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A FRIENDLY SMOOTHED ANALYSIS OF THE SIMPLEX METHOD\ast 

DANIEL DADUSH\dagger AND SOPHIE HUIBERTS\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Explaining the excellent practical performance of the simplex method for linear
programming has been a major topic of research for over 50 years. One of the most successful
frameworks for understanding the simplex method was given by Spielman and Teng [J. ACM, 51
(2004), pp. 385--463] who developed the notion of smoothed analysis. Starting from an arbitrary
linear program (LP) with d variables and n constraints, Spielman and Teng analyzed the expected
runtime over random perturbations of the LP, known as the smoothed LP, where variance \sigma 2 Gaussian
noise is added to the LP data. In particular, they gave a two-stage shadow vertex simplex algorithm
which uses an expected \widetilde O(d55n86\sigma  - 30 + d70n86) number of simplex pivots to solve the smoothed
LP. Their analysis and runtime was substantially improved by Deshpande and Spielman [FOCS `05,
2005, pp. 349--356] and later Vershynin [SIAM J. Comput., 39 (2009), pp. 646--678]. The fastest
current algorithm, due to Vershynin, solves the smoothed LP using an expected O

\bigl( 
log2 n \cdot log logn \cdot 

(d3\sigma  - 4+d5 log2 n+d9 log4 d)
\bigr) 
number of pivots, improving the dependence on n from polynomial to

polylogarithmic. While the original proof of Spielman and Teng has now been substantially simplified,
the resulting analyses are still quite long and complex and the parameter dependencies far from
optimal. In this work, we make substantial progress on this front, providing an improved and simpler
analysis of shadow simplex methods, where our algorithm requires an expected O(d2

\surd 
logn \sigma  - 2 +

d3 log3/2 n) number of simplex pivots. We obtain our results via an improved shadow bound, key to
earlier analyses as well, combined with improvements on algorithmic techniques of Vershynin. As
an added bonus, our analysis is completely modular and applies to a range of perturbations, which,
aside from Gaussians, also includes Laplace perturbations.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . linear programming, shadow vertex simplex method, smoothed analysis
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1. Introduction. The simplex method for linear programming (LP) is one of the
most important algorithms of the 20th century. Invented by Dantzig in 1947 [29, 30],
it remains to this day one of the fastest methods for solving LPs in practice. The
simplex method is not one algorithm, however, but a class of LP algorithms, each
differing in the choice of pivot rule. At a high level, the simplex method moves
from vertex to vertex along edges of the feasible polyhedron, where the pivot rule
decides which edges to cross, until an optimal vertex or unbounded ray is found.
Important examples include Dantzig's most negative reduced cost [30], the Gass and
Saaty parametric objective [44], and Goldfarb's steepest edge [46] method. We note
that for solving LPs in the context of branch and bound and cutting plane methods
for integer programming, where the successive LPs are ``close together,"" the dual
steepest edge method [41] is the dominant algorithm in practice [12, 11], due its
observed ability to quickly reoptimize.

The continued success of the simplex method in practice is remarkable for two rea-
sons. First, there is no known polynomial time simplex method for LP. Indeed, there
are exponential examples for almost every major pivot rule starting with constructions
based on deformed products [63, 57, 7, 51, 73, 47, 5], such as the Klee--Minty cube [63],
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which defeat most classical pivot rules, and more recently based on Markov decision
processes (MDP) [43, 42], which notably defeat randomized and history dependent
pivot rules. Furthermore, for an LP with d variables and n constraints, the fastest

provable (randomized) simplex method requires 2O(
\surd 

d log(n - d)) pivots [58, 68, 53],
while the observed practical behavior is linear O(d + n) [82]. Second, it remains the
most popular way to solve LPs despite the tremendous progress for polynomial time
methods [62], most notably, interior point methods [60, 78, 72, 65]. How can we
explain the simplex method's excellent practical performance?

This question has fascinated researchers for decades. An immediate question is,
How does one model instances in ``practice,"" or at least instances where simplex should
perform well? The research on this subject has, broadly speaking, followed three
different lines: the analysis of average case LP models, where natural distributions
of LPs are studied, the smoothed analysis of arbitrary LPs, where small random
perturbations are added to the LP data, and work on structured LPs, such as totally
unimodular systems and Markov decision processes (MDPs). We review the major
results for the first two lines in the next section, as they are the most relevant to the
present work, and defer additional discussion to the related work section. To formalize
the model, we consider LPs in d variables and n constraints of the following form:

max c\sansT x,

Ax \leq b.
(1.1)

We denote the feasible polyhedron Ax \leq b by P . We now introduce relevant details
for the simplex methods of interest to this work.

Parametric simplex algorithms. While a variety of pivot rules have been studied,
the most successfully analyzed in theory are the so-called parametric simplex methods,
due to the useful geometric characterization of the paths they follow. The first such
method, and the main one used in the context of smoothed analysis, is the parametric
objective method of Gass and Saaty [44], dubbed the shadow (vertex) simplex method
by Borgwardt [16]. Starting at a known vertex v of P maximizing an objective c\prime ,
the parametric objective method computes the path corresponding to the sequence of
maximizers for the objectives obtained by interpolating c\prime \rightarrow c.1 The name shadow
vertex method is derived from the fact that the visited vertices are in correspondence
with those on the projection of P onto W := span(c, c\prime ), the two-dimensional (2D)
convex polygon known as the shadow of P on W (see Figure 2 for an illustration). In
particular, the number of vertices traversed by the method is bounded by the number
of vertices of the projection, known as the size of the shadow.

An obvious problem, as with most simplex methods, is how to initialize the
method at a feasible vertex if one exists. This is generally referred to as the Phase I
problem, where Phase II then corresponds to finding an optimal solution. A common
Phase I adds artificial variable(s) to make feasibility trivial and applies the simplex
method to drive them to zero.

A more general method, popular in the context of average case analysis, is the self-
dual parametric simplex method of Dantzig [31]. In this method, one simultaneously
interpolates the objectives c\prime \rightarrow c and right-hand sides b\prime \rightarrow b, which has the effect
of combining Phases I and II. Here c\prime and b\prime are chosen to induce a known initial
maximizer. While the polyhedron is no longer fixed, the breakpoints in the path of
maximizers (now a piecewise linear curve) can be computed via certain primal and

1This path is well-defined under mild nondegeneracy assumptions.
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dual pivots. This procedure was in fact generalized by Lemke [66] to solve linear
complementarity problems. We note that the self dual method can roughly speaking
be simulated in a higher-dimensional space by adding an interpolation variable \lambda ,
i.e., Ax \leq \lambda b + (1  - \lambda )b\prime , 0 \leq \lambda \leq 1, which has been the principal approach in
smoothed analysis.

1.1. Prior work. Here we present the main works in both the average case
and smoothed analysis, which inform our main results, presented in the next section.
A common theme in these works, which all study parametric simplex methods, is
to first obtain a bound on the expected parametric path length, with respect to
some distribution on interpolations and LPs, and then find a way to use the bounds
algorithmically. This second step can be nonobvious, as it is often the case that one
cannot directly find a starting vertex on the path in question. We now present the
main random LP models that have been studied, presenting path length bounds and
algorithms. Last, as our results are in the smoothed analysis setting, we explain the
high level strategies used to prove smoothed (shadow) path bounds.

Average case models. The first model, introduced in the seminal work of Borg-
wardt [16, 17, 18, 19, 20], examined LPs of the form max c\sansT x,Ax \leq 1, possibly
with x \geq 0 constraints (note that this model is always feasible at 0), where the
rows of A \in \BbbR n\times d are drawn independent and identically distributed (i.i.d.) from
a rotationally symmetric distribution (RSD) and c \in \BbbR d \setminus \{ 0\} is fixed and non-
zero. Borgwardt proved tight bounds on the expected shadow size of the feasible
polyhedron when projected onto any fixed plane. For general RSD, he proved a
sharp \Theta (d2n1/(d - 1)) [18, 19, 20] bound, tight for rows drawn uniformly from the
sphere, and for Gaussians a sharp \Theta (d1.5

\surd 
log n) bound [18], though this last bound

is only known to hold asymptotically as n \rightarrow \infty (i.e., very large compared to d).
On the algorithmic side, Borgwardt [17] gave a dimension by dimension (DD) al-
gorithm which optimizes over such polytopes by traversing d  - 2 different shadow
vertex paths. The DD algorithm proceeds by iteratively solving the restrictions
max c\sansT x,Ax \leq 1, xi = 0, i \in \{ k + 1, . . . , d\} , for k \geq 2, which are all of RSD type.

For the next class, Smale [83] analyzed the standard self dual method for LPs
where A and (c,b) are chosen from independent RSD distributions, where Megiddo
[71] gave the best known bound of f(min \{ d, n\} ) iterations, for some exponentially
large function f . Adler [2] and Haimovich [52] examined a much weaker model where
the data is fixed, but where the signs of all the inequalities, including nonnegativity
constraints, are flipped uniformly at random. Using the combinatorics of hyperplane
arrangements, they achieved a remarkable bound of O(min \{ d, n\} ) for the expected
length of parametric paths. These results were made algorithmic shortly thereafter
[87, 4, 3], where it was shown that a lexicographic version of the parametric self dual

simplex method2 requires \Theta (min \{ d, n\} 2) iterations, where tightness was established
in [4]. While these results are impressive, a notable criticism of the symmetry model
is that it results in infeasible LPs with overwhelming probability once n is a bit larger
than d.

Smoothed LP models. The smoothed analysis framework, introduced in the break-
through work of Spielman and Teng [85], helps explain the performance of algorithms
whose worst-case examples are in essence pathological, i.e., which arise from very brit-
tle structures in instance data. To get rid of these structures, the idea is to add a
small amount of noise to the data, quantified by a parameter \sigma , where the general goal

2These works use seemingly different algorithms, though they were shown to be equivalent to a
lexicographic self-dual simplex method by Meggiddo [70].
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is then to prove an expected running time bound over any smoothed instance that
scales inverse polynomially with \sigma . Beyond the simplex method, smoothed analysis
has been successfully applied to many other algorithms such as interior point meth-
ods [84], Gaussian elimination [79], Lloyd's k-means algorithm [6], the 2-OPT heuristic
for the TSP [39], and much more.

The smoothed LP model, introduced by [85], starts with any base LP

max c\sansT x, \=Ax \leq \=b, (Base LP)

\=A \in \BbbR n\times d, \=b \in \BbbR n, c \in \BbbR d \setminus \{ 0\} , where the rows of ( \=A, \=b) are normalized to have \ell 2
norm at most 1. From the base LP, we generate the smoothed LP by adding Gaussian
perturbations to both the constraint matrix \=A and the right-hand side \=b. Precisely,
the data of the smoothed LP is

A = \=A+ \^A, b = \=b+ \^b, c, (Smoothed LP Data),

where the perturbations \^A,\^b have i.i.d. mean 0, variance \sigma 2 Gaussian entries. Note
that the objective is not perturbed in this model, though we require that c \not = 0. An
LP algorithm is said to have polynomial smoothed complexity if for any base LP data
\=A, \=b, c as above, we have

\BbbE \^\bfA ,\^\bfb [T (A,b, c)] = poly(n, d, 1/\sigma ), (Smoothed Complexity),

where T (A,b, c) is the running time of the algorithm on a given smoothed instance.
Crucially, this complexity measure allows for an inverse polynomial dependence on \sigma ,
the perturbation size. Focusing on the simplex method, T will measure the number
of simplex pivots used by the algorithm as a proxy for the running time.

Spielman and Teng [85] proved the first polynomial smoothed complexity bound
for the simplex method. In particular, they gave a two phase shadow vertex method
which uses an expected \widetilde O(d55n86\sigma  - 30 + d70n86) number of pivots. This bound was
substantially improved by Deshpande and Spielman [33] and Vershynin [89], where
Vershynin gave the fastest such method requiring an expected

O
\bigl( 
log2 n \cdot log log n \cdot (d3\sigma  - 4 + d5 log2 n+ d9 log4 d)

\bigr) 
number of pivots.

In all these works, the complexity of the algorithms is reduced in a black box
manner to a shadow bound for smoothed unit LPs. In particular, a smoothed unit
LP has a base system \=Ax \leq 1, where \=A has row norms at most 1, and smoothing is
performed only to \=A. Here the goal is to obtain a bound on the expected shadow size
with respect to any fixed plane. Note that if \=A is the zero matrix, then this is exactly
Borgwardt's Gaussian model, where he achieved the asymptotically tight bound of
\Theta (d1.5

\surd 
log n) as n \rightarrow \infty [18]. For smoothed unit LPs, Spielman and Teng [85] gave

the first bound of O(d3n\sigma  - 6 + d6n log3 n). Deshpande and Spielman [33] derived
a bound of O(dn2 log n\sigma  - 2 + d2n2 log2 n), substantially improving the dependence
on \sigma while doubling the dependence on n. Last, Vershynin [89] achieved a bound of
O(d3\sigma  - 4+d5 log2 n), dramatically improving the dependence on n to polylogarithmic,
though still with a worse dependence on \sigma than [33].

Before discussing the high level ideas for how these bounds are proved, we over-
view how they are used algorithmically. In this context, [85] and [89] provide two
different reductions to the unit LP analysis, each via an interpolation method. Spiel-
man and Teng first solve the smoothed LP with respect to an artificial ``somewhat
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uniform"" right-hand side b\prime , constructed to force a randomly chosen basis of A to
yield a vertex of the artificial system. From here they use the shadow vertex method
to compute a maximizer for right-hand side b\prime and continue via interpolation to derive
an optimal solution for b. Here the analysis is quite challenging, since in both steps
the LPs are not quite smoothed unit LPs and the used shadow planes correlate with
the perturbations. To circumvent these issues, Vershynin uses a random vertex (RV)
algorithm, which starts with b\prime = 1 (i.e., a unit LP) and adds a random additional
set of d inequalities to the system to induce an ``uncorrelated known vertex."" From
this random vertex, he proceeds similarly to Spielman and Teng, but now at every
step the LP is of smoothed unit type and the used shadow planes are (almost) inde-
pendent of the perturbations. In Vershynin's approach, the main hurdle was to give
a simple shadow vertex algorithm to solve unit LPs, which correspond to the Phase
1 problem. An extremely simple method for this was in fact already given in the
early work of Borgwardt [18], namely, the DD algorithm. The application of the DD
algorithm in the smoothed analysis context was, however, only discovered much later
by Schnalzger [81]. As it is both simple and not widely known, we will describe the
DD algorithm and its analysis in section 4.

We note that beyond the above model, smoothed analysis techniques have been
used to analyze the simplex method in other interesting settings. In [23], the succes-
sive shortest path algorithm for min-cost flow, which is a shadow vertex algorithm,
was shown to be efficient when only the objective (i.e., edge costs) is perturbed.
In [61], Kelner and Spielman used smoothed analysis techniques to give a ``simplex
like"" algorithm which solves arbitrary LPs in polynomial time. Here they developed a
technique to analyze the expected shadow size when only the right-hand side of an LP
is perturbed. In an upcoming book chapter [27], based on the present work, we give
a simplified presention of the main result of [23] together with a simple exposition of
the shadow bound in two dimensions. This reference may be of interest to the reader
seeking a somewhat gentler introduction to smoothed analyses of the simplex method.

Shadow bounds for smoothed unit LPs. Let a1, . . . ,an \in \BbbR d, i \in [n], denote the
rows of the constraint matrix of the smoothed unit LP Ax \leq 1. The goal is to bound
the expected number of vertices in the projection of the feasible polyhedron P onto a
fixed 2D plane W . As noticed by Borgwardt, by a duality argument, this number of
vertices is upper bounded by the number of edges in the polar polygon (see Figure 2
for an illustration). Letting Q := conv(a1, . . . ,an), the convex hull of the rows, the
polar polygon can be expressed as D := Q \cap W .

We overview the different approaches used in [85, 33, 89] to bound the number of
edges of D. Let u\theta , \theta \in [0, 2\pi ], denote an angular parametrization of the unit circle
in W , and let r\theta = u\theta \cdot \BbbR \geq 0 denote the corresponding ray. Spielman and Teng [85]
bounded the probability that any two nearby rays r\theta and r\theta +\varepsilon intersect different
edges of D by a linear function of \varepsilon . Summing this probability over any fine enough
discretization of the circle upper bounds the expected number of edges of D.3 Their
probability bound proceeds in two steps: first they estimate the probability that the
Euclidean distance between the intersection of r\theta with its corresponding edge and the
boundary of that edge is small (the distance lemma), and second they estimate the
probability that angular distance is small compared to Euclidean distance (the angle
of incidence bound). Vershynin [89] avoided the use of the angle of incidence bound by
measuring the intersection probabilities with respect to the ``best"" of three different
viewpoints, i.e., where the rays emanate from a well-chosen set of three equally spaced

3One must be a bit more careful when D does not contain the origin, but the details are similar.
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viewpoints as opposed to just the origin. This gave a much more efficient reduction
to the distance lemma, and in particular allowed Vershynin to reduce the dependence
on n from linear to polylogarithmic. Deshpande and Spielman [33] bounded different
probabilities to get their shadow bound. Namely, they bounded the probability that
nearby objectives u\theta and u\theta +\varepsilon are maximized at different vertices of D. The corre-
sponding discretized sum over the circle directly bounds the number of vertices of D,
which is the same as the number of edges.

Complexity in two dimensions. In two dimensions, the shadow size reduces to the
complexity of the convex hull. The smoothed complexity of the convex hull was first
studied by Damerow and Sohler [28] in general dimensions. In the 2D case their bound
was improved on by Schnalzger [81] and Devillers et al. [35]. The best and simplest
upper bound can be found in [27], which proves a smoothed complexity bound for the
convex hull based on techniques developed in section 3.

The best upper bound is O(\sigma  - 1 +
\surd 
log n), due to [27]. The best lower bound is

due to [35] and is \Omega (n) for 0 \leq \sigma \leq 1
n2 , \Omega (

1\surd 
\sigma 

4
\sqrt{} 
log(n

\surd 
\sigma )) for 1

n2 \leq \sigma \leq 1\surd 
logn

and

\Omega (
\surd 
lnn) for 1\surd 

logn
\leq \sigma .

1.2. Results. While the original proof of Spielman and Teng has now been
substantially simplified, the resulting analyses are still complex and the parameter
improvements have not been uniform. In this work, we give a ``best of all worlds""
analysis, which is both much simpler and improves all prior parameter dependencies.
Our main contribution is a substantially improved shadow bound, presented below.

We note that some of the bounds below (including ours) only hold for d \geq 3.
Recalling the models, the results in Table 1 bound the expected number of vertices
in the projection of a random polytope Ax \leq 1, A \in \BbbR n\times d, onto any fixed 2D
plane. The models differ in the class of distributions examined for A. In the RSD
model, the rows of A are distributed i.i.d. according to an arbitrary rotationally
symmetric distribution. In the Gaussian model, the rows of A are i.i.d. mean zero
standard Gaussian vectors. Note that this is a special case of the RSD model. In
the smoothed model, the rows of A are d-dimensional Gaussian random vectors with
standard deviation \sigma centered at vectors of norm at most 1, i.e., the expected matrix
\BbbE [A] has rows of \ell 2 norm at most 1. The n \rightarrow \infty in the table indicates that that
bound only holds for n large enough (compared to d). The Gaussian, n\rightarrow \infty model
is a special case of the smoothed analysis model, and hence the \Omega (d3/2

\surd 
log n) bound

also holds in the smoothed model for n big enough.
As can be seen, our new shadow bound yields a substantial improvement over

earlier smoothed bounds in all regimes of \sigma and is also competitive in the Gaussian
model. For small \sigma , our bound improves the dependence on d from d3 to d2, achieves
the same \sigma  - 2 dependence as [33], and improves the dependence on n to

\surd 
log n.

Table 1
Shadow bounds. Logarithmic factors are simplified. The Gaussian, n \rightarrow \infty lower bound applies

in the smoothed model as well.

Reference Expected number of vertices Model

[19, 20] \Theta (d2n1/(d - 1)) RSD

[18] \Theta (d3/2
\surd 
logn) Gaussian, n \rightarrow \infty 

[85] O(d3n\sigma  - 6 + d6n log3 n) Smooth

[33] O(dn2 logn \sigma  - 2 + d2n2 log2 n) Smooth

[89] O(d3\sigma  - 4 + d5 log2 n) Smooth

This paper O(d2
\surd 
logn \sigma  - 2 + d2.5 log3/2 n(1 + \sigma  - 1)) Smooth
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Table 2
Running time bounds. Logarithmic factors are simplified.

Reference Expected number of pivots Model Algorithm
[18, 81] d \cdot max shadow size Multiple DD + Int. LP

[18, 54, 19, 20] O(d2.5n1/(d - 1))
RSD,
n \rightarrow \infty DD

[89] O
\bigl( 
log3 n \cdot (d3\sigma  - 4+ d5 log2 n+ d9 log4 d)

\bigr) 
Smooth RV + Int.LP

This paper O(d2
\surd 
logn \sigma  - 2 + d3 log3/2 n) Smooth

Symmetric RV
+ Int. LP

For \sigma \geq 1, our bound becomes O(d2.5 log3/2 n), which in comparison to Borgwardt's
optimal (asymptotic) Gaussian bound is only off by a d log n factor. Furthermore,
our proof is substantially simpler than Borgwardt's and holds for all n and d. No
interesting lower bounds for the small \sigma regime are known for d \geq 3, though the
results of [35, 34, 18] suggest that the correct lower bound might be much lower than
current upper bounds. We leave these questions as open problems.

An interesting point of our analysis is that it is completely modular and that it
gives bounds for perturbations other than Gaussians. In fact, in our approach it is
easier to obtain bounds for Laplace perturbations (see section 3) than for the Gaussian
distribution. The range of analyzable perturbations still remains limited; however,
our analysis doesn't extend to bounded perturbations such as uniform [ - 1/\sigma , 1/\sigma ],
for example. As is well known, LPs in practice tend to be sparse and hence don't
follow a Gaussian distribution (which yields a totally dense constraint matrix). It
is thus of considerable interest to understand the smoothed behavior of the simplex
method under wider classes of perturbations, such as perturbations with restricted
support.

From the algorithmic perspective, we describe the two phase interpolation ap-
proach of Vershynin [89], which we instantiate using two different Phase 1 algorithms
to solve unit LPs. As a warmup, we first describe Schnalzger's application of the DD
algorithm [81], as it yields the simplest known Phase 1 algorithm and is not widely
known. Following this, we introduce a new, symmetric variant of Vershynin's RV
algorithm, which induces an artificial (degenerate) random vertex by adding 2d  - 2
inequalities placed symmetrically around a randomly chosen objective. The symmetry
condition ensures that this random vertex optimizes the chosen objective with proba-
bility 1. Vershynin's original approach added d random inequalities, which only induce
the optimal vertex for the chosen objective if the noise is small. Via a more careful
analysis of the RV algorithm combined with the additional guarantees ensured by our
variant, we derive a substantially improved complexity estimate. Specifically, our sym-
metric RV algorithm takes O(d2

\surd 
log n \sigma  - 2 + d3 log3/2 n) pivot steps, which is faster

than both the original RV algorithm and Borgwardt's DD algorithm in all parameter
regimes. See Table 2. We defer further discussion of this to section 4 of the paper.

1.3. Differences from the conference version. A preliminary version of this
paper was published as [26]. That version contains the same shadow bound as in
section 3, but algorithmically it uses Borgwardt's DD algorithm or Vershynin's RV
algorithm, depending on the size \sigma of the noise. In the current (revised) version, we
give in section 4 the symmetric RV algorithm described in the above paragraph. The
symmetric RV algorithm dominates both the DD algorithm and the RV algorithm in
all noise regimes.
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1.4. Techniques: Improved shadow bound. We now give a detailed sketch
of the proof of our improved shadow bound. Proofs of all claims can be found in sec-
tion 3. The outline of the presentation is as follows. To begin, we explain our general
edge counting strategy, where we depart from the previously discussed analyses. In
particular, we adapt the approach of Kelner and Spielman (KS) [61], who analyzed a
smoothing model where only the right-hand side is perturbed, to the present setting.
Following this, we present a parametrized shadow bound, which applies to any class
of perturbations for which the relevant parameters are bounded. The main motiva-
tion of the abstraction in the parametrized model is to clearly identify the relevant
properties of the perturbations we need to obtain shadow bounds. Last, we give the
high-level idea of how we estimate the relevant quantities in the KS approach within
the parametrized model.

Edge counting strategy. Our goal is to compute a bound on the expected num-
ber of edges in the polygon Q \cap W , where W is the 2D shadow plane, and Q :=
conv(a1, . . . ,an) and a1, . . . ,an \in \BbbR d are the smoothed constraints of a unit LP.
Recall that this is an upper bound on the shadow size.

In [61], Kelner and Spielman developed a very elegant and useful alternative strat-
egy to bound the expected number of edges, which can be applied to many distribu-
tions over 2D convex polygons. Whereas they analyzed the geometry of the primal
shadow polygon, the projection of P onto W , we will instead work with the geome-
try of the polar polygon Q \cap W . The analysis begins with the following elementary
identity:

(1.2) \BbbE [perimeter(Q \cap W )] = \BbbE 
\biggl[ \sum 
\bfe \in edges(Q\cap W )

length(e)

\biggr] 
.

Starting from the above identity, the approach first derives a good upper bound
on the perimeter and a lower bound on the right-hand side in terms of the number
of edges and the minimum edge length. The bound on the number of edges is then
derived as the ratio of the perimeter bound and the minimum edge length.

We focus first on the perimeter upper bound. Since Q \cap W is convex, any con-
taining circle has larger perimeter. Furthermore, we clearly have Q \cap W \subseteq \pi W (Q),
where \pi W is the orthogonal projection onto W . Combining these two observations,
we derive the first useful inequalities:

(1.3) \BbbE [perimeter(Q \cap W )] \leq \BbbE 
\Bigl[ 
2\pi max

\bfx \in Q\cap W
\| x\| 

\Bigr] 
\leq \BbbE 

\Bigl[ 
2\pi max

i\in [n]
\| \pi W (ai)\| 

\Bigr] 
.

To extract the expected number of edges from the right-hand side of (1.2), we
first note that every edge of Q \cap W is derived from a facet of Q intersected with W
(see Figure 2 for an illustration). Assuming nondegeneracy, the possible facets of Q
are FI := conv(ai : i \in I), where I \subseteq [n] is any subset of size d. Let EI denote the
event that FI induces an edge of Q \cap W , or more precisely, that FI is a facet of Q
and that FI \cap W \not = \emptyset . From here, we get that

\BbbE 
\biggl[ \sum 
\bfe \in edges(Q\cap W )

length(e)

\biggr] 
=
\sum 
| I| =d

\BbbE [length(FI \cap W ) | EI ] Pr[EI ]

\geq min
| I| =d

\BbbE [length(FI \cap W ) | EI ] \cdot 
\sum 
| I| =d

Pr[EI ]

= min
| I| =d

\BbbE [length(FI \cap W ) | EI ] \cdot \BbbE [| edges(Q \cap W )| ] .

(1.4)
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Combining (1.2), (1.3), (1.4), we derive the following fundamental bound:

(1.5) \BbbE [| edges(Q \cap W )| ] \leq 
\BbbE [2\pi maxi\in [n]\| \pi W (ai)\| ]

min| I| =d \BbbE [length(FI \cap W ) | EI ]
.

In the actual proof, we further restrict our attention to potential edges having

probability Pr[EI ] \geq 2
\bigl( 
n
d

\bigr)  - 1
of appearing, which helps control how extreme the con-

ditioning on EI can be. Note that the edges appearing with probability smaller than

2
\bigl( 
n
d

\bigr)  - 1
contribute at most 2 to the expectated number of edges, and hence can be

ignored. Thus our task now directly reduces to showing that the maximum pertur-
bation is not too large on average, an easy condition, while ensuring that the edges
that are not too unlikely to appear are reasonably long on average, the more difficult
condition.

We note that applying the KS approach already improves the situation with
respect to the maximum perturbation size compared to earlier analyses, as [85, 33, 89]
all require a bound to hold with high probability as opposed to on expectation. For
this purpose, they enforced the condition 1/\sigma \geq 

\surd 
d log n (for Gaussian perturbations),

which we do not require here.
Bound for parametrized distributions. We now present the parameters of the per-

tubation distributions we use to obtain our bounds on the enumerator and denom-
inator of 1.5. We also discuss how these parameters behave for the Gaussian and
Laplace distribution.

Let us now assume that a1, . . . ,an \in \BbbR d are independently distributed. As before
we assume that the centers \=ai := \BbbE [ai], i \in [n], have norm at most 1. We denote
the perturbations by \^ai := ai  - \=ai, i \in [n]. We will assume for simplicity of the
presentation that all the perturbations \^a1, . . . , \^an are i.i.d. according to a distribution
with probability density \mu . (In general, they could each have a distinct distribution.)

At a high-level, the main properties we require of the distribution are that it be
smooth and that it have sufficiently strong tail bounds. We formalize these require-
ments via the following 4 parameters, where we let X \sim \mu below:

1. \mu is an L-log-Lipschitz probability density function, that is,
| log\mu (x) - log\mu (y)| \leq L\| x - y\| for all x,y \in \BbbR d.

2. The variance of X, when restricted to any line l \subset \BbbR d, is at least \tau 2.
3. The cutoff radius Rn,d > 0 is such that Pr[\| X\| \geq Rn,d] \leq 1

d(nd)
.

4. The nth deviation rn is such that, for all \bfittheta \in \BbbR d, \| \bfittheta \| = 1, and X1, . . . ,Xn

i.i.d., we have \BbbE [maxi\in [n]| \langle Xi,\bfittheta \rangle | ] \leq rn.
We refer the reader to subsection 3.1.1 for more formal definitions of these parameters.
We note that these parameters naturally arise from our proof strategy and directly
expose the relevant quantities for our shadow bound.

The first two parameters are smoothness related while the last two relate to
tail bounds. Using these four parameters, we will derive appropriate bounds for the
enumerator and denominator in (1.5). Assuming the above parameter bounds for
\^a1, . . . , \^an, our main ``plug and play"" bound on the expected shadow size is as follows
(see Theorem 3.10):

(1.6) \BbbE [| edges(conv(a1, . . . ,an) \cap W )| ] = O

\biggl( 
d1.5L

\tau 
(1 +Rn,d)(1 + rn)

\biggr) 
.

We can use this parametrized bound to prove the shadow bound for Gaussian and
Laplace distributed noise. For the variance \sigma 2 Gaussian distribution in \BbbR d, it is direct
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to verify that \tau = \sigma for any line (since every line restriction results in a 1D variance
\sigma 2 Gaussian) and from standard tail bounds that Rn,d = O(\sigma 

\surd 
d log n) and rn =

O(\sigma 
\surd 
log n). The only parameter that cannot be bounded directly is the log-Lipschitz

parameter L, since \| x/\sigma \| 2/2, the log of the Gaussian density, is quadratic. For
Laplace distributed perturbations, however, this last difficulty is completely avoided.
Here a comparably sized Laplace perturbation (i.e., same expected norm) has density

proportional to e - (
\surd 
d/\sigma )\| \bfx \| , which is by definition log-Lipshitz with L =

\surd 
d/\sigma . The

other parameters are somewhat worse; it can be shown that Rn,d = O(\sigma 
\surd 
d log n),

rn = O(\sigma log n), and \tau \geq \sigma /
\surd 
d, where in particular \tau is a

\surd 
d-factor smaller than the

Gaussian. Thus, for Laplace perturbations our parametrized bound applies directly
and yields a bound of O(d2.5\sigma  - 2) is the small \sigma regime.

To apply our analysis to the Gaussian setting, we start with the fact, noted in
all prior analyses, that the Gaussian is locally smooth within any fixed radius. In
particular, within radius Rn,d of the mean, the Gaussian density is O(

\surd 
d log n/\sigma )-

log-Lipschitz. As events that happen with probability \ll 
\bigl( 
n
d

\bigr)  - 1
have little effect on

the expected shadow bound (recall that the shadow is always bounded by
\bigl( 
n
d

\bigr) 
), one

can hope to condition on each perturbation living inside the Rn,d radius ball. This
is in fact the approach taken in the prior analyses [85, 33, 89]. This conditioning,
however, does not ensure full log-Lipshitzness and causes problems for points near
the boundary. Furthermore, the conditioning may also decrease line variances for
lines near the boundary.

To understand why this is problematic, we note that the main role of the smooth-
ness parameters L and \tau is to ensure enough ``wiggle-room"" to guarantee that edges
induced by any fixed basis are long on expectation. Using the above conditioning, it is
clear that edges induced by facets whose perturbations occur close to the Rn,d bound-
ary must be dealt with carefully. To avoid such difficulties altogether, we leverage the
local log-Lipshitzness of the Gaussian in a ``smoother"" way. Instead of conditioning,
we simply replace the Gaussian density with a globally O(

\surd 
d log n/\sigma )-log-Lipshitz

density which has statistical distance \ll 
\bigl( 
n
d

\bigr)  - 1
to the Gaussian (thus preserving the

shadow bound) and also yields nearly identical bounds for the other parameters. This
distribution will consist of an appropriate gluing of a Gaussian and Laplace density,
which we call the Laplace--Gaussian distribution (see section 3.3 for details). Thus,
by slightly modifying the distribution, we are able to use our parametrized model to
obtain shadow bounds for Gaussian perturbations in a black box manner.

Bounding the perimeter and edge length. We now briefly describe how the perime-
ter and minimum edge length in (1.5) are bounded in our parametrized perturbation
model to obtain (1.6). As this is the most technical part of the analysis, we refer the
reader to the proofs in section 3 and give only a very rough discussion here. As above,
we will assume that the perturbations satisfy the bounds given by L, \tau ,Rn,d, rn.

For the perimeter bound, we immediately derive the bound

\BbbE 
\Bigl[ 
max
i\in [n]
\| \pi W (ai)\| 

\Bigr] 
\leq 1 + \BbbE 

\Bigl[ 
max
i\in [n]
\| \pi W (\^ai)\| 

\Bigr] 
\leq 1 + 2rn

by the triangle inequality. From here, we must bound the minimum expected edge
length, which requires the majority of the work. For this task, we provide a clean
analysis, which shares high-level similarities with the Spielman and Teng distance
lemma, though our task is simpler. First, we only need to show that an edge is
large on average, whereas the distance lemma has the more difficult task of prov-
ing that an edge is unlikely to be small. Second, our conditioning is much milder.
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Namely, the distance lemma conditions a facet FI on intersecting a specified ray r\theta ,
whereas we only condition FI on intersecting W . This conditioning gives the edge
much more wiggle room and is the main leverage we use to get the factor d improve-
ment.

Let us fix F := F[d] = conv(a1, . . . ,ad) as the potential facet of interest, under
the assumption that E := E[d], i.e., that F induces an edge of Q \cap W , has proba-

bility at least 2
\bigl( 
n
d

\bigr)  - 1
. Our analysis of the edge length conditioned on E proceeds as

follows:
1. Show that if F induces an edge, then under this conditioning F has small

diameter with good probability, namely, its vertices are all at distance at
most O(1 + Rn,d) from each other (Lemma 3.17). This uses the tailbound
defining Rn,d and the fact that E occurs with nontrivial probability.

2. Condition on F being a facet of Q by fixing its containing affine hyperplane
H (Lemma 3.20). This is standard and is achieved using a change of variables
analyzed by Blaschke (see section 2.4 for details).

3. Let l := H \cap W denote the line which intersects F to form an edge of Q\cap W .
Show that on average the longest chord of F parallel to l is long. We achieve
the bound \Omega (\tau /

\surd 
d) (Lemma 3.29) using that the vertices of F restricted to

lines parallel to l have variance at least \tau 2.
4. Show that on average F is pierced by l through a chord that is not too much

shorter than the longest one. Here we derive the final bound on the expected
edge length of

\BbbE [length(F \cap W ) | E] = \Omega ((\tau /
\surd 
d) \cdot 1/(dL(1 +Rn,d))) (Lemma 3.27)

using the fact that the distribution of the vertices is L-log-Lipschitz and that
F has diameter O(1 +Rn,d).

This concludes the high-level discussion of the proof.

1.5. Related work.
Structured polytopes. An important line of work has been to study LPs with good

geometric or combinatorial properties. Much work has been done to analyze primal
and dual network simplex algorithms for fundamental combinatorial problems on flow
polyhedra such as bipartite matching [56], shortest path [36, 50], maximum flow [48,
45], and minimum cost flow [75, 49, 76]. Generalizing on the purely combinatorial
setting, LPs where the constraint matrix A \in \BbbZ n\times d is totally unimodular, i.e., the
determinant of any square submatrix of A is in \{ 0,\pm 1\} , were analyzed by Dyer and
Frieze [37], who gave a random walk based simplex algorithm which requires poly(d, n)
pivots. Recently, an improved random walk approach was given by Eisenbrand and
Vempala [38], which works in the more general setting where the subdeterminants are
bounded in absolute value by \Delta , who gave an O(poly(d,\Delta )) bound on the number of
Phase II pivots (note that there is no dependence on n). Furthermore, randomized
variants of the shadow vertex algorithm were analyzed in this setting by [24, 25], where
in particular [25] gave an expected O(d5\Delta 2 log(d\Delta )) bound on the number of Phase I
and II pivots. Another interesting class of structured polytopes comes from the LPs
associated with MDPs, where simplex rules such as Dantzig's most negative reduced
cost correspond to variants of policy iteration. Ye [90] gave polynomial bounds for
Dantzig's rule and Howard's policy iteration for MDPs with a fixed discount rate, and
Post and Ye [77] showed that Dantzig's rule converges in strongly polynomial time
for deterministic MDPs with variable discount rates.
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Diameter bounds. Another important line of research has been to establish di-
ameter bounds for polyhedra, namely, to give upper bounds on the shortest path
length between any two vertices of a polyhedron as a function of the dimension d and
the number of inequalities n. For any simplex method pivoting on the vertices of a
fixed polytope, the diameter is clearly a lower bound on the worst-case number of
pivots. The famous Hirsch conjecture from 1957 posited that for polytopes (bounded
polyhedra) the correct bound should be n  - d. This precise bound was recently dis-
proven by Santos [80], who gave a 43-dimensional counterexample, improved to 20
in [69], where the diameter is about 1.05(n  - d). (These counterexamples can also
be extended to infinite families.) However, the possibility of a polynomial (or even
linear) bound is still left open and is known as the polynomial Hirsch conjecture.
From this standpoint, the best general results are the O(2dn) bound by Barnette [10]
and Larman [64] and the quasi-polynomial bound of Kalai and Kleitman [59], recently
refined by Todd [88] and Sukegawa [86] to (n - d)log2 O(d/ log d). As above, such bounds
have been studied for structured classes of polytopes. In particular, the diameter of
polytopes with bounded subdeterminants was studied by various authors [37, 14, 25],
where the best known bound of O(d3\Delta 2 log(d\Delta )) was given in [25]. The diameters of
other classes such as 0/1 polytopes [74], transportation polytopes [8, 22, 32, 21], and
flag polytopes [1] have also been studied.

1.6. Organization. Section 2 contains basic definitions and background mate-
rial. The proofs of our shadow bounds are given in section 3. The details regarding
the two phase shadow vertex algorithm we use, which relies in an almost black box
way on the shadow bound, are presented in section 4.

2. Preliminaries.

2.1. Notation and basic definitions.

\bullet Vectors are printed in bold to contrast with scalars: x = (x1, . . . , xd) \in \BbbR d.
The space \BbbR d comes with standard basis e1, . . . , ed. We write 1 := (1, 1, . . . , 1)
and 0 := (0, 0, . . . , 0). Vector inequalities are defined coordinatewise: v \leq w
if and only if vi \leq wi for all i \leq d.

\bullet We abbreviate [n] := \{ 1, . . . , n\} and
\bigl( 
[n]
d

\bigr) 
= \{ I \subset [n] | | I| = d\} . For a, b \in \BbbR 

we have intervals [a, b] = \{ r \in \BbbR : a \leq r \leq b\} and (a, b) = \{ r \in \BbbR : a < r < b\} .
\bullet For x > 0, we define log x to be the logarithm base e of x.
\bullet For a set C \subseteq \BbbR n, we denote its topological boundary by \partial C.
\bullet For a set A, we use the notation 1[x \in A] to denote the indicator function of
A, i.e., 1[x \in A] = 1 if x \in A and 0 otherwise.
\bullet For A,B \subset \BbbR d we write the Minkowski sum A+B = \{ a+ b : a \in A,b \in B\} .
For a vector v \in \BbbR d we write A + v = A + \{ v\} . For a set of scalars S \subset \BbbR 
we write v \cdot S = \{ sv : s \in S\} .
\bullet The inner product of x and y is written with as x\sansT y =

\sum d
i=1 xiyi. We use the

\ell 2-norm \| x\| 2 =
\surd 
x\sansT x and the \ell 1-norm \| x\| 1 =

\sum d
i=1| xi| . Any norm without

subscript is the \ell 2-norm. The unit sphere is \BbbS d - 1 =
\bigl\{ 
x \in \BbbR d : \| x\| = 1

\bigr\} 
and

the unit ball is \scrB d2 =
\bigl\{ 
x \in \BbbR d : \| x\| \leq 1

\bigr\} 
.

\bullet A set V + p is an affine subspace if V \subset \BbbR d is a linear subspace. If S \subset \BbbR d,
then the affine hull aff(S) is the smallest affine subspace containing S. We
say dim(S) = k if dim(aff(S)) = k.

\bullet For any linear or affine subspace V \subset \BbbR d the orthogonal projection onto V is
denoted by \pi V .
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\bullet When V \subseteq \BbbR d is a linear subspace, its orthogonal complement is denoted
V \bot =

\bigl\{ 
x \in \BbbR d : v\sansT x = 0 for all v \in V

\bigr\} 
. For v \in \BbbR d we shorten v\bot :=

span(v)\bot .
\bullet We write volk(S) for the k-dimensional volume of S. The 1D volume of a line
segment l will also be written as length(l).

\bullet We say vectors a1, . . . ,ak in \BbbR d are affinely independent if there is no (k  - 
2)-dimensional affine subspace containing all of a1, . . . ,ak. Algebraically,
a1, . . . ,ak are affinely independent if the system

\sum 
i\leq k \lambda iai = 0,

\sum 
i\leq k \lambda i = 0

has no nontrivial solution.
\bullet For A \in \BbbR n\times d a matrix and B \subset [n] we write AB \in \BbbR | B| \times d for the submatrix

of A consisting of the rows indexed in B, and for b \in \BbbR n we write bB for the
restriction of b to the coordinates indexed in B.

2.2. Convexity. A polyhedron P is of the form P =
\bigl\{ 
x \in \BbbR d : Ax \leq b

\bigr\} 
for

A \in \BbbR n\times d,b \in \BbbR n. A face F \subseteq P is a convex subset such that if x,y \in P and
\lambda \in (0, 1) satisfy \lambda x + (1  - \lambda )y \in F , then x,y \in F . In particular, a set F is a face
of the polyhedron P if and only if there exists I \subset [n] such that F coincides with P
intersected with a\sansT i x = bi for all i \in I. A zero-dimensional face is called a vertex, a
1D face is called an edge, and a dim(P )--1D face is called a facet. We use the notation
vertices(P ) to denote the set of vertices of P and edges(P ) for the set of edges of P .

A set S \subset \BbbR d is convex if for all x,y \in S, \lambda \in [0, 1] we have \lambda x+(1 - \lambda )y \in S. We
write conv(S) to denote the convex hull of S, which is the intersection of all convex
sets T \supset S. In a d-dimensional vector space, the convex hull equals

conv(S) =

\Biggl\{ 
d+1\sum 
i=1

\lambda isi : \lambda 1, . . . , \lambda d+1 \geq 0,

d+1\sum 
i=1

\lambda i = 1, s1, . . . , sd+1 \in S

\Biggr\} 
.

For x,y \in \BbbR d the line segment between x and y is denoted [x,y] = conv(\{ x,y\} ).
We will need the following classical comparison inequality for surface areas of

convex sets (see, for example, [15, Chapter 7]).

Lemma 2.1 (monotonicity of surface area). If K1 \subseteq K2 \subset \BbbR d are compact
full-dimensional convex sets, then vold - 1(\partial K1) \leq vold - 1(\partial K2).

2.3. Random variables. For a random variable X \in \BbbR , we denote its expecta-
tion (mean) by \BbbE [X] and its variance by Var(X) := \BbbE [(X  - \BbbE [X])2]. For a random
vector X \in \BbbR n, we define its expectation (mean) \BbbE [X] := (\BbbE [X1], . . . ,\BbbE [Xn]) and its
variance (expected squared distance from the mean) Var(X) := \BbbE [\| X - \BbbE [X]\| 2].

For jointly distributed X \in \Omega 1, Y \in \Omega 2, we will often minimize the expectation
of X over instantiations y \in A \subset \Omega 2. For this, we use the notation

min
Y \in A

\BbbE [X | Y ] := min
y\in A

\BbbE [X | Y = y].

If \mu is a probability density function, we write x \sim \mu to denote that x is a random
variable distributed with probability density \mu .

For an event E \subseteq \Omega in a measure space, we write Ec := \Omega \setminus E to denote its
complement.

2.3.1. Gaussian distribution.

Definition 2.2. The Gaussian distribution or normal distribution Nd(\=a, \sigma ) in d

variables with mean \=a and standard deviation \sigma has density (2\pi ) - d/2e - \| \bfx  - \=\bfa \| 2/(2\sigma 2).
We abbreviate Nd(\sigma ) = Nd(0, \sigma ).
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Important facts about the Gaussian distribution include the following:
\bullet Given a k-dimensional affine subspace W \subseteq \BbbR d, if X is Nd(\=a, \sigma )-distributed,
then both the orthogonal projection \pi W (X) and the restriction of X to W
are Nk(\pi W (\=a), \sigma )-distributed in W .

\bullet For X \sim Nd(\=a, \sigma ) we have \BbbE [X] = \=a and \BbbE [((X - \=a)
\sansT 
\bfittheta )2] = \sigma 2 for all \bfittheta \in 

\BbbS d - 1.
\bullet The expected squared distance to the mean is \BbbE [\| X - \=a\| 2] = d\sigma 2.

\bullet The moment generating function of X \sim N1(0, \sigma ) is \BbbE [e\lambda X ] = e\lambda 
2\sigma 2/2 for all

\lambda \in \BbbR , and that of X2 is \BbbE [e\lambda X2

] = 1/
\surd 
1 - 2\lambda \sigma for \lambda < 1/(2\sigma ).

We will need the following tail bound for Gaussian random variables. We include
a proof for completeness.

Lemma 2.3 (Gaussian tail bounds). For X \in \BbbR d distributed as Nd(0, \sigma ), t \geq 1,

(2.1) Pr[\| X\| \geq t\sigma 
\surd 
d] \leq e - (d/2)(t - 1)2 .

For \bfittheta \in \BbbS d - 1 and t \geq 0,

(2.2) Pr[| X\sansT \bfittheta | \geq t\sigma ] \leq 2e - t2/2 .

Proof. By homogeneity, we may without loss of generality (w.l.o.g.) assume that
\sigma = 1.

Proof of (2.1).

Pr[\| X\| \geq 
\surd 
dt] = min

\lambda \in (0,1/2)
Pr[e\lambda \| \bfX \| 2

\geq e\lambda t
2d]

\leq min
\lambda \in (0,1/2)

\BbbE [e\lambda \| \bfX \| 2

]e - \lambda t2d (Markov's inequality)

= min
\lambda \in (0,1/2)

\Biggl( 
d\prod 

i=1

\BbbE [e\lambda X
2
i ]

\Biggr) 
e - \lambda t2d (independence of coefficients)

= min
\lambda \in (0,1/2)

\biggl( 
1

1 - 2\lambda 

\biggr) d/2

e - \lambda t2d

\leq e - (d/2)(t2 - 2 log t - 1) (setting \lambda =
1

2
(1 - 1/t2))

\leq e - (d/2)(t - 1)2 (since log t \leq t - 1 for t \geq 1).

Proof of (2.2).

Pr[| X\sansT \bfittheta | \geq t] = 2Pr[X\sansT \bfittheta \geq t]

\leq 2min
\lambda >0

\BbbE [e\lambda \bfX 
\sansT \bfittheta ]e - \lambda t

= 2min
\lambda >0

e\lambda 
2/2 - \lambda t \leq 2e - t2/2 , setting \lambda = t.

2.3.2. Laplace distribution. Our shadow bounds will hold for a general class
of distributions with bounds on certain parameters. We illustrate this for the d-
dimensional Laplace distribution.

Definition 2.4. The Laplace distribution Ld(\=a, \sigma ) or exponential distribution
in \BbbR d with mean vector \=a has probability density function

\surd 
d
d

(d - 1)!\sigma dvold - 1(\BbbS d - 1)
e - \| \bfx  - \=\bfa \| 

\surd 
d/\sigma .
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We abbreviate Ld(\sigma ) = Ld(0, \sigma ). We have normalized the distribution to have expected
norm

\surd 
d\sigma . Additionally, the variance along any direction is \sigma 2(1 + 1

d ).

The norm of a Laplace distributed random variable follows a Gamma distribution.

Definition 2.5. The Gamma distribution \Gamma (\alpha , \beta ), \alpha \in \BbbN , \beta \in \BbbR , on the non-

negative real numbers has probability density \beta \alpha 

(\alpha  - 1)! t
\alpha  - 1e - \beta t. The moment generating

function of the Gamma distribution is \BbbE X\sim \Gamma (\alpha ,\beta )[e
\lambda X ] = (1 - \lambda /\beta ) - \alpha for \lambda < \beta .

One can generate a d-dimensional Laplace distribution Ld(\sigma ) as the product of
an independent scalar and vector. The vector \bfittheta is sampled uniformly from the sphere
\BbbS d - 1. The scalar s \sim \Gamma (d,

\surd 
d/\sigma ) is sampled from the Gamma distribution. The

product s\bfittheta has a Ld(\sigma )-distribution.
We will need the following tail bound for Laplace distributed random variables.

We include a proof for completeness.

Lemma 2.6 (Laplace tail bounds). For X \in \BbbR d, d \geq 2, distributed as (0, \sigma )-
Laplace and t \geq 1,

(2.3) Pr[\| X\| \geq t\sigma 
\surd 
d] \leq e - d(t - log t - 1) .

In particular, for t \geq 2,

(2.4) Pr[\| X\| \geq t\sigma 
\surd 
d] \leq e - dt/7 .

For \bfittheta \in \BbbS d - 1, t \geq 0,

(2.5) Pr[| X\sansT \bfittheta | \geq t\sigma ] \leq 

\Biggl\{ 
2e - t2/16 : 0 \leq t \leq 2

\surd 
d,

e - 
\surd 
dt/7 : t \geq 2

\surd 
d.

Proof. By homogeneity, we may w.l.o.g. assume that \sigma = 1.

Proof of (2.3).

Pr[\| X\| \geq 
\surd 
dt] = min

\lambda \in (0,
\surd 
d)
Pr[e\lambda \| \bfX \| \geq e\lambda 

\surd 
dt]

\leq min
\lambda \in (0,

\surd 
d)
\BbbE [e\lambda \| \bfX \| ]e - \lambda 

\surd 
dt (Markov's inequality)

\leq min
\lambda \in (0,

\surd 
d)
(1 - \lambda /

\surd 
d) - de - \lambda 

\surd 
dt

= e - d(t - log t - 1) , setting \lambda =
\surd 
d(1 - 1/t).

For the case t \geq 2, the desired inequality follows from the fact that t - log t - 1 \geq t/7
for t \geq 2, noting that (t - log t - 1)/t is an increasing function on t \geq 1.

Proof of (2.5). For t \geq 2
\surd 
d, we directly apply (2.4):

Pr[| X\sansT \bfittheta | \geq t\sigma ] \leq Pr[\| X\| \geq t\sigma ] \leq e - 
\surd 
dt/7.

For t \leq 2
\surd 
d, express X = s \cdot \bfitomega for s \sim \Gamma (d,

\surd 
d/\sigma ), \bfitomega \in \BbbS d - 1 uniformly sampled.

Pr[| s\bfitomega \sansT \bfittheta | \geq t\sigma ] \leq Pr[| \bfitomega \sansT \bfittheta | \geq t/(2
\surd 
d)] + Pr[| s| \geq 2

\surd 
d\sigma ]

\leq Pr[| \bfitomega \sansT \bfittheta | \geq t/(2
\surd 
d)] + e - d/4.
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t/(2
\surd 
d)

1

Fig. 1. The small sphere has at least as much surface area as combined surface area of the
enclosed sphere cap and the opposite cap together by the monotonicity of surface area (Lemma 2.1).

For the first term we follow [9, Lemma 2.2], where the second line is illustrated
in Figure 1:4

Pr[| \bfitomega \sansT \bfittheta | \geq t/(2
\surd 
d)] =

vold - 1(
\Bigl\{ 
\bfitomega \in \BbbS d - 1 : | \bfitomega \sansT \bfittheta | \geq t/(2

\surd 
d)
\Bigr\} 
)

vold - 1(\BbbS d - 1)

\leq 
vold - 1(

\sqrt{} 
1 - t2

4d\BbbS 
d - 1)

vold - 1(\BbbS d - 1)

=

\biggl( 
1 - t2

4d

\biggr) (d - 1)/2

\leq e - t2(d - 1)/(8d) \leq e - t2/16.

The desired conclusion follows since e - t2/16+e - d/4 \leq 2e - t2/16 for 0 \leq t \leq 2
\surd 
d.

2.4. Change of variables. In section 3 we make use of a change of variables
that was analyzed by Blaschke [13] and is standard in the study of convex hulls.

Recall that a change of variables affects a probability distribution. Let the vector
y \in \BbbR d be a random variable with density \mu . If y = \phi (x) and \phi is invertible, then the
induced density on x is

\mu (\phi (x))

\bigm| \bigm| \bigm| \bigm| det\biggl( \partial \phi (x)

\partial x

\biggr) \bigm| \bigm| \bigm| \bigm| ,
where | det(\partial \phi (\bfx )\partial \bfx )| is the Jacobian of \phi . We describe a particular change of vari-
ables which has often been used for studying convex hulls, and, in particular, by
Borgwardt [18] and Spielman and Teng [85] for deriving shadow bounds.

For affinely independent vectors a1, . . . ,ad \in \BbbR d we have the coordinate transfor-
mation

(a1, . . . ,ad) \mapsto \rightarrow (\bfittheta , t,b1, . . . ,bd),

where \bfittheta \in \BbbS d - 1 and t \geq 0 satisfy \bfittheta \sansT ai = t for every i \in \{ 1, . . . , d\} and the vec-
tors b1, . . . ,bd \in \BbbR d - 1 parametrize the positions of a1, . . . ,ad within the hyperplane\bigl\{ 
x \in \BbbR d | \bfittheta \sansT x = t

\bigr\} 
. We coordinatize the hyperplanes as follows:

Fix a reference vector v \in \BbbS d - 1, and pick an isometric embedding h : \BbbR d - 1 \rightarrow v\bot .
For any unit vector \bfittheta \in \BbbS d - 1, define the map R\prime 

\bfittheta : \BbbR d \rightarrow \BbbR d as the unique map that
rotates v to \bfittheta along span(v,\bfittheta ) and fixes the orthogonal subspace span(v,\bfittheta )\bot . We

4Cambridge University Press has more information on this right now. The planned publication
date of the book is November 2020, and the ISBN is 9781108494311.

D
ow

nl
oa

de
d 

12
/0

3/
20

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FRIENDLY SMOOTHED ANALYSIS OF SIMPLEX METHOD STOC18-465

define R\bfittheta = R\prime 
\bfittheta \circ h. The change of variables from \bfittheta \in \BbbS d - 1, t > 0,b1, . . . ,bd \in \BbbR d - 1

to a1, . . . ,ad takes the form

(a1, . . . ,ad) = (R\bfittheta b1 + t\bfittheta , . . . , R\bfittheta bd + t\bfittheta ).

The change of variables as specified above is not uniquely defined when a1, . . . ,ad are
affinely dependent, when t = 0, or when \bfittheta =  - v.

Theorem 2.7. Let \bfittheta \in \BbbS d - 1 be a unit vector, t > 0, and b1, . . . ,bd \in \BbbR d - 1.
Consider the map

(\bfittheta , t,b1, . . . ,bd) \mapsto \rightarrow (a1, . . . ,ad) = (R\bfittheta b1 + t\bfittheta , . . . , R\bfittheta bd + t\bfittheta ).

The Jacobian of this map equals\bigm| \bigm| \bigm| \bigm| det\biggl( \partial \phi (x)

\partial x

\biggr) \bigm| \bigm| \bigm| \bigm| = (d - 1)!vold - 1(conv(b1, . . . ,bd)).

2.5. Shadow vertex algorithm. We briefly introduce the shadow vertex algo-
rithm. For proofs of the statements below, see [55]. An alternative exposition about
the shadow vertex algorithm can be found in [18].

Algorithm 2.1 Shadow vertex algorithm for nondegenerate polyhedron and shadow.

Require: P =
\bigl\{ 
x \in \BbbR d : Ax \leq b

\bigr\} 
, c,d \in \BbbR d, feasible basis B \subseteq [n] optimal for d.

Ensure: Return optimal basis B \subseteq [n] for c or unbounded.
\lambda 0 \leftarrow 0.
i\leftarrow 0.
loop
i\leftarrow i+ 1.
\lambda i := maximum \lambda \leq 1 such that c\sansT \lambda A

 - 1
B \geq 0.

if \lambda i = 1 then
return B.

end if
k := k \in B such that (c\sansT \lambda i

A - 1
B )k = 0.

xB := A - 1
B bB .

si := supremum s > 0 such that A(xB  - sA - 1
B ek) \leq b.

if si =\infty then
return unbounded.

end if
j := j \in [n] - B such that aj

\sansT (xB  - siA
 - 1
B ek) = bj .

B \leftarrow B \cup \{ j\} \setminus \{ k\} .
end loop

Let P =
\bigl\{ 
x \in \BbbR d : Ax \leq b

\bigr\} 
be a polyhedron, and let a1, . . . ,an \in \BbbR d correspond

to the rows of A. We call a set B \subseteq [n] a basis of Ax \leq b if AB is invertible. This
implies that | B| = d. We say B is a feasible basis if xB = A - 1

B bB satisfies AxB \leq b.
The point xB is a vertex of P . We say a feasible basis B is optimal for an objective
c \in \BbbR d if c\sansT A - 1

B \geq 0, which happens if and only if max\bfx \in P c\sansT x = c\sansT xB .
The shadow vertex algorithm is a pivot rule for the simplex method. Given a

feasible basis B \subseteq [n], an objective d \in \BbbR d for which B is optimal, and an objective
function c \in \BbbR d to optimize, where c and d are linearly independent, the shadow ver-
tex algorithm (Algorithm 2.1) specifies which pivot steps to take to reach an optimal
basis for c. We note that there are many possible choices for starting objective d.

D
ow

nl
oa

de
d 

12
/0

3/
20

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOC18-466 DANIEL DADUSH AND SOPHIE HUIBERTS

Fig. 2. On the left, a polytope and its shadow. On the right, the corresponding polar polytope
intersected with the plane. There are as many edges marked blue as there are edges marked red.

We parametrize c\lambda := (1 - \lambda )d+ \lambda c and start at \lambda = 0. The shadow vertex rule
increases \lambda until there are j \not = k \in [n] such that a new feasible basis B \cup \{ j\} \setminus \{ k\} is
optimal for c\lambda and repeats with increased \lambda and new basis B until \lambda = 1.

The index k \in B is such that the coordinate for k in c\sansT \lambda A
 - 1
B first lowers to 0 and

j \not \in B is such that B \cup \{ j\} \setminus \{ k\} is a feasible basis: we follow the edge A - 1
B bB  - 

A - 1
B ek\BbbR + until we hit the first constraint a\sansT j x \leq bj and then replace k by j to get

the new basis B \cup \{ j\} \setminus \{ k\} .
Changing the current basis from B to B \cup \{ j\} \setminus \{ k\} is called a pivot step. As

soon as \lambda = 1 we have c\lambda = c, at which moment the current basis is optimal for our
objective c. If at some point no choice of j exists, then an unbounded ray has been
found.

Definition 2.8. We say that the system Ax \leq b is nondegenerate if n \geq d, any
B \in 

\bigl( 
[n]
d

\bigr) 
is a basis, and every vertex of the corresponding polyhedron P is tight at

exactly d linearly independent inequalities. When the description Ax \leq b is clear, we
say that P is nondegenerate to mean that its describing system is.

Definition 2.9. We say that the shadow of P on a 2D linear subspace W is
nondegenerate if dim(\pi W (P )) = 2 and for every face F of P such that \pi W (F ) is a
face of \pi W (P ) and dim(\pi W (F )) \leq 1, we have that dim(\pi W (F )) = dim(F ).

If both the polyhedron and the shadow are nondegenerate, each pivot step can
be performed in O(nd) time (see the pseudocode for Algorithm 2.1). Under the
distribution models we examine, degeneracy occurs with probability 0.

The shadow vertex rule is called as such because the visited vertices are in corre-
spondence with vertices on the relative boundary of the orthogonal projection \pi W (P )
of P onto W = span(d, c), where we denote \pi W (P ) as the shadow of P on W . See the
left half of Figure 2. We call the total number of vertices of the projection the shadow
size, and it is the key geometric estimate in our analysis of the simplex method.

Lemma 2.10. For a polyhedron P =
\bigl\{ 
x \in \BbbR d : Ax \leq b

\bigr\} 
having a nondegenerate

shadow on W , the vertices of P optimizing objectives in W \setminus \{ 0\} are in one-to-one
correspondence with the vertices of \pi W (P ) under the map \pi W .

We will consider nondegenerate polyhedra of the form
\bigl\{ 
x \in \BbbR d : Ax \leq 1

\bigr\} 
, in

which case 0 is always contained in the polyhedron. The problem thus has a known
feasible solution. We will look at the geometry of shadow paths on such polyhedra
from a polar perspective. For any nondegenerate polyhedron P =

\bigl\{ 
x \in \BbbR d : Ax \leq 1

\bigr\} 
,

we look at the polar polytope, defined as the convex hull Q := conv(a1, . . . ,an) of
the constraint vectors. For any index-set I \subseteq [n], | I| = d, if the (unique) solution xI
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to the equations
ai

\sansT x = 1 \forall i \in I

is a vertex of the original polyhedron P , then the set conv(ai : i \in I) forms a facet
of the polytope conv(a1, . . . ,an). Conversely, if conv(ai : i \in I) induces a facet of
Q\prime := conv(0,a1, . . . ,an) (note the inclusion of 0), then xI is a vertex of P . The
addition of 0 to the polar of P allows us to detect unboundedness. Precisely, the
facets of the extended polar Q\prime containing 0 are in one-to-one correspondence with
unbounded edges of P . P is bounded, i.e., a polytope, if and only if 0 is in the interior
of Q. In this case Q = Q\prime , and hence every facet of Q is associated to a vertex of P .

In the polar perspective, a pivot step moves from one facet of Q\prime to a neighboring
facet. The shadow vertex algorithm moves the objective c\lambda along the line segment
[d, c] and keeps track of which facet of Q\prime is intersected by the ray c\lambda \BbbR +. If we move
to a facet of Q\prime containing 0, we may conclude that the LP with objective c is in fact
unbounded. Since we can only visit such facets at the end of a shadow path, we will
be able to control the length of shadow paths using only the geometry of Q, which
will help simplify our analyses. The main bound on the size of the shadow we will
use is given in the following lemma.

Lemma 2.11. Let P =
\bigl\{ 
x \in \BbbR d : Ax \leq 1

\bigr\} 
be a nondegenerate polyhedron with a

nondegenerate shadow on W . Then

| vertices(\pi W (P ))| \leq | edges(conv(a1, . . . ,an) \cap W )| .

The number of pivot steps taken in a shadow path is bounded from above by the
number of edges in the intersection conv(a1, . . . ,an) \cap span(d, c). Hence it suffices
that we prove an upper bound on this geometric quantity. The following theorem
summarizes the properties we will use of the shadow vertex algorithm.

Theorem 2.12. Let P =
\bigl\{ 
x \in \BbbR d : Ax \leq b

\bigr\} 
denote a nondegenerate polyhedron,

and let a1, . . . ,an \in \BbbR d be the rows of A. Let c,d \in \BbbR d denote two objectives inducing
a nondegenerate shadow of P , and let W = span(d, c). Given a feasible basis I \in 

\bigl( 
[n]
d

\bigr) 
for Ax \leq b which is optimal for d, Algorithm 2.1 (shadow vertex) finds a feasible

basis J \in 
\bigl( 
[n]
d

\bigr) 
optimal for c or declares unboundedness in a number of pivot steps

bounded by | vertices(\pi W (P ))| , where \pi W is the orthogonal projection onto W . In
particular, when b = 1, the number of pivots is at most

| edges(conv(a1, . . . ,an) \cap W )| .

3. Shadow bounds. In this section, we derive our new and improved shadow
bounds for Laplace and Gaussian distributed perturbations. We achieve these results
by first proving a shadow bound for parametrized distributions as described in the
next section and then specializing to the case of Laplace and Gaussian perturbations.
The bounds we obtain are described below.

Theorem 3.1. Let W \subset \BbbR d be a fixed 2D subspace, n \geq d \geq 3, and a1, . . . ,an \in 
\BbbR d be independent Gaussian random vectors with variance \sigma 2 and centers of norm at
most 1. Then the expected number of edges is bounded by

\BbbE [| edges(conv(a1, . . . ,an) \cap W )| ] \leq \scrD g(n, d, \sigma ),

where the function \scrD g(d, n, \sigma ) is defined as

\scrD g(d, n, \sigma ) := O(d2
\sqrt{} 
log n \sigma  - 2 + d2.5 log n \sigma  - 1 + d2.5 log1.5 n).
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Our bound applies more generally for distributions satisfying certain parameters.
We illustrate this with a shadow bound for perturbations distributed according to the
Laplace distribution. This will serve as a good warm-up exercise for the slightly more
involved analysis of the Gaussian distribution.

Theorem 3.2. Let W \subset \BbbR d be a fixed 2D subspace, n \geq d \geq 3, and a1, . . . ,an \in 
\BbbR d be independent Laplace distributed random vectors with parameter \sigma and centers
of norm at most 1. Then the expected number of edges is bounded by

\BbbE [| edges(conv(a1, . . . ,an) \cap W )| ] = O(d2.5\sigma  - 2 + d3 log n \sigma  - 1 + d3 log2 n).

The proofs of Theorems 3.1 and 3.2 are given in, respectively, subsections 3.3
and 3.2.

3.1. Parametrized shadow bound. In this section, we prove a shadow bound
theorem for any noise distribution that has nontrivial bounds on certain parameters.
The parameters we will use are defined below.

3.1.1. Distribution parameters.

Definition 3.3. A distribution with density \mu on \BbbR d is L-log-Lipschitz if for all
x,y \in \BbbR d we have | log(\mu (x))  - log(\mu (y))| \leq L\| x  - y\| . Equivalently, \mu is L-log-
Lipschitz if \mu (x)/\mu (y) \leq exp(L\| x - y\| ) for all x,y \in \BbbR d.

Definition 3.4. Given a probability distribution with density \mu on \BbbR d, we define
the line variance \tau 2 as the infimum of the variances when restricted to any fixed line
l \subset \BbbR d:

\tau 2 = inf
line l \subset \BbbR d

Var(X \sim \mu | X \in l).

Both the log-Lipschitz constant and the minimal line variance relate to how
``spread out"" the probability mass is. The log-Lipschitzness of a random variable
gives a lower bound on the line variance, which we prove in Lemma 3.8.

Definition 3.5. Given a distribution with probability density \mu on \BbbR d with ex-
pectation \BbbE \bfX \sim \mu [X] = y we define the nth deviation rn to be the smallest number such
that for any unit vector \bfittheta \in \BbbR d,\int \infty 

rn

Pr
\bfX \sim \mu 

[| (X - y)
\sansT 
\bfittheta | \geq t]dt \leq rn/n.

Note that as rn increases to \infty , the left-hand side goes to 0 and the right-hand side
goes to \infty . We see that there must exist a number satisfying this inequality, so rn is
well-defined.

The nth deviation will allow us to give bounds on the expected maximum size
\BbbE [maxi\leq n| xi

\sansT \bfittheta | ] of n separate perturbations in a given direction \bfittheta . We formalize this
in Lemma 3.7.

Definition 3.6. Given a distribution with probability density \mu on \BbbR d with ex-
pectation \BbbE \bfx \sim \mu [x] = y, we define, for all 1 > p > 0, the cutoff radius R(p) as the
smallest number satisfying

Pr
\bfx \sim \mu 

[\| x - y\| \geq R(p)] \leq p.

The cutoff radius of interest is Rn,d := R( 1

d(nd)
). The cutoff radius tells us how con-

centrated the probability mass of the random variable is, while the log-Lipschitzness
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tells us how spread out the probability mass is. These quantities cannot both be
arbitrarily good (small) at the same time. We formalize this notion in Lemma 3.9.

Lemma 3.7. If x1, . . . ,xn are each distributed with mean 0 and nth deviation at
most rn, then for any \bfittheta \in \BbbS d - 1,

\BbbE 
\Bigl[ 
max
i\in [n]
| \bfittheta \sansT xi| 

\Bigr] 
\leq 2rn.

Proof. We rewrite the expectation as

\BbbE 
\Bigl[ 
max
i\in [n]
| \bfittheta \sansT xi| 

\Bigr] 
=

\int \infty 

0

Pr
\Bigl[ 
max
i\in [n]
| \bfittheta \sansT xi| \geq 

\Bigr] 
dt.

We separately bound the integral up to rn and from rn to \infty . Since a probability is
at most 1 we have \int rn

0

Pr
\Bigl[ 
max
i\in [n]
| \bfittheta \sansT xi| \geq t

\Bigr] 
dt \leq rn,

and by definition of the nth deviation and the union bound,\int \infty 

rn

Pr
\Bigl[ 
max
i\in [n]
| \bfittheta \sansT xi| \geq t

\Bigr] 
dt \leq 

\sum 
i\in [n]

\int \infty 

rn

Pr[| \bfittheta \sansT xi| \geq t]

\leq rn.

Together these estimates yield the desired inequality,

\BbbE 
\Bigl[ 
max
i\leq n
| \bfittheta \sansT xi| 

\Bigr] 
\leq 2rn.

Lemma 3.8. If a distribution with probability density \mu is L-log-Lipschitz, then
its line variance satisfies \tau \geq 1/(

\surd 
eL).

Proof. Let v + w\BbbR be a line and assume that \BbbE [x | x \in v + w\BbbR ] = v and
\| w\| = 1. We show that with probability at least 1/e, x has distance at least 1/L
from v. Conditioning on x \in v +w\BbbR , the induced probability mass is proportional
to \mu (x). We can bound the fraction of the induced probability mass that is far away
from the expectation by the following calculation:\int \infty 

 - \infty 
\mu (v + \gamma w) d\gamma =

\int 0

 - \infty 
\mu (v + \gamma w) d\gamma +

\int \infty 

0

\mu (v + \gamma w) d\gamma 

=

\int  - 1/L

 - \infty 
\mu (v + (\gamma + 1/L)w) d\gamma +

\int \infty 

1/L

\mu (v + (\gamma  - 1/L)w) d\gamma 

\leq e

\int  - 1/L

 - \infty 
\mu (v + \gamma w) d\gamma + e

\int \infty 

1/L

\mu (v + \gamma w) d\gamma .

The integral on the first line exists because it is the integral of a continuous nonneg-
ative function, and, if the integral were infinite, then the integral along every parallel
line would be infinite by log-Lipschitzness, contradicting the fact that \mu has integral
1 over \BbbR d.

Hence, Pr[\| x - v\| \geq 1/L | x \in v+w\BbbR ] =
\int  - 1/L
 - \infty \mu (\bfv +\gamma \bfw ) d\gamma +

\int \infty 
1/L

\mu (\bfv +\gamma \bfw ) d\gamma \int \infty 
 - \infty \mu (\bfv +\gamma \bfw ) d\gamma 

\geq 1/e,

and we can lower bound the variance

Var(x | x \in v +w\BbbR ) \geq 1

e
(1/L)2.

Since the line v +w\BbbR was arbitrary, it follows that \tau \geq 1/(
\surd 
eL).
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Lemma 3.9. For a d-dimensional distribution with probability density \mu , where
d \geq 3, with parameters L,R as described above, we have the inequality LR(1/2) \geq d/3.

Proof. Let \=R := R(1/2). If L \=R \geq d, we are already done, so we may assume that
L \=R < d. Also, w.l.o.g., we may assume that \mu has mean 0. For \alpha > 1 to be chosen
later we know

1 \geq 
\int 
\alpha \=R\scrB d

2

\mu (x) dx

= \alpha d

\int 
\=R\scrB d

2

\mu (\alpha x) dx

\geq \alpha de - (\alpha  - 1)L \=R

\int 
\=R\scrB d

2

\mu (x) dx

=
\alpha d

2
e - (\alpha  - 1)L \=R.

Taking logarithms, we find

0 \geq d log(\alpha ) - (\alpha  - 1)L \=R - log(2).

We choose \alpha = d
L \=R

> 1 and look at the resulting inequality:

0 \geq d log

\biggl( 
d

L \=R

\biggr) 
 - d+ L \=R - log(2).

For d \geq 3, this inequality can only hold if L \=R \geq d/3, as needed.

3.1.2. Proving a shadow bound for parametrized distributions. The
main result of this subsection is the following parametrized shadow bound.

Theorem 3.10 (parametrized shadow bound). Let a1, . . . ,an \in \BbbR d, where n \geq 
d \geq 3, be independently distributed according to L-log-Lipschitz distributions with
centers of norm at most 1, line variances at least \tau 2, cutoff radii at most Rn,d, and
nth deviations at most rn. For any fixed 2D linear subspace W \subset \BbbR d, the expected
number of edges satisfies

\BbbE [| edges(conv(a1, . . . ,an) \cap W )| ] \leq O

\biggl( 
d1.5L

\tau 
(1 +Rn,d)(1 + rn)

\biggr) 
.

The proof is given at the end of the subsection. It will be derived from the
sequence of lemmas given below. We refer the reader to subsection 1.4 for a high-level
overview of the proof.

In the rest of the subsection, a1, . . . ,an \in \BbbR d, where n \geq d \geq 3, will be as
in Theorem 3.10. We use Q := conv(a1, . . . ,an) to denote the convex hull of the
constraint vectors and W to denote the 2D shadow plane.

The following nondegeneracy conditions on a1, . . . ,an will hold with probability
1, because a1, . . . ,an are independently distributed with continuous distributions.

1. Every d + 1 vectors from a1, . . . ,an are affinely independent. Thus, every
facet of Q is the convex hull of exactly d vectors from a1, . . . ,an.

2. Any d distinct vectors ai1 , . . . ,aid , i1, . . . , id \in [n], have a unique hyperplane
through them. This hyperplane intersects W in a 1D line, it does not contain
the origin 0, and its unit normal vector pointing away from the origin is not
 - e1. Note that the last two conditions imply that Blaschke's transformation
on ai1 , . . . ,aid is uniquely defined with e1 as reference vector.
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3. For every edge e \subset Q\cap W there is a unique facet F of Q such that e = F \cap W .
In what follows we will always assume the above conditions hold.

For our first lemma, in which we bound the number of edges in terms of two
different expected lengths, we make a distinction between possible edges with high
probability of appearing versus edges with low probability of appearing. The sets

with probability at most 2
\bigl( 
n
d

\bigr)  - 1
to form an edge, together, contribute at most 2 to

the expected number of edges, as there are only
\bigl( 
n
d

\bigr) 
bases.

For a basis with probability at least 2
\bigl( 
n
d

\bigr)  - 1
of forming an edge, we can safely con-

dition on it forming an edge without forcing very unlikely events to happen. Because
of this, we will later be able to condition on the vertices not being too far apart.

Definition 3.11. For I \in 
\bigl( 
[n]
d

\bigr) 
, let EI denote the event that conv(ai : i \in I)\cap W

forms an edge of Q \cap W .

Definition 3.12. We define the set B \subseteq 
\bigl( 
[n]
d

\bigr) 
to be the set of those I \subseteq [n]

satisfying | I| = d and Pr[EI ] \geq 2
\bigl( 
n
d

\bigr)  - 1
.

The next lemma is inspired by Theorem 3.2 of [61].

Lemma 3.13. The expected number of edges in Q \cap W satisfies

\BbbE [| edges(Q \cap W )| ] \leq 2 +
\BbbE [perimeter(Q \cap W )]

minI\in B \BbbE [length(conv(ai : i \in I) \cap W ) | EI ]
.

Proof. We give a lower bound on the perimeter of the intersection Q \cap W in
terms of the number of edges. By our nondegeneracy assumption, every edge can be
uniquely represented as conv(ai : i \in I) \cap W for I \in 

\bigl( 
[n]
d

\bigr) 
. From this we derive the

first equality, and we continue from that:

\BbbE [perimeter(Q \cap W )] =
\sum 

I\in ([n]
d )

\BbbE [length(conv(ai : i \in I) \cap W ) | EI ] Pr[EI ]

\geq 
\sum 
I\in B

\BbbE [length(conv(ai : i \in I) \cap W ) | EI ] Pr[EI ]

\geq min
I\in B

\BbbE [length(conv(ai : i \in I) \cap W ) | EI ]
\sum 
J\in B

Pr[EJ ].

The first line holds because whenever EI holds, conv(ai : i \in I) \cap W is an edge of
Q\cap W , and every edge ofQ\cap W is formed by exactly one face FJ , by the nondegeneracy
conditions we have assumed. By construction of B and linearity of expectation,\sum 

J\in B Pr[EJ ] \geq 
\sum 

J\in ([n]
d )

Pr[EJ ]  - 2 = \BbbE [| edges(Q \cap W )| ]  - 2. By dividing on both

sides of the inequality, we can now conclude

\BbbE [| edges(Q \cap W )| ] \leq 2 +
\BbbE [perimeter(Q \cap W )]

minI\in B \BbbE [length(conv(ai : i \in I) \cap W ) | EI ]
.

Given the above, we may now restrict our task to proving an upper bound on the
expected perimeter and a lower bound on the minimum expected edge length, which
will be the focus on the remainder of the subsection.

The perimeter is bounded using a standard convexity argument. A convex shape
has perimeter no more than that of any circle containing it. We exploit the fact that
all centers have norm at most 1 and the expected perturbation sizes are not too big
along any fixed axis.
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Lemma 3.14. The expected perimeter of Q \cap W is bounded by

\BbbE [perimeter(Q \cap W )] \leq 2\pi (1 + 4rn),

where rn is the n-deviation bound for a1, . . . ,an.

Proof. By convexity, the perimeter is bounded from above by 2\pi times the norm
of the maximum norm point. Let \^ai := ai  - \BbbE [ai] denote the perturbation of ai from
the center of its distribution, recalling that \| \BbbE [ai]\| \leq 1 by assumption. We can now
derive the bound

\BbbE [perimeter(Q \cap W )] \leq 2\pi \BbbE 
\Bigl[ 

max
\bfx \in Q\cap W

\| x\| 
\Bigr] 

= 2\pi \BbbE 
\Bigl[ 

max
\bfx \in Q\cap W

\| \pi W (x)\| 
\Bigr] 

\leq 2\pi \BbbE 
\Bigl[ 
max
\bfx \in Q
\| \pi W (x)\| 

\Bigr] 
= 2\pi \BbbE 

\Bigl[ 
max
i\in [n]
\| \pi W (ai)\| 

\Bigr] 
\leq 2\pi 

\biggl( 
1 + \BbbE 

\Bigl[ 
max
i\leq n
\| \pi W (\^ai)\| 

\Bigr] \biggr) 
,

where the last inequality follows since a1, . . . ,an have centers of norm at most 1. Pick
an orthogonal basis v1,v2 of W . By the triangle inequality the expected perturbation
size satisfies

\BbbE 
\Bigl[ 
max
i\leq n
\| \pi W (\^ai)\| 

\Bigr] 
\leq 

\sum 
j\in \{ 1,2\} 

\BbbE 
\biggl[ 
max
i\leq n
| vj

\sansT \^ai| 
\biggr] 
.

Each of the two expectations satisfies, by Lemma 3.7, \BbbE [maxi\leq n| vj
\sansT \^ai| ] \leq 2rn,

thereby concluding the proof.

The rest of this subsection will be devoted to finding a suitable lower bound on
the denominator \BbbE [length(conv(ai : i \in I) \cap W ) | EI ] uniformly over all choices of
I \in B. Without loss of generality we assume that I = [d] and write E := E[d].

Definition 3.15 (containing hyperplane). Define H = aff(a1, . . . ,ad) = t\bfittheta +\bfittheta \bot ,
where \bfittheta \in \BbbS d - 1, t > 0 to be the hyperplane containing a1, . . . ,ad. Define l = H \cap W .
From our nondegeneracy conditions we know that l is a line. Express l = p + \bfitomega \cdot \BbbR ,
where \bfitomega \in \BbbS d - 1 and p \in \bfitomega \bot .

To lower bound the length \BbbE [length(conv(a1, . . . ,ad) \cap W ) | E] we will need the
pairwise distances between the different ai's for i \in \{ 1, . . . , d\} to be small along \bfitomega \bot .
This will allow us to get wiggle room around each vertex of conv(a1, . . . ,ad) that is
proportional to the size of the facet.

Definition 3.16 (bounded diameter event). We define the event D to hold ex-
actly when \| \pi \bfitomega \bot (ai) - \pi \bfitomega \bot (aj)\| \leq 2 + 2Rn,d for all i, j \in [d].

We will condition on the event D. This will not change the expected length
by much, because the probability that D does not occur is small compared to the
probability of E by our assumption that Pr[E] \geq 2

d(nd)
.

Lemma 3.17. The expected edge length satisfies

\BbbE [length(conv(a1, . . . ,ad) \cap W ) | E] \geq \BbbE [length(conv(a1, . . . ,ad) \cap W ) | D,E]/2.
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Proof. Let the vector \^ai denote the perturbation ai  - \BbbE [ai]. Since distances can
only decrease when projecting, the complementary event Dc satisfies

Pr[Dc] = Pr
\Bigl[ 
max
i,j\leq d
\| \pi \bfitomega \bot (ai  - aj)\| \geq 2 + 2Rn,d

\Bigr] 
\leq Pr

\Bigl[ 
max
i,j\leq d
\| ai  - aj\| \geq 2 + 2Rn,d

\Bigr] 
,

and by the triangle inequality and the bound of 1 on the norms of the centers, the
line above is at most

\leq Pr
\Bigl[ 
max
i\leq d
\| ai\| \geq 1 +Rn,d

\Bigr] 
\leq Pr

\Bigl[ 
max
i\leq d
\| \^ai\| \geq Rn,d

\Bigr] 
\leq 
\biggl( 
n

d

\biggr)  - 1

.

By our assumption that [d] \in B, we know that Pr[E] \geq 2
\bigl( 
n
d

\bigr)  - 1
. In particular, it

follows that Pr[E \cap D] \geq Pr[E] - Pr[Dc] \geq Pr[E]/2. Thus, we may conclude that

\BbbE [length(conv(a1, . . . ,ad) \cap W ) | E] \geq \BbbE [length(conv(a1, . . . ,ad) \cap W ) | D,E]/2.

For the rest of this section, we use a change of variables on a1, . . . ,ad. The
nondegeneracy conditions we have assumed at the start of this section make the
change of variables well-defined.

Definition 3.18 (change of variables). Recall the change of variables mapping
(a1, . . . ,ad) \mapsto \rightarrow (\bfittheta , t,b1, . . . ,bd) for \bfittheta \in \BbbS d - 1, t > 0,b1, . . . ,bd \in \BbbR d - 1 from Theo-
rem 2.7. We abbreviate \=\mu i(\bfittheta , t,bi) = \mu i(R\theta (bi) + t\bfittheta ) and we write \=\mu i(bi) when the
values of \bfittheta , t are clear.

By Theorem 2.7 of Blaschke [13] we know that for any fixed values of \bfittheta , t the
vectors b1, . . . ,bd have joint probability density proportional to

(3.1) vold - 1(conv(b1, . . . ,bd))

d\prod 
i=1

\=\mu i(bi) .

We assumed that a1, . . . ,ad are affinely independent, so b1, . . . ,bd are affinely
independent as well.

In the next lemma, we condition on the hyperplane H = t\bfittheta + \bfittheta \bot and from then
on we restrict our attention to what happens inside H. Conditioned on a1, . . . ,ad
lying in H, the set conv(a1, . . . ,ad) is a facet of Q if and only if all of ad+1, . . . ,an
lie on one side of H. This means that the shape of conv(a1, . . . ,ad) in H does not
influence the event that it forms a facet, so in studying this convex hull we can then
ignore ad+1, . . . ,an.

We identify the hyperplane H with \BbbR d - 1 and define \=l = \=p + \=\bfitomega \cdot \BbbR \subset \BbbR d - 1

corresponding to l = p + \bfitomega \cdot \BbbR by \=p = R - 1
\bfittheta (p  - t\bfittheta ), \=\bfitomega = R - 1

\bfittheta (\bfitomega ). We define \=E as
the event that conv(b1, . . . ,bd) \cap \=l \not = \emptyset . Notice that E holds if and only if \=E and
conv(a1, . . . ,ad) is a facet of Q. See Figure 3.

We will condition on the shape of the projected simplex.
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H

W

l

a1

a2

a3

Fig. 3. \bfa 1, . . . ,\bfa d are conditioned for conv(\bfa 1, . . . ,\bfa d) to intersect W and lie in H. The red
line corresponds to an induced edge. The blue line represents the longest chord parallel to \ell .

Definition 3.19 (projected shape). We define the projected shift variable by
x := x\bfitomega (b1) = \pi \=\bfitomega \bot (b1) and shape variable S := S\omega (b1, . . . ,bd) by

S\bfitomega (b1, . . . ,bd) = (0, \pi \=\bfitomega \bot (b2) - x, . . . , \pi \=\bfitomega \bot (bd) - x).

We index S = (s1, . . . , sd), so si \in \=\bfitomega \bot is the ith vector in S, and furthermore define
the diameter function diam(S) = maxi,j\in [d]\| si  - sj\| . We will condition on the shape
being in the set of allowed shapes

\scrS :=
\bigl\{ 
(s1, . . ., sd)\in (\=\bfitomega \bot )d : s1 = 0,diam(S)\leq 2 + 2Rn,d, rank(s2, . . ., sd) = d - 2

\bigr\} 
.

Observe that S \in \scrS if and only if the event D holds. To justify the rank condition
on s2, . . . , sd, note that by our nondegeneracy conditions, we have that b1, . . . ,bd are
affinely independent. In particular, they do not all lie in a d--2D affine subspace. This
means that s1, . . . , sd do not all lie in a d--3D affine subspace, from which it follows
that rank(s2, . . ., sd) = d - 2 (recalling that s1 = 0).

Lemma 3.20. Let \bfittheta \in \BbbS d - 1, t > 0,b1, . . . ,bd \in \BbbR d - 1 denote the change of vari-
ables of a1, . . . ,an \in \BbbR d as in Definition 3.18. Then, the expected length satisfies

\BbbE [length(conv(a1, . . .,ad)\cap W ) | D,E] \geq inf
\bfittheta ,t,S\in \scrS 

\BbbE [length(conv(b1, . . .,bd)\cap \=l) | \bfittheta , t, S, \=E].

Proof. To derive the desired inequality, we first understand the effect of condi-
tioning on E. Let E0 denote the event that F := conv(a1, . . . ,ad) induces a facet of
Q. Note that E is equivalent to E0 \cap \=E, where \=E is as above. We now perform the
change of variables from a1, . . . ,ad \in \BbbR d to \bfittheta \in \BbbS d - 1, t \in \BbbR +, b1, . . . ,bd \in \BbbR d - 1 as in
Definition 3.18. The set F is a facet of Q if and only if \bfittheta \sansT ad+i \leq t for all i \in [n - d]
or \bfittheta \sansT ad+i \geq t for all i \in [n - d]. Given this, we see that

\BbbE [length(conv(a1, . . . ,ad) \cap W ) | D,E]

= \BbbE [length(conv(b1, . . . ,bd) \cap \=l) | D,E0, \=E]

=
\BbbE [ 1[E0] \cdot length(conv(b1, . . . ,bd) \cap \=l) | D, \=E]

Pr[E0 | D, \=E]

=
\BbbE \bfittheta ,t[ \BbbE [1[E0] \cdot length(conv(b1, . . . ,bd) \cap \=l) | \bfittheta , t,D, \=E] ]

\BbbE \bfittheta ,t[ Pr[E0 | \bfittheta , t,D, \=E] ]
.

(3.2)D
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Since a1, . . . ,an are independent, conditioned on \bfittheta , t, the random vectors b1, . . . ,bd

are independent of \bfittheta \sansT ad+1, . . . ,\bfittheta 
\sansT an. Since the events D and \=E only depend on

b1, . . . ,bd, continuing from (3.2), we get that

\BbbE \bfittheta ,t[ \BbbE [1[E0] \cdot length(conv(b1, . . . ,bd) \cap \=l) | \bfittheta , t,D, \=E] ]

\BbbE \bfittheta ,t[ Pr[E0 | \bfittheta , t,D, \=E] ]

=
\BbbE \bfittheta ,t[Pr[E0 | \bfittheta , t] \cdot \BbbE [length(conv(b1, . . . ,bd) \cap \=l) | \bfittheta , t,D, \=E] ]

\BbbE \bfittheta ,t[ Pr[E0 | \bfittheta , t]]
\geq inf

\bfittheta \in \BbbS d - 1,t>0
\BbbE [length(conv(b1, . . . ,bd) \cap \=l) | \bfittheta , t,D, \=E].

The last inequality uses that
\int 
f(x)g(x) dx\int 

f(x) dx
\geq inf g(x) if f is nonnegative and has finite

integral.
Last, since the event D is equivalent to S := S\omega (b1, . . . ,bd) \in \scrS as in Defini-

tion 3.19, we have that

\BbbE [length(conv(a1, . . .,ad) \cap W ) | D,E] \geq inf
\bfittheta ,t,S

\BbbE [length(conv(b1, . . .,bd) \cap \=l) | \bfittheta , t, S, \=E].

Definition 3.21 (kernel combination). For S \in \scrS , define the combination z :=
z(S) to be the unique (up to sign) z = (z1, . . . , zd) \in \BbbR d satisfying

d\sum 
i=1

zisi = 0,

d\sum 
i=1

zi = 0, \| z\| 1 = 1.

To justify the above definition, it suffices to show that the system of equations
(i)
\sum d

i=1 zisi = 0,
\sum d

i=1 zi = 0 has a 1D solution space. Since s1, . . . , sd live in a
d  - 2 dimensional space, the solution space has dimension at least 1 by dimension
counting. Next, note that z is a solution to (i) if and only if z1 =  - 

\sum d
i=2 zi and (ii)\sum d

i=2 zisi = 0 (since s1 = 0). Thus, the solution spaces of (i) and (ii) have the same
dimension. Given our assumption that rank(s2, . . . , sd) = d - 2, it follows that (ii) is
one-dimensional, as needed.

Observe that for S := S\bfitomega (b1, . . . ,bd), z satisfies \pi \=\bfitomega \bot (
\sum d

i=1 zibi) = 0.
The vector z provides us with a unit to measure lengths in ``convex combination

space."" We make this formal with the next definition.

Definition 3.22 (chord combinations). We define the set of convex combina-
tions of the shape S = (s1, . . . , sd) \in \scrS that equal q \in \=\bfitomega \bot by

CS(q) :=

\Biggl\{ 
(\lambda 1, . . . , \lambda d) \geq 0 :

d\sum 
i=1

\lambda i = 1,

d\sum 
i=1

\lambda isi = q

\Biggr\} 
\subset \BbbR d.

When S is clear we drop the subscript.

Observe that C(q) is a line segment of the form C(q) = \bfitlambda \bfq + z \cdot [0, d\bfq ]. We write
\| C(q)\| 1 for the \ell 1-diameter of C(q). Since C(q) is a line segment, \| C(q)\| 1 = d\bfq .
We prove two basic properties of \| C(q)\| 1 as a function of q.

Lemma 3.23 (properties of chord combinations). Let y := y(S) =
\sum d

i=1| zi| si
with z := z(S) as in Definition 3.22. Then the following holds:

\bullet \| C(q)\| 1 is a concave function for q \in conv(S).
\bullet max\bfq \in conv(S)\| C(q)\| 1 = \| C(y)\| 1 = 2.
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Proof. For the first claim, take x,y \in conv(S). Let \bfitalpha \in C(x) and \bfitbeta \in C(y).
Then we see that, for all \gamma \in [0, 1],

\gamma \bfitalpha +(1 - \gamma )\bfitbeta \geq 0,

d\sum 
i=1

\gamma \alpha i+(1 - \gamma )\beta i = 1,

d\sum 
i=1

(\gamma \alpha i+(1 - \gamma )\beta i)si = \gamma x+(1 - \gamma )y,

from which we derive that

\gamma C(x) + (1 - \gamma )C(y) \subseteq C(\gamma x+ (1 - \gamma )y),

and hence \| C(\gamma x+(1 - \gamma )y)\| 1 \geq \| \gamma C(x)+(1 - \gamma )C(y)\| 1 = \gamma \| C(x)\| 1+(1 - \gamma )\| C(y)\| 1.
For the second claim, we look at the combination y :=

\sum n
i=1| zi| si \in conv(S).

For all \gamma \in [ - 1, 1], we have
\sum d

i=1(| zi| + \gamma zi)si = y,
\sum d

i=1 | zi| + \gamma zi = \| z\| 1 = 1, and
| zi| + \gamma zi \geq 0, \forall i \in [d]. Hence, \| C(y)\| 1 \geq 2. Now suppose there is some y\prime with
\| C(y\prime )\| 1 > 2. That means there is some convex combination \bfitlambda = (\lambda 1, . . . , \lambda d) \geq 0,

\| \bfitlambda \| 1 = 1, with
\sum d

i=1 \lambda isi = y\prime such that \bfitlambda + z > 0 and \bfitlambda  - z > 0. Let I \cup J be
a partition of [d] such that zi \geq 0 for i \in I and zj < 0 for j \in J . We know that\sum d

i=1 zi = 0, so
\sum 

i\in I zi =  - 
\sum 

j\in J zj . This makes 1 = \| z\| 1 =
\sum 

i\in I zi +
\sum 

j\in J  - zi =
2
\sum 

i\in I zi, so
\sum 

i\in I zi = 1/2. The combination \bfitlambda satisfies\sum 
i\in I

\lambda i >
\sum 
i\in I

zi = 1/2,
\sum 
j\in J

\lambda j >
\sum 
j\in J

 - zj = 1/2,

so \| \bfitlambda \| 1 > 1. By contradiction we conclude that max\bfq \in conv(S)\| C(q)\| 1 = 2.

The \ell 1-diameter \| C(q)\| 1 specified by q \in conv(S(b1, . . . ,bd)) directly relates to
the length of the chord (q + x + \=\bfitomega \cdot \BbbR ) \cap conv(b1, . . . ,bd), which projects to q + x
under \pi \=\bfitomega \bot . Specifically, \| C(q)\| 1 measures how long the chord is compared to the
longest chord through the simplex. The exact relation is given below.

Lemma 3.24. Let (h1, . . . , hd) = (\=\bfitomega \sansT b1, . . . , \=\bfitomega 
\sansT bd), (s1, . . . , sd) = S(b1, . . . ,bd),

x = \pi \=\bfitomega \bot (b1). For any q \in conv(S) the following equality holds:

length((x+ q+ \=\bfitomega \cdot \BbbR ) \cap conv(b1, . . . ,bd)) = \| C(q)\| 1 \cdot 
\bigm| \bigm| \bigm| \bigm| d\sum 
i=1

zihi

\bigm| \bigm| \bigm| \bigm| .
Proof. By construction there is a convex combination \lambda 1, . . . , \lambda d \geq 0,

\sum d
i=1 \lambda i = 1

satisfying
\sum d

i=1 \lambda isi = q such that C(q) = [\bfitlambda ,\bfitlambda + \| C(q)\| 1z] and hence

(x+ q+ \=\bfitomega \cdot \BbbR ) \cap conv(b1, . . . ,bd) =

\biggl[ d\sum 
i=1

\lambda ibi,

d\sum 
i=1

(\lambda i + \| C(q)\| 1zi)bi

\biggr] 
.

From this we deduce

length((x+ q+ \=\bfitomega \cdot \BbbR ) \cap conv(b1, . . . ,bd)) =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
d\sum 

i=1

(\lambda i + \| C(q)\| 1zi)bi  - 
d\sum 

i=1

\lambda ibi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
d\sum 

i=1

\| C(q)\| 1zibi

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
= \| C(q)\| 1 \cdot 

\bigm| \bigm| \bigm| \bigm| d\sum 
i=1

zihi

\bigm| \bigm| \bigm| \bigm| .
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The third equality follows from the definition of z1, . . . , zd: as \pi \=\bfitomega \bot (
\sum d

i=1 zibi) = 0,

we must have \| 
\sum d

i=1 zibi\| = \| 
\sum d

i=1 zihi \=\bfitomega \| = | 
\sum d

i=1 zihi| .
We can view the terms in the above product as follows: the length of the longest

chord of conv(b1, . . . ,bd) parallel to \=l is 2| 
\sum d

i=1 zihi| , and the ratio of the length of
the chord conv(b1, . . . ,bd) \cap \=l to the length of the longest chord parallel to \=l equals
\| C(q)\| 1/2. This follows from Lemma 3.23 since \| C(q)\| 1 achieves a maximum value
of 2 at q = y. As discussed in the high-level description, we will bound the expected
values of these two quantities separately.

The term | 
\sum d

i=1 zihi| can also be used to simplify the volume term in the prob-
ability density of b1, . . . ,bd after we condition on the shape S. We prove this in the
next lemma.

Lemma 3.25. For fixed \bfittheta \in \BbbS d - 1, t > 0, S \in \scrS , define x \in \=\bfitomega \bot , h1, . . . , hd \in \BbbR 
conditioned on \bfittheta , t, S to have joint probability density function proportional to\bigm| \bigm| \bigm| \bigm| \bigm| 

d\sum 
i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| \cdot 
d\prod 

i=1

\=\mu i(x+ si + hi \=\bfitomega ),

where z := z(S) is as in Definition 3.21. Then for b1, . . . ,bd \in \BbbR d - 1 distributed as
in Lemma 3.20, conditioned on \bfittheta , t, and the shape S = (s1, . . . , sd), where s1 = 0, we
have equivalence of the distributions

(b1, . . . ,bd) | \bfittheta , t, S \equiv (x+ s1 + h1 \=\bfitomega , . . . ,x+ sd + hd \=\bfitomega ) | \bfittheta , t, S.

Proof. By Definition 3.18, the variables b1, . . . ,bd conditioned on \bfittheta , t have density
proportional to

vold - 1(conv(b1, . . . ,bd))

d\prod 
i=1

\=\mu i(bi).

We make a change of variables from b1, . . . ,bd to x, s2, . . . , sd \in \=\bfitomega \bot , h1, . . . , hd \in \BbbR ,
defined by

(b1, . . . ,bd) = (x+ h1 \=\bfitomega ,x+ s2 + hd \=\bfitomega , . . . ,x+ sd + hd \=\bfitomega ).

Recall that any invertible linear transformation has a constant Jacobian. We observe
that

vold - 1(conv(b1, . . . ,bd)) =

\int 
conv(S)

length((x+ q+ \=\bfitomega \cdot \BbbR ) \cap conv(b1, . . . ,bd)) dq.

By Lemma 3.24 we find

vold - 1(conv(b1, . . . ,bd)) =

\bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
conv(S)

\| C(q)\| 1 dq.

The integral of \| C(q)\| 1 over conv(S) is independent of x, h1, . . . , hd. Thus, for fixed
\bfittheta \in \BbbS d - 1, t > 0, S \in \scrS , the random variables x, h1, . . . , hd have joint probability
density proportional to \bigm| \bigm| \bigm| \bigm| \bigm| 

d\sum 
i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| \cdot 
d\prod 

i=1

\=\mu i(x+ si + hi \=\bfitomega ).
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Recall that \=l = \=p + \=\bfitomega \cdot \BbbR . The event \=E that conv(b1, . . . ,bd) \cap \=l \not = \emptyset occurs if
and only if \=p \in x+ conv(S), and hence if and only if \=p - x \in conv(S).

Lemma 3.26. Let \bfittheta \in \BbbS d - 1, t > 0, S \in \scrS be fixed, and have random variables
b1, . . . ,bd \in \BbbR d - 1,h1, . . . , hd \in \BbbR , x \in \omega \bot be distributed as in Lemma 3.25. Define
q := \=p - x. Then, the expected edge length satisfies

\BbbE [length(conv(b1, . . . ,bd) \cap \=l) | \bfittheta , t, S, \=E] \geq \BbbE [\| C(q)\| 1 | \bfittheta , t, S, \=E]

\cdot inf
\bfx \in \=\omega \bot 

\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| | \bfittheta , t, S,x
\Biggr] 
.

Proof. We start with the assertion of Lemma 3.24:

length((x+ q+ \=\bfitomega \cdot \BbbR ) \cap conv(b1, . . . ,bd)) = \| C(q)\| 1 \cdot 

\bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| .
We take expectation on both sides to derive the equality

\BbbE [length(conv(b1, . . . ,bd) \cap \=l) | \bfittheta , t, S, \=E] = \BbbE 

\Biggl[ 
\| C(q)\| 1 \cdot 

\bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| | \bfittheta , t, S, \=E
\Biggr] 
.

Since \| C(q)\| 1 and | 
\sum d

i=1 zihi| do not share any of their variables, we separate the
two expectations:

\BbbE 

\Biggl[ 
\| C(q)\| 1 \cdot 

\bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| | \bfittheta , t, S, \=E
\Biggr] 
= \BbbE \bfx ,h1,...,hd

\Biggl[ 
\| C(q)\| 1 \cdot 

\bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| | \bfittheta , t, S, \=E
\Biggr] 

= \BbbE \bfx [\| C(q)\| 1\BbbE h1,...,hd

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| | \bfittheta , t, S,x
\Biggr] 
| \bfittheta , t, S, \=E]

\geq \BbbE \bfx [\| C(q)\| 1 | \bfittheta , t, S, \=E] inf
\bfx \in \=\bfitomega \bot 

\BbbE h1,...,hd

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| | \bfittheta , t, S,x
\Biggr] 
.

We will first bound the expected \ell 1-diameter of C(q), where q = \=p  - x, which
depends on where \=p - x intersects the projected simplex conv(S): where this quantity
tends to get smaller as we approach to boundary of conv(S). We recall that \=E occurs
if and only if q \in conv(S).

Lemma 3.27 (chord combination bound). Let \bfittheta \in \BbbS d - 1, t > 0, and S \in \scrS be
fixed. Let q = \=p - x be distributed as in Lemma 3.26. Then, the expected \ell 1-diameter
of C(q) satisfies

\BbbE [\| C(q)\| 1 | \bfittheta , t, S, \=E] \geq e - 2

dL(1 +Rn,d)
.

Proof. To get a lower bound on the expected value of \| C(q)\| 1, we will use the con-
cavity of \| C(q)\| 1 over conv(S) = conv(s1, . . . , sd) and that max\bfq \in conv(S)\| C(q)\| 1 = 2.
These facts are proven in Lemma 3.23. We show that shifting the projected simplex
does not change the probability density too much (using log-Lipschitzness), and we
use the properties of \| C(q)\| 1 mentioned above.
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Let \^\mu denote the probability density of q conditioned on \bfittheta , t, S, \=E. Note that \^\mu 
is supported on conv(S) and has density proportional to

\int 
\cdot \cdot \cdot 
\int d\prod 

i=1

\=\mu i(\=p - q+ si + hi \=\bfitomega ) dh1 \cdot \cdot \cdot dhd.

We claim that \^\mu is dL-log-Lipschitz. To see this, note that since \=\mu 1, . . . , \=\mu d are L-log-
Lipschitz, for v,v\prime \in conv(S) we have that

\int 
\cdot \cdot \cdot 
\int d\prod 

i=1

\=\mu i(\=p - v + si + hi \=\bfitomega ) dh1 \cdot \cdot \cdot dhd

\leq 
\int 
\cdot \cdot \cdot 
\int d\prod 

i=1

eL\| \bfv \prime  - \bfv \| \=\mu i(\=p - v\prime + si + hi \=\bfitomega ) dh1 \cdot \cdot \cdot dhd

= edL\| \bfv \prime  - \bfv \| 
\int 
\cdot \cdot \cdot 
\int d\prod 

i=1

\=\mu i(\=p - v\prime + si + hi \=\bfitomega ) dh1 \cdot \cdot \cdot dhd, as needed.

Let \alpha \in (0, 1) be a scale factor to be chosen later, and let y = y(S) \in conv(S) be
as in Lemma 3.23. Now we can write

\BbbE [\| C(q)\| | \bfittheta , t, S, \=E] =

\int 
conv(S)

\| C(q)\| 1\^\mu (q) dq

\geq 
\int 
\alpha conv(S)+(1 - \alpha )\bfy 

\| C(q)\| 1\^\mu (q) dq,(3.3)

because the integrand is nonnegative. By concavity of \| C(q)\| 1 we have the lower
bound \| C(\alpha q + (1  - \alpha )y)\| \geq 2(1  - \alpha ) for all q \in conv(S). Therefore, (3.3) is lower
bounded by

\geq 
\int 
\alpha conv(S)+(1 - \alpha )\bfy 

2(1 - \alpha )\^\mu (q) dq

= 2\alpha d(1 - \alpha )

\int 
conv(S)

\^\mu (\alpha q+ (1 - \alpha )y) dq

\geq 2\alpha d(1 - \alpha )e - max\bfq \in conv(S)(1 - \alpha )\| \bfq  - \bfy \| \cdot dL
\int 
conv(S)

\^\mu (q) dq,

= 2\alpha d(1 - \alpha )e - maxi\in [d](1 - \alpha )\| \bfs i - \bfy \| \cdot dL,(3.4)

where we used a change of variables in the first equality, the dL-log-Lipschitzness of \^\mu 
in the second inequality, and the convexity of the \ell 2 norm in the last equality. Using
the diameter bound of 2 + 2Rn,d for conv(S), (3.4) is lower bounded by

\geq 2\alpha d(1 - \alpha )e - (1 - \alpha )dL(2+2Rn,d).(3.5)

Setting \alpha = 1 - 1
dL(2+2Rn,d)

\geq 1 - 1/d (by Lemma 3.9) gives a lower bound for (3.5)

of

\geq e - 2 1

dL(1 +Rn,d)
.
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Recall that we have now fixed the position x and shape S of the projected simplex.
The randomness we have left is in the positions h1, . . . , hd of b1, . . . ,bd along lines
parallel to the vector \=\bfitomega . As \bfittheta and t are also fixed, restricting bi to lie on a line is the
same as restricting ai to lie on a line.

Thus, were it not for the correlation between h1, . . . , hd, i.e., the factor | 
\sum d

i=1 zihi| 
in the joint probability density function, each hi would be independent and have
variance \tau 2 by assumption, and thus one might expect \BbbE [| 

\sum d
i=1 zihi| ] = \Omega (\| z\| \tau ).

The following lemmas establish this and show that in fact, the correlation term only
helps.

Lemma 3.28. Let X be a random variable with \BbbE [X] = \mu and Var(X) = \tau 2.
Then X satisfies

\BbbE 
\bigl[ 
X2
\bigr] 

\BbbE [| X| ]
\geq (| \mu | + \tau )/2.

Proof. By definition one has \BbbE 
\bigl[ 
X2
\bigr] 
= \mu 2+\tau 2. We will show that \BbbE [| X| ] \leq | \mu | +\tau 

so that we can use the fact that \mu 2+ \tau 2 \geq 2| \mu | \tau to derive that \mu 2+ \tau 2 \geq (| \mu | + \tau )2/2.
It then follows that \BbbE 

\bigl[ 
X2
\bigr] 
/\BbbE [| X| ] \geq (| \mu | + \tau )/2.

The expected absolute value \BbbE [| X| ] satisfies

\BbbE [| X| ] \leq | \mu | + \BbbE [| X  - \mu | ] \leq | \mu | + \BbbE 
\bigl[ 
(X  - \mu )2

\bigr] 1/2
by Cauchy--Schwarz, and hence \BbbE [| X| ] \leq | \mu | + \tau .

Lemma 3.29 (height of simplex bound). Let \bfittheta \in \BbbS d - 1, t \geq 0, S \in \scrS ,x \in \=\omega \bot be
fixed and let z := z(S) be as in Definition 3.21. Then for h1, . . . , hd \in \BbbR distributed
as in Lemma 3.26, the expected inner product satisfies

inf
\bfx \in \=\bfitomega \bot 

\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| | \bfittheta , t, S,x
\Biggr] 
\geq \tau /(2

\surd 
d).

Proof. For fixed \theta , t, S,x, let g1, . . . , gd \in \BbbR be independent random variables with
respective probability densities \~\mu 1, . . . , \~\mu d, where \~\mu i, i \in [d], is defined by

\~\mu i(gi) := \=\mu (x+ si + gi \=\bfitomega ) = \mu (R\bfittheta (x+ si + gi \=\bfitomega ) + t\bfittheta ) .

Note that, by assumption, the variables g1, . . . , gd each have variance at least \tau 2. We
recall from Lemma 3.25 that the joint probability density of h1, . . . , hd is proportional
to | 
\sum d

i=1 zihi| 
\prod d

i=1 \~\mu i(hi). Thus, we may rewrite the above expectation as

\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| | \bfittheta , t, S,x
\Biggr] 
=

\int 
\cdot \cdot \cdot 
\int 
\BbbR | 
\sum d

i=1 zihi| 2
\prod d

i=1 \~\mu i(hi) dh1 \cdot \cdot \cdot dhd\int 
\cdot \cdot \cdot 
\int 
\BbbR | 
\sum d

i=1 zihi| 
\prod d

i=1 \~\mu i(hi) dh1 \cdot \cdot \cdot dhd

=
\BbbE [| 
\sum d

i=1 zigi| 2]
\BbbE [| 
\sum d

i=1 zigi| ]
,

where g1, . . . , gd are distributed independently with densities \~\mu 1, . . . , \~\mu d. By the ad-
ditivity of variance for independent random variables, we see that

Var

\biggl( d\sum 
i=1

zigi

\biggr) 
=

d\sum 
i=1

z2iVar(gi) \geq \tau 2\| z\| 2 \geq \tau 2\| z\| 21/d = \tau 2/d.
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We reach the desired conclusion by applying Lemma 3.28:

\BbbE [| 
\sum d

i=1 zigi| 2]
\BbbE [| 
\sum d

i=1 zigi| ]
\geq 
| \BbbE [
\sum d

i=1 zigi]| +
\sqrt{} 

Var(
\sum d

i=1 zigi)

2
\geq \tau /(2

\surd 
d).

Using the bounds from the preceding lemmas, the proof of our main theorem is
now given below.

Proof of Theorem 3.10 (parametrized shadow bound). By Lemma 3.13, we derive
the shadow bound by combining an upper bound on \BbbE [perimeter(Q \cap W )] and a
uniform lower bound on \BbbE [length(conv(ai : i \in I) \cap W ) | EI ] for all I \in B. For the
perimeter upper bound, by Lemma 3.14 we have that

(3.6) \BbbE [perimeter(Q \cap W )] \leq 2\pi (1 + 4rn).

For the edge length bound, we assume w.l.o.g. as above that I = [d]. Combining
prior lemmas, we have that

\BbbE [length(conv(a1, . . . ,ad) \cap W ) | E]

\geq 1

2
\cdot \BbbE [length(conv(a1, . . . ,ad) \cap W ) | D,E] (Lemma 3.17)

\geq 1

2
\cdot inf
\bfittheta \in \BbbS d - 1

t>0

\BbbE [length(conv(b1, . . . ,bd) \cap \=l) | \bfittheta , t, S \in \scrS , \=E] (Lemma 3.20)

\geq 1

2
\cdot inf

\bfittheta \in \BbbS d - 1

t>0,S\in \scrS 

\Biggl( 
\BbbE [\| C(\=p - x)\| 1 | \bfittheta , t, S, \=E] \cdot inf

\bfx \in \=\bfitomega \bot 
\BbbE 

\Biggl[ \bigm| \bigm| \bigm| \bigm| \bigm| 
d\sum 

i=1

zihi

\bigm| \bigm| \bigm| \bigm| \bigm| | \bfittheta , t, S,x
\Biggr] \Biggr) 

(Lemma 3.26)

\geq 1

2
\cdot e - 2

dL(1 +Rn,d)
\cdot \tau 

2
\surd 
d

(Lemmas 3.27 and 3.29).

(3.7)

The theorem now follows by taking the ratio of (3.6) and (3.7).

3.2. Shadow bound for Laplace perturbations. Theorem 3.10 is most natu-
rally used to prove shadow bounds or distributions where all parameters are bounded,
which we illustrate here for Laplace-distributed perturbations. The Laplace distribu-
tion is defined in section 2.3.2. To achieve the shadow bound, we use the abstract
shadow bound as a black box, and we bound the necessary parameters of the Laplace
distribution below.

Lemma 3.30. For n \geq d \geq 3, the Laplace distribution Ld(\=a, \sigma ) satisfies the fol-
lowing properties:

1. The density is
\surd 
d/\sigma -log-Lipschitz.

2. Its cutoff radius satisfies Rn,d \leq 14\sigma 
\surd 
d log n.

3. The nth deviation satisfies rn \leq 7\sigma log n.
4. The variance after restricting to any line satisfies \tau \geq \sigma /

\surd 
de.

Proof. By shift invariance of the parameters, we may assume w.l.o.g. that \=a = 0.
Let X be distributed as Ld(0, \sigma ) for use below.

1. The density of the Laplace distribution is proportional to e - \| \bfx \| 
\surd 
d/\sigma for x \in \BbbR d,

and thus the logarithm of the density differs an additive constant from  - \| x\| 
\surd 
d/\sigma ,

which is clearly
\surd 
d/\sigma -Lipschitz.
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2. The second property follows from Lemma 2.6:

Pr[\| X\| \geq 14\sigma 
\surd 
d log n] \leq e - 2d logn = n - 2d

\leq 1

d
\bigl( 
n
d

\bigr) .
3. Again from Lemma 2.6, if 7 log n \geq 2

\surd 
d, we get that\int \infty 

7\sigma logn

Pr[| X\sansT \bfittheta | \geq t] dt \leq 
\int \infty 

7\sigma logn

e - 
\surd 
dt/(7\sigma ) dt

=
7\sigma \surd 
d
n - 

\surd 
d logn \leq 7\sigma log n

n
.

If 7 log n \leq 2
\surd 
d, then\int \infty 

7\sigma logn

Pr[| X\sansT \bfittheta | \geq t] dt =

\int 2\sigma 
\surd 
d

7\sigma logn

Pr[| X\sansT \bfittheta | \geq t] dt+

\int \infty 

2\sigma 
\surd 
d

Pr[| X\sansT \bfittheta | \geq t] dt

\leq 
\int 2\sigma 

\surd 
d

7\sigma logn

2e - t2/(16\sigma 2) dt+

\int \infty 

2\sigma 
\surd 
d

e - 
\surd 
dt/(7\sigma ) dt

\leq 4\sigma 
\surd 
de - (7 logn)2/16 +

7\sigma \surd 
d
e - 2d/7

\leq 4\sigma 
\surd 
d/n3 + 7\sigma /(

\surd 
dn

\surd 
d) \leq 7\sigma log n

n
.

4. This follows from the
\surd 
d/\sigma -log-Lipschitzness and Lemma 3.8.

Proof of Theorem 3.2 (shadow bound for Laplace perturbations). We get the de-
sired result by plugging in the bounds from Lemma 3.30 for L,Rn,d, rn, and \tau into
the upper bound O((d1.5L/\tau )(1 +Rn,d)(1 + rn)) from Theorem 3.10.

3.3. Shadow bound for Gaussian perturbations. In this subsection, we
prove our shadow bound for Gaussian perturbations.

The Gaussian distribution is not log-Lipschitz, so we cannot directly apply Theo-
rem 3.10. We will define a smoothed out version of the Gaussian distribution to remedy
this problem, which we call the Laplace--Gaussian distribution. The Laplace--Gaussian
distribution, defined below, matches the Gaussian distribution in every meaningful
parameter, while also being log-Lipschitz. We will first bound the shadow size for
Laplace--Gaussian perturbations and then show that the expected number of edges of
Q \cap W for Gaussian perturbations is at most 1 larger.

Definition 3.31. We define a random variable X \in \BbbR d to be (\sigma , r)-Laplace--
Gaussian distributed with mean \=a, or X \sim LGd(\=a, \sigma , r), if its density is proportional
to f(\=\bfa ,\sigma ,r) : \BbbR d \rightarrow \BbbR + given by

f(\=\bfa ,\sigma ,r)(x) =

\Biggl\{ 
e - \| \bfx  - \=\bfa \| 2/(2\sigma 2) if \| x - \=a\| \leq r\sigma ,

e - \| \bfx  - \=\bfa \| r/\sigma +r2/2 if \| x - \=a\| \geq r\sigma .

Note that at \| x  - \=a\| = r\sigma , both cases give the density e - r2/2, and hence f(\=\bfa ,\sigma ,r)
is well-defined and continuous on \BbbR d. For distributions with mean 0, we abbreviate
f(\sigma ,r) := f(\bfzero ,\sigma ,r) and LGd(\sigma , r) := LGd(0, \sigma , r).

D
ow

nl
oa

de
d 

12
/0

3/
20

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FRIENDLY SMOOTHED ANALYSIS OF SIMPLEX METHOD STOC18-483

Just like for the shadow size bound for Laplace perturbations, we need strong
enough tail bounds. We state these tail bounds here and defer their proofs till the
end of the section.

Lemma 3.32 (Laplace--Gaussian tail bounds). Let X \in \BbbR d be (\sigma , r)-Laplace--
Gaussian distributed with mean 0, where r := c

\surd 
d log n, c \geq 4. Then for t \geq r,

(3.8) Pr[\| X\| \geq \sigma t] \leq e - (1/4)rt .

For \bfittheta \in \BbbS d - 1, t \geq 0,

(3.9) Pr[| X\sansT \bfittheta | \geq \sigma t] \leq 

\Biggl\{ 
e - (1/4)rt : t \geq r,

3e - t2/4 : 0 \leq t \leq r.

Lemma 3.33. For n \geq d \geq 3, the (\sigma , 4
\surd 
d log n)-Laplace--Gaussian distribution in

\BbbR d with mean \=a satisfies the following properties:
1. The density is 4\sigma  - 1

\surd 
d log n-log-Lipschitz.

2. Its cutoff radius satisfies Rn,d \leq 4\sigma 
\surd 
d log n.

3. The nth deviation is rn \leq 4\sigma 
\surd 
log n.

4. The variance after restricting to any line satisfies \tau \geq \sigma /4.

Proof. As before, by shift invariance, we may assume w.l.o.g that \=a = 0. Let
X \sim LGd(\sigma , 4

\surd 
d log n) and let r := 4

\surd 
d log n.

1. The gradient of the function log(f(\sigma ,r)(x)) has norm bounded by 4\sigma  - 1
\surd 
d log n

wherever it is defined, which by continuity implies f(\sigma ,r) is 4\sigma 
 - 1
\surd 
d log n-log-Lipschitz.

2. Applying the tail bound from Lemma 3.32, we get that

Pr[\| X\| \geq 4\sigma 
\sqrt{} 
d log n] \leq e - 4d logn \leq 1

d
\bigl( 
n
d

\bigr) .
3. Again using Lemma 3.32,\int \infty 

4\sigma 
\surd 
logn

Pr[| X\sansT \bfittheta | \geq t] dt =

\int r\sigma 

4\sigma 
\surd 
logn

Pr[| X\sansT \bfittheta | \geq t] dt+

\int \infty 

r\sigma 

Pr[| X\sansT \bfittheta | \geq t] dt

\leq 
\int r\sigma 

4\sigma 
\surd 
logn

3e - t2/(4\sigma 2) dt+

\int \infty 

r\sigma 

e - 
\surd 
d lognt/\sigma dt

\leq 4\sigma 
\sqrt{} 
d log n(3n - 4) +

\sigma \surd 
d log n

n - 4d

\leq 4\sigma 
\sqrt{} 

log n/n.

4. For the line variance, by rotational symmetry, we may w.l.o.g. assume that
l := (y, 0)+ ed\BbbR , where y \in \BbbR d - 1, and so (y, 0) is the point on l closest to the origin.
Since f(\sigma ,r)((y, \lambda )) = f(\sigma ,r)((y, - \lambda )) for every \lambda \in \BbbR , the expectation \BbbE [X | X \in l] =
(y, 0). Thus, Var(X | X \in l) = \BbbE [X2

d | X \in l].
Let \=l = (y, 0) + [ - \sigma , \sigma ] \cdot ed. Since | Xd| is larger on l \setminus \=l than on \=l, we clearly have

\BbbE [X2
d | X \in l] \geq \BbbE [X2

d | X \in \=l], so it suffices to lower bound the latter quantity.
For each y with \| y\| \leq \sigma r we have for all \lambda \in [ - \sigma , \sigma ] the inequality

(3.10) 1 \geq 
f(\sigma ,r)((y, \lambda ))

f(\sigma ,r)((y, 0))
\geq e - \| (\bfy ,\lambda )\| 2/(2\sigma 2)

e - \| (\bfy ,0)\| 2/(2\sigma 2)
= e - \lambda 2/(2\sigma 2) \geq e - 1/2 .
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Given the above, we have that

\BbbE [X2
d | X \in \=l] \geq (\sigma 2/4)Pr[| Xd| \geq \sigma /2 | X \in \=l]

= (\sigma 2/4)

\int \sigma 

\sigma /2
f(\sigma ,r)((y, t)) dt\int \sigma 

0
f(\sigma ,r)((y, t)) dt

\geq (\sigma 2/4)

\int \sigma 

\sigma /2
f(\sigma ,r)((y, 0))e

 - 1/2 dt\int \sigma 

0
f(\sigma ,r)((y, 0)) dt

(by (3.10))

= (\sigma 2/4)(e - 1/2/2) \geq \sigma 2/16, as needed.

(3.11)

For y with \| y\| \geq \sigma r, \lambda \in [ - \sigma , \sigma ], we similarly have

\| (y, \lambda )\| =
\sqrt{} 
\| y\| 2 + \lambda 2

\leq \| y\| + \lambda 2

2\| y\| 
\leq \| y\| + \lambda 2

2r\sigma 
.

In particular, we get that

(3.12) 1 \geq 
f(\sigma ,r)((y, \lambda ))

f(\sigma ,r)((y, 0))
=

e - \| (\bfy ,\lambda )\| (r/\sigma )

e - \| (\bfy ,0)\| (r/\sigma ) \geq e - \lambda 2/(2\sigma 2) \geq e - 1/2 .

The desired lower bound now follows by combining (3.11), (3.12).

Given any unperturbed unit LP given by c, \=a1, . . . , \=an, we denote by \BbbE Nd(\sigma ) the
expectation when its vertices are perturbed with noise distributed according to the
Gaussian distribution of standard deviation \sigma and we write \BbbE LGd(\sigma ,r) for the expec-
tation when its vertices are perturbed by (\sigma , r)-Laplace--Gaussian noise. In the next
lemma we prove that, for r := 4

\surd 
d log n, the expected number of edges for Gaussian

distributed perturbations is not much bigger than the expected number for Laplace--
Gaussian perturbations. We use the strong tail bounds we have on the two distribu-
tions along with the knowledge that restricted to a ball of radius r\sigma the probability
densities are equal. Recall that we use \^ai to denote the perturbation ai  - \BbbE [ai].

Lemma 3.34. For d \geq 3, the number of edges in conv(a1, . . . ,an) \cap W satisfies

\BbbE Nd(\sigma )[| edges(conv(a1, . . . ,an))| ] \leq 1 + \BbbE LGd(\sigma ,4
\surd 
d logn)[| edges(conv(a1, . . . ,an))| ].

Proof. Let us abbreviate edges := edges(conv(a1, . . . ,an)) and let r := 4
\surd 
d log n.

We make use of the fact that Nd(\sigma ) and LGd(\sigma , r) are equal when restricted to
distance at most \sigma r from their centers.

\BbbE N(\sigma )[| edges| ] = Pr
Nd(\sigma )

[\exists i \in [n] \| \^ai\| > \sigma r]\BbbE Nd(\sigma )[| edges| | \exists i \in [n] \| \^ai\| > \sigma r]

+ Pr
Nd(\sigma )

[\forall i \in [n] \| \^ai\| \leq \sigma r]\BbbE Nd(\sigma )[| edges| | \forall i \in [n] \| \^ai\| \leq \sigma r].(3.13)

By Lemma 3.32, the first probability is at most n - 4d \leq n - d/4, so we upper bound
the first number of edges by

\bigl( 
n
d

\bigr) 
making a total contribution of less than 1/4. Now

we use the fact that within radius 4\sigma 
\surd 
d log n we have equality of densities between

Nd(\sigma ) and LGd(\sigma , r). Continuing from (3.13),

\leq 1/4 + \BbbE Nd(\sigma )[| edges| | \forall i \in [n] \| \^ai\| \leq \sigma r]

= 1/4 + \BbbE LGd(\sigma ,r)[| edges| | \forall i \in [n] \| \^ai\| \leq \sigma r]

\leq 1/4 + \BbbE LGd(\sigma ,r)[| edges| ]/ Pr
LGd(\sigma ,r)

[\forall i \in [n] \| \^ai\| \leq \sigma r].(3.14)
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The inequality above is true by the nonnegativity of the number of edges. Next we
lower bound the denominator and continue (3.14),

\leq 1/4 + \BbbE LGd(\sigma ,r)[| edges| ]/(1 - n - d/4)

\leq 1/4 + (1 + n - d/2)\BbbE LGd(\sigma ,r)[| edges| ].(3.15)

The last inequality we deduce from the fact that (1 - \varepsilon )(1 + 2\varepsilon ) = 1 + \varepsilon  - 2\varepsilon 2, which
is bigger than 1 for 0 < \varepsilon < 1/2. Again using the trivial upper bound of

\bigl( 
n
d

\bigr) 
edges,

we arrive at our desired conclusion that

\BbbE Nd(\sigma )[| edges| ] \leq 1 + \BbbE LGd(\sigma ,r)[| edges| ].

We now have all the ingredients to prove our bound on the expected number of
edges for Gaussian perturbations.

Proof of Theorem 3.1 (shadow bound for Gaussian perturbations). By Lemma
3.34, we know that

\BbbE Nd(\sigma )[| edges(conv(a1, . . . ,an))| ] \leq 1 + \BbbE LGd(\sigma ,4
\surd 
d logn)[| edges(conv(a1, . . . ,an))| ].

We now derive the shadow bound for Laplace--Gaussian perturbations by combin-
ing the parameter bounds in Lemma 3.33 with the parameterized shadow bound in
Theorem 3.10.

We now prove the tail bounds for Laplace--Gaussian distributions. Recall that we
set r := c

\surd 
d log n with c \geq 4.

Proof of Lemma 3.32 (tail bound for Laplace--Gaussian distribution). By homoge-
neity, we may w.l.o.g. assume that \sigma = 1. Define auxiliary random variables Y \in \BbbR d

to be distributed as (0, 1/(c
\surd 
log n))-Laplace and Z \in \BbbR d to be distributed as Nd(0, 1).

Since X has density proportional to f(1,r)(x), which equals e - \| \bfx \| 2/2 for \| x\| \leq r

and e - r\| \bfx \| +r2/2 for \| x\| \geq r, we immediately see that

Z | \| Z\| \leq r \equiv X | \| X\| \leq r,

Y | \| Y\| \geq r \equiv X | \| X\| \geq r.
(3.16)

Proof of (3.8). By the above, for any t \geq r, we have that

(3.17) Pr[\| X\| \geq t] = Pr[\| Y\| \geq t] \cdot Pr[\| X\| \geq r]

Pr[\| Y\| \geq r]
.

For the first term, by the Laplace tail bound (2.3), we get that

(3.18) Pr[\| Y\| \geq t] \leq e
 - rt - d log( c

\surd 
log nt\surd 

d
) - d

.

For the second term,

Pr[\| X\| \geq r]

Pr[\| Y\| \geq r]
= er

2/2

\int 
\BbbR n e - r\| \bfx \| dx\int 

\BbbR n f(\sigma ,r)(x) dx
\leq er

2/2

\int 
\BbbR n e - r\| \bfx \| dx\int 

\BbbR n e - \| \bfx \| 2/2 dx

\leq er
2/2 r

 - dd!vold(\scrB d2)\surd 
2\pi 

d
\leq e(dc

2 logn)/2

\biggl( \surd 
e

c
\surd 
log n

\biggr) d

\leq e(dc
2 logn)/2 ,

(3.19)D
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where we have used the upper bound vold(\scrB d2) \leq (2\pi e/d)d/2, r = c
\surd 
d log n, and

c \geq 
\surd 
e. Combining (3.18), (3.19), and that t \geq r, c \geq 4, we get

Pr[\| X\| \geq t] \leq e
 - rt - d log( c

\surd 
log nt\surd 

d
) - d \cdot e(dc

2 logn)/2

\leq e
 - rt/2 - d log( c

\surd 
log nt\surd 

d
) - d

= e - d( rt
2d - log( rt

d ) - 1)

\leq e - d( rt
4d ) = e - rt/4,

(3.20)

where the last inequality follows from x/2 - log(x) - 1 \geq x/4 for x \geq rt/d \geq c2 \geq 16.
Proof of (3.9). For t \geq r, using the bound (3.8), we get

(3.21) Pr[| X\sansT \bfittheta | \geq t] \leq Pr[\| X\| \geq t] \leq e - c
\surd 
d lognt/4 .

For t \leq r, we see that

Pr[| X\sansT \bfittheta | \geq t] \leq Pr[| X\sansT \bfittheta | \geq t, \| X\| \leq r] + Pr[\| X\| \geq r]

\leq Pr[| X\sansT \bfittheta | \geq t, \| X\| \leq r] + e - r2/4 .
(3.22)

By the identity (3.16), for the first term, using the Gaussian tail bound (2.2), we have
that

Pr[| X\sansT \bfittheta | \geq t, \| X\| \leq r] = Pr[| Z\sansT \bfittheta | \geq t, \| Z\| \leq r] \cdot Pr[\| X\| \leq r]

Pr[\| Z\| \leq r]

= Pr[| Z\sansT \bfittheta | \geq t, \| Z\| \leq r] \cdot 
\int 
\BbbR n e - \| \bfx \| 2/2 dx\int 
\BbbR n f(1,r)(x) dx

\leq Pr[| Z\sansT \bfittheta | \geq t] \leq 2e - t2/2 .

(3.23)

The desired inequality (3.9) now follows directly by combining (3.21), (3.22), (3.23),

noting that 2e - t2/2 + e - r2/4 \leq 3e - t2/4 for 0 \leq t \leq r.

4. Simplex algorithms. In this section, we describe how to use the shadow
bound to bound the complexity of a complete shadow vertex simplex algorithm. We
restrict our attention here to Gaussian perturbations, as the details for Laplace per-
turbations are similar. We will follow the two-stage interpolation strategy given by
Vershynin in [89]. The RV algorithm of [89] was shown in the same paper to work
for any \sigma \leq min( c1\surd 

d logn
, c1
d3/2 log d

) for some c1 > 0. The constraint on \sigma is always

achievable by scaling down the matrix A, though it will be reflected in the running
time of the algorithm.

We will describe a modification of the RV algorithm that relaxes the condition on
the perturbation size to \sigma \leq O( 1\surd 

d logn
) for an expected O(d2

\surd 
log n \sigma  - 2+d3 log1.5 n)

pivot steps. Hence our algorithm is faster than both Vershynin's [89] RV algorithm
and Borgwardt's DD algorithm [18] for our shadow bound. To recall, our goal is to
solve the smoothed LP

(Smooth LP) max c\sansT x,

Ax \leq b,

where A \in \BbbR n\times d, b \in \BbbR n, c \in \BbbR d \setminus \{ 0\} , and n \geq d \geq 3. Here each row (ai, bi), i \in [n],
of (A,b) is a variance \sigma 2 Gaussian random vector with mean (\=ai,\=bi) := \BbbE [(ai, bi)]
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of \ell 2 norm at most 1. We will say that (Smooth LP) is unbounded (bounded) if
the system c\sansT x > 0,Ax \leq 0 is feasible (infeasible). Note that (Smooth LP) can
be unbounded and infeasible under this definition. If (Smooth LP) is bounded and
feasible, then it has an optimal solution.

For the execution of the algorithms as stated, we assume the nondegeneracy
conditions listed in Theorem 2.12. That is, we assume both the feasible polyhedron
and shadows to be nondegenerate. These conditions hold with probability 1.

Theorem 4.1. (Smooth LP) can be solved by a two-phase shadow simplex method
using an expected number of pivots of O(d2

\surd 
log n \sigma  - 2 + d3 log1.5 n).

Proof. Combining Lemma 4.2 and Theorem 4.11, the expected number of simplex
pivots is bounded by

10 +\scrD g(d+ 1, n, \sigma /2) + 5\scrD g(d, n+ 2d - 2,min\{ \sigma , \=\sigma \} /5) ,

where \=\sigma is as defined in (4.1). Noting that 1/\=\sigma = O(
\surd 
d log n), by the smoothed

Gaussian shadow bound (Theorem 3.1), the above is bounded by

O(\scrD g(d, n, \sigma ) +\scrD g(d, n, (
\sqrt{} 
d log n) - 1)) = O(d2

\sqrt{} 
log n\sigma  - 2 + d3 log1.5 n) ,

as needed.

Two-phase interpolation method. Define the Phase I Unit LP,

(Unit LP) max c\sansT x,

Ax \leq 1,

and the Phase II interpolation LP with parametric objective for \theta \in ( - \pi /2, \pi /2),

(Int. LP) max cos(\theta )c\sansT x+ sin(\theta )\lambda ,

Ax+ (1 - b)\lambda \leq 1,

0 \leq \lambda \leq 1.

The above form of interpolation was first introduced in the context of smoothed
analysis by Vershynin [89].

Let us assume for the moment that (Smooth LP) is bounded and feasible (i.e., has
an optimal solution). Since boundedness is a property of A and not b, note that this
implies that (Unit LP) is also bounded (and clearly always feasible).

To understand the Phase II interpolation LP, the key observation is that for \theta 
sufficiently close to  - \pi /2, the maximizer will be the optimal solution to (Unit LP),
i.e., will satisfy \lambda = 0, and for \theta sufficiently close to \pi /2 the maximizer will be the
optimal solution to (Smooth LP), i.e., will satisfy \lambda = 1. Thus given an optimal
solution to the Phase I unit LP one can initialize a run of shadow vertex starting at
\theta just above  - \pi /2, moving toward \pi /2 until the optimal solution to (Smooth LP) is
found. The corresponding shadow plane is generated by (c, 0) and (0, 1) (associating
\lambda with the last coordinate), and as usual the size of the shadow bounds the number
of pivots.

If (Smooth LP) is unbounded (i.e., the system c\sansT x > 0,Ax \leq 0 is feasible),
this will be detected during Phase I as (Unit LP) is also unbounded. If (Smooth
LP) is infeasible but bounded, then the shadow vertex run will terminate at a vertex
having \lambda < 1. Thus, all cases can be detected by the two-phase procedure (see [89,
Proposition 4.1] for a formal proof).
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We bound the number of pivot steps taken to solve (Int. LP) given a solution to
(Unit LP), and after that we describe how to solve (Unit LP).

Consider polyhedron P \prime =
\bigl\{ 
(x, \lambda ) \in \BbbR d+1 : Ax+ (1 - b)\lambda \leq 1

\bigr\} 
and the slab

H =
\bigl\{ 
(x, \lambda ) \in \BbbR d+1 : 0 \leq \lambda \leq 1

\bigr\} 
and let W = span(c, ed+1). In this notation, P \prime \cap H

is the feasible set of (Int. LP) and W is the shadow plane of (Int. LP). We bound the
number of vertices in the shadow \pi W (P \prime \cap H) of (Int. LP) by relating it to \pi W (P \prime ).

The constraints defining P \prime are of smoothed unit type. Namely, the rows of
(A,1 - b) are variance \sigma 2 Gaussians centered at means of norm at most 2. We derive
this from the triangle inequality. Thus, we know \pi W (P \prime ) has at most \scrD g(d+1, n, \sigma /2)
expected vertices. We divide \sigma by 2 because the centers have norm at most 2.

Since the shadow plane contains the normal vector (0, 1) to the inequalities 0 \leq 
\lambda \leq 1, these constraints intersect the shadow plane W at right angles. It follows
that \pi W (P \prime \cap H) = \pi W (P \prime ) \cap H. Adding 2 constraints to a 2D polyhedron can
add at most 2 new edges, and hence the constraints on \lambda can add at most 4 new
vertices. By combining these observations, we directly derive the following lemma of
Vershynin [89].

Lemma 4.2. If (Unit LP) is unbounded, then (Smooth LP) is unbounded. If (Unit
LP) is bounded, then given an optimal solution to (Unit LP) one can solve (Smooth
LP) using at most an expected \scrD g(d+1, n, \sigma /2)+4 shadow vertex pivots over (Int. LP).

Given the above, our main task is now to solve (Unit LP), i.e., either to find an
optimal solution or to determine unboundedness. The simplest algorithm is Borg-
wardt's DD algorithm, which was first used in the context of smoothed analysis by
Schnalzger [81]. Due to its simplicity, we describe it briefly below as a warm-up.

DD algorithm. As outlined in the introduction, the DD algorithm solves Unit LP
by iteratively solving the restrictions:

max c\sansT kx(Unit LPk)

Ax \leq 1,

xi = 0 \forall i \in \{ k + 1, . . . , d\} ,

where k \in \{ 1, . . . , d\} and ck := (c1, . . . , ck, 0, . . . , 0). The main idea here is that the
solution of (Unit LPk), k \in \{ 1, . . . , d - 1\} , is generically on an edge of the shadow of
(Unit LPk+1) on the span of ck and ek+1, which is sufficient to initialize the shadow
simplex path in the next step. We note that Borgwardt's algorithm can be applied to
any LP with a known feasible point as long as appropriate nondegeneracy conditions
hold (which occur with probability 1 for smoothed LPs). To avoid degeneracy, we will
assume that ck \not = 0 for all k \in \{ 1, . . . , d\} , which can always be achieved by permuting
the coordinates. Note that (Unit LP1) can be trivially solved, as the feasible region
is an interval whose endpoints are easy to compute.

Theorem 4.3 (see [17]). Let Wk, k \in \{ 2, . . . , d\} , denote the shadow of (Unit
LPk) on the span of ck - 1 and ek. Then, if each (Unit LPk) and shadow Wk is
nondegenerate, for k \in \{ 2, . . . , d\} , the DD algorithm solves (Unit LP) using at most\sum d

k=2| vertices(Wk)| number of pivots.

Using the shadow bound of Theorem 3.1 for d \geq 3 and the O(1/\sigma +
\surd 
log n) bound

for d = 2 [27], we immediately derive the following corollary.

Corollary 4.4. The smoothed (Unit LP) can be solved by the DD algorithm

using an expected
\sum d

k=2\scrD g(k, n, \sigma ) = O(d3
\surd 
log n \sigma  - 2 + d3.5\sigma  - 1 log n+ d3.5 log3/2 n)

number of shadow vertex pivots.
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Random vertex method. Vershynin's approach for initializing the shadow simplex
method on (Unit LP) is to add a random smoothed system of d linear constraints
to its description. These constraints are meant to induce a known random vertex v
and corresponding maximizing objective d which are effectively uncorrelated with the
original system. Starting at this vertex v, we then follow the shadow path induced
by rotating d toward c. The main difficulty with this approach is to guarantee that
the randomly generated system (i) adds a vertex which (ii) is optimized at d and (iii)
does not cut off the optimal solution or all unbounded rays. Fortunately, each of these
conditions is easily checkable, and hence if they fail (which will occur with constant
probability), the process can be attempted again.

One restriction imposed by this approach is that the perturbation size needs to
be rather small, namely,

\sigma \leq \sigma 1 :=
c1

max
\bigl\{ \surd 

d log n, d1.5 log d
\bigr\} 

in [89] for some c1 > 0. A more careful analysis of Vershynin's algorithm can relax
the restriction to

\sigma \leq \sigma 2 :=
c2

max
\Bigl\{ \surd 

d log n,
\surd 
d log d

\Bigr\} 
for some c2 > 0. This restriction is necessary due to the fact that we wish to predict
the effect of smoothing the added constraints. In particular, the smoothing operation
should not negate (i), (ii), or (iii). Recall that one can always artificially decrease \sigma 
by scaling down the matrix A as this does not change the structure of (Unit LP). The
assumption on \sigma is thus w.l.o.g. When stating running time bounds, however, this
restriction will be reflected by a larger additive term that does not depend on \sigma .

We adapt the RV algorithm to make (ii) guaranteed to hold, allowing us to relax
the constraint on the perturbation size to

(4.1) \sigma \leq \=\sigma :=
1

36
\surd 
d log n

.

Instead of adding d constraints, each with their own perturbation, we add d - 1 pairs
of constraints with mirrored perturbations. This forces the desired objective to be
maximized at the RV whenever this vertex exists.

We begin with some preliminary remarks for Algorithm 4.1. First, the goal of
defining V is to create a new artificial LP, (Unit LP\prime ) max c\sansT x,Ax \leq 1, Vx \leq 1, such
that x\bfzero is a vertex of the corresponding system which maximizes d. On lines 9 and 10,
the algorithm checks if x0 is feasible and whether it is not the optimizer of c on (Unit
LP\prime ). Having passed these checks, (Unit LP\prime ) is solved via shadow vertex initialized
at vertex x0 with objective d. An unbounded solution to (Unit LP\prime ) is always an
unbounded solution to (Unit LP). Last, it is checked on line 13 whether the bounded
solution (if it exists) to (Unit LP\prime ) is a solution to (Unit LP). The correctness of the
algorithm's output is thus straightforward. We do have to make sure that every step
of the algorithm can be executed as described.

Lemma 4.5. In (Unit LP\prime ) as defined on lines 3--11 of Algorithm 4.1, with prob-
ability 1, x0 is well-defined, and, when entering the shadow simplex routine, the point
x0 is a shadow vertex and the edge defined by B0 is a shadow edge on (Unit LP\prime ).
Moreover, x0 is the only degenerate vertex.
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Algorithm 4.1 Symmetric random vertex algorithm.

Require: c \in \BbbR d \setminus \{ 0\} , A \in \BbbR n\times d, A is standard deviation \sigma \leq \=\sigma Gaussian with
rows having centers of norm at most 1.

Ensure: Decide whether (Unit LP) max c\sansT x,Ax \leq 1 is unbounded or return an
optimal solution.

1: If some row of A has norm greater than 2, solve max c\sansT x, s.t. Ax \leq 1 using any
simplex method that takes at most

\bigl( 
n
d

\bigr) 
pivot steps.

2: loop
3: Let l = 1/6

\surd 
log d.

4: Sample a rotation matrix R \in O(d) uniformly at random.
5: Sample g1, . . . ,gd - 1 \sim N(0, \sigma 2I) independently.
6: Set v+

i = R(4ed + lei + gi), v
 - 
i = R(4ed  - lei  - gi) for all i \in [d - 1].

7: Put V = (v+
1 ,v

 - 
1 ,v

+
2 , . . . ,v

+
d - 1,v

 - 
d - 1)

\sansT , d = Red.
8: Find x0 such that Vx0 = 1.
9: If not Ax0 < 1, restart the loop.

10: Solve
\sum d - 1

i=1 \lambda iR(lei + gi) = c+ \lambda dd. If \lambda d +
\sum d - 1

i=1 4| \lambda i| \leq 0, restart the loop.
(This corresponds to x0 being optimal for c.)

11: Follow the shadow path from d to c on

max c\sansT x,

Ax \leq 1,(Unit LP\prime )

Vx \leq 1,

starting from the vertex x0. For the first pivot, follow the edge which is tight

at the constraints in B0 = (v
sign(\lambda 1)
1 , . . . ,v

sign(\lambda d - 1)
d - 1 ). All other pivot steps are

as in Algorithm 2.1.
12: If (Unit LP\prime ) is unbounded, return ``unbounded.""
13: If (Unit LP\prime ) is bounded and the optimal vertex x\ast satisfies Vx\ast < 1, return

x\ast as the optimal solution to (Unit LP).
14: Otherwise, restart the loop.
15: end loop

Proof. Without loss of generality, we assume R = Id\times d. With probability 1, the
coefficients \lambda 1, . . . , \lambda d exist and are uniquely defined.

We now show that x0 is well-defined. Let x+
0 be the solution to the following

system of d equalities:

v+
1

\sansT 
x+
0 = 1,v+

2

\sansT 
x+
0 = 1, . . . ,v+

d - 1

\sansT 
x+
0 = 1, 8ed

\sansT x+
0 = 2.(4.2)

This system of equations almost surely has a single solution. We claim that Vx+
0 = 1.

By writing v - 
i = 8ed  - v+

i , we find that v - 
i

\sansT 
x+
0 = 1 for all i \in [d  - 1]. Therefore,

x0 = x+
0 is indeed well-defined.

By definition, upon entering the shadow simplex routine, x0 satisfies Ax < 1,
Vx \leq 1 and is thus a vertex.

For all t > 0, define xt to be the solution to 8ed
\sansT xt = 2  - t,B0xt = 1. For any

vs
i \not \in B0, we have v

s
i
\sansT xt = 1 - t < 1. As the xt lie on a line and Ax0 < 1, there exists

some \varepsilon > 0 such that xt is feasible for all t \leq \varepsilon . Hence the constraints in B0 define
an edge of the feasible set.

D
ow

nl
oa

de
d 

12
/0

3/
20

 to
 1

92
.1

6.
19

1.
13

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FRIENDLY SMOOTHED ANALYSIS OF SIMPLEX METHOD STOC18-491

The point x0 is tight at the inequalities Vx \leq 1, and 1
8d - 8

\sum d - 1
i=1 (v

+
i + v - 

i ) = d
is a corresponding dual solution, so we know that x0 is optimal for objective d and
thus a shadow vertex.

Assume that x0 is not optimal for objective c. One outgoing edge of x0 is tight
at the inequalities vs

i
\sansT x \leq 1 for all vs

i \in B0 and that edge is on the shadow path
exactly if the cone spanned by B0 intersects cone(c,d) outside \{ 0\} . This intersection
is exactly the ray spanned by

d - 1\sum 
i=1

| \lambda i| vsign(\lambda i)
i =

d - 1\sum 
i=1

\lambda i(lei + gi) + 4| \lambda i| d

= c+ \lambda dd+

d - 1\sum 
i=1

4| \lambda i| d,

and we know that \lambda d +
\sum d - 1

i=1 4| \lambda i| > 0 as otherwise we would have a certificate that

c \in cone(V\bfitlambda : \bfitlambda \in \BbbR d
+). We conclude that

\sum d - 1
i=1 | \lambda i| vsign(\lambda i)

i is a nonnegative linear
combination of c,d and hence our description of the first shadow vertex pivot step is
correct.

Last, we show that any vertex other than x0 is tight at exactly d independently
distributed constraint vectors. Fix any basis B such that there exists an i \in [d - 1] with
v+
i ,v

 - 
i \in B and which does not define the vertex x0. Let xB be such that a\sansT xB = 1

for all a \in B. There exists some j \in [d - 1] such that both v+
j ,v

 - 
j /\in B, for otherwise we

would have xB = x0. We show that, almost surely, v+
j

\sansT 
xB > 1 or v - 

j

\sansT 
xB > 1, which

implies that xB is almost surely not feasible. We know that v+
i

\sansT 
xB = v - 

i

\sansT 
xB = 1,

and hence 4d\sansT xB = 1. It follows that v+
j

\sansT 
xB = 2  - v - 

j

\sansT 
xB , The only way to have

both v+
j

\sansT 
xB \leq 1 and v - 

j

\sansT 
xB \leq 1 would be if v+

j

\sansT 
xB = 1. However, xB and v+

j are

independently distributed and v+
j has a continuous probability distribution, so xB is

a vertex with probability 0.

To bound the expected running time of Algorithm 4.1, we bound the expected
number of pivot steps per iteration of the loop and the expected number of iterations
of the loop.

First, we bound the expected shadow size in a single iteration. Because the
constraint vectors v+

i ,v
 - 
i are not independently distributed for any i \in [d  - 1], we

are unable to apply Theorem 3.1 in a completely black-box way. As we show below,
in this new setting, the proof of Theorem 3.1 still goes through essentially without
modification.

In the rest of this section, we abbreviate

conv(A,V) := conv(a1, . . . ,an,v
+
1 , . . . ,v

+
d - 1,v

 - 
1 , . . . ,v

 - 
d - 1).

Lemma 4.6. Let A have independent standard deviation \sigma Gaussian rows with
centers of norm at most 1 and let V be sampled, independently from A, as in lines
4--7 of Algorithm 4.1 with l \leq 1. The shadow size \BbbE [| edges(conv(A,V)\cap span(c,d))| ]
is bounded by \scrD g(d, n+ 2d - 2,min(\sigma , \=\sigma )/5) + 1.

Proof. We fix the choice of R. The distribution of constraint vectors is now
independent of the 2D plane.

\BbbE [| edges(conv(A,V)\cap span(c,d))| ] \leq max
\bfR 

\BbbE [| edges(conv(A,V)\cap span(c,Red))| | R].
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The rows of A have centers of norm at most 1 and the rows of V have centers of
norm at most 4 + l \leq 5. After an appropriate rescaling, we can assume all n+ 2d - 2
constraints have expectations of norm at most 1 and standard deviation \sigma \leq \=\sigma /5.

To get the desired bound, we bound the number of edges other than the one
induced by x0, W \cap 

\bigl\{ 
y \in \BbbR d : y\sansT x0 = 1

\bigr\} 
, which yields the +1 in the final bound.

The proof is essentially identical to that of Theorem 3.1, i.e., we bound the ratio of
the expected perimeter divided by the minimum expected edge of the polar polygon.
We sketch the key points below. First, notice that the perimeter bound in Lemma 3.14
does not require independence of the perturbations, so it still holds. For the minimum
edge length, we restrict to the bases B as in Lemma 3.13 (which also does not require
independence) after removing those which induce x0 as a vertex (it has already been
counted). By Lemma 4.5, the remaining bases in B contain at most one of each pair\bigl\{ 
v - 
i ,v

+
i

\bigr\} 
, i \in [d - 1], since bases containing two such vectors correspond to an edge

different from the one induced by x0 with probability 0. In particular, every basis in
B consists of only independent random vectors.

From here, the only remaining detail for the bound to go through is to check
that the conclusion of Lemma 3.20 still holds, i.e., that the position of vectors within
their containing hyperplane does not affect the probability that these vectors form a
facet of the convex hull. Without loss of generality, we consider the vectors a1, . . . ,ai,
v+
1 , . . . ,v

+
j with i + j = d. Define \bfittheta \in \BbbS d - 1, t \geq 0 by \bfittheta \sansT ak = t for all k \in [i],

\bfittheta \sansT v+
k = t for all k \in [j]. The set conv(a1, . . . ,ai,v

+
1 , . . . ,v

+
j ) is a facet of the convex

hull of the constraint vectors when either (1) \bfittheta \sansT ak < t for all k > i, \bfittheta \sansT v - 
k < t for

all k \in [j], and \bfittheta \sansT v\pm 
k < t for all k > j or (2) when \bfittheta \sansT ak > t for all k > i, \bfittheta \sansT v - 

k > t
for all k \in [j], and \bfittheta \sansT v\pm 

k > t for all k > j. The only one of these properties that
is not independent of a1, . . . ,ai,v

+
1 , . . . ,v

+
j is whether \bfittheta \sansT v - 

k < t or \bfittheta \sansT v - 
k > t for

k \in [j], but we know that \bfittheta \sansT v - 
k = 8\bfittheta \sansT d - \bfittheta \sansT v+

k = 8\bfittheta \sansT d - t for all k \in [j], and so the
value \bfittheta \sansT v - 

k does not depend on the positions of a1, . . . ,ai,v
+
1 , . . . ,v

+
j within their

containing hyperplane. We conclude that the expected number of edges is bounded
by \scrD g(d, n+ 2d - 2,min(\sigma , \=\sigma )/5) + 1.

All that is left is to show that the success probability of each loop is lower bounded
by a constant.

Definition 4.7. For a matrix M \in \BbbR d\times d, we define its operator norm by

\| M\| = max
\bfx \in \BbbR d\setminus \{ \bfzero \} 

\| Mx\| 
\| x\| 

and its maximum and minimum singular values by

smax(M) = \| M\| , smin(M) = min
\bfx \in \BbbR d\setminus \{ \bfzero \} 

\| Mx\| 
\| x\| 

.

Using the Gaussian tailbound (2.1) together with a 1/2-net on the sphere (which
has size at most 8d; see, e.g., [67, p. 314]), we immediately obtain the following tail
bound for the operator norm of random Gaussian matrices.

Lemma 4.8. For a random d \times d matrix G with independent standard normal
entries, one has

Pr[\| G\| > 2t
\surd 
d] \leq 8de - d(t - 1)2/2.

Lemma 4.9. Let A \in \BbbR n\times d have rows of norm at most 2 and \sigma \leq l
6
\surd 
d
. For x0

sampled as in lines 4--8 of Algorithm 4.1, with probability at least 0.98, the point x0

satisfies Ax0 < 1.
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Proof. Without loss of generality, we assume R = Id\times d. We claim that, with
sufficient probability, \| x0  - ed/4\| < 1/4. Together with the triangle inequality and
the assumption that \| ai\| \leq 2 for all i \in [n], this suffices to show Ax0 < 1.

Elementary calculations show that x0  - ed/4 satisfies ed
\sansT (x0  - ed/4) = 0 and,

for every i \in [d  - 1], (lei + gi)
\sansT 
(x0  - ed/4) =  - gi

\sansT ed/4. Let G be the matrix with
rows consisting of the first d  - 1 entries of each of g1, . . . ,gd - 1, and g be the vector
consisting of the dth entries of g1, . . . ,gd - 1. From the above equalites we derive\biggl( 

lId - 1 +G g
0\sansT 1

\biggr) 
(x0  - ed/4) =

1

4

\biggl( 
 - g
0

\biggr) 
,\biggl( 

lId - 1 +G 0
0\sansT 1

\biggr) 
(x0  - ed/4) =

1

4

\biggl( 
 - g
0

\biggr) 
,

x0  - ed/4 =
1

4

\biggl( 
 - 
\bigl( 
lId - 1 +G

\bigr)  - 1
g

0

\biggr) 
.

Note that the matrix is almost surely invertible. We abbreviate M = lId - 1 + G
and bound \| x0  - ed/4\| \leq \| M - 1\| \| g\| /4. Using that \sigma \leq l

6
\surd 
d
, we apply (2.1) to get

\| g\| \leq l/2 with probability at least 0.99.
The operator norm of the inverse matrix satisfies \| M - 1\| = 1

smin(l\bfI +\bfG ) , and by

the triangle inequality we derive

smin(lI+G) \geq smin(lI) - smax(G) = l  - smax(G).

By Lemma 4.8, we have \| G\| \leq 3
\surd 
d\sigma \leq l/2 with probability at least 0.99. Putting

the pieces together, we conclude that

1

4
\| M - 1\| \| g\| \leq 1

4
\cdot 1

l  - l/2
\cdot l
2
\leq 1/4.

We take the union bound over the two bad events and thus conclude that ai
\sansT x0 \leq 

\| ai\| \| x0\| < 1 for all i \in [n] with probability at least 0.98.

Last, we need to prove that the conditionals on lines 10, 12, and 13 of Algo-
rithm 4.1 succeed with sufficient probability.

Lemma 4.10 (adapted from [89]). Let l \leq 1/6
\surd 
log d and \sigma \leq 1/8

\surd 
d log d. For

fixed A and V sampled as in lines 4--7 of Algorithm 4.1, let x\ast be the optimal solution
to (Unit LP\prime ) if it exists. With probability at least 0.24, (Unit LP) being unbounded
implies that (Unit LP\prime ) is unbounded and (Unit LP) being bounded implies Vx\ast < 1.

Proof. Let x be the maximizer of (Unit LP) if it exists, or otherwise a generator
for an unbounded ray in (Unit LP), and let \bfitomega = x/\| x\| . We aim to prove that V\bfitomega < 0
with probability at least 0.24 over the randomness in V, which is sufficient for the
lemma to hold.

We fix A, and hence \bfitomega as well. We decompose

v+
i

\sansT 
\bfitomega = 4d\sansT \bfitomega + (lRei)

\sansT 
\bfitomega + (Rgi)

\sansT 
\bfitomega (4.3)

for all i \in [d - 1] and similarly for v - 
i , and we will bound the different terms separately.

The inner product d\sansT \bfitomega has probability density proportional to
\surd 
1 - t2

d - 3
, as it

is the 1D marginal distribution over the sphere \BbbS d - 1 (see, e.g., [40, equation 1.26]).
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which can differ over the interval [ - 
\sqrt{} 

2
d - 1 ,

\sqrt{} 
2

d - 1 ] by at most a factor 1/e. We lower

bound the probability that d\sansT \bfitomega is far from being positive:

Pr

\biggl[ 
d\sansT \bfitomega <  - 1

4

\sqrt{} 
2

d - 1

\biggr] 
=

1

2
Pr

\biggl[ 
d\sansT \bfitomega <  - 1

4

\sqrt{} 
2

d - 1
| d\sansT \bfitomega \leq 0

\biggr] 
\geq 1

2
Pr

\biggl[ 
d\sansT \bfitomega <  - 1

4

\sqrt{} 
2

d - 1
| d\sansT \bfitomega \in 

\biggl[ 
 - 
\sqrt{} 

2

d - 1
, 0

\biggr] \biggr] 
\geq 1

2
\cdot 

3
4e

3
4e + 1

4

\geq 0.26.

Hence, for d a randomly chosen unit vector independent of \omega , we have 4d\sansT \bfitomega <

 - 
\sqrt{} 

2
d - 1 with probability at least 0.26. Now we will give an upper bound on the

second and third terms in (4.3) with sufficient probability.
By the same measure concentration argument as in the proof of (2.5) we know that

Pr[| e\sansT i R\sansT \bfitomega | > t/
\surd 
d - 1] \leq e - t2/2. We apply the above statement with t = 3

\surd 
log d

and find that
| le\sansT i R\sansT \bfitomega | < tl/

\surd 
d - 1 \leq 1/2

\surd 
d - 1

with probability at least 1 - 0.01
d .

For the last part, fix R = I w.l.o.g. The inner product gi
\sansT \bfitomega is N(0, \sigma 2) distrib-

uted, and hence Pr[| gi
\sansT \bfitomega | < 4\sigma 

\surd 
log d] \geq 1 - 0.01

d by standard Gaussian tail bounds.

Recall that 4\sigma 
\surd 
log d \leq 1/2

\surd 
d - 1.

Putting it all together, we take the union bound over the three terms in (4.3) and

all v+
i ,v

 - 
i with i \in [d - 1] and find that v+

i

\sansT 
\bfitomega < 0 and v - 

i

\sansT 
\bfitomega < 0 for all i \in [d - 1]

with probability at least 0.26 - (d - 1) 0.01d  - (d - 1) 0.01d \geq 0.24.

Theorem 4.11. For \sigma \leq \=\sigma , Algorithm 4.1 solves (Unit LP) in at most an ex-
pected 6 + 5\scrD g(d, n+ 2d - 2, \sigma /5) number of shadow vertex pivots.

Proof. Let a1, . . . ,an \in \BbbR d denote the rows of A, where we recall that the centers
\=ai := \BbbE [ai], i \in [n], have norm at most 1.

Pivots from line 1. Let L denote the event that the rows of a\bfone , . . . ,a\bfn all have
norm at most 2. Noting that each ai, i \in [n], is a variance \sigma 2 Gaussian and 1/\sigma \geq 
5
\surd 
d log n, by Lemma 2.3 (Gaussian concentration), we have that

Pr[Lc] = Pr[\exists i \in [n] : \| ai\| \geq 2] \leq nPr[\| a1  - \=a1\| \geq 1]

\leq nPr[\| a1  - \=a1\| \geq 5
\sqrt{} 
d log n\sigma ] \leq e - (d/2)(5

\surd 
logn - 1)2 \leq n - d .

Therefore, the simplex run on line 1 is executed with probability at most n - d incurring
at most n - d

\bigl( 
n
d

\bigr) 
\leq 1 pivots on expectation.

Pivots from the main loop. Let V1,V2, . . . be independent samples of V as de-
scribed in lines 3--7 of Algorithm 4.1. Define the random variable N = N(A,Vi : i \in 
\BbbN ) \geq 0 as the number of iterations of the main loop if Algorithm 4.1 were run on
input A, c and the value of V in iteration i equals Vi. Note that N = 0 exactly if Lc.
Note that the value of Vi unique specifies the value of di. Define the event Fi that
the checks on lines 9 and 10 would pass on data Vi. Last, let P (A,Vi) denote the
number of pivot steps that an iteration of the main loop would perform on the data
A,Vi. In particular, P (A,Vi) > 0 exactly when L and Fi.
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The total number of pivot steps is given by the expectation

\BbbE 
\biggl[ N\sum 
k=1

P (A,Vk)

\biggr] 
= \BbbE 

\biggl[ \infty \sum 
k=1

P (A,Vk)1[N \geq k]

\biggr] 

=

\infty \sum 
k=1

\BbbE [P (A,Vk)1[N \geq k]].

For any k, the event N \geq k depends solely on V1, . . . ,Vk - 1, and hence we get

\infty \sum 
k=1

\BbbE [P (A,Vk)1[N \geq k]] =

\infty \sum 
k=1

\BbbE \bfA ,\bfV k
[P (A,Vk)\BbbE \bfV 1,...,\bfV k - 1

[1[N \geq k | A]]

=

\infty \sum 
k=1

\BbbE [P (A,Vk) Pr[N \geq k | A]]

=

\infty \sum 
k=1

\BbbE [P (A,Vk) Pr[N > 1 | A]k - 1],

where the last line follows from the observation that the seperate trials are independent
when A is fixed. When A is such that Lc holds, then Pr[N > 1 | A] = 0. Now
we appeal to Lemmas 4.9 and 4.10. The first shows that the Algorithm 4.1 does
not restart on line 9 with probability at least 0.98 and the second shows that the
algorithm does not restart on lines 10 and 14 with probability at least 0.24. By the
union bound, this implies that Pr[N > 1| A] \leq 1 - 0.22 for any A such that L holds.
Hence we get

\infty \sum 
k=1

\BbbE \bfA ,\bfV k
[P (A,Vk) Pr[N > 1 | A]k - 1] \leq 

\infty \sum 
k=1

\BbbE [P (A,Vk)(1 - 0.22)k - 1]

=
1

0.22
\BbbE [P (A,V1)].

The number of pivot steps P (A,V1) is nonzero exactly when L and F1 hold and
is always bounded by the shadow size according to Theorem 2.12. We bound this
quantity using Lemma 4.6 and get

1

0.22
\BbbE [P (A,V1)] \leq 5\BbbE [1F1\cap L| edges(conv(A,V1) \cap span(c,d1))| ]

\leq 5\BbbE [| edges(conv(A,V1) \cap span(c,d1))| ]
\leq 5\scrD g(d, n+ 2d - 2,min(\sigma , \=\sigma )/5) + 5.

Final bound. Combining the results from the above paragraphs, we get that the
total expected number of simplex pivots in Algorithm 4.1 is bounded by

Pr[Lc]

\biggl( 
n

d

\biggr) 
+ \BbbE 

\biggl[ N\sum 
k=1

P (A,Vk)

\biggr] 
\leq 6 + 5\scrD g(d, n+ 2d - 2, \sigma /5) ,

as needed.
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5. Conclusions and open problems. We have given a substantially simplified
and improved shadow bound and used it to derive a faster simplex method. We are
hopeful that our modular approach to the shadow bound will help spur the develop-
ment of a more robust smoothed analysis of the simplex method, in particular, one
that can deal with a much wider class of perturbations such as those coming from
bounded distributions.

There remains a gap between upper and lower bounds on the smoothed shadow
size. The lower bound of \Omega (d3/2

\surd 
log n) by Borgwardt [18] does not depend on \sigma and

is only proven for n\rightarrow \infty , and the lower bound of just over \Omega (min(n, 1\surd 
\sigma 
)) by Devillers

et al. [35] is only proven to hold for d = 2. Nonetheless, both of these lower bounds are
significantly lower than our upper bound of O(d2

\surd 
log n \sigma  - 2 + d2.5(\sigma 

\surd 
log n+ log n)).

Last, there are no known diameter bounds for smoothed polytopes other than the
general results mentioned above.
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