
Real-time segmentation for tomographic imaging
Richard Schoonhoven∗, Jan-Willem Buurlage∗, Daniël M. Pelt∗, and Kees Joost Batenburg∗†

∗Computational Imaging Group, Centrum Wiskunde & Informatica, Amsterdam, Netherlands
†Leiden Institute of Advanced Computer Science, Leiden, Netherlands
{richard.schoonhoven, j.buurlage, d.m.pelt, k.j.batenburg}@cwi.nl

Abstract—In tomography, reconstruction and analysis is often
performed once the acquisition has been completed due to the
computational cost of the 3D imaging algorithms. In contrast,
real-time reconstruction and analysis can avoid costly repetition
of experiments and enable optimization of experimental param-
eters. Recently, it was shown that by reconstructing a subset of
arbitrarily oriented slices, real-time quasi-3D reconstruction can
be attained. Here, we extend this approach by including real-
time segmentation, thereby enabling real-time analysis during
the experiment.

We propose to use a convolutional neural network (CNN) to
perform real-time image segmentation and introduce an adapted
training strategy in order to apply CNNs to arbitrarily oriented
slices. We evaluate our method on both simulated and real-world
data. The experiments show that our approach enables real-
time tomographic segmentation for real-world applications and
outperforms standard unsupervised segmentation methods.

Index Terms—tomography, machine learning, segmentation

I. INTRODUCTION

Tomographic imaging is a widely applicable technique for
studying the internal structure of objects using some form
of penetrating radiation such as X-rays or an electron beam.
Projection images are obtained from a range of angles and a
tomographic reconstruction algorithm subsequently computes
a 3D image of the internal structure of the object. Currently,
reconstruction and analysis are often performed after image
acquisition has completed. If processing, reconstruction, and
analysis of tomographic data can be run in real time during
the experiment, internal dynamic processes of the imaged
object can be visualized and analyzed as they occur. Real-
time feedback enables online optimization and steering of the
imaging setup and experimental conditions which increases
the efficiency of experiments and avoids costly repetition.

Despite advances in computationally efficient reconstruction
algorithms [1], [2] and in specialized hardware such as Graphic
Processing Units (GPUs) [3] and supercomputers [4], full 3D
tomographic reconstructions at the rate of data acquisition
remain out of reach for most applications. Recently it was
shown that real-time reconstruction can be achieved for a
small set of randomly oriented 2D slices [5]. These slices
can be adjusted on the fly, thereby giving access to a virtual
full 3D volume at a fraction of the computational cost.
This methodology is called quasi-3D reconstruction, and is
implemented in the RECAST3D software package.

Financial support provided by The Netherlands Organisation for Scientific
Research (NWO), project numbers 639.073.506 and 016.Veni.192.235. 978-
1-7281-6662-9/20/$31.00 ©2020 IEEE

Fig. 1: Traditional experiments (top) involving tomography require significant time for
both the reconstruction phase and the offline analysis phase. With RECAST3D (middle)
the reconstruction phase is performed in real time. Our method (bottom) additionally
includes a real-time segmentation step.

To enable adaptive imaging, where the imaging process is
adjusted based on the observations, just having access to a
reconstructed volume is not sufficient, as the image analysis
step should also be included in the real-time processing
pipeline. By real-time we mean that the reconstruction is
almost instantly available after data acquisition. In practice,
we aim to perform reconstruction and analysis of the quasi-
3D volume at several frames per second. An important step
in many image analysis pipelines is segmentation, which is
the problem of assigning to each pixel the appropriate class
label from a finite set of classes, for example segmenting
bone for calcaneal fractures in CT images [6]. In this article
we introduce a real-time imaging pipeline to reconstruct,
segment, and visualize quasi-3D volumes implemented as an
extension of the existing RECAST3D software package. Our
method adds real-time segmentation to the existing real-time
reconstruction capabilities of the RECAST3D framework, as
outlined in Figure 1.

As quasi-3D reconstruction employs direct reconstruc-
tion methods such as filtered backprojection (FBP) [7] and
Feldkamp-David-Kress (FDK) [8] without additional image
regularization, limited-data artefacts are typically present in
the reconstructions. These artifacts limit the applicability
of computationally efficient unsupervised segmentation algo-
rithms, such as Otsu’s method [9], since they are often unable
to separate artifacts and noise from important features. Fur-
thermore, because image analysis algorithms may be sensitive
to noise in the segmentation [10], [11], analysis based on

such traditional segmentation methods may not be accurate.
In addition, many unsupervised segmentation methods operate
exclusively on the basis of the pixel values [9], [12], [13],
limiting their applicability to general segmentation problems
as they are unable to segment features that are not based on
pixel values.

To overcome these issues, we propose to use a con-
volutional neural network (CNN) to segment the quasi-3D
reconstructions in real time. To apply CNNs in a quasi-
3D setting, we introduce an adapted training strategy that
takes the arbitrary orientations of the slices into account. We
show that a CNN is capable of achieving similar accuracy
to segmentations based on computationally more expensive
total variation minimization (TV-MIN) reconstructions [14]
which are too slow to compute for real-time applications. In
addition, we show that a CNN can be implemented efficiently
as a plugin within the existing RECAST3D framework without
significantly increasing the processing time.

This article is structured as follows. In Section II we
introduce the tomographic reconstruction problem and define
the FDK and TV-MIN reconstruction algorithms. We introduce
quasi-3D reconstructions, the segmentation problem, and pro-
vide more details on the segmentation plugin. Lastly, we out-
line our adapted training strategy for randomly oriented slices.
In Section III we present the experimental results, and analyze
the training strategies. We perform a real-world experiment on
a dynamic X-ray CT dataset and two simulated experiments.
Finally, in Section IV we state our final conclusions.

II. METHOD

A. Prerequisites

Tomographic Reconstruction: The tomographic recon-
struction problem is to recover a volume from a series of
its projections. In this article we consider circular cone-beam
tomography, where the object is placed in between a point
source and flat-panel detector which are situated on opposite
sides of a circle. The object is rotated and X-ray projections
are taken at a selection of equidistant angles. The approach
generalizes to other acquisition geometries (e.g. parallel beam)
in a straightforward manner.

The tomographic reconstruction problem can be modelled
as an inverse problem:

Ku = f : (1)

Here K is the forward projection operator, u ∈ RNx�Ny�Nz

represents the object, and f ∈ RNθ�Na�Nb is the measured
projection data, with N� is the number of projection angles,
and Na; Nb are the number of detector rows and columns
respectively. In this article we use the FDK reconstruction
algorithm, given by

uFDK = KT (h ∗ ~f): (2)

Here ~f denotes weighted projection data, which compensates
for diminishing intensity at distance from detector center, and
h ∈ RNb is a 1D filter. We used the Ram–Lak filter for this
work.

Instead of using FDK, equation 1 can be solved by itera-
tively minimizing ‖Ku− f‖. In addition, we can add prior
information about the gradient of the image being sparse by
adding a total variation term [14] to improve reconstruction
accuracy when projection data is limited or noisy:

1

2
‖Ku− f‖22 + � ‖∇u‖1 :

This function can be minimized by a range of convex opti-
mization algorithms.

Quasi-3D Reconstruction: Quasi-3D reconstruction has
recently been proposed as a method to make real-time to-
mographic reconstruction feasible [5]. Instead of computing a
full 3D volume, only a small collection of arbitrarily oriented
2D slices is reconstructed and visualized in real-time. When
these slices are translated and/or rotated by the user, they are
reconstructed on the fly, so that it appears as though a full 3D
reconstruction is available. This on-demand 2D reconstruction
significantly reduces the total computational cost compared
to full 3D reconstruction. This approach is implemented in
the open source RECAST3D software package and more
implementation details can be found in [5].

In RECAST3D, the filtering and weighting steps of the FDK
algorithm are performed in parallel. The computation of h ∗~f
is performed in real time from the incoming data. When a slice
is requested, the application of KT (called backprojection) is
performed using GPU-based high-performance routines from
the ASTRA toolbox [15]. In addition, a low-resolution 3D
FDK reconstruction is created so that the user can preview
the object. Our quasi-3D pipeline for segmentation is imple-
mented by extending the RECAST3D software package with
a computationally efficient segmentation plugin.

Segmentation: Mathematically, segmenting an image can
be described as finding a function g : Rm�n → Zm�n

k , where
m;n are the rows and columns of the image and k is the
number of object classes to be assigned.

Classical segmentation methods (for example local and
global thresholding [9], [12], watershed methods [13]) typi-
cally operate on the image greyvalues to separate classes and
have the high computational efficiency that is need for real-
time segmentation. As an example, Otsu’s method performs
a segmentation of an image by selecting a threshold that
minimizes intra-class variance. In addition to the greyscale
distribution, segmentation can be performed on other prop-
erties by for example clustering pixels [16] or defining edge
boundaries in the image [17]. Recently, CNNs have proven
successful for image segmentation [18], [19].

CNNs for segmentation: In this work we use CNNs to
segment the tomographic reconstructions. In a segmentation
network, the final output layer will assign one of k classes to
each pixel. The CNN is defined by its architecture with weights
� which can be altered to change the output. For a given �,
a CNN corresponds to a function F� : Rm�n → Rk�m�n

which aims to approximate g by computing a probability
vector with predictions for each class for each pixel. The

Fig. 2: Diagram outlining unidirectional training on slices (left) and omnidirectional
training (right).

highest probability class can be chosen from the network
predictions to obtain a final segmentation.

The weights � are found in a training phase, where input
samples x1; : : : ;xN are processed by the network and com-
pared to known labelled output samples y1; : : : ;yN . A loss
function J : Rk�m�n × Zm�n

k → R, such as cross-entropy
loss, measures the error of the network on the training samples.
The aim of the training phase is to find a � that minimizes
the loss on the training dataset

�� = arg min
�

{
N∑
i=1

J (F�(xi);yi)

}
:

For a CNN, we can compute the partial derivatives of J with
respect to the weights using backpropagation. The weights can
be updated using gradient-based optimization algorithms [20].

B. Quasi-3D training strategies

In 3D image segmentation, neural networks are often trained
on 2D slices from the volumes since full 3D networks are
typically computationally too expensive [21], [22]. The 2D
input slices are obtained by extracting slices in a single
direction. In contrast, slices in a quasi-3D reconstruction can
have an arbitrary orientation. A network trained only on
unidirectional slices may not recognize object classes from
a different view. Therefore, the standard training procedure
has to be adapted to enable application of CNNs to arbitrary
oriented slices. Here, we introduce a training strategy where
arbitrarily oriented 2D slices of the tomographic volume are
supplied as input for the neural network.

Let X ∈ Rn�n�n be an input volume and Y ∈ Zn�n�n
k

the aligned target volume. Define E�;�;
 : Z × Rn�n�n →
Rn�n to be a rotated extraction operation. E�;�;
(i;X)
extracts the i-the slice rotated by angles �; �;
 with re-
spect to the sagittal slice from the volume X. For omnidi-
rectional training we create a dataset of slices with pairs
(E�;�;
(i;X); E�;�;
(i;Y)) where the angles are randomly
generated. For unidirectional training we create pairs of sagit-
tal slices (E0;0;0(i;X); E0;0;0(i;Y)) (see Figure 2).

C. Segmentation Plugin

To construct the pipeline for real-time segmentation we
developed a plugin for RECAST3D which segments quasi-
3D reconstructions. The segmented slices are then visualized
in RECAST3D. The plugin is GPU-based and can be disabled,
altered and reenabled while the projection data is processed
simultaneously. A command line interface allows for online
tuning of parameters with immediate visual feedback, and the

(a) (b) (c) (d)

Fig. 3: (a), (b) Example volumes of the fibre-sphere data, (c) slice of the noisy FDK
reconstruction, and (d) slice of the ground truth (spheres and fibres have different labels).

user can select which class is visualized. The plugin operates
independently from the quasi-3D reconstruction pipeline, and
can be run on a separate node.

The plugin is implemented in Python, and includes three
CNNs implemented in PyTorch: the MS-D network [22],
[23], U-Net [18], and ResNet [24]. In addition, the plugin
includes several traditional segmentation methods, including
Otsu’s method [9], cross entropy thresholding [12], contour
evolution [25], region based random walk segmentation [26]
and the watershed algorithm [13].

III. RESULTS AND DISCUSSION

A. Setup

To assess the accuracy and computational efficiency of
our CNN-based segmentation approach, we compare it with
traditional unsupervised methods. The neural network used in
this work is the MS-D network [22], chosen because of its
low number of trainable parameters.

Since the MS-D network can flexibly adapt to different
problems, we used the same network architecture for each
experiment. We used an MS-D network, implemented in
PyTorch [23], of 100 layers with a width of 1. The dilations in
layer i were set to 1+(i mod 10). The networks were trained
using the ADAM algorithm [20], using a batch size of 20, and
the cross-entropy loss function. For each experiment, the data
was split in training, validation, and test sets. The network
is trained on the training set for 100 epochs. The network
with the lowest validation error was selected to be evaluated
on the test set. All experiments were run on a workstation
with an AMD Ryzen 3800X processor and NVIDIA GeForce
RTX 2070 Super GPU. To quantify our comparisons we use
the F1-score (also known as the Dice coefficient), and the
accuracy. For multi-class problems we report the macro F1-
score (average of per-class F1-score), and the global accuracy.

B. Simulated data

We created two sets of simulated tomographic data to
investigate the difference between omni- and unidirectional
training, and to quantitatively compare Otsu’s method to
the MS-D network. For the former we created twenty 5123

volumes filled with fibre strands and spheres. Each volume
contained 20 spheres and 20 fibres which were generated with
a random shape and location. Greyscale intensities were the
same for both classes. 3D renderings of the noiseless volumes
are shown in Figure 3.

For the second simulation experiment we created twenty
5123 volumes filled with 40 fibre strands generated with

