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Abstract. Evolutionary algorithms (EAs) are the preferred method for
solving black-box multi-objective optimization problems, but when gra-
dients of the objective functions are available, it is not straightforward to
exploit these efficiently. By contrast, gradient-based optimization is well-
established for single-objective optimization. A single-objective reformu-
lation of the multi-objective problem could therefore offer a solution.
Of particular interest to this end is the recently introduced uncrowded
hypervolume (UHV) indicator, which is Pareto compliant and also takes
into account dominated solutions. In this work, we show that the gradi-
ent of the UHV can often be computed, which allows for a direct appli-
cation of gradient ascent algorithms. We compare this new approach
with two EAs for UHV optimization as well as with one gradient-based
algorithm for optimizing the well-established hypervolume. On several
bi-objective benchmarks, we find that gradient-based algorithms out-
perform the tested EAs by obtaining a better hypervolume with fewer
evaluations whenever exact gradients of the multiple objective functions
are available and in case of small evaluation budgets. For larger budgets,
however, EAs perform similarly or better. We further find that, when
finite differences are used to approximate the gradients of the multiple
objectives, our new gradient-based algorithm is still competitive with
EAs in most considered benchmarks. Implementations are available at
https://github.com/scmaree/uncrowded-hypervolume.

Keywords: Multi-objective optimization · Uncrowded hypervolume ·
Gradient search

1 Introduction

Evolutionary algorithms (EAs) are the preferred method for solving black-box
multi-objective (MO) optimization problems, when assuming the underlying
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details of the problem are unknown [5]. However, when gradient information
of the objective functions is available, it is not straightforward to exploit this
information efficiently in the optimization process. This can be mainly attributed
to the two-sided goal of multi-objective optimization, which is to obtain a set of
solutions, known as an approximation set, on the one hand containing solutions
that are (near) Pareto optimal, and on the other hand representing a diverse set
of trade-offs between the objectives [3].

When considering a to-be-minimized bi-objective function f : R
n → R

2,
the Karush-Kuhn-Tucker (KKT) [17,20] conditions can be used to identify a
descent direction d(x) for a solution x ∈ R

n for which all objectives are non-
worsening, by taking a weighted convex combination of the gradients of the
individual objectives ∇f0 and ∇f1,

d(x) = w0 · ∇f0(x) + w1 · ∇f1(x), (1)

with w0, w1 ≥ 0. In general, there exist infinitely many search directions d(x) for
which all objectives are non-worsening, and different methods have been developed
in which a single descent direction is computed [6,10,21]. While this provides an
approach to converge to Pareto optimal solutions, it does not tell us directly how to
take solution diversity into account, which has shown to be non-trivial [4,23]. We
therefore consider a different avenue to handle gradients for MO optimization in
this work, which is to cast the MO problem as a single-objective (SO) optimization
problem, in which a quality indicator is used to quantify the quality of an approxi-
mation set [7,18]. One popular quality indicator is the hypervolume indicator [30],
which measures the volume in objective space that is dominated by an approxima-
tion set. The hypervolume indicator is currently the only known indicator that is
Pareto-compliant, meaning that solutions in a set with maximal hypervolume are
Pareto optimal [9], and it furthermore takes diversity intrinsically into account [1].
Additionally, the hypervolume indicator is differentiable with respect to a prob-
lem’s objective functions in strictly non-dominated points which allows determin-
ing gradient weights via the chain rule [8].

A limitation of the hypervolume indicator however is that it ignores domi-
nated solutions. This prevents the use of the hypervolume indicator directly in
indicator-based MO optimization, as it cannot be used to steer dominated solu-
tions to a non-dominated area in the search space [24]. SMS-EMOA [2] overcomes
this limitation by using non-dominated sorting to create subsets of solutions such
that solutions within a subset are non-dominated. Consequently, each solution’s
hypervolume contribution with respect to its subset can be computed and used
to steer the solution towards the Pareto front. The hypervolume indicator gra-
dient ascent multi-objective optimization (HIGA-MO) algorithm [26] computes
hypervolume gradients for solutions in subsets created by non-dominated sort-
ing and thus achieves gradient-based steering for dominated solutions. An app-
roach to incorporate dominated solutions into a hypervolume-based indicator
is the uncrowded hypervolume improvement [24] which was combined with the
newly presented Sofomore framework to perform optimization by interleaving
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single-objective optimizers. In [19], this quality indicator for single solutions was
recently converted into a quality measure for solution sets, called the uncrowded
hypervolume (UHV), which is directly suitable for indicator-based MO optimiza-
tion. The resulting UHV problem was then efficiently solved with the gene-pool
optimal mixing evolutionary algorithm by exploiting UHV-specific properties
(UHV-GOMEA).

In this work, we formulate gradient expressions for the UHV, such that it
can be used directly in SO gradient ascent schemes. (Note that the UHV needs
to be maximized, independent of whether the underlying MO problem is a min-
imization or maximization problem.) To demonstrate this, we solve it with the
same scheme as used by HIGA-MO, and with Adam, a preeminent method for
efficient stochastic optimization [16]. We further compare UHV gradient ascent
to HIGA-MO, and the EAs UHV-GOMEA and Sofomore-GOMEA [19]. For
the experimental comparison, we employ simple quadratic benchmark functions
similar to benchmarks used in [19] and also the Walking Fish Group (WFG)
benchmark set [14]. Additionally, for a fair comparison to EAs, we study the
performance of the gradient-based methods in a black-box setting, where gradi-
ent information of the MO problem is not available, by using a finite difference
gradient approximation. The remainder of this paper is organized as follows.
In Sect. 2, we introduce preliminaries of the (uncrowded) hypervolume indica-
tor. In Sect. 3, we introduce our UHV gradient ascent algorithm. Experimental
comparisons are described in Sect. 4, followed by a discussion in Sect. 5.

2 Uncrowded Hypervolume Optimization

We consider MO problems given by a to-be-minimized m-dimensional objective
function f : X → R

m, where X ⊆ R
n is the n-dimensional (box) constrained

decision space. We focus on the bi-objective case m = 2 in this work. Let x ∈
X ⊆ R

n be a solution of the MO problem, which we from now on refer to as an
MO-solution. The goal of MO optimization is to obtain a set of (near-)Pareto-
optimal MO-solutions S ⊂ X of manageable size. To evaluate the quality of S,
we use the uncrowded hypervolume (UHV) indicator [19], which measures the
area in objective space enclosed by the non-dominated MO-solutions in S and
a reference point r = (r0, r1) (as the hypervolume indicator [30]), and uses the
uncrowded distance [24] (explained below) to steer dominated MO-solutions. As
S can contain dominated MO-solutions, let A be the approximation set of S,
i.e., the largest subset of S that contains only non-dominated MO-solutions.

In order to search the space of solution sets, ℘(X ), a parameterization of
solution sets is required [2,19,26]. For this, we consider sets Sp of a fixed size of p
MO-solutions, and simply concatenate the decision variables of all MO-solutions
into a single vector X ∈ R

np, i.e., X = [x0 · · · xp−1], similar to notation used in
[8]. Additionally, let Y ∈ R

p×m be the matrix of concatenated objectives values
corresponding to X, i.e., Yi,0:m−1 = yi = f(xi). Finally, let F : Rnp → R

m×p be
the operator that evaluates the entire solution set given by X, i.e., Y = F (X).
This implies that an evaluation of F consists of p evaluations of the MO problem
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(MO-evaluations). The resulting SO UHV-based optimization problem can then
be formulated as,

maximize g(X) = UHV(F (X)) = HV(F (X)) − UD(F (X)),

with f : X ⊆ R
n → R

m, F : Rnp → R
m×p, X ∈ R

np,
(2)

where HV : Rm×p → R≥0 is the hypervolume indicator [30] and UD : Rm×p →
R≥0 is the mean of the uncrowded distances ud(y, Y ) [24], which measure the
shortest distance of a point y towards the domination boundary of Y in objective
space. It is called the uncrowded distance as the nearest point on the boundary
of Y is generally away from points in Y . The UD is then given by,

UD(Y ) =
1
p

p−1∑

i=0

ud(yi, Y )m. (3)

We refrain from repeating a mathematical definition here, but provide an illus-
tration in Fig. 1. Note that, in contrast to [19], we only consider the interior
boundary of Y here, which was found to improve performance in preliminary
experiments, as the extreme points of Y are often already well-positioned close to
the extremes of the approximation front (i.e. the approximation set in objective
space), and steering additional points into the same location causes undesired
computational overhead. Finally, note that the UHV is equivalent to the hyper-
volume indicator when all MO-solutions in S are non-dominated, which implies
that the UHV is still Pareto-compliant on the space of approximation sets.

Fig. 1. Illustration of UHV gradient ascent on a bi-objective problem. The MO-gradient
direction in decision space (left subfigure) is a weighted linear combination of the SO
gradients, where the weights are determined based on the UHV gradient direction in
objective space (right subfigure).

3 UHV Gradient Ascent

We apply a gradient ascent scheme to g(X) = UHV(F (X)) in Eq. (2). For this,
we use the gradient of the hypervolume indicator as was derived in [8]. We
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briefly describe the concept here, but refer the reader to [8] for a rigorous math-
ematical derivation and analysis. The gradient ∇g(X) = ∇UHV(F (X)) can be
split up into subvectors corresponding to different MO-solutions by using that
X = [x0 · · · xp−1] ∈ R

np,

∇g(X) =
∂UHV(F (X))

∂X
=

[
∂UHV(F (X))

∂x0
· · · ∂UHV(F (X))

∂xp−1

]
. (4)

We now apply the chain rule to each of the subvectors i by using yi = f(xi),

∂UHV(F (X))
∂xi

=
∂UHV(F (X))

∂F (X)
· ∂F (X)

∂xi
=

p−1∑

j=0

∂UHV(F (X))
∂yj

· ∂yj

∂xi
, (5)

where we can now use that ∂yj

∂xi
= 0 for j �= i, as the fitness values of yj = f(xj)

do not depend on xi. For j = i, we have ∂yi

∂xi
= [∇f0(xi) ∇f1(xi)], which are

simply the gradients of the MO problem. This gives,

∂UHV(F (X))
∂xi

=
∂UHV(F (X))

∂f0(xi)
· ∇f0(xi) +

∂UHV(F (X))
∂f1(xi)

· ∇f1(xi). (6)

Note the correspondence of this expression with the weighted search direction
in Eq. (1). Directly using the objective space gradients to determine the search
direction would cause MO-solutions that contribute more to the UHV to make
big steps, and MO-solutions that contribute little to slowly creep, which was
noted earlier [12,26]. To overcome this, we normalize the objective gradients by
setting W =

∥∥∥
[

∂UHV
∂f0(xi)

∂UHV
∂f1(xi)

]∥∥∥, which gives us the desired search direction,

1
W

∂UHV(F (X))
∂xi

=
1
W

∂UHV(F (X))
∂f0(xi)

· ∇f0(xi) +
1
W

∂UHV(F (X))
∂f1(xi)

· ∇f1(xi).

(7)
It now remains to find an expression for the objective space gradients. We now
use that UHV = HV − UD. For both objectives k = {0, 1}, this gives,

∂UHV(F (X))
∂fk(xi)

=
∂HV(F (X))

∂fk(xi)
− ∂UD(F (X))

∂fk(xi)
.

Whenever xi is a dominated MO-solution, it has no contribution to the hyper-
volume, and the first term is therefore equal to zero. For the second term, let
s(f(xi)) ∈ R

m be the point towards which the uncrowded distance is com-
puted, i.e., the nearest point to f(xi) on the approximation boundary given, as
illustrated in Fig. 1. Using the definition of UD in Eq. (3), we obtain the final
expression for objective-space derivative for dominated MO-solutions,

∂UD(F (X))
∂fk(xi)

=
1
p

∂

∂fk(xi)
‖f(xi) − s(f(xi))‖m.

Whenever xi is a non-dominated MO-solution, the objective-space hyper-
volume gradient can be computed by the approach described in [8]. Concep-
tually, the computation can be reduced to the objective-space gradient of the
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Table 1. UHV gradient ascent schemes for maximizing g(X).

Adam [16] GA-MO [25]

Initial values: γ0 = ‖Xinit‖ · 10−2,
b0 = 0.9, b1 = 0.999, b2 = 0.99,
ε = 10−16, m−1 = v−1 = 0.

Initial values: c = 0.1, α = 0.7, β = 0.7,
and for i = 0, . . . , (p − 1):
γ−1

i = ‖Xinit‖ · 10−2, n−1
i = 0, m−1

i = 0.

For t = 0, 1, . . . ,
mt = b0m

t−1 + (1 − b0)∇g(Xt),

vt = b1v
t−1 + (1 − b1)∇g2(Xt),

Xt+1 = Xt + γt mt/(1 − (b0)t+1)
√

vt/(1 − (b1)t+1) + ε
,

γt+1 =

{
b2γt, if g(Xt+1) ≤ g(Xt),

γt, else.

For t = 0, 1, . . . ,
d

−
= min

l,k∈{0,...,(p−1)},l �=k
‖xt

l − x
t
k‖,

d
+

= max
l,k∈{0,...,(p−1)},l �=k

‖xt
l − x

t
k‖,

γ
UB

= β(d
+

+ d
−
)/2

For i = 0, . . . , (p − 1),

nt
i = ∇g(xt

i)/‖∇g(xt
i)‖,

mt
i = (1 − c)mt−1

i + c〈nt−1
i ,nt

i〉,
γt

i = min{γUB, γt−1
i eαmt

i},

xt+1
i = xt

i + γt
in

t
i.

hypervolume contribution of that MO-solution, which is easily computed when
the neighbouring MO-solutions on the approximation front are known (Fig. 1).
Additionally, whenever xi is a non-dominated MO-solution, it determines the
approximation boundary, which is used in the computation of the UD for other
MO-solutions. Therefore, ∂UD(F (X))

∂fk(xi)
is potentially non-zero. In that case, the UD

can be improved at the cost of worsening non-dominated MO-solutions, as this
reduces the uncrowded distance of dominated MO-solutions. This is undesirable,
and we therefore explicitly set ∂UD(F (X))

∂fk(xi)
= 0 for non-dominated xi, although

preliminary experiments showed that performance is largely unaffected by this.
Finally, we consider the case in which xi is weakly dominated, which occurs
for pairs of MO-solutions with at least one coinciding objective value. In this
case, the objective-space gradient of the UHV is undefined [8, Proposition 3]. To
prevent such case, we consider these points to be strongly dominated, and (tem-
porarily) worsen the objective value(s) that are shared with other MO-solutions
by a small value ε, which allows us to compute the uncrowded distance as before.
Since objective space gradients are normalized, the actual choice of ε is irrelevant
as long as it is small enough so that the weakly dominated MO-solution does
not get dominated by other MO-solutions.

3.1 Gradient Ascent Schemes

We use two gradient ascent schemes for UHV gradient ascent, as listed in
Table 1. The first scheme we consider is Adam [16] (UHV-Adam), which is a
popular method for stochastic gradient descent. Adam uses a variance-corrected
weighted average of current and previous gradients. In contrast to the origi-
nal formulation, we set ε to machine precision, and we add a very simple step
size shrinking scheme in which the step size is reduced if no improvement was
found. The second scheme is the GA-MO scheme (UHV-GA-MO) used in the
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Python implementation of HIGA-MO [25]. GA-MO updates the step size for
each MO-solution separately using a weighted average of search directions’ inner
products as input for an exponential cooling scheme. We adapted the weight
used for averaging inner products c = 0.1 (from c = 0.2) as both HIGA-MO
and UHV-GA-MO showed stagnation in preliminary experiments with c = 0.2.
Additionally, we changed the upper bound on the step size γUB to be also based
on d+, the maximum distance between two MO-solutions in decision space, as
for the UHV objective function, two dominated MO-solutions could be steered
to the same point on the front, and only basing it on the minimum distance d−

could shrink γ prematurely. For both schemes, we use projected gradients (i.e.,
boundary repair) to handle box-constrained search spaces. Initial MO-solutions
are initialized uniformly random in a box Xinit ⊆ X , and the initial step size is
based on the maximum initialization range in any dimension, which we denote
by ‖Xinit‖. Implementations of UHV-Adam and UHV-GA-MO are available at
https://github.com/scmaree/uncrowded-hypervolume.

3.2 Finite Difference Gradient Approximation

To assess the performance of gradient-based algorithms in a black-box sce-
nario, where exact gradients are not known, finite forward difference gradient
approximations (FD) are used. The FD step size is set to h = 10−6 · γ̄t, where
γ̄ =

∑p−1
i=0 γt

i for UHV-GA-MO, and γ̄ = γt for UHV-Adam. In this way, h is
always smaller than the mean step size. If the FD step violates the search space’s
box-constraints, backward differences are used. Estimating both objectives’ gra-
dients in one MO-solution requires n additional MO-evaluations, the number of
MO-evaluations thus increases from p to (1 + n) · p per iteration. When using
FD, we refer to our methods as UHV-Adam-FD and UHV-GA-MO-FD.

4 Experiments

Experiments are conducted on several bi-objective problems: four bi-objective
problems with known gradients as defined in Table 2 and nine box-constrained
problems from the WFG benchmark suite [13,14,28]. For each algorithm, the
best approximation set obtained so far is recorded over the run of that algo-
rithm, where quality is measured by the algorithm itself, i.e., based on the HV
or UHV. Performance is measured by the number of MO function evaluations
(MO-evaluations), where we define one MO-evaluation as the computation of
f0, f1,∇f0, and ∇f1 at once. Note that the evaluation of X, which models a
solution set Sp of size p, therefore costs p MO-evaluations. All problems are run
with a fixed hypervolume reference point r = (11, 11), which is rather far away
from the Pareto front, as this puts additional importance towards obtaining the
end points of the front [1]. However, even with this choice of reference point,
the endpoints are not always included in the approximation set with optimal
hypervolume, depending on the shape of the front [1].

We compare the two UHV gradient ascent schemes, UHV-Adam and UHV-
GA-MO, to the EAs UHV-GOMEA-Lt and Sofomore-GOMEA from [19]. We

https://github.com/scmaree/uncrowded-hypervolume
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furthermore consider the gradient-based HIGA-MO. UHV-GOMEA-Lt uses a
linkage tree in which at most a few MO-solutions are updated simultaneously. A
full description of UHV-GOMEA-Lt and Sofomore-GOMEA can be found here
[19]. We used the Python implementation of HIGA-MO [25], but extended it with
a dynamic reference point so that hypervolume gradients can also be computed
for solution sets with f+

0 > r0 or f+
1 > r1 (which is not an issue for the UHV-

based algorithms), where f+
i is the worst value for the ith objective in the set.

The dynamic reference point is set to r̂ = (max{1.1f+
0 , r0}, max{1.1f+

1 , r1}).
Algorithmic performance is always evaluated with respect to r.

As performance indicators, we consider the difference with the optimal hyper-
volume (for p MO-solutions) ΔHV(Ap) = HV(A�

p)−HV(Ap), where Ap = A(Sp)
is the approximation set given by Sp, and A�

p is the approximation set with opti-
mal hypervolume. The second measure we consider is the generational distance
(GD) [29]. The GD for problems 0 and 2 is computed analytically from their
known Pareto set [19]. For problems 1 and 3, the GD is computed based on a
sample of 5000 MO-solutions from a reference set. The GD is not Pareto com-
pliant, but it is a useful tool to measure proximity to the Pareto set. Finally,
we consider |Ap|, i.e., the number of non-dominated MO-solutions in Sp, which
we use to measure how well different mechanisms for handling dominated MO-
solutions perform. Unless mentioned otherwise, all experiments are repeated 10
times, and medians and inter-quartile ranges (IQR) are shown.

Table 2. Quadratic bi-objective benchmark problems. R applies a 45◦ rotation along
all axes. All MO-solutions are initialized in [−2, 2]n×p for problems 0–2 and [0, 2]n×p

for Problem 3.

# Problem f0 f1 Properties

0 Convex f(x) =
∑n−1

i=0 (xi)
2 f(x − c), with c = [1 0 . . . 0] Decomposable

Bi-sphere

1 Sphere & 1
n

f(x) (
√

WRx − √
Wc)ᵀ(

√
WRx − √

Wc), Wi,i = 10
−6i
n−1 Non-

Rotated decomposable,

ellipsoid Ill-conditioned

2 Concave f(x)
1
4 f(x − c)

1
4 Decomposable,

Bi-sphere Concave front

3 Sphere & f(x) 1
(n−1)

∑(n−2)
i=0 100

(
x(i+1) − x2

i

)2
+ (1 − xi)

2 Bimodal,

Rosenbrock Chained

dependencies

4.1 Convergence in Hypervolume on the Quadratic Functions

For the first experiment, we consider the quadratic bi-objective functions from
Table 2, with problem dimensionality n = 10. We consider solution sets Sp

of size p = 9. As we do not know HV(A�
p) analytically, the target HV is set

to maximal HVs obtained from lower dimensional instances. For UHV-Adam,
UHV-GA-MO, and HIGA-MO, the initial step size γ0 is set to one percent of the
mean initialization range. As in [19], UHV-GOMEA-Lt and Sofomore-GOMEA
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are run with population size N = 31 for the decomposable problems 0 and 2,
and N = 200 otherwise. All optimizers are run for 106 MO-evaluations or until
convergence criteria are met. Results are shown in Fig. 2. All gradient-based
algorithms reach the target hypervolume in all problems except for HIGA-MO
on Problem 3 which converges close to the target HV. HIGA-MO’s performance
is more volatile across runs which is especially visible in problems 1 and 3.
Both EAs, UHV-GOMEA-Lt and Sofomore-GOMEA, always obtain the tar-
get hypervolume, but require substantially more MO-evaluations. The IQRs of
gradient-based and EA-based algorithms only rarely intersect, indicating that
the faster convergence of gradient-based algorithms is robust to random ini-
tialization. These differences in performance are also reflected in GD(Ap). All
gradient-based algorithms obtain |Ap| = 9 non-dominated MO-solutions faster
than EAs. UHV-GA-MO and HIGA-MO reach |Ap| = 9 sooner than UHV-Adam
which indicates that the gradient ascent scheme (i.e., GA-MO vs. Adam) has
a larger effect on quickly finding non-dominated MO-solutions than the strat-
egy for handling dominated MO-solutions (i.e., UD vs. non-dominated sorting
of MO-solutions into multiple fronts in HIGA-MO).

Fig. 2. Results for the different algorithms with p = 9 on the benchmark problems
in Table 2 with n = 10. Lines indicate median values and shaded areas represent
the IQR. Dashed lines correspond to gradient-based algorithms with finite difference
gradient approximations. MO-evals: MO-evaluations.

Finite Difference Gradient Approximation. In practice it may well hap-
pen that analytic gradients are not available. In Fig. 2, it can be seen that the
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gradient-based algorithms lose much of their advantage over EA-based algo-
rithms when relying on finite difference gradient approximations. Their conver-
gence is only slightly faster (Problem 0), similar (Problem 3), or EAs now clearly
outperform them (Problem 2). In Problem 2, HIGA-MO-FD converges prema-
turely. Only in Problem 1, there is still evidence of advantages for gradient-based
algorithms: UHV-GA-MO-FD still convergences more than 10 times faster than
EA-based algorithms. This problem is highly dependent and ill-conditioned, and
a large population is required for the EAs to solve this problem, while gradient-
based algorithms directly capture these dependencies. These results also show
that finite difference gradient approximations not only increase the computa-
tional cost per iteration, but could also worsen convergence rates or even cause
stagnation. This is especially true for the GA-MO scheme. UHV-Adam-FD does
however not show a deterioration in the rate of convergence (besides the expected
shift of a factor 1+n). Adam was developed for stochastic gradient descent, and
uses a weighted average of current and past gradients instead of the gradient
itself, enabling it to handle the imprecise gradient approximations.

4.2 Effect of the Number of MO-Solutions p

When p is increased, the size of the to-be-optimized approximation set Ap is also
increased. This makes the resulting UHV optimization problem more difficult,
and dependency modelling becomes essential in order to obtain the optimal
distribution of MO-solutions along the front with UHV-GOMEA-Lt [19]. To
investigate the dependence of convergence speed on the number of MO-solutions
p, all gradient-based optimizers are applied on problems 0–2 with p = 2j + 1 for
j = 1, . . . , 7 and n = 10. Problem 3 is excluded as premature convergence to its
local optimum would obfuscate the comparison. All optimizers are run for 107

MO-evaluations or until convergence criteria are met. The target HV is set to
the maximal HV found across all algorithms. Parameter settings (N for UHV-
GOMEA-Lt, γ0 otherwise) were tuned experimentally across all p = 2j + 1: γ0

is set to 4 · 10−2 for UHV-Adam, 4 · 10−4 for UHV-GA-MO, and to 4 · 10−3

for HIGA-MO. UHV-GOMEA-Lt’s population sizes are scaled in p as the larger
parameter spaces require larger populations: N(p) = 
0.76p

1
4 Nbase�, where 
·�

is the rounding operator. Nbase = 31 for problems 0 and 2 and Nbase = 200
for Problem 1 as in Sect. 4.1. Sofomore-GOMEA interleaves optimizations of
individual MO-solutions, therefore N does not need to be scaled in p and N is
set to Nbase. The median ΔHV(Ap) in problems 0–2 with varying p is shown in
Fig. 3. All algorithms always reach the target HV with 10−10 accuracy for p ≤
17. As p increases, the ΔHV(Ap) of UHV-GOMEA-Lt and Sofomore-GOMEA
increases across problems. All gradient-based algorithms obtain lower ΔHV(Ap)
values than both EAs as p increases with the exception of Problem 2, in which
UHV-GOMEA-Lt and Sofomore-GOMEA scale better in p.
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Fig. 3. The median distance to the target HV after 107 MO-evaluations of all algo-
rithms for problems 0–2 with varying p and n = 10 over 10 repetitions.

4.3 WFG Benchmark

The WFG test suite [14] consists of 9 benchmark functions with different prop-
erties. WFG1 is decomposable, but has a flat region in the decision space, which
could cause stagnation. WFG2, WFG4, and WFG9 have one or more multimodal
objectives, which are expected to be difficult for gradient-based algorithms. Prob-
lems WFG4–9 have concave fronts, WFG1 has a convex front, WFG2 has a
disconnected convex front, and WFG3 has a linear front. We use finite dif-
ference approximations for the gradient-based algorithms. We again consider
bi-objective problems, and use kWFG = 4 position variables and lWFG = 20
distance variables, resulting in a total of n = 24 decision variables as originally
chosen in [15]. We solve these benchmarks with approximation sets of size p = 9
and a limited computational budget of 105 MO-evaluations. All experiments are
repeated 30 times. Differences are tested for statistical significance (up to 4 deci-
mals) by a Wilcoxon rank sum test with α = 0.05, pairwise to the best. Ranks (in
brackets) are computed based on the mean hypervolume. All statistics are com-
puted per table. For the gradient-based algorithms, we set γ0 = ‖Xinit‖ · 10−2,
and a population size of N = 200 was used for the population-based algorithms.
Results on the WFG benchmark are shown in Table 3. UHV-Adam-FD performs
best overall, while UHV-GA-MO-FD has worse performance on most problems.
As expected, the gradient-based algorithms perform worse on the multi-modal
problems WFG4 and WFG9. WFG2 has only one multimodal objective which
does not seem to be a problem for UHV-Adam-FD. All algorithms have difficul-
ties with the flat region in WFG1, and the worst overall hypervolume values are
obtained for this problem. The only algorithm that has an explicit mechanism
for handling flatness is HIGA-MO-FD, which consequently performs best for
WFG1. HIGA-MO-FD re-initializes MO-solutions if the gradient is zero, which
does not help traversing the plateau, but increases diversity. Note that we did not
add any mechanism to handle flatness in the other algorithms. Especially with
gradient-based algorithms, flatness is easily detected and a mechanism could
be added to improve performance. On the WFG problems with concave fronts,
UHV-Adam-FD performs well, in contrast to the previous results on the concave
bi-sphere, showing that it does not have difficulties with concavity in general.
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Table 3. Results on the WFG Benchmark. Hypervolume values are shown (mean,
± standard deviation (rank)). Finite differences (FD) are used for the gradient-based
algorithms. Bold are best scores per problem, or those not statistically different from it.

Problem Sofomore-GOMEA UHV-GOMEA-Lt UHV-ADAM-FD UHV-GA-MO-FD HIGA-MO-FD

WFG1 86.82 ± 0.68(4) 85.50 ± 0.24(5) 96.83 ± 0.24(3) 97.12 ± 0.22(2) 97.91 ± 0.56(1)

WFG2 109.60 ± 0.26(2) 109.38 ± 0.18(3) 114.13 ± 3.76(1) 108.79 ± 7.79(4) 100.13 ± 3.64(5)

WFG3 115.50 ± 0.27(2) 115.48 ± 0.17(3) 116.42 ± 0.01(1) 114.77 ± 0.34(4) 112.88 ± 0.67(5)

WFG4 110.95 ± 0.26(1) 109.17 ± 0.48(2) 105.99 ± 1.66(5) 107.09 ± 0.74(3) 106.07 ± 1.84(4)

WFG5 108.42 ± 0.99(3) 103.45 ± 1.21(5) 110.33 ± 0.97(1) 109.65 ± 1.29(2) 105.73 ± 1.55(4)

WFG6 113.15 ± 0.25(2) 109.64 ± 0.73(3) 114.28 ± 0.04(1) 109.58 ± 2.00(4) 109.49 ± 2.93(5)

WFG7 112.93 ± 0.48(4) 113.06 ± 0.36(3) 114.33 ± 0.03(1) 113.19 ± 0.59(2) 112.41 ± 0.51(5)

WFG8 109.72 ± 0.29(2) 109.27 ± 0.26(3) 111.22 ± 0.22(1) 109.17 ± 1.29(4) 105.98 ± 2.27(5)

WFG9 110.70 ± 1.71(1) 108.58 ± 0.57(3) 109.27 ± 0.66(2) 106.95 ± 2.02(4) 101.46 ± 2.87(5)

Rank 2.33 (2) 3.33 (4) 1.78 (1) 3.22 (3) 4.33 (5)

5 Discussion

We performed gradient-based multi-objective (MO) optimization by formulat-
ing the problem as a high-dimensional single-objective optimization problem
based on the uncrowded hypervolume (UHV). We presented how the gradient
of the UHV can be computed from the gradients of the MO function using the
chain rule. We further showed that UHV gradient optimization can be solved
with existing gradient ascent schemes, obtaining results competitive to or bet-
ter than EAs and another gradient-based algorithm that performs hypervolume
optimization. Future studies should additionally compare the presented UHV
gradient-based algorithms to popular dominance-based EAs for HV optimiza-
tion and investigate scalability also in n, the dimensionality of the underlying
MO problem.

We have shown that the UHV is an effective and efficient approach for obtain-
ing a set of non-dominated MO-solutions, that requires little to no extra care
during the optimization process. In [27], different techniques for steering domi-
nated points are compared, and the uncrowded distance (UD) we use here is rem-
iniscent of dominated point handling techniques such as secant slope weighting
or gap-filling. However, a diversity loss is noted there as a possible disadvantage
of gap-filling over the domination ranking technique employed in HIGA-MO, but
we did not observe this in our results (Fig. 2).

UHV gradient ascent is not very sensitive to the initial step size, scales better
when p is large (Fig. 3), and achieves a better hypervolume than EA-based UHV-
optimization while requiring significantly fewer function evaluations (Fig. 3).
When gradient information of the MO problem is missing, finite difference gra-
dient approximation can be used, requiring n + 1 MO-evaluations. Even with
such approximations, UHV gradient ascent is competitive or even outperforms
EAs on smaller computational budgets (Table 3), although ultimately EAs often
outperform the gradient-based algorithms. The effect of approximation errors in
the finite difference approximation in UHV gradient ascent is negligible when
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using the Adam gradient scheme [16], as it was developed for stochastic gradient
descent in which exact gradients are unavailable (or too expensive to compute).

Any algorithm based on the hypervolume is limited by the hypervolume’s
computational complexity increasing in the number of objectives m > 2, e.g.,
O(pm−2 log(p)) [11]. However, the approximation sets we consider are rather
small (e.g., p = 9), and UHV gradient ascent shows good scalability in p, which
encourages investigating cases with m > 2 objectives.

Finally, as any gradient-based algorithm, UHV gradient ascent suffers from
the risk of ending up in local optima. A future research direction therefore is to
hybridize UHV gradient ascent and EAs. Hybridization is however not trivial [4,
22] as both EAs and gradient-based algorithms rely on information of preceding
iterations, and interleaving different algorithms might disrupt these mechanisms.
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