
Generating uniform user-interfaces
for interactive programming environments

Typecheck on
C0111pile

or

button Typecheck

a nguage

hen focus root is SEAL-spec
enab l e

Script : = focus root;

s

croate("Typecheckerrors", SEAL-tc typecheck(Scr ipt))
doc : "typecheck SEAL specif i cation"

button Compile
hen focus root is SEAL-spec

enable
Script := focus root;
Name := SEAL- Compiler : output Script);
create e(Scri t))

Jan Willem Cornelis Koorn

Generating uniform user-interfaces
for interactive programming environments

ILLC Dissertation Series 1994-2

institute for logic. language and computation

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Plantage Muidergracht 24
1018 TV Amsterdam

phone: +31-20-5256090
fax: +31-20-5255101

e-mail: illc@fwi.uva.nl

Generating uniform user-interfaces for
interactive programming environments

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr P.W.M. de Meijer
in het openbaar te verdedigen in de Aula der Universiteit

(Oude Lutherse Kerk, ingang Singel 411, hoek Spui),
op donderdag 3 februari 1994 te 13.30 uur

door Jan Willem Cornelis Koorn
geboren te Zandvoort

Promotor: prof. dr P. Klint.
Co-promotor: dr M. G. J. van den Brand.
Faculteit: Wiskunde en Informatica.

© 1994, J.W.C. Koorn. All rights reserved.

Printed by Febodruk Enschede.

Partial support for the research described in this thesis was received from
the European Community under Esprit projects 348 (GIPE - Generation of
Interactive Programming Environments) and 2177 (GIPE II - Generation
of Interactive Programming Environments II).

ISBN: 90-74795-03-X

Contents

1 Introduction
1.1 Programming environment generators

1.1.1 Mentor and Centaur
1.1.2 The Synthesizer Generator
1.1.3 PSG
1.1.4
1.1.5
1.1.6

Gandalf
Other systems
The ASF +SDF Meta-environment

11
11
12
13
13
14
14
14

1.2 User-interface definition tools 15
1.2.1 User-interface toolkits 15
1.2.2 User-interface management systems 15
1.2.3 Using user-interface definition tools in our context 16

1.3 Our goals 16
1.3.1 Restrictions . . . 17
1.3.2 Thesis overview .

2 GSE: a generic syntax-directed editor
2.1 Introduction
2.2 A model for hybrid edit ing

2.2.1 Why hybrid editing?
2.2 .2 GSE's editing model
2.2.3 Consequences of the editing model
2.2.4 Text mode and structure mode ..

17

19
19
20
20
21
22
22

2.3 Mapping between text-parts and subtrees 23
2.3.1 Maintaining positional information 23
2.3.2 Size-and-Shape structures 24

2.4 Maximizing user freedom 26
2.4.1 Generalizing commands and focus enlargement 26
2.4.2 Treatment of lists: sublists and list-items 27

5

6

2.5 Connecting tools
2.6 Current use of GSE
2. 7 Discussion and conclusions .

CONTENTS

29
30
30

3 GSE and Emacs 33
33
34
34
34
35

3.1 Introduction
3.2 Connecting two editors .

3.2.1 Motivation ...
3.2.2 Re-using the model for hybrid editing
3.2.3 Related work

3.3 Implementation 36
3.3.1 General implementation model . . . 36
3.3.2 Implementing the focus using Epoch 36
3.3.3 A closer look at focus enlargement and focus movement 38
3.3.4 Actual implementation. 39

3.4 The User-interface 41
3.4.1 Displaying the focus 41
3.4.2 Decorating the text window 41
3.4.3 Handling callbacks 41

3.5 Using the editor in a programming environment . 42
3.5.1 Multiple editors. 43
3.5.2 Identifying instances 43

3.6 Using the editor in a programming environment generator 43
3.6.1 Window types 44
3.6.2 Combining editors in frames
3.6.3 Windows created by other components .

3. 7 Assessment: quantification of code re-use
3.8 Discussion and conclusions

4 SEAL: a semantics-directed environment adaptation lan-

44
45
45
48

guage 51
4.1 Introduction 51
4.2 User-Interface Management Systems 52

4.2.1 Semantics-directed UI construction . 53
4.3 Motivating examples 55

4.3.1 Enabling of a function depends on application state 55
4.3 .2 Function needs user input 55
4.3.3 Function with several input sources . 56
4.3.4 Implicit invocation . 56
4.3.5 Repeated invocation 56

CONTENTS 7

4.4 Abstract representation of application domain . 56
4.4.1 Abstract representation of state . 57
4.4.2 A user session . 58

4.5 SEAL: an experiment in UI definition 59
4.5.1 The ASF+SDF specification formalism 59
4.5.2 Overview of SEAL 61
4.5.3 Examples in SEAL . 64
4.5.4 Miscellaneous issues 69
4.5.5 Implementation . 69

4.6 Related work 72
4.6.1 Representational schemes 72
4.6.2 Connection mechanisms 74

4.7 Discussion and conclusions . 75
4.7.1 Summary 75
4.7.2 Advantages 76
4.7.3 Disadvantages . 76
4.7.4 Final remarks . 77

5 Generating applications with SEAL: some case studies 79
5.1 Introduction . 79
5.2 Simple programming environment 80

5.2.1 Using computed editor names 81
5.2.2 Discussion . 83

5.3 Program transformations 83
5.3.1 Local transformations 86
5.3.2 Context-dependent transformations . 86
5.3.3 Undoing transformations 87
5.3.4 Initializing external information . 87
5.3.5 Discussion . 88

5.4 Interactive input and output 90
5.4.1 Modeling output 93
5.4.2 Modeling input with validation 93
5.4.3 Modeling the terminal and the environment 94
5.4.4 Discussion . 94

5.5 Simulating parallelism 95
5.5.1 Using multiple languages 96
5.5.2 Validating user input . 99
5.5 .3 Discussion . 100

5.6 Computing import relations 101
5.6.1 Cooperating editors 104

8

5.7

5.8

5.9

5.6.2 Animation of execution
5.6.3 Discussion
Achievements and limitations .
5.7.1 Problems at the syntactical level
5. 7.2 Problems at the semantical level
Towards a more powerful language . . .
5.8.1 Solving the problems at the syntactical level.
5.8.2 Solving the problems at the semantical level .
5.8.3 Future extensions . .
5.8.4 Generalization .. .
Discussion and conclusions .

CONTENTS

104
104
105
106
106
107
107
107
109
109
110

6 A specification of structure editing 111
111
112
113
114

114
116
117
117

118
118
118
119

6.1 Introduction
6.2 Languages, grammars, trees and signatures
6.3 Structured editing

6.3.1 Focus manipulations
6.3.2 Focus replacements .

6.4 Editing lists
6.4.1 Incorporating flat lists in the signature .
6.4.2 Replacing list placeholders ...

6.4.3 List editing commands
6.5 Definition of a generic structure editor

6.5.1 Definition of signatures
6.5.2 Definition of trees

6.5.3 Abstract datatype of a generic structure editor 121
6.5.4 Path manipulations 121

6.6 Definition of structured editing 122
6.6.1 Definition of legal subtree replacements 122
6.6.2 Definition of the placeholder/template mechanism 124
6.6.3 Definition of list editing commands . 124

6.7 Connection with the user-interface . . 126
6. 7.1 The SEAL script 126

6.7.2 Quantification of code involved 130
6.7.3 A user session

6.8 Related work

6.9 Discussion and conclusions.

130
133
134

CONTENTS 9

7 Assessment and conclusions 137
7.1 Assessment . 137

7.1.1 Ensuring uniformity of all user-interface aspects 138
7.1.2 Building a generic editor 138
7.1.3 Obtaining first class text editing . . . 138
7.1.4 Connecting tools to the user-interface 138
7.1.5 Generating the editor itself 138
7.1.6 Additional goals 139

7.2 Conclusions 140

A SEAL syntax in SDF 141

Bibliography 143

Nederlandse samenvatting 152

Acknowledgements

During the last five years I was employed as a researcher working in the
GIPE project, the first year as an employee of B.S.O. , and the last four as
a PhD student of the University of Amsterdam. I received support from
many people and I hereby express my gratitude to them.

First of all, I would like to thank Paul Klint, my promotor, and Mark
van den Brand, my co-promotor. Paul has always been stimulating, friendly,
in for any discussion no matter the subject, and helpful in many ways. Al­
though Mark joined the GIPE team only recently, he has contributed a lot
in the stage of writing this thesis.

Needless to say, I am very grateful to those who were willing to review
my thesis: prof. dr J. A. Bergstra, prof. dr J . van den Bos, prof. dr K. van
Hee, prof. dr G. Snelting, and prof. dr ir A. W . M. Smeulders.

Furthermore, the people in the GIPE team in Amsterdam have always
been friendly and cooperative. Many thanks are therefore due to them all:
Huub Bakker, Mark van den Brand, Hans van Dijk, Casper Dik, Dinesh,
Job Ganzevoort, Jan Heering, Paul Hendriks, Jasper Kamper1!.1an, Paul
Klint , Emma van der Meulen, Jan Rekers, Frank Tip , Susan Uskiidarh ,
Emile Verschuren, Eelco Visser, Paul Vriend, and Pum Walters. Another
nice experience was cooperating with GIPE researchers outside Amsterdam.
Of all these people I would like to thank in particular Janet Bertot (INRIA
Sophia-Antipolis) and Han Joosten (PTT research Groningen).

Then there are the people who contributed to a stimulating working en­
vironment: people of B.S .O., of C.W.I., and of the Programming Research
Group of the University of Amsterdam. Thank you either for giving me
the opportunity to do the job or for supplying help in whatever sense.

I have implemented a substantial amount of software and I received help
from a number of people. Implementing the prototype of GSE (Chapter 2)
was started by Monique Logger. She reported on her work in [Log88].
She was succeeded by Hans van Dijk with whom I worked for a full year.
We reported on our work in [DK89] and [DK90]. Significant parts of the
current version of GSE (Chapter 3) have been implemented by Huub Bakker
and Paul Vriend. The three of us received help from Robert van Liere
our X-windows, Motif, and networking guru. Claus Bo Nielsen helped
implementing the Epoch client and server. Philippe Kaplan and Chris
Love helped to "re-parent" the Epoch window.

Finally, thanks are due to Arie van Deursen and Han Joosten who
permitted me to use parts of their SEAL scripts (Chapter 5).

Chapter 1

Introduction

1.1 P rogramming environment generators

Generating software, instead of writing it by hand, is nowadays a widely ac­
cepted technique and research in this field is blossoming. For example, there
are a number of research projects aiming at the generation of programming
environments from a formal definition of a (programming) language and a
description of the desired user-interface.

A programming environment is a set of cooperating tools that help the
programmer to carry out his or her task. They generally consist of an
editor, used to construct a program, a typechecker, used to check whether
or not the program complies with static semantic rules, and an evaluator,
used to compute the dynamic semantics, i.e., "running" the program.

Systems generating programming environments use a description of
these tools and a generator to obtain them. The model used by these
systems is shown in Figure 1. 1. Tools in a generated environment consist
of parts which are common in all generated environments, and parts which
are specific for the environment in question. Commonly used parts may
either be generated or they may be linked to the generated environment
in which case they must be generic. The advantage of using generic parts
is that it saves generation time and it simplifies both the description and

environment description programming environment

Figure 1.1: Model for generating programming environments

11

12 Introduction

the generator. For this reason all programming environment generating
systems use this technique whenever possible and a common approach is to
use an editor as a generic part. However, only limited attention has been
paid to applying generation techniques to obtain generic parts themselves.
For editors this implies generating the graphical user-interface software and
generating the editing facilities.

Most systems use abstract syntax trees [ASU86] as internal storage for­
mat for programs. The way programs can be entered and how visible the
internal tree representation is, depends on the kind of editor used.

We distinguish three kinds of editors depending on the way a user in­
teracts with them. If a user changes the text , which is then parsed by an
external tool to derive the corresponding tree, the editor is said to be a
text editor. Emacs [Sta81] is a typical example of a text editor. If a user
changes the tree, which is then pretty-printed to derive the corresponding
text, the editor is a structure editor. Emily [Han71] is the oldest structure
editor. If the user is allowed to change either the text or the tree, the editor
is said to be a hybrid editor. Several examples of this kind of editors are
presented below. We will use the more general term syntax-directed editor
for both structure editors and hybrid editors.

Systems generating programming environments all use generic syntax­
directed editors in generated environments. This is a natural choice: a
user interacting with such an editor manipulates the abstract syntax tree
which is then immediately available for processing by a typechecker or an
evaluator.

We will now briefly discuss several programming environment generat­
ing systems, their editors, and the facilities they offer to construct or adapt
their user-interface.

1.1.1 Mentor and Centaur

One of the earliest research projects aiming at the generation of program­
ming environments is Mentor [DGHKL80, DGHKL84 , Lan85] . Mentor's
successor Centaur [BCD+89] is part of the GIPE (Generation of Interac­
tive Programming Environments) project [HKKL86]. Both systems gener­
ate environments featuring a structure editor but the user is also allowed
to edit in a textual manner. The user selects a subtree in the structure
editor and invokes a "text-edit" command. The selected tree is converted
to a textual representation and is fed into Emacs, an existing text edi­
tor [Sta81]. After changing the text in Emacs, the user invokes a "parse"
command which parses the changed text and replaces the selected subtree.

Programming environment generators 13

This scheme was already used in Mentor generated environments [Lan86].
Semantic processing is defined in Mentol (Mentor) and Typol (Centaur)
[Kah87, Des88]. Extensions of the graphical user-interface of Centaur edi­
tors, for instance to connect a semantic processor to the editor, are written
in LeLisp [Le191], and are thus programmed by hand.

1.1.2 The Synthesizer Generator

Probably the most wide-spread system for generating programming envi­
ronments is the successor of the Cornell Program Synthesizer [TR81] , the
Synthesizer Generator (SG) [RT89a, RT89b]. This system features hybrid
editors in generated environments. All text editing features have been im­
plemented separately, i.e., no use is made of an existing text editor. Switch­
ing from text editing to structure editing or vice versa is implicit and there
may be more than one textual selection within the same editor. Editing
rules define which language constructs may be edited in what mode, i.e.,
textually, structurally, or both. The current version, a commercial prod­
uct exploited by GrammaTech Inc., uses an extension of an existing text
editor, xedit, for text editing. Semantic processing is defined by attribute
evaluation rules. SG editors have a graphical user-interface and the current
version of SG features ways to connect semantic processors to the editor.

1.1.3 PSG

Yet another system generating programming environments is PSG (Pro­
gramming System Generator) [BS86a, BS86b]. PSG generated editors
are of the hybrid kind and both types of editing have been implemented
separately1 . Switching from structure mode to text mode is implicit, but
the reverse is explicit. More than one textual selection within the same
editor is allowed. An interesting feature of PSG editors is their filtering
of menus from which structural editing commands are invoked. The fil­
ter prevents the presence of menu entries that will result in trees that are
semantically incorrect. There is no facility to define semantic processors
other than those used for static semantics and dynamic semantics. There­
fore, PSG editors have a fixed graphical user-interface.

1 [BS92] reports the use of an existing text editor, however, which one is not mentioned.

14 Introduction

1.1.4 Gandalf

Editors generated with the ALOE generator of the Gandalf project [HN86]
are structure editors and thus lack text editing facilities. However, re­
cent experiments included text editing [NS90]. Another recent develop­
ment in Gandalf is the automated customization of the editor's command
set [Ler92]. For instance, the system learns, by monitoring user activity,
certain frequently invoked combinations of commands. After the learning
phase the combination is automatically executed after invoking its first
command.

1.1. 5 Other systems

Many other systems for generating programming environments exist of
which we only mention a few. For instance, Pan [BGV92] features a hybrid
editor in the PSG style. Mj0lner/ORM [MBD+9o, Min90] editors are of the
structure kind. The editor is equipped with a direct manipulation[Shn83]
user-interface. Pregmatic [Bra92] editors are of the structure kind and
use an existing text editor, xedit, in the Mentor/Centaur style. None of
the systems mentioned feature extensible graphical user-interfaces based on
software generation techniques.

1.1.6 The ASF+SDF Meta-environment

In this thesis we concentrate on user-interface and editing aspects of the
ASF+SDF Meta-environment (Algebraic Specification Formalism plus Syn­
tax Definition Formalism) [Kli93], another outcome of the GIPE project .
The main distinctive feature of the ASF +SDF Meta-environment is the in­
tegration of the development environment and the generated environment
into one interactive application. For example, the same editor is being used
both for editing language definitions and for editing programs. An impli­
cation of this integration is the need for multiple editor instances . These
editors, of the hybrid kind, are discussed in detail in Chapters 2, 3 and 6.
Semantic processors are defined algebraically and are implemented using
term-rewriting techniques. Each tool in the generated environment uses an
abstract syntax tree - or term- as data format for both input and output.

User-interface definition tools 15

1.2 User-interface definition tools

We already mentioned that projects aiming at the generation of program­
ming environments have paid only limited attention to applying generation
techniques to the graphical user-interface. However, others have concen­
trated on such techniques. Two approaches can be distinguished in this
field: the toolkit approach and the user-interface management system ap­
proach. We now briefly discuss these methods and the implications of using
them in our context.

1.2.1 User-interface toolkits

A user-interface toolkit can be characterized as a software library. It offers
functions to create graphical objects, like create-button, but also func­
tions to compose the layout of a window, like column. A menu, for instance,
may then be programmed as a column of buttons. Many toolkits for build­
ing user-interfaces exist, such as Xt for X-windows [SG86] and Toolbox for
the Macintosh [Che87].

Parts of a toolkit can also be generated, for instance, by using ESTEREL
[BCG86, BC84] or Squeak [CP85]. Descriptions in one of these formalisms
define the behavior of objects, i.e., their reaction to events. For example,
an object changes its color - the reaction- when the mouse enters the
object's window - the event- . Note that here too, the toolkit forms a
combination of generated functions (for objects) and generic functions (for
composing window layout).

1.2.2 User-interface management systems

While toolkit generation is only concerned with generating objects, meth­
ods for generating entire graphical user-interfaces have also been proposed.
These methods lead to user-interface management systems [HH89, Hee92].
Such systems are not only used to define a graphical user-interface, but
they also manage it at run-time, and they are used for "connecting" the
user-interface to the application (non-user-interface) part of the software.

Several description techniques have been used, including state transi­
tion diagrams, see e.g. [Jac86], grammars, see e.g. [Bos88], abstract events,
see e.g. [Hil86], and graphics in combination with constraints, see e.g.
[MGD+9o]. In these descriptions one indicates which function to call when
an event occurs. For example, the function paste is called when the button
labeled Paste is pressed.

16 Introduction

1.2.3 Using user-interface definition tools in our context

In the context of generating interactive programming environments these
methods for user-interface definition can not be used without writing ad­
ditional software. Toolkits require additional software for the layout of
windows, user-interface management systems lack knowledge of the under­
lying application. The latter plays a role when dynamic changes in the
user-interface, such as temporarily disabling a button, depend on the cur­
rent data stored in the application. The point here is that currently existing
user-interface management systems are designed as general purpose tools,
they are not dedicated to systems generating programming environments.

1.3 Our goals

Obtaining uniformity of all user-interface aspects of the ASF+SDF Meta­
environment is our primary goal. This immediately implies preventing a
situation where users are confronted with yet another set of editing com­
mands. Building an editor to be used in the ASF +SDF Meta-environment
has two implications by itself. First , since multiple editor instances are
used, the editor should be designed such that it can be used as a generic
building block. Second, ASF+SDF specification writers may define any
tool operating on a program's abstract syntax tree. These tools must some­
how be "connected" to the editor, requiring an extensible user-interface and
a "connection mechanism". Additional goals are: an efficient and easily
maintainable implementation, and extensibility and customizability of all
editing facilities. Summarizing, our goals are:

• ensuring the uniformity of all user-interface aspects;

• building an editor which can be used as a generic building block;

• incorporating an existing text editor to obtain first class text editing;

• introducing a mechanism to connect tools to the user-interface; and

• investigating the possibility to generate the editor itself.

Our goals 17

1.3.1 Restrictions

The above formulated goals may be interpreted in a too broad sense. To
make the subject of this thesis well-defined, we list our restrictions:

• All programming environments are generated by the ASF +SDF Meta­
environment, except the Meta-environment itself.

• User-interfaces of generated programming environments consist of a
collection of editors.

• Each editor is parameterized with a context-free language definition.

• Documents to be edited only contain text. We do, e.g., not incorpo­
rate pictures or sound.

• The mechanism to connect tools to the user-interface will use a textual
description.

• Extensions of the user-interface of an editor will primarily be based
on buttons and menus. These additional user-interface objects will
be placed at predefined positions in the window of an editor.

1.3.2 Thesis overview

Chapter 22 discusses a model for smoothly integrating text and structure
editing in the PSG style. It was used to implement a prototype of an editor
of which the user-interface was built using the gfxobj toolkit [CI88]. Using
the prototype as a generic building block leads to uniformity of all structure
editing as well as uniformity of the graphical appearance and behavior of
the user-interface.

In Chapter 33 we present how the text editing facilities of the prototype
were replaced by Emacs, an existing text editor with rich text editing fa­
cilities. Furthermore, it discusses how we replaced the user-interface based
on gfxobj by one based on OSF /Motif [Fou90]. We thus re-used the soft­
ware forming the structure editing part of the prototype and replaced its
two other parts (text editing and user-interface). This set-up has led to
a distributed editor. Incorporation of Emacs leads to uniformity of text
editing both inside as well as outside the ASF +SDF Meta-environment, it
makes the software easier to maintain and it makes text editing extensible

2 This chapter is a revised version of [Koo92)
3 T his chapter is a revised version of [KB93) and is joint work with H.C.N. Bakker

18 Introduction

as well as customizable. Using OSF /Motif instead of gfxobj also promotes
uniformity: it is widely used and many people are therefore familiar with
the behavior of user-interfaces based on it.

Generating software necessary to connect tools to editors and to ex­
tend the editor's graphical user-interface is discussed in Chapter 44

. We
present SEAL (Semantics-directed Environment Adaptation Language) ,
a dedicated user-interface definition language for the ASF +SDF Meta­
environment. It was designed such that tool connections can easily be
established. The SEAL compiler and its run-time code ensure that no
additional programming is required. This leads to uniformity of the user­
interface extensions, and makes structure editing extensible. Furthermore,
the compiler itself is completely written in ASF+SDF making it easy to
maintain and easy to change or to extend. Finally, this approach is con­
venient for users familiar with the ASF+SDF Meta-environment, i.e ., the
tool writers, since they use the same system for writing tools as well as for
writing user-interface definitions for their tools .

The SEAL language introduced in Chapter 4 can be used in a wider
range of applications than only for connecting tools to an editor. For in­
stance, it permits using a set of cooperating editor instances and it can be
used to define user dialogues. Besides illustrating SEAL's potential power
and presenting an overview of typical applications, Chapter 5 mainly serves
as an assessment of SEAL's practical merits when defining user-interfaces.

In Chapter 3 we discussed how all text editing facilities of our edi­
tor were replaced by an existing text editor, and in Chapters 4 and 5 we
discussed the generation of the editor's user-interface. The final step is
generating its third and last component: the structure editing facilities.
Chapter 6 discusses the feasibility of generating these from a description
in ASF+SDF. We present a formal definition of a generic structure editor
which forms a term. This term can be manipulated in a generated environ­
ment using SEAL to model the editor's commands. This chapter may be
viewed as a step towards bootstrapping the ASF +SDF Meta-environment,
but it also serves as a study of what structure editing exactly is.

Finally, we assess our results and state conclusions in Chapter 7.

4 This chapter is a revised version of [Koo93]

Chapter 2

GSE: a generic
syntax-directed editor

We present a syntax-directed editor in which all language dependent
parts are parameterized. The editor provides operations on the text as
entered by the user and does not depend on a pretty-printer for recon­
structing the text from an internal tree structure. This approach has
consequences for the data structure used, since both the text, as well
as the corresponding tree, have to be stored and maintained. Also, a
two way mapping between text and tree is needed. We present an el­
egant and efficient way to maintain these mappings. Furthermore, we
discuss possible uses of the editor and the possibility to connect tools
such as a typechecker or compiler. We conclude with summarizing
the advantages and disadvantages of our approach .

2. 1 Introduction

Our primary goal is to generate uniform user-interfaces for interactive pro­
gramming environments, i.e., sets of cooperating tools that help the pro­
grammer to carry out his or her task. These generally consist of an editor, a
parser, a type-checker and a code generator. In this chapter we concentrate
on the role of the editor, the tool used to construct a program, within the
environment. We describe the prototype version of the editor, its current
version is described in Chapter 3.

We have developed a hybrid editor called GSE (Generic Syntax-directed
Editor). Its role within the GIPE project is to serve as a building block
for the ASF+SDF Meta-environment. GSE must therefore be generic, i.e.,
parameterized with a syntax definition and an optional set of semantic tools.

19

20 CSE: a generic syntax-directed editor

Creation of an instance of GSE for, say, Pascal, hence requires a definition of
the Pascal syntax. Optionally, semantic tools like a typechecker, evaluator,
or compiler can be defined and connected to the Pascal editor. Our goals
in designing GSE were:

• smoothly integrating text and structure editing;

• being completely language-independent; and

• maximizing user freedom.

Chapter overview

In Section 2.2 we present a model for hybrid editing. This model leads to a
situation in which text and structure editing are smoothly integrated - our
first design goal- and language independency is achieved - our second de­
sign goal- . Next, we describe an important aspect in the implementation
of a prototype of GSE in Section 2.3: mapping text-parts to subtrees and
vice versa. Section 2.4 is concerned with our third design goal: maximiz­
ing user freedom. Achieving this goal leads to a refinement of the editing
model. We briefly discuss connecting semantic tools to the GSE prototype
in Section 2.5 and using GSE in the ASF+SDF Meta-environment is the
subject of Section 2.6. Finally, we present conclusions in Section 2.7.

2.2 A model for hybrid editing

2.2.1 Why hybrid editing?

In the early eighties, there has been some debate whether structure ed­
itors should, or should not, abandon plain text editing facilities [Wat82,
NHE+83, Sha83]. A quite widespread objection to this hybrid approach
comes from people advocating "pure" structure editing ("pure" in the sense
of editing without any textual input, as in the Emily [Han71] editor) who
argue that you do not need textual input. Surely this is true, but the ar­
gument can be reversed: text editors do not need commands for structured
editing. People advocating "pure" structure editing sometimes argue that
you do not need a parser. This is also true, but, as we will show in this
chapter, this argument can be reversed as well: hybrid editors do not need
a pretty-printer. The advantages of an editor based on parsing and not on
pretty-printing, are:

A model for hybrid editing 21

• there is no need for a pretty-print definition;

• users do not have to customize the pretty-printer; and

• users have complete control over the layout of the text entered (this
is particularly true for comments) .

The disadvantages of an editor based on parsing and not on pretty-printing
are:

• the text as well as the abstract syntax tree have to be stored in the
editor's data structure; and

• there must be a two-way mapping between subtrees and text-parts.

In our view, the disadvantages are outweighted by the advantages, because:

• the need for maintaining two representations costs space, but yields
speed when simple program constructs must be entered; and

• the mappings needed can be defined in an elegant and, as we will
show in Section 2.3, efficient way.

Summarizing, we take the stand that all operations on a program are
textual changes, which may have an update of its tree representation as
side-effect.

2.2.2 GSE's editing model

The most important concept in GSE's editing model is the so called focus
which designates a subtree. A focus is a pair [text-part, tree], where text­
part is that part of the text that corresponds to the focus' tree. This tree
is a subtree of the abstract syntax tree of the whole program and therefore
corresponds to some language construct. Normal text editing (cutting,
pasting, inserting characters, etc.) is only allowed inside the focus. A cursor
indicates the current character position inside the text. All text outside the
focus is guaranteed to be syntactically correct. Moving the focus to another
part of the text is done by invoking a navigation command, like "go to the
next child" , "go to the previous child" or "go to the parent".

There is one navigation command which does not correspond to a tree
traversal primitive, but to a breadth first search in the tree: the mousepoint
command. It is invoked when the user points with a mouse device at some
character and clicks. GSE interprets this as a request to move the focus

22 CSE: a generic syntax-directed editor

to the smallest subtree S such that the text corresponding to S contains
the character pointed at. Since the focus' tree is a subtree of the abstract
syntax tree, the net effect of clicking on a part of a language construct is to
move the focus to that construct and to move the cursor to the character
pointed at.

2.2.3 Consequences of the editing model

GSE guarantees that all text outside the focus is syntactically correct, so,
if the focus' text has been modified, any focus move requires parsing of the
text inside the focus. If parsing of the focus' text succeeds, the focus' tree
is replaced by the result of parsing. If not, it would be too restrictive to
reject the focus move request, since this would force the user to correct a
syntactical error before anything else can be done. A more user-friendly
method is therefore adopted: each mousepoint command results in a cursor
move to the character pointed at by enlarging the focus if parsing fails. In
the latter case, the focus is moved to the smallest subtree S such that the
text corresponding to S contains both the character pointed at as well as the
old focus' text-part. By doing so, we obtain the "point-and-start-to-type"
property found in most text processors.

Since GSE views all operations on a program as textual changes, we
need some mechanism for editing incomplete programs. In our case, we
require that every non-terminal of the grammar used has a unique textual
representation which can be used as a placeholder. This requirement is,
in contrast to e.g. SG (cf. Section 1.1.2), automatically fulfilled by the
ASF +SDF Meta-environment. Placeholders correspond to special nodes
in the tree representation. Positioning the focus at such a node results in
placing all production rules corresponding to the non-terminal in a special
menu. Upon selecting an entry in this menu, GSE replaces the focus' text
by the textual representation of the production rule. For instance, a non­
terminal named "EXP" is represented as <EXP>. If "EXP : : = EXP + EXP"
is a production rule, a focus positioned at <EXP> might thus be replaced by
<EXP> + <EXP>. Note that this approach also allows the textual insertion
of non-terminals inside the focus.

2.2.4 Text mode and structure mode

In the previous section, we saw that parsing the focus ' text-part is only
necessary when a textual change occurred. This property is used to define
the mode of the editor. The editor is in text mode when the focus' text-part

Mapping between text-parts and subtrees 23

has been changed since the last successful parse, otherwise it is in structure
mode.

One of our requirements is to build an editor in which the "switch"
between these two modes is implicit . This can be achieved as follows:

• When the editor is in structure mode, any textual change causes a
switch to text mode.

• When the editor is in text mode, it stays in text mode after any
textual change, or an unsuccessful parse.

• When the editor is in text mode, a successful parse causes a switch
to structure mode.

2.3 Mapping between text-parts and subtrees

Our model for hybrid editing requires a two-way mapping between subtrees
and text-parts. We will describe in this section how these mappings can be
defined in an elegant and efficient way.

2.3.1 Maintaining positional information

The key idea in the design of the mapping between text and subtrees, is to
store position information as an annotation in nodes of the abstract syntax
tree. This has to be done by the parser. In principle, the editor needs the
begin and end points of the text corresponding to each node. In this way, it
can navigate through the tree and simply look up the begin and end point
to implement a mapping from subtrees to text-parts.

Mousepointing can be viewed as a mapping from a text-part to a sub­
tree: clicking on a character or selecting a part of the text identifies two
points: the points before and after the selection. A breadth first search
through the tree can be used to yield the smallest subtree whose corre­
sponding text-part contains the selection.

However, with the above method, the position information stored in a
large number of nodes must be updated if the text in the focus is changed.
Consider the addition of a few lines in the focus. Then, all line numbers
stored in nodes whose corresponding text-part lies after the focus (right
neighbor nodes of the focus and their children, but also right neighbor
nodes of the parent of the focus and their children etc.) must be updated.
Also, the line numbers stored as the end point of the parent of the focus,
and its grandparent etc. need to be updated. The issue of updating column

24

while <EXP> do
<STMTS>

(a)

[6,0]
[11,0]

(b)

CSE: a generic syntax-directed editor

[2,1]
[9 ,1]

[6,0,6]
[5,0,5]

(c)

[3,1,2]
[7,0,7]

Figure 2.1: (a) division of text into text-parts, (b) annotation with points,
and (c) annotation with size-and-shape structures.

numbers is even more complex. In the general case, textual positions must
be updated in almost every node, resulting in an update function which is
in time proportional to N, where N is the number of nodes in the tree. In
the next section, we will show how we can obtain a O(Iog N) algorithm.

2.3.2 Size-and-Shape structures

We have developed a method which does not use begin and end points
but so called size-and-shape structures to represent the information needed
to compute the mapping between text and tree. These structures do not
contain any positional information at all, only sizes are stored (substring
lengths and the number of newlines). Size information is handled such that
given one (begin or end) point of a text-part in size-and-shape format, the
other point (and thus the shape of the text-part) can be calculated easily.
Also, we can calculate a size-and-shape structure given two points and the
text representation itself.

Consider the example in Figure 2.1. Nodes in the tree of Figure 2.l(b)
are annotated with points, the begin point (topmost pair) and the end point
(bottom pair). In Figure 2.l(c), nodes are annotated with two size-and­
shape structures, the so called shift-text (topmost triple) and the so called
item-text (bottom triple). The former describes the displacement of the
begin point relative to some other point (e.g. the begin of the parent node,
or the end of a neighbor node), the latter describes the displacement of the

Mapping between text-parts and subtrees 25

S1 11 S2

S2 12

Figure 2.2: Left-and-parent-relative representation: division of an item-text
into children's shift-texts and item-texts

end of the node relative to its begin. Each structure defines the text-part
by three positive integers:

• the number of characters on the first line;

• the number of newline characters; and

• the number of characters on the last line.

Note that if there are no newlines in the text-part, the first integer equals
the last and that newlines are not included in the character counts of the
first and last line.

Using these size-and-shape structures, one can represent several rela­
tive forms of positional information. We will not discuss alternatives here,
but present our choice, the left-and-parent-relative representation. In this
representation, the "shift-text" describes the text-part formed by the end
of the left neighbor of the node up to the begin of the node. The leftmost
child's shift-text however describes the text-part formed by the begin of
the parent up to the begin of the leftmost child. The "item-text" describes
the text-part corresponding to the node itself. In Figure 2.2, we show
the division of an item-text into its children's shift-texts and item-texts,
corresponding to the case presented in Figure 2 .1.

Some examples are in order. The "shift-text" of the <EXP> node ("S1"
in Figure 2.2) is [6,0,6], because it is the leftmost child of the parent node
and the text-part between the parent's begin and the node's begin contains
no newlines and six characters (the word "while" plus a space). The "item­
text" of the <EXP> node ("Il" in Figure 2.2) is [5,0,5], since this text-part
is the word <EXP>, which consists of five characters. The "shift-text" of the
<STMTS> node ("S2" in Figure 2.2) is [3,1,2], because the text-part between
the end of its left neighbor's "item-text" and the node's begin contains
three characters on the first line (a space and the word "do"), it contains
one new line and finally, two characters on the last line (the two spaces
forming the indentation).

Calculating the focus points for the <EXP> node is done as follows. We
know that the while-statement begins at [0,0]. Next, we calculate the begin

26 CSE: a generic syntax-directed editor

point of <EXP> by inspecting its "shift-text" annotation. This annotation,
[6 ,0,6], does not contain newlines, so, <EXP> begins at column number O +
6 = 6, and line number O + 0 = 0. Since the begin of <EXP> is now known,
we can calculate the end in the same way, yielding [11,0]. Given the end of
<EXP>, we can calculate the begin of <STMTS> by inspecting its "shift-text"
annotation: [3,1,2]. The line number is O + 1 = 1, the column number is
2, because there are newlines in the "shift-text" . The begin of <STMTS> is
thus [2,1].

The main advantage of this representation is that annotations of the
nodes whose corresponding text-part appears before or after the focus are
invariant under editing. This property can be verified by observing that:

• we do not store positions but sizes;

• we do not allow editing outside the focus; and

• we use the left-and-parent-relative representation.

Again, we will give an example. Consider editing the <EXP> node, e.g.
changing it to "x". Note that the shift-text part of <STMTS> is now dis­
placed, but its size-and-shape representation is unchanged, since characters
belonging to this part are not edited. Calculating the begin of <STMTS> uses
the new end of the <EXP> node and the size-and-shape representation of
the shift-text part of <STMTS>. Therefore, this will always yield the new
begin of <STMTS>. A similar argument holds for nodes before the current
focus. This leaves us in a situation where only the size-and-shape informa­
tion of the parent nodes might need an update, which leads to a O(log N)
algorithm.

2.4 Maximizing user freedom

The editing model presented so far imposes some undesirable restrictions
on the user. For example, editing outside the focus is not allowed (cf.
Section 2.2.2). In this section, we discuss our approach to alleviate this,
and introduce a special treatment of list-items.

2.4.1 Generalizing commands and focus enlargement

The problem of not being allowed to edit outside the focus is solved by
giving a very general meaning to editing commands in combination with
automatically enlarging the focus whenever necessary and possible. Note

Maximizing user freedom 27

that the need for automatic focus enlargement arizes when a user wants
to delete a piece of text (partly) outside the focus, or, as we saw in Sec­
tion 2.2.3, wants to move the cursor to a position outside the focus, while
the focus text is syntactically incorrect .

We will illustrate this approach by presenting a typical example. Con­
sider a focus somewhere in the text, and the cursor positioned at the begin
point of that focus. If the user wants to delete the character just before the
focus begin, he may invoke the "delete-char" command, in which case GSE
reacts by enlarging the focus before the actual deletion of the character
takes place. Of course, it is also possible that such a general interpretation
of the command is impossible. In such a case, GSE does nothing. GSE
thus reacts to text editing commands just like any other plain text editor
does, i.e., the user is not hindered by the focus during text editing.

To summarize which action should be taken when the editor is in a
certain mode, we present all actions for each mode in Table 2.1.

2.4.2 Treatment of lists: sublists and list-items

Unfortunately, automatic enlargement of the focus has as disadvantage that
the focus tends to grow. As a consequence, the time needed to parse the
focus will also increase. To alleviate this problem we allow the focus to be
placed on a sublist as well, which results in a smaller focus in many cases.
In fact, operations on list-items, sublists, and lists are essential for any
structural editor, since these are very common language constructs (lists of
definitions , statements, functions, etc.) and changing one item into several
items, or deleting items is a very common editing operation. Besides focus
enlargement, list related operations in GSE are:

• deleting one or more items from a list;

• changing one or more items in a list into new items; and

• adding an item to a list.

We will now discuss these operations in some detail.
First, consider deleting item ik from a list in which items are separated,

for instance by semi-colons. In this case we would end up in a situation
where items ik-1 and ik+l are separated by two semi-colons. When the
language used does not allow empty items in the list , this implies a syn­
tactical error. To prevent this, GSE also deletes the separator. Deleting a
sublist of a list is handled in a similar manner.

28 GSE: a, generic syntax-directed editor

Command II Editor in text mode

cursor motion If the new cursor position
is outside the focus, com­
pute a larger focus con­
taining that position.

text insertion

text deletion

parsing

navigation

The focus size increases
⇒ increase the focus end.

If the text to be deleted is
not inside the focus, com­
pute a larger focus con­
taining it. The focus size
decreases ⇒ decrease the
focus end.

Try to switch to structure
mode by parsing the focus
text. If parsing succeeds,
switch to structure mode.

Structure mode required
⇒ try to switch to struc­
ture mode by parsing the
focus text. If parsing suc­
ceeds, switch to structure
mode and perform navi­
gation.

Editor in structure mode

The new cursor position
should be inside the focus
and the focus should be as
small as possible ⇒ com­
pute a new focus accord­
ingly.

Text mode required ⇒
switch to text mode and
perform text insertion.

Text mode required ⇒
switch to text mode and
perform text deletion.

The focus text has al­
ready been parsed ⇒ no
action required.

Navigation implies a fo­
cus move ⇒ compute the
new focus. If the cursor is
not inside the new focus,
move the cursor such that
it is.

Table 2.1: Overview of all actions for each mode.

Connecting tools 29

Next, consider changing one item in a list to a sublist of items. In such
a situation, reparsing of the focus' text results in an error, because the
sort of the old focus tree (list-item) does not equal the sort of the new one
(list). However, when the focus is enlarged to the parent node and then
reparsed, we would not encounter this error. To prevent this, GSE could
first enlarge the focus and parse it, but this would increase parse time. A
different scheme is therefore adopted: GSE always parses a list-item in the
focus (and also a sublist) as if it were a list. If this parse succeeds, GSE
takes the resulting tree (a list of trees) and inserts its elements one by one
in the parent list.

Finally, we allow insertion of new items in a list (or sublist) by an
explicit command ("insert-hole") when the focus is positioned at a list­
item, a sublist or a list. GSE knows two variants of this command: inserting
before or after the focus. The inserted "hole" is a placeholder for a list­
item. This command can be generalized as well: when the current focus is
not a list-item, a sublist or a list , the tree is searched upwards for such a
node and the "hole" is inserted at that place. In all these cases GSE adds
a separator between list-items when necessary. Furthermore, the focus is
moved to the new list-item. Finally, when the focus is at a list-item, a
sublist or a list, which is still syntactically incorrect, GSE just pastes the
textual representation of the "hole" before (or after) the focus.

2.5 Connecting tools

A common approach to connecting tools to an editor, like a type-checker,
pretty-printer or interpreter, is to share the same underlying data repre­
sentation of programs. Commonly, abstract-syntax trees are used [RT89a,
DGHKL80, BS86a, Not85]. In GSE's case this is not different. Tools are
connected to a GSE instance "at creation time" by placing additional en­
tries in a special menu of the editor's user-interface. The function associated
with each entry may ask the editor for its current tree, but might ask for
any other part of GSE's data structure as well. This is a very simple ap­
proach to connecting tools, a more advanced method will be discussed in
Chapter 4.

30 CSE: a generic syntax-directed editor

2.6 Current use of GSE

GSE, as described above, has been in use as part of ASF +SDF Meta­
environment since 1989. In that system, instances of GSE are parameter­
ized with a syntax-definition written in SDF (Syntax Definition Formalism,
[HHKR89, Rek92]). SDF can be combined with a variety of semantic speci­
fication formalisms, but in the ASF+SDF Meta-environment it is combined
with ASF (Algebraic Specification Formalism) [BHK89]. This combination
forms a new specification formalism called ASF+SDF [HK89]. Tools, speci­
fied in ASF+SDF, can be connected to a GSE instance E when Eis created
from the Meta-environment. E is then customized by adding a menu entry
to its user-interface. When this entry is activated, the Meta-environment
asks E for its current tree, takes it as input for the tool and runs the tool1 .

Note that E is part of the generated environment. Therefore, the syntax
used by E (as well as the tools connected to E) is defined by the ASF+SDF
Meta-environment. Syntax definitions reside in GSE instances as well, it
thus forms a "two level" editing process which is also addressed by [Kli93].

2 . 7 Discussion and conclusions

In this chapter we have shown that a smooth integration of text and struc­
ture editing can be achieved by adopting a textual approach. We have also
shown that a generic syntax-directed editor can be built by parameteriz­
ing all its language dependent parts. Finally, we maximized user freedom
by generalizing commands and by automatically enlarging the focus when
necessary.

The advantages of our approach are:

• we do not need a pretty-printer;

• we obtain the same amount of user freedom as in plain text editors;
and

• users can switch from text editing to structural editing, or the other
way around, at any moment.

Removing the need for a pretty-printer does however not imply that pretty­
printing has become impossible, since a pretty-printer, like other tools, can
be connected to GSE.

1Recall from the previous section that a more advanced method will be discussed in
Chapter 4.

Discussion and conclusions 31

The disadvantages of our approach are:

• the time needed to parse a focus is not constant, since it depends on
the focus size; and

• during structure editing, the user has to add layout characters (spaces,
newlines, etc.) manually.

A limitation of our approach is the incremental parsing technique used.
Recall that only the text in the focus is reparsed. In some cases, this
technique leads to an parsing error which would not occur if the complete
text was parsed. In other cases, it leads to ill-formed trees. Tools processing
such trees may therefore produce spurious results. Concluding, a proper
incremental parsing algorithm should be incorporated. Such algorithms do
exist, but their time or space requirements make them hard to use in an
implementation. Furthermore, multiple focusses can then be introduced in
many cases where currently the focus is automatically enlarged. This will
improve performance as well since less text has to be parsed.

The introduction of multiple focusses would currently lead to more situ­
ations in which parsing errors occur while these are prevented if one, larger,
focus is used. As an example, consider two syntactically incorrect focusses
that are the children of an addition expression where the first contains the
text " (1", and the second contains the text "2) ". At the tree level corre­
sponding to the expression the text reads "(1 + 2) ", which is syntactically
correct. However, due to the non-incremental parsing scheme used, the sys­
tem would be unable to infer that joining the two incorrect focusses leads to
the desired result. Note that in case of a single focus and automatic focus
enlargement, this can not occur: after the creation of one of the incorrect
focusses, any attempt to edit the second one leads to an enlargement that
contains the erroneous part, i.e., the enlarged focus contains the text "(1

+ 2) ". We therefore prefer our scheme over a scheme that uses multiple
focusses.

We have investigated the usefulness of a substring parser to overcome
the limitation mentioned above [RK91]. Substring parsing appeared to be
a too limited technique, and it is currently not used since it is less efficient.
We omit further discussion here because we consider parsing as outside the
scope of this thesis.

The prototype version of GSE described above forms our starting point
for the generation of uniform, syntax-directed, user-interfaces for interactive
programming environments.

32 GSE: a generic syntax-directed editor

Chapter 3

GSE and Emacs

We show that a hybrid text/structure editor can be built by combining
an existing text editor with an existing structure editor. We describe
how we have built such an editor using a client-server architecture for
the communication between each of the three components involved
(text editor , structure editor and user-interface). The main advantage
of this technique is the re-use and integration of existing software
components .

3.1 Introduction

In the previous chapter we presented a prototype of GSE, a hybrid editor
with an implicit mode switch. Building such an editor is no easy job,
as it is necessary to implement text editing facilities as well as structure
editing facilities. Since both text editors and structure editors are already
available, it is attractive to try to re-use existing editors, so that only the
interconnection has to be coded. The subject of this chapter is therefore:
how can we build a hybrid editor by combining an existing text editor and
an existing structure editor?

We will try to integrate the structure editing facilities of the GSE pro­
totype with the text editing facilit ies of Emacs [Sta81], an existing text ed­
itor. This exercise in software re-use has led to the current implementation
of GSE: a distributed editor consisting of text editing facilities, structure
editing facilities , and user-interface.

33

34 GSE and Emacs

Chapter overview

In Section 3.2 we motivate our work and discuss work related to ours. In
Section 3.3 we describe the general implementation model used, present
some basic features of the text editor we used, and list the actual imple­
mentation in pseudo code. The user-interface component is the subject of
Section 3.4. In Section 3.5 we show how multiple instances of our editor can
be used as the user-interface of a programming environment . Section 3.6
discusses the use of the editor in the ASF+SDF Meta-environment, which
is a programming environment generator. An assessment of how much code
had to be changed, could be re-used, or had to be added is presented in Sec­
tion 3.7. The chapter ends with Section 3.8, where we discuss our approach
and make some final remarks.

3.2 Connecting two editors

3.2.1 Motivation

Our experience with the use of the GSE prototype as a generic build­
ing block in the ASF +SDF Meta-environment forms the motivation of the
work presented here. The prototype versions of GSE were all implemented
as new, stand-alone, systems. Therefore, they contained functions to ma­
nipulate text and to display text in a window. This approach has three
disadvantages: it is a lot of work to maintain the code, text editing func­
tionality is far less compared to what is provided in existing editors like, for
instance, Emacs and new users have to learn new editor commands. These
observations led to the idea to eliminate all text editing and displaying
functionality from the GSE prototype and replace it by an existing text
editor.

3.2.2 Re-using the model for hybrid editing

GSE's editing model was discussed in Section 2.2.2 , extended in Section 2.4,
and summarized in Table 2.1. There are a number of consequences of this
model which have to be taken into account when we try to combine GSE
with an existing text editor. First , since text editing is only allowed inside
the focus, the cursor should always be positioned inside t he focus. Note that
when the cursor is moved by the user, this implies either parsing the focus'
text-part or enlarging the focus such that it contains the cursor position.
Second, again because text editing is only allowed inside the focus, deleting
a piece of text that is outside, or partly outside, the focus also requires

Connecting two editors

(a)

r--------1 = fr)(;us text-part

-- = whole text

- = text to be deleted

(b)

Figure 3.1: Deleting text may require focus enlargement

35

focus enlargement. However , deleting a piece of text that is inside the
focus does not require a focus enlargement. Both situations for deleting
text are shown in Figure 3.1. Finally, parsing the focus' text-part is, of
course, only necessary when it has been changed since the last successful
parse.

From the discussion above we conclude that keeping track of textual
changes and of cursor movements is an essential part of GSE's editing
model. Therefore, we are only able to use a text editor which offers these
tracking capabilities. Epoch [Epo92], an extended version of Emacs, fulfills
this requirement and we will use it as text editor.

3.2.3 Related work

The idea to extend a structure editor with text editing functionality, where
an existing text editor is used, is not new. For instance, Lang reports in
[Lan86] that at some stage, the Mentor system[DGHKL84] had a link with
Emacs. This allowed users to select a subtree in the Mentor editor, edit
its corresponding text in Emacs, parse the changed text and replace the
subtree by the parse result. However, the approach used did not incorporate
automated focus enlargement.

The successor of the Mentor editor, called ctedit[BCD+ss] currently
uses Epoch instead of Emacs, but automated focus enlargement lacks here
too.

Other hybrid editing systems sometimes have rich text editing function­
ality and customizable graphics, but use their own text editing and display
facilities. For instance, Pan [BGV92] is extensible and customizable in the
Emacs style and features completely unrestricted text editing. Another
hybrid editing system with unrestricted text editing is PSG [BS92].

36 GSE and Emacs

3.3 Implementation

Connecting an existing text editor with an existing structure editor, re­
quires that adaptations are made to the source code of both editors. For
GSE, this is not a problem, since we have implemented it ourselves, but
Epoch was created by others. However, Epoch is extensible because it
contains a Lisp interpreter. This allows us to extend Epoch with code
necessary for connecting it with GSE. Here, we first describe the general
implementation model we use, after which we discuss two essential Epoch
features called zones and hooks. Next, we take a closer look at focus en­
largement and focus moves. At the end of this section, we present our
actual implementation.

3.3.1 General implementation model

The basis for our implementation is a client-server architecture, as found
in, e.g., the X-window system [SG86]. In this architecture, components can
run on different machines while the system as a whole appears to the user
to be running on a single machine. The actual machines involved commu­
nicate with each other through a network. The client-server architecture
enforces a strict separation between components: they can only exchange
information by using the interface layer to the network software. Therefore,
the implementation as a whole tends to be better maintainable .

Each component involved is a server to the others, which are the clients.
If a client needs data stored in a server, it builds a command that contains,
amongst others, the destination. The command is handed over to the
network software which dispatches it to the appropriate server. Next, the
server interprets the command which leads to calling a function in the
associated component. Finally, the result of the function call is sent back
to the client which interprets the answer. The general architecture is shown
in Figure 3.2.

3.3.2 Implementing the focus using Epoch

Two features of Epoch are essential for implementing the focus concept:
zones and hooks.

Zero or more zones may be associated with an Epoch text. A zone in
Epoch is a data structure associated with a part of the text. It contains a
style, a start position, an end position, and a data field 1 . A style describes

1 An Epoch zone contains even more fields, but those are not relevant here.

Implementation

Structure Editor

User-interface

I
I

ent : Ser
I

Text Editor

Figure 3.2: Client-server implementation model

37

how to display a zone, i.e., it contains font and color information. We will
return to styles in Section 3.4. If the user inserts or deletes text, Epoch
updates all data in its zones. For instance, if the cursor is positioned within
a zone and a user inserts text in it, the zone 's end position is updated. Since
we need to keep track of all text in the focus by maintaining the focus start
and end position, an Epoch zone is the natural choice for the data structure
to implement the focus. We use the data field of a zone to mark it as "added
by GSE".

A hook in Epoch is a variable which may hold the name of a function.
If a function name is stored in a hook, Epoch calls the function with that
name with predefined arguments. Hooks are mainly used to keep track
of what is happening inside Epoch. For example, there is a hook called
after-movement-function to which a function with one argument may
be attached. Whenever the cursor is moved, the attached function is called
with the old cursor position as an argument. We use this hook to check
whether or not the cursor is still positioned inside the focus. For this check
we need, of course, the new cursor position as well, which is not an argument
of the function called, but we can obtain it directly from Epoch by calling
an internal function.

38 GSE and Emacs

Another hook is used to keep track of textual changes, since deleting
text may lead to a new, larger, focus. Also, if the editor is in structure
mode, we must record a mode switch when the text changes. We use the
before-change-function for this purpose. The function associated with
this hook is called before each textual change and is supplied with two
arguments: the position of the change and the position of the end of the
region affected. If the two positions are equal, the change is an insertion.

3.3.3 A closer look at focus enlargement and focus move-
ment

Recall that the focus corresponds to a pair [text-part, tree]. Now consider
the problem of computing a focus enlargement. First of all, any focus
enlargement implies changing the focus ' tree to its parent tree, or to any of
its grandparents. Secondly, the new focus' end position depends on the old
focus ' end position, since there might be text inserted or deleted. Therefore,
the new focus' end position can not be computed in GSE without asking
Epoch for the old focus ' end position. Furthermore, focus enlargement
is sometimes necessary for deletions (cf. Figure 3.1). This implies that
for some deletions Epoch needs to call a function in GSE, while for other
deletions there is no such need. As a consequence, the response time of a
deletion operation is not constant, which may be annoying for a user.

A different scheme is therefore adopted: for each focus surrounding the
current one we add a separate zone to the Epoch text. This scheme is shown
in Figure 3.3. New focus end positions are now immediately available,
since Epoch updates its zones during text editing. If a focus enlargement is
needed, the zone corresponding to the focus is deleted. The new focus zone
is now the smallest of the remaining zones. In this way, we do not need any
communication with GSE during text editing, yielding constant response
times for deletions. However, GSE looses track of the focus' tree when the
focus is enlarged. Therefore, when a parse command is invoked, which is
a function in GSE, GSE first asks Epoch how many zones are associated
with its text. By comparing this number with the number of focus parent
nodes in the tree, GSE is able to compute how many focus zones were
deleted since the last parse. Consequently, GSE moves the focus' tree to
the computed parent node before the focus' text-part is parsed.

When the editor is in structure mode and the user moves the cursor,
we might have to change the focus as well, since the focus' tree must be
the smallest subtree S such that the text corresponding to S contains the
character at the cursor position. In the new scheme this requires delet-

Implementation

Q

a

= whole text

= focus text

0

= focus parent text

= focus n-th parent text

39

Figure 3.3: Focus zone, its parent zone, etc. for a focus with three parents.

ing the zones not containing the cursor position, and possibly adding new
ones. In this situation, we call the GSE-add-focus-zones function, which
is supplied with the number of remaining zones and the new cursor posi­
tion. The smallest subtree S is computed in GSE and the focus ' tree is set
to S. Furthermore, GSE counts the number of nodes from S to the root
and compares it with the number of remaining zones. If these numbers are
unequal , GSE instructs Epoch to add a zone for S, the parent of S, etc. ,
until the number of zones in Epoch equals the number of nodes from S
to the root. Moving the cursor in structure mode is shown in Figure 3.4.
Figure 3.4(a) shows the situation just before the move and Figure 3.4(b)
shows the situat ion just after the move .

3.3.4 Actual implementation

We present our implementation as a list of functions in pseudo code. Func­
tions in GSE have names starting with "GSE-", likewise, functions in Epoch
start with "Epoch-" . Epoch functions handling cursor moves and textual
changes are:

Epoch-after-movement-function
delete-zones-not-containing-new-cursor-position
if in-structure-mode then

call GSE-add-focus-zones (number-of-zones, new-cursor-position)

40

Q

a

(a)

= whole text

= focus text

= focus parent text

= focus n-th parent text

t = old cursor position

t = new cursor position

GSE and Emacs

H

(b)

Figure 3.4: Focus zones (a) before and (b) after moving the cursor m
structure mode.

Epoch-before-change-function
if in-structure-mode then

switch-to-text-mode
if change-is-a-deletion then

delete-zones-not-containing-entire-deletion

GSE functions handling parse and navigation commands2 are:

GSE-parse
if call Epoch-in-text-mode then

N := call Epoch-get-number-of-zones
Text := call Epoch-get-focus-text
parse (N, Text)
if parse-succeeded then

call Epoch-switch-to-structure-mode
GSE-go-to-parent

call Epoch-delete-smallest-zonez
GSE-go-to-next-child

if call Epoch-in-structure-mode then
if next-child-exists then

new-focus-position:= compute-position-of-next-child
call Epoch-move-focus-zone (new-focus-position)

2We omit go-to-first-child and go-to-previous-child since these are similar to
go-to-next-child.

The User-interface 41

3.4 The User-interface

There are two points in the editor under construction where the user­
interface (UI) plays an essential role. First, the focus should be visible
in the Epoch text. Second, the window in which the text is displayed
must be "decorated" with a menu bar from which GSE commands, such as
structure editing, parsing, and navigation commands, may be invoked. We
discuss these aspects below.

3.4.1 Displaying the focus

There are two reasons why the focus should be visible in the text. First,
if the user invokes a parse command, parsing may either succeed or fail.
Clearly some form of feedback is required here. Second, if the editor is in
structure mode , all structural editing commands are relative to the focus'
tree. In this case, a user wants to know what the corresponding text part is
before he or she decides which structural editing command is to be invoked.

We have chosen to implement this using Epoch's zone styles (cf. Sec­
tion 3.3.2). We use three different styles for the focus zone: the ok-style
when the editor is in structure mode; the error-style when parsing failed;
and the text-style when the editor is in text mode. Parent zones are dis­
played in the text-style. All three styles use the same font, but different
colors for the text and the text background.

3.4.2 Decorating the text window

Structure editing commands, such as replacing a placeholder by a template,
are menu driven. Consequently, we have to add a menubar to the window in
which the text is displayed. Note that this window is created by Epoch. We
are therefore confronted with a situation where we want Epoch's window
to be a subwindow of a window that contains the menubar. However,
this can be handled by supplying a so called parent-window to Epoch's
"create-window" function. For the implementation of windows that contain
a menubar, we have chosen OSF /Motif™ [Fou90], a system for building
graphical Uis based on the X window system [SG86].

3.4.3 Handling callbacks

It is standard practice in current windowing systems that each UI object
- such as a button- has an associated callback. This is a function to be
called when the UI object is activated by the user. In our case, we are

42 GSE and Emacs

unable to invoke such a function directly, because it might be a function
in the text editor or in the structure editor component. These functions
might require arguments only present in that component. Therefore, we
need a more general mechanism to handle callbacks.

Recall from Section 3.3.1 that the UI is a separate component of our
system. The creation of any window is thus the result of the interpretation
of a command. All commands involving windows are invoked by GSE. The
create-window command is supplied with a filename , the UI component
creates an Epoch window displaying the file, and its surrounding window.
This surrounding window has an empty menubar. The create-window

command returns a window identifier to GSE. GSE stores this identifier in
its data structure as a shadow window. Next, GSE invokes commands to
add entries to pulldown menus. One command per entry. Each of these
commands return an object identifier, which is stored in GSE's shadow
window. We call this a shadow object. The GSE function to call when
there is a callback from an object, is now stored in the shadow object.

A callback is now handled as follows. Consider a callback from an object
with identifier I located in a window with identifier W. The callback from
the UI object is first sent to the UI component, which builds a command
indicating that there was a callback from I in W. Then, the UI component
sends this command to GSE using the network. GSE searches the shadow
object with identifier I in its shadow window with identifier W and calls
the associated function, supplying it with the appropriate arguments when
necessary.

If we want to call a text editor function from a UI object, this function
is invoked by first creating a command at the GSE level and then sending
it to the text editor component. At first glance, it seems that this scheme
implies that there is no need for communication between the UI and the text
editor component. However, these components do need to communicate,
because the Epoch window must be created as a subwindow of our editor.
Furthermore, a user might resize or destroy the editor window, in which
case the Epoch subwindow must be resized or destroyed as well.

3 .5 Using the editor in a programming environ­
ment

As with the older versions of GSE, the new editor is used in programming
environments generated with the ASF+SDF Meta-environment. Generated
environments are based on a collection of syntax-directed editors, and each

Using the editor in a programming environment generator 43

editor may use a different language. Until now, we have discussed a situa­
tion in which there was only one combined editor, the question therefore is
how to implement multiple instances.

3.5.1 Multiple editors

Epoch is able to handle several texts at the same time by displaying each
text in a separate window. These Epoch windows are subwindows of
OSF /Motif windows managed by the UI component. By replacing the
structure editing component by a GSE manager (GM), we are able to
implement multiple instances. The collection of syntax-directed editors,
needed in a generated programming environment, is thus modeled by GM.
We have to make some adaptations however, since in the case of multiple
instances, the problem of how to identify each instance arises.

3.5.2 Identifying instances

The programming environment identifies each editor instance by means of
a filename. For example, adding an instance to the environment is done
as follows. After the user has supplied a filename, GM first creates a new
GSE data structure in which the filename is stored. Next, a new window
is created of which the identifier and the identifiers of UI objects are also
stored in the new GSE data structure.

If a structure editor needs information stored in its corresponding text
editor, the structure editor sends a command to the text editor component
of the system. This command is supplied with a filename by which the text
editor component can identify the appropriate text editor.

Callbacks are now handled by GM instead of by GSE itself. Each call­
back comes with a window identifier W and an object identifier I. GM
responds to a callback by searching the shadow window with window iden­
tifier W in all GSE instances. When this shadow window is found, the
object with identifier I is searched, and the associated function is called.

3.6 Using the editor in a programming environ­
ment generator

So far, we have only discussed the windows of our new editor itself. Be­
sides these type of windows, there are other types of windows, such as:
dialog boxes, error windows , etc. Furthermore, in the ASF +SDF Meta­
environment (cf. Section 3.2.1) , the notion of a module-editor exists. A

44 GSE and Emacs

module-editor is a composition of two editor instances which are displayed
in one window. In an ASF+SDF module-editor, a user defines syntax
rules in one of the editors, which can immediately be used in the second
editor. This two level editing process is described in [Kli93]. Finally, in
the ASF +SDF Meta-environment there are components that use editor in­
stances, or other window based objects, as part of their user-interface. We
now describe how we extended the implementation of the UI to allow the
handling of an arbitrary number of additional components.

3.6.1 Window types

Windows, such as dialog boxes, error windows, etc., all have a type. Each
window type has specific commands to build its window and has its own
callback. For example, a dialog box with "OK" and "CANCEL" buttons
is built using three commands: create-dialog, add-button("OK") and
add-button("CANCEL"). Each command returns identifiers as before, such
that a shadow dialog box can be built. Executing a callback from a button
in a dialog, called a dialog-callback, now amounts to looking for a shadow
dialog with the appropriate dialog identifier, searching the button in the
shadow dialog and calling the associated function.

3.6.2 Combining editors in frames

Combined editors, such as ASF+SDF module-editors, are displayed in a
window that contains subwindows, one for each editor involved. We call
such a subwindow a pane and we call the surrounding window a fram e.
This window type is implemented in a similar manner as the editor window
described earlier. That is, we send several commands from GM to the UI
to build a combined editor. First, a frame is built that does not contain
any panes. Second, we add a pane for each editor involved, which is an
editor window with an empty menubar. Finally, the menubar of each pane
is filled with menu entries.

Callbacks from objects in a frame now contain three identifiers: the
frame identifier (F), the pane identifier (P) and the object identifier (I).
In this way, we are able to use the same scheme for callbacks as described
in Section 3.5.2, except that we have to search for a frame with identifier
F first. This approach allows the addition of UI objects to a frame as well.
A typical example of such an object is the destroy window button.

Assessment: quantification of code re-use 45

3.6.3 Windows created by other components

Besides the windows created by GSE, other components of the system may
create windows as well. Consider, for example, a dialog box that is created
by another component. Any callback from this dialog box will be sent to
GM, which searches in all GSE instances for a shadow dialog with the iden­
tifier derived from the callback. This dialog will not be found , because the
shadow dialog is not a part of any GSE instance. To solve this problem, we
add a level of indirection: the name of the component that created the win­
dow. Any callback is supplied with this name as an argument. The system
now becomes responsible for handling all callbacks. It first strips off the
name argument, and then calls the callback manager for that component,
this time without the component name. Consider, for instance, a callback
from a frame that was created by GSE. In the system, the callback arrives
as frame-callback("GSE" F P I). The system maps this call to a call in
GM: GSE-frame-callback(F P I). Callbacks from frames created by the
debugger (DB) however, arrive as frame-callback("DB" F P I) and are
mapped to DB-frame-callback (F P I). In this way, any component in
the system can build its own user-interface and is by itself responsible for
handling any callbacks. When a new component is added to the system it
can use the library of user-interface functions immediately due to the fixed
mapping of callbacks by the system.

3. 7 Assessment: quantification of code re-use

How much effort was involved in changing GSE, implementing the network
communication, and changing the user-interface? What was gained?

In this section we present how much code was involved when we made
our new hybrid editor. We quantify the amount of code by counting lines of
source code. While counting the number of source lines we included empty
lines , comments and code used for testing and debugging. We sometimes
list a total of the number of source lines used by a component. These
totals should be interpreted with care since we add counts of sources that
are written in different programming languages. That is, the old GSE is
completely written in LeLisp [LeL91], Epoch is written partly in C [KR78]
and partly in Emacs-Lisp [LLG90, Epo92], the new UI is written in C and
the network communication is also written in C. For this reason we list the
number of lines written in each language where we use the abbreviations
LL for LeLisp , EL for Emacs-Lisp and C for C. We included* .h files while

46 GSE and Emacs

! Used for II old(LL) II new(total) I new(EL) I new(C) I new(LL) I

Text functions
Displaying text
Building the UI
Network layer

I Total (changes) II

I Re-used II
I TOTAL II

2178
3797
4971

-

10946 II

6331 11

11211 11

2369
-

6251
4561

13181

6331

19512

1478 - 891
- - -
- 3158 3093

586 3924 51

2064 I 1082 I 4035

- I - I 6331

2064 1 1082 1 10366

Table 3.1: Overview of sizes of the source code used by each editor version.

I Part 11 total 11 EL I C I LL I

Interface to rest of GSE 325 - - 325
Message building and interpreting 551 185 - 366
Reactions to messages 1493 1293 - 200

I TOTAL 11 2369 11 1478 I - 1 891 1

Table 3.2: Breakdown of the size of the new text editing functionality.

counting C source lines, but we excluded* .h files used for hardware specific
compilation.

Two major parts of GSE have been changed: the text editing component
and the UI component. The third major part of GSE, used for parsing text
and structure editing, is re-used. The sizes of the sources involved are listed
in Table 3.1. We excluded the parser and the pretty-printer code, a total
of 21348 lines, from the count of the re-used part. The numbers presented
raise some questions. For instance, "Why is the new text editing component
larger than the old one? (2369 new lines compared to 2178 old ones)".
Indeed, at first glance this seems strange since we now use an existing text
editor which is an external component. The answer is that in the new
situation we have to interface with the network layer which implies some
overhead. The overhead consists of building a command string, interpreting
the command, building an answer string and interpreting the answer. To
give an overview of how much code is used for the overhead and how much
code is "really" used, see Table 3.2. This table shows that 1493 lines are
"really" used. A similar effect can be found in the new UL Here we wrote
6251 lines of new code and eliminated 4971 lines of code. Of the new 6251
lines, 5086 (6251 - 1165) are "really" used as shown in Table 3.3.

Assessment: quantifi.cation of code re-use 47

Part jj total II EL C LL

Interface for building objects 2253 - - 2253
Message building and interpreting 1165 - 731 434
Reactions to messages 2833 - 2427 406

TOTAL 11 6251 11 - 1 3158 I 3093 1

Table 3.3: Breakdown of the size of the new UL

Component LL source total EL C 111 I source

UI library 7663 ext 6348 6348 int

Epoch 208951 64720 144231 ext

Table 3.4: Overview of sizes of the external code used by each editor version.
Code written by us is marked int, code written by others is marked ext.

Another question triggered by Table 3.1 is: "Why did you write 13181
lines of new source code in order to eliminate less code (10946 lines)?" We
did this because we now have incorporated Epoch and this amounts to a
gain in text editing functionality with a size of 208951 lines of code. For
an overview of the amount of external source code used by each version
we refer to Table 3.4. The main advantage of the new situation is the
percentage of the code that has to be maintained in the future. This is
reflected in Table 3.5. Also, we have created our new editor in such a way
that different components can be run on different machines. The amount of
source code involved in network communication is 4561 lines (cf. Table 3.1).
This part is re-usable and may therefore be re-used by other parts of the
ASF+SDF Meta-environment in the future.

II
GSE
UI library
Epoch

Old
int I ext I

17277 -
- 7663
- -

100
0
0

New
int ext %

19512 - 100
6348 - 100

- 208951 0

I TOTAL lj 17277 I 7663 I 69.3 II 25860 I 208951 I 11.0 I

Table 3.5: Overview of sizes of all source code used by each editor version.
Code written by us is marked int, code written by others is marked ext.

48 GSE and Emacs

3.8 Discussion and conclusions

We have shown that a hybrid editor can be built by connecting an existing
text editor with an existing structure editor. The general advantages of
this approach are:

• The text editing functionality of the hybrid editor is as rich as the
functionality of the text editor.

• Users familiar with the text editor can use the hybrid editor immedi­
ately.

• Future improvements to the text editor are inherited.

• There is no need for maintaining the source code of the text editor
by the implementors of the hybrid editor (and vice versa).

The advantages of connecting Epoch and GSE in particular are:

• We inherit the extensibility and customizability from Epoch.

• Each component of the hybrid editor may run on a different machine.

We are able to connect Epoch and GSE because Epoch offers some
special functionality. These features are: extensibility, which we use to
implement network communication; hooks, to keep track of cursor moves
and textual changes; zones, to display and implement the focus concept;
and windows that can be subwindows, to decorate a surrounding window
with a menubar containing editing commands.

We have built our editor by extending Epoch and by removing all text
editing and display functionality from GSE. In other words, we stripped the
structure editor and extended the text editor. This leads to the question if
a complementary approach would also work: can we strip an existing text
editor and extend an existing structure editor. We expect that this will
be much harder because in this situation we need to extend the display
functionality of the structure editor for displaying unstructured text as
entered during editing. Therefore, using the display functionality of the
text editor seems the natural choice.

A related question is whether or not it would have been a better ap­
proach to extend Epoch with structure editing functions. However, this
would require re-implementing GSE's structure editing functions as well as
the parser and the pretty-printer. This amounts to re-implementing 6331

Discussion and conclusions 49

lines of GSE code (cf. Table 3.1) and 21348 lines for the parser and pretty­
printer. If we compare the total of 27679 lines to the 13181 lines we now
wrote, the approach chosen seems to be the best.

50 GSE and Emacs

Chapter 4

SEAL: a semantics-directed
environment adaptation
language

The problem of how to connect a function, offered by a computational
component, to a graphical user-interface part - such as a button­
is addressed in a general way. We propose a solution that achieves a
complete separation between the computational component and the
user-interface component. We show that our approach can be used in
the ASF+SDF Meta-environment and present a user-interface defini­
tion language for it, called SEAL. Code generated from a SEAL script
can be combined with run-time code thus forming a User-Interface
Management System. As a result, functions representing semantic
tools, such as typecheckers, compilers, and program transformers , can
be "connected" to the user-interface of a syntax-directed editor. Sev­
eral examples of typical man-machine dialogues are presented and the
suggested approach is compared with other techniques.

4.1 Introduction

Our primary goal is ensuring the uniformity of all user-interface aspects
of the ASF+SDF Meta-environment. The user-interface of this system
consists of a collection of editor instances which were discussed in detail in
the previous chapters. In this chapter we concentrate on the question of
how computational tools, such as typecheckers, interpreters, and compilers,
can be connected to a uniform, syntax-directed, editing interface.

51

52 SEAL: a semantics-directed environment adaptation language

We suggest an approach based on a distinction between so called state
inspection functions and state manipulation functions . Although our ap­
proach is dedicated to the ASF+SDF Meta-environment, we believe that it
can be used in other application domains as well. We therefore discuss the
subject in a more general context, that of User-Interface Managem ent Sys­
tems (UIMS) [HH89, Hee92]. These are systems used for the development
of the user-interface component of an interactive application.

Chapter overview

Section 4.2 introduces UIMSs and discusses our approach to designing a
UIMS dedicated to the ASF+SDF Meta-environment. In Section 4.3 we
give a number of examples, each illustrating a typical problem which a
UIMS has to solve. In Section 4.4 we describe our application domain
in an abstract way. From this description we derive which functions are
state inspection functions and which functions are state manipulation func­
tions. We continue with presenting a UI definition language called SEAL
(Semantics-directed Environment Adaptation Language) in Section 4.5.
Scripts written in this language can be used in combination with functions
in a computational component generated from an ASF+SDF specification.
An introduction to the ASF+SDF formalism is therefore included. We also
present all language constructs and predefined functions of SEAL. This
section is concluded with a number of example scripts corresponding to
examples given in Section 4.3. Next, we briefly describe related work in
Section 4.6. Finally, we summarize our approach, list its advantages and
disadvantages, and make some final remarks in Section 4.7.

4.2 User-Interface Management Systems

In the development process of software for interactive applications, one can
distinguish two subprocesses:

• development of a computational component (the actual application
program); and

• development of a user-interface component.

The advantages of separate development, called dialogue independence in
[HH89]1, of the two components are widely recognized . Clearly, at a certain

1 We adopt the terminology of this paper.

User-Interface Management Systems 53

moment in time both components have to be "connected". Commonly a
Programming Environment, in combination with a User Interface Manage­
ment System are used. The former is used to create the computational
part and manages the application at run-time, while the latter is used to
create the graphical user-interface (UI) part, manages the user-interface at
run-time and is used for "connecting" the two parts.

4.2.1 Semantics-directed UI construction

Since we are concentrating on the user-interface component of an interac­
tive programming environment, we will assume a set of functions Fi to be
present in a computational component. Basically, when designing a UIMS,
one has to consider the following questions:

(1) What is the graphical appearance of the UI and how should it behave
when the user interacts with it?

(2) Which functions Fi should be available to the user via the UI?

(3) When is Fi available to the user, i.e., what are the enabling conditions
for F1?

(4) When F; is available, what is the source of its arguments and what is
done with its result?

In our approach, the first question (what is the "look and feel" of the
UI) is answered implicitly, since we will only use logical UI objects such as
buttons, menu entries, and the like. The "look and feel" of these objects
is predefined and therefore contributes to our primary goal of achieving
uniformity.

For all interactions with the user, we use instances of GSE as described
in previous chapters. In each instance, all language-dependent parts are
parameterized by means of a syntax definition. Furthermore, each instance
has a default graphical user-interface. Thus here too the "look and feel" is
predefined. Buttons, menus, etc. can be added to the UI of one or more
editor instances. These UI extensions are placed at a predefined position
in the editor 's window. As a result , a dialogue developer (a human being
using a UIMS) , can concentrate on the semantic aspects (which functions
are available, what are their enabling conditions, how are their arguments

54 SEAL: a semantics-directed environment adaptation language

and results handled) and is freed from all syntactic aspects (handling mouse
or keyboard input, defining graphics, etc.).

We can answer questions (2) and (3) by distinguishing two types of
functions in the computational component:

• state inspection functions; and

• state manipulation functions .

The state of an application is defined as the current data stored in the ap­
plication. State inspection functions inspect the current state, while state
manipulation functions change and, in some cases, also inspect it. The
former type is used to define the enabling condition of a function associ­
ated with a DI object, while the latter type defines the associated function
itself. The distinction between state inspection functions and state ma­
nipulation functions was made earlier by D.L. Parnas, who called them V­
functions (Value delivering functions) and O-functions (Operate functions)
respectively [Par72]. V and O functions were first used in the context of
user-interfaces by R. Eckert [Eck80].

Consider, for example, a word processor with "cut" , "copy" and "paste"
functions, each made available to the user via entries in a menu. The
"paste" function inserts text stored in a buffer. When there is no text in
the buffer, the "paste" function is not available. Thus the "paste" menu
entry must be changed, with respect to functionality (it must not respond
at all), as well as graphical appearance (to provide semantic feedback to
the user: "paste" is currently not enabled). The point here is that both the
functionality and the graphical appearance depend on data stored in the
application. A function implementing the "is there any text in the buffer?"
question is thus a typical state inspection function. The "paste" function
itself is a typical state manipulation function , since it changes data stored
in the application.

Finally, question (4) is answered by stating that an argument of a func­
tion is either a part of the structure maintained by an editor instance, or
the result of a function call. The result of a function call is either used
as an argument of another function or assigned to a part of the structure
maintained by an editor.

Summarizing, a DIMS controlling the DI at run-time must be able to
inspect the application's state and call state manipulation functions. Con­
versely, the application has to notify the DIMS whenever its state changes,
since in that case the DIMS must re-consider the availability of functions.
These observations form the basis of our approach.

Motivating examples 55

A UI is described as a list of logical UI objects. Each object description
is a list of condition-action pairs, where a condition is a state inspection
function and an action is a list of state manipulation functions. Note that
a list of such functions constitutes a new state manipulation function. To
avoid confusion, we say that an action consists of statements. By allowing
more than one condition-action pair, we obtain a situation where the same
UI object can be associated with different actions, depending on the state
of the application.

4.3 Motivating examples

We present a number of motivating examples, each illustrating a typical
problem which a DIMS has to solve.

4.3.1 Enabling of a function depends on application state

We already discussed the menu containing an entry "paste" that should
only be enabled when the "cut-copy-paste" buffer is non-empty. Related
examples are the "copy" and "cut" functions that should only be enabled
when the user has selected a piece of text.

Another example is a function that performs a program transformation.
In many cases, these transformations are based on a conditional rule which
states that a program part matching the left-hand side of the rule can be
replaced by the right-hand side of the rule or vice versa. Here again, a
transformation function should be disabled when its condition is false.

4.3.2 Function needs user input

Consider a UI for a simple database for names, addresses and telephone
numbers, and a UI containing - among others- a "lookup" button. When
this button is pushed, the user is first asked to indicate whether a telephone
number or an address has to be looked up. Next, the user is asked to select
a person's name. Finally, the appropriate function in the computational
component is called and its result is presented to the user.

This example illustrates two different kinds of user input. In the first
dialogue, the user is asked to select an item from a fixed set of values
(lookup of a telephone number versus lookup of an address), while in the
second one, the user is asked to select a name from a variable-sized set of
values which can only be computed by the application at run-time.

56 SEAL: a semantics-directed environment adaptation language

4.3.3 Function with several input sources

In the previous example, the list of names from which the user picks an
item, can be computed from a single source: the database file. There are
also situations where multiple sources are used in a computation at run­
time, for instance, a compiler which handles multiple source files. In this
case, the system first has to collect all necessary input values and then pass
them to the "compile" function in the computational component .

4.3.4 Implicit invocation

All examples presented so far are instances of what we call passive tools
which are only activated upon explicit user request. There are also active
tools which are invoked automatically whenever appropriate. An example
of such an active tool is a command line interpreter, which automatically
executes a command when the user has completely entered it. Other exam­
ples are a typechecker which is automatically called after each modification
of a program and an automatic source file utility that maintains a list of
changed files for the benefit of efficient recompilation.

4.3.5 Repeated invocation

The above source file utility will do a fixed number of calls to a compiler:
once for each modified source file.

Other computations may be incorporated in an endless loop that is
started and stopped upon explicit request by the user. This situation is
found in, for instance, automatic demonstrations of systems. A demonstra­
tion typically consists of a number of operations repeated over and over
again, until it is ended by the user. So, a user starts the demonstration,
watches what happens for some time and then stops it. Another example is
a test program using randomly generated input values. The test program
runs a given program with an input value, shows the result , generates an­
other input value, runs the program again, and so on.

4.4 Abstract representation of application do-.
main

At an abstract level, one can describe an interactive programming environ­
ment as a collection of - possibly cooperating- syntax-directed editors.
In each editor resides a well-typed abstract syntax tree (also called "term")

Abstract representation of application domain 57

and the computational component offers a set of semantic operations on
these terms. Note that all these editors are generic and can be used to edit
programs in different languages.

Each editor has a focus designating a subtree of the tree residing in it.
Editing commands, such as replacing a placeholder by a template, are all
relative to the focus subtree. The focus may be moved to another subtree
by invoking a navigation command, such as "go to the next child".

We represent a UI as a set of logical UI objects which are added to the
default UI of one or more editors. Each UI object consists of a name, a type
(button, menu entry, etc.) and a set of rules. A rule is a "condition-action"
pair, where the condition is a state inspection function and the action is a
state manipulation function. When UI objects are added to an editor, we
say that it uses these rules.

Our application domain can be described as a set of editors, each de­
scribed by a quadruple of the form (Name, Rules, Tree, Subtree). The Name
and Rules are static, since they are defined "at editor creation time". The
Tree and Subtree are dynamic since the user manipulates them interactively
by editing, by navigating, or by applying a semantic operation.

4.4.1 Abstract representat ion of state

A syntax-directed editor Ei is characterized by (Ni, Ri, Ti, Si), where Ni is
the name of editor Ei, Ri is a set of rules used by Ei, Ti is the tree residing
in Ei and Si is the focus subtree of Ei . The state of the programming
environment is then defined as a set E = U Ei of syntax-directed editors.

This definition immediately suggests what state inspection functions
and state manipulation functions are needed. State inspection functions
are:

• Does an editor with name N exist?

• Is Si of type X?

• Is Ti of type X?

• Does Si match with tree pattern P?

• Does Ti match with tree pattern P?

These functions are all of type Boolean, and Boolean operators can be used
to form new state inspection functions.

58 SEAL: a. semantics-directed environment a.da.pta.tion la.ngua.ge

State manipulation functions are:

• Add editor Ek to E;

• Delete editor Ek from E;

• Change Ti to T'; and

• Change Si to S'.

State manipulation functions thus change the number of editors or change a
(sub)tree in an editor. Any combination of these functions also constitutes
a state manipulation function.

Typical examples of (sub)tree changes in our application domain are:

• Invoking a navigation command in editor Ei.

• Editing Ti or Si.

• Assigning the result of a function Fi to Tj or to Sk.

4.4.2 A user sessio n

When and how can the user activate state manipulation functions? Let the
system be in state E, and let R be the union of all rules Ri in E. Let r
be an element of R, where r is a list of condition-action pairs denoted by
{[C1, Ail, [C2, A2], , [Cn, An]} . The set of rules available to the user
via the UI, when the application is in state E, RE, is defined as:

RE= {r ER I some Ci in r is true}.
Let void denote the empty action and let the function action be defined as:

action(r, E) = Ai if Ci is true and V j <i Cj is false,
action(r, E) = void otherwise.

We are now able to describe a user session. Let the application be in state
Eo. Then, the user selects a ruler from REo and action(r, Eo) is applied,
leaving the application in state E 1 . Next, the user selects a rule r from
REi, action(r, E1) is applied, bringing the application in state E2, etc.
Note that after a state transition form Ei to Ei+l, the set RE;+i has to be
computed.

SEAL: an experiment in UI definition 59

4.5 SEAL: an experiment in UI definition

In this section we introduce SEAL (Semantics-directed Environment Adap­
tation Language) a dedicated language for connecting the user-interface of
an editor with functions in the computational component. A UI description
in SEAL, or script, thus "seals together" the two components of an inter­
active system. The computational component is defined in the ASF+SDF
formalism , which we describe in the next section. In the section thereafter,
we introduce SEAL's predefined functions. Then, we will show how the
examples of Section 4.3 can be defined in SEAL. Finally we will briefly
describe how SEAL is implemented.

4.5.1 The ASF+SDF specification formalism

ASF+SDF [HK89] is a modular algebraic specification formalism developed
in the GIPE project. It is the result of merging SDF (Syntax Definition
Formalism) [HHKR89, Rek92] used to define the syntax of a language,
and ASF (Algebraic Specification Formalism) [BHK89] used to define its
semantics.

A simple ASF+SDF specification for the language of Boolean expres­
sions consists of two modules, one defining the syntax of the language (Fig­
ure 4.1) and the other defining its semantics2 (Figure 4.2).

Module Boolean-syntax (Figure 4.1) defines the syntax by introducing
a sort B00L, which contains two constants true and false. Furthermore,
the functions and, or, and not are defined as well as parentheses. The
attribute left declares and and or as left-associative functions and the
priorities define function grouping when no parentheses are present. Mod­
ule Boolean-syntax imports the module Layout , in which layout charac­
ters - spaces, tabs, newlines, etc.- as well as a comment convention are
defined. We omit this module.

Module Boolean-semantics (Figure 4.2) defines the semantics of the
Boolean language by introducing a variable of sort B00L and equations
which define equalities on Boolean terms. Variables are introduced by the
naming scheme b [0-9] * -> B00L which states that variable-names start­
ing with the character b followed by a sequence of zero or more digits will
be used to denote variables of sort B00L. Although not used in this example,
an ASF+SDF equation may have a condition expressing that the equation

2This strict separation between syntax and semantics is not required by ASF+SDF,
but we will use it in examples later on (Section 4.5.3) where we define transformations
on Boolean expressions.

60 SEAL: a sem antics-directed environment adap tation language

module Boolean-syntax
imports Layout
exports

sorts BOOL
context-free syntax

true
false
not BOOL
BOOL and BOOL
BOOL or BOOL
II (11 BOOL 11) II

priorities
not> and> or

->
->
->
->
- >
->

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

{left}
{left}
{bracket}

Figure 4.1: Module Boolean-syntax.

module Boolean-semantics
imports Boolean-syntax

variables
b [0-9] * -> BOOL

equations
[1] true and b b
[2] false and b false
[3] true orb true
[4] false orb b
[5] not true false
[6] not false true

Figure 4.2: Module Boolean-semantics.

SEAL: an experiment in UI definition 61

is only applicable when the condition holds. The general form of a condi­
tion is a syntactic equality (or inequality) on terms. Note that the syntax
defined in Boolean-syntax is used in the equations of Boolean-semantics .

4.5.2 Overview of SEAL

In this section, we present the basic notions and functions of the SEAL
language. Its complete syntax in SDF may be found in Appendix A.

Focus expressions

There are three basic notions in SEAL: focus-expressions, variables and
editor-names. A focus-expression determines a source or destination sub­
tree of an editor. Its simplest form, the keyword focus, denotes the focus
of the editor instance to which the UI object is added. The general format:

<editor-name>.focus <moves>
denotes the focus of the instance with name <editor-name>, but first
moved to the position indicated by <moves> , a list of elementary tree moves,
such as up, down, next, previous and root . Editor names are equal to the
corresponding filenames.

Predefined functions in conditions

In conditions, the following functions may be used:

• pattern matching, as in <focus-expression> matches <pattern>;

• meta-variable checking, as in <focus-expression> is-a-metavar;

• sort checking, as in <focus-expression> is <sort-name>;

• calling a function, as in <module-name> : <function-call>; and

• any of the above, combined with Boolean operators and, or, or not.

A pattern is a string containing meta-variables, which are textual rep-
resentations of placeholders. For instance, a pattern matching a focus posi­
tioned at an or construct in the Boolean language, is denoted by: "<BOOL>
or <B00L>". Note that a meta-variable is denoted by a sort-name between
the characters "<" and ">".

Meta-variables are also used as placeholders and may also appear in
texts residing in an editor instance. A "meta-variable check" is therefore
incorporated to recognize a focus positioned at such a placeholder.

62 SEAL: a semantics-directed environment adaptation language

Finally, a function in the computational component may be called. The
<module-name> part of the function call notation is used to denote the
context in which the function must be evaluated. This is due to the modu­
lar set up of the ASF+SDF formalism: the same term may have different
semantics when evaluated in the context of different modules. For ex­
ample, the term true or false evaluated in the context of the module
Boolean-syntax has itself as semantics, because there are no equations in
that module expressing otherwise. Evaluating the same term in the context
of the module Boolean-semantics, however, leads to the semantics true
since this is defined by the equations in that module.

Predefined functions in actions

In actions, the following state manipulation functions, or statements m
SEAL terminology, may be used:

• moving a focus;

• assigning a term to a variable or a destination determined by a focus­
expression;

• computing a term by calling a function in the computational compo­
nent;

• creating an editor instance to be used as text-input or term-output
window;

• selecting a (sub)term of a certain sort in an editor instance; and

• (conditional) looping over any number of statements.

Allowed focus moves are the same as in conditions, plus the statements
save and restore for saving the focus position and restoring it to a saved
position in the tree. This provides a means to make temporary excursions
with the focus during the execution of actions.

Arguments of functions may be obtained using focus-expressions or vari­
ables. Function results may be assigned to focus-expressions or variables.

New editor instances can be used as text-input or term-output window.
The text-input statement is convenient for asking the user to select an item
from a fixed set of values that is known a priori. It is normally used in
combination with a select statement (described below). Its format is:

create(<editor-name>, <module>, <text>, <sort>)

where <editor-name> is an editor name, <module> is the name of the

SEAL: an experiment in UI definition 63

module defining the syntax of this editor, <text> is a list of strings forming
the text to be stored in the editor 's text-buffer and <sort> is the name of
the sort of the root of the editor's tree. At run-time, a text-input statement
creates an editor with name <editor-name> , with text <text>. The text
is parsed using the syntax defined in <module> and the parser is requested
to use sort as the sort of the root.

The term-output statement is normally used to present the result of a
function to the user. Its format is:

create(<editor-name>, <term>)
where <editor-name> is an editor name and <term> is any term. At run­
time, a term-output statement creates an editor with name <editor-name>,
containing tree <term>. The tree is pretty-printed thus forming the text.
The syntax definition to be used by a term-output instance is derived from
the term. If the term is a focus-expression N.f ocus , the syntax definition
of editor N is used. If the term is the result of a semantic computation
Module : functioncall (...) , the syntax defined by Module is used. In
text-input instances as well as in term-output instances, we also allow a
term to be used as the editor's name. This provides a means to compute a
name of a text-input or term-output instance using semantic computations
on names.

The user may be asked to point at a subtree of certain sort in an editor
instance, in which case the select statement must be used. Its format is:

select(<editor-name>, <sort>)
where <editor-name> is an editor name and <sort> is a sort. At run-time,
the select statement pops up the window of the editor <editor-name>,
and a dialog is displayed asking the user to point at a subtree of sort
<sort> using the mouse. Upon clicking the mouse, the smallest subtree S
is calculated such that the text corresponding to S contains the character
pointed at by the user and S is of sort <sort>. If such an S can not
be calculated, the select statement reports an error and asks the user
to point again. Finally, select returns the subtree chosen. Instead of
an <editor-name> one can also use a term (as with text-input and term­
output instances) as a means to use computed editor names.

Finally, we allow conditional looping over any number of statements.
For the condition, we allow all constructs as found in SEAL conditions as
well as moves. Moves are used when a function needs the current focus
position as an argument . At first sight , this may seem strange, but a
computation may need the position of the focus as an argument. Consider,
for example, a function computing the body of a Pascal procedure P, when
the focus is located at a call to P. Then, due to Pascal's scoping rules,

64 SEAL: a semantics-directed environment adaptation language

there might be more than one procedure P in the whole program, so the
result of the function depends on the current focus position. Thus, a move
in a loop condition is a test whether or not this move is possible.

Predefined UI objects

We distinguish five types of UI objects: buttons, start-stop buttons, menu
entries, menus, and active tools. Note that this implies that all other types
of UI objects, such as dialog-boxes, radio buttons, file browsers, etc., must
be simulated by using editor instances. This approach was earlier suggested
by others, see, e.g., [DS90]. We will now present the general format of each
type of UI object in SEAL.

Buttons are defined by:
button <name> when <cond> enable <action>

This defines a button with label <name>. The when <cond> part is optional.
A special kind of button is the start-stop button. When pushed, it repeats
the action as long as <cond> holds. Repetition can be stopped by the
user by pushing the button again. Between the statements of an actions,
repetition may be interrupted as well. Start-stop buttons are denoted by
prefixing the keyword button with the keyword start-stop.

Menu entries are defined by:
menu entry <name> in <menu> when <cond> enable <action>

This defines an entry with label <name> as part of a pulldown menu with
label <menu>. The when <cond> part is optional. For convenience, entries
in the same menu may be grouped using:

menu <menu> :
<name-1> when <cond-1> enable <action-!>

<name-N> when <cond-N> enable <action-N>

Finally, an active tool with name <name> is defined as:
active tool <name> when <cond> do <actions>

The when <cond> part is optional.

4.5.3 Examples in SEAL

Now we are in the position to define some of the examples discussed earlier
in Section 4.3.

SEAL: an experiment in UI defi.nition 65

Rule based transformations

Consider the Boolean language presented in Section 4.5 .1 and let us add
a menu Transformations with an entry to which a function is connected
implementing De Morgan's laws. The SEAL script for such an entry is:

menu entry DeMorgan in Transformations
when

Transform : de-morgan-possible(focus)
enable

focus := Transform : de-morgan(focus)

This menu entry requires an additional module called Transform which is
defined as:

module Transform
imports Boolean-syntax
exports

context-free syntax
de-morgan-possible(BOOL) -> BOOL
de-morgan(BOOL) -> BOOL

equations
[1] de-morgan-possible(not(b1 or b2)) = true
[2] de-morgan-possible(not bl and not b2) = true
[3] de-morgan(not(b1 or b2)) = not bl and not b2
[4] de-morgan(not bl and not b2) = not(b1 or b2)

Note that module Transform imports the module Boolean-syntax, not
Boolean-semantics since we are defining a syntactic transformation only.
Now, whenever the focus of an editor instance using Boolean-syntax as
syntax definition is positioned such that evaluating de-morgan-possible

(focus) in the context of the module Transform yields true the DeMorgan

menu entry is enabled by adding the entry to the menu Transformations.
Of course, it is not added when it is already there and furthermore, menus
without any entries are deleted form the UI so adding an entry might
imply adding a menu to the UI. Selecting DeMorgan replaces the focus by
the result of evaluating de-morgan(focus), thus by the right-hand side of
either equation [3] or [4].

Database lookup

The SEAL script for the simple database lookup example3 presented in
Section 4.3.2 is:

3Disclaimer: this example has as only purpose to illustrate several features of SEAL.
With a similar effort , however , we could define a usable interface for this example

66 SEAL: a semantics-directed environment adaptation language

Figure 4.3: The editor containing the database with added Lookup button.

(!l Queries : / nfs / adaf'll/ ada1 / koorn / Look:up/ Tel0rAddr

Figure 4.4: The editor displaying QueryTypes, before selection.

button Lookup
enable

create("TelOrAddr", Queries, "Telephone" "Address", QueryTypes);
TheQueryType := select("TelOrAddr", QueryType);
AllNames := Queries : get-names("DBase".focus root);
create("Names", AllNames);
TheName := select("Names", Name);
Result := Queries : lookup("DBase".focus root, TheQueryType, TheName);
create("LookupResult", Result)

Pushing Lookup (Figure 4.3) results in first creating a new editor in­
stance TelOrAddr, which uses the syntax defined in module Queries and
contains the two strings Telephone and Address as text (Figure 4.4). When
this text is parsed, it forms a tree of sort QueryTypes. Then the user is
asked to point at a subtree of sort QueryType in the just created instance,
by the select statement (Figures 4.5 and 4.6). The selected subtree (the
tree representation of either Telephone or Address) is stored in the variable
TheQueryType. Next, all names in the database are computed and shown
to the user in a new instance Names (Figure 4.7), from which the user selects
a subtree of sort Name (Figures 4.8 and 4.9). Note that this computation
is implemented by calling the function get-names in the computational
component. Finally, the result of looking up either a telephone number or
address is presented in the editor instance LookupResult (Figure 4.10).

Compilation of multiple source files

Consider the compiler presented in Section 4.3.3. Let the UI of this compiler
use an editor in which the user can write sentences like compile a. x b. x

SEAL: an experiment in UI definition

~ Make selection

lease select a subtree of

Figure 4.5: A dialog box asking to select a QueryType.

~ Queries : / nfs/ adam/ adal / koorn / Lookup/TelOrAddr
D tree te x t exoand he lo

~elephonej
ddress

67

Figure 4.6: The editor displaying QueryTypes, after selecting Telephone.

~ Queries : /nfs/ adam/ adal/koorn/Lookup/Names
D tree te)<t exoand helo

I.Jansen Smith Streepl

Figure 4.7: The editor displaying all names in the database, before selec­
tion.

[!I Make selection

Please select a subtree of sort Name

Figure 4.8: A dialog box asking to select a Name.

~ Quer 1 es : / nfs/ adam/ adal /koorn/Lookup/Names

Figure 4.9: The editor displaying all names in the database, after selection.

~ Queries : / nfs/adam/adal/koorn/Lookup/LookupResul t -- ~
□ tree text e><oand help

Figure 4.10: The editor displaying the telephone number of Jansen.

68 SEAL: a semantics-directed environment adaptation language

c. x, where a. x, b. x and c. x are names of source files. We add a button
to the UI of the editor using:

button Compile
enable

Filenames := Interface : get-filenames(root);
All := Interface : empty-source();
while Interface : files-left(Filenames) do

NextName := Interface : first-file(Filenames);
Filenames : = Interface : next-files(Filenames);
All : = Interface : concat(All, NextName.root)

od;
Code := Compiler : compile(All) ;
create("CodeView", Code)

Pushing the Compile button results in deriving the list of filenames,
concatenating all files , compiling them and showing the generated code in
a separate window.

Command line interpreter and automatic typechecker

Let the command line interpreter presented in Section 4.3.4 have two com­
mands: compile filename and typecheck filename. The SEAL script
for this active tool is:

active-tool Interpreter
when Interface : is-typecheck-command(focus root)
do

FileName := Interface : get-filename(focus root);
Errors := Typechecker : tc(FileName.focus root) ;
create("ErrorView", Errors)

when Interface : is-compile-command(focus root)
do

FileName := Interface : get-filename(focus root);
Code := Compiler : compile(FileName . focus root);
create("CodeView", Code)

The automatic typechecker presented in Section 4.3.4 can be defined as:

active-tool Typechecker
do

Errors : = Typecheck tc(focus root);
create("ErrorView", Errors);

SEAL: an experiment in UI defi.nition 69

Test program

The test program, described in Section 4.3.5, is our final example. It uses
a start-stop button that repeats the action as long as its condition holds.
Repetition may be stopped by pushing the button again. Between the
statements of an action, repetition may be interrupted as well. The SEAL
script for a Test button is:

start-stop button Test
enable

Input := Tester : generate-first-value();
Program := focus root;
while do

Result := Evaluator : run-program(Program, Input);
InputAndResult := Tester: make-pair(Input, Result);
create("ResultViev", InputAndResult);
Input ·= Tester: generate-next-value(Input);

od;

4.5.4 Miscellaneous issues

We did not yet describe which logical UI objects are added to what editors.
SEAL scripts are tagged with the name of an ASF +SDF module. All UI
objects described by a SEAL script tagged with name N, are added to the
UI of editors parameterized with the syntax defined by N. For example,
the DeMorgan menu entry presented in Section 4.5.3 is part of a script for
the Boolean language, defined by the module Boolean-syntax. The UI
objects for this language are defined as:

Configuration for language Boolean-syntax is

menu entry DeMorgan in Transformations

button

4.5.5 Implementation

To conclude our presentation of the SEAL language, we describe its imple­
mentation. We discuss how scripts are developed, how SEAL's typechecker,
its compiler, and its run-time system are implemented, and how the system
operates.

70 SEAL: a semantics-directed environment adaptation language

SEAL environment

SEAL scripts can be typechecked and compiled using a programming en­
vironment which is written in the ASF +SDF formalism. In this environ­
ment, editors using the SEAL language have two additional buttons for
typechecking and compiling which were created using SEAL.

Until recently, the generated environment for SEAL could not be used as
a separate, stand-alone tool. Changing a script thus required re-generating
the environment for SEAL, taking up to half an hour. Furthermore, this
set-up required quitting and restarting the computational component in
many cases as well due to excessive memory requirements. This was re­
solved by compiling the ASF +SDF specifications of the SEAL typechecker
and compiler to C source code using techniques described in [KW93] and
[Bra93]. Creating or changing a SEAL script without quitting the compu­
tational component is now done in less than half a minute including the
removal of outdated user-interface objects and the addition of new ones.
As a result, users can adapt the user-interface of their environments easily
and may experiment freely. Adding the ASF+SDF module defining only
the SEAL syntax to their specification is all that is required.

SEAL typechecker and compiler

The SEAL typechecker checks static constraints and, if any, reports them in
a separate window. These constraints include, for instance, using variables
that are not yet defined and restoring a focus position which was not saved
before.

The result of a compilation is a LeLisp [LeL91] source file in which func­
tions are defined implementing conditions and actions. The body of these
functions consist of calls to interface functions defined by the run-time sys­
tem which is described below. Furthermore, a compilation result contains
a configuration function for the language for which the script was writ­
ten. Calling this function leads to the addition of an entry to the so called
SEAL table which is stored in the data structure of the ASF+SDF Meta­
environment. The entry contains the list of logical UI objects in internal
format. This format contains the name and the type (button, active-tool,
etc.) of the object as well as the names of the functions implementing
conditions and actions.

SEAL: an experiment in UI definition 71

I Part II total II SDF ASF LL

Run-time and initialization 3688 - - 3688
Typechecker 3939 954 2985 -
Compiler 786 1007 2993 -

I TOTAL 11 11621 11 1961 I 5978 I 3688 I

Table 4.1: Overview of sizes of source code involved in SEAL.

SEAL run-time system

To minimize the amount of code generated by the SEAL compiler, we
have defined a "run-time" package implementing interface functions for
sort checking, focus movements, term-reductions, etc. Furthermore, there
is a small "mapping language" in which a user describes from where (i.e.,
from which directories) modules should be read by the ASF+SDF Meta­
environment, where that system should look up compiled SEAL scripts and
also what filename-extension is used by editors of a certain language. Texts
written in the mapping language, are saved in a special file called . seal in
the user 's home directory.

When creating an editor with name N.x, the system inspects the . seal
file. If it finds an entry where the filename-extension equals x, it loads all
necessary modules, it loads the necessary compiled SEAL scripts, and calls
the configuration function for the language involved. Finally, the editor
instance is created with the specified UI objects added to its UL

Whenever the environment's state is changed, for instance when a fo­
cus is moved, the editor where the change occurred reports this to the
ASF+SDF Meta-environment. The SEAL run-time system is then given
control. It inspects the SEAL table, evaluates conditions, and finally up­
dates the names of the functions implementing actions if necessary. A later
invocation of the UI object by the user then leads to calling the appropriate
function . However, when the UI object is an active tool, the appropriate
function is called immediately.

Quantification of code involved

How much code was involved to implement SEAL? To answer this question
we use the same counting scheme as before (cf. Section 3. 7). The sizes of
the sources involved in SEAL are listed in Table 4.1. The implementation
of SEAL can be subdivided into three parts: typechecker, compiler, and
run-time code. Some of these parts share code and a considerable amount

72 SEAL: a semantics-directed environment adaptation language

I Part LL I
- 2902

Initialization 786

I TOTAL - I - 1 3688 1

Table 4.2: Overview of sizes of SEAL source code involved at run-time.

I Part 11 total II SDF I ASF I LL I

Shared (with compiler) 1708 485 1223 -

Generated 634 49 585 -
Rest 1597 420 1177 -

I TOTAL 11 3939 II 954 1 2985 I - 1

Table 4.3: Overview of sizes of source code involved at typechecking-time.
Generated code was produced by the generator described in [Bra93].

of code was generated. The sizes of the sources involved in each part are
therefore listed in Table 4.2 through 4.4.

I Part 11 total 11 SDF I ASF I LL I

Shared (with typechecker) 1708 485 1223 -

Generated 127 30 97 -

Rest 2165 492 1673 -

I TOTAL 11 4000 11 1001 1 2993 1 - I

Table 4.4: Overview of sizes of source code involved at compile-time. Gen­
erated code was produced by the generator described in [Bra93].

4.6 Related work

We briefly discuss representational schemes found in UIMSs as well as the
mechanisms used to connect the user-interface to the application. For an
extensive survey of UIMSs we refer to [HH89 , Hee92].

4.6.1 Representational schemes

We briefly discuss representational schemes found in UIMSs and describe
how a dialogue developer creates a description.

Related work 73

The state4 transition diagram approach [Jac86] is mainly used for cod­
ing so called sequential dialogues. Given a start node, the UI asks the user
for input. After validating the input, a function in the computational com­
ponent might be called and the UI changes its state. Most systems using
this technique present the dialogue developer with a graphical editor to
edit the diagrams, using stepwise refinement for sub-dialogues. Others use
a textual description of states and transitions.

Basically, systems using the grammar approach [Mor81, Bos88, SY88]
for coding dialogue are similar to systems using state transition diagrams.
The main difference is that the former always use a textual description,
while the latter use a graphical description. Actions and input validations
are interleaved with terminals or non-terminals of the grammar.

User-interfaces built with systems using an abstract event approach
[Hil86, JMB+93] are based on a window environment in which the user
is able to select the next step in the dialogue sequence, for instance by
pushing a button using a mouse device. Thus, the user does not respond to
a question of which the answer determines the next step. This is called a
non-sequential dialogue. Systems using an event description approach are
more suitable for coding this type of dialogue than those using state transi­
tions or grammars. The basic idea can be described as: "when X happens,
do Y ", where X is an event and Y is the corresponding action. Note that,
in principle, this approach allows concurrent evaluation of actions.

In the direct manipulation interface approach [WR82, SM88, Mye90,
MGD+9o, MSK90, BL90 , Rem92] the dialogue developer uses a drawing
package to build a UI. Typically, the drawing package has a direct manip­
ulation [Shn83] user-interface. In some systems using this approach, the
dialogue developer may connect a function to a user-interface object by
selecting one from a list of all functions present in the computational com­
ponent . In other systems in this category, result values of these functions
(and also internal functions , such as activation of a button) can be used
as arguments of other functions . The dialogue developer then uses icons
representing functions and drags the "output" of one function icon to one
of the "inputs" of another function icon.

Despite the fact that we covered most approaches to representing Uis,
there are still a few worth mentioning. For instance CLG [Mor81] can be
used to describe Uis, but CLG covers far more than the description only.
Furthermore, there are "toolkits" extended with a UI definition language
in which the layout of windows is textually described.

4 This notion of state should not be confused with states as defined in Section 4.2.1

7 4 SEAL: a semantics-directed environment adaptation language

4.6.2 Connection mechanisms

We describe some mechanisms used by UIMSs to connect the user-interface
component (UI) to the computational component (CC). We concentrate on
the question: how well are the components separated from each other?

The use of active variables is found in Peridot [Mye90] and in its succes­
sor Garnet [MGD+9o]. These are special purpose data structures that may
be changed by either the UI or the CC. If the value of an active variable is
changed by the UI, the CC is notified and vice versa. This provides separa­
tion of the both components involved, since the response of component A
to changing the variable's value by component B is hidden from B. When
such variables are used for the run-time enabling or disabling UI objects,
an extension of the UI requires an extension of the CC: in some cases the
CC must change a variable's value to ensure the enabling (disabling) of the
newly added UI objects. In other words, the CC "knows" which objects
are present in the UL

Mapped variables [WL] are a variant of active variables. An extra level
of indirection has been added to improve flexibility. The indirection consists
of applying an arbitrary function to the value of an active variable before the
other component is informed. In [WL], these mapped values are written
in a database. Both components poll the database frequently to inspect
if any changes have been made. Mapped variables suffer from the same
disadvantage as active variables: the CC "knows" which objects are present
in the UL

Pre- and postconditions are suggested in [GF92]. This paper appeared
at a time where SEAL was being implemented and the technique suggested
shows some remarkable resemblances. Pre- and postconditions are asso­
ciated to each UI object. Preconditions are used to enable or disable the
object at run-time and are thus similar to SEAL's conditions. The postcon­
ditions are used to manipulate predicates, which are written on a "black­
board" after the execution of the action of the object. These predicates are
used in the preconditions. Note the similarity between the "blackboard"
used here and the database approach of [WL]. The separation of the UI
and the CC is, in our view, somewhat obscured by allowing the CC to
manipulate the blackboard. The use of postconditions to manipulate the
blackboard's contents has another disadvantage: addition of a new object
to the UI might require an adaptation of the postconditions of existing
objects.

Taps [Ber92] are yet another way to connect UI and CC. In this scheme,
every command invoked by the user (callback) is intercepted and may trig-

Discussion and conclusions 75

ger one or more taps which manipulate the UI. Here too, the separation
of UI and CC is somewhat obscured by allowing the CC to trigger taps as
well.

Abstract events [Hil86, JMB+93] provide a way to separate UI and CC
such that the one does not "know" the contents of the other. In this scheme,
any change leads to broadcasting a message (event) reporting the change.
Each component in the interactive system may then respond to the message
or it may simply ignore it. Note that the sender of the message, i.e. , either
the CC or a UI object, does not "know" who is listening. The separation is
not 100% complete however, since adding a new object to the UI requires
an adaptation of the network transporting the message: the CC must now
listen to this object as well, or must inform the object when it should enable
(disable) itself. The latter may require adapting existing code in the CC.

4. 7 Discussion and conclusions

4.7.1 Summary

We have argued here that a UIMS should incorporate availability of func­
tions, and we have shown that this can be achieved by dividing the set
of functions that the computational component offers into two sets: state
inspections and state manipulations. The notion of state, i.e., the current
data stored in the application, is the key to this division.

To each UI object (button, menu entry, etc.) managed by the UIMS at
run-time, we associate a condition (state inspection) and an action (state
manipulation). The action is made available to the user, provided that
its corresponding condition holds. As a consequence, the application must
notify the UIMS whenever its state changes, since the UIMS must then
re-consider the availability of actions using the corresponding conditions.

In the application domain of interactive programming environments
based on a collection of syntax-directed editors, a UI can be described
as a list of logical UI objects which are added to the default UI of an ed­
itor. As an experiment, a language to define Uls used in the ASF+SDF
Meta-environment was developed (SEAL). All necessary run-time code is
generated from the UI description by the SEAL compiler. Logical UI ob­
jects offered by the language include buttons, start-stop buttons, menu
entries, menus, and active-tools. As a result , all obJects, including edi­
tors, have a predefined "look and feel". SEAL shows the feasibility of our
approach in the above mentioned application domain.

76 SEAL: a semantics-directed environment adaptation language

4.7.2 Advantages

There are four advantages to our approach.
First, a dialogue developer is freed from all syntactical aspects such

as handling mouse or keyboard input, and defining graphics. As a con­
sequence, a dialogue developer can concentrate on the semantic aspects
(which functions are available in the UI, what are their enabling condi­
tions, how are their arguments and results handled).

Second, a complete separation of the computational component and
the user-interface component of an interactive system is achieved, even
for the aspect of availability of functions. This is due to the fact that
the application knows only that there is a UI, some objects of which may
depend on its state. However, the application does not know which objects
are involved or how they depend on its state. It merely reports a state
change to the UIMS, after which it is the responsibility of the UIMS to
take appropriate action. Code managing UI objects at run-time is thus
completely separate from application code. Furthermore, new UI objects
may be added freely to the UI description. That is , such an addition never
requires an adaptation of the description of existing objects, as may be the
case when postconditions are used.

Third, our approach yields Uls with a uniform "look and feel". As a
result, once a user is familiar with such a UI, a new system can be learned
very quickly. On the other hand, this uniformity may also be considered a
disadvantage because a user is unable to customize the "look and feel" of
the UL We consider uniformity of Uls more important.

Finally, a dialogue developer does not have to write any code since all
code is generated from the UI description. Even the code "connecting"
the computational component and the user-interface component is either
generated or is part of the default UIMS code.

4.7.3 Disadvantages

As we have seen, the uniform "look and feel" of Uls may be considered a
disadvantage. Furthermore, there are two obvious and two somewhat more
technical disadvantages.

Two obvious disadvantages are the fixed, and thus limited, set of UI
objects and the restriction to a particular application domain.

A more technical disadvantage is the inability to generate a UI based
on direct manipulation [Ols87, pg. 97-101]. One of the basic aspects of
a direct manipulation UI is providing semantic feedback (by changing the

Discussion and conclusions 77

graphical appearance) during the manipulation of an object by the user.
Our approach only provides semantic feedback after the user has manip­
ulated an object (i.e. , changed the state). To be able to generate direct
manipulation Uis, the notion of state should probably be extended, or such
a notion should be made part of the UL This is clearly an area for future
research.

Another technical disadvantage is the obligation to generate sequential
code. To illustrate this, let us assume we generate concurrent code and con­
sider , for example, two buttons which are enabled. When a user activates
both buttons in a short time interval, both try to change the application's
state; one of them may fail to do so because the other button has already
changed the state. Thus after the evaluation of the condition of one of the
buttons , the state is changed by the other button, but since the action has
already been invoked, the re-evaluation of the condition comes too late,
possibly causing the action to fail. In the case of generating sequential
code, the action of the button first-started is performed, after which the
condition of the second button is automatically re-considered leading to its
disablement. Thus in general, generating concurrent code for more than
one object requires in any case that its condition is independent of the ac­
tion of any other object . The independence check needed can probably be
derived from the UI description, but this too will require more research.

4. 7.4 Final remarks

SEAL is our first experiment in UI definition and UI generation, and we only
presented some simple examples of its use. We did not discuss its practical
merits when defining "real-life" environments , but we will do so in the next
chapter. However, we have already shown that the complete separation of
the computational component and the user-interface component is a major
advantage, as is the absence of any hand-written code. The users of the
ASF+SDF Meta-environment are not aware of the disadvantages as they
view SEAL as an extension rather than as a UIMS with restrictions.

Returning to our starting point , the question of how to connect seman­
tic tools to a syntax-directed user-interface , we could say that such tools
can be connected by using code generated from a textual description, in
combination with an extensible syntax-directed user-interface and a UIMS
which controls the interface at run-time.

78 SEAL: a semantics-directed environment adaptation language

Chapter 5

Generating applications
with SEAL: some case
studies

We present five case studies of user-interface generation with SEAL.
Each illustrates a typical application area of the generation of interac­
tive programming environments by the ASF+SDF Meta-environment.
The practical value of the SEAL formalism is assessed and a number
of suggestions are made to improve or extend it.

5 .1 Introduction

In the previous chapter we introduced SEAL, a dedicated user-interface
definition language for the ASF+SDF Meta-environment . The main topic
of this chapter is an assessment of the practical merits of SEAL when
defining user-interfaces.

For this purpose we give five user-interface definitions, each illustrating
a typical application area. Each definition is first briefly introduced after
which its SEAL script is presented, the resulting programming environment
is shown, and the practical merits of SEAL in this application area are
discussed. The definitions presented can also be used for tutorial purposes.

Chapter overview

Section 5.2 contains a "classical" programming environment consisting of a
syntax-directed editor, a typechecker, and a compiler. Section 5.3 describes

79

80 Generating applications with SEAL: some case studies

an environment for the ,\-calculus with as main topic "program transforma­
tions". Section 5.4 illustrates an environment for a programming language
featuring input from and output to a simulated terminal. An example of
an environment used for simulating parallelism is presented in Section 5.5.
Our final application area, an environment computing import relations, is
presented in Section 5.6. Section 5. 7 lists achievements and limitations.
In Section 5.8 we sketch the future development of SEAL. Finally, we list
conclusions in Section 5.9.

5.2 Simple programming environment

Our first case study is a simple programming environment consisting of
a syntax-directed editor, a typechecker, and a compiler for a language L.
The first enables the user to manipulate £-programs, the second checks
£ -programs for static semantic errors, and the third compiles £-programs
to an intermediate language.

Consider a computational component generated by the ASF +SDF Meta­
environment consisting of a syntax-directed editor for L, a type check func­
tion, and a compile function. Let these functions be defined as:

typecheck (Program) -> Error-list
compile (Program) -> Intermediate-code

Both functions must be "connected" to the user-interface of the L-editor
in the resulting interactive programming environment. The tree residing in
the L-editor is the argument of both functions, the result of the type check
function is to be presented in a window as feedback to the user, whereas
the result of the compile function is to be written to a file.

The notions of windows or files do not exist in SEAL, editor instances
must be used instead. As a consequence, SEAL uses the same name for
both the editor and its corresponding file. Thus, presenting the result of a
function in a window amounts to creating an editor instance with arbitrary
name. Furthermore, writing the result of a function to a file named F
amounts to creating an editor named F.

Writing a SEAL script to obtain the environment sketched above re­
quires several steps. First, we must ask ourselves which functions should
be connected to the user-interface, where do their arguments come from,
and how to handle their results. These questions are already answered
above. Second, we must ask ourselves what the enabling conditions for
both functions are. Clearly, these conditions are equal: the tree in the

Simple programming environment

Configuration for language Lis
button Typecheck
vhen focus root is Program
enable

Prog := focus root;
create("Typecheckerrors", L-tc typecheck(Prog))

doc : "typecheck an L program"

Figure 5.1: SEAL script for a button typechecking L programs.

81

£-editor must be a "Program". Finally, because ASF+SDF is a modular
specification formalism, we need to indicate the context (i.e. an ASF+SDF
module) in which a computation should be performed. If the typecheck
function is defined in module L-tc the context is L-tc.

We are now in a position to discuss the SEAL script (cf. Figure 5.1) for
adding a Typecheck button to an £-editor The Typecheck button is only
enabled if the focus tree, when moved to the root, is of sort Program. When
the user of an £-editor presses this button, the whole tree is assigned to the
SEAL variable Prog. Next, typecheck(Prog) is computed in the context
of L-tc. A new editor instance named Typecheckerrors is created to show
the result. The definition of the Compile button is similar and therefore
omitted.

5.2.1 Using computed editor names

In the example above , a fixed named is used for the editor instance display­
ing the result of a function call. SEAL also allows the use of a computed
name for an editor. This feature is for instance used in the script for
the programming environment for SEAL itself1 , a part of which is shown
in Figure 5.2. An impression of the resulting programming environment
for SEAL is given in the Figures 5.3 through 5.5. Here, the function
outputname maps the language name - SEAL- to "SEAL.seal.ll". When
the Compile button is pressed, an editor is created that uses a file with that
name. However, we would prefer to use the name of the editor to which the
Compile button was added as argument, but SEAL lacks the primitives to
obtain it. Moreover, the file corresponding to the created editor is always
created in the current directory, or in a fixed directory when outputname
yields a full path name.

1 Here , we use the previous version of the implementation of the SEAL environment .
That is, the interpreted version, not the compiled version as described in Section 4.5.5.

82 Generating applications with SEAL: some case studies

Configuration for language SEAL is
button Compile
vhen focus root is SEAL-spec
enable

Script : = focus root ;
Name := SEAL-Compiler : outputnarne(Script);
create(Narne, SEAL-Compiler : compile(Script))

doc : "compile a SEAL script"

Figure 5.2: Part of the SEAL script for the SEAL language.

~ SEAL : /nfs/adam/ ada 1/ koorn/C0NFIG/EXAMPLES/SEAL. seal f;!)
D tree te><t e><pand help

Typecheck ont1gurat.1on or I anguage ::,'-"'- 1 s • Coapile

!! button Typecheck
when focus root h SEAL-spec y
enab 1 e

Ser ipt focus root;
ere ate ("Type checker rors" , SEAL-tc typecheck (Seri pt)) ' doc "typecheck SEAL specification" ~:

e
but ton Campi le ,,,
"-'hen focus root is SEAL-spec
enable ,,

Seri pt focus root;
Name SEAL -Campi 1 er outpu tname (Seri pt) i
create(Name, SEAL-Campi ler : compi le (Sc ript))

doc : "compile SEAL specificat1on"I 1,
~ : , ' " : - ',' ' ' ... 6 .

Figure 5.3: A SEAL editor containing its own script.

[!I SEAL-Comp1 ler : /nfs/adam/ada l /koorn /CONFIG/EXAMPLES/SEAL. seal .11 ~
D tree text e xpand help

(de #: SEAL : SE AL:T ypecheckCondFuncl (instance ui-item SEAL)
(and (# :SEAL:all-mods-e><istsp (list "SEAL-tc") SEAL)

(#: SEAL:all-tt-cons1stentp (list instance) SEAL)
(#: SEAL :focus-sort-is instance (l ist ' root) "SEAL-spec" SE AL

(de #: SE AL: SE AL:TypecheckActfuncl instance ui-item SEAL)
(tag error

(ifn (#: SEAL:all-mods-e ><istsp (list "S EAL -tc") SEAL) (exit erro
(ifn (#: SEAL:all -tt-cons istentp (list instance) SEAL) (exit err
(ifn (#: SE AL :var :check "Script" 't erm (#:SEAL:get-fo c us-phyl um 1·1

Figure 5.4: The result of compilation.

[!] SEAL-tc : /nfs/ adam/ ada 1 /koorn/CONF I G/EXAMPLES/Typecheckerrors ~
D tree te><t e><pand help

No errors found ... ~
~ - , .. ,. .,. .-i;

Figure 5.5: The result of typechecking.

Program transformations 83

5.2.2 Discussion

Connecting functions offered by the computational component to user­
interface objects is straightforward. The obligation to use an editor in­
stance, instead of a file, to save the result of a compilation is inconvenient.
Furthermore, the mechanism in SEAL to use computed filenames lacks a
primitive to obtain the name of the editor to which a user-interface object
is attached. To solve these problems we suggest to:

• extend the create statement such that it only creates a file when
indicated; and

• add a primitive that yields the name of the current editor.

5.3 Program transformations

Our second case study illustrates a concept frequently found in interactive
programming environments: transformations. A transformation replaces
the program, or a part of it, by an equivalent one. In many cases such a
transformation is based on a conditional rule stating that a program part
matching the left-hand side of the rule may be replaced by the right-hand
side of the rule or vice versa. The condition and/or the replacement may
also require additional information. For an overview of program transfor­
mations we refer to [Par90].

As a typical example, we will consider an environment for the >.-calculus
[Gor88, Bar84] . The essential part of the SEAL script2 for that environ­
ment is given in Figure 5.6. An impression of the resulting environment
is shown in the Figures 5.7 through 5.10. We adapted the SEAL script
from [Deu92] by adding an Undo facility and by changing the initialization
procedure. Buttons for 'T/ conversion, a conversion, and left-most reduction
of a >.-expression are similar to the button for (J reduction and are there­
fore omitted. The script illustrates four concepts: program transformation
without using external information (Beta button) , program transforma­
tion using external information (Expand button), undoing a transformation
(Undo), and initializing external information (Ini t button). These concepts
are discussed below.

2We use this script here with permission of Arie van Deursen, CWI, Amsterdam , The
Netherlands.

84 Generating applications with SEAL: some case studies

button Beta
when focus is L-EXP and Convert : is-beta-redex(focus)
enable

FocusVar := focus; create("Undo", Undo : save-1-exp(FocusVar));
focus := Convert : beta(FocusVar)

doc: "Perform one beta reduction, if possible"

button Expand
when focus is L-EXP and Let : is-expandable(focus)
enable

FocusVar := focus; create("Undo", Undo : save-1-exp(FocusVar));
LetDefs : = "Definitions" . focus root;
focus := Lambda : expand(FocusVar , LetDefs)

doc: "Expand a lambda-expression according to its Let-definitions"

button Undo
when focus is L-EXP and "Undo" . focus is Saved-L-EXP
enable

UndoVar := "Undo" . focus down;
FocusVar := focus; create("Undo", Undo
focus := UndoVar;

doc : "Undo any transformation . "

button Init

save-1-exp(FocusVar))

when "Input" . focus root, down is Unix-filename
enable

File := "Input" . focus root, down;
create("Help2", Undo , readfile(File), LET);
LetDefs : = "Help2" . focus root;
create("Definitions", LetDefs);

enable
create("Help1", Undo,

"The file containing your definitions is: <Unix-filename>",
Unix- filename);

File := select("Help1", Unix-filename);
Fileinput : = "Help!" . focus root;
create("Input", Fileinput);
create("Help2", Undo, readfile(File), LET) ;
LetDefs : = "Help2" . focus root;
create("Definitions", LetDefs);

doc : "Read in a number of Let-definitions"

Figure 5.6: Part of the SEAL script for the Lambda language

Program transformations

{!I Lambda : /nfs/adam/adal/koorn/CONFIG/EXAMPLES/Lambda/Nat. lambda i ~
D tree text exoand he lo

I nit add
Expand (succ I< lambda f . lambda X :lD
Alpha (succ (succ zero))

Beta

Eta

LMStep

LMReduce

Undo .~
Figure 5.7: A Lambda editor containing a representation of 1 + 2.

{!I Undo : /nfs/adam/ada1/koorn/CONFIG/EXAMPLES/Lambda/Defin1 tions - ~
D tree text exoand he 1 o

((I et
(zero : lambda f x . x

l2J

(succ : lambda n f)(. n f (f x))
(add : lambda m n f x m f (n f x)
(i szero : lambda n . n (lambda x . fa 1 se) true)
(true : lambda >< • lambda y . >,,)

(false : lambda x . lambda y . y)
(not : lambda t . t false true)
(if-then-else lambda eel e2 . eel e2)
(and lambda x y . if-then-else x y false
(fst 1 ambda p p true)
(snd lambda p p false)
(pair lambda el e2 lambda f f el e2)
(f- Y : lambda f . (1 ambda >< • f ()(k)) (lambda x . f (x x))
(curry lambda f x1 x2 f (x1 x2))
(uncurry lambda f p f (fst p) (snd p))
(k.., : 1 ambda x v . x v v)

Figure 5.8: An editor containing the "let definitions".

[!) Undo : / nfs/adam/adal/koorn/CONFIG/EXllMPLES/Lambda/Undo ~
O tree text expand help

IThe last replacement was: zero!

Figure 5.9: The editor containing the last replacement.

[!) Undo : /nfs/adam/ adal / koorn/CONFIG/ EXAMPLES/Lambda/Input ~
O tree text expand help

The file containing your definitions is: l"D.efinitions"I ~

' .• ,if:i;ii

85

Figure 5.10: The editor containing the name of the file read to obtain "let
definitions".

86 Generating applications with SEAL: some case studies

5.3.1 Local transformations

A local transformation is a program transformation which does not need
any external information. The button Beta in Figure 5.6 invokes such a
transformation. It applies a (3 conversion to the expression in the focus.
This conversion simulates evaluation of a function in the >.-calculus, i.e., it
states that expressions like (lambda V .E1)E2 are equivalent to E1 [E2/V].

Here, V is a variable and E1 [E2/V] represents E1 with all occurrences of V

replaced by E2.
The enabling condition for the Beta button amounts to checking that

the expression in the focus is a >.-expression of the form (lambda V .E1)E2.

In the SEAL script this is expressed by a check that the focus is of sort
L-EXP - >.-expression- and by calling the function is-beta-redex in mod­
ule Convert which determines whether or not the focus is of the proper
form.

The action for the Beta button consists of two tasks. First , the expres­
sion in the focus is copied and saved in an external editor for the purpose of
undoing this transformation. Next, the actual transformation is performed
by assigning the result of calling beta in module Convert to the focus. The
actual (3 conversion is performed by this function call.

5.3.2 Context-dependent transformations

A context-dependent transformation uses external information. An expan­
sion in the >.-calculus is an example of such a transformation. It uses let
constructs, which can be viewed as shorthands for >.-terms. Let constructs
are used to represent all kinds of mathematical objects. For example, in
Church's classical work [Chu41], a natural number N is represented as
lambda f x . fN x. A way to obtain this is by defining:

(let (zero: lambda f x . x)
(succ: lambda n f x . n f (f x)))

According to these definitions, succ (succ zero) may be (3 reduced to
lambda f x . f (f x) . However, before (3 reduction can take place, each
name must be replaced by its definition in the corresponding let definition.

The Expand button implements such name expansions. Its condition
uses the function is-expandable which searches for expandable names in
the focussed expression. The action of the Expand button uses the let def­
initions found in another editor instance called Definitions. In this way
the definitions may be changed by the user at run-time. The expansion it­
self is implemented by calling the function expand with the focus expression

Program transformations 87

and the definitions as arguments. This function can not be called if there
are no definitions , i.e., if the editor called Definitions is not present. Al­
though a check for its existence lacks in the script, the need for it is caught
by the SEAL compiler which adds it at compile time.

5.3.3 Undoing transformations

The result of a transformation may not be what the user expected. It
is therefore convenient to have an undo facility. The script in Figure 5.6
provides a one-step undo. Before invoking a transformation, the focus ex­
pression is saved in an editor instance called Undo by using the create

statement. This statement creates an editor instance when it is not yet
present, otherwise it is re-used. The Undo button's action simply swaps
the focus expression and the saved expression. For aesthetic reasons, the
text corresponding to the A-expression in the Undo editor is preceded by
"The last replacement was:" (cf. Figure 5.9). This string in combina­
tion with the saved A-expression forms a term of sort Saved-L-EXP where
the saved expression is its first child.

Based on this one-step undo it is easy to extend the mechanism to an
N-step undo by saving all transformed expressions in a list. If the Undo
button is invoked, the last item in the list replaces the current expression
and the item is deleted from the list.

5.3.4 Initializing external information

Expansions use let definitions that may be changed by the user dynam­
ically. These definitions must therefore be saved in a file for later use.
Furthermore, several files may contain such definitions. We also want to
allow the replacement of the currently used definitions by definitions saved
in a file. This implies that the file containing definitions may be changed
at run-time. The Expand button uses definitions residing in an editor us­
ing a fixed file called Definitions. We therefore need a mechanism to
ask the user to give a filename, to read this file and copy its contents to
Definitions. This functionality can be implemented using SEAL as well,
see the Ini t button in Figure 5.6.

Ini t is an example of a SEAL button with two condition-action pairs.
Invoking the button leads, by definition, to the execution of the action
associated to the first condition that holds. In order to enable the user to
change the filename we save the "current filename" in an editor instance

88 Generating applications with SEAL: some case studies

Input. This editor does not exist at system start-up time, but it does exist
after the first invocation of Ini t.

Consider the situation where the Input editor instance does not yet
exist. The condition of the first condition-action pair of Ini t can not be
evaluated and, by definition, fails. The condition of the second pair is
empty and, again by definition, succeeds. In this situation we have to ask
the user to provide a filename, read the file, copy it into the Definitions
editor, and, as a side effect, create the Input editor for later use. Ques­
tions like "Please give a filename" are implemented in SEAL by using the
select statement in combination with a temporary editor instance. Such
editors are created by using the create statement with four arguments:
Name, Module , Text, and Sort. It creates an editor named Name that uses
the syntax defined by module Module. The editor's text is Text and pars­
ing it should yield a tree of sort Sort . The text argument may be one
or more strings or a call to another primitive, readfile . This primitive
has one argument, either a string or a variable, indicating the name of the
file to be read. Implementing the described functionality in SEAL is done
by taking the following steps. Create a temporary editor Help1 contain­
ing a placeholder for a filename. Let the user fill in that placeholder and
assign the result to the variable File. Copy the contents of Help1 to the
permanent editor Input. Create a temporary editor Help2 that uses the
text resulting from readfile (File). Copy the contents of Help2 to the
permanent editor Definitions .

Now consider the situation where the editor instance Input exists as
a result of an earlier invocation of Ini t. The tree residing in Input has
a subtree representing a filename as the first child of the root, so now the
condition of the first condition-action pair of Ini t succeeds. Note that it
also succeeds if the user has changed the filename at some moment after
the first invocation, unless it is syntactically incorrect. If syntactically
correct, we obtain the filename by inspecting the first child of the whole
tree in Input. Here, the user has already indicated which file containing let
definitions to use so we proceed with reading and copying it to Definitions
as described above.

5.3.5 Discussion

We have shown that both local and context-dependent transformations
can be implemented in SEAL in a straightforward manner. Adding a one­
step undo, or even an N-step undo, is straightforward as well. However,

Program transformations 89

initializing information to be used in a context-dependent transformation
is rather inelegant for the following reasons:

• the same sequence of four statements appears in both actions of Ini t;

• reading a file can only be achieved by using the statement for creating
temporary editor instances;

• the name of the last file read is global state information which can
only be saved in an editor instance and the corresponding window is
therefore constantly on the screen; and

• the necessity to use temporary editors in combination with place­
holders and the select statement just for asking a filename is rather
baroque.

To solve these problems we suggest to extend the SEAL language as follows:

• provide a macro or procedure mechanism to prevent repetition of
identical sequences of statements;

• introduce a notion of global variables together with a mechanism to
save their value rather than creating a new editor instance for that
purpose;

• introduce a keyword browser, resulting in a user dialogue that uses
a file-browser to yield a filename, which may be used as an argument
of the readfile primitive; and

• introduce a parse (Module, Text) primitive where Text may be zero
or more strings.

With these improvements, reading a file of the user's choice and copying it
in an editor may be expressed as:

create("Definitions", parse(Let, readfile(brovser)))

This single statement could then replace all statements used in the Ini t
button. For the name of the external file containing let definitions, used in
the Expand button and set in the Ini t button one could use:

global variables: File 'l.'l.declare File as a global var. in Init
File := parse(Names, browser) 'l.'l.Names defines the syntax of filenames
focus := Lambda : expand(FocusVar, File . focus root) 'l.'l.in Expand

90 Generating applications with SEAL: some case studies

5.4 Interactive input and output

An environment for programming languages featuring input and output
(I/O) is the subject of our third case study. Generating an environment
for these languages from an ASF+SDF specification alone is impossible be­
cause there are no I/O primitives in ASF+SDF. An elegant solution is to
model program execution by the computational component generated from
an ASF+SDF specification and to handle I/O by SEAL. This solution illus­
trates two interesting aspects: the alternation of ASF+SDF computations
and performing I/O, and validating user input.

This behavior may be implemented by a conditional loop: execute the
program in ASF+SDF until I/O is needed, take care of the I/O in SEAL,
continue execution, ... , until the program terminates. The switch from
executing the program to performing I/O is modeled by an environment
containing among others the execution-status. This execution-status indi­
cates whether the program is running, needs input, needs output, or has
terminated.

Validating the user input is necessary to make sure that the input offered
to the computational function is syntactically correct. For example, if the
program needs a number as input, it should be checked that the text entered
is indeed a number. If it is not, the user should be prompted again until
it is. This is obtained by combining an ASF +SDF function for computing
validity, SEAL statements for prompting the user and obtaining input , and
a conditional loop.

The SEAL script for adding a button to invoke program execution
(Eval) and to initialize the environment is shown in Figure 5.11. An im­
pression of the resulting environment is shown in the Figures 5.12 through
5.14. Within the action of the Eval button of Figure 5.11 we decide what
to do next - terminate, perform output, or perform input - by inspect­
ing the execution-status stored in the environment. The environment is
modeled by an external editor with name Environment which is initialized
with execution-status running. Furthermore, user input is modeled by ask­
ing to fill in a string for which we use a select statement in combination
with a <STRING> placeholder, which is saved in the environment for re-use.
The SEAL statements used in the Initialize button are similar to what
we encountered in Section 5.3.4 and discussion of this button is therefore
omitted. Below we discuss modeling output , modeling input , and finally
the complete script.

Interactive input and output

Configuration for language L2 is

button Eval
when focus root is PROGRAM and "Environment" . focus root is ENV
enable

Env := "Environment" . focus root;
Prog := focus root;
Text := L-eval : init-output();
while not L-eval : terminated(Env) do

od

Env := L-eval : eval-until-io(Prog, Env); 'l.'l.eval until I/O
Continue := L-eval : make-true();
while L-eval: output-needed(Env, Continue) do 'l.'l. output needed?

Text := L-eval : add-output(Text, Env);
create("Terminal", Text);
Env := L-eval : output-added(Env);
Continue := L-eval : make-false()

od;
Continue := L-eval : make-true();
while L-eval : input-needed(Env, Continue) do 'l.'l. input needed?

od

Text := L-eval : add-input-prompt(Text, Env);
create("Terminal", Text);
Userinput := select("Terminal", STRING);
Text := L-eval : update(Text, Userinput);
create("Terminal", Text);
while not L-eval : input-is-ok(Env, Userinput) do

Text := L-eval : add-error-input-prompt(Text, Env, Userinput);
create("Terminal", Text);
Userinput := select("Terminal", STRING);
Text := L-eval : update(Text, Userinput);
create("Terminal", Text) od;

Env := L-eval : input-added(Env, Userinput);
Continue ·= L-eval : make-false()

doc: "Execute a program"

button Initialize
when focus root is PROGRAM
enable

Program := focus root;
create("Stringmeta", L-eval, "<STRING>", STRING);
String := "Stringmeta" . focus root;
create("Environment", L-eval : make-env(Program, String));

doc: "Initialize the environment"

Figure 5.11: SEAL script for the 12 language

91

92 Generating applications with SEAL: some case studies

(!I L2 : / nfs/ adarri/ adal / koorn/ CONfIG/ EXAMPLES/ 102/ L , 12
□ tree text exoand he 1 o

Eval

In1t1a11ze
~•91n
dee 1 are integer
dee 1 are i nteger
dee l are 1 nteger y
output("Program 1s running");
X ! : 5 ;
1 nput (z);
output ("You entered t he value
y ; = 7 + ><i
output (" y 1s i nitiall y: " , y) ;
y : = y •z ;
output(" y now set to y+z, wnich
outout("Proaram has finished ")

~

Figure 5.12: The editor containing the program.

[!} L-eval : / nfs / adall'l / adal / koorn/ C0NfIG/ EXAHPLES/ l02/ Env1ronment I~
D tree text e xoand helo

y integer z i ntegar x integer ;
in i tia l ized
1 ;

<STRING > .
initial)1--------------------------1:'il

... "

Figure 5.13: The editor containing the "environment".

~ L-eval : / nfs/ adam/ adal / koorn / CONFIG / EXAMPLES/ I02/ Term1nal ~
0 tree te x t exoand he 1 o

..'.' Program 1s running "
Plea &; & enter a number for var i able

a s a str i ng : " 5 "
" You entered the value S for v ar i able z "
"y h i n i t i ally : 12"
"y now set to y+z , whi c h i s : 17"
" Program has finished"

Figure 5.14: The editor containing the "terminal" .

Interactive input and output 93

5.4.1 Modeling output

The output is modeled as a text - list of strings- displayed in a separate
editor instance called Terminal. Whenever output is needed during the
execution of the program, the evaluation function eval-until-io changes
the execution-status in the environment and puts the string to be written
to the terminal in the environment. In the action of the Eval button the
function add-output is called with the current text and the environment
as arguments. It updates the text displayed in Terminal and resets the
execution-status to executing by calling the output-added function.

5.4.2 Modeling input with validation

User input from the "terminal" is modeled by adding a special string to the
text. This string contains the prompt and a placeholder to be filled in by the
user. The prompt may for instance be "Fill in a number:". Analogous
to handling output, the eval-until-io function takes care of changing the
execution-status. Furthermore, it sets up the prompt in the environment
in the same way as a string that has to be written to the "terminal". The
add-input-prompt function concatenates the prompt and the placeholder
and adds the result to the text. Next, we use the select statement to
ask the user to fill in the placeholder. The semantics of select is such
that the user is asked to point at any subtree of sort STRING. It is thus
not certain that the placeholder has been filled in, but in any case, the
variable Userlnput contains the selected string. To make sure that the
text in the "terminal" displays the selection result , we replace the [prompt,
placeholder] pair by a [prompt, selection-result] pair in all cases. This is
implemented by the update function.

After the user has entered a string, we must validate that it is well­
formed, e.g., that it is indeed a number. Validation itself is done using a
call to the input-is-ok function. If it is not valid, the user is prompted
again, using an "error prompt" until it is. Such a prompt may e.g. be
" ... is not a number. Fill in a number:" where " ... " is the previ­
ously supplied string. Validation is implemented by using a while loop in
combination with a call to add-error-input-prompt3.

Finally, the necessary input value, stored in the variable Userlnput is
copied into the environment and the environment's execution-status is set
to executing by a call to the input-added function.

3 In Section 5.5.2 we show an alternative approach to validating user input

94 Generating applications with SEAL: some case studies

5.4.3 Modeling the terminal and the environment

After having modeled I/0, we discuss the remainder of the Eval button.
The condition of Eval is a conjunction of "The program must be of sort
PROGRAM" and "the environment must exist". The latter is implemented
by checking that the Environment editor instance is of sort ENV, i.e. , an
environment. The action of Eval initializes the text to the empty text , by
calling ini t-output , and enters a conditional loop. Next, we execute the
program, by calling eval-until-io, until I/0 is needed. Here we arrive at
a point where we have to decide whether I/0 is needed or not. In the latter
case, the execution status is terminated. If I/0 is needed, the environment
is inspected and we decide to perform input or output.

SEAL lacks an if-then-else statement we are therefore obliged to use,
or rather mis-use, the while statement for this purpose. In both cases where
we use while as an if statement we use the variable Continue to prevent
looping. It is set to true or false by calling make-true or make-false

respectively.
After handling I/0 if necessary, we return to the conditional loop which

inspects the execution-status in the environment. If it is terminated the
loop is exited.

5.4.4 Discussion

Generating a programming environment for a language featuring I/0 is pos­
sible using SEAL. Simulating a terminal is straightforward for both output
and user input except for the necessary text update after user input due to
the semantics of the select statement. We have shown in two cases that
conditional looping is a sufficiently strong concept: in the "execute; i/o;
execute; ... " loop and in case of "repeat asking user input until the answer
is valid". However, initializing external information -the environment- is
inelegant for reasons already mentioned in Section 5.3.5. Clearly, the use of
the while statement as an if-then-else is very inelegant. Furthermore,
the number of statements used in the action of Eval is rather large making
it hard to read. As already stated in Section 5.3.5, it indicates the need for
abstraction through macro 's or procedures.

Another interesting point is the role of the Text variable. Each time a
string is added, it is displayed using the create statement. The text could
also be made part of the environment in which case the Terminal editor
instance must be defined as a view on the text field of the environment.
This approach would shorten the number of statements considerably and

Simulating parallelism 95

thus enhance readability. For example, if the environment is implemented
as a global variable Env and the text is its first child we could use:

create("Terrninal", Env . down)

To solve the problems mentioned we suggest to improve SEAL such that:

• an if-then-else statement is available; and

• create allows viewing a part of a variable.

5.5 Simulating parallelism

A programming environment for a specification language for parallel sys­
tems, such as PSF [MV90], LOTOS [!SO87] and µCRL [GP91] is our fourth
case study. We present an environment for LOTOS featuring a simulator.

In this type of languages the notions of events and choice play an im­
portant role. As an example, consider a specification of a machine vending
coffee or tea. A person, approaching the machine for a drink, has to make
a choice: insert a nickle, a dime or a quarter. Actual insertion of a coin
is called an event. If tea is cheaper than coffee and the sum of all coins
inserted exceeds or equals the price of tea, the person may have another
choice as well: give me tea, or, insert more coins until the price of coffee is
reached. Note that after reaching the price of tea, the machine also has a
choice besides accepting coins: it may now serve tea.

A simulator is used to study the behavior of a specified system. In the
example above this might amount to test whether the machine is willing to
serve tea after inserting enough coins. If not, the behavior of the machine
is found incorrect. Note that at any moment in time a number of events
may occur. Initially, only the insertion of a nickle, a dime, or a quarter
is possible and one of these must be chosen. A simulator models this
by presenting a set of possible events to its user: { nickle, dime, quarter}.
The simulator user now makes a choice and the selected event is then
processed by the simulator resulting in a new set of possible events. After
"inserting" sufficient coins this set may become { nickle, dime, quarter, tea}
and selecting tea then models the machine serving tea. After each event the
simulated system changes its state: initially no coins have been inserted,
after a nickle event we arrive in a state indicating "total amount of money
now inserted is 0.05$", etc. After a tea or coffee event the system may be
in a state encountered earlier. In general, parallel systems lead to a graph
of states called the process graph in which each state is a node.

96 Generating applications with SEAL: some case studies

Configuration for language LOTOS is

button Simulate
when focus root is SPECIFICATION
enable

create("help", Sim_Interface, "<VALUE_EXPRESSION>", VALUE_EXPRESSION);
ValueExprMetaVar := "help" . focus root;
LotosSpec := focus root ;
SimVar := Sim_Interface : createsimobj(LotosSpec, ValueExprMetaVar);
create("object.sim", SimVar);
MenuView := Sim_Interface : view-menu(SimVar);
create("menu", Simulator : donothing(MenuView)) ;
create("node", Sim_Interface : view-node(SimVar));
create("trace", Sim_Interface : view-trace(SimVar))

doc : "Create Simulator object from a LOTOS specification ."
manual entry : LOTOS

Figure 5.15: SEAL script for the LOTOS language

Part of the simulator are: a window displaying the set of possible
choices, a window displaying the current node in the process graph, and a
window containing all choices made so far, the trace. The relevant parts
of the two SEAL scripts implementing a simulator for LOTOS specifica­
tions are given in Figures 5.15 and 5.16. An impression of the resulting
environment is shown in Figures 5.17 through 5.20. They are adapted
from [KJT+93] 4 in the sense that we added a trace window, changed the
initialization procedure and simplified the undoing of events. The scripts
illustrate two concepts: using more than one language and validation of
user input in the computational component. These concepts are discussed
below.

5.5.1 Using multiple languages

The environment for the LOTOS simulator uses three languages: L0T0S,
Simulator, and Sim_Interface. The specification to be simulated is a
"program" written in L0T0S. Therefore, editors using the L0T0S language
should have a button which creates the simulator. A SEAL script for
such a button (Simulate) is thus a configuration for the L0TOS language

4 We use this script here with permission of Han Joosten , PTT-research, Groningen ,
The Netherlands.

Simulating parallelism

Configuration for language Simulator is

button Reset
when "object.sim" . focus root is SIMOBJ

and Sim_Interface : go_up_possible("object.sim" . focus root)
enable

SimVar := "object . sim" . focus root;
SimVar := Sim_Interface : goto_root(SimVar)
create("object.sim", SimVar);
MenuViev := Sim_Interface : view-menu(SimVar);
create("menu", Simulator : donothing(MenuView));
create("node", Sim_Interface : view-node(SimVar));
create("trace", Sim_Interface : view-trace(SimVar))

doc : "Start simulation at the root again"

button StepBack
when "object . sim" . focus root is SIMOBJ

and Sim_Interface : go_up_possible ("object. sim" . focus root)
enable

SimVar := "object . sim" . focus root;
SimVar := Sim_Interface : go_up(SimVar));
create("object.sim", SimVar);
MenuView : = Sim_Interface : view-menu(SimVar);
create("menu", Simulator : donothing(MenuView));
create("node", Sim_Interface : view-node(SimVar));
create("trace", Sim_Interface : view-trace(SimVar))

doc : "Undo the last invoked event"

button Step
when "object.sim" . focus root is SIMOBJ
enable

TheAction : = select("menu", ITEM-VIEW);
SimVar : = "object.sim" . focus root;
SimVar := Sim_Interface : process-input(SimVar, TheAction);
create("object.sim", SimVar);
MenuView := Sim_Interface : view-menu(SimVar);
create("menu", Simulator : donothing(MenuView));
create("node", Sim_Interface : view-node(SimVar));
create("trace", Sim_Interface : view-trace(SimVar))

doc : "Do an event"

Figure 5.16: SEAL script for the Simulator language

97

98 Generating applications with SEAL: some case studies

St■ulate pee 1 ca on r nksmac
type cot 1s

sorts cot
opns coffee, tea: -> cot

endtype (• coffeeORtea •)
type coin 1s

sorts coin
opns dime, nickle : -> coin

end type
behaviour drinksmachine[inp, out]

here
process drinksmachtne(tnp, out] : noexit :=

((inpldime; exit[] inp 1ntckle; inp!nickle;
»
(out!coffee; 8)(1t [] out• tea; exit)

)
>> drtnksmachtne[inp, out]

endproc
ends ec (•

Figure 5.17: The LOTOS editor containing a specification of a machine
vending coffee or tea.

[!I Sim_lnterface : / nfs/adam/adal/l<oorn/LOTOS/simulator/ trace 10
O tree text e >< and he 1

.tnp ! nickle
tnp I nickle

I '
out • coffee
I

Figure 5.18: The trace window showing two nickles have been inserted,
an "internal step" is made corresponding to an "exit" in the specification,
coffee has been served, and an internal step is made.

(ii Simulator : /nf&/adarn/adal/l<oorn/ LOTOS/simulator/menu I~
D tree text expand help

Reael jJ. < 1 , tnp ! d ime >,
Step8ack I < 2 tnp I nickle > }I

Step

Figure 5.19: The editor containing the "menu". Possible choices are insert­
ing a nickle or inserting a dime.

{!] Sim Interface : / nfs/ adam/ada1/l<oorn /L0T0S/ simulator / node I~
D tree text expand he 1 p

..,_drinksmachine inp,out] := drinksmachine [inp,out]

Figure 5.20: The editor containing the "node". The simulated process is
about to re-start.

Simulating parallelism 99

(cf. Figure 5.15). This button creates what is called a simulator object ,
a data structure among others containing information derived from the
LOTOS specification and a <VALUE_EXPRESSION> placeholder to be used
for user input later on. The created object is saved in an editor instance
named object. sim. Three editors are created each containing a view on
the simulator object: menu (cf. Figure 5.19) used for the set of possible
events, node (cf. Figure 5.20) displaying the current node in the process
graph, and trace (cf. Figure 5.18) showing the list of chosen events.

The menu editor displays the set of possible events and it is therefore
equipped with a Reset button, a StepBack - undo last event- button,
and a Step - do event- button. Functions connected to these buttons all
relate to the menu since only the menu shows the possible events. These
buttons must therefore not be added to the user-interface of any other
editor. However, SEAL adds buttons to each editor using a particular
language. The only way to prevent the addition of these buttons to the
node, trace, and object. sim editors is to use a different language for
them. Therefore, the menu editor uses the Simulator language for which a
separate SEAL script is written (cf. Figure 5.16). The remaining editors,
i.e., object. sim, node and trace, use the Sim_Interface language for
which there is no script. They are thus not equipped with any button.

Although we obtain the desired result by using a different language for
the menu editor, it is not straightforward to implement it. This is due to the
way SEAL determines the language to be used by the editor. For example,
a SEAL statement like:

create("node", Sim_Interface : view-node(SimVar))
leads to the creation of an editor named node using the language defined by
the ASF+SDF module Sim_Interface. This language is thus derived from
the context used for the computation. In our scripts, all computations , such
as creating object. sim and computing views, are defined in that module.
For each editor used it is the language we intended, Sim_Interface, except
for menu which should use Simulator. We must therefore either move
the computation of the menu from the ASF+SDF module Sim_Interface
to the module Simulator or add an identity function to the Simulator
module. The latter option has been chosen and the identity function is
called donothing.

5.5.2 Validating user input

Validating user input was discussed earlier in Section 5.4.2. There, the
while statement of SEAL was used in combination with a boolean function

100 Generating applications with SEAL: some case studies

for checking validity. The LOTOS simulator validates user input quite
differently. It does not process invalid input at all.

User input plays a role when an event contains data. In LOTOS one
does not only define parallel processes but also the exchange of data be­
tween processes. Modeling data as processes easily leads to an infinite
process graph, e.g., when natural numbers are used. In a description of a
system's behavior one therefore uses a datum of some sort to keep the graph
finite. Within the simulator the exchange of a datum implies user input
of the datum and checking that it is of the proper sort. The functionality
described above is implemented in SEAL as follows.

When the simulated system is in a state where "exchange a datum"
is a possible event, the menu displays an event containing the placeholder
<VALUE_EXPRESSION>. This placeholder models the datum and was created
in the action of the Simulate button (cf. Figure 5.15). The Step button
(cf. Figure 5.16) uses SEAL's select statement to ask the user a choice
from the menu. If an event without a placeholder is selected, the event
is processed by calling the function process-input yielding an updated
simulator data structure. If an event containing a placeholder is selected
however, SEAL's select does not return unless the placeholder is filled in
by the user. Eventually, the selected event is assigned to the TheAction
variable and process-input is called. The filled in placeholder is now
validated within process-input. It returns an updated simulator data
structure if the input is found valid otherwise it returns the current simu­
lator data structure. In the latter case, exactly the same menu, node , and
trace are computed because the simulator data structure is left unchanged.

5.5.3 Discussion

We have shown how an environment for simulating parallelism can be ob­
tained using SEAL. By using more than one language an environment can
be built where specific editor instances are supplied with specific buttons.
However, the introduction of an identity function in a specific ASF+SDF
module was required. The source of this problem is the way SEAL de­
termines the language to use for an editor from the context module of a
computation as in:

MenuView := Sim_Interface : view-menu(SimVar);
create("menu", Simulator : donothing(MenuView))

However, one might also argue that the source of the problem is quite
different: SEAL adds user-interface objects defined in a script for language

Computing import relations 101

L to all editors parameterized with L. Solutions of the problem could be
to add an optional argument to the create statement to explicitly express
which module to use. An alternative solution is to add an argument to
create explicitly expressing whether or not SEAL should add user-interface
objects to the created editor.

Validating input may be obtained solely by using the computational
component. This may be used as an alternative for the validation mecha­
nism described in Section 5.4.2. We prefer the mechanism described there
for two reasons. First, it provides feedback to the user which might contain
an explanation why a given value was incorrect. Second, the mechanism
used here leads to a re-computation of the menu, the node, and the trace
each time the input is invalid. This is prevented when the mechanism
described in Section 5.4.2 is used.

To solve the problems mentioned we suggest to improve SEAL as fol­
lows:

• add an optional argument to cr eat e which explicitly express which
module to use, or,

• add an optional argument to creat e which explicitly express whether
or not the addition of user-interface objects is required.

5 .6 Com puting import relations

Our fifth and final case study is a programming environment for computing
import relations. Here we present a SEAL script (cf. Figure 5.21) for a fic­
titious modular language we called Imports. Each module may import any
number of other modules, circular imports are allowed as well as modules
that do not yet exist. The idea is to add a button Showimports to each
existing module that reports to the user which modules are imported and
which of those do not yet exist. The result, i.e., the transitive closure of the
import relation, is displayed in a window. For the sake of simplicity, we as­
sume that a module M is saved on a file with the same name. The resulting
environment in shown in Figures 5.22 through 5.27. Furthermore, the same
window is used to monitor the calculation. A screendump of that window
during processing is shown in Figure 5.28. This case study illustrates two
concepts: cooperating editors and animation of execution.

102 Generating applications with SEAL: some case studies

Configuration for language Imports is

button Shovimports
vhen focus root is Module
enable

NamesDone : = Interface : empty-set() ;
NotPresent := Interface : empty-set();
NamesToDo := Interface empty-set();
Module := focus root;
NamesToDo := Interface process(Module, NamesToDo, NamesDone);
create("Status", Interface : processing(NamesToDo, NamesDone));
vhile Interface : non-empty(NamesToDo) do

Name := Interface : first(NamesToDo);
File := Interface : name-to-filename(Name);
'l.'l. if File exists, process it, otherwise, add File to NotPresent
Continue : = Interface : make-true();
vhile File . focus root and Interface : eval(Continue) do

Module : = File . focus root;
NamesToDo := Interface : process(Module, NamesToDo, NamesDone);
create("Status", Interface : processing(NamesToDo, NamesDone));
Continue : = Interface : make-false() od;

Continue := Interface : make-true();
vhile not(File . focus root) and Interface : eval(Continue) do

'l.'l. File does not exist, add it to NotPresent
NotPresent := Interface : add(Name, NotPresent);
Continue := Interface : make-false() od;

NamesToDo := Interface : delete(Name, NamesToDo);
NamesDone := Interface : add(Name, NamesDone);
create("Status", Interface : processing(NamesToDo, NamesDone)) od;

create("Status", Interface : make-imports(NamesDone, NotPresent))
doc : "Derive all imports . "

Figure 5.21: SEAL script for the Imports language

(i] Interface : /nfs / adafTl / ada1/koorn/CONFIG/ !XAMPL£5/ Imports/Status ~
D trlile tewt ex and he

,Jh1 s module imports:
Stri ngs.imp Naturals .imp Integers.imp Reals . imp Array s.imp

But these are not yet present :
Naturals.imp

1 -t 1· '1', I'. :,'~:·~r ~- .'.;.,, ; ,,

Figure 5.22: The editor displaying the import relation for the Program. imp
module.

Computing import relations

l!1 Imports : / n f s / adam/ adal / koorn/ CotffIG/ EXAMPLES/ lmpor t s / Program. i mp i ~
□ tree te >< t e >< oand helo

Showl■portsl Ll.'!'Port~~ Arravs.1mo 1111 I ~.---~=~'----------------II

Figure 5.23: The editor containing the module Program. imp.

l!1 b1ports : / nfs/ adam/ adal / koorn/CONFIG/ EXAMPLES/ Imports/ Ar rays. imp I ~
□ tree text e><oand helo

Showlmports I ~ ::it.r -nas.1mo Reals.imo .. I (S ecs) fl
ill!W '

,,
' ' ~

Figure 5.24: The editor containing the module Arrays. imp.

l!1 Imports : I nfs/ a dam/ ada 1 / koorn/CONF I GI EXAMPLES/ Imports/St r 1 ngs . 1 rnp I g[I
a tree text exoand he 1 o

Showlmports I ~ Natura ls. ,mo
.. .. I <S ecs > ll

/. I " i!l!~ • . '"
,, 1;

Figure 5.25: The editor containing the module Strings. imp.

l!1 Imports : / nfs/ adam/ adal / koorn/ CONFIG/ EXAMPLES / Imports / Reals. imp ■~
D tree te)(t exoand he 1 o

Showlmports I ~~~port~. lnteaers. imo -ti I ~,..=c==--'--'-'-"''----------------ll

Figure 5.26: The editor containing the module Reals. imp.

[!] Impor ts : I n f s/ adaf!'I / ada 1/ koorn/C0NF IG/ EXAMPLES/ lfl'lports/ Integers . imp ~
D tree te >< t e xpand help

Showl■portsl ~Naturals. i mo
.. ..

I <S ecs > ll
m~',

" ' ·= ; • !f. ,,, ,~

Figure 5.27: The editor containing the module Integers. imp.

[!l Interface : / nfs/ i11dam/ i11dal / koorn / C0NFIG/EXAMPLES/ h1ports / Status ~
D tree text e xoand helo

_tlodu le& to be procas&ed:
Str1ngs . 1mp Reals . imp Integers. imp

Processed inodu 1 es:
Arrays. imp

103

Figure 5.28: The editor displaying the execution status during computation

104 Generating applications with SEAL: some case studies

5.6.1 Cooperating editors

The idea for the Showimports button is as follows. We use three sets
NamesDone , NotPresent , and NamesToDo, all initially empty, to hold mod­
ule names that are respectively processed, not found , and are to be pro­
cessed. We start with deriving t he imported modules from the module
residing in the editor to which Showimports is connected. This is done by
calling the function process which returns the union of imported module
names and NamesToDo, but minus NamesDone. The result is assigned to
NamesToDo. While NamesToDo is non-empty, process an element of it as
follows. Assign an element to the variable Name and convert it to a file­
name. Next, test if the file exists5 . If so, call the process function with
the module, residing in the editor using the filename, as argument . If not ,
add Name to NotPresent . Finally, delete Name from NamesToDo, add it to
NamesDone and return to the "while non-empty" loop.

After the loop , NamesDone contains all imported module names and
NotPresent contains names of non-existing modules. This information
may now be used in any computation on the modules e.g. creating the
non-existing ones or merge all modules into one large module.

5.6.2 Animation of execution

We may animate the derivation of all imported modules by showing the
sets NamesToDo and NamesDone after each update of NamesToDo. Each of
these is preceded by a fixed string such as "Modules to be processed: "
for readability. For this reason we call the processing function which
result is showed in an editor instance Status. This editor is also used to
display the final result for which we call make-imports with NamesDone
and NotPresent as arguments.

5.6.3 Discussion

We have shown that SEAL can be used to implement a programming envi­
ronment that computes import relations and we have seen how the compu­
tation process can be animated. The animation was straightforward, but
for the computation process we needed an "existence check" and a loop.
The check for existence was implemented by a test whether or not the focus

5 This can only be implemented by inspecting if a focus move, e.g., to the root, is
possible or not . Note that due to SEAL's identification of editor names and their corre­
sponding file names, in combination with our assumption that a module M is saved on
file M, this check equals checking the existence of M

Achievements and limitations 105

of an editor instance could be moved to the root . Clearly, using a "move
check" as an "existence check" is inelegant .

We have to use an imperative loop because SEAL lacks procedures as
already noticed in Section 5.3.5. If SEAL featured a procedure call, we
could have used recursion. Furthermore, we implicitly assumed that the
name of an imported module is sufficient information to derive the filename,
or the editor name, containing the module. This limits the applicability
of the presented script. If module names are unequal to filenames and/or
editor names, we need mappings from the one to the other. These mappings
may be obtained if the necessary information is made explicit in yet another
editor instance. Otherwise, SEAL needs to be extended with primitives
providing it.

To solve the problems mentioned we suggest to improve SEAL as fol­
lows:

• add an "existence check" statement;

• add a procedure mechanism and allow recursive calls to them; and

• add primitives for mapping filenames to editor names and vice versa.

5. 7 Achievements and limitations

In the preceding sections we have discussed several SEAL scripts each illus­
trating different aspects found in interactive programming environments.
While doing so, we encountered a number of "problems" most of which
were due to a lack of expressive power of SEAL. The problems could be
circumvented using the current version, but only in a more or less inelegant
way. We give an overview of SEAL's achievements, its limitations and we
discuss these limitations at a more abstract level. These discussions are
then used in Section 5.8 where we sketch SEAL's future.

The current version of SEAL has achieved the following:

• the perfect separation of the user-interface component and the com­
putational component of a generated interactive programming envi­
ronment;

• the ability to define user dialogues that can be interfaced with func­
tions in the computational component;

• the ability to use input and output;

106 Generating applications with SEAL: some case studies

• the ability to use multiple, cooperating editor instances for an arbi­
trary task; and

• an implementation that allows full interactive development of a user-
interface component.

The current version of SEAL suffers from the following limitations:

• insufficient syntax;

• a too limited interface with the computational component when in­
formation is only available in textual format; and

• a too strong relation between the notions text, file, tree, window, and
editor.

We distinguish limitations at the syntactical level and problems at the
semantical level. Below we discuss them both.

5. 7.1 Problems at the syntactical level

We have encountered three problems at the syntactical level. First, the
syntax is too strict since, e.g., arguments of a function call in an action
can only be variables. Focus expressions, such as focus or root , are not
allowed. On the other hand, function calls in a condition must have focus
expressions as arguments. This makes sense because there is no assign
statement in conditions and there are no global variables. Second, we
have found that an if-then-else statement is missing. Third, some form of
abstraction is needed to prevent repetitions of statements in different parts
of a script.

5.7.2 Problems at the semantical level

There are two problems at the semantical level: interfacing with the com­
putational component when information is only available in textual format,
and, a too strong relation between the notions text, file , tree, window, and
editor.

We made the design decision in SEAL that all information is available
in tree format. This decision was based on the observation that functions
used for computations need arguments in tree format. This decision causes
problems for computations using information that is only available in some
other format. An example of such a problem is a computation on a filename.
Note that, in general, such a filename is located in the data structure of

Towards a more powerful language 107

the ASF +SDF Meta-environment as a string. The SEAL run-time system
must thus parse a filename after retrieving it from that data structure.
Note that in the situation where unparsing is required, for instance , when
creating an editor with a computed name, this problem is already solved.
The SEAL run-time system is offered a filename in tree format which is
unparsed before it is used, in other words, SEAL interprets the result of a
function call.

An example of the second problem is the lack of global variables holding
trees. This implies that trees can not be shared between user-interface
objects. Sharing is only possible by storing these trees in editor instances.
As a result superfluous windows are on the screen and, worse, changing
such trees implies their superfluous unparsing.

5.8 Towards a more powerful language

The future of SEAL not only requires solving the problems mentioned in
the previous section, but also involves some extensions. Generalizing these
solutions and extensions would yield a far more powerful language.

5.8.1 Solving the problems at the syntactical level

Solving the problems encountered at the syntactical level is relatively sim­
ple. Clearly, the syntax used for arguments of function calls in actions
must be extended and the missing if-then-else statement must be added.
Preventing repetitions of equivalent statements can be obtained by the in­
troduction of either procedures or macro 's. The former solution is the most
appealing since it possibly leads to recursive procedure calls.

5.8.2 Solving the problems at the semantical level

At the semantical level we encountered two problems and we suggest a
general solution for both of them.

Our first problem is interfacing with the computational component
when information is only available in textual format. This is solved by
adding explicit parsing and unparsing primitives. In scripts, we should
then be able to use primitives representing information located in editors
or in the ASF+SDF Meta-environment. These primitives must then yield
a string, that is, they can be used as arguments of parse primitives.

To illustrate that this approach increases SEAL's expressive power we
present two examples. As a first example, consider a SEAL primitive

108 Generating applications with SEAL: some case studies

filename yielding an editor's filename as a string. Parsing an editor's
filename might thus look like:

File := parse(M, S, filename)
where M is the name of an ASF+SDF module and S is the name of an
ASF+SDF sort. A second example is the comparison of two sorts in a
SEAL condition. This is, for instance, necessary for a general Undo button
for structural editing. Here, the last tree cut, say T , may be of sort Sl but
the focus may be of sort S2. When Undo replaces the focus by T, it is only
allowed when Sl equals S2. The button should only be enabled when this
is the case, but currently it is impossible to express this. If SEAL would
provide a primitive sort (<tree>) yielding the sortname as a string, we
could use:

M: equal(parse(M, S, sort(T)), parse(M, S, sort(focus)))

Our second problem at the semantical level is a too strong relation be­
tween the notions text, file, tree, window, and editor. The discussion above
may be regarded as an example of breaking the relation between text and
tree. However , the text involved consisted of only one string. By allowing
an arbitrary text - zero or more strings- we fully break this relation. The
other relations can be broken in the same way, i.e., by introducing explicit
conversion primitives. We therefore omit a description in full detail.

We give four examples of breaking the relation between text and tree.
Our first example is the conversion of the contents of an arbitrary file to a
tree. It may be expressed as:

Tree := parse(M, S, readfile(browser))

where browser is a primitive yielding a filename as a string, after interacting
with t he user using a file browser of course. The second example is creating
editor placeholders, another frequently encountered problem. It can be
handled by using parse (M, S, 11 <S> 11

) . A third example is the execution
of an arbitrary Unix command. It may be expressed as:

unix(<cmd>, <Text>)

Here , <cmd> is an arbitrary program reading from standard input to which
<Text> is re-directed. <Text> may be the result of an unparse primitive
and the result of execution may, for instance, be used as argument of the
parse primitive. Our final example is found in cases where a computation
depends on the position of the focus , i.e ., the "path" from the root to
the focus. Here, SEAL might provide a primitive path yielding a string
consisting of natural numbers and spaces. After parsing this string, it can
be used in any computation.

Towards a more powerful language 109

5.8.3 Future extensions

We mention two future extensions currently considered. The first is to
incorporate a statement to highlight a subtree in an editor. This may
be used in applications concerning animation of program execution or for
user feedback after a computation in the computational component. Both
are related to what we call origin tracking, i.e., maintaining relations be­
tween subtrees during the rewriting process [DKT93]. For example, when
a program is typechecked resulting in an error message like "variable x
not declared" , one wants to show the user where "x" was used incorrectly.
The second is allowing manipulations in editor instances forming the user­
interface of the Meta-environment itself. That is, manipulating ASF +SDF
modules themselves. This is currently not allowed due to the implications
it will have on the run-time code. Note that when this would be allowed,
both syntactical and semantical definitions may change during the execu­
tion of SEAL statements. In some cases, the result of a function call in the
computational component is thus no longer valid. These cases have to be
ruled out , or we need to introduce a mechanism to recompute the result .

5.8.4 Generalization

When discussing the problems encountered at the semantical level (cf. Sec­
tion 5. 7.2), we observed that the current version of SEAL interprets the
result of a function call when a computed filename is used. In that situa­
tion, the computational component provides information - the filename- to
be used by SEAL for creating an editor instance. In most other situations,
however, SEAL provides information to be used by the computational com­
ponent, such as arguments of functions. This observation leads to a very
promising generalization.

Consider the very last example mentioned in Section 5.8.2 where a com­
putation depended on the position of the focus. We discussed that SEAL
could provide a primitive path which could be used in any computation.
The result of a computation may then also yield a new path which could
be interpreted by the SEAL run-time system as well. A move statement
then moves the focus to a new position. We thus obtain computed focus
movements and thus computed focus positions. In the current version of
SEAL this can only be achieved using nested conditional loops in which
a path is first built , a new path is computed and then interpreted in the
script itself. However, the above suggested approach is far more elegant.

110 Generating applications with SEAL: some case studies

Generalizing this approach, functions in the computational component
could yield SEAL statements as value, which would then be interpreted by
the SEAL run-time system. Generalizing even further leads to the inter­
pretation of complete scripts. From a research point of view this is very
interesting, since it leads to a situation where SEAL scripts may be com­
puted by ASF +SDF functions making scripts fully dynamic. It might even
be possible to create and or adapt scripts recursively when we introduce
the run-time interpreter as a SEAL statement.

5.9 Discussion and conclusions

Although we have encountered a number of problems in the current ver­
sion of SEAL we are convinced that we are on the right track. Strong
points are the predefined visual and behavioral aspects in the generated
user-interface, and the perfect connection to functions in the computational
component. Obtaining and manipulating information stored in the gener­
ated environment, is currently inelegant, tedious, or even impossible. To
solve these problems we suggest to introduce explicit parsing and unparsing
in combination with well-chosen primitives to obtain the information in a
textual format. This will enhance SEAL's expressive power considerably
and it will lead to more elegant scripts. Generalizing these suggestions
leads to run-time interpretation of SEAL scripts which we regard as very
promising. Future extensions such as highlighting subtrees and manipulat­
ing ASF +SDF modules will probably profit from this flexible and powerful
approach as well.

Chapter 6

A specification of structure
editing

We present an ASF +SDF specification of the structure editing part
of GSE. This specification is combined with a SEAL script in which
the editor commands are invoked by pressing buttons. The feasibility
of using the specified editor, instead of the hand-written one, in a
practical software development environment is addressed.

6.1 Introduction

In Chapter 3 we have replaced the parts of GSE dealing with text edit­
ing and user-interface management by external components, Epoch and
OSF /Motif respectively. Here we investigate the possibility to generate
the remaining - structure editing- part from an ASF +SDF specification.
This leads to simulating the structure editing behavior of GSE. The sim­
ulation is described by an ASF +SDF specification and a SEAL script (cf.
Chapter 4).

A formal definition of GSE can be used to:

• provide a better understanding of structure editors in general, and of
GSE in particular;

• study the feasibility, or the implications, of future extensions to GSE;
and

• bootstrap GSE by compiling its specification to C [KW93] .

111

112 A specification of structure editing

Studying the feasibility, or the implications, of future extensions to GSE
and the wish to bootstrap the ASF +SDF Meta-environment are the main
reasons for the work presented here.

The ASF+SDF specification is needed to describe both the internal
state of the editor (e.g. the current tree, the current focus) and all oper­
ations provided by it (e.g. move to next child). Note that the complete
editor state is itself a term which can be displayed and changed by a stan­
dard term-editor in the ASF+SDF Meta-environment. The SEAL script is
used to extend the standard term-editor with buttons modeling the user­
commands of the simulated editor.

Chapter overview

In Section 6.2 we discuss generic structure editors and their relation to lan­
guage definitions. Next, we discuss structured editing in Section 6.3 and
the treatment of lists - arbitrary repetitions of syntactical constructs­
in Section 6.4. These discussions are formalized in Sections 6.5 through
6.6 by presenting ASF+SDF modules which define notions like legal sub­
tree replacements and structured editing based on a placeholder/template
mechanism. In Section 6. 7 we describe an implementation of the simulated
editor. Related work is presented in Section 6.8. Finally, we discuss the
results our work in Section 6.9.

6.2 Languages, grammars, trees and signatures

A structure editor needs knowledge about the language of the programs
to be edited. In particular, the tree construction rules (also known as
abstract syntax) for that language have to be known by the editor. In
a structure editor dedicated to a particular language, this knowledge is
hard-wired in the implementation of the editor. A generic structure editor,
which is our goal, must be parameterized with the language definition. A
generic structure editor can be characterized as a triple of the form (Tree,
Path, Language). A Tree is the abstract syntax tree to be edited, the Path
designates the "current subtree" in the tree and the Language is used to
check that the tree remains well-formed.

A language definition consists of two parts: concrete syntax defined by
a context-free grammar and abstract syntax defined by a signature. As
an example, consider the language L for expressions like x + y * z. The

Structured editing 113

EXP EXP

l\
EXP EXP* EXP id A I
ID EXP EXP id id

I I I I
ID ID "x" "y" "z"

I I
"x" + "y" * "z"

Figure 6.1: Parse tree and abstract syntax tree for x + y * z .

concrete syntax - at the left hand side- and the abstract syntax -at the
right hand side- of L may be defined as1:

EXP::= EXP+ EXP
EXP ::=EXP• EXP
EXP : := ID

sorts:
ID EXP

subsorts :
EXP> ID

functions:
add: EXP EXP - > EXP
times: EXP EXP-> EXP
id-exp: ID -> EXP

A parser for L maps a sentence to an abstract syntax tree in two phases. It
first builds a parse tree using the grammar a.nd then maps that tree to an
abstract syntax tree using the signature. The parse tree contains superfluous
nodes which do not occur in the abstract syntax tree, for example, the nodes
corresponding to keywords and chain rules. A chain rule corresponds to
a grammar rule of the form N1 : : = N2 where both N1 and N2 are non­
terminals. Figure 6.1 shows both the parse tree and the abstract syntax
tree for the sentence x + y * z.

6.3 Structured editing

A structure editor uses placeholders, corresponding to sorts in the signature
and templates, corresponding to functions in the signature. For example,

1 We omitted the definition of ID which represents an identifier.

114 A specification of structure editing

<<EXP>> add add

~ ~
<<EXP>> <<EXP>> «EXP>> A

<<EXP>> <<EXP>>

Figure 6.2: Abstract syntax trees during structure editing.

the user of a structure editor constructs a tree corresponding to the sen­
tence x + y * z from an EXP placeholder as follows . First focus on EXP

and replace it by the template add yielding a tree corresponding to the
text EXP + EXP. Then focus on the rightmost EXP -again a placeholder­
and replace it by the times template, yielding a tree corresponding to
EXP + EXP * EXP , etc. This process is shown in Figure 6.2.

The example above shows that the user of the structure editor is offered
two facilities:

• The possibility to move through the tree and reach a desired subtree.

• The replacement of the subtree focus.

We now discuss each of these facilities.

6.3.1 Focus manipulations

Moving through the tree is done by manipulating a path. The subtree
indicated by the path is called the focus tree or just focus. The user of
the editor may perform the following manipulations on the path: root, up ,

down, next and previous. The manipulation root means "let the focus
tree be the whole tree", up means "go to the parent node", down means
"go to the leftmost child", next means "go one child to the right" and
previous means "go one child to the left".

Each of the manipulations will be part of the editor's set of user com­
mands. Note that these commands may all fail, except root. A failing
command will leave the path unchanged.

6.3.2 Focus replacements

Above we sketched how a user of a structure editor replaces the tree in
focus. We formalize this notion here. Each node in the abstract syntax tree

Structured editing 115

corresponds to a function in the signature. In addition, the structure editor
needs nodes representing placeholders. We therefore extend the signature
with special functions called placeholder functions . More precisely, for each
sort Sin a signature~, we extend~ with a function (constant) of the form
«S»: -> S. Placeholder functions are only needed during editing and are
therefore not part of the language definition.

The correspondence between nodes and functions is the basis for struc­
tured editing. A structure editor only allows the construction of trees that
are well-formed w.r.t. the signature. Informally, a placeholder node for
sort S may only be replaced by a tree corresponding to a function of a
compatible -equal or subsort- sort. These notions are defined as follows.
For convenience, we assume signatures to be closed under transitivity w.r.t.
the subsort relation.

Definition 1.
Let S and T be sorts in a signature ~- S is compatible with T iff either
S = T or there is a subsort declaration T > S in ~- D

Definition 2.
Let T be a tree and let ~ be a signature. T is well-formed w.r.t. ~ iff,
for each node N in T, the following conditions hold:

• FN, the function corresponding to N is an element of the set of
functions of~, and

• If Ni is the i-th child of N, then FN; 's sort is compatible with FN's
i-th argument sort, and

• N has K children ¢:} FN has K arguments. D

We can now easily define a legal subtree replacement w.r.t. a signature.

Definition 3.
Let T be a well-formed tree w.r.t. ~, and let t be a subtree of T. A
subtree replacement of t by some t' is legal iff

• t' is well-formed w.r.t. ~, and

• if t =I= T: let t be the i-th child of its parent node P. The sort
of the root of t' is compatible with the i-th argument sort of the
function corresponding to P. □

We are now able to describe editing using placeholders and templates
in more detail. The edit action of replacing a placeholder by a template

116 A specification of structure editing

works as follows. First, derive the sort (S) of the placeholder node. Second,
compute the set {S1 , S2, , Sn} of all sorts compatible with S. Third, com­
pute the set of functions {Fi, F2, , Fk}, i.e., the union of all functions of
sort S1 , all functions of sort S2, etc. Exclude placeholder functions because
these are not part of the language definition. Fourth, let the user choose an
Fi- Finally, replace the placeholder by the template corresponding to Fi.

The last step requires mapping a function to a tree. This mapping
inspects the signature to create a well-formed tree. The function corre­
sponding to its root is guaranteed to be of a compatible sort due to the
selection process described above.

6.4 Editing lists

Repetitions of syntactical constructs, or lists, are frequently found in pro­
gramming languages as well as in other languages. There are three ways
to describe a list in a signature: cons lists, binary lists, or flat lists.

A tree corresponding to a cons list consists of nodes that have two
children, a list item and the rest of the list. The second child of a node cor­
responding to list item may also be a constant, i.e., a node without children,
indicating the end of the list. Figure 6.3(a) shows a tree corresponding to a
cons list of three statements. A binary list may be considered as a variant
of a cons list: a binary function is used as list constructor. In the cons list
representation this function is right-associative, whereas in the binary list
representation any form of grouping may be used as long as each node has
exactly two or zero children. Figure 6.3(b) depicts a tree corresponding to
a binary list of three statements. Conversely, a tree corresponding to a flat
list consists of a node that has an arbitrary number of children, where each
child is a list item. Figure 6.3(c) depicts a tree corresponding to a flat list
of three statements.

Flat lists are convenient in a structure editor for two reasons. First,
list nodes simplify path manipulations in a structure editor. Consider , for
example, a user invoking an up command when the focus is a list item.
When using flat lists, the focus is set to the whole list immediately. When
using cons lists, a focus move from item N to the whole list requires N
such commands. Binary lists have a similar disadvantage. Second, and
more important, signatures with list-constructor functions are more close
to formalisms, such as SDF [HHKR89], that allow the definition of repe­
titions of syntactical constructs. Recall from Section 6.2 that a signature
defines the abstract syntax while a context-free grammar defines the con-

Editing lists 117

CONS STAT-LIST STAT-LIST

A ----------- ~ « STAT>> CONS STAT-LIST STAT-LIST <<STAT>> <<STAT>> <<STAT>>

A ~ ~
«ST AT» CONS «STAT» « STAT» «STAT» EMPTY

A
«STAT» NIL

(a) (b) (c)

Figure 6.3: Tree representations for a list of three statements (a) cons list
(b) binary list (c) flat list.

crete syntax of a language. In a context-free grammar one may define zero
or more repetitions of a syntactical construct as: LIST : : = ITEM•. It is
therefore more natural to define the corresponding function in the signa­
ture as list: ITEM• -> LIST rather than using a binary function and a
constant.

6.4.1 Incorporating flat lists in the signature

Due to the arbitrary arity of nodes corresponding to flat lists we extend
our signature with a list-constructor function. This function represents an
infinite number of functions, one for each possible arity.

We use the style of SDF [HHKR89] to incorporate flat lists in the sig­
nature. All items of a list are of the same sort, the basic sort of the list.
A list may or may not have a separator, an arbitrary string not containing
spaces. By adding separators we stay as close to context-free grammars as
possible: it offers us the possibility to distinguish different repetitions of
the same basic sort. Finally, a list has an iterator, either '*' or '+', indi­
cating a possibly empty list or a list containing at least one item. The list
constructor function for a list sort {S <sep> }<i ter> in the signature is of
the form:

S-<sep>-<iter>-list: {S <sep>}<iter> -> {S <sep>}<iter>
Furthermore, a list subsort declaration of the form {S <sep> }<i ter> > S
must be added because items in the list are of a basic sort.

6.4.2 Replacing list placeholders

The introduction of lists complicates the placeholder replacement scheme
sketched above. Consider, for example, replacing a placeholder «{S}+»
by a template corresponding to the S--+-list: {S ""}+ -> {S ""}+

118 A specifi.cation of structure editing

function. This function represents an infinite number of functions, we there­
fore do not know what tree should be built. We decided to build a tree
with one child, in our example this child corresponds to the «S» function .
Note that the editor must therefore distinguish between the replacement of
list placeholders and the replacement of non-list placeholders.

6.4.3 List editing commands

List nodes ask . for a special set of editing commands such as inserting or
deleting items. Our structure editor offers two commands to insert a new
item: before or after the focus. If the focus is a list node, the commands
insert the new item before the first item or after the last item respectively.
If the focus is a list item, the commands insert the new item before or after
the focus item. In both cases the focus is moved to the newly inserted item.
When the user wants to delete an item the focus must be the item to be
deleted. However, if the list iterator is '+' and the item to be deleted is the
only item in the list, the delete command fails.

6.5 Definition of a generic structure editor

We are now in a position to define a generic structure editor. Such a defi­
nition requires the definition of signatures, trees, the editor itself, and path
manipulations. These definitions are presented in this section. Structured
editing will be defined in Section 6.6.

6.5.1 Definition of signatures

Signatures were introduced in Section 6.2 and extended in Section 6.4.1.
We now present their formal specification in ASF+SDF (cf. Section 4.5.1).

A signature consists of three sets: sort declarations, subsort declara­
tions, and function declarations. The sort declarations contain all sorts
that are used in the subsort and function declarations. Function declara­
tions may have two forms. Prefix functions consist of a function name, zero
or more argument sorts, and a result sort. For example, the And function
of the Booleans language is represented as And : Bool Bool -> Bool. It
expresses that And has two arguments of sort Bool and that its result sort
is Bool. Lexical functions consist of a function name, one string and a
result sort. Their purpose is to represent lexical entities like identifiers and
numbers.

Definition of a generic structure editor

module Signature
imports Text
exports
sorts Signature Basicsort Sort Functionname Function Subsort
lexical syntax

[A-Z] [A-Za-z\-]*
[A-Za-z\-] +

-> Basicsort
-> Functionname

[A-Z] [A-Za-z\-]• "-" -[]• "-" [\+\•] "-list" -> Functionname
"<<" -[]• ">>" -> Functionname

context-free syntax
"sorts:" Sort• "subsorts:" Subsort•
Basicsort
"{" Basicsort String"}" "+"
"{" Basicsort String"}" "*"
Sort">" Sort
Functionname "·"Sort•"->" Sort
Functionname "·"String"->" Sort

variables

"functions:" Function•

Fname[']* -> Functionname Sig[']*-> Signature

Figure 6.4: Relevant part of module Signature

->
->
->
->
->
->
->

119

Signature
Sort
Sort
Sort
Subsort
Function
Function

We impose several restrictions on signatures. For example, if F is an
element of a signature E, the result sort of F and all its argument sorts
must be elements of the set of sorts of E. Likewise, if and only if F is
a function of the form name1: S -> T and there is a subsort declaration
T > S in E , then F is a chain function. The set of subsorts must be closed
under transitivity.

The relevant parts of the module defining signatures are shown in Fig­
ure 6.4. We omitted all equations.

6.5.2 Definition of trees

A tree is a structured set of nodes and represents a term over a signature.
A tree is a quadruple of the form (Kind, Name, Rank, Children). The Kind
of a tree is either tree or atom for trees with or without children respec­
tively. Other tree kinds are list for trees corresponding to list constructor
functions and placeh for placeholders. The Name corresponds to a func­
tion name in the signature. Children is either a - possibly empty- list of
trees or a string. In the latter case, the tree is said to be a lexical tree.
The children are ordered from left to right and their position in the list is

120

module Trees
imports Signature Integers
exports
sorts Tree Trees Kind
context-free syntax

"[" Kind
"[" Kind
Tree•
11 atom 11

"tree"
"list"

ti II .
II II . Functionname

Functionname

"placeh"
kind(Tree)
name(Tree)
rank(Tree)
children(Tree)
child(Tree, INT)

variables

II II .
II ti .

INT
INT

" · " .
11.11 .

A specifi.cation of structure editing

Tree*"]" -> Tree
String"]"-> Tree

-> Trees
- > Kind
-> Kind
-> Kind
-> Kind
-> Kind
-> Functionname
-> INT
-> Trees
-> Tree

Tree[')*-> Tree Trees[']*-> Tree* Kind[']*-> Kind
equations
[la] child([Kind, Fname, Int; Tree Trees], 1) = Tree
[lb] Int' > 1 = true

child([Kind, Fname, Int; Tree Trees], Int')
child([Kind, Fname , Int; Trees], Int' - 1)

Figure 6.5: Relevant part of module Trees

indicated by a non-negative number called the Rank. The leftmost child
will have rank 1 and the root will always have rank 0.

Consider the term True And False . The functions involved in this term
are True: -> Bool , False: -> Bool ,andAnd: Bool Bool -> Bool. The
corresponding tree representation is:

[tree, And, O; [atom, True , 1;] [atom, False, 2;]]

As an example of lexical and chain functions, consider the expression term
x + y . The involved functions here are id: 1111 -> ID (a lexical function) ,
id-to-exp: ID - > EXP (a chain function, assuming the presence of a sub­
sort declaration EXP > ID) and add: EXP EXP - > EXP. The corresponding
tree is:

[tree, add, O; [atom, id, 1; "x"] [atom, id, 2; "y"]]

The relevant parts of the module defining the tree datatype are shown
in Figure 6.5.

Definition of a generic structure editor

module SE
imports Trees Booleans
exports
sorts SE Path
context-free syntax

11
(

11 Tree II II Path II

' '
II[" INT• "] II

tree(SE)
path(SE)

II Signature "] II ->
->
->
->

SE
Path
Tree
Path

sig(SE) -> Signature
rootp(SE) -> BOOL

variables
SE[']• -> SE Path[']• -> Path Ints[']•

equations
[la] rootp([Tree, [], Sig]) = true
[lb] rootp([Tree, [Int Ints], Sig]) = false
(2) tree([Tree, Path, Sig])= Tree
(3) path([Tree, Path, Sig])= Path
[4] sig([Tree, Path, Sig])= Sig

-> INT•

Figure 6.6: Relevant part of module SE

6.5.3 Abstract datatype of a generic structure editor

121

A generic structure editor is a triple of the form (Tree, Path, Language).
The Tree is an abstract syntax tree as defined in Section 6.5.2. The Path is
represented by a list of numbers. For instance, if the path is (2 3] then the
focus tree is the third child of the second child of the root. The Language is
represented by a signature as defined in Section 6.5.l. Relevant parts of the
module defining the editor datatype are shown in Figure 6.6. The boolean
function rootp tests whether or not the list of numbers representing the
path is empty. If so, the whole tree is in focus, otherwise some subtree is
in focus. Other functions , such as tree, path, and sig select parts of the
structure editor data structure.

6.5.4 Path manipulations

In Section 6.3 we already introduced the path manipulations root, up,

down, next and previous. We now discuss them in some detail and give a
specification of their behavior.

Each manipulation, except root , may fail in which case the editor is left
unchanged. For example, previous fails if the focus tree equals the root

122

module Focus-moves
imports SE
exports
context-free syntax

root(SE) -> SE
previous(SE) -> SE

equations
[1] root ([Tree, [Ints] , Sig])
[2a] Int> 1 = true

A specification of structure editing

[Tree, [] , Sig]

previous ([Tree, [Ints Int] , Sig]) = [Tree, [Ints Int - 1] , Sig]
[2b] previous([Tree, [Ints 1], Sig])= [Tree, [Ints 1], Sig]
[2c] previous ([Tree, [] , Sig]) = [Tree, [] , Sig]

Figure 6.7: Relevant part of module Focus-moves

and also if the focus is a node which is the leftmost child of its parent . In the
first case, the list of integers representing the path is empty, in the second
case the list of integers ends with 1. If a previous command succeeds
we change the path by decrementing the last element . In the definition of
focus moves, shown in Figure 6.7, we present the definitions of root and
previous , other moves are similar and therefore omitted.

6.6 Definition of structured editing

Given the definition of a structure editor consisting of a tree, a path, and a
signature, we are in a position to define structured editing itself. We define
legal subtree replacements, placeholders and templates , and list editing
commands.

6.6.1 Definition of legal subtree replacements

The user is able to perform a number of operations on the focus subtree.
However, all these operations must yield a new editor tree that is well­
formed as defined in Section 6.3.2.

Figure 6.8 shows the module defining replacement of the focus subtree.
Subtree replacement is defined by the function replace-focus . This func­
tion uses two auxiliary functions repl-subtree , and repl-child. The
legality of the replacement is checked in the conditions of the equations for
replace-focus. The conditions also distinguish replacing the whole tree

Definition of structured editing

module Focus-replacement
imports SE
exports
context-free syntax

replace-focus(SE, Tree)
well-formedp(Tree, Signature)
repl-subtr(Tree, Path, Tree)
repl-child(Tree, INT, Tree)
compatible(Sort, Sort, Signature)

equations
[1a] well-formedp(Tree, sig(SE)) and

rootp(SE) = true

-> SE
-> BOOL
-> Tree
-> Tree
-> BOOL

replace-focus(SE, Tree)= [Tree, path(SE), sig(SE)]
[1b] well-formedp(Tree, sig(SE)) and

not rootp(SE) and
compatible (sort(name-to-func(name(Tree), sig(SE))),

focus-sort(SE), sig(SE)) = true,
Tree' = repl-subtr(tree(SE), path(SE), Tree)

replace-focus(SE, Tree) = [Tree', path(SE), sig(SE)]
[2a] repl-subtr(Tree, [] , Tree') = Tree'
[2b] repl-subtr(Tree, [Int Ints], Tree') =

123

repl-child(Tree, Int, repl-subtr(child(Tree, Int), [Ints], Tree'))
[3] children(Tree) = Trees Tree'' Trees',

rank(Tree'') = Int,
Tree''' = [kind(Tree'), name(Tree'), Int; children(Tree')]

repl-child(Tree, Int, Tree')=
[kind(Tree), name(Tree), rank(Tree); Trees Tree''' Trees']

Figure 6.8: Relevant part of module Focus-replacement

or only a part. For checking legality, we use the functions well-formedp,
compatible, and focus-sort . The first two functions implement the
well-formedness and compatibility checks as defined in Section 6.3.2. The
focus-sort function yields the argument sort of the function correspond­
ing to the parent of the focus. We omitted the equations for other functions
and cases where well-formedp yields false .

124 A specification of structure editing

6.6.2 Definition of the placeholder /template mechanism

Until now, we have defined a structure editor which only allows focus moves
and subtree replacements. The placeholder/template mechanism, intro­
duced in Section 6.3.2, is defined here.

The module for the placeholder and template based manipulation of
trees is shown in Figure 6.9. The focus is either a placeholder or not . In
the non-placeholder case we replace the focus tree by a placeholder node
corresponding to the argument sort of the parent of the focus. If there is no
parent, the sort of the function at the root is used. This is implemented by
the function replace-tree. In the placeholder case, we compute the set
of all functions of compatible sort and we let the user select one of these2 .

Given this function, we replace the placeholder by a template. This is
implemented by the function replace-placeh. The selected function is
mapped to a tree using make-tree. If the function to be mapped is a
list-constructor function we build a special tree to solve the problem of
replacing list placeholders (cf. Section 6.4). Finally, the focus subtree is
replaced by the result of make-tree. We omitted the equations for other
functions and all cases where the replace-tree of replace-placeh fails
as before.

6.6.3 Definition of list editing commands

Commands for editing lists , such as inserting and deleting items were intro­
duced in Section 6.4.3 and are formalized here. A relevant part of a module
implementing these commands is shown in Figure 6.10. Recall from Sec­
tion 6.4 .3 that we allow inserting before the focus when the focus is either a
list or a list item. In list case, a new item is inserted before all other items
in the list and the focus is moved to the newly inserted item (equation
[1a]). We use an auxiliary function insert that creates a new list item
node, adds one to the rank of all other items and inserts the new item. The
definition of insert is omitted. In the list item case, we need to replace the
parent of the tree in focus. This is defined by replacing the focus tree after
applying the function up (equation [1 b]). After inserting, the focus must
be moved to the new item, which is defined by copying the path before up
was applied. We omitted equations where the insert-before command
fails and omitted other commands as well.

2 How the user selects a function is described in Section 6.7.1 where we connect func­
tionality to the user-interface.

Defi.nition of structured editing

module Tree-creation
imports Focus-replacement
exports
context-free syntax

replace-tree(SE)
replace-placeh(SE, Function)
make-tree(Function, INT, Signature)
kind(Tree)

equations

-> SE
-> SE
-> Tree
-> Kind

[1a] kind(focus-tree(SE)) != placeh, path(SE) = [Ints Int],
Fune= sort-to-placeh-func(arg-sort(parent-func(SE), Int), sig(SE))

replace-tree(SE) = replace-focus(SE, make-tree(Func, Int, sig(SE)))
[1b] kind(focus-tree(SE)) != placeh, path(SE) = [),

Fune= sort-to-placeh-func(sort(focus-func(SE)), sig(SE))

replace-tree(SE) = replace-focus(SE, make-tree(Func, 0, sig(SE))
[2a] kind(focus-tree(SE)) = placeh, path(SE) = [Ints Int]

replace-placeh(SE, Fune)=
replace-focus(SE, make-tree(Func, Int, sig(SE)))

[2b] kind(focus-tree(SE)) = placeh, path(SE) = [)

replace-placeh(SE, Fune)=
replace-focus(SE, make-tree(Func, 0, sig(SE)))

Figure 6.9: Relevant part of module Tree-creation

125

126 A specification of structure editing

module List-editing
imports Tree-creation
exports

Focus-moves Focus-replacement

context-free syntax
insert-before(SE)
focus-is-list(SE)
focus-is-list-item(SE)

equations

-> SE
-> BOOL
-> BOOL

[la] focus-is-list(SE) = true,
Tree= focus-tree(SE),
SE' = replace-focus(SE, insert(Tree, 1, sig(SE)))

insert-before(SE) = dovn(SE')
[lb] focus-is-list-item(SE) = true,

Tree= focus-parent(SE),
Int= rank(focus-tree(SE)),
SE' = replace-focus(up(SE), insert(Tree, Int, sig(SE)))

insert-before(SE) = [tree(SE'), path(SE), sig(SE)]

Figure 6.10: Relevant part of module List-editing

6. 7 Connection with the user-interface

What have we achieved so far? We have defined:

• the notions signature and term;

• subtree replacement;

• structured editing based on placeholders and templates; and

• list editing commands.

The next (and final) step is to connect this functionality to the user­
interface. The specified structure editor can then be used in a more realistic
fashion. The connection with the user-interface consists of:

• writing a SEAL script defining buttons for all editor commands; and

• writing additional ASF +SDF specifications as required by the script.

6.7.1 The SEAL script

Given the algebraic specification of a structure editor, one may generate a
user-interface for it by writing a SEAL script for the module SE. A part

Connection with the user-interface

Configuration for language SE is

button Up
when not SE: rootp(root) enable

root := Focus-moves : up(root)
doc: "Simulate moving the focus to its parent"

button Down
when Focus-moves : down-enabling(root) enable

root := Focus-moves : down(root)
doc: "Simulate moving the focus to its first child"

button Template
when Commands : expandable(root) enable

create("AllFunctions", Commands : make-selector(root));
Function := select("AllFunctions", Function);
root := Commands : replace-placeh(root, Function)

doc: "Simulate replacing placeholder by template"

button Placeholder
when not Commands : expandable(root) enable

root := Commands : replace-tree(root)
doc: "Simulate replacing template by placeholder"

Figure 6.11: Part of the SEAL script for terms over module SE

127

of this script is shown in Figure 6.11. After compiling the script, syntax­
directed editors using the language defined by module SE are extended with
the user-interface objects defined in the script. Using this mechanism leads
to a situation where we have an editor E, operating on a term over SE,
which is extended with buttons corresponding to editor commands defined
above. These buttons may be enabled or disabled depending on a condition
which is also specified in the SEAL script.

Consider, for instance, a button labeled "Up" which simulates the up
command of the specified editor (a term over SE) by calling the up function
defined in module Focus-moves (cf. Section 6.5.4). This function takes a
term over SE as argument and yields an updated term over SE. The result is
then used to replace the SE term in E as specified in the SEAL script. The
"Up" button is disabled when the focus of our simulated structure editor is
positioned at the root. This can be determined by using the rootp function
defined in module SE. Likewise, we define buttons for the other commands
that move the focus. For some of these, however, a function defining the

128 A specification of structure editing

enabling condition of the button lacks. These are defined in a separate
module Commands, shown in Figure 6.12, or at a logical place: the module
where the command was defined. We illustrate both cases with an example.

As a first example of defining additional functions , consider the down
command, defined by the down function in module Focus-moves (cf. Sec­
tion 6.5.4). Recall that each focus moving command may fail and if so, down

returns its argument unchanged. An enabling condition for the Down button
is thus easily defined by inspecting if down returns its argument changed or
unchanged. This is defined by adding a function down-enabling to module
Focus-moves with the following equations:

[6a] SE != down(SE)

down-enabling(SE) = true
[6b] SE= down(SE)

down-enabling(SE) = false

Given the functions down and down-enabling the definition of the Down
button is straightforward (cf. Figure 6.11).

As a second example of defining auxiliary functions , consider the re­
placement of a placeholder by a template. This editor command is sim­
ulated by the Template button. It calls the function replace-placeh
defined in module Tree-creation (cf. Figure 6.9). This function requires
two arguments: a term over SE and a term representing a function in the
signature. The latter should be the result of selecting a function from
the signature by the user (cf. Section 6.6.2). This can be implemented in
the following way. When the Template button is pressed, SEAL calls the
make-selector function in module Commands. This function computes all
functions in the signature that are applicable, i.e. , those functions having
a compatible sort. These functions are then used by SEAL in a separate
editor instance AllFunctions and by using SEAL's select statement we
obtain the selected function. Next, SEAL calls the replace-placeh func­
tion providing it with the necessary arguments.

Connection with the user-interface

module Commands
imports List-editing
exports

sorts User-selection
context-free syntax

expandable CSE)

129

-> BOOL
- > Functions
-> Functions

expandable-functions(SE)
funcs-of-sort-or-smaller(Sort , Functions, Signature)
make-selector(SE) -> User-selection
"Please select one of these functions : " Functions

equations
[1a] kind(focus-tree(SE)) = placeh

expandable(SE) = true
[1b] kind(focus-tree(SE)) != placeh

expandable(SE) false

[2a] expandable(SE) = true,
rootp(SE) = false,
Sig= sig(SE),

-> User-selection

Funes= funcs-of-sort-or-smaller(focus-sort(SE), functions(Sig), Sig),
Fune= focus-func(SE),
Funes= Funes' Fune Funes'' Y.Y.remove the focus function

expandable-functions(SE) = Funes' Funes ''
[2b] expandable(SE) = true,

rootp(SE) = true

expandable-functions(SE) functions(sig(SE))

[3] make-selector(SE) =
Please select one of these functions: expandable-functions(SE)

Figure 6.12: Relevant part of module Commands

130 A specification of structure editing

/ Part II total II SDF / ASF / LL SEAL

Shared (with SEAL) 232 67 165 - -
Rest 829 219 610 - -
Script 87 - - - 87
Generated (by SEAL) 569 - - 569 -

I TOTAL 11 1111 11 286 I 115 I 569 I - I

Table 6.1: Overview of sizes of source code involved in our structure editor.

6. 7.2 Quantification of code involved

How much code was involved to implement our structure editor? To answer
this question we use the same counting scheme as before (cf. Section 3. 7).
The implementation of the editor can be subdivided into two parts: its
ASF+SDF specification, and its user-interface. The former part shares
code with the SEAL implementation (cf. Section 4.5.5). The latter part
was generated by the SEAL compiler. The sizes of the sources involved are
listed in Table 6.1.

6. 7.3 A user session

After initializing our structure editor with a signature describing a language
for a list of Boolean expressions we obtain a situation shown in Figure 6.13.
Only the button Template is enabled - indicated by a bold label- . When
this button is pushed, the user is asked to make a choice out of all func­
tions in the signature. These choices are displayed in a separate term­
editor, shown in Figure 6.14. After selecting And : Bool Bool -> Bool ,
the structure editor is updated and the result is shown in Figure 6.15. After
pushing the Down button of the editor shown in Figure 6.15, the focus is
moved to the first child of the root , which is indicated by the path [1].
The result is shown in Figure 6.16. Pushing the Template button of the
editor shown in Figure 6.16 results in asking the user to make a choice
out of functions of the sort Bool only. These choices are displayed in a
separate term-editor again, shown in Figure 6.17. The result of selecting
False : -> Bool is shown in Figure 6.18.

The user session presented above shows that our specified editor can be
used to develop a program in a structural manner. An interesting aspect
is the interpretation of the language definition during editing which, in
principle, allows dynamically changing it. We will discuss this feature in
the next section.

Connection with the user-interface

[!I SE : / nfs/ adam/adal/koorn/CONFIG/[XAMPL[S/5[/Booleans . se
D tree text expand he 1 p

Root

1---U-'-p---i [placeh, « Boo!+», 0;],
Down [J.

1------i sorts:
Next Boal

Previous subsorts:
1-I-n-se_r_t-Be_f_o_re--i {Boo 1 '"' }+ > Boo 1

functions:
lnsertAfter True -) Boal

Delete False : -> Boal
And : Boal Boal -) Boal

Teaplate Or Boal Boal -) Boal
Placeholder Not : Boa l -) Boal

Edit « Boal » : -) Boo!
Bool-in--+-list : {Boal ""}+- > {Boal ""}+
« Boo) +)) : -> {Bool ""}+

131

Figure 6.13: The term-editor displaying an initialized structure editor for
a list of Boolean expressions.

l!I Commands : / nfs/adam/adal/koorn/TEX/Abstract GSE/Allfunc@
□ tree te),(t e><pand help

·,ease se1ect one ot tnese "unctions :
True : -> Boal
False : -) Boa l
And : Boal Boal -> Boal
Or : Boal Boal -> Boal
Not : Boal -> Boal
<<Boa l>> : -> Boal
Boo1 -1 n--+-11st : {Boal '"' }+->{Boal ""}+
« Boo)+)) : -) {Boo! ""}+ 1,--~--~-------,1>,t

Figure 6.14: All functions in the signature.

[!I SE : / nfs/ adam/ adal /koorn/CONFIG/ EXAMPLES/SE/Booleans. se
O tree text e~pand help

Root

I tree, Up
Doo,n And ,

Ne~t
0 ;
[pla ceh, « Bool », 1; l [placeh , « Bool> >, 2; l

Previous],

lnsert8efore [],
sort s:

I nsertAfter Boal
De 1 ete subsorts:

Temp l ate
{Boo! ""}+) Boal

functions:
P 1 aceho 1 der True : -> Boo!

Edit False : - > Boo 1
And : Boal Boal -) Boal
Dr : Bool Boal -> Bool
Not : 8001 -> Boo 1

···"" ¼im"_;; ·~ ,.

~

.

Figure 6.15: The term-editor after replacing the «Bool+» placeholder by
a template corresponding to And : Bool Bool -> Bool.

132 A specifi.cation of structure editing

[!] SE : / nfs/ adam/ adal / koorn/CONFIG/ EXAMPLES/SE/ Booleans. se
□ tree tex t e >< pand he 1 p

Root

Up [tree ,
Down And ,

0 •
Next [plac eh , « Bool », 1;] [plac eh, « Bool » , 2 ;]

Previous],

lnsertBefore [1],
sorts :

I nsertAfter Boo 1
Delete subsorts:

{Bool "" }• > Bool
~,.T_ .. _P~1-•,.t_e---1 f u nc t i on s :

Placeholder True : -) Boal
Ed it false : -> Bool

And : Boal Boal -> Boal
Or : Boal Boal -) Boal
Not : Boal -> Boal

Figure 6.16: The term-editor after pressing the Down button.

(!I Coml!'lands : / nfs/ adam/ adal / koorn/ TEX/Abstract_GSE/ Allfunc12]
O tree t ext exoand he 1 o

'lease select one of these functions:
True : -> Boal
False : -> Boal
And : Boal Boal -> Boal ;~,
Or : Boal Boal -> Boal ~"·
Not : 8001 -) Boolr'-~--------------t,,,.

Figure 6.17: All functions of sort Bool.

I!] SE : / nfs/adam/adal / koorn/ CONFIG/EXAMPLES/ SE/Booleans.se
D tree text expand he 1 o

Root
Up

Down

[tree ,
And,
0 ·

Next [~tom,
Previous],

1-I_n_s_e r_t_B_e_f o-r-e-i [1 L
sorts :

InsertAfter Bool
Delete subs or t s:

False, 1 ;] [placeh, << Bool>) , 2;]

1------i {Boo l "" }•) Boo l
~-T_em-'p_l_a_t•--i fun c t ions :

Placeholder True : -) Boal
Edit Fa l se : -) Bool

And : Boal Baol -> Boal
Or : Bo a l Boal -> Boal
Not : Bool -) Bool

Figure 6.18: The term-editor after selecting False

il
I'\

1

-> Bool.

Related work 133

6.8 Related work

We will discuss three approaches more or less similar to ours: the work of
Schulte [Sch87], based on work of Bertling et al. [BG86], that of ClaBen
et al. [CL90], and that of Minor [Min90]. A common aspect in the work
of these authors and ours is the interpretation of the language definition.
Most other editor generating systems use the language definition only at
generation time, that is, definitions are fed into, for instance, a parser
generator. Thus, the generation result is used during editing.

Schulte's work amounts to describing a structure editor algebraically
and then using the description to derive an implementation in an imper­
ative programming language. The derivation process is hand-crafted as
well as the user-interface and extensions of the editor, such as parsing and
textual manipulation of programs. The algebraic specification is thus used
as a design tool only. Language definitions are based on a combination of
a signature and a context-free grammar where there is a one to one cor­
respondence of a function in the signature and a production rule in the
grammar. Signatures do not contain subsorts or list-constructor functions,
lists are represented as binary trees.

The basis of Schulte's work was [BG86]. There, editing is considered
as applying a number of transformations based on conditional rules. For
example, a rule might express that a placeholder may be replaced by a
template. The most interesting part in this work is the possibility to change
the rule set during editing. This allows the user, for instance, to add a rule
expressing insertion of a new item in a list. Language definitions are solely
based on signatures without subsorts and lists. Lists are represented as
binary trees and a default set of transformation rules is derived from the
signature. The authors do not present a path mechanism although they
mention the availability of an editor prototype. This prototype lacks a
graphical user-interface.

Clafien et al. also report the development of a syntax-directed editor
based on algebraic specifications. An implementation was derived from the
description by transforming it to an OBJ3 [GKK+88] specification which
was fed to the OBJ3 system. Here too, editing is considered as applying
transformations based on conditional rules. The language definitions lack
subsorts and lists are represented as binary trees. The user-interface of the
editor is formally specified, but a graphical user-interface is not part of the
derived implementation.

Minor's work is less related to ours than the work mentioned above. He
does not formally specify a structure editor, but his SbyS editor features

134 A specification of structure editing

interpretation of the language definition used. To our knowledge, SbyS
is the only structure editor that uses this technique although it contains
generated parts. Language definitions in SbyS are not based on signa­
tures, instead a combination of an abstract syntax definition and a concrete
syntax definition is used. There is a one to one correspondence between
rules in both definitions. Abstract syntax definitions contain lists, but only
in the zero or more variant. A graphical user-interface, based on direct­
manipulation [Shn83], is derived automatically from the language defini­
tion. In that interface, a user drags a representation of a template from a
palette to a representation of a placeholder thus indicating a replacement
request. This approach makes the existence of commands to move the focus
obsolete.

6.9 Discussion and conclusions

We have formally defined a generic structure editor that uses a signature as
language definition. We were able to create an environment which serves
as the user-interface of the specified editor by using SEAL. We now discuss
advantages, limitations, and suggest issues for future work.

The advantages of our approach are twofold. First, we may study ex­
tensions of the editor's command set by adding functions to the ASF +SDF
specifications and adapting the SEAL script. The implementations of the
ASF +SDF Meta-environment and SEAL allows us to do this fully inter­
actively. Second, by extending the notion of a signature as known in the
literature, see e.g. [Wec92], with flat lists our editor behaves more naturally
when the focus is moved.

Our approach has three limitations. First of all a textual view of the tree
built is inevitable. Adding such a view requires the addition of a keyword
skeleton for each function defined in the signature or extending the language
definition with a context-free grammar. The tree part of the editor's data
structure must then be pretty-printed. This requires an ASF +SDF specifi­
cation of a language dependent pretty-printer. We consider pretty-printing
outside our scope, but the feasibility of it has been shown in [Bra93]. Sec­
ond, the editor has a fixed set of commands. Although these may be added
by adapting the specification, it is still less flexible compared to the trans­
formational approach in the style of Bertling [BG86]. However, we claim
that by using SEAL's active tool feature , a general transformational style
can be achieved. Third, the performance of our editor is such that it can
not yet be used for practical program development. This may be improved

Discussion and conclusions 135

drastically by compiling the ASF+SDF specification to C using techniques
described in [KW93] and by adapting the interface between ASF +SDF
and SEAL. For instance, we know that a command to move the focus only
changes the focus part of our data structure. In the standard ASF +SDF
term-editor we may thus replace only that part instead of replacing the
entire data structure which is currently done.

After adding a textual view, the next step is allowing the user to change
the textual representation and parsing the text fragments that are changed.
This requires an algebraic specification of a system generating a parser.
Whether or not this is a good idea remains to be investigated.

136 A specification of structure editing

Chapter 7

Assessment and conclusions

We have presented GSE, a hybrid syntax-directed editor consisting of
three parts: text editor, structure editor, and graphical user-interface.
It is used in the ASF+SDF Meta-environment of which the user­
interface is based on a collection of GSE instances. Furthermore, we
have presented SEAL, a user-interface definition language dedicated
to the ASF+SDF Meta-environment. Generated tools, such as type­
checkers and evaluators, can be connected to the user-interface using
SEAL. We assess achievements and state conclusions.

7 .1 A sse ssment

We assess our achievements by discussing to which extent our goals are
met. These goals, formulated in Chapter 1, were:

• ensuring the uniformity of all user-interface aspects;

• building an editor which can be used as a generic building block;

• incorporating an existing text editor to obtain first class text editing;

• introducing a mechanism to connect tools to the user-interface; and

• investigating the possibility to generate the editor itself.

Additional goals were: an efficient and easily maintainable implementation,
and extensibility and customizability of all editing facilities.

137

138 Assessment and conclusions

7.1.1 Ensuring uniformity of all user-interface aspects

Our primary goal was to obtain uniformity of all user-interface aspects
of the ASF+SDF Meta-environment. The user-interface of this system
primarily consists of a collection of editor instances. This goal therefore
amounts to ensuring the uniformity of the user-interface aspects of these
instances. We have achieved this to a large extent by adopting an approach
based on using generic software components and generating the software
needed for their specific use.

7.1.2 Building a generic editor

We have fully achieved our second goal of building an editor which can be
used as a generic building block. The key idea here was to parameterize all
language dependent parts, such as the parser and the pretty-printer. This
led to a situation in which the functionality and behavior of the editor is
independent of the language used.

7.1.3 Obtaining first class text editing

Incorporation of an existing text editor, by which first class text editing
can be obtained is fully achieved as well. We have incorporated Epoch, an
extended version of Emacs, into our editor prototype.

7.1.4 Connecting tools to the user-interface

SEAL provides the mechanism necessary to connect tools to the user­
interface of one or more editors. Although we are not completely satisfied
with SEAL's current capabilities (cf. Chapter 5), it is our belief that we
have made a first step in the right direction.

7.1.5 Generating the editor itself

Our final goal, generating all software parts of GSE that are specific for the
ASF +SDF Meta-environment, is only partly achieved. We have presented
a specification of structure editing facilities and we have shown that the
specified editor can be simulated. The reason for only partly achieving this
goal is that it is not yet clear to us how to incorporate and use such a spec­
ified editor in the ASF+SDF Meta-environment. At this point additional
research is required.

Assessment 139

7.1.6 Additional goals

Our secondary goals were: an efficient and easily maintainable implemen­
tation, and extensibility and customizability of all editing facilities. We
briefly discuss these aspects for each part of our software.

Text editing

The efficiency of text editing in GSE is slightly less than in Epoch due to
the updating of zone information (cf. Chapter 3).

The way in which we incorporated Epoch, through network communi­
cation, has two consequences for maintaining the text editing component.
First, although Epoch is maintained by others we now have to maintain
the code used for communication and interfacing. Second, the obligation
to use the network interface has led to a modular set-up increasing main­
tainability.

We inherit the extensibility and customizability of Epoch.

Structure editing

Structure editing facilities fall into two groups: built-in facilities - replacing
placeholders by templates- which are hard wired in the current code of
GSE, and additional facilities obtained by using SEAL.

The efficiency of the facilities in either group is not critical since mouse
driven interaction is involved which is intrinsically slow.

Maintenance of built-in facilities is a reason for concern since these are
hard wired in the current code. In the future maintainability may be gained
when built-in facilities are generated as well (cf. Chapter 6). Additional
facilities are easily maintained since both the SEAL script as well as the
possibly necessary additional ASF +SDF specification are easily adapted or
changed.

Extensibility of structure editing facilities is obtained by using SEAL.
Customizability of built-in facilities is currently impossible, but this may

be obtained in the future when they are generated. Additional facilities are
customizable by adapting the SEAL script and/or adapting the possibly
necessary additional ASF +SDF specification.

User-interface

Efficiency of the user-interface is not critical since pressing a button involves
user interaction which is intrinsically slow. Enabling and disabling such

140 Assessment and conclusions

buttons by the SEAL run-time system on the other hand is time-critical.
Two parts of code are involved here: the code generated by the SEAL
compiler and the code used in the SEAL run-time system. Performance of
both parts is reasonable, but can be improved.

Maintainability of the user-interface is very good when SEAL is used
to generate it. The code used by the SEAL run-time system, the library
of graphical objects, and its interface are written by hand and their main­
tenance is a reason for concern. The SEAL compiler is easily maintained
since it is completely specified in ASF+SDF.

The user-interface is partly extensible, again by using SEAL. Extending
a user-interface with objects not offered by SEAL requires an extension of
the SEAL language, its compiler, and its run-time system.

Customizability at the graphical level - fonts, colors, geometry, etc.­
is fully achieved. Epoch allows any combination of font , foreground color,
and background color to be used for text. Window colors, fonts used in
labels, default sizes of windows, etc. are customizable as well due to the
use of OSF /Motif.

7.2 Conclusions

We have built a state-of-the-art hybrid syntax-directed editor. A textual
approach was adopted: Epoch, an existing text editor, is used for displaying
the result of all editing operations. The incorporation of Epoch not only
led to rich text editing facilities, but also unified editing inside and outside
our system. The user-interface of the editor has a first class graphical
appearance and is highly customizable. Furthermore, the user-interface
is extensible even at run-time when SEAL is used to generate it. These
features make our editor probably the most powerful hybrid syntax-directed
editor available to date. SEAL goes beyond generating a user-interface for
a single editor, since multiple editor instances may be used to implement a
complete user-interface of an interactive programming environment.

Appendix A

• SEAL syntax Ill SDF

module SEAL

exports
sorts

String Module Sort Variable-name Name
Function-name Dir Dirs Unix-filename

lexical syntax
ll'l.'l.11 L-Char• "'l.'/.11 -> LAYOUT %%comment
[\t\n] -> LAYOUT

"\ \" - []

"\ \" (01) (0-7) (0-7)
- (\000-\037"\\]
EscChar
"\"11 L-Char* "\1111

[A-Z] [A-Za-z0-9\-_]* [A-Za-z0-9)*
[A-Z] [A-Za-z0-9\-_)* [A-Za-z0-9)•
[a-zA-Z] [a-zA-Z0-9)•
[a-zA-Z] [a-zA-Z0-9)•
[a-zA-Z] [A-Za-z0-9\-_)* [A-Za-z0-9)*

[a-zA-Z0-9_\-]+ "/"
It •• /"

"/" Dir*
"./" Dir*
Dir+
"\"" Dirs [a-zA-Z0-9_ \- .] + "\""
"\"" [a-zA-Z0-9_ \-.]+ "\'"'

141

-> EscChar
-> EscChar
-> L-Char
-> L-Char
-> String

-> Module
-> Sort
-> Variable-name
-> Name
-> Function-name

-> Dir
-> Dir
-> Dirs
-> Dirs
-> Dirs
-> Unix-filename
-> Unix-filename

142 SEAL syntax in SDF

sorts
SEAL-spec SEAL-spec-part Button Menu-entry Menu Entry Active-tool
Cond-action-pair Tool-CA-pair Docu Tool-Docu Cond-part Action
Focus-cond-expr Pattern While-cond Focus Focus-expr Focus-action Term

context-free syntax
"Configuration" for language Module is SEAL-spec-part+-> SEAL-spec
Button
Menu-entry
Menu
Active-tool

button Name Cond-action-pair+ Docu
start-stop button Name Cond-action-pair+ Docu
menu entry Name in Name Cond-action-pair+ Docu
menu Name":" Entry+
Name"," Cond-action-pair+ Docu
active tool Name Tool-CA-pair+ Tool-Docu

when Cond-part enable {Action "; "}+
enable {Action";"}+
when Cond-part do {Action";"}+
do {Action";"}+

Focus-cond-expr is Sort
Focus-cond-expr matches Pattern
String
Focus-cond-expr "is-meta-var"
Module":" Function-name({Focus-cond-expr
not Cond-part
"(" Cond-part ")"
Cond-part and Cond-part
Cond-part or Cond-part

focus {Focus-action","}*

II>"}•)

Unix-filename "." focus {Focus-action","}*

Focus-cond-expr is Sort
Focus-cond-expr matches Pattern
Focus-cond-expr "is-meta-var"
Module" : " Function-name({Variable-name ","}•)
focus {Focus-action","}+
Unix-filename " . " focus {Focus-action","}+
Variable-name" ." focus {Focus-action","}+
not While-cond
"(" While-cond ")"
While-cond and While-cond
While-condor While-cond

->
->
->
->
->
->

->
->
->
->

->
->
- >
->
->
->
->
->
->

->
->

->
->
->
->
->
->
->
->
->
->
->

-> SEAL-spec-part
-> SEAL-spec-part
-> SEAL-spec-part
-> SEAL-spec-part

Button
Button
Menu-entry
Menu
Entry
Active-tool

Cond-action-pair
Cond-action-pair
Tool-CA-pair
Tool-CA-pair

Cond-part
Cond-part
Pattern
Cond-part
Cond-part
Cond-part
Cond-part {bracket}
Cond-part {left}
Cond-part {left}

Focus-cond-expr
Focus-cond-expr

While-cond
While-cond
While-cond
While-cond
While-cond
While-cond
While-cond
While-cond
While-cond {bracket}
While-cond {left}
While-cond {left}

SEAL syntax in SDF

Focus" : =" Term
Variable-name" : =" Term
Variable-name" : =" Focus {Focus-action","}•
Focus-expr
while While-cond do {Action";"}+ od
Module":" Function-name({Variable-name ","}•)
create(Unix-filename, Module, Text, Sort)
create(Variable-name, Module, Text, Sort)
create(Unix-filename, Variable-name)
create(Variable-name, Variable-name)
create(Unix-filename, Term)
create(Variable-name, Term)

Focus {Focus-action","}•
{Focus-action" , "}+

focus
Unix-filename
Variable-name

up
down
previous
next
root
save
restore

Variable-name

focus
focus

select"(" Unix-filename " ," Sort ")"
select
Module

II (11

11 . 11

Variable-name"," Sort")"
Function-name({Variable-name ","}•)

String+
readfile "("Unix-filename ")"
readfile "("Variable-name")"

doc":" String manual entry
doc":" String
manual entry " · " Name

"·" Name

priorities not Cond- part -> Cond-part >
Cond-part and Cond-part -> Cond-part >
Cond-part or Cond-part -> Cond-part

priorities not While- cond - > While-cond >

->
->
->
->
->
->
->
->
->
->
->
->

->
->

->
->
->

->
->
->
->
- >
->
->

->
->
->
->

->
->
->

->
->
->

While-cond and While-cond -> While-cond >
While-condor While-cond -> While-cond

143

Action
Action
Action
Action
Action
Action
Action
Action
Action
Action
Action
Action

Focus-expr
Focus-expr

Focus
Focus
Focus

Focus-action
Focus- action
Focus-action
Focus-action
Focus-action
Focus-action
Focus-action

Term
Term
Term
Term

Text
Text
Text

Docu
Docu
Tool-Docu

144 SEAL syntax in SDF

Bibliography

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers. Principles, Tech­
niques and Tools. Addison-Wesley, 1986.

[Bar84] H.P. Barendregt. The Lambda Calculus; its Syntax and Semantics,
volume 103 of Studies in Logic and the Foundations of Mathatemat­
ics. North-Holland, 1984.

[BC84] G. Berry and L. Cosserat. The ESTEREL synchronous programming
language and its mathematical semantics . Rapports de Recherche
327, INRIA, Sophia-Antipolis, 1984.

[BCD+88] P. Borras , D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang,
and V. Pascual. Centaur: the system. In Third Annual Symposium on
Software Development Environments (SIGSOFT'BB), Boston, 1988.

[BCD+89] P. Borras , D. Clement , Th . Despeyroux, J. Incerpi, B. Lang, and
V. Pascual. CENTAUR: the system. In Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, pages 14- 24, 1989. Appeared
as SIGPLAN Notices 14(2) .

[BCG86] G. Berry, P. Couronne, and G. Gonthier . Synchronous programming
of reactive systems: An introduction to ESTEREL. In Proceedings
of the first France-Japan Symposium on Artificial Intelligence and
Computer Science, Tokyo . North Holland, 1986. Also appeared as
INRIA Rapport de Recherche No. 647.

[Ber92] T. Berlage. Using taps to separate the user interface form the appli­
cation code. In Proceedings of UIST '92, pages 191- 198, Monterey,
CA, November 1992.

[BG86] H. Bertling and H Ganzinger. A Structure Editor Based on Term
Rewriting. In The Commission of the European Communities, editor,
Esprit '85 - Status Report of Continuing Work 1, pages 455- 466.
Elsevier, 1986.

[BGV92] R.A. Ballance, S.L. Graham, and M.L. Van De Vanter . The Pan
Language-Based Editing System. ACM Transactions on Software
Engineering and Methodology, 1(1):95-127, 1992.

145

146

[BHK89]

[BL90]

[Bos88]

[Bra92]

[Bra93]

[BS86a]

[BS86b]

[BS92]

[Che87]

[Chu41]

[CI88]

[CL90]

BIBLIOGRAPHY

J .A. Bergstra, J. Heering, and P. Klint. The algebraic specification
formalism ASF. In J.A. Bergstra, J. Heering, and P. Klint, editors,
Algebraic Specification, ACM Press Frontier Series, pages 1- 66. The
ACM Press in co-operation with Addison-Wesley, 1989. Chapter l.

J. van den Bos and C. Laffra. Project DIG IS Building Interactive
Applications by Direct Manipulation . Computer Graphics Forum,
9(3):181- 193, september 1990.

J . van den Bos. Abstract interaction tools: A language for user
interface management systems. A CM Transactions on Programming
Languages and Systems, 10(2):215- 247, 1988.

M.G.J. van den Brand. Pregmatic, A generator for incremental pro­
gramming environments. PhD thesis, Katholieke Universiteit Ni­
jmegen, 1992.

M.G.J. van den Brand. Generation of language independent mod­
ular prettyprinters. Report P9327, Programming Research Group,
University of Amsterdam, 1993.

R. Bahlke and G. Snelting. Context-sensitive editing with PSG en­
vironments. In R. Conradi, T.M. Didriksen , and D.R. Wanvik, ed­
itors, Proceedings of the International Workshop on Advanced Pro­
gramming Environments, volume 244 of Lecture Notes in Computer
Science, pages 26- 38. Springer-Verlag, 1986.

R. Bahlke and G. Snelting. The PSG system: from formal language
definitions to interactive programming environments. ACM Transac­
tions on Programming Languages and Systems, 8(4):547- 576, 1986.

R. Bahlke and G. Snelting. Design and structure of a semantics-based
programming environment. International Journal of Man-Machine
Studies, 37(4):467- 502, October 1992.

S. Chernicoff. Programming with the Toolbox, volume 2 of Macin­
tosh Revealed. Hayden Books, 4300 West 62nd Street, Indianapolis,
Indiana 46268, USA, second edition, 1987.

A. Church. The Calculi of Lambda Conversion. Princeton University
Press, 1941.

D. Clement and J . Incerpi. Specifying the behavior of graphical ob­
jects using ESTEREL. Rapports de Recherche 836, INRIA, Sophia
Antipolis, 1988.

I. Clafien and M. Lowe. Algebraic development of a syntax directed
editor. Technivcal report 90/37, Technical University of Berlin ,
Berlin , 1990.

BIBLIOGRAPHY 147

[CP85]

[Des88]

[Deu92]

L. Cardelli and R. Pike. Squeak: a language for communicating with
mice. In Conference proceedings of SIGGRAPH '85, pages 199- 204.
ACM, 1985. Appeared as Computer Graphics 19(3).

Th. Despeyroux. Typo): a formalism to implement natural semantics.
Technical Report 94, INRIA, 1988.

A. van Deursen. Specification and generation of a A-calculus environ­
ment. In J.L.G. Dietz, editor, Conference Proceedings of Computing
Science in the Netherlands, CSN'92, pages 14- 26. SION, 1992. Also
appeared as Report CS-R9233, Centrum voor Wiskunde en Infor­
matica (CWI) Amsterdam.

[DGHKL80] V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang. Programming
environments based on structured editors: the MENTOR experience.
Rapports de Recherche 26, INRIA, Rocquencourt, 1980.

[DGHKL84] V. Donzeau-Gouge, G. Huet , G. Kahn, and B. Lang. Programming
environments based on structured editors: the MENTOR experience.
In D.R. Barstow, H.E. Shrobe, and E . Sandewall, editors , Interac­
tive Programming Environments, pages 128- 140, New York, 1984.
McGraw-Hill.

[DK89] M.H.H. van Dijk and J.W.C. Koorn. Generic syntax editor. IN­
RIA, Sophia-Antipolis, 1989. In: The CENTAUR Documentation -
Version 0.9, Volume I - User's Guide.

[DK90] M.H.H. van Dijk and J .W.C . Koorn. GSE, a generic syntax-directed
editor. Report CS-R9045, Centrum voor Wiskunde en Informatica
(CWI), Amsterdam, 1990.

[DKT93] A. van Deursen, P. Klint, and F. Tip. Origin tracking. Journal of
Symbolic Computation, 15:523- 545, 1993. Special Issue on Automatic
Programming.

[DS90] P. Dewan and M. Solomon. An Approach to Support Automatic
Generation of User Interfaces. ACM Transactions on Programming
Languages and Systems, 12(4):566-609, 1990.

[Eck80] R. Eckert. Specification of Graphics Systems. In Guedj et al, editor,
IFIP-WG 5.2 Workshop on the Methodology of Interaction, pages
195- 209. North Holland, 1980.

[Epo92] University of Illinois, Urbana-Champaign. Epoch, GNU Emacs for
the X Windowing System, 1992. Release 4.0, based on GNU Emacs
18.58.

[Fou90] Open Software Foundation. OSF/Motif Programmer 's Guide, Revi­
sion 1.1. Prentice Hall , Englewood Cliffs, New Jersey 07632, 1990.

148 BIBLIOGRAPHY

[GF92] D.F. Gieskens and J.D. Foley. Controlling user interface objects
through pre- and postconditions. In Conference proceedings of CHI
'92, pages 189- 194. Addison Wesley, 1992.

[GKK+88] J. Goguen, C. Kirchner , H. Kirchner, A. Megrelis, J. Meseguer, and
T. Winkler. An introduction to OBJ3. In S. Kaplan and J .-P. Jouan­
naud, editors, Proceedings of the First International Workshop on
Conditional Term Rewriting Systems, volume 308 of Lecture Notes
in Computer Science, pages 258-263. Springer-Verlag, 1988.

[Gor88] M.J.C . Gordon. Programming Language Theory and its Implemen­
tation. Prentice-Hall, 1988.

[GP91] J .F. Groote and A. Ponse. µCRL: A base for analysing processes
with data. In E. Best and G. Rozenberg, editors, Proceedings of the
third Workshop on Concurrency and Compositionality, volume 191
of GMD-Studien, pages 125- 130, 1991.

[Han71] W .J . Hansen. User engineering principles for interactive systems.
In Proceedings of the AFIPS Conference, volume 39, pages 523- 532,
Reston, Virginia, 1971. AFIPS Press.

[Hee92] F .C. Heeman . State-of-the-Art Window Systems and UIMSs. Techni­
cal Report 92-07, Software Engineering Research Centrum, Utrecht,
the Netherlands, march 1992.

[HH89] H.R. Hartson and D. Hix. Human-computer interface development:
Concepts and systems for its management. ACM Computing Surveys,
21(1) , 1989.

[HHKR89] J . Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax
definition formalism SDF - reference manual. SIGPLAN Notices,
24(11):43- 75, 1989.

[Hil86] R.D. Hill . Supporting concurrency, and synchronization in human­
computer interaction - the sassafras UIMS. ACM Transactions on
Programming Languages and Systems, 5(3):179- 210, 1986.

[HK89] J . Heering and P. Klint. The syntax definition formalism SDF. In J .A.
Bergstra, J. Heering, and P. Klint, editors, Algebraic Specification,
ACM Press Frontier Series, pages 283- 297. The ACM Press in co­
operation with Addison-Wesley, 1989. Chapter 6.

[HKKL86] J . Heering, G. Kahn , P. Klint, and B. Lang. Generation of Interac­
tive Programming Environments. In The Commission of the Euro­
pean Communities, editor, Esprit '85 - Status Report of Continuing
Work 1, pages 467-477. Elsevier, 1986.

[HN86] A. N. Habermann and D. Notkin. Gandalf: software develop­
ment environments. IEEE Transactions on Software Engineering,
12(12):1117- 1127, 1986.

BIBLIOGRAPHY 149

[ISO87] ISO. Information processing systems - open systems interconnec­
tion - LOTOS - a formal description technique based on the tem­
poral ordering of observational behaviour, 1987. ISO /TC97 /SC21/N
DIS8807.

[Jac86] R.J.K. Jacob. A specification language for direct-manipulation user
interfaces. ACM Transactions on Graphics, 5(4):283-317, 1986.

[JMB+93] I. Jacobs, F. Montagnac, J. Bertot, D. Clement, and V. Prunet. The
Sophtalk Reference Manual. Rapports de Recherche 150, INRIA,
Sophia Antipolis, February 1993.

[Kah87] G. Kahn. Natural semantics. In F.J. Brandenburg, G. Vidal-Naquet,
and M. Wirsing, editors, Fourth Annual Symposium on Theoretical
Aspects of Computer Science, volume 247 of LNCS, pages 22- 39.
Springer-Verlag, 1987.

[KB93] J .W.C . Koorn and H.C.N. Bakker. Building an editor from existing
components: an exercise in software re-use. Report P9312, Program­
ming Research Group, University of Amsterdam, 1993. Available by
ftp from ftp.cwi.nl:/pub/gipe as KB93.ps.Z.

[KJT+93] H. Korte, H. Joosten, V.G. Tijssen, A. Wammes, and J . Wester. Re­
alization of a LOTOS simulator with ASF+SDF, 1993. In: ESPRIT
Project 2177, Generation of Interactive Programming Environments
II, Fifth annual review report .

[Kli93] P. Klint. A meta-environment for generating programming environ­
ments . ACM Transactions on Software Engineering Methodology,
2(2):176- 201 , 1993.

[Koo92] J.W.C. Koorn. GSE: A generic text and structure editor. In
J.L.G. Dietz, editor, Conference Proceedings of Computing Science
in the Netherlands, CSN'92, pages 168- 177. SION, 1992. Appeared
as Report P9202 , University of Amsterdam. Available by ftp from
ftp.cwi.nl:/pub/gipe as Koo92b.ps.Z.

[Koo93] J.W.C. Koorn. Connecting semantic tools to a syntax-directed user­
interface. In H.A. Wijshoff, editor, Conference Proceedings of Com­
puting Science in the Netherlands, CSN'93, pages 217- 228. SION,
1993. Also appeared as Report P9222, University of Amsterdam.
Available by ftp from ftp.cwi.nl:/pub/gipe as Koo92a.ps.Z.

[KR78] B.W. Kernighan and D.M. Ritchie. The C Programming Language.
Prentice-Hall, 1978.

[KW93] J. F. Th. Kamperman and H.R. Walters. ARM, abstract rewriting
machine. Technical Report CS-9330, Centrum voor Wiskunde en
Informatica, 1993. To appear in Conference Proceedings of Comput­
ing Science in the Netherlands, CSN'93. Also available by ftp from
ftp .cwi.nl:/pub/gipe as KW93.ps.Z.

150 BIBLIOGRAPHY

[Lan85) B. Lang. Mentor - design and implementation of the kernel of a
program manipulation system. In J. McDermid, editor, Integrated
project support environments, volume 1, pages 175- 188. IEEE Soft­
ware Engineering Series, 1985.

[Lan86] B. Lang. On the usefulness of syntax directed editors. In R. Conradi,
T .M. Didriksen , and D. Wanvik, editors, Advanced Programming En­
vironments, volume 244 of Lecture Notes in Computer Science, pages
47-51. Springer-Verlag, 1986.

[LeL91) INRIA, Rocquencourt . LeLisp, Version 15.24, Reference Manual,
1991.

[Ler92) B. S. Lerner. Automated customization of structure editors. Inter­
national Journal of Man-Machine Studies, 37(4):529-563, October
1992.

[LLG90] D. Lewis, D. LaLiberte, and GNU Manual Group. GNU Emacs
Lisp Reference Manual. Free Software Foundation, Inc., 675 Mas­
sachusetts A venue, Cambridge, MA 02139 USA, 1.03 edition, De­
cember 1990. Describes Emacs Version 18.

[Log88] M.H. Logger. An integrated text and syntax-directed editor. Report
CS-R8820, Centrum voor Wiskunde en Informatica (CWI), Amster­
dam , 1988.

[MBD+9o] B. Magnusson, M. Begtsson, L.O Dahlin, G. Fries, A. Gustavson ,
G. Hedin, S. Minor , D. Oscarsson, and M. Taube. An overview of the
mj0lner/orm environment: Incremental language and software devel­
opment. Technical Report LU-CS-TR:90-57 and LUTEDX/(TECS-
3026)/1-12/(1990), Lund University and Lund Institute of Technol­
ogy, 1990.

[MGD+90] B.A. Myers, D. Giuse, R. Dannenberg, B. Vander Zanden , D. Kosbie,
E. Pervin , A. Mickish , and P . Marchal. Garnet - comprehensive
support for graphical, highly interactive user interfaces. Computer,
23(11), 1990.

[Min90] S. Minor. On Structure-Oriented Editing. PhD thesis, Lund Univer­
sity, 1990.

[Mor81] T. P. Moran. The Command Language Grammar: a representation
for the user interface of interactive computer systems. International
Journal of Man-Machine Studies, 15:3- 50, 1981.

[MSK90] N.P. Mayer, A. W . Shepherd , and A. J. Kuchinsky. Winterp: an
object-oriented, rapid prototyping, development and delivery envi­
ronment for building extensible applications with the OSF /Motif UI
toolkit. In Proceedings of Xhibition '90, San Jose, 1990.

BIBLIOGRAPHY 151

[MV90] S. Mauw and G.J. Veltink. A process specification formalism. Fun­
damenta Informaticae , XIII:85- 139, 1990.

[Mye90] B.A. Myers. Creating user interfaces using programming by exam­
ple, visual programming, and constraints . ACM Transactions on
Programming Languages and Systems, 12(2) :143- 177, 1990.

[NHE+83] D. Notkin, N. Habermann, R. Ellison, G . Kaiser, and D. Carlan.
Response to Waters ' article on structure oriented editors. SIGPLAN
Notices , 18(4) , 1983. Correspondence section.

[Not85] D. Notkin . The GANDALF project. The Journal of Systems and
Software, 5(2):91- 105, 1985.

[NS90] L. Neal and G. Szwillus. Report on the CHI '90 Workshop on Struc­
ture Editors. SIGCHI bulletin, 22(2) :49- 53, 1990.

[Ols87] D.R. Olsen. ACM SIGGRAPH Workshop on Software Tools for User
Interface Management. Computer Graphics, 21(2) :71- 147, 1987.

[Par72] D . L. Parnas. A Technique for Software Module Specification with
Examples. Communications of the ACM, 15(5):330- 336, 1972.

[Par90] H. Partsch. Specification and Transformation of Programs - a Formal
Approach to Software Development. Springer-Verlag, 1990.

[Rek92]

[Rem92]

[RK91]

[RT89a]

[RT89b]

[Sch87]

[SG86]

J. Rekers. Parser Generation for Interactive Environments. PhD
thesis , University of Amsterdam, 1992. Available by ftp from
ftp .cwi.nl:/pub/ gipe as Rek92 .ps.Z.

B. Remington . CHIRP: The Computer-Human Interface Rapid Pro­
totyping Toolkit. In Conference proceedings of CHI '92, pages 233-
234. Addison Wesley, 1992.

J . Rekers and W. Koorn. Substri11g parsing for arbitrary context­
free grammars. In Proceedings of the Second International Work­
shop on Parsing Technologies, IWPT'91, pages 218- 224. Association
for Computational Linguistics, 1991. Also in: SIGPLAN Notices ,
26(5) :59-66,1991.

T . Reps and T. Teitelbaum. The Synthesizer Generator: a System
for Constructing Language-Based Editors. Springer-Verlag, 1989.

T. Reps and T. Teitelbaum. The Synthesizer Generator Reference
Manual - Third edition. Springer-Verlag, 1989.

W. Schulte. Algebraische spezifikation und programmentwicklung
eines syntaxgesteuerten editors. Master's thesis , Technische Univer­
sitaet Berlin , 1987. In German.

R.W. Scheifler and J. Gettys. The X Window System. ACM Trans­
actions on Graphics, 5(3):79- 109, 1986.

152

[Sha83]

[Shn83]

[SM88]

[Sta81]

[SY88]

[TR81]

[Wat82]

[Wec92]

[WL]

[WR82]

BIBLIOGRAPHY

U. Shani. Should program editors not abandon text oriented com­
mands? SJGPLAN Notices , 18(1) , 1983.

B. Shneiderman. Direct Manipulation: A Step Beyond Programming
Languages. IEEE Computer, 16(8):57- 69, 1983.

M. R. Szczur and P. Miller. Transportable Applications Environment
(TAE) PLUS Experiences in " Object" ively Modernizing a User Inter­
face Environment. In OOPSLA '88 Proceedings, pages 58- 70, 1988.
Appeared as SIGPLAN Notices , vol. 23, no. 11 , November 1988.

R.M. Stallman. Emacs, the extensible, customizable, self­
documenting display editor. In ACM SIGPLAN/ SIGOA Symposium
on Text Manipulation, pages 147- 160, Portland, Ore., 1981. Ap­
peared as SIGPLAN Notices, vol. 16, no. 6, June 1981.

M. L. Scott and S. Yap. A grammar-based approach to the automatic
generation of user-interface dialogues. In Proceedings of SIG CHI '88,
Human Factors in Computing Systems , pages 73- 78, 1988.

T . Teitelbaum and T.W. Reps. The Cornell Program Synthesizer:
syntax directed programming environment. Communications of the
ACM, 24(9):563-573, 1981.

R.C. Waters. Program editors should not abandon text oriented
commands. SIGPLAN Notices , 17(7) , 1982.

W . Wechler. Universal Algebra for Computer Scientists , volume 25
of EATCS Monographs on Theoretical Computer Science. Springer­
Verlag, 1992.

J.J. van Wijk and R. van Liere. "What You Draw Is What You
Control" A Toolkit for Computational Steering. to appear.

P .C.S . Wong and E.R. Reid. Flair - user interface design tool. Com­
puter Graphics, 16(3):87- 98, 1982.

Het genereren van uniforme
gebruikersinterfaces voor in­
teractieve programmeerom-

• gev1ngen

lnleiding

Het genereren van software, in plaats van het met de hand schrijven daar­
van, is tegenwoordig een op grote schaal toegepaste methode en het weten­
schappelijk onderzoek op dit terrein bloeit. Zo zijn er een aantal onder­
zoeksprojecten met als doel het genereren van programmeeromgevingen
vanuit een formele beschrijving. In een dergelijke beschrijving zijn twee
delen te onderscheiden: een definitie van een (programmeer) taal en een
beschrijving van het gebruikersinterface.

Het genereren van interactieve programmeeromgevingen

Een programmeeromgeving is een verzameling hulpmiddelen die het pro­
grammeren vereenvoudigen. Deze verzameling bestaat in het algemeen uit
een editor (tekstverwerker voor programma's), een typechecker die con­
troleert dat bepaalde fouten in het programma niet voorkomen en een e­
valuator die het programma uitvoert. Al deze hulpmiddelen zijn zelf ook
weer programma's.

System en (programma's) die programmeeromgevingen genereren zullen
met behulp van een generator deze hulpmiddelen afleiden/ opleveren uit
een beschrijving ervan. Het algemene model dat hierbij wordt gebruikt is
afgebeeld in Figuur l. In de hulpmiddelen van een gegenereerde omgeving
komen onderdelen voor die onafhankelijk van de beschrijvingen zijn, dat

153

154 Nederlandse samenvatting

beschrijving programmeeromgeving

Figuur I. Model voor het genereren van programmeeromgevingen

wil zeggen ze zullen in iedere gegenereerde omgeving voorkomen. Deze on­
derdelen kunnen eveneens door de generator warden gegenereerd, maar het
is efficienter om deze onderdelen generiek te maken. De meeste systemen
gebruiken <lit principe. Een typisch voorbeeld van een generiek onderdeel is
de editor: het gebruikersinterface van de editor en de editing faciliteiten zijn
immers onafhankelijk van de beschrijving. Aan het (eenmalig) genereren
van de generieke onderdelen zelf wordt echter weinig aandacht besteed. Bij
een editor betekent dit <lat het (grafische) gebruikersinterface en de editing
faciliteiten gegenereerd warden.

De meeste systemen gebruiken abstracte syntax bomen [ASU86] als
intern data formaat voor programma's. Deze boomrepresentatie wordt
"zichtbaar" via de editor, namelijk via de manier waarop programma's
gemaakt en gewijzigd kunnen warden. We onderscheiden drie verschillende
vormen van editors. De teksteditor, zoals Emacs [Sta81], waarbij de ge­
bruiker alleen met tekst werkt. De structuureditor, zoals Emily [Han71],
waarbij de gebruiker alleen met de boom structuur (in tekstuele vorm na­
tuurlijk) kan werken. De hybride editor waarbij de gebruiker zowel de
tekst als de boomstructuur kan manipuleren. De meer algemene term syn­
tax gestuurde editor staat voor zowel structuur- als hybride editors. Het
gebruik van syntax gestuurde editors in gegenereerde programmeeromge­
vingen heeft als voordeel <lat de abstracte syntax boom direct beschikbaar
is voor de andere hulpmiddelen in de omgeving.

In <lit proefschrift beperken we onszelf tot het gebruikersinterface en
alle editing aspecten van de ASF+SDF Meta-omgeving [Kli93]. Het unieke
van <lit systeem is <lat de ontwikkelomgeving (waarin men de beschrij­
ving maakt) en de gegenereerde omgeving volledig zijn ge1ntegreerd. Zowel
de beschrijving van een programmeertaal als programma's in die taal zijn
tegelijk_aanwezig, <lit is mogelijk doordat verschillende editors tegelijk actief
kunnen zijn. Andere hulpmiddelen in een door <lit systeem gegenereerde
omgeving warden algebra·isch beschreven en warden ge1mplementeerd door
middel van termherschrijven. Ieder hulpmiddel gebruikt een abstracte syn­
tax boom - of term- als dataformaat voor zowel invoer als uitvoer.

Nederlandse samenvatting 155

Beschrijven van gebruikersinterfaces

Projecten met als doel het genereren van programmeeromgevingen beste­
den maar weinig aandacht aan het genereren van generieke onderdelen zelf,
zoals het grafische gebruikersinterface. Er zijn echter projecten die zich
volledig concentreren op het genereren van grafische gebruikersinterfaces,
waarbij de "gereedschapskist"- en de "management systeem"-methode on­
derscheiden kunnen worden. We zullen deze nu kort bespreken en bezien
welke consequenties deze hebben binnen onze context.

De "gereedschapskist"-methode om een grafisch gebruikersinterface te
maken kan worden gekarakteriseerd als een techniek waarbij een software
bibliotheek wordt gebruikt. Deze bibliotheek bevat in het algemeen een
zeer groot aantal functies. Er zijn functies om grafische objecten, zoals
buttons, te maken en functies voor de layout van een scherm.

Er bestaan ook methoden om gebruikersinterfaces in hun geheel te
genereren, zogenaamde "management systemen" [HH89] voor gebruikersin­
terfaces. Deze dienen om gebruikersinterfaces te definieren, ze hebben con­
trole over het gebruikersinterface tijdens executie en ze verbinden het gra­
fische deel met het niet grafische deel van een interactief programma.

In onze context kunnen beide methoden niet worden ingezet zonder het
met de hand schrijven van extra software. "Gereedschapskisten" vergen
het schrijven van extra software voor de layout van het scherm. "Manage­
ment systemen" hebben gebrek aan kennis van de overige (niet grafische)
software. Dit speelt een rol als dynamische wijzigingen in het gebruikersin­
terface afhangen van datawaarden in de niet grafische delen. Het probleem
hier is dat "management systemen" ontworpen zijn voor algemeen gebruik,
ze zijn niet toegespitst op het genereren var. programmeeromgevingen.

Onze doelen

Het verkrijgen van uniformiteit in het gebruikersinterface van de ASF+SDF
Meta-omgeving is ons hoofddoel. Dit impliceert dat we moeten voorkomen
<lat gebruikers te maken krijgen met nieuwe editor commando's. Daarnaast
heeft het bouwen van een editor voor dit systeem twee andere implicaties.
Ten eerste, er worden meerdere instanties van de editor gebruikt, de editor
moet dus als een generieke bouwsteen kunnen worden gebruikt. Ten tweede,
schrijvers van ASF+SDF specificaties kunnen willekeurige hulpmiddelen
definieren die werken op abstracte syntax bomen. Deze hulpmiddelen
moeten worden "verbonden" met de editor, we hebben dus een uitbreid­
baar gebruikersinterface voor de editor nodig en een "verbindingsmecha-

156 Nederlandse samenvatting

nisme". Secondaire doelen zijn: een efficiente, makkelijk te onderhouden
implementatie en uitbreidbaarheid zowel als aanpasbaarheid van alle edi­
ting faciliteiten. Samengevat zijn onze doelen:

• het verzekeren van uniformiteit van alle gebruikersinterface aspecten;

• het bouwen van een editor, te gebruiken als een generieke bouwsteen;

• het integreren van een bestaande teksteditor;

• het introduceren van een verbindingsmechanisme; en

• het onderzoeken van de mogelijkheid om de editor zelf te genereren.

De verschillende hoofdstukken beschrijven hoe we deze doelen (groten-
deels) hebben bereikt.

GSE: een generieke syntax-gestuurde editor

Hoofdstuk 21 bespreekt een model voor het integreren van tekst- en struc­
tuurediting. Dit model is gebruikt om een prototype editor te bouwen
waarvan het gebruikersinterface werd gemaakt met behulp van de gfxobj
"gereedschapskist" [CI88] . Het gebruik van <lit prototype als generieke
bouwsteen heeft geleid tot uniformiteit van structuur editing en ook tot
uniformiteit van zowel het uiterlijk (grafische delen) als het gedrag (reactie
op gebeurtenissen) van het gebruikersinterface.

GSE en Emacs

In Hoofdstuk 32 beschrijven we het vervangen van de tekstediting facilitei­
ten van het prototype door Emacs, een bestaande tekst editor met een zeer
groot aantal commando's. Verder wordt het vervangen van het op gfxobj
gebaseerde gebruikersinterface door een gebaseerd op OSF /Motif [Fou90]
besproken. We hebben daarbij de software voor structuurediting in het
prototype hergebruikt en de beide andere delen (tekstediting en gebrui­
kersinterface) vervangen, resulterend in een gedistribueerde editor. Het in­
corporeren van Emacs heeft geleid tot: uniformiteit van tekstediting binnen
en buiten de ASF+SDF Meta-omgeving, beter te onderhouden software en
tot zowel uitbreidbare als aanpasbare faciliteiten voor tekstediting. Het

1Dit hoofdstuk is een revisie van [Koo92]
2Dit hoofdstuk is een revisie van [KB93] en is een coproduktie met H.C.N. Bakker

Nederlandse samenvatting 157

gebruik van OSF /Motif bevorderde de uniformiteit ook: het wordt veel
toegepast en dus zijn vele gebruikers reeds bekend met het gedrag.

SEAL: definities van gebruikersinterfaces

Het koppelen van hulpmiddelen aan de editor en het uitbreiden van het ge­
bruikersinterface is het onderwerp van Hoofdstuk 43 . We beschrijven SEAL,
een op de ASF +SDF Meta-omgeving toegespitste taal om gebruikersinter­
faces te beschrijven. Deze taal is dusdanig ontworpen <lat hulpmiddelen
gemakkelijk te koppelen zijn aan editors. De SEAL vertaler (generator)
maakt het met de hand schrijven van extra software overbodig. Dit heeft
geleid tot uniformiteit van de uitbreidingen van het gebruikersinterface en
maakt tevens structuurediting uitbreidbaar. Bovendien wordt hetzelfde
systeem gebruikt voor zowel het schrijven van definities van hulpmidde­
len als voor het beschrijven van gebruikersinterfaces , hetgeen uniformiteit
bevordert . Verder is de SEAL vertaler in ASF +SDF geschreven en is dus
gemakkelijk te wijzigen, uit te breiden en te onderhouden.

Gebruik van SEAL: case-studies

De taal SEAL, geintroduceerd in Hoofdstuk 4 is breder toepasbaar dan
alleen voor het koppelen van hulpmiddelen aan gebruikersinterfaces. Het
biedt bijvoorbeeld de mogelijkheid om editors te laten samenwerken. Naast
het illustreren van SEAL's potentiele kracht en het geven van een overzicht
van het gebruik van SEAL is Hoofdstuk 5 voornamelijk bedoeld om vast
te stellen wat het gemak is waarmee men gebruikersinterfaces definieert.
Hiervoor presenteren we vijf case-studies: een "klassieke" programmeer­
omgeving, programmatransformaties, interactieve invoer en uitvoer, het
simuleren van parallelle systemen en onderling afhankelijke editors.

Een specificatie van structuur editing

In Hoofdstuk 3 hebben we alle faciliteiten voor tekstediting vervangen door
een bestaande tekst editor. Hoofdstukken 4 en 5 beschrijven het genereren
van het gebruikersinterface van een editor. De laatste stap in dit proces
is het genereren van de derde en laatste component van een editor: de
faciliteiten voor structuurediting. Hoofdstuk 6 bespreekt de mogelijkheden

3 Dit hoofdstuk is een revisie van [Koo93]

158 Nederlandse samenvatting

om <lit te bereiken. We presenteren een formele, algebrai:sche, definitie
in ASF +SDF van een generieke structuureditor. Deze kan warden gesi­
muleerd in een gegenereerde omgeving, waarbij we SEAL gebruiken om
de commando's van de editor te modelleren. Dit hoofdstuk kan worden
beschouwd als een eerste stap in de richting van een door zichzelf gegene­
reerde variant van de ASF +SDF Meta-omgeving, maar de gepresenteerde
definitie kan ook worden gebruikt om te bestuderen wat structuurediting
exact is.

Previous titles in the ILLC Dissertation Series:

Transsentential Meditations; Ups and downs in dynamic semantics
Paul Dekker
ILLC Dissertation series, 1993-1

Resource Bounded Reductions
Harry Buhrman
ILLC Dissertation series, 1993-2

Efficient M etamathematics
Rineke Verbrugge
ILLC Dissertation series, 1993-3

Extending Modal Logic
Maarten de Rijke
ILLC Dissertation series, 1993-4

Studied Flexibility
Herman Hendriks
ILLC Dissertation series, 1993-5

Aspects of Algorithms and Complexity
John Tromp
ILLC Dissertation series, 1993-6

The Noble Art of Linear Decorating
Harold Schellinx
ILLC Dissertation series, 1994-1

Generating Uniform User-Interfaces for Interactive Programming Environ­
ments
Jan Willem Cornelis Koorn
ILLC Dissertation series, 1994-2

	Scanned-image
	Scanned-image-1

