
rascal-mpl.org

A principled approach to REPLs*

eFLINT: norms DSLQL: questionnaire DSLMiniJava Notebook

*Read-eval-print-loops, consoles, interactive shells, notebooks, command-lines
Tijs van der Storm

Problem: REPLs are popular tools, but their semantics is not well-defined

Solution: see REPLs as a (modular) language extension

How: define a sequential operator “;” and compose semantics.

Thomas van Binsbergen Mauricio Verano

A principled approach to REPL interpreters Onward! ’20, November 18–20, 2020, Virtual, USA

requirement does not necessarily rule out concurrent, non-
deterministic, compiled or data �ow languages. In some cases
it is possible to model the complicating aspects of these lan-
guages, e.g., with thread models, data �ow graphs and lists
to capture non-deterministic results.
Purely functional interpreters with explicit state repre-

sentation are, however, further removed from actual imple-
mentations and may be less suitable for developing practi-
cal REPLs. For instance, a de�nitional interpreter for C can
model memory (pointers) rather than providing real memory
access. A REPL for C can also be based on an interpreter that
invokes a C compiler, wrapping current and previous code
snippets in int main() {...}, before compiling and executing
the resulting program (similar to the Go REPL). It is possible
to obtain a REPL interface in this way, but it would not be
based on a sequential language and the explorative quality
of exploring interpreters is lost. The applicability of our ap-
proach in the context of such compilation-based REPLs is to
be investigated further.
The interpreters discussed in this paper are all imple-

mented in functional programming languages (Rascal and
Haskell) with immutable data. Maintaining the execution
graph is therefore easy to implement, but it may come at a
cost of performance and memory footprint. Further research
is needed to represent the graph more e�ciently, for instance
by maximizing sharing, caching intermediate results, or se-
lectively culling the graph. The pragmatics of a REPL (small
snippets, immediate feedback, etc.), however, suggest that
such optimization might be premature.
Although not shown in this paper, exploring interpreters

can also be used to realize additional features not typically
found in REPLs by performing sequences of execute and
revert actions in response to a single user action. For exam-
ple, if a user edits a cell in a notebook, this could cause the
exploring interpreter to revert to the con�guration in which
that cell was originally executed, keeping track of all cells
undone this way, re-executing the (now modi�ed) cell, and
executing all the remembered cells in the order they were
�rst executed. Further research is needed to establish how
this relates to live programming [39, 44]. The QL language
described in Section 6.2 has a live programming environment
and forms a natural staring point for this study.
The MiniJava notebook discussed in Section 6.1 displays

the execution graph of the exploring interpreter, allowing
arbitrary roll-backs to explore alternative execution paths.
In future work we will explore the ability of the exploring
interpreter to support exploratory programming. More gen-
erally, we aim to describe algebraic operations over execution
graphs for both live and exploratory programming.
The methodology of Section 5 starts from a single base

language. The methodology is easily generalized to take
multiple based languages as a starting point and de�ning

Figure 7: Early user interaction using JOSS [37]

a single sequential language as an extension of all the base
languages, which is then used as the basis for a so-called
polyglot REPL. The de�nitional interpreter for the sequential
extension may not be easy to de�ne, however, when the
e�ects of the phrases of the di�erent base languages are not
easily reconciled. In a future study we hope to formulate and
demonstrate the more general methodology and to show its
bene�ts to developing polyglot REPLs and notebooks.
RelatedWork. REPLs have long history and documentation

on this history is scattered across sources. The Flexowriter
system of Lisp I from 1960 is perhaps the oldest REPL imple-
mentation [21]. An early description of REPL behavior can
be found in Peter Deutsch’s memo on PDP-1 LISP [7]:

Each S-expression typed in will be evaluated and
its value printed out.

The PILOT system [40] is one of the earliest and most
advanced interactive REPL systems, also based on a LISP, in
that it supports fully incremental and interactive evolution of
programs. Teitelman writes that REPL-style interaction with
Interlisp happened with the introduction of time-sharing
at MIT in 1964 [41]. It is very well possible, however, that
earlier Lisps and pre-1968 FORTH implementations [32] had
REPL interfaces as well. The earliest programming language
REPL that is not a Lisp we could �nd documentation of is the
JOHNNIAC Open-Shop System (JOSS) [37]. Figure 7 shows
an example of interacting with JOSS.
REPLs have a close relation to computational notebooks,

which were pioneered in the Mathematica system [47]. More
recently, this style has been adopted in the context of other
programming languages. IPython [28] and Jupyter [16] pro-
vide a means for computational story telling, where cells con-
taining code are interleaved with output and prose cells. The
language workbench framework Bacatá allows a language
engineer to provide a notebook feature by reusing existing
language artifacts [22]. In Section 6.1 we have adapted Ba-
catá to include the generic exploring interpreter algorithm
of which the execution graph is shown in the notebook

Reynolds �rst employed de�nitional interpreters as a vehi-
cle for reasoning about languages [33, 34]. His analysis took

REPLs: old but popular A principled approach to REPL interpreters Onward! ’20, November 18–20, 2020, Virtual, USA

REPL

Snippet
Com-
pletion

Keywords

Syntax-
aware

Identi�ers

Hierarchy-
aware

Type-
aware

Snippet
Execution

Full Incremental Undo

Multiple
Input

All
outputs

Last
output

Help
Command

Language
use

REPL
commands

Command
History

User
access

Arbitrary Search Sequential

De�nition
Modi�-
cation

Open &
Extend

Rede�ne

Save and
Load

Session

Current
state

Valid
program

REPL code
snippets

Summary
of Current

State

Summary
of Snippet
E�ects

Access to
Previous
Results

Access
to all

Access
to last

Legend:

Abstract Feature
Concrete Feature

Mandatory
Optional
Or Group

Alternative Group

Figure 1: Feature Model for REPL Interpreters

Table 1: Surveyed REPL implementations.

REPL Reference

CLing (C/C++) https://cdn.rawgit.com/root-
project/cling/master/www/index.html

JShell (Java) http://openjdk.java.net/jeps/222
Python https://docs.python.org/3/tutorial/

interpreter.html
C# https://www.mono-project.com/docs/

tools+libraries/tools/repl/
Node.js (Javascript) https://nodejs.org/api/repl.html
PHP https://www.php.net/manual/en/

features.commandline.interactive.php
PsySH (PHP) https://psysh.org/
SQLite (SQL) https://sqlite.org/
R https://www.r-project.org/
Swift https://swift.org/lldb/
Gore (Go) https://github.com/motemen/gore
GNU Octave https://www.gnu.org/software/octave/
Rappel (assembly) https://github.com/yrp604/rappel
iRB (Ruby) https://github.com/ruby/irb

may provide a way to undo the execution of snippets (roll-
back). An alternative to incremental execution is composing
all snippets into a single program and execute the program
from scratch (the “Full” alternative). REPLs are expected to
provide feedback after evaluating snippets, showing at least

the snippet’s printed output, and perhaps any result values
or newly declared types (“Summary of Snippet E�ects”).

Optional Features. Next to these mandatory features, the
investigated REPLs implement several additional features
such as auto-completion of snippets (“Snippet Completion”).
This can target either language keywords or previously de-
�ned identi�ers. Completion can take into account the syn-
tactic context in which the user is typing, can be extended to
fully quali�ed identi�ers, and may also take into account the
type of identi�ers (through static typing or type hinting).

Even though the language itself might not support modi-
fying an existing de�nition (“De�nition Modi�cation”), most
REPLs allow this behavior to some extent. Common ways
include overriding the previous de�nition, either through a
new de�nition snippet or by editing it from an external text
editor. Other REPLs also allow opening up de�nitions (such
as classes) for additions (“Open & Extend”).
Another common feature is the help (meta-)command

(“Help Command”), which can document either the language,
the REPL and its meta-commands, or both. The history of
commands (including snippets) is usually made available
to the user, in order to �nd and resubmit previous com-
mands (“Command History”). It can be consulted sequen-
tially through the arrow keys, but often includes a search
facility as well. Some REPLs assign identi�ers to commands
in order to retrieve them arbitrarily. Some REPLs support
saving and loading sessions (“Save and Load Session”). This

Very diverse design space:

A principled approach to REPL interpreters Onward! ’20, November 18–20, 2020, Virtual, USA

> if (a < 20) �B� b: integer = c + 1

A ·

Since b is still unde�ned (because c is), a remains unde�ned
as well, and as a result, the visibility condition of b evaluates
to false. This all changes, however, after de�ning c:

> if (a > 20) �C� c: integer

A 2

B 1

The question c is not computed, so it receives an initial de-
fault value (in this case 0). Both a and b can now be computed,
as well as the condition of b, causing b to be shown in the UI.
Now let’s change the value of c:

> c = 10

A 22

C [10]

Setting c to 10 disables b, but changes the visibility condition
of c to true, making it appear in the UI. The square brackets
around the value of c indicate it is editable.

Changing the value of c to 5 updates the UI accordingly:

> c = 5

A 12

B 6

Now b becomes visible, and c is hidden again.
It is possible to add questions to the beginning of the form:

> �D� d: integer = 3 * a...

D 36

A 12

B 6

Or using the path-based address notation:

> :form

form simple {

[0] �D� d: integer = 3 * a

[1] �A� a: integer = c + b + 1

[2] if (a < 20)

[2.0] �B� b: integer = c + 1

[3] if (a > 20)

[3.0] �C� c: integer

}

> @2.0 �c + 1 is:� b: integer = c + 1

D 36

A 12

c + 1 is: 6

The :form meta-command pretty-prints the current form
annotated with addresses for every question. Using the @-
notation, the user can replace any question in the form, in
this case to change the label of the b question.

Note that the append-, prepend-, and position-based adding
and replacement of questions can be considered a rather low-
level (maybe even pathological) way of editing a program

#0 > Fact person. Placeholder parent,child For person

new fact-type person

no enabled actions or events

#3 > +person(Alice). +person(Bob) // introduce persons
+�Alice�:person

+�Bob�:person

no enabled actions or events

#5 > Fact parent-of Identified by parent * child

new fact-type parent-of

no enabled actions or events

#6 > +parent-of(Alice,Bob)

+(�Alice�:person,�Bob�:person):parent-of

no enabled actions or events

#7 > Act call-for-help Actor child Recipient parent

Holds when parent-of()

new fact-type call-for-help

+(�Bob�:person,�Alice�:person):call-for-help

enabled actions & events:

1. (�Bob�:person,�Alice�:person):call-for-help

#8 > :choose 1 // Bob asks Alice for help
enabled actions & events:

1. (�Bob�:person,�Alice�:person):call-for-help

#9 > :revert 7 // to before the action was declared
+(�Alice�:person,�Bob�:person):parent-of

#7 > :current // show the current set of facts
�Alice�:person

�Bob�:person

(�Alice�:person,�Bob�:person):parent-of

#7 > ?Enabled(call-for-help(Bob,Alice)) // query
undeclared type: call-for-help

Figure 6: A session with the eFLINT command-line
REPL.

(reminiscent of the line-based editors of the past). Neverthe-
less, without necessesarily claiming this is a realistic way of
evolving programs, it does illustrate a kind of REPL “com-
pleteness”, where every program and program change can
be realized using commands at the prompt.

6.3 eFLINT: Executable Normative
Speci�cations

eFLINT is a DSL for developing executable normative speci-
�cations used to reason about compliance with regulations,
contracts and/or policies [43]. eFLINT programs are used to
simulate or verify normative decision making processes. The
methodology of Section 5 has been applied to develop two
REPLs on top of one exploring interpreter for eFLINT. The
implementation of eFLINT is available at GitLab [42].

REPL Interfaces. The �rst REPL is a command-line tool for
exploring compliant and non-compliant behavior. Figure 6
shows an example session where the user explores the norm

JOSS (1964)

“A language is sequential if the concatenation 
of two programs is again a program”

✅ ❌

Onward! ’20, November 18–20, 2020, Virtual, USA L.T. van Binsbergen, M. Verano Merino, P. Jeanjean, T. van der Storm, B. Combemale, O. Barais

expressions, statements, variable declarations and method
declarations as code snippets, even though these constructs
are not allowed at the top-level in Java programs.
Consider the following example JShell interaction (every

line is a code snippet sent separately):

class Example {}

Example obj = new Example();

class Example { public int meth() { return var; } }

int var = 1;

This example raises the questions whether classes can be
rede�ned, whether obj can be accessed after Example is rede-
�ned or if obj is migrated, and, if so, what methods it has and,
if meth is available, whether a call obj.meth() returns 1. With-
out giving answers here, the example shows that the relation
between a programming language and the behavior of its
REPL is not immediately obvious. Matthew Flatt’s ceterum
censeo quoted above bears witness to the fact that the relation
can actually be strenuous and cause a lot of confusion. The
above questions are fundamentally about language design:
several sensible answers are possible and the answers have
a signi�cant impact on programmer experience.
In some sense, JShell can be seen to implement its own

language, which, even though strongly reminiscent of Java,
is markedly di�erent. In this paper, we take this observation
and run with it: we assume that a REPL interpreter for L
e�ectively de�nes its own language R, often as an extension
or modi�cation of L, whose programs are sequences of valid
code snippets according to the REPL.
To this end we identify and de�ne the class of languages

that underlie REPL interpreters as sequential languages. The
essence of sequential languages is that the concatenation of
two programs is again a program. Or, to put it more precisely, a
language is sequential if it features an associative sequencing
operator o

9, such that the following equation holds:

J?1 o
9 ?2K = J?2K � J?1K

The meaning of a sequence of program fragments is de�ned
by composing the meanings of the individual fragments,
including any impure e�ects of these fragments.

The notion of sequential language informs a methodology
to make a language sequential, and hence suitable for sound
REPL interpreters. The methodology enforces certain design
principles on the REPL engineer to ensure that questions
like the ones asked about the JShell interaction are answered
precisely and are explicitly addressed as matters of language
design, instead of an implementation concern. Furthermore,
sequential languages are amenable to interfaces which allow
exploring execution traces resulting from REPL interactions.
We have applied this methodology in three case studies.

The �rst extends an existing implementation of MiniJava [1]

in the Rascal language workbench [15], to make it sequen-
tial. This extended MiniJava is then the base interpreter for
a computational notebook interface through Bacatá, Ras-
cal’s bridge to Jupyter [22]. The second case study involves
QL, a DSL for de�ning spreadsheet-like interactive question-
naires [8, 9]. This case study show that it is feasible to obtain
REPLs for languages that are not statement- or expression-
oriented. The third case-study applies the methodology to
obtain interactive services for eFLINT, a DSL for executable
normative speci�cations [43]. The resulting services allow
users and policy-aware software to navigate choices and
decisions in the realm of law and regulation.

To summarize, the contributions of this paper are:
• A feature-based analysis of the landscape of REPLs
for a selection of the most popular programming lan-
guages (Section 2).

• A formalization of the notion of sequential language
as the underlying principle of REPLs (Section 3)

• A language-parametric exploring interpreter algorithm
on top of existing interpreters, allowing users to navi-
gate user interaction history (Section 4)

• Amethodology for developing REPL interpreters by se-
quentializing languages with a de�nitional interpreter
(Section 5).

• Three case studies to illustrate the feasibility of the
approach (Section 6).

The paper is concluded with a discussion of limitations, re-
lated work, and directions for further research.

2 REPL DOMAIN ANALYSIS
This section provides a study of existing REPL interpreters
and their main features. We have studied freely available
REPL implementations, listed in Table 1, for the 15 most pop-
ular languages from the TIOBE index2, with the exception
of Visual Basic, for which we could not �nd an freely avail-
able implementation. For MATLAB we have selected GNU
Octave as a substitute. We performed a feature-oriented do-
main analysis [14], resulting in the feature model of Figure 1.
Below we brie�y describe the main mandatory and optional
features.

Mandatory Features. An interpreter must have certain fea-
tures to be considered a REPL. In particular, a REPL has the
ability to execute multiple code snippets across multiple in-
teractions in a single session (as opposed to executing one
full program per session). In most of the investigated REPL
implementations, the REPL maintains execution context and
executes snippets incrementally (the “Incremental” alterna-
tive of the “Snippet Execution” feature). Optionally, a REPL

2https://www.tiobe.com/tiobe-index/ (accessed May, 22nd, 2020)

Sequential languages:

Onward! ’20, November 18–20, 2020, Virtual, USA L.T. van Binsbergen, M. Verano Merino, P. Jeanjean, T. van der Storm, B. Combemale, O. Barais

expressions, statements, variable declarations and method
declarations as code snippets, even though these constructs
are not allowed at the top-level in Java programs.
Consider the following example JShell interaction (every

line is a code snippet sent separately):

class Example {}

Example obj = new Example();

class Example { public int meth() { return var; } }

int var = 1;

This example raises the questions whether classes can be
rede�ned, whether obj can be accessed after Example is rede-
�ned or if obj is migrated, and, if so, what methods it has and,
if meth is available, whether a call obj.meth() returns 1. With-
out giving answers here, the example shows that the relation
between a programming language and the behavior of its
REPL is not immediately obvious. Matthew Flatt’s ceterum
censeo quoted above bears witness to the fact that the relation
can actually be strenuous and cause a lot of confusion. The
above questions are fundamentally about language design:
several sensible answers are possible and the answers have
a signi�cant impact on programmer experience.
In some sense, JShell can be seen to implement its own

language, which, even though strongly reminiscent of Java,
is markedly di�erent. In this paper, we take this observation
and run with it: we assume that a REPL interpreter for L
e�ectively de�nes its own language R, often as an extension
or modi�cation of L, whose programs are sequences of valid
code snippets according to the REPL.
To this end we identify and de�ne the class of languages

that underlie REPL interpreters as sequential languages. The
essence of sequential languages is that the concatenation of
two programs is again a program. Or, to put it more precisely, a
language is sequential if it features an associative sequencing
operator o

9, such that the following equation holds:

J?1 o
9 ?2K = J?2K � J?1K

The meaning of a sequence of program fragments is de�ned
by composing the meanings of the individual fragments,
including any impure e�ects of these fragments.

The notion of sequential language informs a methodology
to make a language sequential, and hence suitable for sound
REPL interpreters. The methodology enforces certain design
principles on the REPL engineer to ensure that questions
like the ones asked about the JShell interaction are answered
precisely and are explicitly addressed as matters of language
design, instead of an implementation concern. Furthermore,
sequential languages are amenable to interfaces which allow
exploring execution traces resulting from REPL interactions.
We have applied this methodology in three case studies.

The �rst extends an existing implementation of MiniJava [1]

in the Rascal language workbench [15], to make it sequen-
tial. This extended MiniJava is then the base interpreter for
a computational notebook interface through Bacatá, Ras-
cal’s bridge to Jupyter [22]. The second case study involves
QL, a DSL for de�ning spreadsheet-like interactive question-
naires [8, 9]. This case study show that it is feasible to obtain
REPLs for languages that are not statement- or expression-
oriented. The third case-study applies the methodology to
obtain interactive services for eFLINT, a DSL for executable
normative speci�cations [43]. The resulting services allow
users and policy-aware software to navigate choices and
decisions in the realm of law and regulation.

To summarize, the contributions of this paper are:
• A feature-based analysis of the landscape of REPLs
for a selection of the most popular programming lan-
guages (Section 2).

• A formalization of the notion of sequential language
as the underlying principle of REPLs (Section 3)

• A language-parametric exploring interpreter algorithm
on top of existing interpreters, allowing users to navi-
gate user interaction history (Section 4)

• Amethodology for developing REPL interpreters by se-
quentializing languages with a de�nitional interpreter
(Section 5).

• Three case studies to illustrate the feasibility of the
approach (Section 6).

The paper is concluded with a discussion of limitations, re-
lated work, and directions for further research.

2 REPL DOMAIN ANALYSIS
This section provides a study of existing REPL interpreters
and their main features. We have studied freely available
REPL implementations, listed in Table 1, for the 15 most pop-
ular languages from the TIOBE index2, with the exception
of Visual Basic, for which we could not �nd an freely avail-
able implementation. For MATLAB we have selected GNU
Octave as a substitute. We performed a feature-oriented do-
main analysis [14], resulting in the feature model of Figure 1.
Below we brie�y describe the main mandatory and optional
features.

Mandatory Features. An interpreter must have certain fea-
tures to be considered a REPL. In particular, a REPL has the
ability to execute multiple code snippets across multiple in-
teractions in a single session (as opposed to executing one
full program per session). In most of the investigated REPL
implementations, the REPL maintains execution context and
executes snippets incrementally (the “Incremental” alterna-
tive of the “Snippet Execution” feature). Optionally, a REPL

2https://www.tiobe.com/tiobe-index/ (accessed May, 22nd, 2020)

Onward! ’20, November 18–20, 2020, Virtual, USA L.T. van Binsbergen, M. Verano Merino, P. Jeanjean, T. van der Storm, B. Combemale, O. Barais

expressions, statements, variable declarations and method
declarations as code snippets, even though these constructs
are not allowed at the top-level in Java programs.
Consider the following example JShell interaction (every

line is a code snippet sent separately):

class Example {}

Example obj = new Example();

class Example { public int meth() { return var; } }

int var = 1;

This example raises the questions whether classes can be
rede�ned, whether obj can be accessed after Example is rede-
�ned or if obj is migrated, and, if so, what methods it has and,
if meth is available, whether a call obj.meth() returns 1. With-
out giving answers here, the example shows that the relation
between a programming language and the behavior of its
REPL is not immediately obvious. Matthew Flatt’s ceterum
censeo quoted above bears witness to the fact that the relation
can actually be strenuous and cause a lot of confusion. The
above questions are fundamentally about language design:
several sensible answers are possible and the answers have
a signi�cant impact on programmer experience.
In some sense, JShell can be seen to implement its own

language, which, even though strongly reminiscent of Java,
is markedly di�erent. In this paper, we take this observation
and run with it: we assume that a REPL interpreter for L
e�ectively de�nes its own language R, often as an extension
or modi�cation of L, whose programs are sequences of valid
code snippets according to the REPL.
To this end we identify and de�ne the class of languages

that underlie REPL interpreters as sequential languages. The
essence of sequential languages is that the concatenation of
two programs is again a program. Or, to put it more precisely, a
language is sequential if it features an associative sequencing
operator o

9, such that the following equation holds:

J?1 o
9 ?2K = J?2K � J?1K

The meaning of a sequence of program fragments is de�ned
by composing the meanings of the individual fragments,
including any impure e�ects of these fragments.

The notion of sequential language informs a methodology
to make a language sequential, and hence suitable for sound
REPL interpreters. The methodology enforces certain design
principles on the REPL engineer to ensure that questions
like the ones asked about the JShell interaction are answered
precisely and are explicitly addressed as matters of language
design, instead of an implementation concern. Furthermore,
sequential languages are amenable to interfaces which allow
exploring execution traces resulting from REPL interactions.
We have applied this methodology in three case studies.

The �rst extends an existing implementation of MiniJava [1]

in the Rascal language workbench [15], to make it sequen-
tial. This extended MiniJava is then the base interpreter for
a computational notebook interface through Bacatá, Ras-
cal’s bridge to Jupyter [22]. The second case study involves
QL, a DSL for de�ning spreadsheet-like interactive question-
naires [8, 9]. This case study show that it is feasible to obtain
REPLs for languages that are not statement- or expression-
oriented. The third case-study applies the methodology to
obtain interactive services for eFLINT, a DSL for executable
normative speci�cations [43]. The resulting services allow
users and policy-aware software to navigate choices and
decisions in the realm of law and regulation.

To summarize, the contributions of this paper are:
• A feature-based analysis of the landscape of REPLs
for a selection of the most popular programming lan-
guages (Section 2).

• A formalization of the notion of sequential language
as the underlying principle of REPLs (Section 3)

• A language-parametric exploring interpreter algorithm
on top of existing interpreters, allowing users to navi-
gate user interaction history (Section 4)

• Amethodology for developing REPL interpreters by se-
quentializing languages with a de�nitional interpreter
(Section 5).

• Three case studies to illustrate the feasibility of the
approach (Section 6).

The paper is concluded with a discussion of limitations, re-
lated work, and directions for further research.

2 REPL DOMAIN ANALYSIS
This section provides a study of existing REPL interpreters
and their main features. We have studied freely available
REPL implementations, listed in Table 1, for the 15 most pop-
ular languages from the TIOBE index2, with the exception
of Visual Basic, for which we could not �nd an freely avail-
able implementation. For MATLAB we have selected GNU
Octave as a substitute. We performed a feature-oriented do-
main analysis [14], resulting in the feature model of Figure 1.
Below we brie�y describe the main mandatory and optional
features.

Mandatory Features. An interpreter must have certain fea-
tures to be considered a REPL. In particular, a REPL has the
ability to execute multiple code snippets across multiple in-
teractions in a single session (as opposed to executing one
full program per session). In most of the investigated REPL
implementations, the REPL maintains execution context and
executes snippets incrementally (the “Incremental” alterna-
tive of the “Snippet Execution” feature). Optionally, a REPL

2https://www.tiobe.com/tiobe-index/ (accessed May, 22nd, 2020)

Non-seq stack language: Sequentialize:

Joint work with Pierre Jeanjean, Benoit Combemale, Olivier Barais (INRIA, University of Rennes) 

van Binsbergen, L.T, Verano Merino, M, Jeanjean, P, van der Storm, T, Combemale, B, & Barais, O. (2020). A principled approach to REPL interpreters. In Onward! 2020 - Proceedings of the 2020 ACM 
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software, Co-located with SPLASH 2020 (pp. 84–100). doi:10.1145/3426428.3426917

Prog “;” Prog ≠ Prog!

http://rascal-mpl.org

