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Priority is an important concept in Business Process Management (BPM), useful in the 
context of workflow patterns such as, e.g., cancelable and compensable tasks within 
business transactions. Unfortunately, the presence of priority in workflows makes them 
difficult to be analyzed formally by automated validation and verification tools. In the 
past, we demonstrated that the Reo coordination language can be successfully used for 
modeling, automatic validation and model checking of process models. In this paper, 
we propose a constraint-based approach to formalize priority in Reo. We introduce 
special channels to initiate, propagate, and block priority flows, define their semantics as 
constraints, and model priority propagation as a Constraint Satisfaction Problem (CSP). The 
semantic extension we propose in this paper enables workflow analysis in presence of 
priority constraints.

© 2020 Published by Elsevier B.V.

1. Introduction

Business Process Management (BPM) is an operational management approach that focuses on improving business pro-
cesses. A business processes, i.e., a collection of important activities in an organization, is represented in the form of a 
workflow, an orchestrated and repeatable pattern of activities amenable to automated analysis and control. BPM systems 
[1–5] are widely used to provide means for automated process analysis such as model validation, transformation, simula-
tion, visualization of Key Performance Indicators (KPIs), and reporting.

Despite the variety of BPM systems, their formal analysis commonly relies on Petri Nets [6,7]. Business Process Modeling 
Notation (BPMN), a de-facto standard in business process modeling, has been mapped to Petri Nets to explain its semantics 
and enable model verification [5,8]. The choice of Petri Nets as foundation for BPM over other formal methods, often more 
expressive or specialized [9,10], is not surprising: hardly any model is as simple, intuitive, and naturally supports task trace-
ability. However, while Petri net-based models enable automated process analysis, they lack a few desirable characteristics:

1. They cannot naturally represent semantics of component-based or service-based processes. Ideally, we would like to 
plug semantic models for individual components (often integrated dynamically at run time) to the semantic models of 
existing processes in a compositional way.
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2. The classical Petri Nets are not expressive enough and often are extended (e.g., with colors [11], reset and inhibitor 
arcs [12], priority [13,14] transitions) to enable meaningful process analysis. Such extensions change the semantics of 
the model and generate incompatible dialects of process-specification languages adopted by various tools.

An alternative formalization to express the semantics of BPMN models is the Reo coordination language [15]. Reo 
has been used to formalize semantics of BPMN, UML Activity and Sequence Diagrams [16], Business Process Execution 
Language (BPEL) fragments [17], represent transactional workflows [18], and model service orchestrations [19] and chore-
ographies [20]. Reo allows composition of components and services in an intuitive way, hence, addressing the first issue 
mentioned above.

The open-ended nature of Reo allows us to introduce channels with specific properties. Similarly to Petri Nets, intro-
ducing new primitives in Reo often requires its semantics to be revised. Several dozen variations of semantic models for 
Reo have been proposed [21]. They vary from rather simple ones that cover basic Reo behavior (e.g., Constraint Automata 
(CA) [22]) to more complex models that cover specific behavioral aspects, e.g., context-sensitivity [23]. In some of these 
models, deriving the overall semantics of a system is computationally expensive. This hampers using the language for ana-
lyzing large real-world systems.

In [24], we proposed to model the semantics of Reo as a Constraint Satisfaction Problem (CSP). We defined data flow in 
a Reo network in the form of mathematical expressions on data observed at various nodes or ports. The main advantage of 
such representation is the possibility to use existing highly optimized constraint solvers [25,26] to infer the behavior of a 
network given the semantics of its constituent parts.

Priority flow is an important aspect of process modeling not easily supported by existing formal semantics. Analyzing 
compensation and error handling requires a mechanism to express priority of flow alternatives over others. In this paper, we 
develop a theoretical foundation for priority flow modeling in Reo where the behavioral semantics of Reo circuits extended 
with priority-aware modeling primitives is expressed in terms of CSP. The paper revises and extends our initial ideas about 
applying Reo with priority flow control channels to model service orchestrations [27]. In this revision, we refine definitions, 
dedicate more space for case study analysis, and supplement the theory with an open-source implementation of a tool to 
generate CSP solutions for a given Reo circuit with priority flow.

This paper is organized as follows: In Section 2, we briefly describe the Reo coordination language. In Section 3, we 
introduce priority flow in Reo and proceed with constraint-based semantics for it. In Section 4, we extend our approach 
to support numeric priorities. In Section 5, we show the application of our constraint-based approach via two classes of 
connectors: a) priority-aware, and b) connectors with a large number of states. In Section 6, we overview related work. 
Finally, in Section 7, we conclude the paper and outline future work.

2. Reo

In BPM, an organizational process is not simply defined by the performed activities, but to a large extent by coordination 
among entities performing these activities: components, services, agents, stakeholders, etc. Hence, the behavior of a soft-
ware system realizing a business process is not only defined by the functionality of its parts, but also by the “glue code” 
controlling their interaction. Writing and maintaining glue code is a tedious task, especially in complex systems wherein 
the size and rigidity of the glue code tend to grow over time. Coordination languages offer a manageable alternative for 
designing and maintaining the “glue code”.

Reo [15,28] is a channel-based coordination language for composition of software components and services. Using a small 
and open-ended set of predefined and user-defined constructs, Reo supports modeling of complex coordination behavior. 
The primitive constructs in Reo are channels and nodes. The composition of channels and nodes yields connectors. A channel 
is an atomic connector with two ends and a constraint that relates the flow of data at these ends. Channel ends are either 
source ends that read data into the channel or sink ends that write the data out. Channels can connect to each other through 
nodes.

There are two types of channel ends; therefore, three types of nodes can exist: source nodes where only source ends 
coincide, sink nodes where only sink ends coincide, and mixed nodes where both source and sink ends coincide. The mixed 
nodes of a connector are internal to the connector and not accessible for external data exchange. The source and sink nodes 
of a connector, collectively called its boundary nodes or ports, are used to connect to (the ports of) components to exchange 
data. A source node atomically replicates an incoming data item into all of its coincident channel ends, whenever they are 
all ready to accept. A sink node non-deterministically selects a data item out of one of its coincident channel ends and 
delivers it as its outgoing data item, leaving all other data items in its coincident channels intact. The behavior of a mixed 
node is an atomic combination of the behavior of a source node and that of a sink node: whenever all of its coincident 
source channels ends are ready to accept data items, it selects a data item out of one of its non-deterministically chosen 
coincident sink channel ends, and atomically replicates it into all of its source channel ends.

Sync channel has a source and a sink end. It accepts data from its source iff its sink can dispense it simultane-
ously.

LossySync channel has a source and a sink end. It reads a data item from its source and writes it simultaneously 
to its sink. If the sink end is not ready to accept the data item, the channel loses it.
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SyncDrain channel has two source ends and no sink end. It reads data from its two ends and discards it iff the 
ends are ready to interact simultaneously.

FIFO channel has a source end, a sink end, and capacity for only one data item. If it is empty, the channel 
accepts a data item from its source end and buffers it. If it is full, it is ready to dispense data through its sink 
end. Because its one-capacity buffer is always either full or empty, both ends of the channel cannot interact 
simultaneously.

In addition to the channels, we use the standard set of Reo nodes and shortcuts for routing components:

Replicator node has one source end and one or more sink ends. It replicates data coming from its source to its sinks 

simultaneously.
Merger node has one or more source ends and one sink end. It chooses one of its ready to interact source ends 

non-deterministically, receives a data item through this end, and writes it to its sink end simultaneously.
Router is a node representing a connector shortcut with equivalent behavior. It has one source end and a number of 

sink ends. It accepts a data item from its source and simultaneously replicates it on one of its non-deterministically 
chosen sink, which is ready to accept data.

CrossProduct node has a number of source ends and a sink end. It accepts a data item from each source, forms a 

tuple of them in the counter-clock-wise order with respect to its sink, where it writes the tuple, simultaneously.

Two unique features of Reo are compositionality, which can be understood as the ability to derive the behavior of a 
circuit given behavioral semantics of its parts, and propagation of synchrony, which helps to instantly propagate an event on 
a Reo port to the rest of the circuit, i.e., like a switch in an electrical network can start or stop the flow in the network, an 
input/output event on a Reo port can enable or disable control/data flow in (the synchronous parts of) a Reo circuit.

In [29,18], the authors illustrated how to use Reo for modeling complex workflow patterns. Reo process models provide 
a rigorous foundation for process simulation. While Reo models do not give the answer to all challenges associated with 
process simulation [30], they enable accurate distributed process simulation with attention to synchronous vs asynchronous 
flow, blocking events, conditional data-based branching, and time delays.

3. Priority flow

Organizations run multiple processes which often compete for resources (e.g., operators, processing time). Even within a 
single process, different tasks and cases may compete for resources. Setting priority to tasks and cases helps organizations 
to resolve operational conflicts. For example, it is common to prioritize delayed process cases or, on the contrary, cancel 
stalled operations to improve overall KPIs. Although important, priority is rarely captured by simulation tools due to the 
lack of theoretical foundation for priority-aware modeling.

As a simple motivating example, we refer to BPMN, which prioritizes exception flow over normal flow. To enable ver-
ification and accurate simulation of Reo process models with exception flow, we propose to extend the basic set of Reo 
channels with the following channel types:

PrioritySync ! is a synchronous channel that behaves like Sync but imposes priority on its flow. The data propagates 
through the connector (unless it is blocked), and can influence the non-deterministic choices in the containing 
connector by favoring flow alternatives that incorporate its ends.

BlockSourceSync ) is similar to the Sync channel but blocks the propagation of priority from its source end towards 
its sink end.

BlockSinkSync ( is similar to the Sync channel but stops propagation of priority from its sink end towards its source 
end.

BlockSync )( represents a combination of BlockSourceSync and BlockSinkSync and stops the propagation of priority 
in both ways.

Fig. 1 shows an assembly of a Reo circuit to model process cancellation. The normal flow expects to pass through the 
input node I and output node O . The circuit includes two PrioritySync channels to prioritize the divergence of flow in the 
Router-type nodes A or B upon the arrival of the cancellation request at port E .

To enable correct derivation of behavioral semantics for Reo with priority, we introduce the concepts of innate and ac-
quired priority. Both ends of PrioritySync have innate priority. When an end with innate priority connects to another end 
that has no priority, the new end will obtain acquired priority. When one end of a synchronous type channel (e.g., Sync, 
LossySync, SyncDrain) has acquired priority, the other end has innate priority. In the case of non-synchronous channels 
(e.g., FIFO, AsyncDrain) and priority blocking channels (i.e., BlockSourceSync, BlockSinkSync), their ends can only have ac-
3
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Fig. 1. Decomposed Reo circuit to model process cancellation.

Fig. 2. Synchronous circuit with priority channels.

quired priority. We augment the constraint-based framework for Reo [24] to capture priority and the priority propagation 
mechanism.

Fig. 2 demonstrates the use of priority channels to orchestrate simultaneous flow from 4 writers. In this circuit, the input 
on port A has priority over the input on port B while the flow on port D has priority over flow from both A and B . Ports 
A, s1, D and s3 have innate priority, and the reader port C has acquired priority. None of the input branches of the merger 
node s4 has priority, the node merges normal flow from s3 and E non-deterministically. The reader F has no priority as 
well.

Motivated by the constraint-based nature of Reo, we propose to define the behavior of Reo channels as algebraic con-
straints that alter a set of variables. In the rest of this paper, we omit data constraints when defining behavior of Reo 
elements. Data constraints are irrelevant for priority flow and were thoroughly covered in [24].

Let N and M be global sets of ends and state memory variables [31], respectively. Let n ∈N and m ∈M. A free variable 
v ranges over Booleans {�, ⊥} and has one of the following forms:

• ñ shows presence or absence of flow on n;
• n� indicates the reason for the lack of flow on n originating from the primitive or the context (of this primitive), i.e., 

the end is either not ready for interaction or knows that other ends in the circuit are not ready for interaction;
• n!• , n!◦ model priority flow denoting whether n has innate or acquired priority. An end n has priority iff n!• ∨ n!◦ = �;
• m̊, m̊′ denote whether the state memory variable m is defined in the source and the target states of the transition, 

respectively.

A constraint ψ encoding the behavior of a Reo network is defined as:

ψ ::= � | v | ¬ψ | ψ ∧ ψ,

where

v ::= ñ | n!• | n!◦ | n� | m̊ | m̊′.
Solutions to ψ are given by assignment of values in {⊥, �} to variable sets defined above. The satisfaction rules for a 

solution 〈δ〉 are given by satisfaction of formulae in propositional logic.

Definition 1 (Reo Constraint Satisfaction Problem (RCSP)). A Reo Constraint Satisfaction Problem (RCSP) is a tuple

� = 〈N ,M, M0,V, C〉,
where:

• N is a finite set of ends;
• M is a finite set of state memory variables;
• M0 ⊆M is a set of state memory variables that define the initial configuration of a network;
• V is a set of variables v ::= ñ | n� | m̊ | m̊′ | n!◦ | n!• for n ∈N and m ∈M.
• C = {c1, c2, ..., cm} is a finite set of constraints, where each ci is a constraint given by the grammar ψ involving a 

subset of variables V i ⊆ V .

We denote the set of all solutions for � as S� .
The constraint encoding for a composition of Reo networks is obtained as a composition of their respective encodings:
4
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Definition 2 (Composition �). The composition of two RCSPs

�1 = 〈N1,M1, M0,1, V1, C1〉
and

�2 = 〈N2, M2, M0,2, V2, C2〉
is defined as:

�1 � �2 = 〈N1 ∪N2, M1 ∪M2, M0,1 ∪ M0,2, V1 ∪ V2, C1 ∧ C2〉.

To propagate no-flow reasons via joint networks, we introduce the following axioms:

Axiom 1 (Join). When a source end c joins a sink end k,

¬c̃ ⇔ ¬k̃ ⇔ (c� ∨ k�).

The priority join axiom below guarantees that there is a source of propagation for priority and that priority gets propa-
gated.

Axiom 2 (Priority join). When a source end c joins a sink end k:

(c!◦ ∨ c!• ⇔ k!◦ ∨ k!•) ∧ (c!◦ ∧ k!◦ ⇔ c!• ∨ k!•).

The primitives that perform non-deterministic choices between alternative flows should respect priority. We need to 
exclude cases where flow via an end with no priority is chosen over the flow via a prioritized end ready to perform I/O 
operations. The non-deterministic choice axiom carries out this requirement:

Axiom 3 (Non-deterministic choice). Let N ⊆N be a set of ends from which a Reo primitive chooses one for communication. 
The following guarantees that an end y ∈ N with no priority has flow only if no prioritized end x ∈ N is ready to interact:

(¬x̃ ∧ (x!◦ ∨ x!•) ∧ ỹ ∧ ¬(y!◦ ∨ y!•)) ⇒ ¬x�

In our previous work [24], we described the behavioral constraints that each Reo primitive imposes on a network as a 
CSP. We now extend these constraints with priority capturing variables.

If variable p!• = �, the end p has innate priority. A PrioritySync channel with source end a and sink end b, where both 
ends have innate priority, yields a!• ∧ b!• . A primitive end can also obtain innate priority via propagation. For instance, if one 
end of a Sync channel has acquired priority, which means it is prioritized because a primitive connected to it propagates 
priority, then the other end will have innate priority. We denote acquired priority for a primitive end p as: p!◦ ∧ ¬p!• . The 
priority capturing constraint for a Sync channel with source end a and sink end b can be specified as follows:

¬(a!◦ ∨ a!• ∨ b!◦ ∨ b!•) ∨ (a!◦ ∧ ¬a!• ∧ b!•) ∨ (a!• ∧ b!◦ ∧ ¬b!•).
The assertion ¬p!• blocks the priority propagation on p. Though, p can still have acquired priority through a potential 
connecting primitive when p!◦ = �.

Table 1 shows the constraint encoding of Reo channels and nodes in presence of priority flow. Intuitively, the encoding 
for the PrioritySync channel states that the presence of flow on one of its ends implies flow on the other end (ã ⇔ b̃), 
its ends do not provide a reason for no flow simultaneously ¬(a� ∧ b�), and both ends have innate priority (a!• ∧ b!• ). 
The constraints for the BlockSourceSync, BlockSinkSource, and BlockSync are similar except for the last part which reflects 
that the channel sink, source, or both ends, respectively, do not get the innate priority. Priority-neutral Reo channels Sync, 
LossySync, and SyncDrain behave as usual and either have no priority on their ends (¬a!• ∧¬a!◦ ∧¬b!• ∧¬b!◦ ) or propagate 
the acquired priority on one end to the innate priority on another ((a!◦ ⇒ b!• ) ∧ (b!◦ ⇒ a!• )). The asynchronous FIFO channel 
dismisses the innate priority on both ends. In the CrossProduct and Replicator nodes, the flow on one end coincides with 
the flow on both opposite ends (b̃ ⇔ (ã1 ∧ ã2)), regardless of their direction. The absence of flow implies that one of the 
ends provides a reason for no flow. Similarly to the encoding of the Sync channel, the aforementioned nodes either have no 
priority on its ends or translate their acquired priority to the innate priority. The encodings of the Merger and Router nodes 
combine conditions for the presence of flow on its ends with conditions for absence of flow due to the fact that two ends 
on the opposite side give reasons for the lack of flow, and expressions stating that either none of the ends have priority, or 
the rules to translate the acquired priority into the innate priority alone the alternative routes introduced by the node.

The solutions to the CSP expressing the behavior of a Reo network encode possible flow through its nodes. Since a 
network may later connect to another network, the constraints should account for priority imposed by potential future 
5
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Table 1
Constraint encoding of Reo with priority.

Channel Constraints
a b! (ã ⇔ b̃) ∧ ¬(a� ∧ b�) ∧ a!• ∧ b!•

a b)
(ã ⇔ b̃) ∧ ¬(a� ∧ b�) ∧ ¬b!•

a b(
(ã ⇔ b̃) ∧ ¬(a� ∧ b�) ∧ ¬a!•

a b)(
(ã ⇔ b̃) ∧ ¬(a� ∧ b�) ∧ ¬a!• ∧ ¬b!•

a b (ã ⇔ b̃) ∧ ¬(a� ∧ b�) ∧ ((¬a!• ∧ ¬a!◦ ∧ ¬b!• ∧ ¬b!◦ ) ∨ ((a!◦ ⇒ b!• ) ∧ (b!◦ ⇒ a!• )))
a b (b̃ ⇒ ã) ∧ ¬a� ∧ ¬ã ⇒ b� ∧ ((¬a!• ∧ ¬a!◦ ∧ ¬b!• ∧ ¬b!◦ ) ∨ ((a!◦ ⇒ b!• ) ∧ (b!◦ ⇒ a!• )))
a b (ã1 ⇔ ã2) ∧ ¬(a�

1 ∧ a�
2) ∧ ((¬a!• ∧ ¬a!◦ ∧ ¬b!• ∧ ¬b!◦ ) ∨ (a!◦ ⇒ b!• ) ∧ (b!◦ ⇒ a!• ))

a b (ã ⇒ ¬m̊ ∧ m̊′) ∧ (b̃ ⇒ m̊ ∧ ¬m̊′) ∧ (¬ã ∧ ¬b̃) ⇒ (m̊ ⇔ m̊′) ∧ (¬m̊ ⇒ b�) ∧ (m̊ ⇒ a�) ∧ (¬a!• ∧ ¬b!• )

b

a1

a2

b

a1

a2

b̃ ⇔ (ã1 ∧ ã2) ∧¬b̃ ⇒ ((¬b� ∧a�
1 ∧a�

2) ∨ (¬a�
1 ∧a�

2 ∧b�) ∨ (¬a�
2 ∧a�

1 ∧b�)) ∧ ((¬b!• ∧¬a!•
1 ∧¬a!•

2 ∧¬b!◦ ∧
¬a!◦

1 ∧ ¬a!◦
2 ) ∨ ((b!◦ ⇒ (a!•

1 ∧ a!•
2 ) ∧ (a!◦

1 ∨ a!◦
2 ) ⇒ b!• )))

a
b1

b2

a
b1

b2

ã ⇔ (b̃1 ∨ b̃2) ∧ ¬(b̃1 ∧ b̃2) ∧ ã ⇔ (¬a� ∨ ¬(b�
1 ∨ b�

2)) ∧ [(¬a!• ∧ ¬b!•
1 ∧ ¬b!•

2 ∧ ¬a!◦ ∧ ¬b!◦
1 ∧ ¬b!◦

2 ) ∨ (ã ⇒
((a!◦ ⇒ (b!•

1 ∨b!•
2 )) ∧ (b!◦

1 ∨b!◦
2 ) ⇒ a!• ) ∧ (b̃1 ⇒ (a!◦ ⇒ b!•

1 ∧b!◦
1 ⇒ a!• ) ∧ ((¬b!◦

1 ∧¬b!•
1 ∧¬b̃2 ∧ (b!◦

2 ∨b!•
2 )) ⇒

¬b2
�)) ∧ (b̃2 ⇒ (a!◦ ⇒ b!•

2 ∧ b!◦
2 ⇒ a!• ∧ (¬b!◦

2 ∧ ¬b!•
2 ∧ ¬b̃1 ∧ (b!◦

1 ∨ b!•
1 ) ⇒ ¬b1

�))))]

connections. This information can be discarded when analyzing the behavior of a network in isolation. To exclude such 
cases, we should restrict the possible values of boundary ends. This is achieved with the help of the grounding axiom:

Axiom 4 (Grounding). Let B ⊆ N be a set of boundary nodes in a Reo network. We rule out the solutions that are only 
present for further expansion of the network by:

∀b ∈ B : b!◦ ⇒ b!• .

Solutions of the RCSP represent semantics of the corresponding Reo network, but they are specified as equations, which 
are much harder to interpret than an equivalent automata-based semantics. To tackle this issue, we introduce a new form 
of automata-like semantics for Reo, which we call Reo Labeled Transition System (RLTS). The purpose of the RLTS is to 
compactly represent solutions of RCSPs for visualization, model checking and simulation.

Definition 3 (RLTS). A Reo Labeled Transition System (RLTS) is a tuple

L = (N , M, Q , →, q0),

where:

• N is a set of ends,
• M is a set of state memory variables,
• Q is a (finite) set of states of the form 〈M〉, where M is the set of state memory variables that are valid in the given 

state,
• → ⊆ Q × 2N × 2N × 2N × Q is a transition relation, wherein N , R , and I in (q, N, R, I, p) ∈→ represent the ends 

that have flow, those without flow for which the reason for no flow is the end not being ready for interaction, and the 
ends with priority.

• q0 ∈ Q is the initial state.

We write q N,R,I−−−→ p instead of (q, N, R, I, p) ∈ →.
Note that n /∈ N does not always mean n ∈ R as the reason for data flow can be the network (then, n requires a reason 

for no flow). For n ∈ I, n /∈ R ⇔ n ∈ N .
Given a Reo network, its RCSP can be obtained by traversing the network and forming the conjunction of the constraint 

encodings of its primitives.
The procedure to solve an RCSP is presented in Algorithm 1. It takes a Reo connector and its RCSP and outputs the 

solution set and the initial state of the connector. The algorithm initializes the global variables that keep the states of FIFO 
channels (fifoStates), the states to explore (toExplore), and the visited states (visited) (lines 2, 3). While toExplore is not empty, 
� is updated with the current state and its Conjunctive Normal Form (CNF) is produced for computing the solutions of the 
Boolean predicates (lines 4, 5) The 〈state′〉 indicates the new state of the connector and if it is not already explored or 
6
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1 Input: A Reo network R and its RCSP �
2 Output: Solutions for �
3 f i f oStates ← initial states of FIFOs from �;
4 state0 ← {〈 f i f oStates〉}; toExplore ← [state0];
5 visited ← {}; solutions ← {};
6 while (toExplore �= {}) do
7 state ← toExplore.pop(); visited ← visited ∪ {state};
8 cnf ← updateState AndMakeC N F (�, state);
9 solutionsB ← solve(cnf );

10 for solB ∈ solutionsB do
11 state′ ← next state of FIFOs extracted from solB ;
12 if state′ /∈ visited and state′ /∈ toExplore then
13 toExplore ← toExplore.push(state′);
14 end
15 solutions ← solutions ∪ {〈state, solB , state′〉};
16 end
17 output ← {solutions, state0};
18 end

Algorithm 1: Finding solutions for a given RCSP.

queued to be processed, it gets added to the list of states to be explored (lines 6-9). Then, the solutions set is updated with 
the current solution (line 13). The final output is the set of solutions and the initial state.

We use σ(v) to denote the value assigned to variable v in the solution σ , and define the following operations on a 
solution for RCSP

� = 〈N , M, M0, V, C〉 :
• source(σ ) = 〈{m|m◦ ∈M : σ(m◦) = �}〉,
• target(σ ) = 〈{m|m′ ◦ ∈M : σ(m′ ◦) = �}〉,
• f low(σ ) = {n|n ∈N : σ(ñ) = �},
• reasonGiving(σ ) = {n|n ∈N : σ(n�) = �},
• priority(σ ) = {n|n ∈N : σ(n!◦ ) ∨ σ(n!• ) = �}.

We say σ � q N,R,I−−−→ p, where q = source(σ ), N = f low(σ ), R = reasonGiving(σ ), I = priority(σ ), and p = target(σ ).
The solutions for RCSP can be shown in the form of an LTS produced with the help of the following function:

Definition 4 (Visualization). The visualization function γ on the set of solutions S� for RCSP

� = 〈N�, M�, M�0 , V, C〉
yields RLTS

L = (NL, ML, Q , →, q0),

where

• NL = {n|σ(ñ) = �, n ∈N�, σ ∈S�},
• ML = {m|σ(m◦) = � ∨ σ(m′ ◦) = �, m ∈M�, σ ∈ S�},
• Q = ⋃

σ∈S�
{source(σ ), target(σ )},

• σ � q N,R,I−−−→ p | σ ∈S� ,
• q0 = source(σ0).

Now we define composition operator for Reo with priority and show that the semantics of the composed circuit can be 
derived from the semantics of its constituent parts.

Definition 5 (Composition �). We define the composition of

L1 = (N1, M1, Q 1,→1, q01)

and

L2 = (N2, M2, Q 2, →2, q02)

as
7
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L1 �L2 = (N1 ∪N2, M1 ∪M2, →, q01 × q02)

where → is defined as:

q1
N1,R1,I1−−−−−→1 p1, q2

N2,R2,I2−−−−−→2 p2, N1∩N2=N2∩N1, R1∩N2=R2∩N1, I1∩N2=I2∩N1

q1×q2
N1∪N2,R1∪R2,I1∪I2−−−−−−−−−−−−→p1×p2

,

q1
N1,R1,I1−−−−−→1 p1, q2

N2,R2,I2−−−−−→2 p2, N1∩N2=∅
q1×q2

N1,R1,I1−−−−−→p1×p2

, and its symmetric rule.

The following theorem shows that our modeling approach to express the behavioral semantics of Reo with priority flow 
preserves the main desired property of the formalism, i.e., its compositionality.

Theorem 1 (Compositionality). Let �1 and �2 be two RCSPs, we show that γ (�1 � �2) = γ (�1) � γ (�2).

Proof 1. Let γ (�1) = (N1, M1, Q 1, →1, q01), γ (�2) = (N2, M2, Q 2, →2, q02), and γ (�1 � �2) = (N , M, Q , →, q0). It is 
trivial to see that N =N1 ∪N2, M =M1 ∪M2, Q = Q 1 × Q 2, q0 = q01 × q02 .

Assume ∃σ ∈ S(�1 � �2), σ1 ∈ S1, σ2 ∈ S2, τ1 : q1
N1,R1,I1−−−−−→1 p1, τ2 : q2

N2,R2,I2−−−−−→2 p2 s.t. σ1 � τ1 and σ2 � τ2, but � τ :
q N,R,I−−−→ p ∈→ s.t. σ � τ . Therefore, N1 ∩N2 �= N2 ∩N1 ∧ N1 ∩N2 �= ∅ or (N1 ∪ N2) ∩ (R1 ∪ R2) �= ∅. The latter is impossible. 
For the former, either n ∈ N1, n /∈ N2 or n ∈ N2, n /∈ N1, which is impossible as it induces σ(n) = � ∧ σ(n) = ⊥.

Similarly, we can show it is impossible to have τ ∈ γ (�1 � �2), when there is no σ ∈S s.t. σ � τ .

The associativity of the RLTS composition directly follows from the above theorem and the associativity of the RCSP 
composition (which holds due to the associativity of ∪ and ∧ operators in Definition 2):

(γ (�1) � γ (�2)) � γ (�3) = γ (�1 � �2) � γ (�3) = γ ((�1 � �2) � �3) = γ (�1 � (�2 � �3)) = γ (�1) � γ (�2 � �3) =
γ (�1) � (γ (�2) � γ (�3)).

4. Numeric priority flow

In BPM, often more than one priority level is required. Here we extend the behavioral semantics of Reo with priority 
channels to support numeric priorities.

To distinguish priority levels in the flow, we allow two predefined variables n!◦ and n!• representing acquired and innate 
priority at the port n, to range over the set N0 = N ∪ {0} (of natural numbers with 0), with an assumption that larger 
numbers represent higher priority and 0 means no-priority. Each PrioritySync channel comes with a user defined priority 
value, which propagates through its ends. For propagation of higher priority over lower priority, we constrain priority 
variables to be greater than or equal to their initial values.

Table 2 defines extra constraints for Reo primitives to handle multi-level priority flow. These constraints should be 
viewed in conjunction with the expressions specified in Table 1. The priority-altering synchronous channels simply set the 
required priority levels on their ends and the FIFOchannel implies no priority on its ends. The expressions for the basic 
Reo channels stipulate that the primitives set the level of innate priority to match the level of the acquired priority on the 
opposite end. The priority propagation rules for the Router and Merger nodes are constructed in accordance with Axiom 3
while the Replicator and CrossProduct nodes propagate the maximum of priority levels on their parallel branches.

Similarly to RLTS, we define a Numeric Priority (NP) RLTS to define the behavior of Reo models in presence of priority 
flow levels.

Definition 6 (NP-RLTS). A Numeric Priority Reo Labeled Transition System (NP-RLTS) is a tuple

L = (N , M, Q , →, q0),

where:

• N is a set of ends,
• M is a set of state memory variables,
• Q is a (finite) set of states of the form 〈M〉, where M is the set of state memory variables that are valid in the given 

state,

• σ � q N,R,I−−−→ p | σ ∈S� ,
• → ⊆ Q × 2N × 2N × N �→ N × Q is a transition relation, wherein N , R , and f I in (q, N, R, f I , p) ∈→ are the 

ends having flow, those without flow for which the reason for no flow is the end not being ready for interaction, and a 
partial map of nodes with priority to their priority values, respectively.

• q0 ∈ Q is the initial state.
8
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Table 2
Encoding of numeric priority constraints for Reo.

Channel Constraints Channel Constraints

a b! a!• ≥ P ∧ b!• ≥ P a b) b!• = 0

a b)( a!• = 0 ∧ b!• = 0 a b( a!• = 0

Channel Constraints
a b (a!• = 0 ∧ a!◦ = 0 ∧ b!• = 0 ∧ b!◦ = 0) ∨ ((a!◦ > 0 ⇒ (a!◦ = b!• )) ∧ (b!◦ > 0 ⇒ (b!◦ = a!• ))) ∧ (b!• > 0 ⇒ b̃)
a b
a b

(a!• = 0 ∧ a!◦ = 0 ∧ b!• = 0 ∧ b!◦ = 0) ∨ ((a!◦ > 0 ⇒ (a!◦ = b!• )) ∧ (b!◦ > 0 ⇒ (b!◦ = a!• )))

a b a!• = 0 ∧ b!• = 0

b

a1

a2

b

a1

a2

((a!• = 0 ∧ a!◦ = 0 ∧ b!• = 0 ∧ b!◦ = 0) ∨ ((b!◦ > 0 ⇒ (a!•
1 = b!◦ ∧ a!•

2 = b!◦ )) ∧ (a!◦
1 > 0 ⇒ (a!•

2 = a!◦
1 ∧ b!• =

a!◦
1 ) ∧ (a!◦

2 > 0 ⇒ (a!•
1 = a!◦

2 ∧ b!• = a!◦
2 )))))

a
b1

b2

a
b1

b2

((a!• = 0 ∧ a!◦ = 0 ∧ b!• = 0 ∧ b!◦ = 0) ∨ (b̃1 ⇒ (b!◦
1 > 0 ⇒ (b!◦

1 = a!• ))) ∧ (b̃2 ⇒ (b!◦
2 > 0 ⇒ (b!◦

2 = a!• ))) ∧
((max(b!◦

1 , b!•
1 ) > max(b!◦

2 , b!•
2 )) ⇒ ((b̃2 ∧ ¬b̃1) ⇒ ¬b�

1)) ∧ ((max(b!◦
2 , b!•

2 ) > max(b!◦
1 , b!•

1 )) ⇒ ((b̃1 ∧ ¬b̃2) ⇒
¬b�

2)))

Similarly to RLTS, we write q 
N,R, f I−−−−→ p instead of (q, N, R, f I , p) ∈ →. For all q 

N,R, f I−−−−→ p: f (n) > 0, n /∈ N ⇔ n ∈ R . We 
redefine priority(σ ) as {(n, p) | n ∈N� : σ(n!◦ ) = p ∨ σ(n!• ) = p}.

Definition 7 (Extended Visualization). The visualization function γ on the set of solutions S� for NP-RCSP

� = 〈N�, M�, M�0 , V, C〉
yields NP-RLTS

L = (NL, ML, Q , →, q0),

where

• NL = {n|σ(ñ) = �, n ∈N�, σ ∈S�},
• ML = {m|σ(m◦) = � ∨ σ(m′ ◦) = �, m ∈M�, σ ∈ S�},
• Q = ⋃

σ∈S�
{source(σ ), target(σ )},

• σ � q 
N,R, f I−−−−→ p | σ ∈ S� ,

• q0=source(σ0).

5. Case study

Here we consider a practical example of priority flow modeling using Reo and give an indication of the performance of 
our approach.

Fig. 3 depicts a sales process. The process starts when a purchase order is received and proceeds to the reservation of the 
items ordered by the customer and processing the payment, simultaneously updating her account. If the customer cancels 
the order or the payment encounters a problem, a cancellation event is triggered to enable the compensation flow which 
reverses the effects of the activities performed so far. If an error event occurs, all tasks inside the transaction stop, and the 
boundary error catch event redirects the flow to “inform operator” task. Finally, if no problem occurs, the ordered items are 
shipped and the purchase process case successfully ends.

To analyze the presented BPMN process, we convert it to a Reo network. The core mapping is presented in [29,16]. In a 
nutshell, we map tasks (steps or actions taken to perform a specific piece of work) to FIFO1 channels, message and events
(something that happens during the course of a process, e.g., cancel requests or errors) to writer components simulating 
the incoming flow from the environment. BPMN gateways are elements which are used to control how sequence flows 
interact as they converge and diverge within a process. A diverging parallel gateway is mapped to a Replicator node, while 
a converging parallel gateway is mapped to a CrossProduct node. The sequence flow is modeled by synchronous channels. 
The mapping of exception and error handling flows are more complex and are presented in [18]. In this example, the error
handling flow has the highest priority, while the exception handling has the medium priority, and the success flow has no 
priority. Router nodes are employed to alternate among these three types of flow.

Fig. 4 shows a Reo network that simulates this process. The process starts when a token is produced by the writer W2 , 
implying that a purchase order has been received. In BPMN, when a start event is triggered, a new instance of the process 
9
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Fig. 3. Sales process, a BPMN model with priority flow.

Fig. 4. Sales process, Reo model with priority flow.

is instantiated. A Reo network in Fig. 4 instead would simply read a new token. It is possible to introduce a circuit that 
prevents new entries before the existing token has left the network (meaning that the process case has been completed), 
however, we omit it here to avoid over-complicating the case study and simply assume that the circuit needs to handle one 
request at the time.

To reference a node end, we append a number index to the node name (e.g., A1). For brevity, we may also group the 
ends belonging to the same node, e.g., A1,2 (referring to ends A1 and A2). We refer to a channel using the name of the 
nodes connected to its ends (e.g., BC ). Similarly, we append a number index to a channel name to denote a channel end 
(e.g., BC1).

The end A1 (marked as 1 next to the port A in Fig. 4) reads a token from the writer W2 and delivers it to the replicator 
node B , which duplicates the token and forwards two copies to the FIFO1 channels BC and B E . The token from BC
continues to the FIFO1 channel C D , modeling the payment activity. If the payment succeeds, the flow from C D and B E
channels merge and a token enters the FIFO1 channel F G and gets consumed by the reader R3.

If the payment fails, performed activities need to be compensated. A token from W1 simulates a payment failure and 
triggers the cancellation scenario. As part of this scenario, the PrioritySync channel I J imposes a priority of one on the 
failure associated flow. The node J replicates the failure token into the LossySync channels J M and J U . Depending on 
which of FIFO1 channels BC or C D is full, the connected LossySync channels lose the incoming tokens or pass them to the 
adjacent SyncDrains to consume the tokens from the full FIFO1.
10
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Fig. 5. Sales process, RLTS.

Fig. 6. 7-Sequencer.

After the sales process has been initiated, the replicator node J sends tokens into the channels J K and J N , which 
simulate cancel reservation and undo changes tasks, respectively. The error flow, triggered by the writer W3, is structurally 
similar to the failure flow, but it has higher priority of 2 imposed by the PrioritySync channel S Q .

To obtain the NP-RLTS for the presented circuit, we form the RCSP of the network by recording constraints for each and 
everyone of its primitives, solve the RCSP, and extract transitions from the set of solutions, as described in Algorithm 1.

A priority-respecting routing between normal and compensation flows corresponds to the following condition:

({B E} ∈ source(τ ) ∧ (C1 ∈ f low(τ ) ∨ E1 ∈ f low(τ ))) ⇒
((W3 /∈ reasonGiving(τ ) ⇔ W3 ∈ f low(τ )) ∧ (W3 ∈ reasonGiving(τ )∧

W1 /∈ reasonGiving(τ )) ⇔ W1 ∈ f low(τ )).

Informally, it states that at any state wherein B E holds, W3 has flow unless it provides a reason for no-flow, and if W3
provides a reason for no flow, W1 has flow, unless it provides a reason for no-flow.

To illustrate the effect of priority flow modeling, we first generate RLTS of the network in absence of priority, i.e., when 
the router node E chooses one of its outgoing flows non-deterministically and the normal flow can continue executing 
regardless of a payment failure. Such priority-agnostic RLTS is shown in Fig. 5. Since the property solely mentions the ends 
C1, E1, W1, and W3 on the transitions originating from the states where the FIFO1 channel B E is full, we omit transitions 
that do not include either of these ends and skip end labels on remaining transitions (Reo hiding operator [15,32] allows 
us to abstract from the flow presence on any chosen node or node end (port) without compromising the correctness of the 
11
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Fig. 7. Effect of RCSP optimization for n-Sequencer. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

model). The aforementioned priority condition does not hold on this RLTS as it contains transitions originating from the 
states {BC, B E} and {C D, B E}, wherein either W3 /∈ R ∧ W3 /∈ N or W3 ∈ R ∧ W3 /∈ N ∧ W1 /∈ R (recall that R is the set of 
ends providing a reason for no-flow and N is the set of ends with data flow).

Here we show how considering priority constraints rules out these transitions. We reason about one of the transitions 
(the transition from {BC, B E} to {C D, B E} with N = {C1, ...}, R = {W1, ...}) as follows:

0 : ∃τ ∈ → : C1 ∈ N(τ ), W1 ∈ R(τ ), W3 /∈ N(τ ), W3 /∈ R(τ )

∃ s ∈S(�) | s ⇒ C̃1 ∧ ¬W̃3 ∧ W1
� ∧ ¬W3

�

1 : 0&�PriorityS ync1(S Q 1,2) & priority join

C !◦
3 = 1

,

2 : 0&�PriorityS ync2(I J1,2) & priority join

C !◦
4 = 2

,

3 : 2;�router(C1,2,3,4)

C̃1 ∧ ¬C̃4 ⇒ C4
� , 4 : 0 & join

¬C̃4
, 5 : coloring & join

C4
� ⇒ W3

� ,

6 : 0 & 3 & 4 &5

W3
� , 7 : 0 & 5

⊥ .

This disproves the existence of the aforementioned transition. Consequently, when {BC} and {B E} are full, the request from 
W1 is never ignored. In the above reasoning process, coloring stands for the coloring semantics introduced by Clark et 
al. [33], and join and priority join refer to the conditions defined by Axiom 1 and Axiom 2, respectively.

5.1. Performance evaluation

The execution time of Algorithm 1 depends on the number of states in the RCSP and the time to solve the RCSP. We 
evaluate the performance of the algorithm using an n-Sequencer circuit. The circuit consists of n sequentially connected 
FIFO1 channels; at each step it propagates a token from a full FIFO1 channel forward and simultaneously outputs it via of 
the output nodes (A, B, C, ...). Fig. 6 shows the version of the circuit for n = 7, i.e., a 7-Sequencer.

Although the final number of states in the (n+1)-Sequencer is equal the number of states in the n-Sequencer plus 1, 
adding a new FIFO1 channel doubles the number of states in the decomposed system and increases the complexity of 
the RCSP. This makes the network a convenient choice for performance bench-marking. Since we compare our RCSP-based 
approach for computing the semantics of Reo given the semantics of its constituent parts with the analogous functionality 
of the existing frameworks, we do not include priority in this case study (incorporating priority does not affect the number 
of states in the model and influences only the length of the constraint encoding).

Our implementation [34] relies on the algebra system REDUCE [35] which helps us to solve the CNF given a set of RCSP 
constraints. We provide results for both straightforward encoding of RCSP and an optimized encoding where the number of 
variables in RCSP has been reduced by substituting equivalent variables with a single variable.

Fig. 7(a) presents the average time to compute a single solution for the RCSP for various sizes of the n-Sequencer. Fig. 7(b) 
shows the relation between n and the size of the corresponding CNF. Fig. 8(a) shows the time consumed to calculate 
the Connector Coloring (CC) semantics [33] and the CA semantics [22] for the n-Sequencer circuit using the Extensible 
Coordination Tools (ECT) [36]. Fig. 8(b) shows the total time required to compute all solutions of RCSP for the circuit. The 
benchmarks have been performed on Mac Book Pro with 2.8 GHz Intel Core i7 and 16 GB MHz DDR3 memory.
12
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Fig. 8. Performance evaluation of building semantic models for n-Sequencer.

The tools computing CC and CA-based semantics fail with the stack overflow error for n = 16 and n = 21, respectively. 
The construction of LTS semantics via the mCRL2 mapping [37] can handle much larger circuits with depth-first traversal 
optimization, provided the size of the final state space does not grow exponentially with n (the graph representing Reo 
circuit is traversed and joint end labels are replaced with one label at each step). The approach presented in this paper is a 
generic solution that does not take into account the circuit topology and shows the sign of slowdown for circuit instances 
with n > 300. Hence, our tool for deriving Reo semantics with the help of constraint-solvers can handle larger models than 
the existing tools can. The effect of the optimization is more significant for larger values of n.

6. Related work

Similar to the BPMN, Reo belongs to the class of graph-based workflow languages [38], which define control flow through 
explicit control links between activities. In block-structured languages, such as BPEL [39], control flow is defined by using 
typical programming language block-structures such as if and while. Workflow patterns [40] focus on the expressiveness 
of the control flow constructs and do not explicitly distinguish between graph-based and block-structured modeling. Reo 
has been used for formalizing process models specified both in graph-base [29] and in block-structured formats [41]. An 
overview of formalisms used in the process and workflow modeling area is extensively presented in [5,42,43]. In this section, 
we overview approaches that aim at definition of behavioral semantics of process models with priority flow.

A prominent class of formal graph-based languages with priority support is the Petri-net based workflow nets [44,45]. 
Priority flow in Petri nets is managed with the help of inhibitor arcs [12] and transition priorities [46]. Inhibitor arcs 
allow a transition to fire only if the adjacent place is empty. In Petri nets with transition priorities, a priority function 
maps transitions into non-negative natural numbers representing their priority level. Given a set of enabled transitions, the 
transitions with higher priority fire before the transitions with lower priority.

Best and Koutny [14] introduced Petri-net based semantics to priority systems defined by a bounded Petri-net and 
priority relation pair. The semantic model is expressed in the form of a Petri-net with additional places and arcs, and by 
splitting the transitions of the original net. Bause [13] proposed Petri net analysis by introducing dynamic priorities to 
decrease the number of reachable markings to tackle space-explosion problem. Concurrent Petri nets [47] were proposed 
to model preemptible systems. Preemption relates to controlling the execution of the processes composing a concurrent 
system by temporarily interrupting a task with the intention of resuming it at a later time. In [48], priorities on transitions 
are employed to transform live and unbounded Petri-nets into live and bounded nets, which is useful for proving process 
soundness.

Petri nets form an inherently asynchronous model. In most cases, capabilities of the model are sufficient for simulating 
mainstream business processes and service-based interaction. Reo instead has advantages when dealing with composition of 
complex synchronous patterns, which can easily be used to model atomic transactions. While not every application involves 
such patterns, we see vast opportunities in using Reo for modeling processes with massive synchronous interactions (such as 
e.g., biological processes), provided the supporting tools can handle large networks. In this context, our work on translating 
Reo semantics into problems tractable by existing constraint solvers is a prominent step towards wider adaptation of the 
framework.

Our priority model preserves main characteristics of Reo such as compositionality and propagation of synchrony. The pre-
sented formalism is compatible with other extensions of Reo which rely on constraint solving to build the semantic model 
of the circuit [49]. Moreover, the use of Reo priority channels can be bound and applied to a relevant scope. Hence, the 
computational overhead will be minimal if the priority flow applies only to localized process fragments such as cancelable
or compensatable activities/subprocesses in BPMN.

Bravetti et al. [50] investigate, in a process algebraic setting, how priorities can be introduced in the Linda coordination 
model. Busi and Zavattaro [51] review models of priority adopted in Linda-like coordination languages. Unlike Reo, coor-
13
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dination in Linda is based on shared tuples, and the challenges related to the propagation of priority constraints across 
distributed channels do not emerge.

Cleaveland and Hennessy [52,53] developed an operational semantics for processes having actions that take priority 
over other actions. They defined equivalence notions for the process algebra with prioritized actions and indicated that it 
should contain associated combinators such as prioritization and de-prioritization and that certain other characteristics such 
as strongly prioritized actions are desirable. Gabbrielli et al. [54] discuss the issues of expressivity of priorities in process 
algebras and constraint-based languages.

Pugliese et al. [55] study the impact of priority mechanisms combining dynamic priority with local preemption on ob-
servational semantics of service-oriented systems. Calculus for Orchestration of Web Services (COWS) is an extension of 
asynchronous π -calculus equipped with the priority mechanisms inspired by WS-BPEL, i.e., shared variables and communi-
cation based on correlation and pattern matching.

Reo differs from process algebras as its main focus is on interaction rather than action synchronization. As was shown 
in [37], its semantics can be defined using process algebras, but the mapping to notations that do not preserve composi-
tionality neglects the key modeling advantage of Reo. Our extension allows modelers to capture semantics of processes with 
prioritized actions and reason about their composition.

Stursberg and Hillmann [56] study distributed discrete-event systems (DES) with priority structures, represented as au-
tomata. Subsystems with high priorities are supplied with the output of subsystems with lower priority, which helps to 
improve the performance of control synthesis for the DESs. Custom algorithms are proposed for synthesis of systems with 
various configurations. Our work on network composition using Reo with priority channels coupled with a constraint solver 
to derive automata-like semantics for the composed system can potentially be applied for controller synthesis.

Delzanno and Gabbrielli [57] investigate the foundations of a constraint-based compositional verification of infinite-
state systems. Their model relies on asynchronous process calculus and constraint-based symbolic representation of finite 
computations of a compositional model based on traces.

In [24], a framework is presented to encode semantics of Reo networks as CSP with predicates in the form of binary 
propositions and numerical constraints. An advantage of this method is handling data constraints symbolically and, hence, 
mitigating the state explosion problem of automata models. Our current work directly extends the aforementioned frame-
work to handle priority constraints.

Among other formal semantics of Reo, connector coloring comes with a limited notion of priority based on the context 
information. The context information affects otherwise non-deterministic data-flow choices. In [58], an automata-based 
semantics is proposed, which associates a preference for each transition. A transition of lower preference is fired iff no 
more preferred transition can occur.

RLTS is comparable with Reo automata [59], a context-dependent formal semantic of Reo. A transition in Reo automata is 
labeled with a guard, which is a Boolean predicate in disjunctive normal form expressing positive and negative information 
about presence or absence of I/O requests, and a firing set that models the occurring I/O operations in the transition. The 
second set in RLTS transitions (the set of ends that provide reason for no flow) correspond to the negated elements of the 
guards in Reo automata, while the set of ends with flow relates to both the firing set and the positive elements of the 
guards.

7. Conclusions and future work

In this paper, we addressed the problem of priority flow modeling using the Reo coordination language. We extended the 
unified constraint-based semantics of Reo with binary and numeric priority constraints, showed correctness of our approach 
for the binary case and evaluated the performance of the algorithm for solving the RCSP to derive the semantics of a Reo 
network given the behavior of its constituent elements. We also illustrated the use of our framework for modeling business 
processes with priority flow. The proposed framework exploits the open-ended nature of the Reo coordination language 
which allows users to define channels and only prescribes the composition rules via channel end join operation. The Reo 
with priority channels offers greater expressive power to model workflows with priority rules. A promising area for future 
work is to use our framework for constraint-based model checking of Reo networks with priority.

As part of our ongoing work, we are using this framework to encode other aspects of the semantics of Reo, specifically, 
timed behavior. It may also be beneficial to define formal operational rules to reduce more expressive semantics of Reo to 
simpler models.

Reo channels and nodes are finer-grained than BPMN modeling constructs. As one may observe in [18], Reo circuits 
representing BPMN patterns can be rather complex. Encoding BPMN primitives, using Reo as an implicit semantic layer to 
disambiguate their behavior, should reduce the perceived complexity and foster wider adoption of the theory for practical 
business process analysis.

The software tool presented in this paper provides an experimental proof-of-concept implementation that requires sig-
nificant effort to perform a practical system analysis. We will continue working on the tool usability. The integration 
with existing Reo circuit specification techniques (graphical notation, XML-based serialization files) as well as support of 
more ergonomic web-based model description formats (e.g., JSON-based Reo schema) should help us transform the existing 
research-level tool into a robust Web application available for broader audience. We will also carry out a larger experimental 
evaluation of method performance for various types of process models.
14
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