 1

4 (x2 + 3)
(1 − x2)2 W (x), (2.3)

where

x± = −στ ±
√

(1 − σ2)(1 − τ2); (2.4)

x− and x+ are called turning points. We have −1 ≤ x− ≤ x+ ≤ 1 when α and β are positive. When 
σ2 + τ2 = 1, one of the turning points x± is zero.

When we skip the term 1
4 (x2 +3) of the numerator in (2.3), the differential equation becomes one for the 

Whittaker or Kummer functions, with special case the Laguerre polynomial, and when we take α = β the 
equation becomes a differential equation for the Gegenbauer polynomial.

When κ is large we can make the following observations.

1. If n � α+ β, then σ → 0 and τ → 0. Hence, x− → −1 and x+ → 1. This is the standard case for large 
degree, the zeros are spread over the complete interval (−1, 1), and accumulate at the end points.

2. When α and/or β become large as well, the zeros are inside the interval (x−, x+). When, in addition, 
α/β → 0, the zeros shift to the right, when β/α → 0, they shift to the left. See also the limit in (2.9). 
The zeros become all positive when x− ≥ 0. In that case σ2 + τ2 ≥ 1.
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3. When x is in a closed neighborhood around x− that does not contain −1 and x+, an expansion in terms 
of Airy functions can be given. Similarly for x in a closed neighborhood around x+ that does not contain 
x− and 1.

4. When −1 ≤ x ≤ x−(1 + a) < x+, with a a fixed positive small number, an expansion in terms of Bessel 
functions can be given. Similarly for x− < x+(1 − a) ≤ x ≤ 1. The latter case corresponds to the limit

lim
n→∞

n−αP (α,β)
n

(
1 − x2

2n2

)
=

(
2
x

)α

Jα(x). (2.5)

Also, 
√
xJα (α

√
x) satisfies the differential equation

d2

dx2w(x) =
(
α2 1 − x

4x2 − 1
4x2

)
w(x), (2.6)

in which x = 1 is a turning point when α is large.
5. If α + β � n, then σ → 1 and the turning points x− and x+ coalesce at −τ . When α and β are of 

the same order, the point −τ lies properly inside (−1, 1), and this case has been studied in [10] to 
obtain approximations of Whittaker functions in terms of parabolic cylinder functions. In the present 
case the parameters are such that the parabolic cylinder functions become Hermite polynomials. This 
corresponds to the limit (see [9])

lim
α,β→∞

(
8

α + β

)n/2

P (α,β)
n

(
x

√
2

α + β
− α− β

α + β

)
= 1

n! Hn(x), (2.7)

derived under the conditions

x = O(1), n = O(1), α− β

α + β
= o(1), α, β → ∞. (2.8)

6. If α � β, then τ → 1, and x− and x+ coalesce at −σ; if β/κ = o(1), then the collision will happen at 
−1. Approximations in terms of Laguerre polynomials can be given. This corresponds to the limit

lim
α→∞

P (α,β)
n

(
(2x/α) − 1

)
= (−1)nL(β)

n (x). (2.9)

Similarly for β � α, in which case L(α)
n (x) becomes the approximant.

As explained earlier, we consider in this paper Case 2: we give new expansions of P (α,β)
n (x), and its zeros 

and weights in terms of elementary functions. Preliminary results regarding the role of Gegenbauer and 
Laguerre polynomials as approximants can be found in [13].

3. An integral representation and saddle points

The Rodrigues formula for the Jacobi polynomials reads (see [8, §18.15(ii)])

P (α,β)
n (x) = (−1)n

2nn!w(x)
dn

dxn

(
w(x)(1 − x2)n

)
, (3.1)

where

w(x) = (1 − x)α(1 + x)β . (3.2)
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This gives the Cauchy integral representation

P (α,β)
n (x) = (−1)n

2n w(x)
1

2πi

∫
C

w(z)(1 − z2)n

(z − x)n+1 dz, x ∈ (−1, 1), (3.3)

where the contour C is a circle around the point z = x with radius small enough to have the points ±1
outside the circle.

We write this in the form2

P (α,β)
n (x) = −1

2n w(x)
1

2πi

∫
C

e−κφ(z) dz√
(1 − z2)(x− z)

, (3.4)

where

φ(z) = −
n + α + 1

2
κ

ln(1 − z) −
n + β + 1

2
κ

ln(1 + z) +
n + 1

2
κ

ln(x− z), (3.5)

with κ defined in (2.2). We also use σ and τ entered there, and it follows that

φ(z) = −(1 + τ) ln(1 − z) − (1 − τ) ln(1 + z) + (1 − σ) ln(x− z). (3.6)

In the representation (3.4) we assume that x− ≤ x ≤ x+, in which x-domain the zeros of the Jacobi 
polynomial are located.

The saddle points z± follow from the zeros of

φ′(z) = − (1 + σ)z2 + 2(τ − x)z + 1 − σ − 2τx
(1 − z2)(x− z) , (3.7)

and are given by

z± = x− τ ± iU(x)
1 + σ

,

U(x) =
√

1 − 2στx− τ2 − σ2 − x2 =
√

(x+ − x)(x− x−),
(3.8)

where x± are defined in (2.4).

Remark 3.1. The starting integrand in (3.3) has a pole at z = x, while the one of (3.4) shows an algebraic 
singularity at z = x and φ(z) defined in (3.5) has a logarithmic singularity at this point. To handle this 
from the viewpoint of multi-valued functions, we can introduce a branch cut for the functions involved from 
z = x to the left, assuming that the phase of z − x is zero when z > x, equals −π when z approaches −1
on the lower part of the saddle point contour of the integral in (3.4), and +π on the upper side. Because 
the saddle points z± stay off the interval (−1, 1), we do not need to consider function values on the branch 
cuts for the asymptotic analysis. 	

4. Deriving the asymptotic expansion

We derive an expansion in terms of elementary functions which is valid for x ∈ [x−(1 + δ), x+(1 − δ)], 
where x± are the turning points defined in (2.4) and δ is a fixed positive small number. Also, we assume 

2 The multi-valued functions of the integrand are discussed in Remark 3.1.
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that σ ∈ [0, σ0] and τ ∈ [−τ0, τ0], where σ and τ are introduced in (2.2), and σ0 and τ0 are fixed positive 
numbers smaller than 1. The case σ → 1 is explained in Case 5 of Section 2. A similar phenomenon occurs 
when τ → ±1. When we allow that σ = o(1), we accept that n � α + β.

First we consider contributions from the saddle point z+. The saddle point contour through this point 
runs from z = +1 to z = −1, and we use the transformation

φ(z) − φ(z+) = 1
2w

2, (4.1)

with the condition that w < 0 for 
z < 
z+, w > 0 for 
z > 
z+, with z on the contour through z+; φ(z)
and z+ are given in (3.6) and (3.8). This transforms the part of the integral in (3.4) that runs with �z ≥ 0
into

P+ = e−κφ(z+)

2n w(x)
1

2πi

∞∫
−∞

e−
1
2κw

2
f+(w) dw, (4.2)

where

f+(w) = 1√
(1 − z2)(x− z)

dz

dw
,

dz

dw
= w

φ′(z) . (4.3)

We expand f+(w) =
∞∑
j=0

f+
j wj , where

f+
0 = 1√

(1 − z2
+)(x− z+)φ′′(z+)

= e
1
4πi√

2U(x)
, (4.4)

and U(x) is defined in (3.8). Because the contribution from the saddle point z− is the complex conjugate 
of that from z+,3 we take twice the real part of the contribution from z+ and obtain the expansion

P (α,β)
n (x) ∼ 
 e−κφ(z+)− 1

4πi

2n w(x)
√
πκU(x)

∞∑
j=0

c+j
κj

, c+j = 2j
( 1

2
)
j

f+
2j

f+
0
. (4.5)

Evaluating φ(z+) we find

φ(z+) = − ln 2 + ψ + ξ + iχ(x),

ψ = −1
2 (1 − τ) ln(1 − τ) − 1

2 (1 + τ) ln(1 + τ) +

1
2 (1 + σ) ln(1 + σ) + 1

2 (1 − σ) ln(1 − σ),

ξ(x) = −1
2 (σ + τ) ln(1 − x) − 1

2(σ − τ) ln(1 + x),

χ(x) = (τ + 1) arctan U(x)
1 − x + σ + τ

+ (τ − 1) arctan U(x)
1 + x + σ − τ

+

(1 − σ) atan2(−U(x), τ + xσ).

(4.6)

In Fig. 1 we show a graph of χ(x) on (x−, x+) for α = 90, β = 75, n = 125. For these values, κ = 208, 
σ = 165

416 , τ = 15
416 , x− = −0.931, x+ = 0.903. At the left endpoint we have χ(x−) = −(1 − σ)π = −1.896.

3 We assume that x ∈ (x−, x+) and that α and β are positive.
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Fig. 1. The quantity χ(x) defined in (4.6) for x ∈ (x−, x+); α = 90, β = 75, n = 125. For these values, κ = 208, σ = 165
416 , τ = 15

416 , 
x− = −0.931, x+ = 0.903.

Remark 4.1. The denominators of the first and second arctan functions of χ(x) in (4.6) are always positive 
on (x−, x+); this follows easily from the relations in (2.2). The function atan2(y, x) in the third term of χ(x)
denotes the phase ∈ (−π, π] of the complex number x + iy. Because τ + xσ may be negative on (x−, x+)
we cannot use the standard arctan function for that term. 	

Observe that e−κξ(x) =
√
w(x), with w(x) defined in (3.2). To compute x from χ(x), for example by 

using a Newton-procedure, it is convenient to know that

dχ(x)
dx

= U(x)
(1 − x2) . (4.7)

We return to the result in (4.5) and split the coefficients c+j into real and imaginary parts. We write 
c+j = pj + iqj , and obtain

P
(α,β)
n (x) = 2 1

2 (α+β+1)e−κψ√
πκw(x)U(x)

W (x),

W (x) = cos
(
κχ(x) + 1

4π
)
P (x) + sin

(
κχ(x) + 1

4π
)
Q(x),

(4.8)

with expansions

P (x) ∼
∞∑
j=0

pj
κj

, Q(x) ∼
∞∑
j=0

qj
κj

. (4.9)

Because c+0 = 1, we have p0 = 1, q0 = 0.
To evaluate the coefficients f+

2j of the expansion in (4.5), we need the expansion of z − z+ in powers of 
w. From the transformation in (4.1) we obtain

z = z+ +
∞∑
j=1

z+
j w

j ,

z+
2 = −1

6z
4
1φ3, z+

3 = 1
72z

5
1
(
5z2

1φ
2
3 − 3φ4

)
,

z+ = − 1 z6 (9φ − 45z2φ φ + 40z4φ2) ,
(4.10)
4 1080 1 5 1 3 4 1 3
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where z1 = z+
1 = 1/

√
φ′′(z+) and φj denotes the jth derivative of φ(z) at the saddle point z = z+ defined 

in (3.8).
With the expansion of z we expand f+(w) defined in (4.3). This gives the coefficients c+j defined in (4.5). 

We have c+0 = 1 and

c+1 = − z+

8z1(1 − z2
+)2(x− z+)2

(
−6z3

1z
2
+ + 3z3

1 − 72z1z2z
2
+x +

24z1z+z2x
2 − 24z1z

3
+z2x

2 − 48z3xz+ − 48z3z
2
+x

2 + 96z3z
3
+x +

24z3z
4
+x

2 − 48z3z
5
+x− 12z1z+z2 + 48z1z

3
+z2 − 48z3z

4
+ +

24z3z
6
+ + 12z1z2x− 36z1z2z

5
+ − 4z3

1xz+ + 8z3
1z

2
+x

2 − 20z3
1z

3
+x +

4z3
1x

2 + 15z3
1z

4
+ + 24z3x

2 + 24z3z
2
+ + 60z1z2z

4
+x

)
,

(4.11)

where zj denotes z+
j . The coefficients p1 and q1 of the expansions in (4.9) follow from c+1 = p1 + iq1.

4.1. Expansion of the derivative

For the weights of the Gauss quadrature it is convenient to have an expansion of d
dx

P (α,β)
n (x). Of course 

this follows from using (4.8) with different values of α and β and the relation

d

dx
P (α,β)
n (x) = 1

2 (α + β + n + 1)P (α+1,β+1)
n−1 (x), (4.12)

but it is useful to have a representation in terms of the same parameters.
By straightforward differentiation of (4.8) we obtain

d

dx
P (α,β)
n (x) = −

√
κ

π
2 1

2 (α+β+1)e−κψ

χ′(x)A(x) ×(
sin

(
κχ(x) + 1

4π
)
R(x) − cos

(
κχ(x) + 1

4π
)
S(x)

)
,

(4.13)

where χ′(x) is given in (4.7) and

A(x) = 1√
w(x)U(x)

,

R(x) = P (x) − 1
κχ′(x)Q

′(x) − A′(x)
κA(x)χ′(x)Q(x),

S(x) = Q(x) + 1
κχ′(x)P

′(x) + A′(x)
κA(x)χ′(x)P (x).

(4.14)

We have the expansions

R(x) ∼
∞∑
j=0

rj
κj

, S(x) ∼
∞∑
j=0

sj
κj

, (4.15)

where the coefficients follow from the relations in (4.14). The first coefficients are r0 = p0 = 1, s0 = q0 = 0, 
and

r1 = p1, s1 = q1 + A′(x)
′ . (4.16)
A(x)χ (x)
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5. Expansion of the zeros

The zeros x�, 1 ≤  ≤ n, of P (α,β)
n (x) follow from the zeros of W (x) (see (4.8)), with χ(x) is defined in 

(4.6). For a first approximation we put the cosine term equal to zero. That is, we can write

κχ(x) + 1
4π = 1

2π − (n + 1 − )π, (5.1)

where  is some integer. It appears that this choice in the right-hand side is convenient for finding the th 
zero.

Because the expansions in (4.9) are valid for x properly inside (x−, x+), we may expect that the approx-
imations of the zeros in the middle of this interval will be much better than those near the endpoints. We 
describe how to compute approximations of all n zeros by considering the zeros of cos (χ(x)κ + 1

4π
)
.

We start with  = 1 and using (5.1) we compute χ1 =
( 1

4 − n
)
π/κ. Next we compute an approximation 

of the zero x1 by inverting the equation χ(x) = χ1, where χ(x) is defined in (4.6). For a Newton procedure 
(see also (4.7) for the derivative of χ(x)) we can use x− + 1/n as a starting value.

Example 5.1. When we take α = 50, β = 41, n = 25, we have κ = 71, σ = 91/142, τ = 9/142. We find χ1 =
−1.095133 and the starting value of the Newton procedure is x = −0.7667437. We find x1

.= −0.7415548. 
Comparing this with the first zero computed by using the solver of Maple to compute the zeros of the Jacobi 
polynomial with Digits = 16, we find a relative error 0.00074.

For the next zero x2, we compute χ2 from (5.1) with  = 2, use x1 as a starting value for the Newton 
procedure, and find x2

.= −0.682106, with relative error 0.00032. And so on. The best result is for x13 with 
relative error 0.000013, and the worst result is for x25 with a relative error 0.0010. ♦

Remark 5.2. We don’t have a proof that the found zero always corresponds with the th zero, when we start 
with (5.1). In a number of tests we have found all agreement with this choice. 	

To obtain higher approximations of the zeros, we use the method described in our earlier papers. We 
assume that the zero x� has an asymptotic expansion

x� = ξ0 + ε, ε ∼ ξ2
κ2 + ξ4

κ4 + . . . , (5.2)

where ξ0 is the value obtained as a first approximation by the method just described.
The function W (x) defined in (4.8) can be expanded at ξ0 and we have

W (x�) = W (ξ0 + ε) = W (ξ0) + ε

1!W
′(ξ0) + ε2

2!W
′′(ξ0) + . . . = 0, (5.3)

where the derivatives are with respect to x. We find upon substituting the expansions of ε and those of P
and Q given (4.9), and comparing equal powers of κ, that the first coefficients are

ξ2 =
(
1 − x2) q1(x)

U(x) ,

ξ4 = 1
6U(x)4

(
3x5q2

1 + 3x4q2
1στ − 6x3q2

1 − 6x2q2
1στ + 3q2

1x + 3q2
1στ +(

6q′1q1x4 + 6x3q2
1 − 12q′1x2q1 − 6xq2

1 + 6q′1q1
)
U(x)2 +

(
6p2x

2q1 + 2q3
1x

2 + 6q3 − 6p2q1 − 6q3x2 − 2q3
1
)
U(x)3

)
,

(5.4)
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Fig. 2. Performance of the asymptotic expansion for computing the zeros of P (α,β)
n (x) for α = 50, β = 41 and n = 100, 1000.

Fig. 3. Performance of the asymptotic expansion for computing the zeros for n = 100 and α = 50, β = 41 compared with α = 150, 
β = 141.

where U(x) is defined in (3.8), and x takes the value ξ0, the first approximation of the zero as obtained in 
Example 5.1.

When we take the same values α = 50, β = 41, n = 25 as in Example 5.1, and use (5.2) with the term 
ξ2/κ

2 included, we obtain for the zero x13 a relative error 0.80 × 10−9. With also the term ξ4/κ4 included 
we find for x13 a relative error 0.13 × 10−12.

A more extensive test of the expansion is shown in Fig. 2. The label  in the abscissa represents the 
order of the zero (starting from  = 1 for the smallest zero). In this figure we compare the approximations 
to the zeros obtained with the asymptotic expansion against the results of a Maple implementation (with 
a large number of digits) of an iterative algorithm which uses the global fixed point method of [12]. The 
Jacobi polynomials used in this algorithm are computed by using the intrinsic Maple function. As before, 
we use (5.2) with the term ξ2/κ2 included. As can be seen, for n = 100 the use of the expansion allows the 
computation of the zeros x�, 10 ≤  ≤ 90, with absolute error less than 10−8. When n = 1000, an absolute 
accuracy better than 10−12 can be obtained for about 90% of the zeros of the Jacobi polynomials. The 
results become less accurate for the zeros near the endpoints ±1, as expected.

In Fig. 3 we show the absolute errors for n = 100 and α = 50, β = 41 compared with α = 150, β = 141. 
We see that the accuracy is slightly better for the larger parameters, and that the asymptotics is quite 
uniform when α and β assume larger values.

6. The weights of the Gauss-Jacobi quadrature

As we did in [6], and in our earlier paper [4] for the Gauss–Hermite and Gauss–Laguerre quadratures, it 
is convenient to introduce scaled weights. In terms of the derivatives of the Jacobi polynomials, the classical 
form of the weights of the Gauss-Jacobi quadrature can be written as
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Fig. 4. Performance of the computation of the weights w� by using the asymptotic expansion of the Jacobi polynomial for α = 50, 
β = 41 and n = 100, 1000.

w� = Mn,α,β

(1 − x2
�)P

(α,β)′
n (x�)2

,

Mn,α,β = 2α+β+1 Γ(n + α + 1)Γ(n + β + 1)
n!Γ(n + α + β + 1) .

(6.1)

In Fig. 4 we show the relative errors in the computation of the weights w� defined in (6.1), with the 
derivative of the Jacobi polynomial computed by using the relation in (4.12). We have used the representation 
in (4.8), with the asymptotic series (4.9) truncated after j = 3 and the expansion (5.2) for the nodes with 
the term ξ2/κ2 included. The relative errors are obtained by using high-precision results computed by using 
Maple.

As an alternative we consider the scaled weights defined by

ω� = 1
v′(x�)2

, (6.2)

where

v(x) = Cn,α,β (1 − x)a(1 + x)bP (α,β)
n (x), (6.3)

and we choose a and b such that v′′(x�) = 0; Cn,α,β does not depend on x, and will be chosen later. We 
have

v′(x) = Cn,α,β

((
−a(1 − x)a−1(1 + x)b + b(1 − x)a(1 + x)b−1)P (α,β)

n (x) +

(1 − x)a(1 + x)bP (α,β)′
n (x)

)
.

(6.4)

Evaluating v′′(x�), we find

v′′(x�) = Cn,α,β(1 − x�)a(1 + x�)b(1 − x2
�) ×(

(1 − x2
�)P

(α,β)′′
n (x�) + 2 (b− a− (a + b)x�)P (α,β)′

n (x�)
)
,

(6.5)

where we skip the term containing P (α,β)
n (x�), because x� is a zero.

The differential equation of the Jacobi polynomials is

(
1 − x2) y′′(x) + (β − α− (α + β + 2)x) y′(x) + n(α + β + n + 1)y(x) = 0, (6.6)

and we see that v′′(x�) = 0 if we take a = 1 (α + 1), b = 1 (β + 1).
2 2



A. Gil et al. / J. Math. Anal. Appl. 494 (2021) 124642 11
We obtain

v(x) = Cn,α,β (1 − x) 1
2 (α+1)(1 + x) 1

2 (β+1)P (α,β)
n (x), (6.7)

with properties

v′(x�) = Cn,α,β (1 − x�)
1
2 (α+1)(1 + x�)

1
2 (β+1)P (α,β)′

n (x�), v′′(x�) = 0. (6.8)

The weights w� are related with the scaled weights ω� by

w� = Mn,α,βC
2
n,α,β(1 − x�)α(1 + x�)βω�. (6.9)

The advantage of computing scaled weights is that, similarly as described in [4], scaled weights do not 
underflow/overflow for large parameters. In additional, they are well conditioned as a function of the roots 
x�. Indeed, introducing the notation

V (x) = 1
v′(x)2 , (6.10)

the scaled weights are ω� = V (x�) and V ′(x�) = 0 because v′′(x�) = 0. The vanishing derivative of V (x) at 
x� may result in a more accurate numerical evaluation of the scaled weights.

When considering the representation of the Jacobi polynomials in (4.8), the function v(x) can be written 
as

v(x) = 2 1
2 (α+β+1)
√
πκ

Cn,α,βe
−κψZ(x)W (x), Z(x) =

√
1 − x2

U(x) , (6.11)

where U(x) is defined in (3.8). For scaling v(x) we choose

Cn,α,β = 2− 1
2 (α+β+1)eκψ. (6.12)

This gives

v(x) = Z(x)W (x)√
πκ

. (6.13)

For the numerical computation of ψ defined in (4.6) for small values of σ or τ , we can use the expansion

(1 − x) ln(1 − x) + (1 + x) ln(1 + x) =
∞∑
k=1

x2k

k(2k − 1) , |x| < 1. (6.14)

For computing the modified Gauss weights it is convenient to have an expansion of the derivative of the 
function v(x) of (6.13), with W (x) defined in (4.8) and Z(x) in (6.11).

We have

d

dx
v(x) = −

√
κ

π
χ′(x)Z(x)

(
sin

(
κχ(x) + 1

4π
)
M(x) − cos

(
κχ(x) + 1

4π
)
N(x)

)
, (6.15)

where χ′(x) is given in (4.7) and
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Fig. 5. Comparison of the performance of the asymptotic expansions for computing non-scaled (6.1) and scaled (6.2) weights for 
α = 50, β = 41 and n = 1000.

M(x) = P (x) − 1
κ
p(x)Q′(x) − 1

κ
q(x)Q(x),

N(x) = Q(x) + 1
κ
p(x)P ′(x) + 1

κ
q(x)P (x).

(6.16)

Here,

p(x) = 1
χ′(x) = 1 − x2

U(x) ,

q(x) = Z ′(x)
Z(x)χ′(x) = (1 − x2)(x + στ) − 2xU2(x)

2U3(x) .

(6.17)

We have the expansions

M(x) ∼
∞∑
j=0

mj

κj
, N(x) ∼

∞∑
j=0

nj

κj
, (6.18)

where the coefficients follow from the relations in (4.14). The first coefficients are m0 = p0 = 1, n0 = q0 = 0, 
and for j = 1, 2, 3, . . .

mj = pj − p(x)q′j−1 − q(x)qj−1,

nj = qj + p(x)p′j−1 + q(x)pj−1.
(6.19)

As an example, Fig. 5 shows the performance of the asymptotic expansion (6.15) for computing the scaled 
weights (6.2) for α = 50, β = 41 and n = 1000. The computation of the non-scaled weights (6.1) is shown 
as comparison.

In Fig. 6 and Fig. 7 we compare the effect of computing the weights w� defined in (6.1) and the scaled 
weights ω� defined in (6.2) when we compute these weights with the asymptotic expansion of the zeros in 
(5.2) with the term ξ4/κ4 included or not included. From these computations it follows that the scaled 
weights are well conditioned as a function of the nodes and therefore they are not so critically dependent 
on the accuracy of the nodes. Contrary the non-scaled weights have worse condition and the accuracy of 
the nodes is more important.

6.1. About quantities appearing in the weights

First we consider the term eκψ, with ψ given in (4.6). Using the relations in (2.2), we have

κ(1 + τ) = n + α + 1
2 , κ(1 − τ) = n + β + 1

2 ,

κ(1 + σ) = n + α + β + 1 , κ(1 − σ) = n + 1 ,
(6.20)
2 2
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Fig. 6. Performance of the computation of the weights w� defined in (6.1) by using the asymptotic expansion of the Jacobi polynomial 
for α = 50, β = 41 and n = 1000. The comparison is between the expansion of the zeros in (5.2) with the term ξ4/κ4 included or 
not included.

Fig. 7. Same as in Fig. 6 for the scaled weights ω� defined in (6.2).

and this gives

e2κψ =
(
n + α + β + 1

2
)n+α+β+ 1

2
(
n + 1

2
)n+ 1

2(
n + α + 1

2
)n+α+ 1

2
(
n + β + 1

2
)n+β+ 1

2

=
Γ
(
n + α + β + 1

2
)
Γ
(
n + 1

2
)

Γ
(
n + α + 1

2
)
Γ
(
n + β + 1

2
) Γ∗ (n + α + 1

2
)
Γ∗ (n + β + 1

2
)

Γ∗
(
n + α + β + 1

2
)
Γ∗

(
n + 1

2
)×

√(
n + α + β + 1

2
) (

n + 1
2
)(

n + α + 1
2
) (

n + β + 1
2
) ,

(6.21)

where

Γ∗(z) =
√

z/(2π) ezz−zΓ(z), ph z ∈ (−π, π), z �= 0. (6.22)

We have Γ∗(z) = 1 + O(1/z) as z → ∞.
It follows that (see (6.1) and (6.9))

Mn,α,βC
2
n,α,β =

Γ (n + α + 1) Γ (n + β + 1) Γ
(
n + α + β + 1

2
)
Γ
(
n + 1

2
)

Γ
(
n + α + 1

2
)
Γ
(
n + β + 1

2
)
Γ (n + α + β + 1)Γ (n + 1)

×

Γ∗ (n + α + 1
2
)
Γ∗ (n + β + 1

2
)

Γ∗
(
n + α + β + 1

2
)
Γ∗

(
n + 1

2
)
√(

n + α + β + 1
2
) (

n + 1
2
)(

n + α + 1
2
) (

n + β + 1
2
) .

(6.23)

Using Γ 
(
z + 1

2
)
/Γ(z) ∼ z

1
2 as z → ∞, we see that, in the case that α, β and n are all large, we have 

Mn,α,βC
2
n,α,β ∼ 1, and that, when using more details on expansions of gamma functions and ratios thereof 

(see [14, §6.5]), we can obtain
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Mn,α,βC
2
n,α,β ∼ 1 + σ2 − τ2

12(1 − σ2)(1 − τ2)κ + (σ2 − τ2)2

288(1 − σ2)2(1 − τ2)2κ2 + . . . , (6.24)

again, when α, β and n are all large.
As observed in the first lines of Section 4, in the present asymptotics we assume that σ and |τ | are 

bounded away from 1.
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