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Algorithm 2 Prox-QN method for solving (12)

Input: f (0), τ > 0, γ ∈ (0, 1)
Output: f?

1: for i = 0 to imax do
2: compute the gradient gi =

∑k
j=1∇Fj

(
f (i)
)
.

3: compute the approximate Hessian Hi

4: compute si from equation (D.5)(a).
5: define f̂(α) = proxγR

(
f (i) + αsi

)
6: αi = linesearchα

(
f̂(α)

)
.

7: f (i+1) := proxγR
(
f (i) + αisi

)
using Algorithm 1.

8: check optimality conditions
9: end for

sequence of the outer loop, we compute the gradient using
an adjoint-state method, and form the approximate Hessian
with the L-BFGS procedure. The procedure to compute the
gradient is explained in Appendix B. Once we have the
gradient and approximate Hessian at the current iterate, we
compute the search direction using the primal-dual method
(see (D.6)). Next, we search for the feasible step length using
the backtracking linesearch. Finally, we compute the next
iterate using Algorithm 1.

The computational complexity of Prox-QN method relies
on step 2 of Algorithm 2. The gradient computation involves
solving an adjoint of Lippmann-Schwinger equation. We use
GMRES method which has complexity of O(nt2), where
n is the size of image, and t is the number of iterations.
For nt transmitters and nf frequencies, the step 2 involves
O(nt2ntnf ) floating-point operations. Steps 3 to 8 have
lower complexity order than that of step 2. Hence, Prox-QN
has O(nt2ntnf imax) computational complexity. For a single
frequency of 100 Hz (nf = 1) with 5 transmitters on a 32×32
image, it took approximately 2 minutes to run 100 iterations
of prox-QN on a 2.7 GHz Intel Core i5 processor with 8 GB
RAM.

IV. ESTIMATING THE CONSTRAINT PARAMETER τ

Recall that for each subproblem (12) in our proposed
framework, we are solving a TV-constrained nonlinear least-
squares problem where the constraint parameter τk should
bound the total variation of the solution. Naturally, the choice
of constraint parameter τk would significantly affect the re-
construction performance.

In order to estimate τk for each new subproblem, we develop
a parameter estimation routine inspired by the approach in [42]
for sparse optimization with linear least squares constraints.
Suppose that we have an initial estimate of fk obtained at the
frequency corresponding to the kth subproblem for which the
TV norm τk = TV (fk), specifically,

fk = argmin
f

{∑
j∈Jk

Fj (f) s.t. ||Df ||1 ≤ τk
}
, (13)

where Fj is as defined in (6), and the constraints
Cj(f

k,Uj) = 0 are satisfied for all j ∈ Jk. At subproblem

k + 1, the cost Fk+1 (f) is added to the objective function,
resulting in the potentially unsatisfied constraint

Vk+1 = AkUk+1, (14)

where Ak , I−Gdiag(fk). To overcome the nonconvexity
of the objective function due to (14), we linearize the objective
function around fk by estimating U?

k+1 = A−1
k Vk+1, thus

reducing Fk+1 (f) to a convex least squares cost function in
f , i.e.,

Fk+1 (f) ≈ Dk+1

(
f ,U?

k+1

)
,

where Dk+1

(
f ,U?

k+1

)
is the data mismatch cost function

defined in (6). Consequently, we may now define a value
function Φ(τ) for the (k + 1)

th subproblem as

Φ(τ) = argmin
f

{∑
j∈Jk+1

Dj
(
f ,U?

j

)
s.t. ||Df ||1 ≤ τ

}
= argmax

λ

{∑
j∈Jk+1

rj
HYj/‖rk+1‖ − τλ

s.t. TVpolar

(P
j∈Jk+1

diag(U?
j )HH

j rj

‖rk+1‖

)
≤ λ

}
(15)

where rj = Yj −Hj diag
(
U?
j

)
fk is the data residual at the

jth frequency, and rk+1 is the vector formed by concatenating
all the vectors rj , such that, ‖rk+1‖2 =

∑
j∈Jk+1

||rj ||2.
The TVpolar function is defined as TVpolar(x) = ‖D−Tx‖∞,
with D−T being the transposed pseudo-inverse of the finite
difference operator D defined in (9). Note that (15) shows the
primal and dual problems for computing the value function
Φ(τ).

The dual problem in (15) conveniently shows that
the maximum is achieved when λ is at its minimum
λ? = TVpolar

(∑
j∈Jk+1

diag
(
U?
j

)
HH
j rj/‖r‖

)
. Moreover,

the gradient of Φ(τ) with respect to τ is easily computed
as ∇τΦ(τ) = λ?. Therefore, we can compute the update for
τ using a Newton root finding step, such that,

τk+1 = τk +
‖rk+1‖

(
‖rk+1‖ − σk+1

)
TVpolar

(∑
j∈Jk+1

diag
(
U?
j

)
HH
j rj

) , (16)

where σk+1 is the upper bound on the `2 norm of the noise
up to the k + 1 frequency bin. Finally, we note that at the
zeroth iteration, the parameter τ can be set to zero, resulting
in a homogeneous solution for f0.

V. NUMERICAL EXPERIMENT

In this section, we describe the experimental setup for the
reflection tomography. We evaluate our method on two numer-
ical phantoms and compare it with two other approaches. We
also experiment with a partially non-inverse-crime dataset in
Section V-E.

A. Experimental details

We consider an experimental setup illustrated in Figure 4(a).
The domain is 1 m × 1 m and extends in x-direction from
x = −0.5 m to 0.5 m and in y-direction from y = −0.5 m to
0.5 m. There are total of five transmitters and receivers located
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(a) Setup (b) Phantom 1 (c) Phantom 2 (d) Phantom 3

Fig. 4: (a) Tomography setup for all the numerical experiments. The dotted region denotes the object domain Ω. The transmitters
and receivers are collocated at y = −0.6 m. (b), (c), (d) are the three numerical phantoms used for the experimentation.

on a line y = −0.6 m. Each transmitter illuminates a flat
spectrum pulse occupying the frequency band [10, 2000] MHz.
All 5 receivers are activated for each transmitter. We consider
three frequency bands: i) a low frequency band consisting of
{10 + 5j} MHz with j = 0, . . . , 17, ii) a medium frequency
band consisting of {100 + 50j} MHz with j = 0, . . . , 17, and
iii) a high frequency band consisting of {1000 + 100j} MHz
with j = 0, . . . , 10. Hence, in total, we consider 47 frequencies
between 10 MHz and 2000 MHz.

We work with 3 phantoms shown in Figure 4(b)-(d). All
phantoms have a length of 1 m in both x and y directions.
Phantom1 is a Shepp-Logan phantom which resembles the
brain. It is a well-known phantom in the image processing
and tomography community. Here, we discretize it on 32×32
grid. It has total of 4 contrast values, namely {0, 0.2, 0.3, 1}.
Phantom 2 resembles an underground scene. It has layer
structure in the background whose contrast ranges from 0.1
to 0.5. A square-type hole (of contrast of 0) is embedded in
a rhombus-type structure with a contrast of 1. This phantom
also has a resolution of 32× 32. We use these low resolution
phantoms to compare our method with other exisiting methods
and to check the robustness against the noise.

Phantom 3 is a high-resolution phantom depicting another
underground scene. It has a resolution of 128 × 128. It
contains 3 horizontal layers of contrast {0.05, 0.1235, 0.5}.
The phantom consists of two circular pipes of outer diameter
0.4 m and 0.24 m with a thickness of 0.6 m and 0.5 m
respectively. A large pipe has an inner region filled with a
high contrast material of permittivity 1 and a small pipe has
a vaccum inside. We use this phantom to perform a partially
non-inverse-crime test as described in Section V-E.

B. Comparison with other methods

We restrict ourself to the two classical methods. For fair
comparison we modify these methods to add the prescribed
regularization. We do not compare with linearized methods
like Born approximation and Rytov approximation as these
methods have shown to fail for high-contrast imaging [43].

CISOR: The CISOR algorithm aims to solve (5) by taking
all frequencies at once [43]. As opposed to TV-norm
penalization, we use the proposed regularization, i.e.,
we regularize it with non-negative and total-variation
constraints with known τ value. The TV constraint

parameter is set to the total-variation of the true
model. The problem is solved using a prox-QN
method with a maximum of 5000 iterations or until
convergence (norm of the gradient below 10−6).

RL: Recursive linearization (RL) method was introduced
in [44], and has been a standard while working
with multi-frequency data. The method enjoys the
computational benefit of solving a single constraint
(i.e., solving a single linear system of equations) at
a time, but might suffer in the high-contrast regime.
It solves the sequence of problems

f (j), argmin
f

{
Dj(f ,Uj) s.t. Cj(f ,Uj) = 0

}
,

with an initial guess to each subproblem being the
solution of the previous subproblem. We modify the
cost function to include the regularization. Similarly
to the CISOR, we consider non-negative and TV
regularization with known τ value. Each subproblem
is solved using a prox-QN method with a maximum
of 500 iterations.

SF-τ : This method corresponds to the proposed sequential
framework with known τ value. It solves the problem
described in (8). We use a prox-QN method to solve
each subproblem with a maximum of 500 iterations
or until converge.

SF-σ: This method corresponds to the proposed sequential
framework with estimation of τ at each iteration.
It solves the problem described in (8) with the τ
estimation from (16). Here, we assume that the noise-
level σ is known. We use a prox-QN method to solve
each subproblem with a maximum of 500 iterations
or until converge.

For all the methods the initial model corresponds to a contrast
of 0 everywhere.

C. Performance Measures

We use the following measures to evaluate the performance
of the proposed methods and to compare with other methods.

DR: The data residual (DR) measures the distance of the
modeled data for reconstructed model with the actual
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data in the euclidean sense. For multi-frequency data
the DR takes the following form

DR , 100×
∑
j∈J Fj(f?)∑
j∈J ‖Yj‖2

,

where f? is the reconstructed solution. Here, ‖Y‖
denotes the Frobenius norm for the matrix Y. DR

CISOR RL SF-τ SF-σ

f m
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1
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f m
ax
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Fig. 5: Comparison of methods on Phantom 1.
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Fig. 6: Comparison of methods on Phantom 2.

TABLE I: Comparison of methods on Phantom 1 and Phantom 2

fmax Phantom 1 Phantom 2
CISOR RL SF-τ SF-σ CISOR RL SF-τ SF-σ

1 DR 0.87 45.89 0.74 2.36 0.32 29.16 0.05 0.06
SNR 14.73 3.87 15.12 9.19 27.63 8.84 42.79 18.22

10 DR 28.08 75.27 8.78 11.13 945.16 260.43 3.77 24.75
SNR 2.17 1.94 3.83 4.47 0.16 11.08 47.07 18.00

100 DR 295.41 97.12 2.72 4.95 344.59 69.02 5.76 1.52
SNR 0.27 1.15 2.60 3.08 0.11 10.72 17.18 14.42

must be close to the noise-level for a method to be
considered good.

SNR: The signal-to-noise ratio (SNR) for the reconstructed
model f? with respect to the ground truth f true is

SNR , −20 log10

(
‖f? − f true‖
‖f true‖

)
.

A reconstruction is considered good if it has high
SNR. This measure is only available if we know the
ground truth.

D. Exact-model experiments

To evaluate our approach, we perform both noise-free and
noisy experiments, in which the exact model is known. In
the noise-free experiments, we compare our methods with the
other two methods (CISOR and RL). In noisy ones, we only
examine the robustness of our methods against various levels
of noise.

1) Noise-free experiment: We consider Phantom 1 and 2
for this experiment. We produce three types of phantoms
by scaling these phantoms with a maximum contrast (fmax)
of {1, 10, 100}, which we consider to be low, medium, and

SF-τ SF-σ SF-τ SF-σ

f m
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=
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f m

ax
=

1
0

f m
ax
=

1
0
0

Fig. 7: Noise robustness of proposed methods on Phantom 1
and Phantom 2 with 20% noise. Left and right columns show
reconstructions of Phantom 1 and 2 respectively.

TABLE II: Noise-Robustness of SF-τ and SF-σ

fmax Phantom 1 Phantom 2
SF-τ SF-σ SF-τ SF-σ

10% 20% 10% 20% 10% 20% 10% 20%

1 DR 7.00 15.10 13.20 25.79 9.53 19.77 11.50 22.73
SNR 10.59 8.64 6.97 5.35 19.74 15.77 14.06 12.04

10 DR 19.91 35.38 21.77 51.59 41.49 52.53 42.24 62.78
SNR 3.23 3.23 4.37 3.43 18.98 15.15 14.68 12.34

100 DR 42.42 74.96 49.12 87.96 27.85 49.16 35.49 73.38
SNR 2.10 1.27 3.15 2.54 13.69 14.02 12.43 11.46
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Fig. 8: Inexact model experiments on Phantom 3. The top row shows the reconstructions on low-contrast phantom, while the
bottom row shows the reconstructions on medium-contrast phantom.

high-contrast phantoms, respectively. For the simulations we
use the reflection tomography setup illustrated in Figure 4(a)
with noiseless data. We examine the performance of the
methods SF-τ and SF-σ, and compare it with the CISOR
and RL method. Figures 5 and 6 show the reconstructions
for various contrast levels for Phantom 1 and 2,respectively.
We see that SF-τ consistently performs well except in the
case of fmax = 100 for Phantom 1, where all the methods
fail. The reason for the failure is that Phantom 1 is ideal for
transmission or full-view tomography and not for reflection
tomography. For an underground scene (depicted by Phantom
2) we see that the proposed methods performs well with
the reflection tomography. We tabulate the values for the
performance measures in Table I. We conclude that the SF-τ
and SF-σ perform superior to the existing methods (CISOR
and RL).

2) Noisy experiment: We consider Phantom 1 and 2, with
the scaling {1, 10, 100}. We add a Gaussian noise of relative
energy 10% (20dB measurement SNR), and 20% (14dB mea-
surement SNR), and examine the performance of SF-τ and
SF-σ on these noise levels. Figure 7 shows the reconstruc-
tions using these methods for 20% relative noise energy and
various levels of contrast values. The performance measures
are tabulated in Table II. We observe that SF-τ and SF-σ are
robust against high noise in the low-contrast phantoms. SF-
τ is also stable for moderate level of noise in high-contrast
regime.

E. Inexact-model experiment
To verify the robustness of our approach, we consider

Phantom 3 for this test that has a resolution of 128×128, using
an inexact model for the reconstruction. To avoid inverse-
crime, we generate the measurements with a high-resolution
modeling grid with additional Gaussian noise, and use a low-
resolution grid as a forward solver [45]. In particular, we
first discretize the model on a high-resolution grid of size

(a) 10 Hz (b) 100 Hz (c) 500 Hz (d) 1000 Hz

Fig. 9: Intermediate reflectivity maps from SF-σ for the inexact
model for Phantom 3 on medium-contrast phantom highlight-
ing the low-to-high spatial resolution of the reconstruction.

192 × 192. We use the nearest-neighbor algorithm for the
rescaling to a high-resolution grid. We generate the data on
the high-resolution grid, and add 10% (20dB measurement
SNR) white Gaussian noise relative to the signal power.
As a sanity check, we look at the difference between the
data for high-resolution and low-resolution model, and found
the relative difference is less than 20%. We test CISOR,
RL, SF-τ and SF-σ on low-constrast phantom (fmax = 1)
with this high-resolution dataset. We assume a noise level
of 20% for SF-σ, while we set τ to be the TV-value of the
ground truth (low-resolution model) for CISOR, RL and SF-τ .
The reconstruction results for these methods are presented in
Figure 8(a)-(d). CISOR has DR of 1.47 and SNR of 20.32dB,
while RL has DR of 12.52 and SNR of 14.23dB. Similarly,
SF-τ has DR of 1.46, and SNR of 19.95dB, while SF-σ has
a DR of 4.74, and SNR of 16.71dB. We observe that CISOR
and SF-τ are able to reconstruct the ground scene accurately:
the top and the bottom regions of the pipes are retrieved to
high precision. SF-σ is able to locate the high-contrast and the
low-contrast objects in the pipes but fails to get the boundary
of the pipes accurately. Moreover, RL struggles to predict the
accurate geometries of pipes as well as layers. As we have
seen in Figures 5 and 6, we conclude that the low-contrast
phantom can be reconstructed with CISOR, SF-σ and SF-τ .

Next, we run a similar test for medium-contrast phantom,
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i.e., Phantom 3 scaled to the maximum contrast of 10. For
this test, we only show the reconstructions from SF-σ with
CISOR and RL, since SF-τ consistently performs better. Fig-
ure 8(e)-(g) provide reconstruction results for these methods.
The CISOR has DR of 342.82, SNR of 0.64dB, while RL
achieves DR of 24.24 and SNR of 15.19dB. Compared to these
methods, SF-σ has a DR of 13.78 and SNR of 18.73dB. Hence,
CISOR fails on medium-contrast phantoms, while RL still
struggles to provide an accurate picture of target image. On
the other hand, the reconstruction from SF-σ quite accurately
recovers the layers and the pipes.

Finally, we plot in Figure 9 the intermediate solutions from
SF-σ on medium-contrast phantoms. In particular, we plot the
solutions for batches 10 Hz, 10-100 Hz, 10-500 Hz, and 10-
1000 Hz. We observe that the solution at 10 Hz obtains an
almost constant image due to the low TV constraint. As we
move towards higher frequencies, the reconstruction method
starts to fill in the details in the image by allowing for higher
values of TV and higher frequencies in the measurements.
This behavior is reminiscent of “multi-grid methods” while
avoiding their complex bookkeeping requirements.

VI. CONCLUSIONS

We consider limited-angle reflection tomography of high-
contrast objects and show that the tomography problem is
severely ill-posed due to the absence of low-frequency content
and multiple scattering of waves. To find a feasible solution
to this ill-posed problem, we develop a regularized multiscale
approach. We pose the imaging problem as a nonlinear least-
squares problem with constraints. The cost function includes
the wave-based modeling that accounts for multiple scattering
and a regularization term that includes non-negativity and total
variation constraints. The total cost function is decomposed
according to the frequency, and we observe that the low-
frequencies promote smoothness while higher frequencies add
details in the reconstruction. Hence, we solve a sequence
of subproblems, where the kth subproblem has a constrained
cost function measured over the first k frequencies. We pro-
pose a proximal-Quasi-Newton method to solve the resulting
constrained problem. The underlying proximal operations are
performed using a primal-dual approach. We also propose
an automatic strategy to update the TV-constraint parameter
based on the noise-level in the data. Through numerical ex-
periments, we demonstrate that our methodologies outperform
the existing methods and is robust against moderate noise. The
proposed techniques can retrieve high-contrast object (contrast
up to 100) for scenes similar to the underground.

APPENDIX A
SCATTERING FORMALISM

Consider a scattering setup illustrated in Figure 1. The
scene (free-space with permittivity εb) has a dimension d.
The transmitter domain Γt ⊂ Rd emits a source function q :
Γt 7→ C, which generates an incident wavefield uin : Rd 7→ C
everywhere. This incident wavefield interacts with an object in
domain Ω ⊂ Rd and generates a total wavefield u : Rd 7→ C.

The scattered wavefield usc := u−uin is then measured in the
receiver domain Γr ⊂ Rd.

The total wavefield is a superposition of an incident field
uin(r) and a scattered field usc(r),

u(r) = uin(r) + usc(r), r ∈ Rd. (A.1)

The incident wavefield is the field in the absence of the
scatterer, while the scattered field takes the presence of object
into account. The incident wavefield satisfies the Helmholtz
equation

∇2uin(r)− k2εbuin(r) = −q(r) ∀r ∈ Rd,

where k denotes the wavenumber. It is convenient to consider
the above equation for inside and outside the object domain
Ω:

∇2uin(r)− k2εbuin(r) = 0 ∀r ∈ Ω,

∇2uin(r)− k2εbuin(r) = −q(r) ∀r /∈ Ω,
(A.2)

Similarly, the total wavefield satisfies the Helmholtz equation,
and we can express it inside and outside the domain as follows,

∇2u(r)− k2ε(r)u(r) = 0 ∀r ∈ Ω,

∇2u(r)− k2εbu(r) = −q(r) ∀r /∈ Ω,
(A.3)

where ε(r) is the permittivity of the object. Now, from the
equations (A.1), (A.2) and (A.3), the governing equation for
the scattered wavefield reads

∇2usc(r)− k2εbusc(r) = −k2 (εb − ε(r))u(r) ∀r ∈ Ω,

∇2usc(r)− k2εbusc(r) = 0 ∀r /∈ Ω,

These equations can be compactly written as

∇2usc(r)− k2εbusc(r) = −k2f(r)u(r) ∀r ∈ Rd (A.4)

where f(r) is a contrast function that is equal to the difference
between the permittivity, ε(r)−εb, inside the object domain Ω
and 0 outside. We supplement the scattered wavefield equation
(A.4) with the Sommerfeld radiation condition

lim
r 7→∞

r

(
∂usc

∂r
− ikusc

)
= 0

where r = ‖r‖. Equation (A.4) can be converted to an
equivalent integral equation by introducing the free space
Green function. The free space Green function g : Rd 7→ Rd
satisfies

∇2g(r) + k2εbg(r) = −δ(r), ∀ r ∈ Rd

together with the Sommerfeld radiation conditions. Here, δ is a
dirac-delta function. The explicit representation for the Green
function reads

g(r) ,


− i

2ke
−ikr d = 1

− i
4H

(2)
0 (kr) d = 2

1
4πr e

−ikr d = 3

,

where r = ‖r‖, and H(2)
0 is the zero-order Hankel function of

second kind. Hence, the integral representation for the input
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wavefield is

uin(r) = k2

∫
r′∈Γt

g(r− r′)q(r′) dr′ ∀ r ∈ Rd,

and similarly, for the scattered wavefield is

usc(r) = k2

∫
r′∈Ω

g(r− r′)u(r′)f(r′) dr′ ∀ r ∈ Rd.

Noting that the scattered wavefield is the difference of the total
wavefield and the input wavefield (see (A.1)) and restricting
our observations to the object domain Ω, we arrive at the well-
known Lippmann-Schwinger equation

u(r) = uin(r) + k2

∫
r′∈Ω

g(r− r′)u(r′)f(r′) dr′ ∀ r ∈ Ω

The equation above describes the relation between the total-
wavefield and the contrast function inside the object domain
Ω. The scattered wavefield is then measured in the receiver
domain Γr resulting in the following data equation:

y(x) =

∫
Ω

g(x− r)f(r)u(r) dr, ∀x ∈ Γr.

APPENDIX B
GRADIENT COMPUTATION

In this section, we derive a gradient for an equality con-
strained cost function

F(f) =
{
h(f ,u) subject to k(f ,u) = 0

}
(B.1)

where h : Rn × Cn 7→ R is a real-valued function and k :
Rn×Cn 7→ Cn is a set valued function. We assume that both
the functions h and k are smooth and hence, differentiable.
For the constrained problem (B.1), the Lagrangian reads

L (f ,u,λ) = h(f ,u) + λHk(f ,u), (B.2)

where λ ∈ Cn is a Lagrange multiplier corresponding to the
constraints, and xH represents the conjugate transpose of the
vector x with complex entries. The stationary point of the
Lagrangian L, denoted by (f ,u?,λ?), satisfies

∂L
∂u

= 0,
∂L
∂λ

= 0.

The first condition gives rise to an adjoint equation

∂h

∂u
(f ,u?) +

(
∂k

∂u
(f ,u?)

)H
λ? = 0, (B.3)

while the second condition is the states equation

k (f ,u?) = 0. (B.4)

The states equation generates a wavefield u? for a given
parameter value f . The adjoint equation calculates the La-
grange multiplier (also called adjoint wavefield) correspoding
to wavefield u? for given f . Tthe gradient of F is now retrieved
from the partial derivative of the Lagrangian with respect to
f ,

∇F(f) =
∂L
∂u

=
∂h

∂f
(f ,u?) +

(
∂k

∂f
(f ,u?)

)H
λ?. (B.5)

This method is known as the adjoint-state method [46].

Inverse scattering Example

For an inverse scattering problem, h represents the misfit
function between the simulated and the measured wavefields
and k = 0 is a Lippmann-Schwinger equation,

h , 1
2‖y −Hdiag(u)f‖2, k , (I−Gdiag(f))u− v.

At a given value of f , the adjoint system for the Lippmann-
schwinger equation is(

I−GHdiag(f)
)
λ? = diag(f)HH(y −Hdiag(f)u?) .

(B.6)

Here, λ? is the adjoint wavefield and the u? is obtained
satisfying the constraints at given value of f :

(I−Gdiag(f))u? = v. (B.7)

Once the forward wavefield u? and the adjoint wavefield λ?

are computed, the gradient is

∇F(f) = diag(u?)HHH (Hdiag(u?)f − y)

− diag(u?)HGHλ?.
(B.8)

Computing the gradient requires solving the forward (B.7) and
the adjoint (B.6) systems only once each.

APPENDIX C
PRIMAL-DUAL METHOD

We consider a class of optimization problems

min
x

h(x) + g(Lx) + k(x), (C.1)

where h : Rn 7→ R is a differentiable closed convex function.
g : Rm 7→ R and k : Rn 7→ R are closed non-differentiable
convex functions. We assume that the proximal operators for
the functions h, g and k are inexpensive. L ∈ Rm×n denotes
a structured matrix. For example, in TV regularization, L
represents a discrete gradient operator. We assume that the
matrix L may be potentially non-invertible, such is the case
in TV regularization. In this section, we derive a primal-dual
algorithm to find an optimal solution to problem (C.1).

A. Preliminaries

A set-valued operator H : Rn 7→ Rn, that maps a point
x ∈ Rn to sets H(x) ∈ Rn is monotone if

(H(x)−H(x̂))
T

(x− x̂) ≥ 0 ∀ x, x̂.

The operator (I+γH)−1, with γ > 0 is called as the resolvent
of the operator H, where I is an identity operator. The value
x = (I + γH)−1(y) of the resolvent is the unique solution
of the monotone inclusion y ∈ x + γH(x). A resolvent of a
monotone operator is a non-expansive operator. An operator
H is non-expansive if ‖H(x)−H(y)‖ ≤ ‖x− y‖,∀ x,y.

A proximal operator (also known as prox-operator) of a
closed convex function h is the resolvent with H = ∂h, a
sub-differential of a function h. The prox-operator reads as

proxαh = (I + γ∂h)−1,
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and it maps x ∈ Rn to the unique solution of the optimization
problem

x? = argmin
y

{
h(y) +

1

2γ
‖y − x‖2

}
.

A (convex) conjugate of a general function h : Rn 7→ R is

h?(y) = sup
x∈Rn

{
yTx− h(x)

}
.

A conjugate of a function is always convex. The prox-operator
of a function and its conjugate is related by the Moreau
identity,

proxαh?(x) + αproxh/α

(x
α

)
= x. (C.2)

B. Fixed point method

A fixed point of an operator T : Rn 7→ Rn is defined
as the set of points x ∈ Rn such that T (x) = x. A fixed
point method finds one such point by generating a sequence
of iterates x(k) with k = 1, . . . , n of form

x(k+1) = T
(
x(k)

)
for a given initial point x(0). The iterates converge to one of
the fixed point if T is a non-expansive operator.

Now recall that the resolvent of a monotone operator H is a
non-expansive operator, i.e., T = (I + αH)

−1. Also, it can be
easily seen that the zeros of the monotone operator H are the
fixed points of its resolvent. Hence, the fixed point iterations
takes the following form to find the zeros of a monotone
operator H:

x(k+1) = (I + αH)
−1

x(k).

A more efficient scheme to find the zero of H is a precondi-
tioned fixed-point method. This iteration scheme generates a
sequence

x(k+1) =
(
I + P−1H

)−1
x(k),

with P as a symmetric positive-definite linear operator. This
sequence can be simplified to

(P +H)x(k+1) = Px(k) (C.3)

C. Primal-Dual algorithm

To compute monotone operator for (C.1), we look at its first-
order optimality condition. It states that a zero-vector must be
in the subdifferential of the cost function, i.e.,

0 ∈ ∇h(x) + LT∂g(Lx) + ∂k(x), (C.4)

where ∂g : Rm 7→ Rm and ∂k : Rn 7→ Rn are the respective
subdifferentials of functions g and k. Let’s consider variables
u ∈ Rm in the subdifferential of g and v ∈ Rn in the
subdifferential of k,

u ∈ ∂g(Lx), v ∈ ∂k(x). (C.5)

The equations in (C.5) can be restated as follows.

0 ∈ ∂g?(u)− Lx, 0 ∈ ∂k?(v)− x (C.6)

where g? and k? are the convex conjugate of the functions g
and k respectively. From equations (C.4) and (C.6), we can
write the optimality conditions in the form of the following
system 00

0

 ∈
∇h LT In
−L ∂g? 0
−In 0 ∂k?


︸ ︷︷ ︸

H

xu
v


︸︷︷︸

z

, (C.7)

where In ∈ Rn×n is the identity matrix. It is easy to show
that the operator H in (C.7) is a monotone operator. Consider
a preconditioner operator

P =

 1
γI −LT −In
−L 1

γI 0

−In 0 1
γI

 ,
with γ > 0, the preconditioned fixed-point iteration scheme in
(C.3) results in the following primal-dual algorithm:

x(t+1) = (I + γ∇h)
−1
(
x(t) − γLTu(t) − γv(t)

)
u(t+1) = (I + γ∂g?)

−1
(
u(t) − γL

(
x(t) − 2x(t+1)

))
v(t+1) = (I + γ∂k?)

−1
(
v(t) − γ

(
x(t) − 2x(t+1)

))
If the proximal operators of functions h, g and k are simple,
then the each iteration can be computed efficiently.

APPENDIX D
PROXIMAL QUASI-NEWTON METHOD

In this section, we discuss the Quasi-Newton (QN) method
and its proximal version (prox-QN). Assuming the cost func-
tion f is twice differentiable, QN aims to solve

x? = argmin
x

f(x) (D.1)

by generating a sequence based on the quadratic approxima-
tion to the fuction f at every iterate of the sequence. The
procedure is as follows:

s(k) = −H−1
k ∇f

(
x(k)

)
,

αk = linesearch
(
f(xk + αs(k))

)
,

x(k+1) = x(k) + αks
(k).

(D.2)

Here, Hk is (an approximation of) the Hessian of function f
at x(k). This method differs from the Newton method, as the
former relies on an approximation, while the latter computes
the exact Hessian. If f is a convex function, the QN method
converges to a global minimum. If f is non-convex, the QN
can only guarantee the convergence to a local optimum.

We are interested in adapting the QN method to solve
problems of form

x? = argmin
x

{
f(x) subject to g(Lx) ≤ τ,x ≥ 0

}
. (D.3)

Here, f : Rn 7→ R is a twice-differentiable function, and
g : Rn 7→ R is a convex but potentially non-differentiable
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function. For convenience, we rewrite the problem (D.3) as

x? = argmin
x

{
f(x) + δg(Lx) + δk(x)

}
, (D.4)

where, δg is an indicator to the set {x : g(x) ≤ τ}, and δk is
an indicator to the set {x : x > 0}. We propose a following
modification to the Quasi-Newton method, and call it Proximal
Quasi-Newton (prox-QN) method:

(a) s(k) = argmin
s

{
sT∇f

(
x(k)

)
+

1

2
sTHks

+ δg

(
L(x(k) + s)

)
+ δk

(
x(k) + s

)}
(b) define x̂(α) = proxα(δg+δk)

(
xk + αs(k)

)
(c) αk = argmin

α
{f (x̂(α))}

(d) x(k+1) = x̂ (αk)

(D.5)

The steps in (D.5) can be summarized as follows: Step (a) finds
a search direction sk. It minimizes the quadratic approximation
of f at x(k), ensuring that it satisfies the constraints. In step
(b), we define a function x̂ : R 7→ Rn which is a proximal of
the iterate xk + αs(k) with respect to indicators to functions
g and k. The function x̂ ensures that the step length, α, must
satisfy the constraints. Step (c) does a linesearch with respect
to the feasible α. Once we obtain the correct α, we update
our variable of interest x in step (d).

The minimization problem in step (a) of (D.5), is a convex
minimization problem. The cost function is the sum of three
functions h, δg , δk. The function

h(s) = sT∇f
(
x(k)

)
+

1

2
sTHks

is a convex quadratic function, while the remaining two, δg
and δk, are non-differentiable convex functions. To solve this
minimization problem, we use first-order primal-dual method
described in Appendix C. The iterates for t = 0, . . . , T are

s(t+1) = proxγh

(
s(t) − γLTu(t) − γv(t)

)
,

u(t+1) = proxγδ?g

(
u(t) + γL

(
2s(t+1) − s(t)

))
,

v(t+1) = proxγδ?k

(
v(t) + γ

(
2s(t+1) − s(t)

))
,

(D.6)

with γ > 0 controlling the speed of convergence. The proximal
operations for h, δg and δk are expressed as follows:

proxγh(y) = (I + γHk)
−1
(
y − γ∇f

(
x(k)

))
proxγδg (y) = proj‖·‖1≤τ (y)

proxγδk(y) =

{
y y > 0

0 y ≤ 0

The proposed method (prox-QN) differs from [47] in two
aspects: (i) The function g can be potentially be more than `1
type penalty. For example, we can work with total-variation-
type regularization. (ii) The linesearch ensures that the chosen
α is strictly feasible.
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