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ABSTRACT
The emergence of brain-inspired neuromorphic computing as a par-
adigm for edge AI is motivating the search for high-performance
and efficient spiking neural networks to run on this hardware.
However, compared to classical neural networks in deep learning,
current spiking neural networks lack competitive performance in
compelling areas. Here, for sequential and streaming tasks, we
demonstrate how a novel type of adaptive spiking recurrent neural
network (SRNN) is able to achieve state-of-the-art performance
compared to other spiking neural networks and almost reach or
exceed the performance of classical recurrent neural networks
(RNNs) while exhibiting sparse activity. From this, we calculate
a >100x energy improvement for our SRNNs over classical RNNs
on the harder tasks. To achieve this, we model standard and adap-
tive multiple-timescale spiking neurons as self-recurrent neural
units, and leverage surrogate gradients and auto-differentiation in
the PyTorch Deep Learning framework to efficiently implement
backpropagation-through-time, including learning of the impor-
tant spiking neuron parameters to adapt our spiking neurons to
the tasks.

CCS CONCEPTS
•Computingmethodologies→Neural networks; Supervised
learning by classification; Continuous models.

KEYWORDS
spiking neural networks, backpropagation through time, surrogate
gradient

ACM Reference Format:
Bojian Yin, Federico Corradi, and Sander M. Bohté. 2020. Effective and
Efficient Computation with Multiple-timescale Spiking Recurrent Neural
Networks. In International Conference on Neuromorphic Systems 2020 (ICONS
2020), July 28–30, 2020, Oak Ridge, TN, USA. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3407197.3407225

1 INTRODUCTION
Modern deep neural networks have become highly capable in se-
lect applications of artificial intelligence. However, despite their
effectiveness, their energy consumption is a limiting factor for ap-
plication in many always-on application scenarios, like wearable
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intelligence devices, surveillance camera’s and smartwatch applica-
tions [31]. Standard efficiency approaches reduce the bit-precision
of weights [7, 12] and activations [9, 30], or scale and prune models
[34, 38]. These methods however still adhere to the standard model
of computation in artificial neural networks (ANNs), where activa-
tions are exchanged between neurons in a synchronous frame-based
manner at every iterative processing step.

Taking inspiration from the extremely efficient brain, spiking
neural networks (SNNs) [22] combine binary valued activations
(spikes) with asynchronous and sparse communication. Such SNNs
are arguably also more hardware friendly [10] and energy-efficient
[28]. However, compared to ANNs, the development of SNNs is in
its early phase. Training deep SNNs has remained a challenge as the
spiking neurons’ activation function is typically non-differentiable
and SNNs are thus not amenable to standard methods of error-
backpropagation [5, 25]. In particular, as spiking neurons can be
modeled as a class of self-recurrent neurons, learning algorithms
have to account for the past, and the resultant statefulness of SNNs
makes it hard to deal with simulating and training very large net-
works. Finally, many deep learning benchmarks are geared towards
the synchronized and iterative processing paradigm of ANNs, ex-
emplified by image classification tasks.

Recent work [6, 25] has demonstrated how the problem of a dis-
continuous gradient in spiking neural networks can be overcome
effectively in a generic fashion through the use of surrogate gra-
dients. This opens up new opportunities to leverage mature deep
learning techniques in larger and more complex SNNs.

Here, we develop compact recurrent networks of spiking neu-
rons (SRNNs) which we train using such surrogate gradients to
directly apply back-propagation-through-time (BPTT) with auto-
differentiation in a well-developed modern deep learning frame-
work (PyTorch). Using this framework, we can also easily train the
parameters of the spiking neurons themselves, also for complex
spiking neuron models with multiple dynamical timescales. As we
show, this approach makes it feasible to adapt such spiking neural
networks to the particular temporal dynamics of the task.

We focus on sequential and streaming classification benchmarks
with limited input dimensionality, including the well known se-
quential and permuted-sequential MNIST datasets (S-MNIST, PS-
MNIST), the QTDB waveform classification of ECG, and the audio
Spiking Heidelberg Digits dataset (SHD), tasks exemplary for var-
ious always-on edge computing devices that require low-power
consumption. We demonstrate how our compact SRNNs can solve
these complex tasks, exceeding SoTa in SNNs, and approaching or
even exceeding SoTa compared to classical ANNs. On these tasks,
the SRNNs demonstrate low to very low sparsity, and we show that
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this results in an >100x improvement in theoretical energy use over
high-performing ANNs.

2 RELATEDWORK
In standard deep learning, convolutional neural networks (CNNs)
are widely used on visual tasks such as image classification and
object recognition, while recurrent neural network (RNNs) are more
generally applied to tasks that involve temporal patterns fed into
the network as sequential input. In RNNs, recurrency in the network
induces memory in the form of internal hidden states ht which are
updated while time-stepped input xt feeds in. For learning, because
of the induced memory, RNNs are typically unrolled in time, for
example using Backpropagation-Through-Time (BPTT) [24, 37] to
account for the relationship between past inputs and current state.
BPTT however is both computationally expensive and tends to
suffer from stability problems when computing the gradients.

Several alternative RNN variants have been developed to ease
and improve learning in standard RNNs. The LSTM (Long Short-
Term Memory) unit [14] was designed specifically as an RNN for
sequential machine learning tasks like speech recognition, language
understanding and sequence to sequence translation [13]. More
recent innovations, like the IndRNN [20], borrow from the success
of residual connections in CNNs to facilitate the gradient flow in
the network and achieve state-of-the-art RNN performance. Alter-
natively, causal convolutional neural networks [27] have also been
applied successfully to sequential tasks [4] but have substantial
network-size and data-history memory requirements.

Spiking neural networks [23] comprise of a class of event-based
neural networks inspired by more detailed models of biological
neurons. Biological neurons differ from the standard neurons in
ANNs in the sense that they have internal state and communicate
via isomorphic electrical pulses - spikes. The low average firing rate
in the brain [1-5Hz] [2] suggests that much effective and efficient
computing can be done with stateful event-driven neurons that
only sparingly exchange binary values [28].

For SNNs, learning rules for both feedforward and recurrent
spiking neural networks have been developed [3, 5, 6, 15, 29, 33, 40],
applying different types of spike-coding paradigms and learning
methodologies. Recent work has achieved high performance in
tasks like image classification [35, 39]; still, it is unclear whether
such SNNs are more efficient compared to conventional CNNs.

One direction where potentially a clear advantage for SNNs
can be obtained is tasks that fit their inherently temporal mode of
computation and that can be computed with relatively compact
networks fitting low-power neuromorphic hardware. Recent work
has shown substantial progress in LIDAR [36] and speech recogni-
tion [3, 8]. Still, in these tasks, a significant performance gap exists
between SNNs and current deep learning solutions.

3 SPIKING RECURRENT NEURAL
NETWORKS

Here, we focus on SNNs that comprise of one or more recurrent
layers, Spiking Recurrent Neural Networks (SRNNs), illustrated in
Fig. 1. Within these networks, we use one of two types of spik-
ing neurons: Leaky-Integrate-and-Fire (LIF) neurons and Adaptive
spiking neurons. Spiking neurons are derived from models that

Figure 1: An SRNN with two recurrent layers. Neurons
within a layer are fully recurrently connected, between lay-
ers neurons are fully connected with forward connections.

capture the behavior of biological neurons [11]. Complex models
like the Hodgkin-Huxley model describe the detailed dynamics of
biophysical quantities but are costly to compute; phenomenological
models like the Leaky-Integrate-and-Fire (LIF) neuron model or
the Spike Response Model trade-off levels of biological realism for
interpretability and reduced computational cost.

The LIF spiking neuron integrates input current It in a leaky
fashion and fires an action potential when its membrane potential
ut crosses a fixed threshold θ from below, at which time a spike
st is emitted, a process modeled as a nonlinear function f̂s (ut ,θ ),
after which the membrane potential is reset to ur :

τm
du

dt
= −(ut − ur ) + Rm It (1)

st = f̂s (ut ,θ ) (2)
ut = ut (1 − st ) + ur st , (3)

where It =
∑
ti δ (ti ) is the input signal expressed as a spike-train

{ti }, ut is the membrane potential decaying exponentially with
time-constant τm , Rm is the membrane resistance, and the emission
of spike Spike is expressed as a nonlinear function of threshold and
potential: Spike = f̂s (ut ,θ ). The LIF neuron is cheap to compute
[17], but lacks much of the more complex behavior of real neurons,
including responses that exhibit longer history dependencies.

Bellec et al [3] demonstrate that using more complex, adapting
spiking neuron models improved performance in their SNNs. In
the adaptive spiking neuron, the threshold is increased after each
emitted spike and then decays exponentially with time-constant
τadp . Simulating the continuous neuron model in discrete time
using the forward-Euler first-order exponential integrator method
for dt = 1ms , we compute:

α = exp(−dt/τm ) (4)
ρ = exp(−dt/τadp ) (5)
ηt = ρηt−1 + (1 − ρ)St−1 (6)
θ = b0 + βηt (7)
ut = αut−1 + (1 − α)Rm It − St−1θ , (8)

where θ is a dynamical threshold comprised of a fixed minimal
threshold b0 and an adaptive contribution βηt ; ρ expresses the de-
cay single-timestep decay of the threshold with time-constant τadp .
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Figure 2: LIF and Adaptive spiking neuron behaviour. (a,c) Impinging input spikes (red) increase (or decrease) the membrane
potential (blue) which then decays back to the resting potential (0). When the potential reaches the fixed threshold θ0 (yellow
dotted line), an output spike is emitted (green cross) and the potential is reset to the resting potential. In the Adaptive spiking
neuron (c), the threshold is increased for every emitted spike, and then decays back to the resting threshold θ0. (b,d) The decay
of the membrane potential and adaptation can be modeled as self-recurrency.

The parameter β is a constant that controls the size of adaptation
of the threshold (eq. (8)); we set β to 1.8 for adaptive neurons as
default. Similarly, α expresses the single time-step decay of the
membrane potential with time-constant τm .

Fig. 2 illustrates the behaviour of the two spiking neuron models
in terms of evolution of the membrane potential, threshold and
spiking behavior. Inspecting these neuron models, we see that the
evolution of the membrane potential is determined by the self-decay
term α and similarly, for the adapting neuron, the threshold by the
self-decay term ρ: effectively, the behavior of spiking neurons can be
modeled as being self-recurrent with weights α and ρ (Fig. 2). In our
network implementation, we set these self-recurrent parameters,
τm , τadp , as trainable, as they directly relate to the effective duration
of “memory” in the neuron, and we hypothesise that optimizing
these to characteristics will increase performance.

To determine the effectiveness of the SNN approach, we can also
turn the SNN network into a corresponding RNN network with
RELU activation function by communicating to other neurons the
membrane potential at every timestep rather than the occasional
spike, replacing (8) with:

St = RELU (ut − θ ) (9)

Backpropagation-Through-Time (BPTT). To train an SRNN, we
apply Backpropagation-Through-Time (BPTT) [24, 37]. With BPTT,
the difference between the output predictions and output targets is
propagated back from outputs to inputs, including past inputs, to
optimize the weights and parameters by gradient descent. Concep-
tually, BPTT unrolls the network for all input timesteps.

To compute the gradient through the discontinuous spiking
mechanism, we apply the surrogate gradient approach as general-
ized in [25] from earlier specific instances [5, 6]. To approximate
the error-gradient through the discontinuous spike-generator of
spiking neurons, the surrogate gradient approach substitutes this
non-existing gradient with a derivative connecting the outgoing
spike to the internal membrane potential. Multiple derivatives have
been proposed [25]; here, we use a Gaussian: f̂s

′
(ut ) = N(ut |θ ,σ

2)
where the mean of the distribution is θ – the threshold, with stan-
dard deviation σ – the tolerance or variance – used to scale the
membrane potential for error-backpropagation. Unless stated oth-
erwise, we set σ to 0.5.

To define the loss-function that BPTT minimizes, we need to
take into account the kind of task that is being performed and the

kind of label that we have: for a sequential classification task, we
receive a sequence of inputs and can make a decision at the end of
the sequence. In a streaming task, we need to generate an output at
every time step t . The loss-function is further defined by the error-
metric, for which we can define a number of different approaches
for interpreting the behavior of the output neurons.

Decoding SRNNs. Decoding the output of an SNN directly relates
to the interpretation of the spiking neuron’s behavior. Both the
membrane potential trace and spike history, either in spike-counts
and/or spike-timing, of the output neurons can be used to represent
the belief of each class. We define a number of such output decoding
methods and their associated loss-function.

Spike-based classification.When a neuron emits a spike, this
is caused by themembrane potential (the hidden state of the neuron)
reaching threshold. In a classification task, a simple classification
method is to count the number of spikes in a certain time-window.
While straightforward, this method has some shortcomings, that
may result in misclassifications: (1) some output neurons may fire
the same number of spikes; (2) the reset and refectory mechanism of
the spiking neuron may reduce the firing rate of a strong stimulus;
and (3) real-time readout from single neurons is not feasible. As
an alternative, we can use direct measures of the output neurons
available at each time-step.

Direct measures. The membrane potential of an output neuron
can also be used for classification, as it represents a measure of
output neuron’s stimulus history. We define several methods to
decode the results from the membrane potential history:

(1) Last-timestep membrane potential: we take the value of the
output membrane potential at the last time step of a sample
as the output. Using a softmax activation, we then scale the
outputs similar to the softmax function in ANNs.

(2) Max-over-time membrane potential as: we take as the value
of the output neurons the maximum membrane potential
reached during presentation of the sample.

(3) The readout integrator: while the membrane potential can be
interpreted as a moving average of a neuron’s activation, the
resets caused by spiking do not fit in this notion. We define
a non-spiking readout layer where the membrane potential
is computed without the neuron spiking and resetting. This
avoids the effect of reset mechanism of the spike neuron on
classification performance. The readout integrator is defined
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Figure 3: Top: example of the labeled ECG signal. The three
basic parts of the signal, P,T and complexQRSwave are color
labeled. Bottom: relative waveform label distribution.

as ut = αut + (1 − α)xt where ut is the output membrane
potential and xt is the input spike train. α = exp(−τm/dt)
where τm is a trainable time constant. We use the average
value over time for the non-spiking readout neurons.

Variants of all three approaches were previously used in [8]; for
streaming tasks, classifications are needed for every time-step, and
when using only single neurons to represent outputs, we can only
use the direct measurements.

To train the network, as in [8], we use the cross-entropy function
as the error function. In a streaming task, the readout membrane
potentials are used as output and compared to the corresponding
targets at each timestep. In the classification tasks, the output after
reading the whole sequence is compared with the correct label of
the sequence. Note that in [8], cross-entropy is computed either for
the max-over-time and last-time-step decoding.

We implemented the various SRNNs in PyTorch, where the use
of surrogate gradients allowed us to apply BPTT to minimize the
loss efficiently, and also to leverage standard deep learning opti-
mizations, including the training of spiking neuron parameters.

4 EXPERIMENTS
We apply the approach outlined above to a number of sequential
classification and streaming classification tasks: waveform classi-
fication in ECG signals in the QTDB dataset, the sequential and
permuted sequential MNIST problem (S-MNIST, PS-MNIST), and
the Spoken Heidelberg Digits (SHD) dataset.

Encoding and decoding. SNNs as an event-driven neural net-
work heavily rely on an encoding mechanism to convert external
measures into spike-trains that feed into the network. Several ap-
proaches have been used to convert static or continuously chang-
ing values into spike-trains. In DVS-sensors [21], a level-crossing
scheme is used to encode a time-continuous signal into spikes; more
generically, rate-based Poisson population encoding has been used
[26, 32]. Emperically, we found that different decoding schemes
were best for different tasks: for the ECG task, decoding directly at
every timestep from the membrane potential worked best, for the
S-MNIST and PS-MNIST, it was spike-counting and for the SHD
task the average readout integrator was most effective.

Task Method Network Acc. Fr

ECG
QTDB

Adaptive SRNN 46 84.4% .32
LIF SRNN 46 73.7% .31
RELU SRNN 46 86.4%
LSTM 46 78.9%
GRU 46 77.3%
Vanilla RNN 46 74.8%
Bid-LSTM290 290 80.76%

S-MNIST

Adaptive SRNN 40(I)+256+128 97.82% .077
Adaptive SRNN 80(I)+120+100 97.2% .075
LIF SRNN 40(I)+256+128 10∗∗%
LSNN (L2L) [3] 80(I)+120+100 93.7%
LSNN (L2L+DeepR) [3] 80(I)+120+100 96.4%
RELU SRNN 40(I)+256+128 98.99%
Dense IndRNN [20] 99.48%
LSTM [1] 128 98.2%

PS-MNIST

Adaptive SRNN 40(I)+256+128 91.0% .102
LIF SRNN 80(I)+512+50 10∗∗%
RELU SRNN 40(I)+256+128 93.47%
Dense IndRNN [20] 97.2%
LSTM [1] 128 88%

SHD

Adaptive SRNN (4ms) 128 79.4% .071
Adaptive SRNN (4ms) 256 81.71% .049
Adaptive SRNN (4ms) 128+128 84.4% .103
LIF SRNN (4ms) 256 78.93% .021
LIF RSNN [8] 128*3 71.4%
RELU SRNN (4ms) 128+128 88.93%
LSTM [8]+ 128 85.7%
CNN+ [8] 1,014,036 92.4%

Table 1: ECG, S-MNIST, PS-MNIST and SHD results. (I) de-
notes the number of population input coding. ∗∗: the net-
work did not learn. Bid-LSTM is a Bi-directional LSTM neu-
ral network. Model+ is using the binned count as encoding
method. Italicmethods areANNnetworks. Fr denotes the av-
erage sparsity in the SNN (spikes per neuron per time-step).

ECG. The analysis of electrocardiograms (ECGs) is widely used
for monitoring the functionality of the cardiovascular system. As
a kind of time-series data, ECG signals can be used to detect and
recognize different waveforms and morphologies in heart-function.
For a human, the recognition task is time-consuming and relies
heavily on experience.

Waveform classification. In an ECG signal, there are three
meaningful parts of cardiac period including P-wave, T -wave and
theQRS-complex [16]. In detail, theQRS part consists of aQ-wave,
an R-peak and an S-wave. In a monitoring task, we aim to contin-
uously recognize the present type of wave. The streaming task is
thus to character-wise recognize all six patterns of the ECG wave –
P , PQ , QR, RS , ST , and TP . An example of an ECG signal and the
relative distribution of the 6 labels is shown in Fig. 3.

QTDB is the one of the most widely used ECG datasets for
wave segmentation, where the data is well labeled in the temporal
dimension. Each sample has two channels – ’a’ and ’b’, and this
provide additional spatial information. The original data consist
of float values for each timestep; to convert this signal into an
event-based one, we applied level-crossing encoding on the ECG
signal to convert the continuous values into spike-trains. Level-
crossing is applied to the normalized ECG signal by converting
each channel signal into two spike channels representing increasing
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and decreasing event respectively. A spike is generated when the
amplitude increase or decrease is larger than a threshold – here,
we use 0.3 as a threshold. The result is a compression of the ECG
signal by about 75%.

We apply several RNNs and SRNNs for ECG waveform classifi-
cation, see Table 1. We find that the SRNNs with adaptive spiking
neurons achieved the best performance of 84.4% with the smallest
size neural network of 46 neurons (36 hidden, 4 input and 4 output
neurons). A same-sized SRNN comprised of LIF neurons achieved
only 73.7%. The LSTM and vanilla RNN with the same network
structure achieved 78.9%, 77.3% and 74.8% accuracy respectively; a
birectional-LSTM with 290 units achieved 80.76% . The best perfor-
mance (86.4%) was obtained by turning the adaptive SRNN into an
ANN, the RELU SRNN.

The accuracy results are presented by evaluating the input that
had been fed in at every time step, which is sampled at 250 Hz.
No delay between input and output evaluation have been taken
into account. In contrast to the spikes input generated by the level-
crossing encoding that the SRNN receives as input, the LSTM and
RNN networks receive floating point values at their inputs. These
values represent the ADC sample values (12 bits precision).

S-MNIST and PS-MNIST. The MNIST dataset is the seminal com-
puter vision classification task. The Sequential MNIST (S-MNIST)
benchmark and Permuted MNIST (PS-MNIST) benchmark were
introduced as corresponding problems for sequential data process-
ing [19], presenting each pixel in an MNIST image pixel by pixel,
resulting in a sequence of length 28 × 28 = 784.

Figure 4: An example from preprocessed and padded SHD
dataset. Top: a sample from the SHD dataset, Middle: cor-
responding processed input spike trains, Bottom: the spike
count summed over all 700 input channels.

For S-MNIST the state of the art accuracy is 99.48% obtained
with the Dense IndRNN [20]; the best reported performance of
an LSTM is 98.2% [1]. For these RNNs, the analogue grey pixel
value is directly fed as input into the network. With SNNs, Bellec
et al. [3] obtained 93.7% on the S-MNIST task using eProp and
population Poisson encoding to encode the grey pixel values, and
96.4% when additionally using a learning-2-learn meta-learning
framework. As can be seen in Table 1, our adaptive SRNNs using two
recurrent layers obtained 97.82% with the same encoding scheme;
with the same network layout and size as [3] the SRNN achieved
97.2%. When using LIF neurons in various SRNN architectures, the
networks failed to learn; turning the adaptive SRNN into an ANN
again however increased performance to 98.99%, approaching the
Dense IndRNN accuracy.

PS-MNIST is a harder problem than S-MNIST, as first a permu-
tation is applied to all images before sequentially reading the image
pixel-by-pixel [19]. The permutation strongly distorts the temporal
pattern in the input sequence, making the task more difficult than
S-MNIST. The Dense IndRNN [20] here obtained 97.2% accuracy;
the LSTM [1] achieved only 88%. We are not aware of any SNNs
benchmark data on this task; our adaptive SRNN achieved 91.0%
accuracy on the test dataset; the LIF SRNN again failed to learn
while the RELU SRNN obtained 93.47%.

SHD. The Spoken Heidelberg Digits spiking dataset was devel-
oped specifically for benchmarking spiking neural networks [8].
It was created based on the Heidelberg Digits (HD) audio dataset
which comprises of 20 classes of spoken digits from zero to nine in
English and German, spoken by 12 individuals. For training and
evaluation, the dataset (10420 samples) is split into a training set
(8156 samples) and test set (2264 samples). An LSTM with 128 units
achieved 85.7% [8], where the continuous time stream is binned
into 10ms segments and the spike-count in each bin was used as
input for the LSTM. For comparison, treating each sample as an
image to train a deep CNN with over 1 million neurons achieves
92.4% [8]. Using a three layer spiking recurrent network comprised
of LIF neurons with 128 neurons in each layer, [8] obtained 71.4%.

To apply our SRNNs, we converted all audio samples into 250-
by-700 binary matrices. For this, all samples were fit within a 1
second window; shorter samples were padded with zeros and longer
samples were cut by removing the tail (the latter applied to only 20
samples, with the longest sampling being 1.17s; visual inspection
showed no significant data in the tail – an example is shown in
Fig 4). Spikes were then binned in time bins both of size 10ms and
4ms; for the SRNNs, the presence or non-presence of any spikes
in the time-bin is noted as a single binary event; for the LSTMs,
the spike-count in a bin is used as the (binary) input value. During
training, a 10% subset of the original training dataset was used
for validation, with Adam [18] as the default optimizer. The initial
learning rate is set to 0.01 with a 50% decay at epoch 10, 50, 120 and
200. For the non-spiking RELU SRNN, 50 training epochs sufficed.
We trained SRNNs both with a single recurrent layer and with
two recurrent layers, with LIF or adaptive spiking neurons. The
membrane potential of each SRNN neuron was set to a random
number between 0 and 1 at the start of each sample.
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Figure 5: SRNN performance versus sparsity for the SHD
task. The node size indicates network size.

For an adaptive SRNN with two layers of 128 adaptive spiking
neurons, trained on the 4ms binned data, we obtained 84.4% ac-
curacy, approaching the 128 unit LSTM in [8]. An adaptive SRNN
with a single layer of 256 spiking neurons achieved 81.71%, demon-
strating the utility of having multiple recurrent layers in an SRNN.
Similarly, a LIF SRNN with a single recurrent layer of 256 neurons
achieves only 78.93%. The non-spiking RELU SRNN substantially
outperforms the spiking SRNN, obtaining an accuracy of 88.93%.

Sparsity. In Table 1, we also note the sparsity (Fr) of the trained
SRNNs, where sparsity is defined as the percentage of active neu-
rons at each step. We find that for the ECG task, neurons fire on
average once every 3 timesteps (FR=0.32), where this relatively low
sparsity is likely caused by the need to read out class labels at every
timestep. For the MNIST tasks, sparsity is much higher, varying
between 0.07 and 0.1, and for the SHD task, sparsity varies between
0.02 and 0.13, mostly as a function of accuracy.

For SHD, we investigated the relationship between network
performance and sparsity for different size networks in more detail.
In Fig 5, we see that the network performance can be increased and
sparsity improved at the same time by increasing the size of the
network. We also see that the performance advantage of adaptive
neurons compared to LIF neuron comes at the expense of sparsity.

Complexity of Spiking Neurons. In general, we find that using
adaptive spiking neurons with time-constants adjusted during train-
ing substantially outperform LIF neurons, as illustrated in Fig 6(a).
As can be seen in Fig 6(b), training these time-constants substan-
tially improved performance, illustrated for the SHD dataset, as
successive ablation of training these parameters reduces perfor-
mance. As illustrated in Fig 7, training also substantially modifies
these parameters: shown is both the initial histogram of τadp in
the SHD task and the histogram after training.

5 EFFICIENCY
A hotly debated topic is whether or not SNNs can achieve a mean-
ingful power-reduction compared to ANNs [28]. Here we derive
theoretical energy values based on power numbers at the register
transfer logic (RTL) level for 45nm CMOS technology from [28].

Figure 6: (a) Effect of neuron types on performance for each
task; (b) Successive ablation (non-training) of training time-
constants in the adaptive and LIF neurons on the SHD task.

Figure 7: Histogram of τadp values at network initialization
(yellow) and after training (blue) on the SHD task.

We calculate the theoretical energy consumption of a recurrent
network by counting the required operations per timestep. We
count both multiply-and-accumulate operations (MACs) and accu-
mulate (AC) operations. [28]. A standard artificial neuron requires
a MAC for each input; in contrast, a spiking neuron only requires
an accumulate (AC) for each input spike, while it’s internal state
dynamics require some MACs.

In a network, we thus need to consider the number fan-in con-
nection into a neuron, the number of neurons in a layer, and the
cost internal calculations. For example, consider a recurrent opera-
tion at layer l that is defined as yl,t = f (W · xt +Wr ec ·yl,t−1) + b
with input size m and output size n: this requires two multiply

Network Recurrent Energy/layer
LIF Yes (mn + nn)EAC Fr

Adaptive Yes (mn + nn + 2n)EAC Fr
+2nEMAC

LIF No (mn)EAC Fr

Adaptive No (mn + 2n)EAC Fr
+2nEMAC

RNN Yes (mn + nn)EMAC
Adaptive∗ Yes (mn + nn + 4n)EMAC
LSTM Yes (4mn + 4nn + 3n)EMAC
Bir-LSTM Yes 2(4mn + 4nn + 3n)EMAC

Table 2: Energy consumption per layer for various neurons.
The network layer l with input size is m and output size is
n. EAC is the energy cost per AC, EMAC the cost per MAC.
Adaptive∗ is the non spiking adaptive neuron.



Effective and Efficient Computation with Multiple-timescale Spiking Recurrent Neural Networks ICONS 2020, July 28–30, 2020, Oak Ridge, TN, USA

Figure 8: Scatter plot of energy and error ratio on each task. The Adaptive SRNN model is used as unit baseline performance
for both energy and error ratio.

operations and one accumulate operation. The energy required for
the RNN is then computed as Enerдyrnn = (mn + nn)EMAC , for
every timestep. In the SNN however, the sparse spiking activity
of the network (the average Firing Rate Fr ) needs to be consid-
ered: Enerдysrnn = (mn+nn)EACFr , with Fr << 1 in SRNNs with
sparse activity.

We compute the theoretical energy cost of a recurrent network
RNN as the sum over all L layers and all T time steps, Ernn =∑
t ∈T

∑
l ∈L Enerдyl,t : we computed the MACs/ACs and energy

use for various recurrent networks in Table 2. For the network
architectures used in this study, we then calculate the actual relative
energy cost in Table 3, and we plot the Accuracy vs Energy ratio
for the various networks in Fig 8. In Fig 8, we see that our SRNN
solutions lie on the Pareto front of energy efficient and effective
networks, with the spiking adaptive SRNN achieving close to the
RELU SRNN performance while theoretically being 28–243x more
energy efficient. Compared to more classical RNNs on the more
complex SHD and (P)S-MNIST tasks, we calculate the SRNNs to be
>100x more energy efficient as in these larger networks both the
fan-in factor and sparsity increases.

6 CONCLUSIONS
We demonstrated how competitive recurrent spiking neural net-
works can be trained using backpropagation-through-time (BPTT)
and surrogate gradients on classical and novel time-continuous
tasks, achieving novel state-of-the-art for spiking neural networks
and approaching or exceeding state-of-the-art for classical RNNs
on these tasks. Calculating the theoretical energy cost, we find that
our spiking SRNNs are up to 243X more efficient than the slightly
better performing analog RELU SRNN, and up to 1900x times more
efficient than similarly performing classical RNNs like LSTMs.

We showed that using more complex adaptive spiking neurons
was key to achieving these results, in particular by also training
the individual time-constants of these spiking neurons, also using
BPTT. Having two time-constants, the adaptive spiking neuron
effectively maintains a multiple-timescale memory. We hypothesise
that this approach is so effective because it allows the memory in
the network to be adapted to the temporal dynamics of the task.
Surprisingly, converting the SRNN to a non-spiking RELU RNN
consistently increased performance, suggesting that the nested
hierarchical recurrent network architecture is particularly effective.

Training these complex SRNNs including the various parame-
ters was only feasible because, by using surrogate gradients, we
were able to use a mature and advanced deep learning framework
(PyTorch) and benefit from the automated differentiation to also
train spiking neuron parameters1. We believe this approach opens
up new opportunities for improving and scaling SNNs further.
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