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Abstract. The aim of bi-objective optimization is to obtain an approx-
imation set of (near) Pareto optimal solutions. A decision maker then
navigates this set to select a final desired solution, often using a visu-
alization of the approximation front. The front provides a navigational
ordering of solutions to traverse, but this ordering does not necessar-
ily map to a smooth trajectory through decision space. This forces the
decision maker to inspect the decision variables of each solution indi-
vidually, potentially making navigation of the approximation set unin-
tuitive. In this work, we aim to improve approximation set navigabil-
ity by enforcing a form of smoothness or continuity between solutions
in terms of their decision variables. Imposing smoothness as a restric-
tion upon common domination-based multi-objective evolutionary algo-
rithms is not straightforward. Therefore, we use the recently introduced
uncrowded hypervolume (UHV) to reformulate the multi-objective opti-
mization problem as a single-objective problem in which parameterized
approximation sets are directly optimized. We study here the case of
parameterizing approximation sets as smooth Bézier curves in decision
space. We approach the resulting single-objective problem with the gene-
pool optimal mixing evolutionary algorithm (GOMEA), and we call the
resulting algorithm BezEA. We analyze the behavior of BezEA and
compare it to optimization of the UHV with GOMEA as well as the
domination-based multi-objective GOMEA. We show that high-quality
approximation sets can be obtained with BezEA, sometimes even outper-
forming the domination- and UHV-based algorithms, while smoothness
of the navigation trajectory through decision space is guaranteed.
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1 Introduction

The aim of multi-objective optimization is to obtain a set of solutions that is
as close as possible to the set of Pareto-optimal solutions, with different trade-
offs between the objective functions. A decision maker can then navigate the
obtained set, called the approximation set, to select a desired solution. The deci-
sion maker often incorporates external factors in the selection process that are
not taken into account in the optimization objectives. An inspection of the deci-
sion variables of individual solutions is therefore required to determine their
desirability. To guide the selection in bi-objective optimization, a visualization
of the approximation front (i.e., the approximation set mapped to objective
space) or trade-off curve can be used. The approximation front then intuitively
implies a navigational order of solutions by traversing the front from one end to
the other. However, solutions with similar objective values could still have com-
pletely different decision values. The decision values of all solutions then need to
be inspected individually and carefully because they may not change predictably
when the approximation front is traversed. This could make navigation of the
approximation set unintuitive and uninsightful.

Population-based multi-objective evolutionary algorithms (MOEAs) have
successfully been applied to real-world black-box optimization problems, for
which the internal structure is unknown, or too complex to exploit efficiently by
direct problem-specific design [6,8,22]. However, imposing a form of smoothness
or continuity in terms of decision variables between solutions in the approxi-
mation set as a restriction upon the population of MOEAs is not straightfor-
ward. An underlying requirement to do so is that control over approximation
sets as a whole is needed. However, typical dominance-based EAs use single-
solution-based mechanics. Alternatively, multi-objective optimization problems
can be formulated as a higher-dimensional single-objective optimization prob-
lem by using a quality indicator that assigns a fitness value to approximation
sets. An interesting quality indicator is the hypervolume measure [23], as it is
currently the only known Pareto-compliant indicator, meaning that an approx-
imation set of given size with optimal hypervolume is a subset of the Pareto set
[9,13,24]. However, the hypervolume measure has large drawbacks when used as
quality indicator in indicator-based optimization, as it does not take dominated
solutions into account. The uncrowded distance has been recently introduced to
overcome this [20], which then resulted in the uncrowded hypervolume (UHV)
measure [18]. The UHV can be used directly as a quality indicator for indicator-
based multi-objective optimization. To be able to optimize approximation sets in
this approach, fixed-size approximation sets are parameterized by concatenating
the decision variables of a fixed number of solutions [2,18,21]. A single-objective
optimizer can then be used to directly optimize approximation sets. The result-
ing single-objective optimization problem is however rather high-dimensional.
To efficiently solve it, the UHV gene-pool optimal mixing evolutionary algo-
rithm (UHV-GOMEA) [18], exploits grey-box properties of the UHV problem
by only updating a subset of the decision variables corresponding to one (or a
few) multi-objective solutions.
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In this work, we go beyond an unrestricted concatenation of the decision
variables of solutions and we propose to model approximation sets as sets of
points that lie on a Bézier curve [10] in decision space. Optimizing only the con-
trol points of the Bézier curve, that define its curvature, enforces the decision
variables of solutions in the approximation set to vary in a smooth, continuous
fashion, thereby likely improving intuitive navigability of the approximation set.
Previous work on parameterizations of the approximation set has been applied
mainly in a post-processing step after optimization, or was performed in the
objective space [3,15,19], but this does not aid in the navigability of the approxi-
mation set in decision space. Moreover, fitting a smooth curve through an already
optimized set of solutions might result in a bad fit, resulting in a lower-quality
approximation set. Additionally, we will show that specifying solutions as points
on a Bézier curve directly enforces a form of diversity within the approximation
set, which can actually aid in the optimization process, and furthermore reduces
the problem dimensionality of the single-objective problem.

The remainder of this paper is organized as follows. In Sect. 2, we intro-
duce preliminaries on UHV-based multi-objective optimization. In Sect. 3, we
define a measure for navigational smoothness of approximation sets. In Sect. 4,
we introduce Bézier curves and the corresponding optimization problem formu-
lation. Empirical benchmarking on a set of benchmark problems is performed in
Sect. 5. Finally, we discuss the results and conclude in Sect. 6.

2 UHV-Based Multi-objective Optimization

Let f : X → R
m be a to-be-minimized m-dimensional vector function and X ⊆

R
n be the n-dimensional (box-constrained) decision space. When the objectives

in f are conflicting, no single optimal solution exists, but the optimum of f can
be defined in terms of Pareto optimality [14]. A solution x ∈ X is said to weakly
dominate another solution y ∈ X , written as x � y, if and only if fi(x) ≤ fi(y)
for all i. When the latter relation is furthermore strict (i.e., fi(x) < fi(y)) for
at least one i, we say that x dominates y, written as x ≺ y. A solution that is
not dominated by any other solution in X is called Pareto optimal. The Pareto
set A� is the set of all Pareto optimal solutions, i.e., A� = {x ∈ X : �y ∈
X : y ≺ x} ⊂ X . The image of the Pareto set under f is called the Pareto

Fig. 1. Illustration of the uncrowded hypervolume (UHV) [18] (left) for a bi-objective
minimization problem, and the Bézier parameterization (right).
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front, i.e., {f(x) : x ∈ A�} ⊂ R
m. The aim of multi-objective optimization is

to approximate the Pareto set with a set of non-dominated solutions called an
approximation set A. Let S ⊆ X be a solution set, that can contain dominated
solutions and let A : ℘(X ) → ℘(X ) be the approximation set given by S, i.e.,
A(S) = {x ∈ S : �y ∈ S : y ≺ x}, where ℘(X ) is the powerset of X .

The hypervolume measure HV : ℘(X ) → R [1,24] measures the area or
volume dominated by all solutions in the approximation set, bounded by a user-
defined reference point r ∈ R

m, as shown in Fig. 1. As the hypervolume ignores
dominated solutions, we use the uncrowded distance to assign a quality value
to dominated solutions [20]. The uncrowded distance udf (x,A) measures the
shortest Euclidean distance between x and the approximation boundary ∂f(A),
when x is dominated by any solution in A or outside the region defined by r, and
is defined udf (x,A) = 0 else (Fig. 1). It is called the uncrowded distance as the
shortest distance to ∂f(A) is obtained for a point on the boundary that is not
in A itself. Combining the uncrowded distance with the hypervolume measure
results in the uncrowded hypervolume (UHV) [18],

UHVf (S) = HVf (S) − 1
|S|

∑

x∈S
udf (x, A(S))m. (1)

We use the subscript f to denote that its value is computed with respect to the
multi-objective problem f . To be able to optimize the UHV of a solution set, a
parameterization of solution sets is required. Let φ ∈ R

l be such a parameteriza-
tion consisting of l decision variables, and let S(φ) = {x1,x2, . . .} be an operator
that transforms φ into its corresponding solution set. The resulting UHV-based
optimization problem is then given by,

maximize UHVf ,S(φ) = HVf (S(φ)) − 1
|S(φ)|

∑

x∈S(φ)

udf (x, A(S(φ)))m,

with f : X ⊆ R
n → R

m, S : R
l → ℘(X ), φ ∈ R

l.

(2)

In a parameterization that is commonly used, solution sets Sp of fixed size p
are considered, and the decision variables of the solutions in Sp are simply con-
catenated, i.e., φ = [x1 · · ·xp] ∈ R

p·n [2,18,21]. Using this parameterization, the
resulting single-objective optimization problem is l = p · n dimensional. In [18],
GOMEA [5] was used to efficiently solve this problem by exploiting the grey-
box (gb) property that not all solutions xi have to be recomputed when only
some decision variables change. The resulting algorithm, which we call UHVEA-
gb here (and was called UHV-GOMEA-Lm in [18]), greatly outperformed the
mostly similar algorithm UHVEA-bb (called UHV-GOMEA-Lf in [18]) but in
which the UHV was considered to be a black box (bb). This problem parame-
terization however does not guarantee any degree of navigational smoothness of
the approximation set, which is the key goal in this paper.
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Fig. 2. Illustration of Bézier curves (red) in decision space with different control points
(black). Blue points correspond to p = 10 evenly spread values of t, and the smoothness
(Sm) of these p points is given, computed based on obez. (Color figure online)

3 A Measure for Navigational Smoothness

We introduce a measure for the navigational smoothness of an approximation
set. Let Sp = {x1,x2, . . . ,xp} be an approximation set of size p. Furthermore,
let the navigation order o be a permutation of (a subset of) I = {1, 2, . . . , p},
representing the indices of the solutions in Sp that the decision maker assesses in
the order the solutions are inspected. The (navigational) smoothness Sm(Sp,o)
is then defined as,

Sm(Sp,o) =
1

p − 2

p−1∑

i=2

‖xoi−1 − xoi+1‖
‖xoi−1 − xoi

‖ + ‖xoi
− xoi+1‖

. (3)

This smoothness measure measures the detour length, i.e., the extra distance
traveled (in decision space) when going to another solution via an intermediate
solution, compared to directly going there.

Throughout this work, we will consider a navigational order o for approx-
imation sets A such that f1(xoi

) < f1(xoj
) holds whenever i < j holds, i.e.,

from left to right in the objective space plot Fig. 1. We therefore simply write
Sm(A,o) = Sm(A) from now on. Note that Sm(A) ∈ [0, 1], and only if all solu-
tions are colinear in decision space, Sm(A) = 1 holds. This we consider the
ideal scenario, where the decision variables of solutions change perfectly pre-
dictably. This also implies that any other (continuous) non-linear curve is not
considered to be perfectly smooth. Although one could argue for different defi-
nitions of smoothness, we will see later that this measure serves our purpose for
distinguishing smoothly from non-smoothly navigable approximation sets.

4 Bézier Curve Parameterizations of Approximation Sets

A Bézier curve B(t; Cq) is a parametric curve that is commonly used in computer
graphics and animations to model smooth curves and trajectories [10]. An n-
dimensional Bézier curve is fully specified by an ordered set of q ≥ 2 control
points Cq = {c1, . . . , cq} with cj ∈ R

n, and given by,

B(t; Cq) =
q∑

j=1

bj−1,q−1(t)cj , with bj,q(t) :=
(

q

j

)
(1 − t)q−jtj , (4)
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for 0 ≤ t ≤ 1, where
(
q
j

)
are the binomial coefficients. Examples of Bézier curves

are shown in Fig. 2. The first and last control points are always the end points
of the Bézier curve, while intermediate control points do not generally lie on the
curve. We parameterize a solution set Sp = {x1, . . . ,xp} of fixed size p using
an n-dimensional Bézier curve B(t; Cq) with q control points. On this curve, p
points xi = B ((i − 1)/(p − 1); Cq) are selected, evenly spread in the domain of
t. The resulting solution set Sp,q(φ) = {x1,x2, . . . ,xp} is then given by,

Sp,q(φ) =
{
B

(
0

p − 1
; Cq

)
,B

(
1

p − 1
; Cq

)
, . . . ,B

(
p − 1
p − 1

; Cq

)}
,

with φ = [c1 · · · cq] ∈ R
q·n. Note that inverting the order of control points does

not affect the Bézier curve. To avoid this symmetry in the parameterization, we
standardize the curve direction throughout optimization. After a change of the
curve, we check if f1(c1) < f1(cq) holds. If not, the order of the control points
is simply inverted.

Algorithm 1: Navigational order for Bézier parameterizations
function: [Ap,q,onb , (onb)] = Anb(Sp,q,o

bez)

input : Bézier solution set Sp,q = {x1, . . . ,xp} with intrinsic ordering obez

output : Approximation (sub)set Ap,q,onb , (navigational order onb),

η = arg mini∈{1,...,p} f1(xobez
i

);

onb = [obez
η ] and Ap,q,onb = {xobez

η
};

for j = η, . . . , p do
if xobez

j
∈ A(Sp,q) and f2(xobez

j
) < f2(xonb

end
) then

onb = [onb ; obez
j ] and Ap,q,onb = Ap,q,onb ∪ {xobez

j
}; // here

onb
end = obez

j

4.1 A Navigational Order for Bézier Parameterizations

Solution sets Sp,q = Sp,q(φ) parameterized by a Bézier curve introduce an intrin-
sic order obez of solutions by following the curve from t = 0 to t = 1. Even
though the solutions in Sp,q now lie on a smooth curve in decision space, it
might very well be that some of these solutions dominate others. We define a
navigational-Bézier (nb) order onb for a solution set Sp,q that follows the order
of solutions obez along the Bézier curve, but also aligns with the left-to-right
ordering described in Sect. 3. Pseudo code for onb is given in Algorithm 1, and
an example is given in Fig. 1. The navigational order onb starts from the solu-
tion with best f1-value and continues to follow the Bézier curve (i.e., in the order
obez) until the solution with best f2-value is reached, only improving in f2 (and
thereby worsening in f1) along the way, and skipping solutions that violate this
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property. Let Ap,q,onb = Anb(Sp,q,obez) be the resulting subset of Sp,q pertain-
ing to exactly the solution indices as specified in onb, and note that this is an
approximation set.

4.2 Unfolding the Bézier Curve (in Objective Space)

Smoothly navigable approximation sets can now be obtained by maximizing
the hypervolume of Ap,q,onb . To maximize the number of navigable solutions
|Ap,q,onb | = |onb|, we need to unfold the Bézier curve in objective space. For
this, we introduce a constraint violation function C(Sp,q,onb) ≥ 0, as given in
Algorithm 2 and illustrated in Fig. 1. It is composed of two parts. The first part
is similar to the uncrowded distance term in Eq. (1), but the approximation
boundary is now given by Ap,q,onb . The second part aims to pull solutions that
are not in Sp,q,onb towards neighboring solutions on the Bézier curve.

Algorithm 2: Bézier constraint violation function
function: C(Sp,q,o

bez) ≥ 0
input : Bézier solution set Sp,q = {x1, . . . ,xp} with intrinsic ordering obez

output : Constraint value C ≥ 0

[A,onb] = Anb(Sp,q,o
bez); // See Algorithm 1

C = 1
|Sp,q|

∑
x∈Sp,q

udf (x, Am); // Uncrowded distance (ud), see (1)

for j = 1, . . . , |Sp,q| − 1 do

if obez
j /∈ onb or obez

j+1 /∈ onb then
C = C + ‖f(xobez

j
) − f(xobez

j+1
)‖; // Euclidean distance in R

m

4.3 Bézier Parameterization + GOMEA = BezEA

The resulting Bézier curve optimization problem is given by,

maximize HVf ,Sp,q
(φ) = HVf (Anb(Sp,q(φ))),

with C(Sp,q(φ),onb(φ)) = 0,

f : X ⊆ R
n → R

m, Sp,q : R
q·n → ℘(X ), φ ∈ R

q·n.

(5)

We use constraint domination to handle constraint violations [7]. With constraint
domination, the fitness of a solution is computed regardless of its feasibility.
When comparing two solutions, if both are infeasible (i.e., C > 0), the solution
with the smallest amount of constraint violation is preferred. If only one solution
is infeasible, the solution that is feasible is preferred. Finally, if both solutions
are feasible (i.e., C = 0), the original ranking based on fitness is used.

Bézier curves have no local control property, meaning that a change of a
control point affects all solutions on the curve. Partial evaluations can therefore
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no longer be exploited with this parameterization, and we thus solve this problem
with the black-box version of GOMEA. Analogous to the UHV naming, we brand
the resulting algorithm Bézier-GOMEA-bb, which we abbreviate to BezEA. A
detailed description of GOMEA can be found in [5], and a description of UHV-
GOMEA in [18].

5 Numerical Experiments

We compare BezEA with UHVEA-gb and UHVEA-bb. These methods use a dif-
ferent hypervolume-based representation of the multi-objective problem, but use
very similar variation and selection mechanisms, making the comparison between
these methods most fair. We use the guideline setting for the population size N of
GOMEA with full linkage models in a black-box setting [4], which for separable
problems yields N = �10

√
l and for non-separable problems N = 17 + �3l1.5.

BezEA solves a single-objective problem of l = qn decision variables. UHVEA-bb
solves a single objective problem of l = pn decision variables. UHVEA-gb solves
the same problem by not considering all pn decision variables simultaneously,
but by updating only subsets of l = n decision variables, on which we base the
population size guideline for UHVEA-gb.

We furthermore include the domination-based MO-GOMEA [6]. In MO-
GOMEA, a population of solutions is aimed to approximate the Pareto front
by implicitly balancing diversity and proximity. From a population of Nmo solu-
tions, truncation selection is performed based on domination rank. The resulting
selection is clustered into Kmo overlapping clusters that model different parts
of the approximation front. For each cluster, a Gaussian distribution is esti-
mated to sample new solutions from, which uses very similar update rules as
the single-objective GOMEA, and therefore allows for a most fair comparison to
BezEA and UHVEA. MO-GOMEA obtains an elitist archive, aimed to contain
1000 solutions. For a fair comparison to the hypervolume-based methods that
obtain an approximation set of at most p solutions, we reduce the obtained elitist
archive of MO-GOMEA to p solutions using greedy hypervolume subset selec-
tion (gHSS) [11], which we denote by MO-GOMEA*. As described in [18], to
align MO-GOMEA with the other algorithms, we set Nmo = p ·N and Kmo = 2p
such that the overall number of solutions in the populations is the same, and all
sample distributions are estimated from the same number of solutions.

As performance measure, we define ΔHVp = HV�
p − HV(Ap) as the dis-

tance to the optimal hypervolume HV�
p obtainable with p solutions, empirically

determined with UHVEA.

5.1 Increasing q

We illustrate how increasing the number of control points q of the Bézier curve
improves achievable accuracy of BezEA (with q = {2, . . . , 10} and p = 10) in
case the Pareto set is non-linear. For this, we construct a simple two-dimensional
problem curvePS, with objective functions f curvePS

1 (x) = (x1 − 1)2 + 0.01x2
2 and
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Fig. 3. Bézier curve approximations of the Pareto set of the curvePS problem (left),
obtained with BezEA. Contour lines show domination ranks, the corresponding approx-
imation fronts (middle), and ΔHV10 together with smoothness (right).

f curvePS
2 (x) = x2

1 + (x2 − 1)2. A large computational budget was used to show
maximally achievable hypervolume, and standard deviations are therefore too
small to be visible.

Results are shown in Fig. 3. A larger q results in a better approximation of
the leftmost endpoint of the Pareto front (second subfigure), thereby improving
ΔHVp (third subfigure), but slightly lowering smoothness (fourth subfigure), as
the Bézier curve deviates from a straight line. MO-GOMEA*, UHVEA-gb, and
BezEA for large q all obtain a very similar smoothness. As MO-GOMEA* does
not explicitly optimize the hypervolume of its approximation set, it obtains a
slightly different distribution of solutions, which results in a lower hypervolume.
Additionally, MO-GOMEA* does not converge to the Pareto set due to the finite
population size and inifitely large Pareto set, as described in more detail in [18].
Even though this is a fundamental limitation of domination-based MOEAs, this
level of accuracy is often acceptable in practice.

5.2 Comparison with UHV Optimization

Next, we demonstrate the behavior of BezEA compared to UHVEA on the simple
bi-sphere problem, which is composed of two single-objective sphere problems,
fsphere(x) =

∑n
i=1 x2

i , of which one is translated, fbi-sphere
1 (x) = fsphere(x), and

fbi-sphere
2 = fsphere(x − e1), where ei is the ith unit vector. We set n = 10, and

initialize all algorithms in [−5, 5]n. This is a separable problem and we therefore
use the univariate population size guideline (i.e., N =

√
l). We consider the

cases p = {10, 100}. The computational budget is set to 2p · 104 evaluations of
the multi-objective problem given by f (MO-fevals). When the desired number
of solutions p along the front is large, neighboring solutions are nearby each
other on the approximation front. This introduces a dependency between these
solutions, which needs to be taken into account in the optimization process to
be able to effectively solve the problem [18].

Results are shown in Fig. 4. This problem is unimodal with a linear Pareto set,
and the smoothness of (a subset) of the Pareto set is therefore 1.0. As UHVEA-
gb converges to a subset of the Pareto set (see [18]), it ultimately obtains a
smoothness of 1.0, even though its smoothness is initially lower. MO-GOMEA*
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Fig. 4. Comparison of UHVEA with BezEA and MO-GOMEA* on the bi-sphere prob-
lem with n = 10 and p = 10 (top row) and p = 100 (bottom row). Left two subfigures
show mean scores, and the shaded areas represent min/max scores, obtained over 10
runs. Objective and decision space subfigures show results of a single run. Solutions in
the decision space projection are sorted based on their f0-value, from best to worst.

does not converge to the Pareto set, and its smoothness stagnates close to 1.0
when p = 10, but stagnates around 0.7 when p = 100. BezEA with q = 2
has per construction a perfect smoothness of 1.0, and for q = 3 and q = 4,
the obtained smoothness is close to 1. With q = 5 control points, BezEA does
not converge within the given budget, resulting in a lower smoothness within the
computational budget. UHVEA-gb furthermore shows a better convergence rate,
which could be because UHVEA-gb can exploit partial evaluations, while this
is not possible with BezEA. However, UHVEA-bb, which also does not perform
partial evaluations, is unable to solve the problem for p = 100. This difference
between BezEA and UHVEA-bb could be attributed to the lower degree of
freedom that BezEA has due to the rather fixed distribution of solutions. This
distribution does however not exactly correspond to the distribution of HV�

p.
This is why a stagnation in terms of hypervolume convergence can be observed
for small values of q. The solutions of BezEA are equidistantly distributed along
the curve in terms of t. By doing so, intermediate control points can be used to
adapt the distribution of solutions (when q > 2). This is why BezEA with q = 4
can obtain a better ΔHVp than BezEA with q = 2, even though the Pareto
set is linear. For p = 100, BezEA obtains a better ΔHVp than UHVEA-gb,
which can be explained by the increased problem complexity when the desired
number of solutions along the front is large. Increasing the population size N
of UHVEA-gb would (at least partially) overcome this, but we aimed here to
show that BezEA does not suffer from this increased complexity as its problem
dimensionality depends on q, not p.

5.3 WFG Benchmark

We benchmark BezEA, UHVEA, and MO-GOMEA on the nine commonly used
WFG functions [12]. We consider bi-objective WFG problems with n = 24 deci-
sion variables of which kWFG = 4 are WFG-position variables. We furthermore
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Table 1. Obtained hypervolume HVp (mean ± standard deviation (rank)) and mean
navigational smoothness (Sm) for the 9 WFG problems with p = 9 solutions. Bold are
best scores per problems, or those not statistically different from it.

# MO-GOMEA* UHVEA-gb BezEA (q = 2) BezEA (q = 3)

HV9 Sm HV9 Sm HV9 Sm HV9 Sm

1 97.60 ± 0.7 (1) 0.76 93.62 ± 1.7 (2) 0.67 90.35 ± 1.1 (4) 1.00 90.37 ± 1.2 (3) 0.99

2 110.09 ± 0.0 (2) 0.86 110.38 ± 1.0 (1) 0.66 97.74 ± 0.0 (4) 1.00 97.85 ± 0.0 (3) 0.98

3 116.11 ± 0.1 (4) 0.93 116.42 ± 0.1 (3) 0.71 116.50 ± 0.0 (1) 1.00 116.50 ± 0.0 (2) 1.00

4 111.88 ± 0.8 (3) 0.75 112.37 ± 0.7 (1) 0.69 111.59 ± 1.3 (4) 1.00 112.19 ± 1.3 (2) 0.98

5 112.03 ± 0.1 (3) 0.66 111.86 ± 0.3 (4) 0.63 112.17 ± 0.0 (2) 1.00 112.19 ± 0.0 (1) 1.00

6 113.86 ± 0.3 (3) 0.88 114.23 ± 0.2 (2) 0.72 114.34 ± 0.1 (1) 1.00 113.02 ± 0.3 (4) 0.99

7 114.06 ± 0.1 (4) 0.94 114.32 ± 0.1 (3) 0.66 114.37 ± 0.0 (2) 1.00 114.38 ± 0.0 (1) 1.00

8 110.70 ± 0.2 (4) 0.79 111.24 ± 0.3 (1) 0.67 111.07 ± 0.1 (3) 1.00 111.14 ± 0.0 (2) 1.00

9 111.70 ± 0.5 (1) 0.68 111.46 ± 0.1 (2) 0.68 110.19 ± 0.7 (3) 1.00 109.36 ± 2.9 (4) 0.98

set p = 9 and a computational budget of 107 MO-fevals. A population size of
N = 200 was shown to work well for UHVEA [18], which we use here also
for BezEA. We perform 30 runs, and a pair-wise Wilcoxon rank-sum test with
α = 0.05 is used to test whether differences with the best obtained result are
statistically significant (up to 4 decimals). Ranks (in brackets) are computed
based on the mean hypervolume values.

Results are given in Table 1. WFG1 is problematic, as none of the algorithms
have an explicit mechanism to deal with its flat region. WFG2 has a discon-
nected Pareto front. MO-GOMEA* and UHVEA-gb both obtain solutions in
multiple subsets, while BezEA obtains all solutions in a single connected sub-
set, and spreads out well there. The linear front of WFG3 corresponds to the
equidistant distribution of solutions along the Bézier curve, and BezEA outper-
forms the other methods there. Increasing q generally increases performance of
BezEA, except for WFG6 and WFG9. Both these problems are non-separable,
and require a larger population size than the currently used N = 200 to be
properly solved. However, the guideline for non-separable problems results in a
population size that is too large to be of practical relevance here. In terms of
smoothness, BezEA with q = 3 is able to obtain a smoothness close to 1, while
simultaneously obtaining the best HV9 for 4/9 problems. MO-GOMEA* obtains
a mean smoothness of 0.81 while UHVEA-gb obtains the worst mean smooth-
ness (0.68). To illustrate the obtained smoothness a parallel coordinate plot for
WFG7 is given in Fig. 5. This figure shows a clear pattern in decision variable
values along the front (in the order o) for BezEA. This pattern is not obvious
for the other two methods, while they achieve only a slightly lower hypervolume,
and a lower smoothness.

6 Discussion and Outlook

In this work, we parameterized approximation sets as smooth Bézier curves
in decision space, thereby explicitly enforcing a form of smoothness between
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decision variables of neighboring solutions when the approximation front is tra-
versed, aimed to improve its navigability. We used an UHV-based MO problem
formulation that directly allows for the optimization of parameterized approx-
imation sets. Solving this Bézier problem formulation with GOMEA (BezEA),
was shown to be competitive to UHV-based optimization and domination-based
MOEAs, while smoothness is guaranteed. We showed that approximation sets
obtained with BezEA show a more clear pattern in terms of decision variables
when traversing the approximation front on a set of benchmark problems, which
suggests that this approach will lead to a more intuitive and smooth approxi-
mation set navigability for real-world optimization problems.

Fig. 5. Parallel coordinate plots shows of decision variables xi for WFG7. In color the
kWFG = 4 position-type decision variables, in grey the remaining decision variables.

We chose to fix the solution set size p for BezEA during and after optimiza-
tion, but since a parametric expression of the approximation set is available, it is
straightforward to construct a large approximation set after optimization. This
could be exploited to increase performance of BezEA, as it currently show com-
putational overhead on the simple bi-sphere problem in terms of multi-objective
function evaluations compared to UHVEA. In contrast to MOEAs, UHVEA and
BezEA have the ability to converge to the Pareto set. When the problem is mul-
timodal, UHVEA will spread its search over multiple modes. In that case, even
an a posteriori fitting of a smooth curve through the obtained approximation set
will result in low-quality solutions. BezEA on the other hand aims to obtain solu-
tions in a single mode, thereby guaranteeing smoothness, even in a multimodal
landscape. This form of regularization that is enforced upon approximation sets
shows that BezEA can outperform MO-GOMEA* and UHVEA-gb on multiple
problems in the WFG benchmark.

The smoothness measure introduced in this work is a measure for entire
solution sets Sp, and not for individual solutions x. It can therefore not be
added directly as an additional objective to the original multi-objective prob-
lem f(x). We chose in this work to introduce a parameterization of approxi-
mation sets that directly enforces smoothness. Alternatively, smoothness could
also be added as a second objective to the UHV-based problem formulation.
This then results in the pn-dimensional bi-objective optimization problem, given
by h(Sp) = [UHVf (Sp) ; Sm(Sp)]. This problem can then be solved with a
domination-based MOEA, or even by again formulating it as a (much) higher-
dimensional UHV-based single-objective problem. Whether this approach can be
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efficient, even when grey-box properties such as partial evaluations are exploited,
remains however future work.

The problems in this work were limited to problems involving two objec-
tives. The presented results show that it is an interesting research avenue to
extend this work to problems with more objectives. The Pareto front of non-
degenerate problems with m objectives is an m−1-dimensional manifold. Instead
of a one-dimensional Bézier curve, the Pareto set can then be modeled by an
(m−1)-dimensional Bézier simplex [15]. For the navigation of higher-dimensional
manifolds, a one-dimensional path through all obtained solutions could still be
used. However, navigation would be performed might be problem specific and
should be discussed with end-users. BezEA is applied to treatment planning of
brachytherapy for prostate cancer, and results can be found in the supplementary
of this work (online [17]).

Source code for the algorithms in this work is made available at [16].

Acknowledgments. This work was supported by the Dutch Research Coun-
cil (NWO) through Gravitation Programme Networks 024.002.003. We further-
more acknowledge financial support of the Nijbakker-Morra Foundation for a high-
performance computing system.

References

1. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing popu-
lation size. In: Proceedings of the IEEE Congress on Evolutionary Computation -
CEC 2005, pp. 1769–1776. IEEE Press (2005)

2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

3. Bhardwaj, P., Dasgupta, B., Deb, K.: Modelling the Pareto-optimal set using B-
spline basis functions for continuous multi-objective optimization problems. Eng.
Optim. 46(7), 912–938 (2014)

4. Bosman, P.A.N., Grahl, J., Thierens, D.: Benchmarking parameter-free AMaLGaM
on functions with and without noise. Evol. Comput. 21(3), 445–469 (2013)

5. Bouter, A., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Exploiting linkage
information in real-valued optimization with the real-valued gene-pool optimal
mixing evolutionary algorithm. In: Proceedings of the Genetic and Evolutionary
Computation Conference - GECCO 2017, pp. 705–712. ACM Press, New York
(2017)

6. Bouter, A., Luong, N.H., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: The
multi-objective real-valued gene-pool optimal mixing evolutionary algorithm. In:
Proceedings of the Genetic and Evolutionary Computation Conference - GECCO
2017, pp. 537–544. ACM Press, New York (2017)

7. Deb, K.: An efficient constraint handling method for genetic algorithms. Comput.
Methods Appl. Mech. Eng. 186(2), 311–338 (2000)

8. Deb, K.: Multi-objective Optimization. Wiley, Chichester (2001)
9. Fleischer, M.: The measure of Pareto optima applications to multi-objective meta-

heuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36970-8 37

https://doi.org/10.1007/3-540-36970-8_37
https://doi.org/10.1007/3-540-36970-8_37


228 S. C. Maree et al.

10. Gallier, J.: Curves and Surfaces in Geometric Modeling: Theory and Algorithms.
Morgan Kaufmann Publishers Inc., San Francisco (1999)

11. Guerreiro, A., Fonseca, C., Paquete, L.: Greedy hypervolume subset selection in
low dimensions. Evol. Comput. 24(3), 521–544 (2016)

12. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test
problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.)
EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31880-4 20

13. Knowles, J.: Local-search and hybrid evolutionary algorithms for Pareto optimiza-
tion. Technical report, Ph.D. thesis, University of Reading (2002)

14. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of
stochastic multiobjective optimization. Technical report, Computer Engineering
and Networks Laboratory (TIK), ETH Zurich - TIK report 214 (2006)

15. Kobayashi, K., Hamada, N., Sannai, A., Tanaka, A., Bannai, K., Sugiyama, M.:
Bezier simplex fitting: describing Pareto fronts of simplicial problems with small
samples in multi-objective optimization. Preprint arXiv:1812.05222 (2018)

16. Maree, S.C.: Uncrowded-hypervolume multi-objective optimization C++ source
code on Github (2019). https://github.com/scmaree/uncrowded-hypervolume

17. Maree, S.C., Alderliesten, T., Bosman, P.A.N.: Ensuring smoothly navigable
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