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Abstract. We address the real-world problem of automating the design
of high-quality prostate cancer treatment plans in case of high-dose-
rate brachytherapy, a form of internal radiotherapy. For this, recently
a bi-objective real-valued problem formulation was introduced. With a
GPU parallelization of the Multi-Objective Real-Valued Gene-pool Opti-
mal Mixing Evolutionary Algorithm (MO-RV-GOMEA), good treatment
plans were found in clinically acceptable running times. However, opti-
mizing a treatment plan and delivering it to the patient in practice is a
two-stage decision process and involves a number of uncertainties. Firstly,
there is uncertainty in the identified organ boundaries due to the limited
resolution of the medical images. Secondly, the treatment involves plac-
ing catheters inside the patient, which always end up (slightly) different
from what was optimized. An important factor is therefore the robustness
of the final treatment plan to these uncertainties. In this work, we show
how we can extend the evolutionary optimization approach to find robust
plans using multiple scenarios without linearly increasing the amount of
required computation effort, as well as how to deal with these uncertain-
ties efficiently when taking into account the sequential decision-making
moments. The performance is tested on three real-world patient cases.
We find that MO-RV-GOMEA is equally well capable of solving the
more complex robust problem formulation, resulting in a more realistic
reflection of the treatment plan qualities.
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1 Introduction

Brachytherapy is a form of internal radiotherapy that can be used for treating
prostate cancer. The treatment involves intraoperative placement of a number
of very thin needles, called catheters, inside the patient, for a radioactive source
to be moved through. The entire procedure is a two-stage sequential decision-
making process. The first part is determining how to place the catheters, after
which the catheters are actually placed. The second part is determining how
to move the radioactive source through the catheters, which is performed after
catheter placement. Each catheter has a fixed set of positions, called dwell posi-
tions, where the radioactive source can pause for certain amounts of time, called
dwell times. The workflow is illustrated in Fig. 1.

Fig. 1. The simulation workflow used to study robust optimization. Purple blocks
indicate decision-making stages. (Color figure online)

Key quality indicators can be formulated for treatment plans, enabling opti-
mization to support decision making. For the first part, both catheter position
variables and dwell time variables play a role. For the second part, only the
dwell time variables still play a role. On the one hand, enough catheters should
be placed to ensure a good treatment. On the other hand, a larger number
of catheters increases the risk of complications for the patient. The number of
catheters is therefore an important part of the catheter position optimization.
Since catheter placement is performed in the operating room, no changes to the
catheters can be made afterwards. The result of catheter position optimization
(that includes dwell times) should therefore be representative of what can be
achieved in the dwell time optimization.

Optimizing brachytherapy is difficult, for multiple reasons. Firstly, the prob-
lem is inherently multi-objective, due to the trade-off between radiation dose to
the tumor (which you want to maximize) and to the surrounding tissue (which
you want to minimize). Secondly, the objective functions comprising the multi-
objective problem are such that there is no gradient information. Thirdly, there
are time constraints on the optimization due to the patient waiting for treat-
ment. For solving difficult multi-objective problems, Evolutionary Algorithms
(EAs) are the state-of-the-art [3]. Previous work on bi-objective optimization
for both dwell times [2] and catheter positions [11] has shown promising results.

Since all problem variables in the second stage are already part of the first
stage, arguably there is no need for a two-stage optimization process. After a
single optimization, both decisions can be made and executed. However, in prac-
tice such a one-shot approach is not sufficient, because brachytherapy involves
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a number of uncertainties. Firstly, there is uncertainty in the identified organ
boundaries due to the limited resolution of the medical images used for treatment
planning. Secondly, catheters always end up (slightly) different in the patient
from what was planned. Therefore, to ensure the best possible plans, the dwell
times should be re-optimized after actual catheter placement has taken place.
To avoid overly optimistic catheter position optimization fronts, that may lead
to the wrong conclusion about how many catheters are needed for a particu-
lar patient in the first decision phase, these uncertainties should be taken into
account in the optimization problem. Since the most time consuming part of the
optimization is the calculation of the objective functions of a treatment plan,
straightforwardly applying robust optimization would result in clinically infea-
sible run times.

In this work, we will introduce robust optimization to the full workflow for
high-dose-rate prostate brachytherapy, while still keeping the run times low. The
aim is for the optimization fronts to be representative of what can be achieved
in clinical practice. Specifically, the catheter position optimization fronts should
be representative of what can be achieved later in the dwell time optimization.
We will evaluate the run time of the optimization, as well as the robustness of
the resulting treatment plans.

2 Background

2.1 Insightful Decision Support via Bi-objective Optimization

The ultimate goal is to obtain the highest quality treatment plan to be used for
the dose delivery. There are several key evaluation criteria that can be mathe-
matically formulated, enabling the use of optimization methods. For an in-depth
explanation of all details involved, we refer the interested reader to related lit-
erature [11]. Here, we briefly summarize the most important concepts.

In clinical practice, the evaluation of a treatment plan is based on a clinical
protocol, which describes how much radiation the prostate and seminal vesicles
should receive as part of the treatment, as well as how much dose is maximally
allowed to the surrounding healthy organs to avoid complications. This radiation
dose that is prescribed for the prostate is called the planning-aim dose. The
clinical protocol of the Amsterdam UMC is formulated in terms of so-called
dose-volume indices. There are two types of dose-volume indices; volume indices
and dose indices. A volume index V o

x is the volume of organ o that receives at
least x% of the planning-aim dose. A dose index Do

x is the lowest dose to the
most irradiated xcm3 of organ o.

Single-objective optimization approaches are often based on a simplified ver-
sion of the clinical protocol [7,8]. All objectives following from the simplified
protocol are combined into a single optimization function by the weighted-sum
approach. As a result, optimized treatment plans often require manual improve-
ments by the medical planners [4], which is a time-consuming and little insight-
ful process. Alternatively, optimizing for all these indices would entail solving a
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many-objective optimization problem, for which the results are not straightfor-
ward to interpret, visualize, and use for decision making.

For this reason, two grouped objectives were defined that have proven effec-
tive and insightful for clinical practice [9]. The resulting bi-objective optimiza-
tion model is based directly on the clinical protocol. Dose-volume index criteria
related to the dose coverage of the prostate and the seminal vesicles are combined
into the Least Coverage Index (LCI). Criteria related to the sparing of organs at
risk, namely rectum, bladder, and urethra, are combined into the Least Sparing
Index (LSI). Upper bounds to the amount of radiation the prostate can receive
also fall under the LSI. Since it is unknown a priori how to weight the differ-
ent dose-volume index criteria, the objectives are constructed by combining the
criteria in a worst-case manner, which was observed to be much related to how
plans are manually improved in clinical practice. This results in the following
optimization objectives:

LCI = min
{
V prostate
100% − 95, V vesicles

80% − 95
}
,

LSI = min
{
86 − Dbladder

1cm3 , 74 − Dbladder
2cm3 , 78 − Drectum

1cm3 , 74 − Drectum
2cm3 ,

110 − Durethra
0.1cm3 , 50 − V prostate

150% , 20 − V prostate
200%

}
.

(1)

For catheter position optimization, an additional constraint on the healthy tissue
immediately surrounding the prostate is necessary [11]. This constraint is based
on the number of catheters N :

C =

{
V healthy tissue
200% − 0.125N, for LSI ≥ −25

V healthy tissue
200% − 0.125N

(
1 + −25−LSI

100

)
, for LSI < −25

}

≤ 0. (2)

The result of solving this problem is a trade-off curve of treatment plans that,
when satisfying LCI > 0 and LSI > 0 (and C ≤ 0) adhere to the clinical protocol.
Visualizing this makes the most important trade-offs immediately insightful, as
well as whether the clinical protocol can be achieved.

2.2 Problem Variables

As mentioned in the introduction, there are two decision phases. In the first
phase, the catheter positions need to be optimized. To use the model of Sect. 2.1,
we also need to set the dwell times per catheter. Hence, in the first phase, all
catheter positions are optimized at the same time as the dwell times pertaining
to these catheters. In the second phase, the catheter positions are fixed, and only
the dwell times are to be optimized.

For catheter position optimization, the number of catheters is given as input.
Moreover, constraints are added to the optimization model describing which
catheter positions are feasible. Catheters have to be inside either the prostate
(with a −1 mm margin) or the seminal vesicles. Catheters are not allowed to
intersect with either rectum or urethra (both with a 1 mm margin). Finally, the
distance between the surfaces of each pair of catheters has to be at least 1 mm.
For an in-depth explanation of all details involved, we refer the interested reader
to related literature [11].
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2.3 Evolutionary Optimization

In a comparison between different EAs, the best performing EA for the problem
at hand was the Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolu-
tionary Algorithm (MO-RV-GOMEA) [9]. A key reason is that MO-RV-GOMEA
is capable of exploiting gray-box settings where problem-specific enhancements
can be readily applied. Specifically, MO-RV-GOMEA makes use of so-called par-
tial evaluations. Instead of changing all variables of a potential solution and then
performing an evaluation, the variables are changed in multiple steps, and after
each step an evaluation is performed. If the solution was improved, the change is
kept; if not, the change is reverted. For brachytherapy, these many evaluations
can be done efficiently, because the impact of changes to certain dwell times can
be computed by considering radiation originating from the corresponding dwell
positions only [9]. A similar argument holds for catheter positions [11].

A second reason for its enhanced performance is that MO-RV-GOMEA mod-
els the dependencies between variables by using a so-called Linkage Tree (LT).
At the bottom of this tree, each of the variables is in a singleton set. Higher
up, sets are merged together based on the strength of the dependencies between
their variables. At the top of the LT, all sets have been merged, resulting in a
single set containing all variables. Combining all sets in the LT results in the
so-called Family Of Subsets (FOS). During optimization, all FOS elements are
considered. For every FOS element, a joint Gaussian distribution is estimated,
based on a selection of best solutions. Such a Gaussian distribution is known to
work well when there is no gradient information and the fitness landscape may
not be smooth everywhere, e.g., it is adopted by the state-of-the-art real-valued
EA known as CMA-ES [6]. The variables that are in one FOS element are then
resampled together based on this distribution. This way, dependencies between
variables are taken into account. When applied to brachytherapy, the dependen-
cies between variables are modelled based on the distances between the dwell
positions [9,11].

3 Accounting for Uncertainties via Robust Optimization

3.1 Organ Reconstructions: A Problem-Specific Solution

While the dose-volume indices of a treatment plan are theoretically uniquely
defined, computing values for these indices in practice is not. A key reason is
that dose-volume indices are computed from 3D (organ) volumes. However, med-
ical scans are usually sets of 2D images. An algorithm is then used to reconstruct
the 3D organ shapes from delineations, performed on the 2D images. Due to the
limited resolution of the medical images, such a reconstruction is not uniquely
defined and differs from one clinical system to another. A solution is to perform
robust optimization over different organ reconstructions, to avoid overfitting on
one particular reconstruction. Three organ reconstruction settings have previ-
ously been studied, for details, see [10]. Combinations of these settings yield 8
possible 3D organ reconstructions per patient. Hence, there are 8 combinations
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of (LCI,LSI,C) values per plan. Taking again a worst-case scenario approach
to combining objective values (in this case defined for different reconstruction
settings), the robust optimization model is defined as

LCI = min
i=1,...,8

{LCIi} , LSI = min
i=1,...,8

{LSIi} , C = max
i=1,...,8

{Ci} . (3)

This model is identical for both dwell time optimization and catheter posi-
tion optimization. A straightforward implementation would be to compute the
LCI, LSI, and C 8 times. This would lead to approximately 8 times more com-
putational effort, as calculating the objective values associated with a treatment
plan is the most time-consuming component in the EA. With runtime being
important for clinical usability, reducing this additional runtime is important.
To do so, advantage is taken of the large volume overlap between different organ
reconstructions (i.e., it is at the borders that organ reconstructions differ, not
at the interiors). When evaluating the quality of a treatment plan, the dose in
each overlapping part of the patient in all scenarios is calculated only once. The
parts that do not overlap are small, and evaluated separately, for each recon-
struction. After this, the dose-volume indices are calculated 8 times. As a result,
performing a fixed number of evaluations is only approximately twice as slow as
the original optimization.

3.2 Catheter Displacements: An EA Generic Solution

When catheters are placed inside the patient, they always end up (slightly)
different from what was planned. Accounting for this uncertainty requires taking
into account the fact that the complete workflow is a sequential decision-making
process. Between catheter position optimization and dwell time optimization,
there is the catheter placement which causes the uncertainty. We will simulate
actual catheter placement by randomly displacing all catheters by 1 mm, where
the 1 mm is based on discussions with a clinical expert. After the displacements,
dwell times are re-optimized, but catheter positions are fixed.

If these displacements are not taken into account, catheter position optimiza-
tion fronts will be overly optimistic compared to the dwell time optimization
fronts, because optimization will overfit on the one scenario in which catheters
are not displaced at all. Hence, a lower number of catheters will appear to be
sufficient than is really the case. As a result, optimization will be an ineffective
decision support tool because likely not enough catheters would be placed in the
patient to ensure a good treatment.

To avoid this, the random catheter displacements should thus be taken into
account in the optimization. The most straightforward approach to do so cor-
rectly would be to consider many catheter displacements (in the order of 100)
each time a set of catheter positions is evaluated. For each catheter displacement,
dwell times would be separately optimized, to take into account that dwell time
optimization is performed again after the catheters are displaced. Unfortunately,
this would be prohibitively computationally expensive, because one full dwell-
time optimization takes about 30 s [2] and we have only a few minutes to decide
catheter positions in clinical practice.
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Alternatively, when a set of catheter positions is evaluated, dwell times could
be kept fixed when displacing catheters. This is a conservative lower bound on the
real evaluation, since this disregards the dwell time optimization performed after
catheter placement. This would therefore result in overly pessimistic catheter
position optimization fronts, which is also undesirable from the perspective of a
clinical decision support tool. As a result, too many catheters would be placed
in the patient, which would increase the risk of complications. Moreover, due to
the many scenarios, this approach would still be too computationally expensive.

We therefore propose a third approach that is generic to multi-objective EAs
in sequential decision-making processes under uncertainty where the uncertainty
between stages involves variable realization (i.e., realizing the actual optimized
catheter positions in the clinic). When evaluating a treatment plan for multiple
catheter displacements, dwell times are still kept fixed when displacing catheters.
However, such evaluations are only used to frequently filter the solutions in the
elitist archive. Specifically, every generation, Algorithm 1 is used; outside of the
elitist archive, no robust evaluations over catheter displacements are performed.
This way, some robustness of the treatment plans to catheter displacements
is taken into account, without resulting in too optimistic/pessimistic fronts or
clinically infeasible running times. It should be said that in MO-RV-GOMEA,
the elitist archive plays a role in providing parent solutions, so the impact of
only filtering the elitist archive for robustness this way is potentially larger than
for other EAs that employ elitist archives.

Algorithm 1: Filtering of the elitist archive
1 Let (X, Y ) be the representation of a catheter position.
2 Make a backup of the catheter positions in the elitist archive.
3 for m=1,. . . ,100 do
4 for all catheters i do
5 Sample θ uniformly in [0, 2π].
6 for all solutions j in the elitist archive do
7 X(j) += 1mm · cos(θ).
8 Y (j) += 1mm · sin(θ).
9 Apply boundary repair if necessary.

10 end

11 end
12 Evaluate the elitist archive.
13 Restore the backup of the catheter positions in the elitist archive.

14 end
15 for all solutions j in the elitist archive do
16 Determine the Nadir point of j of the 100 evaluations.
17 end
18 Filter the elitist archive based on the Nadir points: solutions for which its Nadir

point is dominated by the Nadir point of another solution, are removed from
the elitist archive.
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4 Experiments

In our experiments, we simulate the workflow of clinical practice, including
the sequential decision-making steps. The goal is to see whether with our new
approach, good plans can still be obtained and, possibly more importantly,
whether the predicted quality of plans in the first stage is a realistic represen-
tation of plans obtained in the second stage. If so, a properly informed decision
can be made about the number of catheters to use for a particular patient.

A simulation of the workflow starts with catheter position optimization. The
running time is limited to 15 min. After catheter position optimization, a single
treatment plan is selected from the front, with the highest quality in terms of
min{LCI,LSI}. This quality is defined as L:

L := max
plans j in front

{min {LCIj ,LSIj}} . (4)

Subsequently, dwell time optimization is performed again separately. The run-
ning time is limited to 6 min for the original dwell time optimization, and 15 min
for the robust dwell time optimization. We use larger runtimes here than strictly
needed in clinical practice because we want to observe also the convergence prop-
erties of the EA. Each simulated workflow is applied to the data of 3 patient
cases for 16, 10, and 4 catheters. Due to the randomness in the EA and the
catheter displacements, 10 runs are performed of each simulated workflow.

Three approaches are compared. Catheter position optimization is always fol-
lowed by catheter displacements and robust dwell time optimization over organ
reconstructions. The first approach uses the original catheter position optimiza-
tion, where no uncertainties are considered at all. The second approach uses
the robust catheter position optimization over only organ reconstructions. The
third approach uses the robust catheter position optimization over both organ
reconstructions and catheter displacements, using elitist archive filtering as in
Algorithm 1.

The difference between the results of catheter position optimization and dwell
time optimization is tested with a paired samples t-test on L for each of the
patients, numbers of catheters, and versions of catheter position optimization
separately, whereby the difference was considered to be statistically significant if
p < 0.00185. This includes a Bonferroni correction for 27 test, i.e., p < 0.05/27.

To study the convergence of MO-RV-GOMEA, we use the well-known hyper-
volume metric [12], i.e., the area in the bi-objective space that is covered by
the front and a so-called reference point. Here, we choose the reference point
(−30,−30) and only consider solutions in the front dominating this point.

For all code, a GPU-acceleration was implemented in CUDA (NVIDIA Cor-
poration, Toolkit v8.0.61), based on previous work [2]. Optimization was per-
formed on an NVIDIA Titan Xp, which contained 12 GB of memory.

5 Results

The results of the original catheter position optimization are shown in Fig. 2.
The part of the objective space where all aims in the clinical protocol are
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satisfied, i.e. LCI > 0 and LSI > 0, is highlighted. The influence magnitude of
the uncertainties depends on the patient and the number of catheters. Except for
patient 2 with 16 catheters, there is a statistically significant difference between
the catheter position and dwell time fronts. This means that the catheter posi-
tion fronts are not realistic, as they are higher than what is obtained when taking
into account the uncertainties. This shows the need for robust optimization.

The results of robust catheter position optimization over only organ recon-
struction settings are shown in Fig. 3. For 16 catheters, for all patients, there
is no statistically significant difference between the catheter position and dwell
time fronts. Hence, in these cases, only robust optimization over organ recon-
struction settings is needed. It should be noted that the catheter position fronts
have dropped towards the dwell time fronts, but the dwell time fronts them-
selves did not improve. Hence, taking into account organ reconstruction settings
during catheter position optimization results in more realistic fronts, but not
necessarily in better catheter positions.

For patient 1 with 4 catheters, and for patient 2 with 10 and 4 catheters, there
is still a statistically significant difference between the catheter position and dwell
time fronts. Hence, in these cases, taking into account only organ reconstruction
settings is not sufficient to also obtain robustness to catheter displacements. This
shows the need for robust optimization over both uncertainties.

The results of robust catheter position optimization over both organ recon-
struction settings and catheter displacements are shown in Fig. 4. For all patients
and numbers of catheters, there is no statistically significant difference between
the catheter position and dwell time fronts. Hence, the catheter position fronts
are now realistic. It can be seen that with 16 catheters, for all patients, plans exist
that satisfy all constraints in the clinical protocol (i.e., LCI > 0 and LSI > 0).
This is sometimes the case for 10 catheters, and never for 4 catheters.

Finally, the hypervolume values of the fronts of the three types of catheter
position optimization over time are shown in Fig. 5. For these patients, even
with robust optimization, convergence is still achieved quickly, indicating that
in clinical practice we may very well use only 5 min instead of 15, which is
clinically acceptable.

6 Discussion

In this paper, we introduced preclinical work on robust optimization for high-
dose-rate prostate brachytherapy. By performing robust optimization over both
organ reconstruction settings and catheter displacements, the catheter position
and dwell time fronts obtained in the first and second stages of the sequen-
tial decision-making process become virtually the same. Hence, decisions based
on the catheter position fronts are now more representative of the resulting
dwell time fronts. The larger part of this robustness appears to be due to the
robust optimization over organ reconstructions, rather than over catheter dis-
placements. It should still be studied whether this also holds for different patients
and numbers of catheters.
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Fig. 2. The original (non-robust) catheter position optimization (blue), for selected
plans (white circles) followed by catheter displacements and robust dwell time opti-
mization over organ reconstruction settings (orange). Ten runs are shown. (Color figure
online)
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In the simulated workflow, only a single set of catheter positions was selected
from each catheter position front. After random catheter displacements, dwell
time optimization was sufficient to obtain a front of equally good plans again.
Combined with the fact that different catheter position configurations are indeed
obtained along the front of the first-stage optimization, this suggests that the
problem of robust catheter position optimization itself is highly redundant,
e.g. due to many (almost) equally good local optima. Arguably, positioning
itself could be considered to be single-objective: the objective of maximizing
min{LCI,LSI} would have been sufficient. However, a more in-depth analysis
with physicians is needed of the different catheter position configurations that
are obtained to see if there are any other reasons to deviate from this.

The proposed techniques for robust optimization are more general than this
optimization method (MO-RV-GOMEA) or these uncertainties (organ recon-
struction settings and catheter displacements). Besides the generality of the
elitist archive filtering for sequential multi-objective decision making under
uncertainty, it is for instance likely that the technique for re-using intersec-
tions of organs will also work for different uncertainties related to organ shape
and catheter positions (such as uncertainties in delineations [1] and catheter
angles [5]). This could be explored in future work.

7 Conclusion

We showed how a recently introduced state-of-the-art evolutionary bi-objective
optimization approach for high-dose-rate prostate brachytherapy can be
extended to include robust optimization, without requiring a prohibitively large
running time when optimized with MO-RV-GOMEA. Two types of uncertainty
were considered: one with a fixed set of scenario’s, and one with a stochastic
component. Using a different approach for each type of uncertainty, both were
included directly in the optimization. The results show that more realistic fronts
of catheter position optimization can now be obtained. This way, the optimiza-
tion can be used more reliably in clinical practice as a basis for making such
important clinical decisions as how many catheters to use for a particular patient
and where to place them. Moreover, additional insights into the optimization can
now be obtained. Specifically, we have learned that a promising approach that
may well improve run time further may be to robustly optimize catheter posi-
tions single-objectively, by optimizing the minimum of the two objectives in the
original optimization model.
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