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ABSTRACT

The advent of affordable 3D capture and display hardware is making
volumetric videoconferencing feasible. This technology increases
the immersion of the participants, breaking the flat restriction of
2D screens, by allowing them to collaborate and interact in shared
virtual reality spaces. In this paper we introduce the design and
development of an architecture intended for volumetric videocon-
ferencing that provides a highly realistic 3D representation of the
participants, based on pointclouds. A pointcloud representation is
suitable for real-time applications like video conferencing, due to
its low-complexity and because it does not need a time consum-
ing reconstruction process. As transport protocol we selected low
latency DASH, due to its popularity and client-based adaptation
mechanisms for tiling. This paper presents the architectural design,
details the implementation, and provides some referential results.
The demo will showcase the system in action, enabling volumetric
videoconferencing using pointclouds.
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1 INTRODUCTION

Recent advances in depth sensors, affordable head mounted displays
and the computational power of commodity hardware have made
it possible to create and render photorealistic reconstructions of
humans in real time. This allows a more natural representation of
participants in teleimmersive conferencing applications. Mekuria et
al [6] conducted a subjective study to compare the user experience
of photorealistic reconstruction of users and synthetic avatars in a
teleimmersive environment. The authors found that reconstructions
increase the presence as well as physical, emotional and user state
recognition compared to synthetic avatars.

In this paper we present a low-latency dash based volumetric
video conferencing system, as depicted in figure 1. The system
allows up to four participants to meet in a shared virtual space,
depicted at the top. Participants are captured with 1-4 cameras,
and can view the experience either on a screen or through a head-
mounted display for increased immersion.

The system described here was created within the scope of VR-
together, an EU H2020 project to investigate the creation of end-to-
end immersive social VR experiences. This version of the system is
used in the second of 3 pilots within that project, with each sub-
sequent pilot enabling increased immersiveness. The system has a
number of features that fall outside the scope of this article, such as
session creation and management and synchronous shared media
playback.

We will demonstrate the volumetric and audio conferencing
abilities of the system using a single camera and either a screen or
a head mounted display.

2 CONTRIBUTIONS

The pipeline we present in this work has two main novel contribu-
tions: it uses pointclouds as the volumetric data representation and
it uses MPEG-DASH as the transport mechanism.
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Figure 1: Virtual space, studio setup, portable setup and par-
ticipant viewpoints

2.1 Pointclouds

A pointcloud represents a 3D object as an unstructured collection
of points with X, Y and Z coordinates plus additional attributes.
In our case, the additional attributes are the RGB color values of
the surface. Pointclouds are a simple representation that do not
require much preprocessing, unlike other representations such as
polygon meshes. This makes pointclouds well suited for realtime
applications. Pointclouds do have a drawback: they tend to require
a lot of storage and therefore transmission bandwidth.

We use the codec proposed by Mekuria et al [5] in an all intra
configuration. This codec uses octree occupancy to represent ge-
ometry and projects the colors onto a 2D grid to use JPEG image
compression. This configuration allows for low delay encoding and
decoding making it suitable for real time applications. Point cloud
compression has received significant research interest in recent
years including an MPEG standardisation activity [10] we expect
a new standard to be announced later this year, but the current
state of the VPCC encoder does not seem suitable for real-time
applications. We expect future releases to allow low delay encoding
and decoding especially if hardware acceleration can be used to
code the point cloud video streams.
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2.2 MPEG-DASH

Most video conferencing solutions rely on RTP-based transport
stacks such as WebRTC, but for this application we faced several
challenges which have led us to using MPEG-DASH as transport
mechanism. Based on [11] we wanted to apply chunked HTTP
transfers and fragmented ISOBMFF/MP4 as a transport stack for
live streaming.

MPEG-DASH is an adaptive bitrate streaming standard that usu-
ally leverages HTTP as a network protocol to deliver small chunks
of data, typically a few seconds long. In [1] it is shown that in such
case the inner latency of MPEG-DASH is the ISOBMFF fragment
duration and that lowering the fragment duration does not lead to
significant bitrate overhead, which makes performance comparable
to WebRTC.

MPEG-DASH allows each consumer to select only the tiles it is
interested in, at an appropriate resolution (and therefore bitrate).
It also allows to easily scale the number of viewers using CDNs
(Content Delivery Network i.e. HTTP replication servers) in the
future.

MPEG-DASH makes agnostic transport easier than RTP, allow-
ing for faster experiments, and metadata handling. The fact that
MPEG-DASH is based on HTTP allows us to conduct remote ex-
periments without dealing with NAT issues.

3 RELATED WORK

Volumetric video conferencing systems have been proposed in
previous research. Kauff et al [4] describe a shared virtual table
environment for conferencing among a small team using multi-
ple video streams from a multi camera setup that is then MPEG-4
encoded and transmitted to other participants using RTP via IP.
Mekuria et al [8][7] propose a 3-D immersive telepresence system
using UDP/TCP multi-streaming systems to transmit mesh recon-
structions in real time. Collet et al. [2] presents a system to create
high quality streamable free viewpoint video by tracking meshes
into subsequences that can then be streamed on demand. Qian et
al. [9] propose Nebula, a DASH based streaming system to deliver
volumetric video on demand to smartphones. Their system uses
an edge server to transcode volumetric objects to 2D video that
can then be efficiently transmitted to and decoded by smartphones.
Wu et al [12] present a psychophysical approach to Color-plus-
Depth Level of Detail for polygon mesh based 3D tele immersive
video. Doumanoglou et al [3] propose a skeleton based approach
to compress human time varying meshes by modifying the MPEG4
TFAN codec. In this work we use real time photo realistic point
cloud reconstructions of users along with low latency DASH. To
our knowledge this is the first work in point cloud volumetric video
conferencing to use low latency DASH. Using a standards compliant
DASH transport mechanism will help with system adoption. This
will also allow us to make further optimizations in future with user
and network adaptive transmission using independently decodable
point cloud tiles.

4 ARCHITECTURE

The architecture of the pipeline is depicted in figure 2. The archi-
tecture has been designed and implemented in a way to allow easy
replacement of modules, to allow us to experiment with different
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Figure 2: Architecture and data flow

capturers, encoders and transport pipelines and measure the effect
of that on quality, delay and bandwidth consumption.

The architecture also allows for adaptation to different use cases
and budgets (both money budgets and bandwidth budgets): 3D
video conferencing will generally be applied in an immersive ac-
tivity like a game or telepresence situation. These different use
cases make it more important to allow adaptation for volumetric
videoconferencing when compared to normal videoconferencing,
which is generally used as a standalone application.

The architectural description in this section only pertains to the
pointcloud pipeline: the actual implementation also contains an
audio pipeline with a very similar overall structure and modules
for session setup and management.

In each instance of our architecture there is a single transmis-
sion section (tile, compress, sender), and an independent reception
section per other participant (receive, decompress).

The capture module interfaces to the cameras and captures RGB
and Depth images, which are transformed using the intrinsic and ex-
trinsic matrices and converted to pointcloud representation. There
is an intrinsic 4x4 matrix for each camera, and it governs the trans-
formation between RGB and D images. It is used to create a point-
cloud per camera. The extrinsic matrices convert the per-camera
pointclouds to world coordinates and therefore allow the fusing
of the pointclouds. These matrices are determined in a calibration
procedure once, after the cameras have been set up.

Pointclouds are fed to the tiling and compression module. Tiling
splits a single pointcloud into a small number (1-8) of non overlap-
ping pointclouds that together comprise the whole original point-
cloud. Through tiling we enable viewers to save bandwidth by only
downloading the relevant parts of a pointcloud, for example omit-
ting invisible tiles. Subsequently each tile is downsampled into a
small number (1-3) of resolutions. This downsampling is gener-
ally done through voxelization: overlaying a 3D cubic grid over
the pointcloud space and replacing all points within each cube
by a single voxel with the average position and color. The result-
ing pointclouds are fed into a lossy compressor which creates a
linearized compressed data block for each tile at each resolution.

The DASH sender is instantiated with a description of the num-
ber of tiles and resolutions and creates a manifest file based on this
information, which is uploaded to the DASH server. Subsequently,
as compressed data blocks become available they are uploaded as
DASH segments and the manifest file is periodically updated.

The DASH server stores the manifest file and the segments, and
serves these to the receivers over HTTP or HTTPS. We have opted
for a simple DASH server, not an MCU with mixing and fusing

capabilities because this will give us a baseline against which to
compare if we later want to investigate cloud-based composition
of pointclouds.

The DASH receiver downloads the manifest file and makes the
information on available tiles and compression levels available to
the renderer. Based on view point, gaze direction and distance
between viewer and subject the renderer selects the tiles it wants
to receive and the quality level for each of those, and the DASH
receiver starts requesting the segments for these tiles in parallel.
This is done in an eager fashion: the DASH receiver will attempt to
request segments as soon as they are expected to be available.

The per-tile compressed data blocks are fed to the decompressor
which converts them back to pointclouds.

The synchronization module is responsible for synchronizing
the tile streams and the audio, but it has not been implemented
yet because in practice it has not been needed yet: in our current
experimental setup the network delays turn out to be fairly stable
so the synchronization between individual tiles is good enough. For
audio adding a simple fixed delay is applied. We are aware of the
fact that this is not generally true, so our architecture does cater
for a synchronization module.

The renderer receives the self-view pointcloud from the capturer
and a number of tiles per other participant and renders these in
3D space based on viewpoint and position of the participants. The
mechanism for determining these positions as well as what other
3D content that may be rendered in the scene is out of scope for
this paper.

5 IMPLEMENTATION

The client-side modules (with the exception of the renderer) have
all been implemented in a portable language-agnostic way, so they
are usable from C, C++, C#, Python and probably others. They
use a memory model with clear ownership of memory areas and
explicit freeing via the same module that allocated the memory.
The renderer module is in reality not so modular as depicted in
figure 2 because it is an integral part of the Unity application that
implements the whole VR experience.
The client side modules are:

o Point Cloud Capture (cwipc_realsense2) implements the cap-
turer. It uses the open source Intel librealsense2 to capture
RGBD data from one or more cameras and reconstructs a
point cloud frame.

e Codec (cwipc_codec) implements the encoder and decoder.
It is based on the codec proposed by Mekuria et al. [5]
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o Utilities (cwipc_util) is an auxiliary module to handle opaque
pointcloud objects, so they can be passed efficiently between
modules without copying or knowing the internal represen-
tation

e Transmission (bin2dash) handles the DASH transmission
and is based on the GPAC toolset

e Reception (Signals Unity Bridge) handles DASH reception
and is based on the GPAC toolset

The first three will be made available as open source. A distribution
scheme for the latter two is still under consideration.

6 INITIAL MEASUREMENTS

We have done some initial measurements of the system using the
setup depicted in figure 1. The studio setup consisted of an 8-core
4.2GHz 17, 32GB memory, with a NVIDIA GTX 1080Ti graphics card
running Windows 10, 4 Realsense D415 cameras and an Oculus
Rift. The portable setup consisted of a 12-core 2.6GHz i7, 16GB
memory, with an NVIDIA GeForce RTX 2070 graphics card running
Windows 10 and one Realsense D435. The two systems were co-
located in Amsterdam, but the central services such as the DASH
server were off-site in Paris, France. The network connection had a
round-trip time of approximately 25ms and a bandwidth well over
100Mbps.

The studio setup captured 8-10 fused pointclouds per second of
approximately 50Kpoints. These were compressed to 50-70Kbyte
packets per pointcloud. Latency from studio system to the portable
system (not including capture and display) was between 330ms and
450ms.

The portable setup captured 13-15 pointclouds per second of
approximately 18Kpoints. These were compressed to 20-25Kbyte
packets per pointcloud. Latency from portable system to the studio
system (not including capture and display) was between 130ms and
160ms.

DASH segment used duration was 4 seconds, but as we outlined
in section 2.2 the segment duration had very little impact on the
average latency.

While not a rigid measurement these numbers suggest that the
number of points per pointcloud is an important factor in deter-
mining the latency and frame rate of the system. Based on this, we
expect to make further performance improvements.

7 FUTURE WORK

In the current implementation we have not used tiling, nor encoding
in multiple quality levels. The infrastructure is in place, the client
application will be adapted in the near future. This will allow us
to experiment with different tiling strategies. In addition this will
allow us to evaluate the quality of experience offered by various
network and user adaptation strategies, as well as providing a more
rigorous performance analysis.

We plan to implement other capturers, with higher quality and
for different cameras and depth sensors such as the Azure Kinect.

We will also experiment with other codecs such as the upcoming
MPEG standard for pointcloud compression [10].
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