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Abstract
We study the computation and efficiency of pure Nash equilibria in combinatorial
congestion games, where the strategies of each player i are given by the binary vec-
tors of a polytope Pi . Our main goal is to understand which structural properties of
such polytopal congestion games enable us to derive an efficient equilibrium selection
procedure to compute pure Nash equilibria with attractive social cost approximation
guarantees. To this aim, we identify two general properties of the underlying aggrega-
tion polytope PN = ∑

i Pi which are sufficient for our results to go through, namely
the integer decomposition property (IDP) and the box-totally dual integrality prop-
erty (box-TDI). Our main results for polytopal congestion games satisfying IDP and
box-TDI are as follows: (i) we show that pureNash equilibria can be computed in poly-
nomial time. In fact, we obtain this result through a general framework for separable
convex function minimization, which might be of independent interest. (ii) We bound
the inefficiency of these equilibria and show that this provides a tight bound on the
price of stability. (iii)We also prove that these results extend to strong equilibria for the
“bottleneck variant” of polytopal congestion games. Examples of polytopal conges-
tion games satisfying IDP and box-TDI include common source network congestion
games, symmetric totally unimodular congestion games, non-symmetric matroid con-
gestion games and symmetric matroid intersection congestion games (in particular,
r -arborescences and strongly base-orderable matroids).
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1 Introduction

1.1 Motivation and background

Congestion games constitute an important class of strategic games which have been
studied intensively since their introduction by Rosenthal [43] in 1973. In a congestion
game, a (finite) set of players compete over a (finite) set of resources. Each resource
is associated with a non-negative and non-decreasing cost (or delay) function which
specifies its cost depending on the total number of players using it. Every player
chooses a subset of resources from a set of available resource subsets (corresponding
to the player’s strategies) and experiences a cost equal to the sum of the costs of the
chosen resources. The goal of each player is to minimize her individual cost. In this
context, a pure Nash equilibrium is a strategy profile such that no player can decrease
her cost byunilaterally deviating to another feasible resource subset.Congestion games
are both theoretically appealing and practically relevant. For example, they find their
applications in network routing, resource allocation and scheduling problems.

The study of the existence, computation and inefficiency of pure Nash equilibria
of these games has led to a surge of novel methodologies and techniques. Rosenthal
[43] establishes the existence of pure Nash equilibria in congestion games. He proves
this result through the use of an exact potential function, which assigns a value to
each strategy profile such that the difference in potential value of any two strategy
profiles corresponding to a unilateral deviation of a player is equal to the difference in
cost experienced by that player. He shows that every congestion game admits an exact
potential function, also known as Rosenthal’s potential.1 As a consequence, every
best response sequence, i.e., where players iteratively play their best response, must
converge to a pure Nash equilibrium (if the game is finite). Further, this shows that
the set of pure Nash equilibria corresponds to the set of local minima of Rosenthal’s
potential (where the neighborhood of a strategy profile is defined by all unilateral
player deviations). Especially this latter correspondence has helped to shed light on
several important aspects of congestion games in recent years.

One aspect that has been studied intensively is the computational complexity of
finding pure Nash equilibria in congestion games. In a seminal paper, Fabrikant et
al. [21] show that the problem of finding a pure Nash equilibrium is PLS-complete,
both for symmetric congestion games and non-symmetric network congestion games.
In particular, this suggests that a polynomial time algorithm for finding a pure Nash
equilibrium is unlikely to exist for these games. In their proof they construct instances
of non-symmetric network congestion games where any best response sequence has
exponential length from certain initial configurations. Ackermann et al. [1] strengthen
this result by exhibiting instances of symmetric network congestion games for which
every best response sequence (from certain initial configurations) has exponential
length. On the positive side, they prove that best response dynamics converge in
polynomial time for non-symmetric matroid congestion games, where the available
resource subsets of the players correspond to bases of a given matroid (see below

1 In fact, Monderer and Shapley [40] show that the class of congestion games is isomorphic to the class of
strategic games for which an exact potential function exists.
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for formal definitions). The authors also show that basically this is the only class of
congestion games for which this property holds true.

Most previous works in this context focus on the analysis of decentralized dynamics
to reach a pureNash equilibrium (see, e.g., [1,9,12,20,21,24,34]); said differently, these
works focus on finding a local minimum of Rosenthal’s potential. Much less is known
about the problem of computing a pure Nash equilibrium that corresponds to a global
minimizer. Fabrikant et al. [21] use this idea to show that a pure Nash equilibrium
can be computed in polynomial time for symmetric network congestion games. The
authors observe that in this case a global minimizer of Rosenthal’s potential can be
computed by a reduction to a min-cost flow problem (assuming that the cost functions
are non-decreasing). Note that this is in stark contrast with the fact that best response
dynamics might take exponential time for this class of congestion games [1].

Only very recently, Del Pia et al. [16] make further progress along these lines. The
authors consider congestion games where the strategy sets of the players are given
implicitly by a polyhedral description (see also [8]). More precisely, for each player i
the incidence vectors of the strategies are defined as the binary vectors in a polytope
Pi = {xi : Ai xi ≤ bi }, where Ai is an integral matrix and bi is an integral vector. They
(mostly) focus on the case where the matrix Ai is totally unimodular (see below for
formal definitions) and thus the describing polytope Pi is integral, i.e., all its extreme
points are integral; they term these games totally unimodular (TUM) congestion games.
For symmetric TUM congestion games, i.e., when all Ai , bi are identical, they devise
an aggregation/decomposition framework that reduces the problem of finding a global
minimum of Rosenthal’s potential to an integer linear programming problem. Using
this framework, they show that pure Nash equilibria can be computed efficiently for
symmetric TUM congestion games. The authors also show that this problem is PLS-
complete for non-symmetric TUM congestion games. Further, they show that their
framework can be adapted to the case of non-symmetric matroid congestion games.

Another important aspect that has has been the subject of intensive research in
recent years is the inefficiency of pure Nash equilibria in congestion games (see, e.g.,
[3,5,7,10,11,17,22,24,29,35,36,45]). Here the goal is to assess the social cost (defined
as the sum of the costs of the players) of a pure Nash equilibrium relative to an optimal
outcome. Koutsoupias and Papadimitriou [35] introduced the price of anarchy as the
ratio between the worst social cost of a Nash equilibrium and the social cost of an
optimum. Anshelevich et al. [4] defined the price of stability as the ratio between the
best social cost of a Nash equilibrium and the social cost of an optimum.

Fotakis [24] reveals an intriguing connection between the price of stability of net-
work congestion games and the price of anarchy of their non-atomic counterparts.
More specifically, he shows that for symmetric network congestion games the ratio
between the social cost of a (global) minimizer of Rosenthal’s potential and the opti-
mal social cost is at most ρ(D), where ρ(D) is a bound on the price of anarchy for
non-atomic network congestion games with cost functions in class D introduced by
Correa et al. [13]. In particular, this implies that the price of stability of symmetric
network congestion games with cost functions inD is at most ρ(D). For example, this
parameter equals 4/3 for the class of affine functions and (27 + 6

√
3)/23 ≈ 1.63 for

quadratic functions. Further, Fotakis [24] also shows that for symmetric network con-
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gestion games on extension-parallel graphs,2 every Nash equilibrium is a Rosenthal
minimizer and thus the upper bound of ρ(D) even holds for the price of anarchy of
these games.

Bounds of this type also fall within the smoothness framework of Roughgarden
[45]. More recently, Feldman et al. [22] study the price of anarchy in large games.
Basically, they show that the smoothness parameter introduced in [45] also provides
an upper bound on the price of anarchy of many games (or mechanisms) when the
number of involved players grows large.

1.2 Our contributions

In light of the discussion above a natural question that arises, and which we address
in this paper, is:

Which structural properties of the strategy sets of the players are sufficient to (A)
efficiently compute a global minimum of Rosenthal’s potential, and (B) bound
the inefficiency of the resulting pure Nash equilibrium?

In order to tackle this question,weuse a polyhedral approach similar to the ones used
in [8,16]. But in contrast to these works, we do not restrict our attention to polyhedral
descriptions arising from totally unimodular matrices only. Instead, we identify more
general polyhedral properties of the describing systems that are sufficient to achieve
(A) and (B). By doing so, we unify and extend the results in [16,24] to a much larger
class of polytopal congestion games.

More specifically, we consider polytopal congestion games in which the incidence
vectors of the strategies of player i are given by the binary vectors in a polytope
Pi = {xi : Axi ≤ bi }, where A is an integral matrix and bi is an integral vector. Given
the polytopes of all players, a strategy profile naturally corresponds to an integral
vector in the aggregation polytope PN = ∑

i Pi . We identify two general properties
of the aggregation polytope PN which are sufficient for our results to go through,
namely the integer decomposition property (IDP) and the box-totally dual integrality
property (box-TDI) (formal definitions are given below). The integer decomposition
property is needed to decompose a load profile in PN to a respective strategy profile
of the players; while this property is always satisfied for TUM games, it requires
additional care if one wants to go beyond this class of games. Intuitively, the box-TDI
property ensures that the intersection of PN with an arbitrary integer box is an integral
polytope; this property is mostly needed for technical reasons.
Our main contributions for polytopal congestion games are as follows:

(1) We derive an efficient algorithm for computing a feasible load profile minimizing
Rosenthal’s potential for polytopal congestion games satisfying IDP and box-TDI
(Sect. 3). The time complexity of this algorithm is polynomial in the number of
players and resources, the enconding length of

∑
i bi and the complexity of a

separation oracle for the aggregation polytope.

2 Extension-parallel graphs are special cases of series-parallel graphs, where in a series composition we
may only attach a single edge to an extension-parallel graph.
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(2) We show that the price of stability of polytopal congestion games satisfying IDP
and box-TDI is bounded by ρ(D) (Sect. 4). To this aim, we introduce a novel struc-
tural property (which we term the symmetric difference decomposition property)
and show that it is satisfied by our games. We also prove that our bound is tight.

(3) We give several examples of polytopal congestion games satisfying IDP and
box-TDI (Sect. 5). These examples include symmetric TUM congestion games,
common source network congestion games, non-symmetric matroid congestion
games and certain symmetric matroid intersection congestion games (in particu-
lar, r -arborescences and strongly base-orderable matroids).

(4) We show that our techniques can be used to extend some results on the computation
and inefficiency of strong equilibria of the “bottleneck variant” of our polytopal
congestion games (Sect. 6). In particular, we show that strong equilibria can be
computed in (strongly) polynomial time for polytopal bottleneck congestion games
satisfying IDP and box-TDI (see below for definitions).

To the best of our knowledge, all previous works addressed either (A) or (B),
but not both. Note that the combination of our contributions (1) and (2) provides an
efficient algorithm for the computation of a pure Nash equilibrium that comes with a
provable inefficiency guarantee. Said differently, (1) and (2) can be seen as an efficient
equilibrium selection procedure to find a pure Nash equilibrium whose social cost is
at most ρ(D) times the optimal social cost.

1.3 Significance and implications of our results

Our algorithm in (1) unifies and extends the aggregation/decomposition framework of
[16]. In particular, the symmetric TUM congestion games and non-symmetric matroid
congestion games (considered separately in [16]) fall into our class of polytopal
congestion games satisfying IDP and box-TDI. Similarly, all combinatorial TUM
congestion games (i.e., network, matching, edge cover, vertex cover and stable set
congestion games) and their respective extensions to the maximum (or minimum)
cardinality versions considered in [16] can be handled by our framework.

Besides its implications for polytopal congestion games mentioned above, our
algorithm (1) can alternatively be interpreted as an efficient approach to minimize
a separable convex function over certain types of polytopes satisfying IDP and box-
TDI, which might be of independent interest. We elaborate on this in more detail in
Sect. 3.

By exploiting our symmetric difference decomposition property in (2), we can
generalize the bound of Fotakis [24] on the price of stability for symmetric network
congestion games to the larger class of polytopal congestion games satisfying IDP and
box-TDI. Our bounds for polytopal congestion games (significantly) improve upon
the ones known for general congestion games: For example, the price of stability of
congestion games with cost functions from the class Dd of polynomial functions of
maximum degree d is well-understood (see [10]) and grows like d + 1. However, it is
known that ρ(Dd) ≈ d/ log(d) for large d (see [44]).We thus obtain improved bounds
for polytopal congestion games. Further, ρ(D) is well-understood for various classes
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of cost functions D and we can import these bounds without further analysis. For
example, an exact (closed form) expression is known for ρ(Dd) (see preliminaries).

Our upper bound of ρ(D) on the price of stability is (asymptotically) tight even
for symmetric singleton congestion games if the class of cost functions D contains
all constant functions and is closed under dilations (see below for details). Note that
singleton congestion games constitute a special case of all the examples of polytopal
congestion games mentioned in (3). In particular, our results settle the exact price of
stability for all these games.

Our contribution (4) generalizes a result by Harks et al. [32] who derive an
algorithm to compute a strong equilibrium for certain special cases of bottleneck
congestion games, using a strategy packing oracle as a subroutine (details are given
in Appendix B). They give efficient packing oracles for symmetric network conges-
tion games, non-symmetric matroid congestion games and a (slight) generalization of
r -arborescences. We adapt their algorithm to compute a load profile of a strong equi-
librium for bottleneck polytopal congestion games satisfying the IDP and box-TDI
property. In particular, this leads to an improved algorithm (in terms of running time)
to compute a strong equilibrium for this (larger) class of polytopal congestion games.

As a side result, which might be of independent interest, we derive a combinatorial
approach for computing the symmetric difference decomposition for non-symmetric
matroid congestion games. This also gives rise to a local search algorithmwhich can be
seen as a natural generalization of best response dynamics. In particular, we show that,
using a slightly altered neighborhood notion, every best response sequence arrives at
a global optimum of Rosenthal’s potential (in a polynomial number of steps). These
results are presented in Appendix A.

Contribution (1) can also be regarded as a “black-box” approach for the computation
of a pure Nash equilibrium. Given a congestion game that exhibits some combinatorial
structure, checking whether our approach applies reduces to the following three tasks:
(i) derive a polytopal description Pi for the strategy set of each player i , (ii) verify
whether the resulting aggregation polytope PN satisfies the IDP, (iii) check that the
system describing the aggregation polytope PN is box-TDI. In particular, if the integer
decomposition of PN can be done in polynomial time, then this approach provides an
efficient algorithm to compute a pure Nash equilibrium. By exploiting this idea, we
derive strongly polynomial time algorithms for the computation of potential function
minimizers for all applications mentioned in (3).

It is interesting to note that the IDP seems to be the limitingproperty for our approach
to apply. For example, non-symmetric network congestion games can naturally be
modeled as polytopal congestion games satisfying box-TDI. But it is easy to see that
the IDP does not hold. In fact, it is unlikely that an efficient algorithm to find a pure
Nash equilibrium exists because this problem is PLS-complete [21].

1.4 Further comparison with related work

Our results in (1) regarding the computation of a minimizer of Rosenthal’s potential
function can also be interpreted as minimizing a separable convex function over a
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polytope described by a system Ax ≤ b. There is a large body of work on the latter
problem and we elaborate only on a few related works in this context below.

Hochbaum and Shanthikumar [33] show that optimizing a separable convex func-
tion over a polytope described by a system Ax ≤ b is not much harder than solving a
linear function over the same polytope if the maximum subdeterminant of the matrix
A is polynomially bounded. In fact, the respective results in Fabrikant et al. [21] and
Del Pia et al. [16] could alternatively have been derived from [33] (in combination
with an efficient procedure to decompose the obtained solutions into strategy profiles),
as in both cases the matrix A is totally unimodular (and, hence, has subdeterminants
0,± 1). However, the setting of box-TDI systems that we consider here is not covered
by the result in [33]. The column-doubling trick used in [33] is also exploited here (as
well as in [16,21]); see Sect. 3 for details.

The special case of TUM systems where the underlying system describes a single-
commodity network flow problem has also been studied extensively. In particular, in
this case it is folkore that the problem can be reduced to a minimum cost network flow
problem. This idea dates back to the works by Dantzig [15] and Ford and Fulkerson
[23] (see also [38,39]). This idea is (implicitly) also exploited in [16,21].

Moreover, there has been an extensive line of work regarding the minimization of a
separable convex function over a polymatroid polytope, see, e.g., the work of Fujishige
[26] or Groenevelt [30]. In particular, these algorithms can be used alternatively in
our application regarding non-symmetric matroid congestion games in Sect. 5 (as the
aggregation of base matroid polytopes is a polymatroid polytope).

Fujishige et al. [27] draw an interesting connection between the convergence of best
response dynamics and Rosenthal’s potential function. In particular, they show that
the fast convergence of best response dynamics for congestion games on extension-
parallel networks shown by Fotakis [24] follows from the M-convexity of the potential
function in this case. In particular, these dynamics correspond to a greedy algorithm
for minimizing an M-convex function.

De Jong et al. [17] initiated the study of the price of anarchy of k-uniform matroid
congestion games with affine cost functions. Lücking et al. [36] proved a tight bound
of 4

3 on the price of anarchy for singleton congestion games (k = 1) in this case. De
Jong et al. [17] show that the price of anarchy is approximately 1.35188 for symmetric
k-uniform matroid congestion games. In contrast, for the price of stability we provide
a tight bound for general non-symmetric matroid congestion games with arbitrary
cost functions.

2 Preliminaries

In this section, we introduce all the relevant notions and concepts that will be used
subsequently.
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2.1 Polytopes and describing systems

We review some basic definitions and results from polyhedral combinatorics which
are used in this paper (see, e.g., [46] for a more detailed exposition).

A polytope P ⊂ R
m is the convex hull of a finite set {q1, . . . , qs} ⊂ Q

m , or,
alternatively, P = {x : Ax ≤ b} is a bounded set described by a system of rational
inequalities.3 For a non-zero vector c with δ = max{cTx : Ax ≤ b}, the affine
hyperplane {x : cTx = δ} is called a supporting hyperplane of P . A subset F of P
is called a face if F is the intersection of P with some supporting hyperplane of P ,
or F = P . The minimal faces of P , i.e., faces not contained in another face, are the
vertices (or extreme points) of P . Moreover, an edge of P is a one-dimensional face
of P (which is the line-segment between two vertices). We say that P is integral if all
its extreme points are integral vectors. P is said to be box-integral if the intersection
of P with any integral box, i.e., P ∩ {x : c ≤ x ≤ d} for arbitrary integral c and d,
yields an integral polytope.

A matrix A ∈ {0,±1}r×m is totally unimodular (TUM) if the determinant of each
square submatrix of A is in {0,±1}. If A is totally unimodular and b ∈ Z

m is an integer
vector, then the polyhedron P = {x : Ax ≤ b} is integral [46, Theorem 19.1].

The work [19] introduced the powerful notion of total dual integrality. A rational
system Ax ≤ b with A ∈ Q

r×m and b ∈ Q
r is totally dual integral (TDI) if for every

integral c ∈ Z
m , the dual of minimizing cTx over Ax ≤ b, i.e.,

max{yTb : y ≥ 0, yTA = cT}, (2.1)

has an integer optimum solution y, if it is finite. If Ax ≤ b is a TDI-system and b
is integral, then the polyhedron P = {x : Ax ≤ b} is integral [46, Corollary 22.1c].
Note that TDI is a weaker sufficient condition for the integrality of P than TUM.

The system Ax ≤ b is box-totally dual integral (box-TDI) if the system Ax ≤
b, l ≤ x ≤ u is TDI for all rational vectors l and u. We say that a polytope P is box-
TDI, if it can be described by a box-TDI system. If P has some box-TDI describing
system, then every TDI-system describing P is also box-TDI [46, Theorem 22.8].

Themain reason as towhybox-TDI is useful, is that it serves as a sufficient condition
to show that the polytope it describes is box-integral.

Proposition 2.1 If the system Ax ≤ b describing a polytope P is box-TDI and b is
integral, then P is box-integral.

Proof By assumption, the describing system Ax ≤ b of P is box-TDI. Thus the
system Ax ≤ b, l ≤ y ≤ u is TDI for all rational vectors l and u. In particular,
Ax ≤ b, c ≤ y ≤ d is TDI for arbitrary integral vectors c and d. Because b, c and d
are integral, we can conclude that the polytope P ∩ {y : c ≤ y ≤ d} is integral (see,
e.g., [46, Corollary 22.1c]). 	


We will use the following properties of box-TDI descriptions:

Proposition 2.2 [46, Section 22.5] The following statements are equivalent:

3 An inequality aTx ≤ b is rational if a ∈ Q
m and b ∈ Q.
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1. The system Ax ≤ b, x ≥ 0 is box-TDI.
2. The system Ax + μ = b, μ ≥ 0, x ≥ 0 is box-TDI.
3. The system Ax ≤ αb, x ≥ 0 is box-TDI for all α ≥ 0.
4. The system aζ0 + Ax ≤ b is box-TDI, where a is a column of A and ζ0 is a new

variable.

Moreover, if a polytope P is box-integral, then every edge of P is in the direction of
a {0,±1}-vector.4

Finally, let N = [n]5 and consider a finite collection of integral polytopes (Pi )i∈N

with a common constraint matrix but possibly different right-hand side vectors, i.e.,
there exists a matrix A such that for every i ∈ N ,

Pi = {xi : Axi ≤ bi } ⊆ R
m .

We define the aggregation polytope PN induced by (Pi )i∈N as

PN =
{

y : Ay ≤
∑

i∈N

bi

}

⊆ R
m .

The aggregation polytope is said to have the integer decomposition property (IDP) if
every integral z ∈ PN can be written as

z =
∑

i∈N

zi , where zi ∈ Pi ∩ Z
m for all i ∈ N .

Note that in the symmetric case bi = b j for all i, j ∈ N this definition reduces to
the integer decomposition property for a polytope PN = n P as introduced in [6].
Moreover, if PN has the IDP, then indeed PN = ∑

i Pi , where the latter summation
is the Minkowski sum of polytopes.

It seems that most 0/1-polytopes for which the integer decomposition property is
known in the literature, also have a box-TDI describing system. We are not aware of
any result showing that this is true in general, but it would imply that box-TDI, as an
assumption, is redundant in all our statements in later sections.

2.2 Optimization over polytopes

Wediscuss some classical results regarding the problemof optimizing a linear function
over a polytope, i.e., we consider the problem

min cTx s.t. x ∈ P (2.2)

for some c ∈ Q
m and polytope P ⊂ R

m . We first introduce some additional (compu-
tational) notions [31].

4 That is, the edge is of the form {a+λb : 0 ≤ λ ≤ 1} for vertices a, a+b of P where b is a {0, ± 1}-vector.
5 Throughout this paper, for any positive integer k we define [k] = {1, . . . , k}.
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The encoding length of an integer z ∈ Z, i.e., the space needed to represent z in
binary representation, is

〈z〉 = 1 + �log2(z + 1)�.

The encoding length of a rational number p/q ∈ Q is 1+�log2(p+1)�+�log2(q+1)�.
The encoding length of a vector a ∈ Q

m is 〈a〉 = ∑m
i=1〈ai 〉, and the encoding length

of an inequality aTx ≤ b is 〈a〉 + 〈b〉, for a ∈ Q
m and b ∈ Q.

For a positive integer φ, we say that polytope P has facet-complexity at most φ

if there exists a system of inequalities with rational coefficients describing P such
that every inequality has encoding length at most φ. A triple (P; m, φ) is called a
well-described polytope if the polyope P ⊂ R

m has facet-complexity at most φ.
Finally, a (strong) separation oracle for P is an algorithm that, given a vector

y ∈ Q
m , decides whether y ∈ P or not, and in the latter case returns a vector a ∈ Q

m

such that aTx < aTy for all x ∈ P . If a separation oracle is used as a subroutine in an
algorithm, this is referred to as a call to the oracle.

The following theorem summarizes a fundamental result in [25,31]. We give a
formulation in terms of polytopes based on Theorem 6.6.5 in [31].

Theorem 2.1 There exists an algorithm that, for any well-described polytope (P; m, φ)

specified by a strong separation oracle, and for any given c ∈ Q
m,

(i) solves (2.2), and
(ii) finds an optimum vertex solution of (2.2) if one exists.

The number of elementary arithmetic operations6 and calls of the separation oracle
executed by the algorithm is bounded by a polynomial in φ. All arithmetic operations
are performed on numbers whose encoding length is bounded by a polynomial in
φ + 〈c〉.

We give two remarks related to Theorem 2.1.

Remark 2.1 For notational convenience, we use poly(·) to denote a function that is
polynomial in all its arguments. The algorithm of Theorem 2.1 runs in strongly poly-
nomial time (for a class of problems) if the facet-complexity φ can be upper bounded
by a polynomial in m, i.e., φ = poly(m).

Remark 2.2 We do not always explicitly mention that all arithmetic operations are
performed on numbers whose encoding length is bounded by a polynomial in φ +〈c〉.
In all subsequent computational statements relying on Theorem 2.1, we implicitly
assume that this property holds.

2.3 Congestion games and Rosenthal’s potential

A congestion game Γ is given by a tuple (N , E, (Si )i∈N , (ce)e∈E ), where N = [n] is
a finite set of players, E = [m] is a finite set of resources (or facilities), Si ⊆ 2E is

6 Here by elementary arithmetic operations we mean addition, substraction, multiplication, division and
comparison.
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a set of strategies of player i ∈ N , and ce : R≥0 → R is a cost function of resource
e ∈ E . Unless stated otherwise, the cost functions are assumed to be non-negative and
non-decreasing.

For a strategy profile s = (s1, . . . , sn) ∈ ×iSi , we define xe(s) as the number of
players using resource e, i.e., xe(s) = |{i ∈ N : e ∈ si }|. We call x(s) = (xe(s))e∈E

the load profile corresponding to strategy profile s.More generally, we say that y ∈ N
m

is a fesible load profile for the tuple (N , E, (Si )i∈N ) if there is some strategy profile
s such that y = x(s).

The cost of player i ∈ N under a strategy profile s = (s1, . . . , sn) ∈ ×iSi is given
byCi (s) = ∑

e∈si
ce(xe(s)). If Si = S j for all i, j ∈ N , the game is called symmetric.

The social cost C(s) of a strategy profile refers to the sum of the players’ individual
costs, i.e.,

C(s) =
∑

i∈N

Ci (s) =
∑

e∈E

xe(s)ce(xe(s)).

We say that Φ : ×iSi → R is an exact potential function for a congestion game
Γ if for every strategy profile s ∈ ×iSi , for every player i ∈ N and every unilateral
deviation s′

i ∈ Si of i it holds that:

Φ(s) − Φ(s−i , s′
i ) = Ci (s) − Ci (s−i , s′

i ).

Rosenthal [43] shows that

Φ(s) =
∑

e∈E

xe(s)∑

k=1

ce(k)

is an exact potential function. Subsequently, we refer to this potential function simply
as Rosenthal’s potential. Further, a strategy profile minimizing Rosenthal’s potential
is said to be a Rosenthal minimizer.

2.4 Polytopal congestion games

A polytopal congestion game Γ = (N , E, (Si )i∈N , (ce)e∈E ) is a congestion game
where the set of strategies Si of each player i ∈ N is given implicitly by a polytopal
representation. More precisely, let Xi be the finite set of all incidence vectors of the
strategies of player i , i.e., for every i ∈ N ,

Xi = {χi ∈ {0, 1}m : χie = 1 iff e ∈ si for si ∈ Si }.

The polytope Pi representing the strategies of player i is defined as the convex hull of
Xi , i.e., Pi = conv(Xi ) ⊆ [0, 1]m . We assume that Pi is given by

Pi = {xi : Axi ≤ bi } ⊆ [0, 1]m,
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where A ∈ Z
r×m is an integral r × m-matrix and bi ∈ Z

r is an integral vector. Note
that Xi = Pi ∩ {0, 1}m . For notational convenience, we subsequently use Si also to
refer to the set of incidence vectors Xi ; no confusion shall arise.

As defined above, the aggregation polytope induced by (Pi )i∈N is

PN =
{

y : Ay ≤
∑

i∈N

bi

}

⊆ [0, n]m .

We say that (N , E, (Si )i∈N ) is the polytopal tuple given by (Pi )i∈N , where Si =
Pi ∩{0, 1}m . If bi = b j = b for all i, j ∈ N , the tuple is called symmetric and denoted
by (N , E,S) where S = P ∩ {0, 1}m , with P = {x : Ax ≤ b}. If additionally we
equip the tuple with cost functions (ce)e∈E , we call Γ = (N , E, (Si )i∈N , (ce)e∈E ) the
polytopal congestion game given by (Pi )i∈N . For notational convenience, we often
omit the explicit reference of the domain of the indices.

Twomain properties: IDP and box-TDI

LetΓ = (N , E, (Si ), (ce)) be a polytopal congestion gamewith aggregation polytope
PN . We identify two crucial properties that the aggregation polytope PN has to satisfy
for our results to go through:

(i) PN has the integer decomposition property (IDP).
(ii) PN is box-totally dual integral (box-TDI).

If the aggregation polytope PN satisfies both the IDP and box-TDI property, we
also say that Γ is a polytopal congestion game satisfying IDP and box-TDI.

Remark 2.3 Note that for a symmetric polytopal congestiongamesΓ = (N , E,S, (ce))

given by a common polytope P , we have PN = n P = {y : y/n ∈ P}. From Propo-
sition 2.2(iii), it follows that the aggregation polytope PN has a box-TDI description
if and only if P has a box-TDI description. In particular, whenever we require below
that a symmetric polytopal congestion game is box-TDI, then all we need is that the
common polytope P is box-TDI.

The IDP is crucial to establish a correspondence between feasible load profiles for
(N , E, (Si )) and the integral vectors in PN .

Proposition 2.3 If the aggregation polytope PN of a polytopal tuple (N , E, (Si )) has
the IDP, then the feasible load profiles of the tuple correspond precisely to the integral
vectors in PN .

Proof Let s = (s1, . . . , sn) ∈ ×iSi be a strategy profile and let x be the load profile
corresponding to s. It follows directly that x ∈ PN by definition of PN . Moreover,
because of the IDP any integral vector z in PN can be decomposed as z = ∑

i∈N zi

where zi ∈ Pi ∩ Z
m for all i ∈ N . This implies that for every i the vector zi is the

incidence vector of some strategy of player i and thus z is a feasible load profile. 	
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2.5 Inefficiency of equilibria and the smoothness parameter

A strategy profile s is a pure Nash equilibrium if for every player i ∈ N it holds that
Ci (s) ≤ Ci (s′

i , s−i ) for all s′
i ∈ Si . Further, a strategy profile s is a strong equilibrium

if for every group of players I ⊆ N and every deviation s′
I ∈ ×i∈ISi of the players in

I , it holds that Ci (s) ≤ Ci (s′
I , s−I ) for some i ∈ I .

The price of anarchy (POA) and the price of stability (POS) of a gameΓ are defined
as

POA(Γ ) = maxs∈NE(Γ ) C(s)

mins∗∈×iSi C(s∗)
and POS(Γ ) = mins∈NE(Γ ) C(s)

mins∗∈×iSi C(s∗)
,

where NE(Γ ) denotes the set of all pure Nash equilibria of Γ . For a collection of
games H we define

POA(H) = sup
Γ ∈H

POA(Γ ) and POS(H) = sup
Γ ∈H

POS(Γ ).

These notions naturally generalize to the solution concept of strong equilibria.
A non-atomic congestion game (see, e.g., [41]) can be seen as the continuous counter-
part of Rosenthal’s congestion game model. Here, there is a continuum of players that
all control an infinitesimally small amount of flow (as opposed to one unit in Rosen-
thal’s model). The price of anarchy of these games has been studied intensively and
is well-understood. In particular, it turns out that the price of anarchy is completely
determined by the class of cost functions being used.

Correa et al. [13] show that for non-atomic network congestion games with cost
functions in class D the price of anarchy of an instance is at most

ρ(D) := (1 − β(D))−1, where β(D) = sup
d∈D

sup
x≥y>0

y(d(x) − d(y))

xd(x)
. (2.3)

The value of ρ(D) is well-understood for many important classes of cost functions.
For example, let

Dd = {g : R≥0 → R≥0 : g(μx) ≥ μd g(x) ∀μ ∈ [0, 1]}.

In particular,Dd contains all polynomial cost functions with non-negative coefficients
and maximum degree d. We have

ρ(Dd) =
(

1 − d

(d + 1)(d+1)/d

)−1

.

The parameter ρ(D) plays a crucial role in bounding the price of stability of our
congestion games.

We say that a class of cost functionsD is closed under dilations if for every d ∈ D
and for every γ ∈ R≥0, dγ ∈ D, where dγ (x) = d(γ x) for all x ≥ 0.
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2.6 Matroids

We introduce some general terminology and facts for matroids; a more extensive
treatment of matroids can be found, e.g., in [47]. Let E = [m] be a finite set of
elements and I ⊆ 2E be a collection of subsets of E (called independent sets). The
pair M = (E, I) is a matroid if the following three properties hold:

(i) ∅ ∈ I,
(ii) if A ∈ I and B ⊆ A, then B ∈ I,
(iii) if A, B ∈ I and |A| > |B|, then there exists an a ∈ A\B such that B + a ∈ I.
An independent set B ∈ I of maximum size is called a basis. We use B to denote the
set of all bases of M. The matroid M also has a rank function r : 2E → [m] which
maps every subset A ⊆ E to the cardinality of the largest independent set contained
in A.

The base matroid polytope is given by

PM = {x : x(A) ≤ r(A) ∀A ⊂ E, x(E) = r(E), x ≥ 0},

where x(A) = ∑
a∈A xa for all A ⊆ E . It is the convex hull of the incidence vectors

of the bases inB [47]. If in the description above the equality x(E) = r(E) is replaced
by x(E) ≤ r(E), we obtain the independent set polytope which is the convex hull of
the incidence vectors of the independent sets.

We assume that the matroid is given by an independence oracle that takes as input
a subset A ⊆ 2E and returns whether or not A ∈ I. Given an independence oracle,
we can determine in time polynomial in |E | and the complexity of the oracle, whether
a set is a basis and what the rank of a set is. Further, there exists a separation oracle
for PM that runs in time polynomial in |E | and the complexity of an independence
oracle. This follows from the fact that the most violated inequality problem can be
solved in time polynomial in |E | and the complexity of an independence oracle. The
most violated inequality problem takes as input a vector x ∈ Q

m and returns whether
or not x ∈ P , and if not, it returns a subset A for which r(A) − x(A) is minimized,
see, e.g., [47, Section 40.3].

Given two matroids M1 and M2 on a common ground set E , the polytope

PM1,M2 = {x : x(A) ≤ ri (A)∀A ⊂ E, x(E) = ri (E) for i = 1, 2, x ≥ 0} (2.4)

is the convex hull of the common bases of matroids M1 and M2, see, e.g., [47,
Corollary 41.12d]. It follows directly that PM1,M2 also has a separation oracle which
runs in time polynomial in |E | and the complexity of the independence oracles for
M1 and M2.

3 Separable convex functionminimization

In this section, we consider the problem of minimizing a separable convex function
over a joint set of polytopes.Weprove that this problemcan be solved if the aggregation
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polytope of the joint set of polytopes has the IDP and box-TDI property. As we will
show, this problem is equivalent to finding a minimizer of Rosenthal’s potential.

3.1 General framework

Let n, m, r ∈ N be fixed and define N = [n]. Let fe : N → R be a convex function
for every e ∈ [m], A ∈ {0,±1}r×m a matrix and bi ∈ Z

r a vector for every i ∈ N .
Further, define Pi = {xi : Axi ≤ bi } ⊆ [0, 1]m for every i ∈ N . The elements of the
vector xi are indexed by xi,e for e ∈ E .

We consider the following problem:

(P) min
∑

e∈[m]
fe(xe)

s.t. Axi ≤ bi ∀i ∈ N

xe =
∑

i∈[n]
xi,e

xi ∈ {0, 1}m ∀i ∈ N .

In order to solve this problem, we will use the aggregation/decomposition framework
of Del Pia et al. [16]. In particular, if we assume that the aggregation polytope PN =∑

i Pi has the integer decomposition property, we can use a two-step approach in
which we first compute a solution minimizing the aggregation problem

(Z) min
∑

e∈[m]
fe(ye) s.t. Ay ≤

∑

i∈N

bi , y ∈ N
m,

and then decompose the resulting solution into a solution for (P) (which is possible
because of the IDP property).

Throughout this section, we assume that the aggregation polytope PN is a well-
described polytope (PN ; m, φ) (as defined in Sect. 2.2) for which we have a separation
oracle. Further, all operations are performed on numbers whose encoding length is
bounded by a polynomial in φ + 〈c〉 (see Remark 2.2).

Theorem 3.1 Let (Pi )i∈N be as defined above and suppose that the aggregation poly-
tope PN = ∑

i Pi is a well-described polytope that has a box-TDI description. Then
(Z) can be solved optimally using at most poly(n, m, φ) arithmetic operations and
separation oracle calls.

In particular, note that Theorem 3.1 implies that we can solve (P) efficiently if we
can decompose a solution of (Z) into a solution for (P) using at most poly(n, m, φ)

arithmetic operations and separation oracle calls.
We prove Theorem 3.1 in the remainder of this section.
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By extending fe for every e ∈ [m] to a convex function that is also defined at zero,7
we can write for every positive ye ∈ N,

fe(ye) = fe(0) +
ye∑

k=1

( fe(k) − fe(k − 1)).

Because fe is convex, the function ce : N → R defined by ce(k) = fe(k) − fe(k − 1)
is non-decreasing, and, in fact, solving (Z) is equivalent (by leaving out the constant-
valued sum over the fe(0)) to solving

(Z ′) min
∑

e∈[m]

ye∑

k=1

ce(k) s.t. Ay ≤
∑

i∈N

bi , y ∈ N
m .

This is a well-known reduction (see, e.g., [33] and references therein). We next show
(using a column-doubling trick similar as in [15,23]) how to reduce (Z ′) to a linear
program. This idea is (implicitly) also exploited in the works [16,21]. Here we use the
same idea for our (more general) setting.

We introduce binary variables hk
e ∈ {0, 1} for every k ∈ [n] and e ∈ [m]. The

interpretation is that hk
e = 1 if and only if the value of xe in (P) is at least k. Exploiting

that the functions ce are non-decreasing, the non-linear aggregation problem (Z ′) is
equivalent to the problem (R) stated below:

(R) min
∑

e∈[m]

∑

k∈[n]
ce(k)hk

e

s.t. [A, A, . . . , A](h1
1, . . . , h1

m, . . . , hn
1, . . . , hn

m)T ≤
∑

i∈N

bi (3.1)

hk
e ∈ {0, 1} ∀k ∈ [n], ∀e ∈ [m] (3.2)

The equivalence of (Z) and (R) follows from the following observations: If f =
( fe) ∈ PN ∩ N

m is optimal for (Z ′), we define for every e ∈ [m], hk
e = 1 for

k = 1, . . . , fe and hk
e = 0 for k = fe + 1, . . . , n. The resulting solution h = (hk

e) is
feasible for (R). Similarly, if h = (hk

e) is an optimal solution for (R), then the vector
f defined by fe = ∑n

k=1 hk
e is feasible for (Z ′). Note that here we implicitly exploit

that the functions ce are non-decreasing.
We show that the integer program (R) can be solved efficiently.

Lemma 3.1 If PN has a box-TDI description, then (R) can be solved using at most
poly(n, m, φ) arithmetic operations and separation oracle calls.

Proof Define A′ = [A, A, . . . , A] ∈ Z
r×mn and h = (hk

e) ∈ Q
mn . The relaxation of

the integral system (3.1) and (3.2) can then be written as the system A′h ≤ ∑
i bi , 0 ≤

h ≤ 1. Let QN = {h : A′h ≤ ∑
i bi , 0 ≤ h ≤ 1} be the polytope described by this

system.

7 It is not hard to see that this can always be done.
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We first show that QN is integral. By assumption the description of PN = { f :
A f ≤ ∑

i bi } is box-TDI. In particular, by applying Proposition 2.2(iv) repeatedly,
we obtain that the system

[A, A, . . . , A](h1
1, . . . , h1

m, . . . , hn
1, . . . , hn

m)T ≤ ∑
i bi

is box-TDI as well. In particular, this implies that the system A′h ≤ ∑
i bi , 0 ≤ h ≤ 1

is TDI because the intersection of a box-TDI system with an arbitrary box yields a
TDI system. Because

∑
i bi and the restrictions on h are integral vectors, we conclude

that QN is indeed integral.
We now show how to construct a separation oracle for QN from a separation oracle

for PN . For

h = (h1
1, . . . , h1

m, . . . , hn
1, . . . , hn

m) ∈ Q
mn,

let the aggregated vector f ∈ Q
m be defined as fe = ∑n

k=1 hk
e for e ∈ [m]. Then

h ∈ QN if and only if f ∈ PN . We now give a separation oracle for QN . Let
y = (yk

e ) ∈ Q
mn be an arbitrary rational vector and let f be defined as above with

respect to y. We use the separation oracle of PN to check if f ∈ PN or not. If
f ∈ PN , then also y ∈ QN and we are done. Otherwise if f /∈ PN the oracle returns
a vector a ∈ Q

m such that aTx < aT f for all x ∈ PN . In particular this means that
(aT, aT, . . . , aT)z < (aT, aT, . . . , aT)y for all z = (zk

e) ∈ QN . Thus, we obtain a
separation oracle for QN .

We conclude with an analysis of the running time. It is not hard to see that QN

has a facet complexity that is at most a polynomial (in m and n) factor larger than
φ. The claim that we only need a number of arithmetic operations and calls to a
separation oracle for PN , that is polynomial in n, m, and φ, now follows immediately
from Theorem 2.1. This concludes the proof. 	

Remark 3.1 If the facet-complexity φ can be upper bounded by a polynomial in n
and m, and if PN has a separation oracle running in strongly polynomial time, then a
solution to (Z ′) can be computed in strongly polynomial time (see also Remark 2.1).

Although we can solve (R) in (strongly) polynomial time as stated in Lemma 3.1,
this does not directly imply that we can also solve (P) in (strongly) polynomial time.
The IDP property guarantees that we can always decompose a solution to (R) into a
solution of (P). However, to the best of our knowledge, there is no universal algorithm
that can perform integer decomposition of an arbitrary polytope satisfying the IDP
using at most poly(n, m, φ) arithmetic operations and separation oracle calls (even in
the symmetric case when all right-hand side vectors bi are the same). So whether this
decomposition can be done efficiently has to be investigated on a case-by-case basis.
As we show next, such a decomposition can always be done in polynomial time
if a slightly stronger integer decomposition property holds. Here, we focus on the
symmetric case when bi = b j = b for all i, j ∈ N ; but these arguments can be
extended to the non-symmetric case as well.

We say that a polytope P satisfies the middle integral decomposition property
(MIDP) [37] if for n ∈ N and w ∈ Z

m , the polytope P ∩ (w − (n − 1)P) is integral.
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If this property is satisfied, the decomposition algorithm of Baum and Trotter [6] can
be used to perform the integer decomposition (as described in the proof below).

Theorem 3.2 If the polytope P = {x : Ax ≤ b} satisfies MIDP and box-TDI. Then
an optimal solution to (P) can be computed using at most poly(n, m, φ) arithmetic
operations and separation oracle calls.

Proof Let f be a solution to (R). Then f can be decomposed into n integer solutions
in P by using the following decomposition algorithm by Baum and Trotter [6]: We
start by computing an integral vector x1 ∈ P ∩ ( f − (n −1)P). By the middle integral
decomposition property, we know that P ∩( f −(n−1)P) is integral, and therefore we
can find an integral (extreme) point in time polynomial in n, m, φ and the complexity
of a separation oracle of P (using similar arguments as in the proof of Theorem 3.1).
Using the same arguments, we can then find a vector x2 ∈ P ∩ (( f − x1)− (n −2)P).
By repeating this procedure, we find the desired decomposition in the stated running
time. 	


3.2 Minimizing Rosenthal’s potential

We use the results obtained in the previous section and apply them to the problem of
computing a minimizer of Rosenthal’s potential function for a polytopal congestion
game Γ = (N , E, (Si ), (ce)).

In particular, the following theorem follows immediately from Theorem 3.1 by
observing that for polytopal congestion games, computing a load profile minimizing
Rosenthal’s potential is equivalent to the program (Z ′) stated above.

Theorem 3.3 Let Γ = (N , E, (Si ), (ce)) be a polytopal congestion game whose
aggregation polytope PN satisfies IDP and box-TDI. Then a feasible load profile min-
imizing Rosenthal’s potential can be computed using at most poly(n, m, φ) arithmetic
operations and separation oracle calls.

As noted in Remark 3.1, if the facet-complexity φ can be upper bounded by a poly-
nomial in n and m, and if PN has a separation oracle running in strongly polynomial
time, then a feasible load profile minimizing Rosenthal’s potential can be computed
in strongly polynomial time.

Note that by applying Theorem 3.3 we obtain a feasible load profile. We can turn
such a load profile into a feasible strategy profile (corresponding to a pure Nash
equilibrium) if the integer decomposition can be done in (strongly) polynomial time.
As noted before, a universal algorithm for this seems elusive and whether this can be
done efficiently has to be verified case-by-case.

Also here, if wemake the stronger assumption of having themiddle integral decom-
position property, we obtain the following result for symmetric games.

Theorem 3.4 Let Γ = (N , E,S, (ce)) be a symmetric polytopal congestion game for
which the common polytope P satisfies MIDP and box-TDI. Then a feasible strategy
profile minimizing Rosenthal’s potential can be computed using at most poly(n, m, φ)

arithmetic operations and separation oracle calls.
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We remark that all results in this section also hold for computing a social optimum
of congestion games with weakly convex cost functions, since this problem can be
reduced to computing a global optimum of Rosenthal’s potential (we refer to [16] for
more details).

4 Price of stability

In this section, we will analyze the quality of a minimizer of Rosenthal’s potential
compared to a socially optimal outcome in terms of the price of stability.

Recall that ρ(D) is defined as in (2.3) and refers to the price of anarchy of non-
atomic network congestion games with cost function in class D. The following is the
main result of this section.

Theorem 4.1 Let Γ = (N , E, (Si ), (ce)) be a polytopal congestion game satisfying
IDP and box-TDI with cost functions in class D. Then POS(Γ ) ≤ ρ(D). Further, this
bound is (asymptotically) tight even for symmetric singleton congestion games, if D
contains all non-negative constant functions and is closed under dilations.

The remainder of this section is devoted to the proof of Theorem 4.1.We first introduce
a novel structural property, which we term the symmetric difference decomposition
property. We then show that the IDP and box-TDI properties of the aggregation
polytope are sufficient to establish that the polytopal congestion game satisfies the
symmetric difference decomposition property. This in turn allows us to adapt the
proof of Fotakis [24] to bound the price of stability of these games.

4.1 Symmetric difference decomposition property

Our novel property is defined as follows:

Definition 4.1 A tuple (N , E, (Si )) satisfies the symmetric difference decomposition
property (SDD) if for all feasible load profiles f and g, there exist vectors a1, . . . , aq ∈
{0,±1}m such that g − f = ∑q

k=1 ak , and for all k = 1, . . . , q,

(i) the load profile f + ak is feasible, and
(ii) ak satisfies

ak
e = −1 ⇒ fe − ge > 0 and ak

e = 1 ⇒ fe − ge < 0. (4.1)

As an example, let us consider symmetric network congestion games, where the
common strategy set of all players is the set of all directed simple s, t-paths in some
directed graph G = (V , A) with s, t ∈ V . Here each feasible load profile corresponds
to an integral feasible s, t-flow of value n = |N |. The symmetric difference of two
flows f and g can be written as the sum of unit circuit flows on cycles.8 The incidence
vectors of these unit circuit flows correspond to the vectors ak in Definition 4.1.

The following theorem establishes the symmetric difference decomposition prop-
erty for polytopal congestion games satisfying IDP and box-TDI.

8 A unit circuit flow is a {0, ±1}-flow that satisfies flow-conservation at every node, including s and t .
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Theorem 4.2 If the aggregation polytope PN of a polytopal tuple (N , E, (Si )) satisfies
IDP and box-TDI, then the tuple has the symmetric difference decomposition property.

Proof We start by adding slack-variables to the system Ay ≤ ∑
i∈N bi describing PN .

Note that by Proposition 2.2(ii) box-TDI is preserved under adding slack variables.
As a result, we obtain the polytope

QN =
{

(y, μ) : Ay + μ =
n∑

i=1

bi , μ ≥ 0, y ≥ 0

}

for which its describing system is box-TDI. Also, QN is integral.
Let f and g be two feasible load profiles with f �= g. By Proposition 2.3, we have

f , g ∈ PN . Therefore, there are non-negative integral slack vectors τ, σ such that
f ′ = ( f , τ ), g′ = (g, σ ) ∈ QN . Observe that τ and σ are integral because of the
integrality of A,

∑
i bi and f and g.

Note that the pairs f ′ = ( f , τ ) and g′ = (g, σ ) are vectors in Z
m+r since A

is an r × m-matrix. Let c, d ∈ Z
m+r be vectors defined by c j = min{ f ′

j , g′
j } and

d j = max{ f ′
j , g′

j } for j = 1, . . . , r + m, and let B be the integral box defined by
B = {z : c ≤ z ≤ d} ⊆ R

m+r . We first prove the following claim.

Claim The polytope QN ∩ B is integral and every edge of QN ∩ B is in the direction
of a {0,±1}-vector.
Proof The integrality follows from box-TDI of the integral system QN . For the second
part of the claim, we first show that QN ∩ B is box-integral. Note that QN is box-
integral by Proposition 2.1. Let B ′ = {x : γ ≤ x ≤ δ} ∈ Z

m+r be an arbitrary
integral box. Note that (QN ∩ B) ∩ B ′ = QN ∩ (B ∩ B ′) and that B ∩ B ′ is again
an integral box, since B is integral as well (because f ′ and g′ are integral). It follows
that QN ∩ (B ∩ B ′) is an integral polytope. Thus, (QN ∩ B) ∩ B ′ is integral which
proves that QN ∩ B is box-integral. The claim now follows from Proposition 2.2. 	


Note that f ′, g′ ∈ QN ∩ B. Further, both f ′ and g′ are extreme points of this
polytope because they are extreme points of the box B. We now fix some edge of
QN ∩ B containing f ′. Such an edge must exist because QN ∩ B contains at least
two elements (since f ′ �= g′). Let (a1)′ = (a1, μ1) be the non-zero {0,±1}-vector
describing the direction of the edge.9 Since QN ∩ B is an integral polytope, we can
show that f ′+(a1)′ ∈ QN ∩B. To see this, let h(λ) = f ′+λ·(a1)′ be a parametrization
of the edge for some range 0 ≤ λ ≤ λ∗, where h′ = h(λ∗) is the other extreme point
of the edge (a1)′. Since f ′ is integral and (a1)′ a {0,±1}-vector, it must be that λ∗ is
a strictly positive integer. Thus, f ′ + (a1)′ ∈ QN ∩ B, as claimed.

It follows that A( f + a1) + (τ + μ1) = ∑
i bi . We have Aa1 + μ1 = 0 because

A f + τ = ∑
i bi . Moreover, by construction of the box B it follows that for j =

1, . . . , r + m,

(a1)′j = −1 ⇒ f ′
j − g′

j > 0 and (a1)′j = 1 ⇒ g′
j − f ′

j > 0. (4.2)

9 Here, μ1 corresponds to the slack variables, and a1 to the original variables.
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Exploiting that Aa1 + μ1 = 0, it now also follows that g′ − (a1)′j ∈ QN ∩ B. To
see this, note that

A(g − a1) + (σ − μ1) = Ag + σ − (Aa1 + μ1) = ∑
i bi .

Moreover, we also have g′ − (a1)′ ≥ 0 by construction, since if (a1)′j = 1 for some
j then g′

j > f ′
j ≥ 0, so in particular g′

j − 1 ≥ 0 (because of the integrality of g′
j ).

We can now apply the same argument to the vectors f ′ and g′ − (a1)′ in order to
obtain a vector (a2)′ satisfying (4.2) and for which f ′+(a2)′, g′−(a1)′−(a2)′ ∈ QN .
Repeating this procedure we find vectors (a1)′, . . . , (aq)′ satisfying (4.2), and such
that g′ − f ′ = ∑q

k=1(a
k)′ with f ′ + (ak)′ ∈ QN for k = 1, . . . , q.10

We argue that this process terminates. For the �-th step of this procedure, we have
by construction of the (ak)′

T (�) =
∣
∣
∣
∣

∣
∣
∣
∣

(

g′ −
�∑

k=1

(ak)′
)

− f ′
∣
∣
∣
∣

∣
∣
∣
∣
1

<

∣
∣
∣
∣

∣
∣
∣
∣

(

g′ −
�−1∑

k=1

(ak)′
)

− f ′
∣
∣
∣
∣

∣
∣
∣
∣
1

= T (� − 1)

where || · ||1 is the L1-norm. Since f ′, g′ and the ak are all integral this guarantees
that the expression T (�) decreases by at least one in every step.

We conclude the proof by showing that f and g can be decomposed according
to Definition 4.1. We have (ak)′ = (ak, μk) as defined before. It then follows that
a1, . . . , aq are vectors satisfying (4.1) such that g − f = ∑q

k=1 ak with f + ak ∈ PN

for k = 1, . . . , q. Note that ak might be the zero-vector, if (ak)′ only contained non-
zero elements in the part of the vector corresponding to slack variables. These ak can
be left out.

It remains to show that f + ak corresponds to a feasible strategy profile for k =
1, . . . , q. This follows directly from the fact that PN has the IDP. The decomposition
yields the strategies of the players. 	


4.2 Upper bound on the price of stability

Weprove the upper bound on the price of stability stated in Theorem 4.1.We first prove
the following lemma, whose proof relies on the symmetric difference decomposition
property.

Lemma 4.1 Let (N , E, (Si ))be a polytopal tuple that satisfies the symmetric difference
decomposition property and let (ce)e∈E be arbitrary cost functions. Let f be a feasible
load profile that minimizes Rosenthal’s potential Φ(·). Then for every feasible load
profile g

Δ( f , g) :=
∑

e∈E : fe>ge

( fe − ge)ce( fe) −
∑

e∈E : fe<ge

(ge − fe)ce( fe + 1) ≤ 0. (4.3)

10 This construction is essentially a conformal circuit decomposition (see, e.g., [42]).
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Proof Let f be a global minimizer of Rosenthal’s potential and let g be an arbitrary
feasible load profile. Then by the SDD property, there exist vectors a1, . . . , aq such
that g − f = ∑q

k=1 ak for some q. Moreover, for all k = 1, . . . , q

Φ( f ) − Φ( f + ak) =
∑

e: ak
e =−1

ce( fe) −
∑

e: ak
e =1

ce( fe + 1) ≤ 0,

where the inequality holds because f minimizes Rosenthal’s potential Φ. By adding
up these inequalities for all k = 1, . . . , q, we obtain that Δ( f , g) ≤ 0. To see this,
note that if e ∈ E with fe > ge then there are precisely fe − ge vectors ak with
ak

e = −1; similarly, if e ∈ E with ge > fe then there are precisely ge − fe vectors ak

with ak
e = 1. 	


We can now prove the upper bound on the price of stability.

Proof (Theorem 4.1, upper bound) The upper bound proof follows a similar line of
arguments as the proof of Lemma 3 in [24]. We repeat the arguments here for the sake
of completeness.

Let f be a minimizer of Rosenthal’s potential and let g be an arbitrary feasible load
profile. Note that f is a pure Nash equilibrium.

Consider a resource e ∈ E with fe > ge. We have

fece( fe) = gece( fe) + ( fe − ge)ce( fe)

≤ gece(ge) + β(D) fece( fe) + ( fe − ge)ce( fe), (4.4)

where the inequality follows from the definition of β(D) in (2.3), exploiting that
fe > ge ≥ 0 and ce ∈ D.
Next, consider a resource e ∈ E with fe < ge. We have

fece( fe) = gece(ge) − gece(ge) + fece( fe)

≤ gece(ge) − (ge − fe)ce( fe + 1), (4.5)

where the inequality follows because ce is non-decreasing and fe +1 ≤ ge by assump-
tion.

Combining these inequalities, we obtain

C( f ) ≤ C(g) +
∑

e∈E : fe>ge

β(D) fece( fe) + Δ( f , g) ≤ C(g) + β(D)C( f )

where the first inequality follows from (4.4) and (4.5) and the definition of Δ( f , g) in
(4.3), and the last inequality holds becauseΔ( f , g) ≤ 0 byLemma4.1. By rearranging
terms, we obtain C( f )/C(g) ≤ (1 − β(D))−1 = ρ(D), which proves the claim. 	
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Fig. 1 The bottom and top arc a1 and a2, respectively, have cost functions c1(x) = d(a) and c2(x) =
d(x/M)

4.3 Lower bound on the price of stability

We complete the proof of Theorem 4.1 by showing that the stated bound is asymptot-
ically tight.

Proof (Theorem 4.1, lower bound) Our lower bound construction is similar to the one
used by Correa et al. [14] to show tightness of the price of anarchy bound ρ(D) for
non-atomic network congestion games with cost functions in class D. But we need
some adjustments to make it work for atomic (unsplittable) congestion games.

Let d ∈ D and a ≥ b > 0 be chosen arbitrarily. We show that there exists an
instance whose price of stability is arbitrarily close to

(

1 − b(d(a) − d(b))

ad(a)

)−1

. (4.6)

Because of the continuity of d, we can take a, b ∈ Q without loss of generality. Let
M ∈ N such that Ma, Mb ∈ N. Consider the instance depicted in Fig. 1 with Ma
players. Note that this is a symmetric singleton congestion game instance. Further, note
that c1 ∈ D because it is a constant function and c2 ∈ D because D is closed under
dilations. ANash equilibrium is given by the flow f = ( f1, f2) = (0, Ma). A feasible
(not necessarily socially optimal) flow is given by g = (g1, g2) = (M(a − b), Mb).
We have

C( f )

C(g)
= Ma · d(a)

M(a − b)d(a) + Mb · d(b)
=

(

1 − b(d(a) − d(b))

ad(a)

)−1

.

In order to get a lower bound on the price of stability, we make f the unique Nash flow
of this game. This can be done by adding a small enough ε > 0 to the cost function of
arc a1, i.e., we take c1(x) = d(a) + ε. Doing the same analysis and sending ε → 0,
then shows that we can get arbitrarily close to the expression in (4.6). 	
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5 Applications

We now give several examples of polytopal congestion games for which the aggrega-
tion polytope has the (middle) integer decomposition property, is box-TDI and admits
an efficient separation oracle. As a consequence, our results on the price of stability
(Theorem 4.1) and the computation of Rosenthal’s potential minimizer (Theorems 3.3,
3.2) apply.

Remark 5.1 In all applications considered below, the facet complexity φ of the well-
described (aggregation) polyhedra are polynomially bounded in n andm. In particular,
all the matrices A considered are in fact {0,± 1}-valued matrices, and the right-hand
side vectors bi are always integral valued.

5.1 Common source network congestion games

In a common source network congestion game we are given a directed graph G =
(V , A) and a source s ∈ V . The strategy set of player i ∈ N is the set of all directed
s, ti -paths for some ti ∈ V . Ackermann et al. [1] already showed that one can compute
a global optimum of Rosenthal’s potential function for these games. We outline how
this case can be cast in our framework. The strategies of player i can be described by a
polytope Pi = {x : Ax = bi , 0 ≤ x ≤ 1}, where A is the arc-incidence matrix of the
network G, and b is the vector with (bi )s = 1, (bi )ti = −1 and zero otherwise.11 The
aggregation polytope is then PN = {y : Ay = ∑

i∈N bi , 0 ≤ y ≤ n}. Any feasible
load profile minimizing Rosenthal’s potential can be decomposed efficiently into a
feasible strategy profile, using a similar argument as in [1]. Further, the describing
system of PN is totally unimodular and thus box-TDI.12

5.2 Symmetric totally unimodular congestion games

Symmetric totally unimodular congestion games [16] capture a wide range of combi-
natorial congestion games. Here the common strategy set of the players is described
by a polytope P = {x : Ax ≤ b} with a totally unimodular r × m-matrix A and
an integral vector b. In particular, such a system satisfies the IDP and is box-TDI:
The integer decomposition property was shown in [6]. We argue that the system is
box-TDI. The constraint matrix describing the intersection of P with {x : c ≤ x ≤ d}
for c, d ∈ Q

m is again totally unimodular [48]. Any totally unimodular system is TDI
(see, e.g., [46, Section 22.1]), and therefore the system Ax ≤ b, c ≤ x ≤ d is TDI.
We conclude that the system Ax ≤ b is box-TDI. If (as in [16]) the parameter r is
considered as part of the input size as well, then there is a trivial (strongly) polynomial
separation oracle that simply checks all inequalities of the system Ax ≤ b. For all
combinatorial applications considered in [16] (i.e., network, matching, edge cover,

11 Technically, this polytope can also contain paths with a finite number of disjoint cycles, but these can
always be removed in the end.
12 Note that common source network congestion games are not symmetric and are thus not captured by
the class of totally unimodular congestion games considered below.
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vertex cover and stable set congestion games on bipartite graphs, and their respective
extensions to the maximum (or minimum) cardinality versions) the parameter r is
actually polynomially bounded in n and m, so then this assumption is justified.

5.3 Non-symmetric matroid congestion games

In a non-symmetric matroid congestion game Γ = (N , E, (Si ), (ce)), the strategy set
of player i is given by the bases Bi of a matroid Mi = (E, Ii ) for i ∈ N .13 The
incidence vectors of the bases of Bi can be described by the base matroid polytope

Pi = {x : x(A) ≤ ri (A), A ⊂ E, x(E) = ri (E), x ≥ 0}

as introduced in the preliminaries. That is, for every player we have a polytope of the
form Pi = {x : Ax ≤ bi , x ≥ 0} where bi is the rank function ri of the matroid Mi .
In particular, it follows that the aggregation polytope is given by

PN = {y : y(A) ≤ ∑
i ri (A), A ⊂ E, y(E) = ∑

i ri (E), y ≥ 0}.

The polytope PN has a box-TDI description,which follows from [47, Theorem46.2].14

The integer decomposition property is also satisfied (see, e.g., [47, Corollary 46.2c]).
Using similar arguments as for r -arborescences (see below), we derive a strongly
polynomial time algorithm to compute a minimum of Rosenthal’s potential.
We also prove a result that is of independent interest: For non-symmetric matroid
congestiongames,wecanderive a local search algorithm to compute aglobalminimum
ofRosenthal’s potential in strongly polynomial time.This local search algorithmcanbe
seen as a natural generalization of best response dynamics (which are known to arrive
at a local optimum in polynomial time [1]). Our algorithm is based on a combinatorial
approach to compute the symmetric difference decomposition for these games (which
is of a specific form). The details are given in Appendix A.

5.4 Symmetric matroid intersection congestion games

In symmetric matroid intersection congestion games Γ = (N , E,S, (ce)) the (sym-
metric) strategy set S of all players is given by the common bases of two matroids
M1 = (E, I1) and M2 = (E, I2) over a common element set E . The polytope P
of the players corresponds to the common base polytope PM1,M2 as defined in (2.4),
i.e.,

P = {x : x(A) ≤ ri (A) ∀A ⊂ E, x(E) = ri (E) for i = 1, 2, x ≥ 0}.
13 Our framework also captures the independent set congestion games studied in [16]. However, we mainly
focus on non-negative cost functions here (because of the inefficiency measures) and then these games are
trivial.
14 To see this, we use the fact that the rank function is submodular and that the sum of submodular functions
is again submodular. We can then apply Theorem 46.2 in [47].
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The describing system of P is box-TDI (see, e.g., [47, Corollary 41.12e]). Further, as
noted in the preliminaries there is a separation oracle for P (and thus PN ) which runs
in time polynomial in |E | and the complexity of the independence oracles forM1 and
M2. However, it is not precisely known for which cases of matroid intersection the
integer decomposition property holds.

Example 5.1 (r -Arborescences) Let D = (V , A) be a directed graph. An r -
arboresence in D is a directed spanning tree rooted in r ∈ V . The set of all
r -arboresences can be seen as the set of common bases of two matroids. The first
matroid M1 is the graphic matroid on the undirected graph D′ = (V , A′), where A′
is the set formed by replacing every directed arc in A with its undirected version, i.e.,
A′ = {{u, v} : (u, v) ∈ A}. The second matroidM2 is the partition matroid in which
independent sets are given by sets of arcs for which there is at most one incoming arc
at every node v �= r (we assume there are no incoming arcs at r ). Thus, the common
base polytope PM1,M2 describes the arborescences of D and we let P = PM1,M2 .

We argue that there is a strongly polynomial time algorithm for computing a min-
imum of Rosenthal’s potential. First note that the describing system of PM1,M2 is
box-TDI (see [47, Corollary 41.12e]). Also, PM1,M2 satisfies the integer decompo-
sition property, which follows from Edmonds’ Disjoint Arborescences Theorem [18].
By Theorem 3.3, we can compute a minimum of Rosenthal’s potential in time poly-
nomial in n, m,

∑
i 〈bi 〉 and the complexity of a separation oracle for PM1,M2 . The

elements of the vector b are bounded by |E |, by the definition of the rank functions.
Moreover, it is not hard to see that there exist independence oracles for bothM1 and
M2 that run in time polynomial in m. These oracles can be used for separation oracles
as described in the preliminaries. It is not hard to see that if both basematroid polytopes
have a polynomial time separation oracle, then the intersection of these polytopes has
one too. This shows that there is an algorithm for computing an optimal feasible load
profile in time polynomial in n and m. Integer decomposition can also be done in time
polynomial in n and m [28].

Example 5.2 (Intersection of strongly base-orderable matroids) A matroid M =
(E, I) is strongly base-orderable if for every pair of bases B1, B2 ∈ B there exists a
bijection τ : B1 → B2 such that for every X ⊆ B1, we have B1 − X + τ(X) ∈ B. As
in the previous example, a box-TDI description follows from [47, Corollary 41.12e].
It is also known that the independent set polytope of the intersection of strongly base-
orderable matroids has the integer decomposition property [37, Theorem 5.1].15

6 Bottleneck congestion games

A bottleneck congestion game Γ = (N , E, (S)i∈N , (ce)e∈E ) is defined similarly to
a congestion game, with the only difference that the objective of a player is to mini-
mize the maximum (rather than the aggregated) congestion over all resources that she

15 This also implies that the common base polytope has the integer decomposition property, since the
integer decomposition property is preserved if we restrict ourselves to a face of a polytope with the integer
decomposition property.
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occupies. Formally, the cost of player i ∈ N under strategy profile s = (s1, . . . , sn) is
given by Ci (s) = maxe∈si ce(xe(s)).

Harks et al. [32] give a dual greedy algorithm to compute a strong equilibrium,
which uses a strategy packing oracle as a subroutine (see Appendix B for details).
They give efficient packing oracles for symmetric network congestion games, non-
symmetric matroid congestion games and (a slight generalization of) r -arborescences.
In particular, this leads to polynomial time algorithms for computing a strong equilib-
rium in these cases.

We adapt their algorithm to compute a load profile of a strong equilibrium for
bottleneck polytopal congestion games satisfying the IDP and box-TDI property.

Theorem 6.1 Let Γ = (N , E, (Si ), (ce)) be a polytopal bottleneck congestion game
whose aggregation polytope PN satisfies IDP and box-TDI. Then a load profile of a
strong equilibrium can be computed using at most poly(n, m, φ) arithmetic operations
and separation oracle calls.

We first need to adapt the definition of the strategy packing oracle of [32] (see
Appendix B) to load profiles. Below, we assume that PN is an aggregation polytope
of a polytopal congestion game.

Load profile oracle O(E = T ∪ L, PN , (ue)e∈E ) :
Input: A finite set of resources E = T ∪ L with upper bounds (ue)e∈E and an aggregation
polytope PN .
Output: yes, if there exists a feasible load profile f ∈ PN such that fe = ue for all
e ∈ T and fe ≤ ue for all e ∈ L; no otherwise.

Our adaptation of the dual greedy algorithm is given in Algorithm 1. Although
the ideas are similar to the ones in [32], our algorithm only works with load profiles.
In particular, we do not have to explicitly compute decompositions of feasible load
profiles in intermediate steps of the algorithm, which (significantly) improves the
running time. Intuitively, our algorithm works as follows. We start with capacities of n
on every resource. In every step we pick a resource e′ ∈ L with maximum cost among
all resources that are called loose, and check whether there is a feasible load profile
if we reduce the capacity on e′ by one. If this is not possible, we remove e′ from L
and add e′ to the set T of so-called tight resources. Note that after the algorithm has
terminated, all resources are in the set T .

The following lemma shows that the load profile output by our algorithm corre-
sponds to a strong equilibrium. Its proof is similar to the correctness proof of the dual
greedy algorithm by Harks et al. [32].

Lemma 6.1 Algorithm 1 computes a load profile of a strong equilibrium in time poly-
nomial in n, m and the complexity of the load profile oracle.

Proof Clearly, Algorithm 1 can be executed in time polynomial in n, m and the com-
plexity of the load profile oracle. Let f be the load profile output by the algorithm.
Assume without loss of generality that the resources in E = [m] are added to the set
T in the order (1, 2, . . . , m). Let s = (s1, . . . , sn) be a strategy profile corresponding
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ALGORITHM 1: Load profile-dual greedy algorithm.

Input : Bottleneck congestion game Γ = (N , E, (Si ), (ce)), load profile oracle O
Output : Load profile of strong equilibrium of Γ

1 set N ′ = N , ue = n for all e ∈ E , T = ∅, L = E
2 while {e ∈ L : ue > 0} �= ∅ do
3 choose e′ ∈ argmax{ce(ue) : e ∈ L, ue > 0}
4 ue′ := ue′ − 1
5 if O(T ∪ L, PN , (ue)e∈E ) = no then
6 ue′ := ue′ + 1
7 L = L\{e′}, T = T ∪ {e′}
8 end
9 end

10 return (ue)e∈E

to the load profile f . We define σe = {i ∈ N : e ∈ si } as the set of players using
resource e. Moreover, we set N1 = σ1, and define

N j = σ j\(N1 ∪ · · · ∪ N j−1) for j = 1, . . . , m.

We show that players in N1 will never participate in a coalitional deviation in which
every player strictly improves.

Let D ⊂ N be a coalition of players that can profitably deviate to strategy profile
t = (tD, s−D). Remember that xe(t) denotes the number of players using resource
e in strategy profile t . Let (ue)e∈E be the capacity vector for which the load profile
oracle returns no for the first time in line 5. We consider two cases:

Case 1 xe(t) ≤ ue for all e ∈ E . In this case, there must be |N1| players using
resource 1; otherwise, the oracle would have returned yes because the load profile of
t would have been feasible for the capacities (ue). Further, for all players i ∈ N1, we
have Ci (s) = ce(xe(s)), which is in particular the highest player cost in the strategy
profile s. In particular, this implies that if a player in N1 would strictly improve, then
she cannot use resource 1 in t . This means that another player is now using resource
1 in t , but that player can never have strictly better cost than it had in s.

Case 2 xe(t) > ue for some e ∈ E . Using similar arguments, we can show that
x1(t) < u1 if some player in N1 is also part of D (since c1(x1(s)) is the maximum
cost resource in s). Since the algorithm iteratively reduces the capacities of resources
with maximum cost, we must have that ce(xe(t)) ≥ c1(u1). Further, since xe(t) > ue,
at least one player in D must be using resource e in t . But this player cannot have
strictly improved then.

We can now use induction to show that no player in N j will ever participate in a
coalitional deviation. Assume that the players in N1∪· · ·∪ N j−1 will never participate
in a coalitional deviation. By using similar arguments as above, we can show that the
players in N j will also never participate in a coalitional deviation. 	


Proof (Theorem 6.1) By Lemma 6.1, Algorithm 1 computes a load profile of a strong
equilibrium in time polynomial in n, m and the complexity of a load profile oracle.
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Based on a separation oracle of PN , we now show that there is an efficient load
profile oracle. Given that PN has a box-TDI description, it follows that the polytope

{y : Ay ≤ ∑
i∈N bi } ∩ {ye = ue : e ∈ T } ∩ {0 ≤ ye ≤ ue : e ∈ L}

is integral. We can then use a separation oracle for PN to find an integral vector in
this polytope using at most poly(n, m, φ) arithmetic operations and separation oracle
calls. This concludes the proof. 	


Once we have obtained the feasible load profile, we can use an integer decom-
position algorithm to find the corresponding strategies of the players. If the integer
decomposition can be done within the same time bounds as stated in Theorem 6.1,
we obtain a (strongly) polynomial algorithm for computing a strong equilibrium in
a polytopal bottleneck congestion game. In particular, this applies to all applications
mentioned in Sect. 5.
We end this section by showing that for matroid bottleneck congestion games, we can
use our techniques from the previous sections to derive an upper bound on the strong
price of stability (SPoS).

The proof of the following theorem exploits that Algorithm 1 in fact computes a
global optimum of Rosenthal’s potential in the case of matroid bottleneck congestion
games.

Theorem 6.2 Let Γ = (N , E, (Si ), (ce)) be a non-symmetric matroid bottleneck con-
gestion game with cost functions in class D. Then SPoS(Γ ) ≤ ρ(D).

Proof Let f be the load profile returned by the algorithm. f is a strong equilibrium
by Lemma 6.1. We prove that f is also a global optimum of Rosenthal’s potential. We
then obtain a bound of ρ(D) on the strong price of stability by using similar arguments
as in the proof of Theorem 4.1.

Suppose for contradiction that f is not a global optimum. Then there exist resources
a and b such that ca( fa) > cb( fb + 1) and for which the load profile f ′, defined by
f ′
a = fa − 1, f ′

b = fb + 1 and f ′
e = fe for all e ∈ E\{a, b}, is feasible. This claim

follows from similar arguments as given in the proof of Theorem A.2 (Appendix A).
Now, consider the point in execution of the algorithmwhere the capacity of resource

a was fixed at fa . Since ca( fa) > cb( fb + 1), we must have had fb + 1 ≤ ub at that
point (since the algorithm iteratively reduces the capacity of resources with maximum
cost). But this contradicts the fact that the load profile oracle returned no at this point;
to see this note that f ′ would have been a feasible load profile for the capacity vector
in which ua was reduced by 1 (as in line 4 of the algorithm). 	


7 Concluding remarks

We identified two structural properties of polytopal congestion games which are suf-
ficient to efficiently compute a global minimizer of Rosenthal’s potential: IDP and
box-TDI. Further, we proved that the computed Nash equilibria obtain a social cost
approximation guarantee of ρ(D) if the cost functions belong to class D. As we
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showed, this also establishes a tight bound on the price of stability for polytopal con-
gestion games satisfying IDP and box-TDI. Intuitively, these games thus inherit the
social cost approximation guarantee of non-atomic network routing games [13]. In our
inefficiency proofs, we crucially exploited the symmetric difference decomposition
property of polytopes; we believe that this new notion might be useful also in other
contexts. Finally, we provided several examples of classes of congestion games that
can be cast into our framework and showed that some of the results also extend to
bottleneck congestion games.

For future work it would be interesting to see whether our techniques extend to
other classes of games, e.g., to special cases of weighted congestion games. Note that,
although having an exact potential function turned out to be convenient in this paper,
our approach per se is not limited by this requirement. In fact, it would be interesting
to see how different (ordinal) potential functions impact the inefficiency guarantee of
the respective global potential function minimizers.

We feel that in general the power of polyhedral techniques to compute good Nash
equilibria in games is not well-understood and worth being investigated more inten-
sively. In particular, research in this direction opens up an intriguing connection
between the fields of polyhedral combinatorics and computational game theory.
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Appendix A: Combinatorial symmetric difference decomposition of
non-symmetric matroid congestion games

In this section, we describe a combinatorial approach for computing the symmetric
difference decomposition of non-symmetric matroid congestion games. Our analysis
also provides a local search algorithm which can be seen as a natural generalization
of best response dynamics.

Throughout this section, we letΓ = (N , E, (Si ), (ce)) be a non-symmetricmatroid
congestion game, where the strategy set Si of each player i ∈ N is given by the bases
Bi of a matroidMi = (E, Ii ).

A.1 Symmetric difference decomposition

We start by deriving the symmetric difference decomposition.
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Let s = (s1, . . . , sn) and t = (t1, . . . , tn) be two feasible strategy profiles with
(feasible) load profiles f and g, respectively.Weneed the following result formatroids.

Proposition A.1 [47] Let M = (E, I) be a matroid and let B denote the set of bases
of M. Then for all B, B ′ ∈ B, there exists a bijection τ : B\B ′ → B ′\B such that
B − x + τ(x) ∈ B for all x ∈ B\B ′.

For i ∈ N , let τ i : si\ti → ti\si be a bijection satisfying Proposition A.1. Let
G = (V , A) be a directed multigraph defined by V = E , and the multiset

A =
⋃

i∈N

{(e, τ i (e)) : e ∈ si\ti }.

Note that, implicitly, every arc corresponds to a unique player. Since, for a fixed player
i the bases si and ti have the same size, it follows that

K :=
∑

e: fe>ge

( fe − ge) =
∑

e: ge> fe

(ge − fe).

In particular, the graph G can be decomposed into K edge-disjoint paths (or chains)
(Pj ) j=1,...,K with the property that they start at an overloaded resource e with fe > ge

and end at an underloaded resource e with ge > fe (and possibly some cycles). If
follows that we can write

g − f =
K∑

j=1

x j , where for each path Pj = (a j , . . . , b j ) we have

x j
e =

⎧
⎨

⎩

1 if e = b j ,

−1 if e = a j ,

0 otherwise.

We claim that the load profiles f + x j are again feasible.
Let us first introduce some more terminology. Let M = (E, I) be a matroid and

let I ∈ I. Let DM(I ) = (E, AM(I )) be the directed exchange graph defined by

AM(I ) = {(y, z) : y ∈ I , z ∈ E\I , I − y + x ∈ I}.

The following proposition will be used below.

Proposition A.2 [47] Let M = (E, I) be a matroid and let I ∈ I. Let DM(I ) be as
defined above, and let J ⊆ E be such that |I | = |J | and such that AM(I ) contains a
unique perfect matching on IΔJ . Then J ∈ I.

Moreover, for matroids Mi = (E, Ii ), i ∈ N , let D(I1, . . . , In) = (E, A) be the
multigraph defined by the

A =
⋃

i∈N

AMi (Ii ).
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We implicitly label every a ∈ A with a player i , namely the player for which
a ∈ AMi (Ii ). For a path Q = (e1, . . . , ep) in D, we denote by Ai

Q the set of arcs
corresponding to player i , i.e.,

Ai
Q = {a ∈ Q : a = (e j , e j+1) has label i}.

Further, we let T i
Q and Hi

Q contain the tails and heads of the arcs in Ai
Q , respectively,

i.e.,

T i
Q = {v ∈ E : a = (v,w) ∈ Ai

Q} and Hi
Q = {w ∈ E : a = (v,w) ∈ Ai

Q}.

We let σ i
Q : T i

Q → Hi
Q denote the bijection that maps every tail to its head.We say that

a shift over the path Q is feasible, if for i = 1, . . . , n, it holds that Ii −T i
Q +Hi

Q ∈ Ii .16

Let us now come back to the paths Pj . By definition of D(s1, . . . , sn), every path
Pj is contained in the graph D(s1, . . . , sn). In particular this means that there is at
least one path from a j to b j . Then there is also a shortest path (in terms of number of
arcs) from a j to b j . By Lemma A.1 (given below), the load profile f + x j is feasible
since we can shift players over some shortest (a j , b j ) path Q j such that the resulting
bases are again feasible for all players. That is, we apply Lemma A.1 with the bases
Ii = si .

It remains to prove Lemma A.1.

Lemma A.1 Let D(I1, . . . , In) = (V , A) be as defined above, and let a, b ∈ V . If
Q = (a, . . . , b) is a shortest (a, b)-path, then Ii −T i

Q+Hi
Q ∈ Ii for all i = 1, . . . , n.17

Proof Fix some i . We let I = Ii and J = Ii − T i + Hi (= si − T i + σ i (Hi )).
In particular, the function σ i as defined above gives a perfect matching on IΔJ . We
claim that σ i is the unique perfect matching between T i and Hi . It follows from
Proposition A.2 that J ∈ I. Let ρ be an arbitrary perfect matching. Let (v,w) be the
first arc on Q corresponding to player i . If ρ(v) �= w, then this means that Q was not
a shortest (a, b)-path, so we must have ρ(v) = w. A similar argument can be given
for the second arc corresponding to i , then the third arc, etc. We find that ρ = σ i , and
this concludes the proof. 	


A.2 Local search algorithm

We can derive a local search algorithm based on the analysis above. We first introduce
some terminology. We say that the difference between two strategy profiles s (with
load profile f ) and s′ (with load profile f ′) is minimal, if there exist resources a, b

16 Subsequently, we omit the subscript Q if it is clear from the context which path is meant.
17 A similar statement is shown in [2, Lemma 4.5]. However, our proof is different and seems (much)
shorter because of the fact that we use the result in [47].
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such that

fe − f ′
e =

⎧
⎨

⎩

1 if e = a
−1 if e = b
0 otherwise.

We define the neighborhood of a strategy profile s by

N (s) = {s} ∪ {s′ ∈ ×iSi : the difference between s and s′ is minimal}. (7.1)

Note that by definition the load profiles f and f ′ of two neighboring strategy pro-
files s, s′ with s′ ∈ N (s), respectively, must differ by one on exactly two resources.
However, this load difference might not be achievable by a single-player deviation. In
fact, it is not hard to construct examples, where a sequence of unilateral deviations is
needed to reach s′ from s.

We prove the following lemma.

Lemma A.2 A strategy profile s minimizes Rosenthal’s potential if and only if s is a
local minimum of Rosenthal’s potential with respect to the neighbourhood N (s).

Proof First, let s be a a strategy profile minimizing Rosenthal’s potential. It follows
directly that s is a local minimum with respect to N (s), since s is a global optimum
of the potential function.

Conversely, let s be a local minimum with respect to N (s) and suppose that s is
not a minimizer of Rosenthal’s potential. We claim that there exists a strategy profile
s′ such that

Δ( f , g) :=
∑

e: fe>ge

( fe − ge)ce( fe) −
∑

e: fe<ge

(ge − fe)ce( fe + 1) > 0, (7.2)

where f and g are the load profiles of s and s′, respectively. Assume for contradiction
that Δ( f , g) ≤ 0 for all feasible load profiles g. Then

Φ( f ) − Φ(g) =
∑

e: fe>ge

fe∑

k=ge+1

ce(k) −
∑

e: ge> fe

ge∑

k= fe+1

ce(k)

≤
∑

e: fe>ge

( fe − ge)ce( fe) −
∑

e: fe<ge

(ge − fe)ce( fe + 1) ≤ 0,

where the first inequality holds because the cost functions are non-decreasing and non-
negative. But then f minimizes the potential function Φ, which is a contradiction.

Let the paths W1, . . . , WK form the path decomposition of the multi-graph G (as
described above) for the strategies s and s′. Because of (7.2) there must be some path
W j = (a j , . . . , b j ) such that ca( fa) − cb( fb + 1) > 0. This contradicts the fact that
s is a local minimum with respect to N (s). 	
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Wenext show that, given an arbitrary strategy profile s, we can determine in polyno-
mial timewhether there is an improvingmovewith respect to the altered neighborhood
defined in (7.1).

Lemma A.3 Assume that for every player i ∈ N we have a polynomial independence
oracle for matroid Mi = (E, Ii ). Then for every strategy profile s, we can check in
time polynomial in m and the independence oracles of the matroids Mi , whether or
not there exists a strategy profile s′ ∈ N (s) with Φ(s′) < Φ(s).

Proof Note that there are at most m(m − 1) possibilities for the resources a and b in
the description of strategy profiles with minimal difference. For a and b fixed, with
ca( fa) > cb( fb + 1), we can in polynomial time check whether or not there exists a
chain starting at a and ending in b. For example, we can run an all-pairs shortest path
algorithmon the graphD(s1, . . . , sn), which can be constructed in strongly polynomial
time using the polynomial independence oracles. By construction, we know that every
shortest path yields a new strategy profile s′ with f ′

a = fa − 1 and f ′
b = fb + 1 (and

all the other loads remain the same). Note that s′ can be constructed in polynomial
time. 	


Exploiting the insights above, we conclude that we can find a global optimum of Φ

in strongly polynomial time as follows: Starting from an arbitrary strategy profile s0,
iteratively perform local improvement steps with respect to the neighborhoodN (·) as
defined in (7.1) until a local optimum is reached. By Lemma A.2, the final strategy
profile is a global optimum of Rosenthal’s potential. Further, by Lemma A.3, each
improving move can be done in polynomial time. The fact that this local search takes
only a strongly polynomial number of steps follows from arguments similar to the
ones in [1] (showing that any better-response sequence in matroid congestion games
has polynomial length).

A.3 Example

We give an example illustrating the analysis above.
Let us consider the (non-symmetric) game in Fig. 2. The matroid of player a is the

graphic matroid on the complete graph K4 (with spanning trees as bases). The matroid
of player b is a 1-uniform matroid on the set E2 = {{1, 4}, {1, 2}}. The strategies of
the players in s are given by the bold edges, and the strategies in t by the dotted edges.

Fig. 2 Matroids and strategies of players a and b
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Let τ a be given by τ a({2, 4}) = {1, 4}, τ a({1, 3}) = {2, 3} and τ a({1, 2}) = {3, 4}
(note that τ a satisfies the condition in Proposition A.1). For τ b there is only a unique
choice defined by τ b({1, 4}) = {1, 2}. The (unique) path decomposition for s and t is
given in Fig. 3.

The path P1 from {2, 4} to {3, 4} can be replaced by the shorter chain P ′
1 as in Fig. 4.

Appendix B: Omittedmaterial from Sect. 6

The algorithm of Harks et al. [32]

We briefly summarize the dual greedy algorithm of Harks et al. [32] for computing a
strong equilibrium in bottleneck congestion games (see [32] for more details). Their
algorithm is based on a strategy packing oracle.

Strategy packing oracle O(E, (Si )i∈N , (ue)e∈E ) [32]:

Input: A finite set of resources E with upper bounds (ue)e∈E and strategy sets (Si )i∈N
(given implicitly by some combinatorial property).
Output: Strategy profile s ∈ ×i∈NSi such that xe(s) ≤ ue for all e ∈ E , or ∅ if no such
strategy profile exists.

Basically, the dual greedy algorithm (Algorithm 2) works as follows: In every step
of the algorithm, we have capacity constraints (ue)e∈E for which it is known that
there exists a strategy profile respecting these capacities. The algorithm then selects a
resource e′ with maximum cost (line 3) and checks if there exists a feasible strategy
profile for the capacities in which ue′ is decreased by 1. If so, then ue′ is updated and
we continue with the new vector of capacity constraints. Otherwise, the strategies of
the ue′ players using resource e′ are fixed (and all variables are updated accordingly).

Fig. 3 Path decomposition for the profiles s and t , based on the bijections τ1 and τ2

Fig. 4 The chain P ′
1 that is a feasible path from {2, 4} to {3, 4} as in Fig. 3
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We say that resource e′ becomes frozen. Note that the players of which the strategies
are fixed do not change anymore; these players are frozen too.

ALGORITHM 2: Dual greedy algorithm of Harks et al. [32].

Input : Bottleneck congestion game Γ = (N , E, (Si ), (ce)), strategy packing oracle O
Output : Strong equilibrium of Γ

1 set N ′ = N , ue = n, xe = 0 ∀e ∈ E , and s′ = O(E, (Si )i∈N ′ , (ue))

2 while {e ∈ E : ue > 0} �= ∅ do
3 choose e′ ∈ argmax{ce(ue + xe) : e ∈ E, ue > 0}
4 ue′ = ue′ − 1
5 if O(E, (Si )i∈N ′ , (ue)) = ∅ then
6 ue′ = ue′ + 1
7 foreach j ∈ N ′ with e′ ∈ s′

j do
8 s j = s′

j
9 set xe = xe + 1, ue = ue − 1 for all e ∈ s′

j
10 N ′ = N ′\{ j}
11 end
12 end
13 s′ = O(E, (Si )i∈N ′ , (ue)}
14 end
15 return s = (s1, . . . , sn)
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