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ABSTRACT

Tables in Wikipedia articles contain a wealth of knowledge that

would be useful for many applications if it were structured in a

more coherent, queryable form. An important problem is that many

of such tables contain the same type of knowledge, but have differ-

ent layouts and/or schemata. Moreover, some tables refer to entities

that we can link to Knowledge Bases (KBs), while others do not.

Finally, some tables express entity-attribute relations, while others

contain more complex n-ary relations. We propose a novel knowl-

edge extraction technique that tackles these problems. Our method

first transforms and clusters similar tables into fewer unified ones

to overcome the problem of table diversity. Then, the unified ta-

bles are linked to the KB so that knowledge about popular entities

propagates to the unpopular ones. Finally, our method applies a

technique that relies on functional dependencies to judiciously in-

terpret the table and extract n-ary relations. Our experiments over

1.5M Wikipedia tables show that our clustering can group many

semantically similar tables. This leads to the extraction of many

novel n-ary relations.
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1 INTRODUCTION

Motivation. Tables on the Web represent an important source

of knowledge that can be used to enhance many tasks. In partic-

ular, tables in Wikipedia articles express many interesting rela-

tions that can improve tasks like web search [33], or entity disam-

biguation [30]. Currently, the largest repositories of knowledge on

the Web are in the form of graph-like Knowledge Bases. Among

the most popular KBs are the ones that were constructed from

Wikipedia, in particular considering the content of infoboxes. Ta-

bles, however, are often used to state knowledge that is complemen-

tary to the knowledge contained in infoboxes. This makes tables an

excellent source of additional knowledge to extend the coverage of

current Wikipedia-based KBs, like Wikidata [28] or DBPedia [13].
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Problem. Unfortunately, Wikipedia tables are created to present

structured knowledge for human readers, but not necessarily forma-

chines. To process this knowledge automatically, the table must first

be transformed into a coherent structure that is machine-readable.

One way to reach this goal is to integrate the content of the tables

into a Knowledge Base (KB), but this is challenging due to the di-

versity of layouts, schemata, and symbols that human contributors

use to display knowledge in tabular format. For example, relations

can be expressed by many different schemas, their meaning might

depend on background knowledge that is expressed in the table

context, columns may contain multiple attributes in list form, and

many cell values are homonyms or synonyms. Secondly, many ta-

bles express knowledge about long-tail entities that are not present

in KBs. Moreover, many tables onWikipedia express n-ary relations

which are challenging to interpret. In these cases, there is not a

single key column that contains the entities of which the other

columns express attributes, which is something that is assumed to

exist by state-of-the-art table extraction systems [11, 24, 34].

Contribution.While there are existing works that addresses these

problems in isolation (we cover these in Section 5), in this paper we

propose a novel method that solves them conjointly. Our method

consists of a sequence of three main operations. First, it efficiently

combines a diverse set of table corpus statistics to perform holistic

schema normalization on tables that have different layouts. Then,

the tables are clustered together in fewer larger tables. Finally,

our method extracts both entity-attribute and n-ary facts from the

clustered tables so that new facts can be added to the KB.

The novelty of our approach hinges on three components:

First, we present several techniques to normalize tables which

would otherwise be ignored by current knowledge extraction ap-

proaches. These techniques rely on some heuristics which trans-

form the tables by removing rows that span all columns, unpivoting

column headers, and adding extra contextual columns.

Second, we introduce features for clustering together many simi-

lar tables into a unified collection so that knowledge about entities

in one table can propagate to other tables. These features measure

the potential alignment of columns using Jaccard similarities, cell

embeddings, and semantic types. To scale our clustering to 1.5M

tables in Wikipedia, we use set- and embedding-based approximate

neighbor search to reduce the similarity search space.

Third, we describe a new method, based on probabilistic func-

tional dependencies [29], to distinguish entity-attribute tables from

the ones that describe n-ary relations and extract knowledge from

both types. We show that using functional dependencies instead

of simple heuristics (like picking the leftmost column with unique

values [11]), as current methods do, returns a better accuracy that is

beneficial to improve the downstream fact extraction. Moreover, to

the best of our knowledge, ours is the first method that can extract

n-ary facts from tables to a KB.
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Phase 2: Clustering

Phase 3: Table Union Integration

Page Name Year Chart Positions

"Hound Dog" 1956 US Billboard 8

"Hound Dog" 1956 US Singles 15

"Hound Dog" 1956 Australia (Kent Music Report) 17

"Hound Dog" 1956 Belgium (Ultratop 50 Flanders) 13

"Hound Dog" 1956 UK Singles 2

"Hound Dog" 1956 US Cash Box Magazine 1

Page Name Single Year National Chart Peak Position

Ray Charles

Ray Charles

Ray Charles

Ray Charles

Ray Charles

Page Name Titles Year Chart Peak Album Certifications

Ringo Starr

Ringo Starr

Ringo Starr

Ringo Starr

Ringo Starr

Ringo Starr

Ringo Starr

Page Name Year Single
Chart

positions

Commodores 1977 "Brick House" US 5

Commodores 1977 "Brick House" US R&B 4

Commodores 1977 "Brick House" US Dance 34

Commodores 1977 "Easy" US 4

Commodores 1977 "Easy" US R&B 1

Commodores 1977 "Easy" US Dance —

Artist Album Year Single Chart Position Certifications

Commodores Commodores 1977 "Brick House" US 5

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ray Charles Ray Charles' Greatest Hits 1960 "Sticks and Stones" US 40

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ray Charles The Genius Hits the Road 1960 "Georgia on My Mind" US 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Ringo Starr Blast From Your Past 1971 "It Don't Come Easy" UK 4 US: Gold

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Elvis Presley 1956 "Hound Dog" US 8

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

El i PEl i PElvis PElvis PElvis PElvis PElvis PElvis P llresleyresleyresleyresleyresleyresleyy 19 6195619561956956195619561956 """"H d DH d DHound DHound DHound DHound DHound DHound Dogogoogogogg""""" USUSUSUSUUSUSUS 88888888

⋮⋮⋮ ⋮⋮⋮ ⋮⋮⋮ ⋮⋮⋮ ⋮⋮⋮ ⋮⋮⋮ ⋮⋮⋮

(a) Entity-attribute (EA) table (b) N-ary (NA) table

Phase 1: Input Tables, Table Reshaping and Enrichment

Page Name No. Title Writer(s) Recording date Length

Elvis Presley 1. "Blue Suede Shoes" Carl Perkins January 30, 1956 2:00

Elvis Presley 2. "I'm Counting on You" Don Robertson January 11, 1956 2:25

Elvis Presley
3. "I Got a Woman" • Ray Charles

• Renald Richard

January 10, 1956 2:25

Elvis Presley 4. "One Sided Love Affair" Bill Campbell January 30, 1956 2:11

Elvis Presley 5. "I Love You Because" Leon Payne July 5, 1954 2:43

Elvis Presley

6. "Just Because" • Bob Shelton

• Joe Shelton

• Sydney Robin

September 10, 1954 2:34

o. Title

. "Blue Suede Shoes"

. "I'm Counting on You" D

. "I Got a Woman"

•

. "One Sided Love Affair"

. "I Love You Because"

. "Just Because"

•

Key column

Commodores (album)

Year Single

Chart positions

US
US

R&B

US

Dance

1977 "Brick House" 5 4 34

1977 "Easy" 4 1 —

p

US
US

R&B

US

Dance

e" 5 4 34

Page Name Year Single
Chart

positions

Commodores 1977 "Brick House" US 5

Commodores 1977 "Brick House" US R&B 4

Commodores 1977 "Brick House" US Dance 34

Commodores 1977 "Easy" US 4

Commodores 1977 "Easy" US R&B 1

Commodores 1977 "Easy" US Dance —

p

ee" US

ee" US R&B

ee" US Dance

US

US R&B

US Dance

𝗌𝗆𝖺𝗋𝗍𝗎𝗇𝗉𝗂𝗏𝗈𝗍 ∘ 𝖺𝖽𝖽𝖼𝗈𝗇𝗍𝖾𝗑𝗍

(c) N-ary (NA) table (reshaped and enriched with context)

Context (only showing page title)

Page Name Year Chart Positions

"Hound Dog" 1956 US Billboard 8

"Hound Dog" 1956 US Singles 15

"Hound Dog" 1956 Australia (Kent Music Report) 17

"Hound Dog" 1956 Belgium (Ultratop 50 Flanders) 13

"Hound Dog" 1956 UK Singles 2

"Hound Dog" 1956 US Cash Box Magazine 1

Page Name Y

"Hound Dog" 1

"Hound Dog" 1

"Hound Dog" 1

"Hound Dog" 1

"Hound Dog" 1

"Hound Dog" 1

(d) Blocking: table sets of
 approximate neighbourhoods

(e) Matching: weighted graph of 
aggregated similarity scores

(f) Table cluster (g) Union Table

Artist Album Year Single Chart Position Certifications

(h) pFDs for detecting key columns
and distinguishing n-ary union tables

Thriller US_Billboard_200
chartedIn

26-02-1983

1

time

ranking

(i) Representation of Wikidata qualifiers (green) as reification (j) Disambiguating column pairs to KB relations
to extract binary and n-ary facts 

partOf

chartedIntime 

salesCertification

Artist Album Year Single Chart Position Certifications

performer

ranking

Figure 1: Schematic overview of our pipeline. In Phase 1 (a-c), we process the set of all Wikipedia tables to clean up editorial

structures (Section 3.1). In Phase 2 (d-g), we cluster them to form larger union tables (Section 3.2). In Phase 3 (h-j), we integrate

them with Wikidata and extract binary and n-ary facts (Section 3.3)

We evaluate our approach on a large sample of Wikipedia tables

using Wikidata [28], one of the most popular KBs, as reference

KB. We report on the performance of different components of the

pipeline separately, and compare to a set of strong baselines. Addi-

tionally, we extended our evaluation to a set of 1.5M tables extracted

from Wikipedia, to evaluate the scalability. In this case, our system

managed to extract 29.5M facts which comprise 15.8M binary facts

and 6.9M more complex n-ary facts. A large percentage (approx.

77%) was novel, i.e., facts not yet in Wikidata.

Our code, annotations, and extracted data is freely available1.

2 BACKGROUND

We start with a short recap of some well-known notions on KBs

and tables, and introduce some notation used throughout the paper.

KBs. A KB K is a repository that contains factual statements

about a set of entities E, literals L and relations R. In this work,

we consider Wikidata [28], one of the most popular KBs, as K . In

Wikidata (and in other similar KBs, e.g., DBPedia [13]), the fac-

tual statements are encoded with triples of the form 〈𝑒, 𝑟, 𝑓 〉 where
𝑒 ∈ E, 𝑓 ∈ E ∪ L and 𝑟 ∈ R. Typically, the triples express relations

between entities, e.g., 〈Sadiq_Khan, majorOf, London〉, or property-
value attributes, e.g., 〈London, hasPopulation, 8.9M〉. Given the

triple 〈𝑒, 𝑟, 𝑓 〉, we say that the pair 〈𝑟, 𝑓 〉 is an attribute of 𝑒 , 𝑟
is a attribute relation, and 𝑓 is an attribute value.

1See https://github.com/karmaresearch/takco

A n-ary fact is a factual statement with 𝑛 arguments. While a

binary fact (i.e., 2-ary fact) can be naturally expressed with a triple,

facts where 𝑛 > 2 require multiple triples. Wikidata makes use of

qualifiers to express such complex factual statements. A qualifier

is a subordinate property-value pair assigned to a triple that an-

notates the fact with additional information [28]. For instance, the

fact 〈Sadiq_Khan, majorOf, London〉 is annotated with the qualifier
〈startTime, “05/09/2016”〉. Qualifiers are represented as triples

using a well-known style of reification [21], in which every fact

〈𝑒, 𝑝, 𝑓 〉 is mapped to a fresh entity 𝑞𝑒,𝑝,𝑓 ∈ E and every qualifier

〈𝑟, 𝑔〉 is mapped to a triple 〈𝑞𝑒,𝑝,𝑓 , 𝑟 , 𝑔〉.
Tables.We model our collection of tables as a corpus T of tables,

which we have extracted from the HTML of Wikipedia articles. For

a given table 𝑇 , we denote with 𝑇 [𝑖] [ 𝑗] the cell of table 𝑇 at the

𝑖𝑡ℎ row and 𝑗𝑡ℎ column. Every cell 𝑐 is associated to a cell value

val(𝑐) which represents the content of a cell and is either a string

or NULL. In the last case, we say that the cell is empty and denote it

with the symbol ∅ . Additionally, a cell may contain some links to

entity-related Wikipedia pages. In Wikidata, every Wikipedia page

is mapped to an entity. We denote with E𝑊 ⊆ E the set of such

entities, and write links(𝑐) ⊆ E𝑊 to refer to the entities pointed

by the links in 𝑐 . Some cells are marked with a span that extends

multiple columns. We write span(𝑐) = [𝑖, 𝑗] when cell 𝑐 spans

columns 𝑖 to 𝑗 (included) in its row. If 𝑐 at row 𝑘 has span [𝑖, 𝑗] then
val(𝑇 [𝑘] [𝑖]) = . . . = val(𝑇 [𝑘] [ 𝑗]). However, the opposite does

not hold, namely two adjacent cells can have the same value but
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without an extended span. Finally, we write span(𝑐) ⊂ span(𝑑) if
span(𝑐) = [𝑖, 𝑗], span(𝑑) = [𝑘, 𝑙], 𝑖 ≥ 𝑙, 𝑗 ≤ 𝑙 , and 𝑗 − 𝑖 < 𝑙 − 𝑘 .

We denote with cols(𝑇 ) and rows(𝑇 ) the list of all columns and

rows in 𝑇 respectively. We represent each column as a tuple of

|rows(𝑇 ) | cells and each row as a tuple of |cols(𝑇 ) | cells. We distin-

guish header rows from body rows based on the table’s HTML. We

write head(𝑇 ) to refer to a list of rows in𝑇 marked as headers, while

body(𝑇 ) refers to the remaining rows. Abusing notation, we write

cols(body(𝑇 )) to refer to the list of columns of the table’s body. We

view 𝑇, cols(𝑇 ), rows(𝑇 ), body(𝑇 ), cols(body(𝑇 )), and head(𝑇 ) as
sets if the order of the tuples does not matter, otherwise we use the

suffix [𝑖] to refer to the 𝑖𝑡ℎ element in the collection (e.g., cols(𝑇 ) [1]
is the first column of 𝑇 ).

Tuples are denotedwith delimiters 〈〉.We introduce two auxiliary

functions to operate on tuples. Function append(𝑎, 𝐵) returns a
tuple where element 𝑎 is appended to tuple 𝐵. Function ·, written

𝐴 · 𝐵, returns a tuple where tuple 𝐴 is concatenated to tuple 𝐵. A
union table is a table created by concatenating the body of multiple

tables. In a union table, columns may be aligned into single ones or

not. In the second case, empty cells are used to fill the gaps [17].

In this paper, we use the relational model to specify some op-

erations on tables. This model views a table schema as a relation

𝑅 with attributes 𝐴1, . . . , 𝐴𝑚 , denoted as 𝑅(𝐴1, . . . , 𝐴𝑚), and calls

a table with such a schema an instance of 𝑅. Attributes in the re-

lational model are mapped to header cells in the table. Thus, they

are different than attributes used in KBs. In the former, attributes

(informally) map to the header names of the table while in the latter

they are property-value pairs of entities.

We make a distinction between Entity-Attribute (EA) and N-Ary

(NA) tables. EA tables contain one columnwith the names of entities,

which we call key column, and every row expresses attributes of that

entity in the other columns [33]. Therefore, one row can be trans-

lated into a set of attributes of an entity, and represented inK with

triples of the form 〈entity, attribute_relation, attribute_value〉.
NA tables lack a key column and each row expresses one 𝑛-

ary fact and typically 𝑛 > 2. In this case, we say that the table

expresses a n-ary relation. It has been shown that NA tables make

up a significant portion of tables on theWeb [15]. Table (a) in Figure

1 is an example of a EA table while Table (b) reports a NA table.

To improve the extraction coverage, we consider the content that

we can extract from the page that contains the table. For instance,

we consider the title of the article or the table caption. We represent

contextual information as strings. To distinguish the various types

of contextual information, we use pairs of the form 〈𝑋,𝑌 〉 where
𝑋 is the type of information and 𝑌 is the content. For instance,

the pair 〈“Page Name", “Elvis Presley"〉 is an example of contextual

information for Table (a) in Figure 1. We refer to the set of all

contextual tuples associated to table 𝑇 as context(𝑇 ).
Table unpivoting. Tables can be categorized either as wide or nar-

row, depending on how they express information [31]. If they are

wide (i.e., have a wide layout), then it is more likely that single at-

tribute values are represented with dedicated columns. For instance,

the header cell “US” in the third column of Table (c) in Figure 1

expresses the qualifier 〈chartedIn, US_Billboard_200〉 for all the
triples extracted from the cells below it. For our purposes, it is more

convenient if tables are in a narrow shape, i.e., header cells express

attribute properties rather than attribute values. Converting a table

from a wide shape to a narrow shape is known as unpivoting.

Wyss and Robertson [32] provide a formal definition of unpiv-

oting, which we outline below for self-containment. This defini-

tion uses two additional relational algebra operators: 𝛿 (metadata

demotion) and Δ (column deference). Given a relation schema

𝑅(𝐴1, . . . , 𝐴𝑚), let 𝑟 be an instance of 𝑅 with 𝑛 rows and let y be
an attribute that is not in 𝑅. Then 𝛿y (𝑟 ) appends every 𝐴1, . . . , 𝐴𝑚

to each row in 𝑟 , returning a new instance with |𝑟 | × 𝑛 rows and

schema 𝑅(𝐴1, . . . , 𝐴𝑚, y). The operator Δ is used to further process

the relation. Given a relation 𝑅(𝐴1, . . . , 𝐴𝑚, 𝐵), let 𝑟 be an instance

of 𝑅 and z a column name that is not in 𝑅. Then, Δz𝐵 (𝑟 ) searches if
an element of 𝐵 at row 𝑖 equals to column name at position 𝑗 , and
if this occurs then it copies the cell value at row 𝑖 and column 𝑗 in
a new column with name z.

These two operators, in combination with the standard relational

operators projection (Π) and selection (𝜎), can be used to formally

define the operation of unpivoting. Let 𝑅(𝐴1, . . . , 𝐴𝑖 , 𝐵𝑖+1, . . . , 𝐵𝑚)

be a relation, 𝑟 be an instance of𝑅, and𝐵𝑖+1, . . . , 𝐵𝑚 be the attributes

to unpivot. Then, unpivoting 𝑟 can be expressed as:

UNPIVOT
y→z
𝐴1,...,𝐴𝑖

(𝑟 ) � Π𝐴1,...,𝐴𝑖 ,y,z (𝜎y=𝐴1∧...∧y≠𝐴𝑖 (Δ
z
y (𝛿y (𝑟 ))))

where y is the name of the column with the unpivoted schema and

z is the column name with the values of the unpivoted columns.

Functional Dependencies. To distinguish EA tables from NA ta-

bles, we make use of probabilistic functional dependencies (pFDs),

first introduced by Wang et al. [29]. Let 𝑋,𝑌 be two attributes of

a relation 𝑅, and 𝑟 be an instance of 𝑅. Then, the pFD 𝑋 →𝑝 𝑌
indicates that two tuples in 𝑟 that share the same value for 𝑋 also

share the same value for 𝑌 with probability 𝑝 . To compute pFDs,

we use the algorithm perTuple [29], which returns pFDs using

probabilities computed on 𝑟 .

3 OUR APPROACH

Our goal is to extract clean, unified, and linked n-ary facts from a

large set of tables to enrich a KB with new knowledge. For example,

we would like to extract from Table (c) in Figure 1 the n-ary fact

that the song “Brick House” charted in the “US Billboard 200” chart

at position 5 in 1977. To represent this fact, we use three triples:

The triple 𝑡 = 〈Brick_House, chartedIn, US_Billboard_200〉 and
the triples 〈qt, pointInTime, 1977〉 and 〈qt, ranking, 5〉, where qt
is a fresh entity used to represent the qualifiers mapped to triple 𝑡 .

We use Wikidata [28] as target KB because of its popularity and

large coverage, and focus on Wikipedia tables since they contain a

large amount of interesting factual information related to Wikidata

entities. Our method, which is graphically depicted in Figure 1, can

be viewed as a pipeline of three main operations: Table Reshap-

ing and Enrichment (Section 3.1), Clustering (Section 3.2), and KB

Integration (Section 3.3), each discussed below.

3.1 Table Reshaping and Enrichment

In Wikipedia, some tables are generated using well-defined and

popular templates while others are built using modified copies

of templates taken from related pages. Consequently, tables that

express similar content can be very diverse from each other and

this hinders a successful factual extraction.
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To counter this problem, we apply a procedure to “normalize”

the tables. This procedure, which we refer to as reshape(T ), per-

forms three operations on every table 𝑇 ∈ T . The first operation

merges or removes cells that span all the columns (mergechunks(𝑇 ),
Section 3.1.1). The second operation unpivots some columns to

transform wide tables into narrow ones (smartunpivot(𝑇,U), Sec-

tion 3.1.2). Finally, tables are further enriched with extra contextual

information (addcontext(𝑇 ), Section 3.1.3).

3.1.1 Merging table chunks. Sometimes, Wikipedia contributors

decide to add cells that span all the columns for various purposes.

For example, such cells are added below the row they belong to keep

the table from becoming too wide, or at the bottom as a footnote.

These cells can confuse the interpretation procedure since they

can, for instance, be recognized as separate rows with new entities.

To avoid these cases, the function mergechunks, which is formally

defined in Appendix A, Algorithm 3, identifies these cells and copies

their content to other parts of the table. The algorithm applies three

heuristics 𝐻1, 𝐻2, 𝐻3 that we observed work well in practice:

• 𝐻1 If cells that span all the columns appear at every even row of

the body, i.e., at row index 𝑖 = 2, 4, . . ., then we assume that the

cells contain extra information about the preceding row. Thus,

we add an extra column with empty cells, remove the 𝑖𝑡ℎ row

and copy its content in the extra column at row 𝑖 − 1;

• 𝐻2 If 𝐻1 does not apply, but there are cells that span all columns

as last rows in the table, then we assume that they contain a

footnote. In this case, we remove the rows and add their content

as contextual information of type “footnote” to the table;

• 𝐻3 If 𝐻1 does not apply, but there are multiple cells that span

all columns that appear in the body, then we treat them as extra

information about the rows below them. To this end, we add an

extra column with empty cells, remove every row with index

𝑖 with a cell that spans all columns and copy its content in the

extra column at row 𝑖 + 1, . . . , 𝑗 where 𝑗 is either the end of the

table or the row index of the following cell that spans columns.

3.1.2 Table Unpivoting. Wide tables tend to contain columns that

express attributes values rather than attribute relations. We would

like to transform such tables so that the content of these columns

appears in the body instead of the header. For instance, the left

table in Figure 1 (c) contains the columns US, US R&B, US Dance
which are the values of attributes with relation chartedIn. This
table should be transformed into the right table in Figure 1 (c).

To this end, we must tackle two challenges. First, we need to

define a procedure that, given an input table, detects a sequence

of horizontally adjacent header cells that encode attribute values.

The second challenge consists of extracting the new column header

associated with these values so that we can unpivot the table.

We tackle the first challenge with a set of six boolean functions

that encode some heuristics, while we rely on the content of pre-

vious headers to extract the new column header. Our procedure

for unpivoting the table can be viewed as a function smartunpivot

which, given in input table𝑇 and set of boolean functionsU, returns

an unpivoted version of 𝑇 (or 𝑇 if no unpivoting was possible).

We outline the functioning of smartunpivot on table𝑇 below (the

pseudocode is in Appendix A, Algorithm 4). Each boolean function

𝑈1, . . . ,𝑈6 ∈ U receives in input a table cell and returns true if the

U3 (linkAgent)

U4 (sRepeated)

U5 (headerLike)

U6 (rareOutlier)

Year Australian Open French Open Wimbledon US Open

Athlete Event
Downhill Slalom Total

Time Rank Time Rank Time Rank

Summit
State

Canada France Germany Italy UK USA EU

Atlantic Division W L T OTL GF GA PTS

Figure 2: Examples of candidate tables headers for unpivot-

ing. Cells in green are returned by the named heuristic.

encoded heuristics matches with the cell. First, the procedure scans

the headers of𝑇 row-by-row and invokes all boolean functions inU

with every cell in the input. An interval of adjacent cells for which

a function has returned true maps to a potential set of columns

with attribute values. We select the largest interval of such cells

for unpivoting the table. Let us assume that this interval occurs at

row 𝑖 and spans columns [ 𝑗, 𝑘]. To retrieve the new column header,

we consider the cell at header row 𝑖 − 1 (if any) and column 𝑗 . If
this cell has a span [ 𝑗, 𝑘], then we pick its value as column header,

otherwise, we set the new column header with an empty cell.

Let 𝑅(𝐴1, . . . , 𝐴𝑖−1, 𝐴𝑖 , . . . , 𝐴𝑘 , 𝐴𝑘+1, . . . , 𝐴𝑚) be a relation that

represents the schema of 𝑇 where each attribute 𝐴1, . . . , 𝐴𝑚 maps

to the header cell at head(𝑇 ) [𝑖]. Moreover, let 𝑦, 𝑧 be two fresh

attributes that will contain the unpivoted attributes and the content

of the unpivoted columns respectively. We map 𝑦 to ∅ , while 𝑧
maps either to a cell with the new column header or to ∅ if no

relation was found. In the right table of Figure 1 (c), 𝑦 would map

to the 4𝑡ℎ column while 𝑧 is the 5𝑡ℎ column.

Finally, let 𝑟 be an instance of 𝑅 with the body of𝑇 . We unpivot𝑇
by first executing 𝑟 ′ � UNPIVOT

𝑦→𝑧
𝐴1,...,𝐴𝑖−1,𝐴𝑗+1,...,𝐴𝑚

(𝑟 ), and then

creating a new table 𝑇 ′ with body(𝑇 ′) � 𝑟 ′ and head(𝑇 ′) �
〈〈𝐴1, . . . , 𝐴𝑖−1, 𝐴 𝑗+1, . . . , 𝐴𝑚, 𝑦, 𝑧〉〉.

In the remaining, we describe the heuristics encoded by the

boolean functions. Figure 2 shows examples of Wikipedia table

headers for which these functions will apply.

• 𝑈1 (nPrefix) Returns true if the cell starts with numeric characters;

• 𝑈2 (nSuffix) Returns true if the cell ends with numeric characters;

• 𝑈3 (linkAgent) Returns true if the cell contains a hyperlink to the

Wikipedia page of an entity with type Agent in Wikidata, i.e.,

𝑈3 (𝑐) � ∃𝑒 ∈ links(𝑐) s.t. 〈𝑒, isA, Agent〉 ∈ K (1)

The underlying intuition is that entities of the type Agent, which
in Wikidata includes people and organisations, are unlikely to

be attribute relations but refer instead to attribute values.

• 𝑈4 (sRepeated) Returns true if the cell spans an interval of

columns and there is another row where the cells have equal

value in the same interval. More formally, let𝑇 and 𝑟 be the table

and row respectively where 𝑐 appears, and let [𝑖, 𝑗] = span(𝑐).

𝑈4 (𝑐) � ∃𝑠 ∈ head(𝑇 ) s.t. 𝑟 ≠ 𝑠 ∧ val(𝑠 [𝑖]) = . . . = val(𝑠 [ 𝑗]) (2)

• 𝑈5 (headerLike) Returns true if the cell appears in T more fre-

quently either in the body or in a header cell that is spanned by
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another cell. Before we define𝑈5, let 𝑁𝑡 , 𝑁𝑏 , 𝑁𝑠 be as follows:

𝑁t (𝑐) = |{𝑇 ∈ T : 𝑐 ∈ 𝑇 }| (3)

𝑁b (𝑐) = |{𝑇 ∈ T : 𝑐 ∈ body(𝑇 )}| (4)

𝑁s (𝑐) = |{𝑇 ∈ T : 𝑐, 𝑑 ∈ head(𝑇 ) ∧ span(𝑐) ⊂ span(𝑑)}| (5)

Then,𝑈5 (𝑐) �
𝑁b (𝑐)+𝑁s (𝑐)

𝑁t (𝑐)
> 0.5.

• 𝑈6 (rareOutlier) Returns true if the frequency of the cell in the

headers of the tables in T is more than one standard deviation

smaller than the average frequency of the cells of its header. Let

𝑇 be the table where cell 𝑐 appears, and 𝜇 (𝑋 ) and 𝜎 (𝑋 ) be the

mean and standard deviation of 𝑋 . Then,

𝑁h (𝑐) = |{𝑇 ∈ T : 𝑐 ∈ head(𝑇 )}| (6)

𝜇h (𝑇 ) = 𝜇 ({𝑁h (𝑐) : 𝑐 ∈ head(𝑇 )}) (7)

𝜎h (𝑇 ) = 𝜎 ({𝑁h (𝑐) : 𝑐 ∈ head(𝑇 )}) (8)

and𝑈6 (𝑐) � 𝑁h (𝑐) < 𝜇h (𝑇 ) − 𝜎h (𝑇 ).

3.1.3 Adding Contextual Information. Often, the context of a table

can help the interpretation procedure to disambiguate entities more

precisely. For example, a table may be located in a section whose

header contains a keyword (e.g., “song”) or a date that is important

for disambiguating some entities. To this end, we would like to add

such important contextual information to the table.

For each table 𝑇 ∈ T , we add to context(𝑇 ) three pairs: one

with the page title, one the section title, one with the table cap-

tion, provided these are available in the associated Wikipedia page.

Moreover, procedure mergechunks can optionally add another set

of pairs with footnotes. Procedure addcontext(𝑇 ), (pseudocode
in Appendix A, Algorithm 5) has the task of adding the pairs in

context(𝑇 ) to𝑇 . For each pair 〈𝑋,𝑌 〉 ∈ context(𝑇 ), it adds an extra

column with header 𝑋 and cells values equal to 𝑌 . Table (b) in

Figure 1 shows an example of a table modified by this procedure.

Here, addcontext has added an extra column with the title of the

page (Hound Dog).

3.2 Clustering

Some tables can be easily matched to the KB while others are more

problematic, especially if they cover a domain that is not yet covered

by the KB. For example, consider Table (b) in Figure 1. This table

contains a column titled “Chart" but Wikidata does not contain any

fact that involves the relation chartedIn in combination with the

entities mentioned in this table. Because of this incompleteness,

disambiguating this table on its own is hard. However, if there is

another table with a similar schema but that can be matched to

Wikidata, we can cluster them together so that we can propagate the

knowledge obtained by matching one table to the other. Following

this intuition, the next step in our pipeline consists of finding clus-

ters of tables that express the same latent relation. To this end, we

construct union tables using a set of approximate indexes followed

by similarity functions designed for our specific use-case.

Due to the large size of our corpus (1.5M tables), computing

our similarity scores for each pair of tables is computationally too

expensive. To counter this problem, we perform a two-level clus-

tering. First, we compute a set of table blocks, i.e., groups of tables

that appear to be similar according to an approximate k-Nearest

Neighbors procedure (𝑘-NN) (Section 3.2.1). Then, we calculate our

similarity scores on the reduced set of table pairs (Section 3.2.2).

Finally, we construct a graph G = 〈T ,W〉, which has the tables

in T as vertices, and the similarity scores defined in the sparse

matrixW ∈ RT×T as weighted edges. We partition this graph into

clusters of tables, from which we construct the final set of union

tables (Section 3.2.3).

3.2.1 Blocking. Since computing the similarity score between the

1.5Mx1.5M pairs of tables in T is computationally expensive, we

construct four approximate indexes to retrieve, for a given table,

the top-𝑘 similar tables using a more coarse-grained definition of

similarity. We refer to the collection of similar 𝑘 + 1 tables as a table

block. In our experiments, we use a fairly high value of 𝑘 (100) to

avoid that good table pairs are ignored.

The four approximate indexes 𝐼1, . . . , 𝐼4 are constructed as fol-

lows. Two indexes 𝐼1 and 𝐼2 employ Locality Sensitive Hashing

(LSH) with MinHash [35], which provides approximate Jaccard

similarity between the cell values in two tables. We employ LSH

because we have observed that two tables are more likely to ex-

press the same relation if many cell values overlap. Therefore, we

construct one approximate LSH index considering the header of

the table (𝐼1), and another considering the body of the table (𝐼2).
The other two indexes 𝐼3 and 𝐼4 perform approximate 𝑘-NN

with the embeddings of header rows and body columns. We use

embeddings because we noticed that sometimes table pairs might

not contain exactly the same values, but words are nevertheless

semantically similar. We exploit this observation considering pre-

trained GloVe word embeddings [22] for every column and header

row in our tables. To create cell embeddings, we simply sum the

word embeddings of the words in the cell, and create header row

and column embeddings by averaging the cell embeddings. Then,

we index the vectors of the headers (𝐼3) and of the columns (𝐼4) and
query them using approximate 𝑘-NN search offered by Facebook’s

library FAISS [10], one of the most scalable implementations of

𝑘-NN with embeddings.

After the indexes are computed, we retrieve the top 𝑘 similar

tables for each table in T using each index. This yields a set of

4(𝑘+1) ∗ |T | blocks. We consider the union of all blocks returned by

all indexes because at this stage we do not want to further sacrifice

recall. For every pair of tables that appear in the same block, we

compute a more fine-grained similarity score as described below.

3.2.2 Matching. The goal of our proposed similarity score between

two tables is to measure to what extent pairs of columns in the

two tables can be aligned. This follows the intuition that two tables

express the same relation if many of their columns can be aligned.

The similarity score between two tables is an aggregation of the

similarity scores between column pairs that are computed consider-

ing either the body or headers of two tables. The similarity scores

between column pairs rely on a set M of functions, which we call

matching functions. These functions, described below, receive in

inputs two sets of cells, and compare the overlap of cell values, and

the similarity with word embeddings and semantic types.

When comparing the columns of two tables 𝐴 and 𝐵 with 𝑚𝐴

and 𝑚𝐵 columns respectively, using matching function 𝑓 ∈ M,

we compare every possible pair of columns between 𝐴 and 𝐵. We

create an alignment between columns in 𝐴 and columns in 𝐵 using
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Algorithm 1 greedycolsim(𝐴, 𝐵, 𝑓 )

1: 𝐶 � body(𝐴) 𝐷 � body(𝐵)
2: 𝑚𝐴 � |cols(𝐴) | 𝑚𝐵 � |cols(𝐵) |
3: 𝐸𝐴 � {1, . . . ,𝑚𝐴 } 𝐸𝐵 � {1, . . . ,𝑚𝐵 } 𝑀 � ∅

4: while |𝐸𝐴 | > 0 and |𝐸𝐵 | > 0 do

5:
〈𝑖, 𝑗 〉 � argmax

〈𝑖,𝑗〉∈𝐸𝐴×𝐸𝐵

𝑓 (cols(𝐶) [𝑖 ], cols(𝐷) [ 𝑗 ])

6: 𝐸𝐴 � 𝐸𝐴 \ {𝑖 } 𝐸𝐵 � 𝐸𝐵 \ { 𝑗 } 𝑀 � 𝑀 ∪ {〈𝑖, 𝑗 〉 }

7: 𝑆 �
∑

〈𝑖,𝑗〉∈𝑀 𝑓 (cols(𝐶) [𝑖 ], cols(𝐷) [ 𝑗 ])

8: return 1
2 (

𝑆
𝑚𝐴

+ 𝑆
𝑚𝐵

)

Algorithm 2 aggsim(𝐴, 𝐵,M, 𝜃 )

9: 𝑠𝑏 = max𝑓 ∈M greedycolsim(𝐴, 𝐵, 𝑓 )
10: ℎ𝐴 = head(𝐴) ℎ𝐵 = head(𝐵)
11: 𝑠ℎ = max𝑓 ∈M 𝑓 (ℎ𝐴, ℎ𝐵 )
12: return 𝜃𝑠ℎ + (1 − 𝜃 )𝑠𝑏

the greedy procedure greedycolsim(𝐴, 𝐵, 𝑓 ) shown in Algorithm 1.

This procedure creates min(𝑚𝐴,𝑚𝐵) alignments by selecting the

best columnmatches according to 𝑓 , and aggregates those similarity

scores by averaging over both𝑚𝐴 and𝑚𝐵 .

The procedure greedycolsim returns a table alignment score

using one matching function 𝑓 . We invoke this procedure with

every 𝑓 ∈ M. The scores are then aggregated in a manner de-

scribed by procedure aggsim, Algorithm 2. The application of

aggsim(𝐴, 𝐵,M, 𝜃 ) on tables 𝐴 and 𝐵 is as follows. Generally, the

aggregation of semantic matcher scores depends on whether they

compute “optimistic” or “pessimistic” similarities and whether there

is supervision or heuristics available [6]. In our case, we take an

“optimistic” approach assuming that any of our matching functions

may be the most relevant for a given pair of tables. Therefore, we

take the best scored obtained by anymatching function (line 9). Note

that the application in line 9 considers only the body of the tables.

We have observed that often correctly matching table pairs have

also aligned headers. Therefore, we invoke the matching functions

considering the tables’ headers and optimistically max-aggregate

them (line 11). Then, the final score is obtained by combining them

using their weighted mean (line 12). The aggregation weight 𝜃 is

found using cross-validated grid-search.

Next, we discuss our matching functions 𝑓𝑗 , 𝑓𝑒 , 𝑓𝑑 ∈ M.

𝑓𝑗 : Set Similarity. The simplest way to view of headers and

columns is as a set of discrete cell values. To model whether two

sets of discrete values are similar, we use their Jaccard index:

𝑓j (𝑎, 𝑏) =
|𝑎 ∩ 𝑏 |

|𝑎 ∪ 𝑏 |
(9)

𝑓𝑒 : Word Embedding Similarity. Following [20], we create word

embeddings for cells by summing the word embeddings of the

tokens in their values. For computing the similarity score, we use

the positive cosine distance between the cell embedding, i.e.,

𝑓e (𝑎, 𝑏) = max(0,
�̄� (𝑎) · �̄� (𝑏)

‖�̄� (𝑎)‖‖�̄� (𝑏)‖
) (10)

where �̄� (𝑋 ) is the mean of the embeddings of the cell values in 𝑋 .

𝑓𝑑 : Datatype Similarity. The functions above consider only the

cell values for computing the alignment score. The hyperlinks to

Wikipedia pages that are present in cells can be used to create a

semantic representation based on the types of entities that they link

to. Additionally, we can exploit the repeated patterns in cell sets

when they contain composite values involving multiple datatypes.

We proceed as follows: for every cell, we extract a number of

patterns corresponding to possible semantic types. The patterns are

created by detecting the named entities in the cell (we use the library

Spacy (spacy.io)), and combining them with their hyperlinks. We

replace each named entity in the cell with all the types of the entity

in the KB. This results in patterns such as [Football Cup] final
[YEAR]. Let 𝑎 and 𝑏 be two sets of cells, 𝑁𝑝 (𝑎) be the number of

unique cells in 𝑎 from which pattern 𝑝 is extracted, and 𝑃 be the set

of all patterns extracted from 𝑎 and 𝑏. For every pattern extracted

from 𝑎, we calculate its overlap score as 𝑂𝑝 (𝑎) = 𝑁𝑝 (𝑎) / |𝑎 | and
keep only those patterns for which𝑂𝑝 (𝑎) > 𝜏 (default value 𝜏 = 0.5).
Our datatype similarity function is the cosine similarity between

the pattern overlap vectors 𝑶 (𝑎),𝑶 (𝑏) ∈ [0, 1]𝑃 of two cell sets:

𝑓c (𝑎, 𝑏) =
𝑶 (𝑎) · 𝑶 (𝑏)

‖𝑶 (𝑎)‖‖𝑶 (𝑏)‖
(11)

3.2.3 Clustering. Given the weighted graph G of table union can-

didate pairs, we perform clustering to find sets of unionable tables.

This is equivalent to partitioning a similarity graph [16]. To this end,

we employ Louvain Community Detection [2] – a state-of-the-art

algorithm that scales to large graphs such as ours.

The Louvain algorithm optimizes a value known as modularity,

which measures the density of links between of communities com-

pared to those inside communities themselves. Recall that W is

the matrix of weights in the edges, and let 𝑧 =
∑
𝑖 𝑗 W𝑖 𝑗 be the sum

of its values. Given an assignment of a community 𝑐𝑖 for each node

𝑖 , the modularity is defined

𝑄 =
1

2𝑧

∑
𝑖 𝑗

[
W𝑖 𝑗 −

𝑘𝑖𝑘 𝑗

2𝑧

]
𝛿 (𝑐𝑖 , 𝑐 𝑗 ) (12)

where 𝑘𝑖 and 𝑘 𝑗 are the sum of the weights of the edges attached to

nodes 𝑖 and 𝑗 respectively, and 𝛿 is the Kronecker delta function. Ini-

tially each node is in its own community, after which two steps are

alternated until convergence. In the first step, each node is moved

to the community that maximises modularity. In the second step,

the procedure constructs a new weighted graph G′ and replaces G

with it. In G′, the nodes map to communities, weighted edges are

an aggregated score of the edges between nodes in different com-

munities in G, while edges between nodes in the same community

in G are represented by self-loops. The runtime of this procedure

appears to scale with 𝑂 (𝑛 · 𝑙𝑜𝑔2𝑛) in the number of nodes [12].

After finding clusters of similar tables, we align all columns of

the tables within each cluster. First, we create a matrix of max-

aggregated column similarities using the matching functions in M

for each pair of columns in the tables in the cluster. Then, we run

agglomerative clustering [18] with complete linkage on this matrix

to identify groups of similar columns. Agglomerative clustering

iteratively combines the two clusters (i.e., two groups of columns)

which are separated by the shortest distance.

Once the columns are clustered together, we create a union table

with as many columns as clusters. Then, the tables are concatenated

filling the gaps with empty cells. To create a header for this table,

we take the most frequent header cell of each column cluster. The

set of union tables will be the input of the next stage of our pipeline.
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3.3 KB Integration

The last step in our pipeline consists of extracting facts from the

union tables. This phase, shown at the bottom of Figure 1, deter-

mines the type of the union table and extracts the facts from it.

3.3.1 Detecting n-ary union tables. A key challenge in extracting

facts from the union tables is distinguishing between EA and NA

union tables. To this end, we make use of pFDs. This gives us a

robust signal for union tables because their large number of rows

prevents the pFDs from expressing noise, which occurs very fre-

quently in small tables. Let 𝑅(𝐴1, . . . , 𝐴𝑚) be the relation associated

to union table 𝑇 and 𝑟 be the instance of 𝑅 with the body of 𝑇 . We

run perTuple on 𝑟 to compute the set 𝐹𝑇 of pFDs. Let 𝐵 be the

attribute of 𝑅 with the highest harmonic mean of the multiset

{𝑝 : 𝐴 →𝑝 𝐵 ∈ 𝐹𝑇 } (ties are broken by taking the leftmost column).

If the harmonic mean is greater than a given threshold 𝜐 (default

value is 0.95) then we assume that 𝑇 is a EA table and the column

associated to 𝐵 is the key column. Otherwise, 𝑇 is an NA table.

3.3.2 Entity Disambiguation. The extraction of factual knowledge

from the union table is split into two phases. First, we disambiguate

the cells in 𝑇 into entities in K , regardless the type of 𝑇 . We make

use of the hyperlinks whenever they are available and maximise

the coherence of entities if multiple matches are possible, as de-

scribed in [11]. Note that here the large number of rows in the

union tables is particularly helpful as it provides a clearer signal

for disambiguating the entities. In the following, we denote with

entity(𝑐) ∈ E the entity associated with cell 𝑐 if we found a match,

otherwise entity(𝑐) = NULL.

3.3.3 Fact Extraction. We proceed differently depending on whe-

ther 𝑇 is an EA or a NA table.

If 𝑇 is a EA table, we first retain all pFDs with a sufficiently

high probability, i.e., greater than 𝜐, which we call 𝐹>𝜐
𝑇 . For each

pFD 𝐴 →𝑝 𝐵 ∈ 𝐹>𝜐
𝑇 , we search for a relation in K suitable to

represent the dependency between 𝐴 and 𝐵. Let Col𝑋 ∈ cols(𝑇 )
be the column of 𝑇 associated with the attribute 𝑋 in 𝑅. First, we
compute the set of all pairs of entities mentioned in the columns, i.e.,

𝐸𝐴,𝐵 � {〈𝑎, 𝑏〉 : ∀𝑖 . 𝑎 = entity(Col𝐴 [𝑖]) ∧𝑏 = entity(Col𝐵 [𝑖] ∧𝑎 ≠
NULL∧𝑏 ≠ NULL)}. Then, the set of matched facts for 𝐴 →𝑝 𝐵 and

relation 𝑟 ∈ R inK is 𝑀𝐴,𝐵 (𝑟 ) � {〈𝑏, 𝑟, 𝑎〉 : 〈𝑎, 𝑏〉 ∈ 𝐸𝐴,𝐵}∩K . We

pick the relation 𝑟 ∈ 𝑅 such that 𝑟 = argmax𝑟 ∈R |𝑀𝐴,𝐵 (𝑟 ) |, that is,
the relation with the maximum overlap, like [19]. Then, we output

the fact 〈𝑏, 𝑟, 𝑎〉 for each 〈𝑎, 𝑏〉 ∈ 𝐸𝐴,𝐵 so that it can be added to K .

If 𝑇 is a NA table, let 𝐸𝐴,𝐵,𝐶 be the set of tuples for attributes

𝐴, 𝐵,𝐶 defined analogously to 𝐸𝐴,𝐵 . For every possible pair of at-

tributes 𝐴, 𝐵 and relation 𝑟 ∈ R, we first identify the columns

that contain entities that appear in qualifiers of facts in 𝑀𝐴,𝐵 (𝑟 ).
To this end, we denote with 𝑁 (𝐴, 𝐵,𝐶, 𝑟 ) � {〈𝑦, 𝑐〉 : 〈𝑎, 𝑏, 𝑐〉 ∈

𝐸𝐴,𝐵,𝐶 ∧ 〈𝑞𝑏,𝑟,𝑎, 𝑦, 𝑐〉 ∈ K} the set of qualifiers that could be re-

trieved considering the entities in Col𝐶 , and with 𝑄 (𝐴, 𝐵, 𝑟 ) �
{𝐶 : 𝑁 (𝐴, 𝐵,𝐶, 𝑟 ) ≠ ∅} the set of attributes where some qualifiers

were found. Then, we consider all 𝐴, 𝐵, 𝑟 with the highest number

of qualifier-matching columns |𝑄 (𝐴, 𝐵, 𝑟 ) | because these are the
potential n-ary relations with the largest coverage of columns. If

there are multiple𝐴, 𝐵, 𝑟 with the same highest |𝑄 (𝐴, 𝐵, 𝑟 ) |, then we
choose the one with the highest number of matched facts |𝑀𝐴,𝐵 (𝑟 ) |.
Finally, for each 𝑋 ∈ 𝑄 (𝐴, 𝐵, 𝑟 ), we identify the relation 𝑟𝑋 that has

the highest frequency in the multiset {𝑦 : 〈𝑦, 𝑐〉 ∈ 𝑁 (𝐴, 𝐵, 𝑋, 𝑟 )}.
This relation will be the one used to create the qualifiers with the

entities in Col𝑋 . At this point we are ready to extract the facts

from 𝑇 : We output the fact 〈𝑏, 𝑟, 𝑎〉 for each 〈𝑎, 𝑏〉 ∈ 𝐸𝐴,𝐵 , and, for
each 𝑋 ∈ 𝑄 (𝐴, 𝐵, 𝑟 ), we output the triple 〈𝑞𝑑,𝑟,𝑐 , 𝑟𝑋 , 𝑒〉 for each
〈𝑐, 𝑑, 𝑒〉 ∈ 𝐸𝐴,𝐵,𝑋 .

Example 3.1. In Figure 1(g), we show the union table con-

structed from the cluster in Figure 1(f). Due to its pFDs, we clas-

sify it as an NA union table, and attempt to find matching qual-

ifiers in K . Let 𝐶 , 𝑆 , and 𝑃 be the columns in this table that

have the headers “Chart”, “Single” and “Position”, respectively.

Then, we have that 〈US_Billboard_200, Brick_House, 5〉 ∈ 𝐸𝐶,𝑆,𝑃
(US_Billboard_200 is the entity that matches the cell “US” in the

table). Let’s assume that the triple 〈𝑞𝑥 , ranking, 5〉 ∈ K where 𝑥 =
〈Brick_House, chartedIn, US_Billboard_200〉. This means that

〈ranking, 5〉 ∈ 𝑁 (𝐶, 𝑆, 𝑃, chartedIn) and 𝑃 ∈ 𝑄 (𝐶, 𝑆, chartedIn).
If 𝐶 , 𝑆 , and chartedIn have the highest number of these qualifier-

matching columns 𝑄 (𝐶, 𝑆, chartedIn) and the highest number

of matches 𝑀𝐶,𝑆 (chartedIn) of all column pairs and relations,

we use the relation chartedIn to extract facts from columns

𝐶 and 𝑆 . Finally, if ranking is the most frequent relation in

𝑁 (𝐶, 𝑆, 𝑃, chartedIn), we use it for extracting qualifiers from

column 𝑃 . Let us assume that 𝐸𝐶,𝑆,𝑃 contains another tuple

〈US_Billboard_200, Thriller, 1〉. In this case, the systemwill out-

put the facts 𝑓 = 〈Thriller, chartedIn, US_Billboard_200〉 and
〈qf, ranking, 1〉, which is graphically depicted in Figure 1(i).

4 EVALUATION

For our empirical evaluation, we considered the corpus of 1,535,332

Wikipedia tables from [1], with 1,426,303 unique tables of which

26,260 occur on more than one page. There are 330,221 unique

headers, of which 247,403 (75%) occur only once. This means there

are 1,287,929 tables that have a header that is shared by some other

table. On average, these tables have 11 rows. The experiments here

presented were performed with a Wikidata dump from Dec. 2019.

Annotations. Since there were no available gold standard to test

our method, we created it using three human annotators. To this

end, we developed a GUI that showed the page title, description,

section title and caption, and table contents. We sampled 1000

random tables, all from different Wikipedia pages, which have 3449

columns in total. We aggregated these annotations by majority vote,

with moderate agreement between annotators (Fleiss’ 𝜅 = 0.57).
First, the annotators annotated the columns that should be un-

pivoted by selecting a horizontal sequence of cells in the header of

a table. The guidelines specified that the sequence should “contain

names of a related set of concepts that do not describe the content

of the column below them.” After annotation, the table was shown

to the annotator in unpivoted form for verification. This resulted

in 151 tables from the sample to unpivot.

Then, the annotators were asked to create table unions from the

unpivoted tables resulting from the previous phase by iteratively

merging clusters. They were presented with one query cluster and

several candidate clusters, ranked according to the matchers de-

scribed above. All clusters were presented as a union table (i.e.

“vertical stack”) of all tables in that cluster. From these candidate

clusters, the annotators were asked to identify the clusters that
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Heuristic Pr. Re. 𝐹1
headerLike 0.30 0.33 0.31
numPrefix 0.73 0.27 0.39
sRepeated 0.89 0.12 0.21
numSuffix 0.52 0.09 0.16
linkAgent 0.70 0.05 0.09
rareOutlier 0.14 0.02 0.04

All Heuristics 0.44 0.88 0.58

(a) Precision, Recall and 𝐹1 of unpivot
detection heuristics

Reshape Clusters ARI AMI H. C. V.
- One per table 0.00 0.00 1.00 0.85 0.92
- Same Header 0.55 0.55 1.00 0.90 0.95

Model Same Header 0.55 0.56 1.00 0.90 0.95
Oracle Same Header 0.56 0.57 1.00 0.90 0.95
Model Only Header Sim. 0.83 0.77 0.97 0.95 0.96
Model Only Body Sim. 0.69 0.67 0.99 0.93 0.96
Model Both Sim. 0.88 0.85 0.99 0.97 0.98
Model Oracle 0.93 0.94 1.00 0.98 0.99

(b) Clustering ablation for different configurations

Accuracy
Method EA NA Both EA pct.

Non-num. baseline 0.29 0.10 0.39 90%
Entity baseline 0.24 0.20 0.43 74%

Ours 0.45 0.77 0.66 36%

(c) Key column prediction accuracy for EA tables, NA
table detection accuracy, both tasks combined, and the
EA table percentage predicted (EA pct.). The true per-
centage of EA tables in our annotated sample is 35%

0k 1000k

Subheaders (𝐻3)

Footnote (𝐻2)

Even rows (𝐻1)

H
eu
ri
st
ic

(d) # cells processed by heuristics in
mergechunks

Tables Columns

Individual 173 (17%) 267 (8%)
Union 193 (33%) 419 (17%)

(e) Number of matched tables and
columns in annotated sample

Existing Facts in K New Facts
Precision # Context # Context

Binary 0.65 4,708,865 33% 15,800,524 29%
N-ary 0.92 2,122,518 22% 6,901,790 19%

All 0.74 6,831,383 30% 22,702,314 26%

(f) Relation matching precision, number of matched and new facts,
and percentage of matched and new facts that involve the table con-
text

Figure 3: Experimental results. The best outcomes (except the annotations-based oracle) are reported in boldface

expressed the same relation as the query table. As a proxy, the guide-

lines suggested that they could ask themselves: “Would it make

sense to add every row in the candidate table to the query table?”

Then, they identified the aligning column pairs by either selecting a

query column or adding a new column to the clustered union table

for every candidate column. This resulted in 577 clusters with a

total of 2479 columns, in which annotators identified a key column

(marking it as an EA table), or identified it as an NA table.

Finally, we let annotators evaluate the union table column dis-

ambiguations that were returned by our system. They assessed the

correctness of every KB relation that was assigned to a column

based on whether its semantics corresponded to that of all rows.

Although the collected annotations do not allow us to test every

single component of the system, they are sufficient to evaluate the

critical ones and can give us an overview of the overall performance.

Below we report the results of some key experiments.

Table Reshaping. In Figure 3d, we show the number of cells that

span all columns which were identified by each heuristic from Sec-

tion 3.1.1. Without the application of the mergechunks procedure,

each of these 1,554,692 cells would be located in the wrong columns,

where they would interfere with the subsequent operations.

On the entire dataset with 1.5M tables, smartunpivot predicted

that 260,528 unique headers should be unpivoted, corresponding

to 933,949 different tables. A breakdown of prediction scores per

heuristic is shown in Figure 3a. The heuristics are designed to

be complementary because they cover a different type of header.

Therefore, they are not expected to individually have high recall, but

ideally the recall should be high when they are combined together.

From Figure 3a, we can see that this is indeed the case with a 𝐹1 of
0.58. Examples of false positives of these heuristics include attribute

labels that occur frequently in table bodies (such as “director”). The

false negatives include values for which we do not have enough

statistics to result in high heuristic scores.

Table Clustering. Figure 3b reports a feature ablation study with

various combination of reshaping and clustering methods. The

“Oracle” reshaping strategy unpivots the tables on annotationswhile

“Model” uses our reshape(). The “SameHeader” clusters aremade by

grouping tables with the same header and the “Oracle” clusters are

based on the gold-standard annotations. We show the performance

of our clustering phase when using only the header similarities

(𝜃 = 1 in Alg. 2), the body similarities (𝜃 = 0 in Alg. 2), and all

similarity functions together (𝜃 set in Alg. 2 with cross validation).

We use several scoring functions to evaluate the generated clus-

ters. Because clusters can have very different sizes, and there are

many clusters of a single element, some of these metrics are ad-

justed for chance to reduce the scores of random or degenerate

clusterings. The Adjusted Rand Index (ARI) expresses the cluster

and class agreement of item pairs, adjusted for chance [9]. The Ad-

justed Mutual Information (AMI) expresses the mutual information

between the clusters and classes, adjusted for chance [27]. Fur-

thermore, a clustering result satisfies Homogeneity (H.) if all of its

clusters contain only data points which are members of a single

class. A clustering result satisfies Completeness (C.) if all the data

points that are members of a given class are elements of the same

cluster. The V-measure (V.) is their harmonic mean (similar to the

𝐹1 score) [26].
From Figure 3b, we see that clustering using only similarities of

headers (“Only Head Sim.”) outperforms the one that considers the

body (“Only Body Sim.”), but their aggregation gets us nearest to the

performance of the oracle, which is built with human annotations.

Table Interpretation and KB Integration. In Figure 3c, we report

the performance of our key-column and n-ary table detection ap-

proach, and compare it to two baselines. The “Non-numeric” base-

line selects the rightmost non-numeric column that contains at

least 95% unique values if it exists, and the “Entity” baseline does

the same thing for columns which contain entities [25]. If such

columns do not exist, they predict the table is n-ary. Note that these

baselines are the most commonly used ones by state-of-the-art sys-

tems (e.g., [11]). Our approach is more accurate for both EA tables

and NA tables, and closest to predict the correct rate of EA tables.
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In fact, the baselines are severely biased and select EA tables in

90% and 74% of the times, incorrectly labeling many NA tables and

consequently precluding the extraction of n-ary facts. In contrast,

our performance is much closer to the true rate of 35%.

In Figure 3e, we compare the relation identification counts for

individual tables from the annotated sample to the counts for our

union tables. The percentage of (union) tables and columns for

which we could identify KB relations is higher for the union tables,

which indicates that creating union tables from clusters leads to

more identified relations that we can use for fact extraction.

Finally, Figure 3f reports the precision for binary and n-ary facts

extracted by our system on the gold standard. Interestingly, we

observe that our system is more precise at extracting n-ary facts

instead of binary facts.We applied our pipeline to the corpus of 1.5M

tables and our system extracted 29.5M facts. Of these, 77% are novel

facts, i.e., not available in Wikidata. The columns titled “Context”

report the percentage of facts that involved the extra columns added

by addcontext(). The large ratio indicates that including external

context is beneficial as it leads to more extractions.

5 RELATEDWORK

Although we are not aware of existing systems that extracts on

n-ary relations from tables and integrate them with KBs, there has

been a significant amount of research on similar problems to ours.

Table transformation and analysis. Pivk et al. [23] propose a com-

prehensive functional table model, called TARTAR, for transform-

ing tables into logical form. The authors describe a recapitulation

process which identifies attribute values in table headers by decom-

posing complex headers. In contrast to us, this is only performed

when the headers have a tree-like structure, and relies on external

resources. More recently, Halevy et al. [8] analyzed a large corpus

of web tables, discovering structure in attribute labels to character-

ize their compositionality in terms of complex relations. Although

it extracted many rules for open IE, the resulting records are not

disambiguated nor integrated with a KB. The method by Lehmberg

and Bizer [14] classifies table columns for detecting layout and list

tables, distinguishing binary relations from relations with a higher

arity using inter-table statistics involving fuzzy pFDs as features.

However, they do not disambiguate the n-ary relations, as we do.

Table search.Much research has been done on supporting user

queries over large collections of web tables. Cafarella et al. [4] de-

scribed the WebTables project in which they construct a join graph

for supporting table-building user queries. They make use of an

Attribute Correlation Statistics Database (ACSDb), which disam-

biguates column headers to some extent. Similarly, Wang et al. [30]

described a system for bootstrapped taxonomy population from

web tables, and its application in semantic table search. The Octopus

system [3] introduced search joins, where users search for relevant

tables to join with a query table. Similarly, Bhagavatula et al. [1]

described a relevant-join prediction approach for Wikipedia tables.

Finally, the Infogather system [33] supports several user query

types, and explicitly assumes that tables are entity-attribute tables

with a subject column. These approaches focus on search and do

not integrate the tables with a KB.

Table clustering. Ling et al. [17] introduced a method for creating

union tables which makes use of the table context for constructing

hidden attributes that are part of n-ary relations. In our scenario, the

context is much simpler and is added to the table as extra columns,

which we use in clustering. The work of Wang et al. [29] finds

regularities in the schemata of a collection of tables, in order to

create a mediated schema that expresses the functional dependen-

cies between attributes to identify noisy data sources within the

collection. The seminal work of Das Sarma et al. [5] describes an

approach to find related tables based on their schema and contents.

This results in table pair candidates for joins or unions, but does not

have a way to canonicalize entities or detect duplicates. Similarly,

in the recent work of Fetahu et al. [7], pairs of Wikipedia tables

with equivalent or subsumed schemata are discovered with a neural

network classifier, and this is useful for improving the detection of

complex relations. None of these works integrate the tables with a

KB, nor distinguish pivoted cells from values in the table headers.

Table integration. Several related systems exist for table inte-

gration with a KB. Both the state-of-the-art table interpretation

systems T2KMatch [24] and TableMiner [34] assume that the in-

put consists only of EA tables. More recently, the system proposed

by Kruit et al. [11] has reported better performance than T2KMatch

and TableMiner. This system relies on coherence to disambiguate

the entities of EA tables, which we re-use in our pipeline to perform

the entity disambiguation. The work of Muñoz et al. [19] is also

relevant to our approach because it aims at extending DBpedia with

facts extracted from Wikipedia tables. They parse the structure of

the tables using TARTAR, and use hyperlinks to match cell pairs to

DBpedia triples to link table columns to relations. This is followed

by a post-processing step that consists of a trained triple-filtering

model to boost extraction precision. However, they do not distin-

guish between attribute labels and values in the headers, and do not

attempt to extract n-ary relations, which DBpedia does not support.

6 CONCLUSION

In this paper, we tackled the problem of automatically integrating

the knowledge in Wikipedia tables into a KB. In particular, we fo-

cused on the extraction of both EA and NA tables. Our pipeline

introduces new heuristics for table transformation based on, among

others, unpivoting, which allows us to consider more tables. Then,

our method uses clustering to alleviate the problems of KB incom-

pleteness and table diversity. Finally, the integration step judiciously

interprets the table, distinguishing EA tables from NA ones and

extracts facts in a format suitable for a KB integration.

We carried out an empirical evaluation, relying on manual anno-

tators to verify the high quality of our extractions. Our implemen-

tation is scalable as we were able to process all 1.5M tables from

Wikipedia. More generally, all steps except the Louvain algorithm

for clustering scale linearly with the number of tables.

Future work includes creating a model for filtering the extracted

facts to boost their precision, developing a semi-supervised model

for table transformation, and designing more sophisticated align-

ment functions for improving the quality of the table clusters. Addi-

tionally, the performance of our pipeline on non-Wikipedia tables

remains an open question. In particular, our pipeline assumes that

there is some overlap between the entities in the tables and in the

KB and that such entities can be successfully disambiguated. It is
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interesting to study whether we can relax such assumptions so that

our pipeline can be applied on different table corpora.

We hope to deploy our table extraction pipeline in production for

automatically augmenting Wikidata with new statements, and look

forward to welcoming contributions from the research community.
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A ADDITIONAL PSEUDOCODE

Algorithm 3 mergechunks(𝑇 )

13: if |cols(𝑇 ) | = 1 then return T

14: 𝐵 � body(𝑇 ) 𝐻 � head(𝑇 ) 𝑛 � |𝐵 | 𝑚 � |cols(𝑇 ) |
15: 𝐻 ′ � 〈〉 𝐵′ � 〈〉 𝐶 � 〈〉
16: if span(𝐵 [2𝑖 ] [1]) = [1,𝑚] for each 1 ≤ 𝑖 ≤ 𝑛

2 then

17: for 𝑖 � 1 to |𝐻 | do append(𝐻 [𝑖 ] · 〈 ∅ 〉, 𝐻 ′)

18: for 𝑖 � 1 to 𝑛
2 do append(𝐵 [2𝑖 − 1] · 〈𝐵 [2𝑖 ] [1] 〉, 𝐵′)

19: else
20: 𝑖 � 𝑛
21: while 𝑖 ≥ 1 do
22: if span(𝐵 [𝑖 ] [1]) = [1,𝑚] then
23: append( 〈“𝑓 𝑜𝑜𝑡𝑛𝑜𝑡𝑒”, val(𝐵 [𝑖 ] [1]) 〉,𝐶)

24: else break
25: 𝑖 � 𝑖 − 1
26: if ∃ 𝑗 such that 1 ≤ 𝑗 ≤ 𝑖 and span(𝐵 [ 𝑗 ] [1]) = [1,𝑚] then

27: 𝐷 � ∅

28: for 𝑖 � 1 to |𝐻 | do append( 〈𝐷 〉 ·𝐻 [𝑖 ], 𝐻 ′)
29: for 𝑗 � 1 to 𝑖 do
30: if span(𝐵 [ 𝑗 ] [1]) = [1,𝑚] then 𝐷 � 𝐵 [ 𝑗 ] [1]

31: else append( 〈𝐷 〉 · 𝐵 [ 𝑗 ], 𝐵′)

32: else
33: 𝐻 ′ � 𝐻 𝐵′ � 〈𝐵 [1], . . . , 𝐵 [𝑖 ] 〉
34: Let𝑇 ′ be a table s.t. head(𝑇 ′) = 𝐻 ′, body(𝑇 ′) = 𝐵′, and context(𝑇 ′) = context(𝑇 ) ∪𝐶
35: return𝑇 ′

Algorithm 4 smartunpivot(𝑇,U)

36: 𝐻 � head(𝑇 ) 𝑚 � |cols(𝑇 ) | 𝑏 � 𝑐 � 𝑑 � 0
37: for 𝑖 � 1 to |𝐻 | do
38: for all𝑈 ∈ U do
39: Let𝑢𝑙 be the returned value of𝑈 (𝑇,𝐻 [𝑖 ] [𝑙 ])
40: Let [ 𝑗, 𝑘 ] be the largest interval s.t.𝑢 𝑗 = . . . = 𝑢𝑘 = true

41: if (𝑘 − 𝑗) > (𝑑 − 𝑐) then
42: 𝑏 � 𝑖 𝑐 � 𝑗 𝑑 � 𝑘
43: if 𝑏 = 0 then return𝑇
44: 𝑦 � 𝑧 � ∅

45: if 𝑏 > 1 ∧ span(𝐻 [𝑏 − 1] [𝑐 ]) = [𝑐,𝑑 ] then 𝑧 � 𝐻 [𝑏 − 1] [𝑐 ]

46: Let 𝑅 (𝐴1, . . . , 𝐴𝑐−1, 𝐵𝑐 , . . . , 𝐵𝑑 , 𝐴𝑑+1, . . . , 𝐴𝑚 ) be a relation with 𝐴𝑖 � 𝐻 [𝑏 ] [𝑖 ] and
𝐵𝑖 � 𝐻 [𝑏 ] [𝑖 ] . Also, let 𝑟 be an instance of 𝑅 with body(𝑇 )

47: 𝑠 = UNPIVOT
𝑦→𝑧
𝐴1,...,𝐴𝑐−1,𝐴𝑑+1,...,𝐴𝑚

(𝑟 )

48: Let𝑇 ′ be a table where:
◦ head(𝑇 ′) = 〈〈𝐴1, . . . , 𝐴𝑐−1, 𝐴𝑑+1, . . . , 𝐴𝑚 , 𝑦, 𝑧 〉〉
◦ body(𝑇 ′) = 𝑠

49: return𝑇 ′

Algorithm 5 addcontext(𝑇 )

50: 𝐴 � 〈〉 𝐵 � 〈〉 𝐻 � 〈〉 𝐽 � 〈〉
51: for all𝐶 ∈ context(𝑇 ) do
52: append( 〈𝐶 [1] 〉, 𝐴) append( 〈𝐶 [2] 〉, 𝐵)

53: for 𝑖 � 1 to |head(𝑇 ) | do append(𝐴 · head(𝑇 ) [𝑖 ], 𝐻 )

54: for 𝑖 � 1 to |body(𝑇 ) | do append(𝐵 · body(𝑇 ) [𝑖 ], 𝐽 )

55: Let𝑇 ′ be a table where head(𝑇 ′) = 𝐻 and body(𝑇 ′) = 𝐽
56: return𝑇 ′
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