
DATA- LOW r--,

CQMPUT-

A.F!.W. Bohll)-

STELLINGEN

behorende bij het proefschrift "Dataflow Computation".

1. In dit proefschrift wordt de "fair merge" operatie geimplementeerd

met een dataflow net dat "THERE" boxes bevat. Omgekeerd kan de THERE

operatie geimplementeerd worden met een dataflow net dat fair merge

boxes bevat.

hoofdstuk twee van dit proefschrift

2. De "universality" stelling gaat ook opals het waardenbereik van

de tokens tot een eindig dome in beperkt is.

hoofdstuk twee van dit proefschrift

3. Zij N een welgevormd dataflow net, Seen "start shot" van N, B de

verzameling "snapshots" verkrijgbaar door herhaalde "firing" beginnend

in S. Het herschrijfsysteem (B, "firing") heeft de "Church Rosser"

eigenschap.

hoofdstuk twee van dit proefschrift

ROSEN, B.K., Tree -manipulation systems and Church-Rosser Theor ems ,

JACM, 20,1 (1973), pp. 160-187.

4. DNP programma's hebben de "encapsulation" eigenschap.

hoofdstuk drie van dit proefschrift

FAUSTINI, A.A., The equivalence of an operational and a denotational

semantics f or pur e dataflow , Ph.D. Thesis, Report 41, Department

of Computer Science, University of Warwick, Coventry, 1982.

5. De formalisering van het begrip "complexiteit van een algoritme"

dekt de intuitieve notie die men daarvan heeft niet.

6. Als x procent van de executietijd van een programma verbruikt wordt

door vectoriseerbare code, zal vectorisatie hoogstens tot een

versnelling met een factor 100/(100- x) van de oorspronkelijke

ongevectoriseerde code op dezelfde machine leiden.

In de praktijk zal x met heel veel moeite tot 90 op te voeren zijn.

7. Bij gebruik van gelaagde programmatuur moet uit een foutmelding

blijken welke laag die foutmelding produceert .

8. De in de academische wereld opgedane kennis en ervaring met programma­

tuur wordt te weinig doorgespeeld naar de rest van de samenleving.

9. Programmeeromgevingen kunnen helpen om beter programma's te schrijven

maar niet om betere programma's te schrijven .

10. Met het fervent aanhangen of afwijzen van een bepaald programmeersysteem

(zoals een programmeertaal) wordt de wetenschap niet verder geholpen.

11. De explosieve groei van de universitaire informatica vormt een

bedreiging voor haar kwaliteit.

1 maart 1984 A. P.W. Bohm

DATAFLOW COMPUTATION

dataflow berekeningen

(met een samenvatting in het Nede rl ands)

D A T A F L O W C O M P U T A T I O N

dataflow berekeningen

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

TER VERKR I JGING VAN DE GRAAD VAN DOCTOR IN DE

WISKUNDE EN NATUURWETENSCHAPPEN AAN DE RIJKS­

UNIVERSITEIT TE UTRECHT, OP GEZAG VAN DE RECTOR

MAGNIFICUS PROF. DR. O.J. DE JONG, VOLGENS BESLUIT

VAN HET COLLEGE VAN DECANEN IN HET OPENBAAR

TE VERDEDIGEN OP DONDERDAG 1 MAART 1984

DES NAMIDDAGS TE 2.30 UUR

DOOR

ANTON PEDRO WILLEM BoHM

geboren op 4 juli 1948

te Rotterdam

1984

MATHEMATISCH CENTRUM, AMSTERDAM

PROMOTOR: PROF. DR. J. VAN LEEUWEN

ACKNOWLEDGEMENTS

A great number of people have helped me during the past few years when

I did my research and wrote up this thesis. First of all, I want to thank

my promotor JAN VAN LEEUWEN for encouraging me to do research and for working

t ogether with me in the first phase of my studies. Chapter two and four are

a result of this co-operation. ARIE DE BRUIN introduced me to the semantics

of programming languages and played devil's advocate for some of the theorems

from chapter two and four. During a number of, sometimes hilarious, sessions

we proved my DNP programs correct and studied the formal semantics of DNP. I

sincerely hope Arie will sometime write up all the formal stuff I happily left

out. PAUL KLINT helped me getting started with his programming language and

and compiler writing system. PIM KARS helped me analyse pipeline sort. STEVEN

PEMBERTON improved my English. JOHN GURD refereed the thesis. JAN VAN LEEUWEN,

DOAITSE SWIERSTRA, ARTHUR VEEN, and HENK PENNING read draft versions. JOKE

NOORDWIJK and CORINE DE GEE typed the manuscript and made the vakgroep Infor­

matica a pleasant place to work. The CENTRUM VOOR WISKUNDE EN INFORMATICA and

the people working there have always been very special to me. The members of

the "dataflow club" (ARTHUR VEEN, JAN HEERING, MARLEEN SINT and PAUL KLINT)

provided a critical test-bed for many ideas. TEUS HAGEN gave me the opportu­

nity to use their computing machinery. I am glad that my thesis has been print­

ed at the Centrum voor Wiskunde en Informatica (and will appear as a CWI tract).

TOBIAS BAANDERS designed the cover and DICK ZWARST and his crew (JAN, JAAP,

JOS and FRANK) were the printers. I would like to thank all these people.

CONTENTS

CHAPTER ONE PARALLEL COMPUTERS AND DATAFLOW COMPUTING

1.1. INTRODUCTION

1.2.

1. 3.

1. 4.

1.4.1.

1.5.

1.5.1.

1 .5. 2.

1.5.2.1.

1 .5 .2 .2.

1 .5 .2. 3.

1.6.

1.6.1.

1 .6.2.

1. 7.

1.8.

1.8.1.

1.8.2.

1. 9.

PARALLELISM

PARALLEL COMPUTER ARCHITECTURES

DATAFLOW NETS

Re-entrant use of dataflow subnets

DATAFLOW ARCHITECTURES

An Example: The Manchester Dataflow Machine

Extensions to the P~nchester Dataflow Machine

Global memory

Matching functions

A higher level Manchester Dataflow Machine

PROGRAMMING LANGUAGES FOR DATAFLOW MACHINES

Single Assignment Languages

Other Languages

SEMANTICS OF DATAFLOW LANGUAGES

DATAFLOW ALGORITHMS

Sequential algorithms

Explicitly parallel algorithms

SUMMARY OF THE THESIS

CHAPTER TWO FUNDAMENTAL CONCEPTS IN DATAFLOW COMPUTING

2. 1. INTRODUCTION

2. 2. A BASIC MODEL FOR DATAFLOW COMPUTING

2.3. FUNCTIONALITY

2 .4. PIPELINING

2 .5. UNIVERSALITY

2.6. TURING MACHINE SIMULATION

2. 7. MODELLING MEMORY

2.8. MODELLING THE MANCHESTER MATCHING FUNCTIONS

2.9. MODELLING PETRI-NETS

2

3

5

13

14

15

17

17

17

19

20

20

22

22

23

23

24

24

26

27

31

35

38

46

48

54

57

CHAPTER THREE THE DESIGN AND IMPLEMENTATION OF A HIGH LEVEL DATAFLOW

LANGUAGE: DYNAMIC NETWORKS OF PROCESSES

3.1. INTRODUCTION

3.2. THE LANGUAGE DNP: DYNAMIC NETWORKS PROCESSES

3.2. 1. Syntax format

3.2.2. DNP - static part

3.2.3. DNP - dynamic part

3.3. AN EXPERIMENTAL IMPLEMENTATION OF DNP

3. 3. 1. Introduction

3.3.2. The translation of DNP to C

3.3.3. Appendix: the compiler and the run-time system

CHAPTER FOUR THE COMPLEXITY OF DNP PROGRAMS

4. 1.

4.2.

4.2.1.

4.2.1.1.

4.2.2.

4.2.2.1.

4.2.3.

4.3.

4.3.1.

4.3.2.

4.3.3.

4.4.

INTRODUCTION

SOME DNP PROGRAMS AND THEIR COMPLEXITY

A sorting program

Analysis of pipeline sort

Matrix multiplication

Analysis of Matmul

Divide-and-conquer algorithms

LIMITATIONS OF DNP

Changing the channel configuration

Contraction

It is impossible to create all computation graphs in DNP

SOME DEFINITIONS AND THEOREMS FROM THE THEORY OF

NP-COMPLETENESS

62

63

63

65

68

72

72

75

80

101

104

105

111

122

131

133

144

144

145

147

157

4.5. DNP PROGRAMS FOR NP-COMPLETE AND PSPACE-COMPLETE PROBLEMS 159

4.6. DNP PROGRAMS AND N-RAMS 161

CHAPTER FIVE THE CORRECTNESS OF DNP PROGRAMS

5. 1.

5. 2.

5.3.

5.4.

5.5.

REFERENCES

INTRODUCTION

CORRECTNESS OF PIPELINE SORT WITH SINGLE NUMBERS

INTERNALLY

CORRECTNESS OF MATMUL

CORRECTNESS OF DIVCONQ

REMARKS

INDEX

SAMENVATTING

SUMMARY

CURRICULUM VITAE

165

169

171

181

191

192

202

209

211

213

CHAPTER ONE

PARALLEL COMPUTERS AND DATAFLOW COMPUTING

1.1. INTRODUCTION

In the world of computers and computation there are two phenomena that

should be in balance but that are not: the supply of versus the demand for

computing power. An impressive choice of computing machines is now available.

Their possibilities lead people to tackle problems larger and more complex

than they ever dreamed of solving before. But when working on these problems,

people find out that they need more computing power than there is available.

Examples of such problems occur in the fields of meteorology, image processing,

global models, windtunnel simulation and the simulation of computer systems

((43],(64]).

It is a recurring concern of computer manufacturers and researchers

to find ways of designing faster machines. The speed-up that we have seen

during the first generations of computers has been almost invariably brought

about by improvements in the technology used for the traditional hardware

components. In the traditional von Neumann architecture [15] there is typi­

cally one central processing unit connected to one memory, with code and

data traveling between them over one channel. Later computers implement the

same basic architecture using faster components.

The time has come that the physical limits of this kind of computers

are reached. As a compelling example, Hossfeld [43] shows that in a typical

family of machines (IBM/Amdahl) the central processing unit has become ten

times faster in the nineteen sixties but only twice as fast in the nineteen

seventies (see figure 1.1.1.).

2

megacycles
per

second

30

20

10

0

1965

V7 VS • V5/6 • •

o 370-195

o 360-195

o 360-191

o 360-75
360-50

1970 1975 1980

Figure 1.1.1. CPU speed of a typical family of machines

Hockney and Jesshope (40] show that in the period of 1950 to 1975

computer components became a 1000 times faster as measured by gate delay time,

whereas whole central processors became a factor of 105 faster as measured

by multiplication time. The additional speed up was made possible principally

by the introduction of parallelism in these basically sequential computers.

Further improvements in computer speed are conceivable only through

a radically different approach to computer architecture. This change will

lead from basically sequential computer architectures to either parallel

(tightly coupled) architectures or distributed (loosely coupled) architec­

tures. We shall focus our attention on the former.

1.2. PARALLELISM

Instead of executing computing tasks one by one: the sequential way,

they may often be executed simultaneously: the parallel way. Even when there

are more actions involved because of communication and synchronization the

3

overall compution is likely to go faster, provided that the problem to be

solved allows a "parallel" solution at all and that sufficiently many pro­

~essors are available. Many problems are indeed parallel by nature and compu­

ter architects and programmers should be able to make use of this inherent

parallelism.

It is not surprising, however, that the sequential way has been pre­

ferred for many years: it is easier to understand and (hence) to program,

and it has been enforced by the existing hardware. Parallelism, on the other

hand, is much harder to understand and may be difficult to capture. The

parallelism in a problem may depend on the run-time values of the data, and

an additional difficulty is that the amount of communication needed in a

parallel algorithm may exceed the amount of calculation in a sequential algo­

rithm. Fortunately the required parallel mathematics [87] is now steadily de­

veloping and for many problems in e.g. the area of scientific computing the

achievable speed-ups through parallel methods are beginning to be understood.

With the advent of highly parallel computer architectures at affordable

costs and the maturing insight in the art (and even science) of computer pro­

gramming , it has become feasible to think parallel in programming .

1.3. PARALLEL COMPUTER ARCHITECTURES

As there is abundant information about parallel computer architectures

in the literature ([28),[78),[56],[84]), this overview will be kept short.

Underlying each computer architecture there is a model of computation, i.e.,

a more or less formalized idea of how a computation is to proceed (figure

1.3.1.). For the von Neumann architecture this model consists of iteratively

fetching and instruction from memory, decoding it, fetching scalar operands,

executing the instruction, and storing a scalar result back to memory. An im­

provement of this approach is to separate some of these functions and to repli­

cate them in hardware so that they can operate in parallel by looking ahead

and executing several instructions simultaneously. The classical example is

the design of the CDC6600 [80). If, like in the 6600, the number of functional

units is not too large, the problem of synchronization and interconnection

4

MODEL OF COMPUTATION CORRESPONDING ARCHITECTURE

A. Sequential control A1. Von Neumann

on scalar data A2. Multifunction CPU

A3. Pipelining

B. Sequential control B1. SIMD vector processors

on vector data B2. SIMD processor arrays

C. Independent, cornrnu- C1. MIMD shared memory

nicating processes multiprocessors

CZ. MIMD ultracomputers (net-

works of small machines)

D. Applicative or func- D1. Reduction machines

tional computation DZ. Dataflow machines

Figure 1.3.1. Computer architectures and their underlying

computation model.

of these units remains manageable. Also by looking ahead a limited number of

instructions, say 3, the possible number of computation orders remains small

enough to handle.

A second improved implementation of the sequential control, scalar

data model of computation is pipelining . Instead of using the same hardware

to execute the basic CPU cycle (or any other decomposable task) the cycle is

unwound: for every step the appropriate hardware is provided separately ([40],

[82]). The gain of this approach depends on the number of steps into which

a task can be decomposed.

SIMD (single instruction , multiple data) architectures [81] are based

on a computation model where the unit of data is a vector or a matrix. SIMD

vector processors, such as the CRAYs and the CYBER205, are fast scalar ma­

chines extended with special instructions for handling vectors. In SIMD pro­

cessor arrays, such as the ICL-DAP, there is one control unit but the arith-

5

metic-logic unit (ALU) is replicated many times. The ALU-s are interconnected

in a regular pattern, each has its own local memory and performs the same

·instruction at the same moment. Such an action may be manipulating local

data or communicating with direct neighbours by sending or receiving data.

In a third model of computation there are many independent processes,

all operating on their own data. The processes communicate either directly

or via shared memory. If the programs in these processors are fixed and

simple they can be implemented in VLSI. Systolic arrays [57) are an example

of this kind of organisation. In a general purpose machine, complete, inde­

pendent processors are put toge ther. They communicate with each other by means

of a processor-processor or a processor-memory interconnection network. This

MIMD (multiple instruction , multiple data) approach is by far the most flexi­

ble, optimistic but difficult one.

A refinement of the third model is the applicative or functional model

of computation [8). It compromises demand driven and data driven computation

[84]. In a demand driven computation there is a set of functions which are

applied when their results are needed, and a computation starts by demanding

the final results. Machines whose architecture is based on this model of com­

puta tion are called reduction machines . A program in such a computer is an

expression or function-call demanding the final result. Execution involves

evaluating and rewriting this expression. The lazy evaluation concept as

known from programming language theory [30) is especially relevant here.

In a data driven computation functions are activated by the availabi­

lity of their arguments. Since data driven computations are our main interest

here, we will elaborate in some detail their underlying data driven model of

computation: dataflow nets .

1. 4. DATAFLOW NETS

Dataflow nets are two-dimensional programs expressing the data dependency

between operations. In its most primitive form, a dataflow net is a directed

graph in which the nodes represent processing elements and the edges represent

6

dat a paths . Some data paths will not start at a node (these are the input­

lines of the net) or end at a node (the output-lines of the net). Data is

presented in tokens. Tokens are indivisible, but can be distinguished through

an interpretation. They can be transmitted over existing data paths, and

processing elements digest them from their incoming edges and send new tokens

over their outgoing edges. One cyc le of a processing element normally consists

of the consumption of one token from each incoming edge, followed by the

production of one token on each outgoing edge. The execution of a cycle is

very similar to a f iring in the terminology of Petri-nets [69]. The main

difference is that processing elements are operators, i.e., toke n-mappings

of some variety.

No assumptions are made about the absolute or relative speeds of the

processing elements or about when processing elements take in a new batch

of tokens, except that cycles and token transports take finite time. Dataflow

computation is completely asynchronous, it implies that tokens may have to

queue along a data path if the node at the other end is not processing fast

enough or if other inputs of the node are not yet available. However, in

some models no queueing is ac tually permitted and so processing elements will

not fire unless all outgoing edges are free.

The many options in specifying a dataflow net have lead to a number

of different models. In all models, except in Kahn's [46] and Wadge's ([86],

[26]), the processing elements are token- level f unctional . Token-level func­

tionality means that given the same tokens on its incoming edges, an opera t or

will always produce the same tokens on its outgoing edges, independent of the

r e lative times of arrival of incoming tokens and of the st ate of the computa­

tion. Since dataflow computations are asynchronous, no functionality is guar­

anteed at the global (input / output) l evel unless proven (see chapter two) .

Figure 1.4.1. shows a dataflow net that calculates x2-4x using primitive

boxes DUP (which duplicates any incoming token to both outputs), t2 (which

produces the square of an incoming value), *4 (which multiplies an input by 4),

and - (which subtracts the right input from the left input).

2
Figure 1.4.1. A dataflow net calculating x - 4x.

7

An execution of the net is pictured in figure 1.4.2., where dots (e) represent

the tokens as they are generated and move through the net.

Figure 1.4.2. An execution of a dataflow net.

8

Karp and Miller [47] have shown that (dataflow) nets with nodes obey­

ing certain rules are deterministic, i . e., the result of executing such a

net is independent of the order of the firing of the nodes. The nodes must

obey the following rules :

(1) They must consume a fixed number of tokens from their input edges.

(2) They must produce a fixed number of tokens on their output edges.

(3) They must be token-level functional.

These rules are rather severe, though. It is, for example, impossible

to have conditional flow of data or loops in these nets. Therefore, all

versions of the basic <lataflow model that have been developed relax one or

more of these rules. If, depending on the value of the input tokens, a subset

of the output edges can be selected for firing, it becomes possible to have

conditional flow of data. This type of node is called a SPLIT node. In its

basic form it has two input edges and two output edges, as in figure 1.4.3.

Figure 1.4.3. A SPLIT node.

A token entering via the c-edge has a boolean control ~a Zue . If the

c-token is TRUE, the v-token is copied to the 1-edge, otherwise the v-token

is copied to the r-edge. With a SPLIT node either one of two subnets can be

activated, as in figure 1.4.4.

V

Figure 1.4.4. Conditional activation of subnet Lor R.

9

In order to make the result of the Lor R subnet available to a subnet

F, a node is needed that selects a subset of its inputs, i.e., that joins

the output edges of the Land R subnets. Such a node is called a MERGE (or

JOIN) of which there are two types:

(1) A MERGE node with two data input edges 1 and r, and one control input

edge c. The control value determines whether a token must be consumed

from the 1-edge or from the r-edge. The 1 or r token is copied to the

output edge (see figure 1.4.5.).

1

Figure 1.4.5. A deterministic MERGE node.

(2) The second type of MERGE node does not have a control input edge (see

figure 1.4.6.),

1 r

Figure 1.4.6. A non-deterministic MERGE node.

and which input edge the token is to be taken from is decided in some

other way. This type of MERGE node is called non-deterministic or

time dependent.

For the moment we will only consider the deterministic MERGE. With SPLIT and

MERGE we can now program a conditional assignment such as

z ·- if c then f(x) else g(x) fi

as shown in figure 1.4.7.

10

X C

DUP

z

Figure 1.4.7. A conditional assignment.

A loop such as

r epeat x := f (x) until g(x)

can be translated into dataflow as shown in figure 1.4.8.

init X

result x intermediate x

Figure 1 . 4 . 8. A loop.

11

In the net of figure 1.4.8. it appears that we need an initial control

va lue (a "marking") for the MERGE node. We cannot let the first control value

come from outside the loop, because then we have to merge the control value

f r om the "outside" and the one from the "inside", which leaves us with the

s ame problem. This phenomenon does not occur when non-deterministic MERGE

node s are used.

Obviously a more complicated computation is translated into dataflow

by recursively applying the same techniques. For interest's sake, consider

the fo llowing progr am.

input(m , n) ; u :=1;

while m>O do i f odd(m)

f i

od;

output (u)

t hen u := U*n m·- m- 1

e l se n·- n*n; m·- m/2

The dataflow net for the above program is shown in figure 1.4.9., where a

SINK node just swallows its input and the POS? and ODD? nodes yield control

values. Subnet A controls the loop, subnet B controls the if-statement with

subnets C and D implementing the then- and else-part, respectively.

The dataflow net in figure 1.4.9. exemplifies another drawback of the

controlled MERGE: even though there will never be more than one token on

the two inputs of the MERGE nodes (so non-deterministic MERGE nodes would

suffice and would be used in a deterministic way) we have to draw all the

control lines and so complicate the net.

In chapter two we will study dataflow nets with non-deterministic MERGE

nodes and no control lines. Both their deterministic use (only nets where the

two inputs of a MERGE can never contain a token simultaneously) and truly

non-deterministic fair merges will be treated.

12

/
/

/

B

m

FALSE
DUP

DUP

ODD? DUP

A

DUP

/
/

I

/
/

DUP

// ~------~===~~~--
/ ------ - ---

!,/ ,-a-~~

/ r -1 C
I\ __
\

........ __ _
DUP

'-------
--- - -------

DUP

\

'
m

u

DUP
'

Figure 1.4.9. A complete dataflow net.

I

I
I

I

I
I

n

' "

MERGE

n

\
\
I
I

'----,---' I
/ .,,

n

m
u=n

13

1.4.1. Re-entrant use of dataflow subnets.

A subnet inside a loop in a dataflow net may be activated more than

once. A subnet can be used to implement a function that will be called at

several places in the dataflow net. In both cases, tokens belonging to dif­

ferent computations will flow through the subnet and must not interfere. In

chapter two we present a construction that can be used to close a subnet for

a new computation as long as the old one is still active. A similar method

is used in the dataflow net of figure 1.4.9. Using that construction we can

show the computational power of dataflow nets, although a lot of potential

parallelism is lost.

If this parallelism is to be saved, simultaneous activations of a

dataflow subnet must be allowed while preventing tokens belonging to differ­

ent calculations from interfering. There are a number of ways to accomplish

this. The first requires the edges to behave like queues as we have assumed

up to now. This induces an ordering on the tokens, allowing different itera­

tions to be distinguished. This does not guarantee yet that tokens belonging

to different iterations do not interfere. The net must be clean in that it

uses up all tokens it receives. In a second approach the edges are one-token

buffers. If, again, the net uses up all its token, a new iteration will

push the previous one out of the net. The above methods allow loops to be

reactivated in strict sequence. Dataflow models allowing only this sequential

cyclic re-entrancy are known as static dataflow models .

A more general approach allows both looping and general recursive

application of subnets. Again there are two methods. One method permits con­

current re-entrancy via a call node which creates a new copy of the subnet

every time it is activated. The other method allows the tokens to share the

same subnet by ensuring that tokens are passed to the right version of the

subnet by some addressing scheme: tokens belonging to different computations

are labeled or coloured differently so that they can be distinguished. Only

tokens with the same colour enable a node to fire. In this scheme the edges

are just bags of tokens. This method is called token colouring or unraveling

14

interpretation of dataflow nets [5]. Dataflow models allowing the general

recursive application of subnets are called dynamic dataflow models .

Processing elements have memory?

History level
dataflow (46]

NO

Fire only when input on all edges and
fire at all edges ?

"Pre-dataflow" NO
(47]

One token buffer
edges [22]

Queued inter­
preted [5]

How handle re-entrancy?

Unraveling
interpreted
(Colouring)
[5], [35]

Code Copying
[76]

Figure 1.4.10. The various dataflow models.

1 . 5. DATAFLOW ARCHITECTURES

Having dataflow nets as the underlying model of computation, an un­

conventional form of computer is required to realize the intrinsic parallel­

ism expressed by it. In (84] an overview is given of the many different

dataflow architectures that have been proposed. Experimental programmable

dataflow computers are currently under construction at a number of institu­

tions including MIT ((23],[6]), the university of UTAH (19], the university

15

of Manchester [36] and CER Toulouse [70].

However, there is nothing against implementing a dataflow program by

letting nodes be actual processors and edges be wires. A dataflow net thus

becomes the specification of an asynchronous special purpose design that

may well be suited for implementation on a chip by means of current VLSI

technology [58].

1.5.1. An Example: The Manchester Dataflow Machine.

As an example of a typical dataflow architecture, we will discuss the

Manchester Dataflow Machine [36] because its design is simple and extensible

and clearly shows which problems dataflow does not solve yet, and because

some of our results in chapter two relate to it.

The Manchester Dataflow Machine consis ts of a ring of elements each

performing a special task, as shown in figure 1.5.1.1.

In

Out

NS TQ

ru CD
MU

Figure 1.5.1.1. The Manchester Dataflow Machine.

16

In a general purpose dataflow machine the net r epresenting a particular

program cannot be hardwired, and so it must be represented using a data struc­

ture of some sort. On the Manchester Machine this data structure consists of

labelled nodes containing the function to be performed and the destination

node(s) of the result. These nodes are kept in the node stor e NS. In order

to execute a node, the node store receives a group package GP consisting of

a node label and the required operands. The node store then generates an exe­

cutable package EP consisting of operands, the function to be performed and

the destination(s) of the result. Executable packages are sent via a distri­

bution networ k D to one of the proces sing elements PE. Processing produces

one or more result tokens T consisting of datatype, the result value and a

destination node label . The tokens are sent via an arbitration networ k A to

the· switch SW.

The switch communicates with the outside world. Result tokens meant for

output leave the ring here, input tokens enter the ring and tokens meant for

further processing are sent through. The switch sends tokens to the token

queue TQ, which compensates temporary differences in speed between the match­

ing unit MU and the processing elements.

The matching unit is basically an associative memory. Tokens wait here

for their partner to arrive, at which time they are put together to form a

group package and are sent off to the node store. For efficiency reasons the

machine only allows packages containing one or two tokens.

The Manchester Machine actually employs token colouring but for the sake

of simplicity we have left the details of this out.

The Manchester Machine makes use of both pipelining (the continuing

flow of packages from NS to PE and so on) and low scale MIMD-type parallelism

(PE's process different EP's simultaneously) . The machine is a truly systolic

system: the heart (MU+NS) "pumps" packages to the various "organs" (PE' s).

The organs use the packages and send the results back to the heart again.

17

1 .5 .2. Extensions to the Manchester Dataflow Machine.

1 .. 5. 2. 1. Global memory.

The virtue of dataflow is at the same time its source of difficulty:

there is no global memory. In actual programming, global memory is used in

two ways:

(i) It serves as a short term store for intermediate results between in­

structions or, in dataflow terms, between processing elements.

(ii) It serves as long time storage for information used many times in many

places in a program (such as a symbol table).

In case (i) variables can be transformed into data paths. In order to

make this transformation straightforward, single assignment languages were

developed (see section 1.6.1.). However, it has been shown that by building

and analyzing their dependence graphs, programs written in a conventional

language can be transformed into dataflow nets just as easily ((31],[85],

[3], [88]).

Case (ii) is harder because it uses memory in an inherently non­

functional manner. In order to mimic global memory, the matching unit of the

Manchester Machine is extended so that semi-permanent data can be stored and

manipulated there. This is in fact a step back to a von Neumann style memory.

The extensions to the matching unit will now be described in some detail.

1.5.2.2. Matching functions.

There are a number of matching functions that can be used to implement

time dependent, non-functional, and non-deterministic concepts ([16),(12)).

A matching function describes how the matching unit behaves (i) when the part­

ner of a token has already arrived so the match succeeds (the s-action) or (ii)

when the partner has not yet arrived so the match fails (the f-action). There

are fours-actions and four f-actions.

The operation of the matching unit as sketched in section 1.5.1. was

the standard matching function for tokens with a two-input destination. This

18

matching function is called extract wait EW. When the first token for a double

input edge node reaches the matching unit it must wait for its partner to

axrive, at which point both tokens can be extracted from the memory, combined

into a group package, and sent off to the node store. The standard matching

function for tokens with a one input destination is by-passing the token store

(BY). The full list of s-actions and £-actions now follows.

S-ACTIONS

E for EXTRACT

Both tokens are removed from the token store, packed in a group package

and sent off to the node store. This is the standards-action.

P for PRESERVE.

The token and its partner are packed together and sent off, but the

partner remains in the token store . This provides a way to use the matching

unit as a memory.

I for INCREMENT ~nd D for DECREMENT .

Theses-actions are the same as preserve, except that the remaining

token is either incremented or decremented.

F-ACTIONS

W for WAIT.

The token is placed in the token store. This is the standard £-action.

D for · DEFER.

The token is not stored. It is sent around the ring "to try again later".

This £-action can be used to implement exclusion.

A for ABORT .

The token is not stored. A special token (EMPTY) is sent to the destina­

tion to indicate that no partner was found.

19

G for GENERATE.

Again an EMPTY token is sent to the destination, but the incoming token

is stored in the token store on the other input port, so that the next token

coming in on the same (original) input port will match it. This f-action can

be used to sense the first traversal of an edge.

Apart from BY, the following seven of the sixteen possible combinations

of s-actions and f-actions are allowed as matching functions: EW, ED, ID,

DD, EA, PG. A token carries a tag indicating which of the matching functions

applies.

In section two we will show that there is one basic concept underlying

these matching functions: the possibility of checking whether a token has

already arrived.

1.5.2.3. A higher level Manchester Dataflow Machine.

The amount of parallelism in the Manchester Machine depends on the number

of processing elements. This number cannot be arbitrarily enlarged as the rest

of the ring (in particular the matching unit) has a maximum capacity. An exten­

sion under consideration [36] is to connect several rings through the switch,

which then becomes a full-blown interconnection network (see figure 1.5.2.3.1.).

This will make the machine an MIMD machine with dataflow nets as its machine

language. Tokens always travel the same distance in this machine, whether

they stay in their "own" ring or are transfered to another one. This makes

the problem of where to allocate a piece of the dataflow graph much easier.

This design introduces a third level of parallelism, which can be used

to implement higher level parallel computation models where the nodes have

the computational power of procedures, as in CSP [39], MODULA [89], or Kahn's

language [46].

20

Figure 1.5.2.3.1. A higher level Manchester Machine.

1.6. PROGRAMMING LANGUAGES FOR DATAFLOW MACHINES

1.6.1. SiEgle Assignment Languages .

The languages that emerged together with dataflow machines are based on

a single assignment principle. There are two versions of the single assignment

principle:

(1) An object gets a value assigned to it only in one place in the program.

(2) An object gets a value assigned to it only once during execution of

the program (17).

Almost every dataflow research group has its own single assignment language

(65). We will briefly summarize some of the languages. Nearly all of the

languages obey the first of the single assignment rules.

21

LAU [70].

The LAU language (Langage d 'Assignation Unique) was designed before the LAU

machine was built. LAU incorporates five types of statements: CASE, LOOP,

EXPAND (a loop where the programmer can set the maximum number of parallel

activations), CALL, and RETURN.

ID [71].

ID is an expression oriented language, supporting abstract data types, streams,

and resource managers (a sort of monitors where control resides inside the

manager) . An ID program creates a large number of parallel tasks called acti­

vities .

CAJOLE [37].

A CAJOLE program is a set of definitions. The language supports guarded com­

mands. The programmer can extend the language by defining new syntactic con­

structs . CAJOLE programs obey the type (2) single assignment rule.

VAL [1 J.

VAL is an expression oriented language based on CLU [60]. Iteration is viewed

as a simple kind of recursion. There are two FORALL constructs. The first

generates an array of results, one element per iteration. The second combines

the results. There are modules that manipulate streams of data.

LAPSE [34].

LAPSE looks very much like PASCAL, although its semantics is that of a func­

tional language. The language allows array and record structured values and

functional subroutines .

LUCID [7].

The motivation for single assignment in LUCID is the ease of program correct­

ness proving. LUCID operators operate on sequences of values.

Single assignment enhances the translation from program text to dataflow

net but, as already mentioned in section 1.5.2.1., ordinary "multiple assign­

ment" languages can be translated to dataflow nets as well. The real problem

of compiling for parallel machines, which is the allocation of (large) data­

structures in parallel memories, has not been solved by the introduction of

single assignment languages.

22

1 .6.2. Other languages.

Several research groups are studying the implementation of other lan­

guages on dataflow machines such as PASCAL (88], Fortran (45], and functional

languages (48].

In chapter three we will study a language for parallel prograrrnning.

What interests us there is the possibility to express parallelism explicitly

at the procedure level and to adapt the parallelism, i.e., the topology of

the dataflow net, to the amount and the values of the problem data . The lan­

guage is called DNP , short for Dynamic Networks of Processes.

1.7. SEMANTICS OF DATAFLOW LANGUAGES

The semantics of parallel deterministic languages is based upon the

Kahn principle (46]. The meaning of a deterministic net with n edges is

described by a set of equations in terms of functions fi, which specify how

the sequence of output tokens on an output edge ui of some node depends on

the sequences of input tokens to that node. The behaviour of the net can be

obtained as the minimal fixpoint of these equations. This principle can be

extended to non-deterministic models of computation ((67],[26],[11]).

The semantics of token level functional dataflow nets is defined by

Arvind and Gostelow [5]. They apply the theory of fixpoint semantics to ex­

press the relationship between two different interpretations of Dennis's

dataflow nets (22), the queued interpretation and the unraveling interpreta­

tion. They show that the unraveling interpretation allows more parallelism

than the queued interpretation.

Brock (13] defines the semantics of a dataflow language ADFL, a sim­

plification of VAL. Firstly, a translation from ADFL programs to dataflow

nets is defined . Secondly, the semantics of these nets is derived by use of

the Kahn principle.

23

Kahn's semantics and Arvind and Gostelow's semantics differ in the mo­

delling of the traffic of tokens over an edge. The former assumes the edges

to behave as queues, while the latter takes token colouring into account.

This causes differences in domains and orderings and (hence) a difference

in c.p.o. structure.

In both ADFL and Dennis's nets the step from dataflow net to functions

is simple because the nodes are token level functional, i.e., they have no

inner state. There is a fixed number of node types so their semantic functions

can be given beforehand. A similar approach is taken in LUCID ((7],(86]).

Here the nodes may have an inner state but as there is a fixed set of node

types their semantic functions can still be derived beforehand. This approach

cannot be used in a language where the nodes are programmer defined as in the

language of chapter three. What is needed then is the definition of an op­

erator from node declaration to semantic function (14].

1.8. DATAFLOW ALGORITHMS

1.8.1. Sequential algorithms.

Computer algorithms can be characterized by the type of program- and

data structures they use. When we look at sequential algorithms, the basic

program structures are sequence, assignment, condition, loop and procedure

call. The basic data structures are scalar, record, array and recursive data

structures such as trees and graphs . By analyzing the program- and data struc­

tures some of the parallelism from the original algorithm can be reconstructed.

As has already been argued, single assignment languages only simplify part of

this · analysis. Ideally, there is a computer architecture on which the program

parallelism, typical for a certain combination of program- and data structures,

can be exploited.

Dataflow machines are already suitable for loopfree blocks of condition­

al assignments, which are hard to run on pipeline or vector machines. The same

applies for loops with conditions.

24

In the present state of dataflow computers it is not yet precisely clear

how to implement data structures, such as arrays, while exploiting inherent

program parallelism. The combination of matching functions (or their equivalent

in other dataflow machines) and higher level architectures seems suitable for

tackling this problem. Clearly more research is to be done in this field.

1. 8.2. Explicitly parallel algorithms.

No research has been done yet on implementation of programs with explicit

parallelism at the procedure level on dataflow architectures. With the advent

of higher level dataflow machines this seems to be an interesting research

topic. These programs are also interesting for direct implementation in VLSI

(58].

In chapter four we will write some explicitly parallel algorithms in

DNP, the language introduced in chapter three, and we will also analyse their

complexity. The complexity measures will be:

- the number of processes (nodes) in the computation graph,

- the amount of memory in a node,

the number of edges and the number of tokens on an edge at a certain moment,

the time needed for the computation.

1.9. SUMMARY OF THE THESIS

In chapter two we explore the theoretical foundation of computation

by dataflow. To prove essential properties of dataflow computing we will in­

troduce an elementary model. We prove that for certain, so called well-formed
nets, asynchronous, parallel execution does not lead to non-functional behav­

iour, i.e., that all computation orders are equivalent. We prove that our model

has universal computing power. The remainder of chapter two is devoted to the

simulation of other models of parallel computation.

In chapter three we introduce a high level dataflow language, called

DNP, based on Kahn's simple language for parallel progrannning. Parallelism is

25

explicitly expressible in this language by means of the operation of expansion ,

where a process is replaced by a network of parallel processes.

Chapter four deals with the complexity of some DNP programs and with

the expressive power of DNP. We design and analyse algorithms for sorting,

matrix multiplication and we will look at the class of divide-and-conquer

algorithms. We show that not all computation graphs can be created in DNP.

Two ways to overcome this limitation are pointed out. The last part of chapter

four is devoted to DNP programs for NP-complete problems.

In chapter five we prove the correctness of some of the programs of

chapter four. The proofs are based on the semantics as described by Kahn

[46] and formalized by Bohm and de Bruin [14].

26

CHAPTER TWO

FUNDAMENTAL CONCEPTS IN DATAFLOW COMPUTING

2.1. INTRODUCTION

Models of computation enable us to prove fundamental results about

the power and limitations of real or proposed computer architectures . Much

of the present theory of computation has resulted from detailed analysis

and abstraction of von Neumann architectures. As modern technology is moving

away from such architectures we accordingly need to revise our ideas about

computation and the way it is performed. In this chapter we shall explore

the theoretical foundation of computation by dataflow.

To prove essential properties of dataflow computing, such as the impact

of the high degree of parallelism in dataflow nets, we will introduce an

elementary model of dataflow computing.

Several dataflow models have been proposed in the past, all based

on some notion of a dataflow net. Adams [2] and Rodriguez [73] proposed

that four types of primitive nodes be incorporated in the model, namely

arithmetical and logical functions, a split node, a controlled merge node

and a duplicate n?de. This set of nodes was adopted by Dennis et.al. [22]

and formed the basis of a proposal for a dataflow architecture [23]. Fosseen

[29] reportedly proved that these primitives indeed provide universal compu­

ting power. Recently Jaffe [44] extended the analysis of Dennis's framework,

explored the connections with the theory of program schemata and proved the

universality by simulating Turing machine computations in dataflow.

The basic differences between our model and Dennis's model are that

our merge primitive has no control input and that we can model time dependent

non-functional behaviour by means of a special primitive that reacts to

27

the (non)availability of a token on one of its input lines. Our primitives

are also more elementary. Furthermore, our primitives can be used to model

an exist ing dataflow machine, the Manchester Machine, very naturally.

In section 2.2 . we shall define our model. In section 2.3 . we shall

show that for well-formed nets asynchronous parallel execution always leads

to functional behaviour, i.e., all computation orderings are equivalent. In

section 2.4. we shall define the notion of pipelining and in section 2.5.

we shall prove that our simplified model has universal computing power in

the sense of computability theory. The proof is very different from Jaffe's

and shows direct constructions of dataflow nets for the primitive functions

and standard operations from recursive function theory [74]. The main result

of section 2.5. will be that for each partial recursive function f there is

a dataflow net to compute f that can be used for pipelining, i.e., for pro­

ducing a continuous stream of result values corresponding to a continuous

stream of argument values without the need ever to reinitialize the net. Se­

veral applications of this result will be given.

The remainder of this chapter is devoted to the simulation of other

models of (parallel) computation with our model of dataflow. In section 2.6.

we give a simple simulation of counter machines, which are known to have the

same computational power as Turing machines. In section 2.7. we model memory

cells. In section 2.8. we model the matching functions of the Manchester

Machine. In section 2.9. we model Petri-nets .

2.2. A BASIC MODEL FOR DATAFLOW COMPUTING

A dataflow net is a directed graph in which the nodes represent proces­

sing elements and the edges represent data paths. Some data paths will not

explicitly start at a node (the input-lines of the net) and some will not

explicitly end at a node (the output-lines of the net). Data is presented

in tokens, which are indivisible, but can be distinguished through some inter­

pretation.

28

Convention: We shall assume that tokens are natural number s .

Tokens can be transmitted over data paths only: processing elements conswne

tokens from their incoming edges and produce new tokens over their outgoing

edges. The combined action of consuming input tokens and producing output

tokens is called firing or executing a cycle . Proce ssing e lements are al­

lowed to fire only when all incoming edges have at least one token, with

two well-defined exceptions: the JOIN-operator and the THERE-operator (see

below). Tokens may queue. If they do, when a processing element starts up

a new cycle, it will always pick the front element from each queue on an

incoming edge. ln systems which do not i mplement edge s a s que ues, token

co louring will be assumed to achieve the same effec t.

Definition 2.2.1. A dataflow net is said to compute a (partial) function
k

f: lN ➔lN when for all x
1

, ••• ,xk E: lN the following is satisfied: upon receiving

tokens representing x
1

, ••• ,xk over distinguished input-lines, the net will

eventually produce one token v if and only if f(x
1

, ••• ,xk) is defined, and

f(x
1

, ••• ,xk) = v.

□

Notice that the net will produce no output if f(x
1

, ••• ,xk) is not de­

fined. The kinds of computation that can be modelled will depend on the primi­

tive operators chosen to build dataflow nets from. We shall use the following

primitive processing elements (boxes, operators) as ingredients for dataflow

nets:

l..

ZERO: the ZERO-box emits a value (token) 0 once

and is then silent forever.

DUP : the DUP-box duplicates any incoming token

and emits a copy over both of its outgoing

edges.

SINK: The SINK-box swallows and destroys any in­

coming token.

INCR: The INCR-box increments any incoming token

by 1, and emits the new value over its output­

line.

y if x=O y if xfO

29

DECR: The DECR-box decrements any incoming token

x by 1, provided x>O, and emits the resulting

value over its output-line. If xis zero, it

is passed on unchanged.

SPLIT: upon receiving the input x and y, the SPLIT­

box routes y left or right (i.e., on distin­

guished outgoing edges) depending on whether

xis zero or not (the zero output is encircled).

JOIN: the JOIN-box lets any incoming token pass,

provided it never finds tokens present on both

incoming edges. Otherwise the result is unde­

fined, but we shall always ensure that this

does not arise .

i(x)- THERE: rpx :o, chm
upon receipt of an input c, if an input x

X if XLS there

LS present, it is passed down, otherwise zero

LS passed to the right.

Clearly the last two boxes may cause problems concerning functionality.

The constraint on the use of the JOIN-box removes this problem, because if

we allowed two tokens to arrive simultaneously, some decision would have to

be taken about which token should pass first. The THERE-box is non-functional

by nature and LS introduced for that very reason. We will only make use of

the THERE-box in non-functional computation models such as memory-cells and

the matching functions of the Manchester Machine.

For ease of use we shall introduce one more box, although it is not

independent of the primitives above :

GATE: upon receiving tokens x and y, the GATE-box

will pass y down.

30

It is easily verified that the net of figure 2 . 2 .1. implements the GATE-box.

Figure 2.2.1. The GATE.

The rules for building dataflow nets are straightforward. Input lines

of the net are connected to input ports of some nodes. Output lines of the

net come from output ports of some nodes. With the exception of input and

output lines of the net, all input ports are connected to output ports (by

"internal" lines). Our notion of (asynchronous) computation by dataflow is

identical to that of Adams and Dennis. To exemplify that our nets are prim­

itive but nonetheless powerful, figure 2.2 . 2. shows a net that implements

Adam ' s controlled merge from section 1.4. Notice that the feedback of the

output token ensures the correct use of the lower JOIN-box by preventing

a new cycle from starting until the old one has ended.
C

1 r

MERGE

(a) (b)

Figure 2.2.2. The controlled merge (a) and its implementation (b).

Definition 2.2.2. A dataflow net is said to be well-formed iff :

0

(i) no JOIN-boxes will ever receive tokens on both their incoming edges

simultaneously in any computation by the net, and

(ii) it contains no THERE-boxes.

31

2.3. FUNCTIONALITY

In this section we will consider only well-formed nets. We will need

definitions of the following terms: type, in-set, out-set, history, enable,

snapshot and execution. Every node in a well-formed net has a type E {ZERO,

DUP,SINK,INCR,DECR,SPLIT,JOIN}. The type of a node determines the number of

incoming and outgoing edges of the node, and the function it performs. The

incoming edges of any node n that is not a JOIN node are called the in- set

of n. Nodes of type JOIN have two in-sets, the two singletons containing one

edge each. The latter convention ensures that the in-sets model the sets of

edges that simultaneously enable a node for firing. The outgoing edges of

any node that is not a SPLIT node are called the out - set of n. For a similar

reason to the above, nodes of type SPLIT have two out-sets, since only one

of the two outgoing edges will receive a token after firing.

During the activity of a dataflow net, tokens are produced at one end

of an edge and consumed at the other. Informally, a his t oPy is the complete

sequence of tokens that have appeared on an edge since a computation started.

Definition 2.3.1. A hi stoPy his the concatenation of a pair of sequences of

values : h = (p ~ h)-(pc of h). Part p models the sequence of values that

have been produced but are not yet consumed, while part pc models the sequence

df values that have been both produced and consumed. Parts p and pc are oper­

ated upon in queue fashion: producing a new value x causes x to be inserted

in p. Consuming a value v causes v to be deleted from p and inserted in pc.

D

The p-part of a history consists of the tokens that are still waiting

in the queue associated with the edge. A snapshot S (of a dataflow net in

action) associates a history S(e) with every edge e.

Definition 2.3.2. An in-set I of node n is said to enable n in snapshot S

iff for all edges e EI : p of S(e) is not the empty sequence. A snapshot

S enables a node n (Senn) iff there is an in-set I of n that enables n

in S.

D

32

A node of type ZERO is not enabled by any snapshot. We can talk about

"the" unique in-set enabling a node n, because we consider only well-formed

nets.

Definition 2.3 .3. A node n is said to map a snapshot s 1 i nto a snapshot s2
iff

(i) n is of t ype ZERO and s
2

is obtained from s
1

by producing a zero on

n' s output history, or

(ii) n is not of type ZERO and s1 en n and s2 is obtained from s1 by modifying

the histories associated to the in-set I of n that enables n and an

out-s et O of n so that from all input histories of the in-set I of n

a value is consumed and on all output histories of the out-set O of

n a value is produced according to the function of n.

The resulting snapshot will be written as s2 = s
1
n.

D

Definition 2.3.4 . A sequence of snapshots s
0

,s 1, ..• is said to be an execution

iff

D

(i) s
0

is a start shot , i . e ., a snapshot whe r e all hi s tories except those

associated with input edges are empty sequences, and where the pc-parts

of the histories associated with input edges are empty sequences, and

(ii) for all i=0,1, ... there i s a node ni+l such tha t Si+l = Sini+l"

An execution s
0

,s
0

n
1
,s

0
n

1
n

2
, ... will be denoted as s

0
:n

1
,n

2
... for

brevity. For an arbitrary snapshot Sand a sequence of nodes~ we say that

S:~ exists if the sequence of nodes can be applied to Sin the above sense,

without violating the semantic constraints on the JOIN-boxes (i.e., the well­

formedness of the net). Note that by e.g. S:n
1

,n
2

,n
3

we denote an execution,

while by Sn1n2n3 we denote a snapshot.

A moment's reflection at this point shows that dataflow nets in general

permit many executions, due to the fact that in a single snapshot many nodes

may simultaneously be enabled. Fir ing nodes in spontaneous order and thus

modelling the completely asynchronous behaviour of the net, leads to the ques­

tion of whether in the end different outputs can result from different (but

otherwise permissible) computation orders. In this section we shall prove

that this cannot be the case (the "functionality theorem") and that, fo r _all

33

so called proper executions , we ll-formed nets display an equivalent behaviour.

We need several more concepts before we can give a proof of this.

D'efinition 2.3.5. An execution Eis called proper , iff

D

(i) for every Si EE and node n enabled by Si there is a j ~i such that

S . n = S . 1 (in ot her words, enabled nod es eventua lly fire), and
J J +

(ii) for every node n of t ype ZERO there is one and only one S . such that
1.

Notice that after a finite , proper execution the computation 1.n the net 1.s

necessarily t erminated , i. e ., no further node 1.s enabled.

Definition 2.3.6. Given executions E and E ', we write E ::_ E' if£ for all edges

e and a ll S. EE there is an S. EE ' such that S.(e) = S.(e). (In other words,
1. J 1. J

all histories that occur during E also occur during E'.) E and E' are said

to be equivalent , iff E c E ' and E ' c E.

D

In the following we shall give an argument that all proper executions

of a well-formed dataflow net are equivalent. In fact, we shall prove that

they can be transformed into one another by "interchanging" actions.

Lemma 2.3.1. Given a snapshot S and two different nodes n 1 and n2 , then :

Sen n
1

& S en n
2

q Sn
1
n

2
= Sn

2
n

1
.

Proof . If n 1 and n2 are not connected by an edge, the leunna follows iunnediately,

because the sets of incoming edges of one node and outgoing edges of the other

are disjoint.

If n 1 and n2 are nei ghbours, the firing of one node may concatenate

a token to the history associated to an input edge of the other one. Now this

firing cannot produce values that are iunnediately consumed by the other node,

beca us e it was already enabled by S, i.e., it had a full set of inputs in an

in-set. This is true in particular if the receiving node is of type JOIN:

ot herwise the well-formedness property of the net would be violated. The tokens

that are consumed are therefore the ones that were already there in snapshot

S. Co nsequently Sn1n
2

= Sn
2

n
1

.

D

34

Lemma 2.3.2. Given a snapshot S, a node n and a sequence of nodes ~ not con­

taining n, then :

Senn & S:~ exists => Sn~ ~ (in particular , both exist)

Proof. By induction on l~I.

Base: 1~1=1, the result follows from lemma 2.3.1.

Step: 1~1>1, write ~ = 1/m
1

(some n
1
;,,n)

Because S~ exists, clearly St exists . And because n does not occur int, the

firings of the nodes oft can only have caused the p parts of the histories

of the input edges of n to have grown without violating the semantic constraint

on JOIN nodes. Now observe that St enables both n and n 1 (in case of n by the

same in-set as in S). And thus

D

Sn~= Snt n
1

= Stnn 1 (by induction)

Stn1n (by lemma 2.3 .1.) = S~.

Theorem 2.3.3(The functionality theorem). All proper executions of a well­

formed dataflow net that start with the same start shot s
0

, are equivalent .

Proof. Let E = s
0

:n
1

,n
2

,n
3

, ... and E' s
0

:m
1

,m
2

,m
3

, ... be two arbitrary, but

proper executions of a given dataflow net. Let i ~1 be the smallest inteeer

such that ni"'mi. Let Si= s0n 1 ... ni-l and Si= s0m1 ... mi_ 1. Si enables both

n . and m. and thus, because E' is proper, there is a smallest k such that
i i

mi+k = ni. By lemma 2.3.2. it follows that Simi ... mi+k = Simi+kmi ... mi+k-l

= Sinimi ... mi+k-l, and thus that E' is equivalent to the execution

E" = s0 :m1 , ... ,mi_ 1 ,ni,mi, .. . ,mi+k-l'mi+k+l'""" which coincides with E in

one more position. Proceeding ad infinitum proves that E and E' must be equi­

valent.

D

Corollary 2.3.4. Proper finite executions of a well-formed dataflow net that

start with the same start shot have the same length.

D

In our model, functionality of nets can be interpreted as determinism,

when considering the input-history output-history relation of a net. The func­

tionality theorem implies that in well-formed nets we can freely use any proper

computation order that is convenient. An execution can be timed in different

35

ways by inserting a tick after certain firings. A combination of a certain

computa tion order and a certain timing mirrors the actual running of a data­

f.low net on some machine . Some interesting computation orders and timings are :

(i) The sequential timing . After each firing a tick occurs.

(ii) The round r•obin tim·ing . The nodes are checked in a fixed order. If a

node is enabled , it fires and a tick is inserted.

(iii) The parallel timing . The execution is rearranged so that if a snapshot

S enables nodes n
1
... n

1
, these nodes will fire first. Now a tick is

inserted only after these 1 firings .

(iv) The k-bounded parallel timing . The parallel timing is changed so that

if a snapshot S enables more thank nodes, extra ticks are inserted

after each k-tuple of firings .

2.4 . PIPELINING

Consider a dataflow net as a black box that produces a value f(x 1 , ..• ,xk)

a finite time after it has been given its arguments. We want to be able to

re-use the net simply by sending it a new set of arguments. We do not necess a­

rily want to wait until a certain computation has finished before sending

the new arguments. However, when we look inside the black box, the situation

after a computation is likely to be different from the initial situation.

This might spoil a later usage of the net. The simplest reason is that a ZERO­

box has produced its single token while the next computation also needs one.

A second reason is that tokens left behind from a preceeding computation may

provide an improper start shot fo r the next computation. A third reason is

that the next set of inputs may in terfere with the ongoing computation. In

this section we will study the construction of nets that do not have the se

unwanted properties.

Definition 2.4 .1 . Consider a dataflow net N computing a (partial) function

f. A snapshot S (of N) is said to be clean iff any proper execution, starting

with S, and extended with a k-tuple x
1

, ... ,xk of arguments for which f is

defined , (on the proper input lines) yields f(x 1, . . . ,xk). (Observe that the

completely empty start shot is clean.) The net N is called re- usable if any

proper execution starting with a clean snapshot extended with a k-tuple

x 1, ... ,xk of arguments for which f is defined (i) is finite, and (ii) ends

36

with a clean snapshot. The net N is said to be pipelined if any proper execu­

tion starting with a starting shot s
0

consisting of any number of k-tuples

o_f arguments ~' ,~", ... for which f is defined, yields a stream of outputs

f(~'),f(~"), ... (in that order).

D

As an example figure 2.4.1. shows four dataflow nets computing f(x)=O.

The net in figure 2.4.1.a is neither re-usable nor pipelined because it will

only yield one ZERO. The net in figure 2.4.1.b is not re-usable because any

proper execution of the net is infinitely long, but the net is pipelined.

The net in figure 2.4.1.c is re-usable but not pipelined because the semantic

constraint on the JOIN-box is violated if a next argument comes in too early.

The net in figure 2.4.1.d is both re-usable and pipelined.

non re-usable
non pipelined

(a)

non re-usable
pipelined

(b)

re-usable
non pipelined

(c)

Figure 2 .4.1. Computing f(x)=O.

re-usable
pipelined

(d)

Consider a dataflow net N computing a function f (figure 2.4.2.):

N

Figure 2.4.2. A net N.

and assume that N is re-usable. Our aim is to make N into a pipelined net,

by surrounding N by a "sluice", that will only let a next set of inputs through

after the output of the previous computation has been emitted. A sluice network

37

consists of k upper sluice gates for sluicing in a new k-tuple of inputs and

a lower sluice gate for sluicing out a result. Given a re-usable net N the

augmentation with a sluice will be denoted as in figure 2.4.3.

Figure 2.4.3. The sluice construction.

A possible implementation of the sluice is now given . For every input

line, the upper sluice gate is as in figure 2.4.4.
x.

i

Figure 2.4.4. An upper sluice gate.

in 1 ~

~ i~2

+~ ink : ~
out

Figure 2.4.5. The lower sluice gate.

38

The ini-signal will be sent to the lower sluice gate to report the arri­

val of a new input token. The output-signal will be sent by the lower sluice

g_ate to report the emission of a result. The lower sluice gate only lets a

result f(x 1 , ... ,xk) through if all xi-shave been sluiced in. I t consists

of a series of gates as in figure 2.4.5. The out-signal is duplicated and

sent to all upper sluice gates. The idea of letting only entire input-tuples

into a (sub)-net was used before by Rumbaugh for the implementation of loops

[76], t o ensure that one iteration is over before the next one comes in.

Theorem 2.4.1. Let N be a re-usable dataf low networ k f or some f uncti on f. The

augmentation of N by the sluice construction yie lds a pipelined net for f.

Proof. The construction guarantees that a next set of inputs is not sluiced

in until the output from a previous computation is sluiced out. Since N is

re-usable this forces a correct use of N, tuple after tuple. The sluice con­

struction also guarantees that, in order for the result to be sluiced out,

all the input tokens from the current set of inputs must have been sluiced

in. Therefore, no input token can stay behind and interfere with new argument s

that it did not belong to.

□

2.5. UNIVERSALITY

We assume that the reader is familiar with Kleene's characterization

of the class of partial recursive functions ([50],[20],[62],[74]). An inductive

proof that every partial recursive function can be computed by dataflow

requires that we prove the stronger result that every such function can be

computed by a pipelined dataflow net. For when F, for example, is defined

by primitive recursion from g and h:

F(0,x1, ... ,~) = g(x1 , ... ,xk)

F(y+1,x1 , ... ,~) = h(y,x1 , ... ,xk,F(y,x 1, ... ,xk))

then a dataflow computation for F would naturally involve the pipelined use

of a dataflow net for h.

Theorem 2.5.l(The universal i t y t heor em). For every partial recursive function

f there is a r e-usab l e dat aflow net N t hat computes f. Moreover N keeps its

queue sizes automat ically bounded to 1.

Proof. By induction on Kleene's formation rules for the partial recursive

functions.

(i) the constant-0 function Z(x) = 0 .

A re-usable net to compute Z was given in figure 2.4 . 1. d.

(ii) the successor function S(x) = x+l.

This function is trivially realized by the INCR-box.

(iii) the projections TTi (x1 , ... ,xk) = xi (l ~i ~k).

For any i (l ~i ~k) TT. is realized by a re-usable dataflow net as in
l.

figure 2.5.1.

_r

Figure 2.5.1. A net for projection ni.

39

The net routes all unused arguments to SINK-boxes to prevent them from

interfering with any later computation.

(iv) composition.

Let g be a partial recursive function of m variables and let h
1

, . .. ,hm

be partial recursive functions of k variables. Let F be defined by composition

from g and h1 , ... ,hm:

F(x1 , ... ,xk) = g(h1 (x1 , ... , xk), . . . ,hm(x1 , ... ,xk))

Suppose that g and h 1 , ... ,hm are computed by dataflow nets G and H1 , ... ,Hm

respectively, which satisfy the requirements of theorem 2.5.1. It will be

obvious that the net N shown in figure 2 . 5.2. satisfies the requirements as

well and computes F, where the inputs x
1

, •• • ,¾ are duplicated and sent to

all nets H1 , ... ,Hm.

40

Figure 2.5.2. Composition.

(v) primitive recursion.

Let g be a partial recursive function of k variables and let h be a

partial recursive function of k+2 variables. Let F be defined by primitive

recursion from g and h:

F(O,x1 , ... ,~) g(x1, ... ,x)
F(y+1,x1 , ... ,~) = h(y,x 1 , ... ,xk,F(y,x1 , ... ,xk))

Suppose that g and hare computed by dataflow nets G and H, respectively,

which satisfy the requirements of theorem 2.5.1. We shall approach the con­

struction of a dataflow net N for Fin three stages.

~f~g~_l: route the input-tokens to G or H, depending on the value of y.

The part of the construction that takes care of this is shown in figure

2.5.3 . for the case k=2. (For k=1 or k>2 the construction is adjusted in an

obvious manner.) The net for R will be specified later; it is the part of

the net where the recursion for y>O will take place. For y=O all input-tokens

will be gated to G, for y>O they will all be gated to R. It follows that for

y=O the net N functions as desired, while for y>O there is no way that the

arguments can end up in this same part of the net. Note that the JOIN-box

is used properly, since tokens can never come in from both G and R simulta­

neously, as long as there is no queuing of the inputs. This demonstrates that

the sluice construction of section 2.4. to preserve the well-formedness of

this dataflow net is needed.

Figure 2.5.3. First design step for N (R remains

to be specified).

~£~g~_I: implement the recursion in subnet R.

41

R will receive data only when y>O. Its task is to compute and emit the

value F(y,x1, ... ,~). The obvious idea is to compute it by generating the

values F(j,x
1

, ... ,xk) for j from Oto y, through the pipelined use of H. The

main part of the construction is shown in figure 2.5.4. Since His re-usable

but used in a fully pipelined manner, it is surrounded by a sluice. This will

guarantee that it sluices in a full set of arguments for every next j. Some

care must be exercised so that the various "cycles" (the unspecified subnets

in figure 2.5.4.) do not run wild in generating next tuples of arguments for

the recursion. In figure 2.5.4. this is arranged by letting H generate a signal

whenever another F(j+1,x1 , .•. ,xk) is produced. The signal is 1 or 0, depending

on whether the final j-value (j=y) has been reached or not. The signal is

gated to the various cycles. As long as the signal is 0, a next tuple of argu­

ments is generated and gated towards H; this will involve incrementing j by

1 and reproducing every xi. Whenever the signal becomes 1, the current j-value

and the xi's are gated towards a sink. The signalling guarantees that the

recursion is carried out a proper number of times. More importantly, it guar­

antees that no unneccessary tokens are generated (like j-values larger than

y), the queue sizes remain bounded by 1 and that all tokens are removed from

the active parts of the net (gated towards a sink) when the recursion is at

42

F (j ,~)

signal

emit x
1

; and

again when

signal= 0
A

output

Figure 2 .5.4. The R-net.

(Z is the zero function
1 is the one-function)

y(>O)

signal

emit j=O;

emit j =j+l when-

ever signal = 0

B

signal

emit y=y-1;

emit next

y=y-1 whenever

si al = 0 C

an end. Provided the remaining parts of the net are correctly specified, R

satisfies all requirements for being re-usable! Note that Ruses all its argu­

ments since the G and (pipelined) H net do.

~~~g~_~: fill in the remaining details. 

Note in figure 2.5.4. that the JOIN-boxes are correctly used. In par­

ticular, there can be no delayed queueing on the incoming edges of the lower 

JOIN-box, because the signal will be sluiced out by all places that need it 



43 

(which, in turn, are sluiced by the H-net which needs a complete set of ar­

guments) every time through the recursion. All we need to do is supply the 

correct dataflow logic for the unspecified subnets A, Band C in figure 2.5.4. 

The constructions are all rather straightforward and are shown in figure 

2.5.5. Note that nowhere can queue sizes greater than one occur, except at 

SINK-boxes. 
signal(s) X signal(s) y signal(s) 

A B 

emit x
1 

and again emit j=x,emit j=j+1 emit y=y-1,emit next 

when signal=0 whenever signal=0 y=y-1 whenever signal=0 

Figure 2.5.5. Subnets A, Band C of the R-net . 

(vi) minimization. 

Let g be a function of k+1 variables, and let F be defined by minimiza­

tion from g: 

0 

Suppose that g is computed by a dataflow net G that satisfies the requirements 

of theorem 2.5.1. We shall construct a re-usable dataflow net for F. 

To compute F, we shall implement the straightforward idea of computing 

the values g(j,x1 , ... ,xk) for j from 0, until a value 0 is encountered. The 

construction of a dataflow net for it is shown in figure 2 . 5.6. Since G is 

obviously used in a pipelined fashion , it is surrounded by a sluice construc­

tion. As long as the g-value remains non-zero, a next j-value will be generated 

and gated to G, together with a next set of copies of x 1 to xk . To keep the 

cycles in the net from running wild, we again use a signal that is tested 

after each g-value is generated. The signal will be set to or 0 , depending 

on whether the g-value is 0 or not. When the signal is 0, it will trigger 

the generation of a next set of arguments for G. When the signal is 1, it 

will direct the current j-value and the cycling xi-values to sinks and, thus, 



44 

reset the A and B boxes. At the same time, the current j-value is sent down 

the output line of the net as the result of the computation. Notice again 

that the queue sizes remain 1. The A and B subnets are already specified in 

figure 2.5.5. 

□ 

signal 

signa l 

Figure 2.5.6. Dataflow net for minimization. 

Together with theorem 2.4.1., theorem 2.5.1. immediately implies the 

following theorem. 

Theorem 2.5.2(The pipeline theorem ). For every partial recursive function f 

there is a pipelined dataflow net N computing f that uses no queues of size 

greater than one . 

□ 

It follows that dataflow nets, as defined here, provide yet another 

basis for computability theory. We note on the other hand that every well­

formed dataflow net can be simulated by a deterministic Turing machine. No 

non-determinism is needed to guess which box will fire at any particular 

moment, because by theorem 2 .3.3. we can choose a fixed computation rule. 

From the pipeline theorem one can immediately derive a number of un­

decidability results for dataflow computing. We shall mention only one. 

Theorem 2.5.3. Well-formedness of dataf low nets is undecidable . 



45 

Proof. Suppose well-formedness were decidable. Consider a dataflow net as 

shown in figure 2.5.7., where we allow f to be any partial recursive function. 

A net of this sort is well-formed iff f is everywhere undefined. But the latter 

is known to be undecidable. 

0 

net for f 

Figure 2 . 5.7. Well-formedness is undecidable. 

A conclusion is that well-formedness, like correctness, can only be 

ensured through a precise and disciplined construction procedure for dataflow 

nets. There is a second conclusion to be drawn from 2.5.1. Well-formedness and 

functionality of a dataflow net are, in a certain sense , equivalent concepts 

(see section 2.2.). Hence the functionality of a dataflow net is undecidable 

just as the functionality of a nondeterministic Turing machine is undecidable. 

Finally, we shall give an application of the pipeline theorem related 

to the generation of sets. Hitherto only a few examples were given of dataflow 

nets which emit sequences of numbers of a specified kind in a specified order 

(86). Very generally we can now state the following. 

Theorem 2.5.4. For any recursively enumerable set S there is a dataflow net 

that generates the members of Sin enumeration order . Moreover , the net does 

not need any queue sizes to be larger than 1. 

Proof . It is well-known (74) that any non-empty r.e. set Sis the range of 

a total recursive function F. Thus to enumerate S by dataflow, all we need 

to do is feed the arguments 0,1,2, ... into a re-usable dataflow net for F. 

The construction is shown in figure 2.5.8. The sluice construction is modified 

here in that it also generates the input values for the net for F . 

0 

Figure 2.5.8. Genera ting a non-empty r.e. set S. 



46 

2.6. TURING MACHINE SIMULATION 

Jaffe [44] has given a direct simulation of a Turing Machine by means 

of dataflow. We will present here a (more straightforward) simulation of arbi­

trary counter machines which in their turn can simulate an arbitrary Turing 

Machine [42]. 

A counter machine consists of an input tape, a finite control, and a 

number of counters. A cell on the input tape contains a O or a 1. The whole 

tape contents is enclosed by a begin-of-tape-mark and an end-of-tape-mark. 

(These marks are represented by numbers unequal to O or 1.) A counter can 

hold a nonnegative number in unary representation: 0,01 ,011, . . . A transition 

of the machine consists of performing either a read or a coun ter-manipulation . 

If a read is performed, the next state in the finite control depends on the 

current state and the symbol read. A counter can be incremented, decremented 

or tested f or zero . The next state after a test for zero depends on the current 

sta te and the result of the test. In any case there are at most two possible 

next states of a certain state. 

Theorem 2.6.1. For every counter machi ne t here is a well-formed dataflow net 

simulating it . 

Proof. We will construct a dataflow net for a given counter machine. The net 

will be built from certain types of subnets. To avoid uninteresting details, 

we will only give the functional specification of these subnets . 

The input tape is available on the only input line of the net. The whole 

input is read and c onverted to an integer. This conversion is performed by 

a special subnet CTI shown in figure 2.6.1 . The subnet CTI sends one token 

tc, representing the tape contents , to a subnet PCM that will simulate the 

particular counter mac hine . 

$0100 ... 1011¢ 

Figure 2.6.1. First design of the counter machine simulation. 



47 

The subnet PCM faithfully mimics the finite control and counters of 

the particular counter machine. For every state in the counter machine there 

is a subnet which is activated by sending it the (rest of the) tape contents. 

If a state performs a read it will decode the input token into a symbol (O 

or 1) and a next tape contents. (See figure 2.6.2.) Reading from an empty tape 

will cause no token tc to be produced. 

next state if symbol=O 

old tc 
decode 

next state if symbol=1 

Figure 2.6.2. A read state. 

A subnet for a counter-manipulation state sends an opcode (say O for 

decrement, 1 for increment, 2 for test for zero) and its state- nwnber to the 

subnet representing the counter. The counter subnet executes the opcode and 

distributes the result (say O for acknowledgement of decrement and increment, 

and for a zero result of a test for zero, 1 for a non-zero result) back to 

the counter-manipulation state. 

Just as in "real" counter machines the counter value is maintained in 

a unary representation, i.e., as a sequence of 1-s and one O. This sequence 

resides on an edge that is both input and output to the counter subnet. In­

crementing is done by producing a 1; decrementing by reading a token. If the 

token was O, it is put out again and a next token is read. If that is a 0 

again_, the counter value was zero . The O is put out again so decrementing 

zero yields zero. Testing for zero is done similarly. 

After a counter manipulation, all tokens are sluiced out in order to 

prevent the counter value from spreading around the various parts of the 

counter subnet. 

D 



48 

2.7. MODELLING MEMORY 

In this section we will show that dataflow allows the design of general 

memory cells. It does not follow directly from the universality of dataflow 

nets that memory cells can be built, because they are inherently non-functional 

at token-level. We will study the design of two types of memory cells: 

(i) the first type of memory cell, called Memol , has two inputs and one 

output (see figure 2.7.1.). The c-input line carries control values 

which determine whether a ~etrieve or a store is to be performed. If 

a store is to be performed, the cell will consume a token from the 

d-input line. If a retrieve must be performed the cell produces the 

token it has last read in, on its w-output line. 

C 

Figure 2.7.1. A history-level functional memory cell. 

Clearly, this cell is history-level functional, i.e., upon receiving the 

same sequences of c- and d-values it produces the same sequence of w-values. 

We can achieve this by designing a well-formed dataflow net for Memo1. 

(ii) the second type of memory cell connected to the outside world by m store 

input lines, n retrieve input lines, and n write output lines (see figure 

2.7.2.). We call this a Memo2 cell . If the cell receives a token over 

its i-th retrieve input line it will produce its memory contents on the 

i-th output line. If the cell receives any store input token it will 

store the token as its new memory contents. If inputs arrive simultane­

ously, they will be merged fairly but non-deterministically. 

When we connect the i-th store line to a writer subnet, and the j-th 

retrieve and write lines to a reader subnet, the similarity with the well­

known readers-and-writers problem from operating systems theory [38] becomes 

obvious. 



retrieve 1 retrieve 
n 

Memo2 

write 
n 

Figure 2.7.2. A nondeterministic memory cell. 

The design of the Memo1 cell is straightforward. Its dataflow net is 

shown in figure 2.7.3., where the CM-subnet is the controlled merge net of 

figure 2.2.2. 

d O:store 
01--_,.__ _______ .__c 1 :retrieve 

Figure 2.7 .3. The Memo1 cell. 

49 

The contents of the memory cell is waiting for a c-signal to release it. If 

a store is to be performed (c-input 0), the old contents is sent to a SINK-

box and a new d-token is let in. If a retrieve must be performed (c-input = 1) 

the memory value is put on thew-output line and cycled back into the net. 

Notice that the net is well-formed. If a retrieve is performed before any 

store, the net will output a zero. 



50 

Now if we want to design a dataflow net for a Memo2 cell which allows 

simultaneous stores and retrieves we can no longer avoid time dependence or 

h_istory-level non-functionality: because all well-formed dataflow nets are 

functional (according to the functionality theorem) there cannot be a well­

formed net implementing Memo2. 

The building block needed for implementing a Memo2 cell is a non­

deterministic fai r mer ge FM. This is a subnet with two inputs and two out­

puts (see figure 2.7.4.). 

1 r 

Figure 2.7.4. A non-deterministic fair-merge. 

The FM-subnet must operate according to the following specifications: 

(i) If a token arrives at either the 1-input or the r-input, the token 

is passed onto them-output and a token representing its input direction 

is emitted on the dir-output (r=O, 1=1). 

(ii) If there are tokens on both 1-input and r-input one of them is chosen 

non-deterministically to be passed onto them-output and its input 

direction is again reported on the dir-output. The other input token 

_ 1.s preserved. 

(iii) If a token arrives, it will be consumed within a finite number of time­

steps, where time-steps are measured in terms of firings of basic pro­

cessing elements. 

Part (iii) of the above specification is important and we will name it the 

fairness-property. 

Using FM-subnets and a Memo1 cell we can implement a Memo2 cell. Figure 

2 .7.5. shows a Memo2 cell with one retrieve and one store. 



store 

store=1 
retrieve=O 

Figure 2.7.S. Memo2 cell with one store and one retrieve. 

51 

Memo2 cells with more stores and retrieves are designed similarly, but now 

there are fan - in and fan -out trees to direct the inputs to the Memo1 cell and 

the outputs to the right output lines. Fan-in trees consist of FM-subnets. 

Fan-out trees consist of SPLIT-boxes. The various dir-outputs of the FM-subnets 

fanning in the retrieves are used to control the SPLIT-boxes in the fan-out 

tree. As an example figure 2.7.6. shows a Memo2 cell with four retrieves and 

two stores. 

Clearly, for every FM-subnet in the tree that fans in the retrieves, 

there is a SPLIT-node in the tree that fans out the various writes. The 

dir-line of the i-th FM-subnet of the j-th level of the fan-in tree is con­

nected to the control input of the i-th SPLIT-box of the j-th level of the 

fan-out tree. A moment's reflection may be needed to see that a result token 

will, on its way out of the net, meet the dir-tokens that were fired when 

the retrieve token that caused the result token to be written passed a FM­

subnet. 

The rest of this section will be devoted to the implementation and fair­

ness proof of the FM-subnet. The difference between a FM-subnet and a JOIN-box 

is that the FM-subnet must sense the arrival of an input token in order to 

mutually exclude simultaneous arrivals, and it must implement a fair scheduling 



52 

stores 
2 

2 

writes 

retrieves 

( 1 ,2) 
V 

(3,4) 

3v4 

Figure 2.7.6. A Memo2 cell with more stores and retrieves. 

algorithm to prevent a token that has arrived from waiting indefinitely long. 

Sensing the arrival of a token and acting upon arrival and non-arrival can 

be done using the THERE-box. The FM-subnet is shown in figure 2.7.7. 

The thick lines in figure 2.7.7. carry the data from left or right in­

put tom-output. The thin lines carry control-data needed to exclude left 

and right, implement fairness and generate the dir-output. Notice that at 

any moment at most one control token exists. The control token, initially 

generated by the ZERO-box, cycles around between the two THERE-boxes until 

an input token arrives at the left or right input. The input token is emitted 

on them-line and its incoming direction is reported on the dir-line. After 



53 

dir 

► 

Figure 2.7.7. The FM-subnet. 

the dir-token and m-token are dispatched a new control token is generated. 

If a left input was selected, the right THERE-box will receive the control 

token first and vice versa. 

Theorem 2.7.1. A token arriving at an input of the FM-net will pass through 

the subnet within a finite number of time- steps (in other words , the FM-net 

is fair) . 

Proof . First noti ce that the JOIN-boxes will never receive tokens at both 

inputs simultaneously, because at most one control token will exist at a given 

moment. Let ?L (?R) denote the arrival of a control token at the left (right) 

THERE-box. Between a ?L (?R) event and a ?R (?L) event there are only a finite 

ntDI1ber of time-steps, because either there was no input at the left (right) 

THERE-box and a control token was sent (via an upper JOIN-box) to the right 

(left) THERE-box, or there was an input and within a finite number of time 

steps the input token has gone through the net and has generated a control 

token that was sent to the right (left) THERE-box. A token that arrives at 

an input will therefore pass through the THERE-box and consequently through 

the whole FM-subnet within a finite nlDilber of time-steps. 
D 

Corollary 2.7.2. Using the components defined in section 2. 2. one can build 

memory cells with any number of store and retrieve lines . 

D 



54 

2.8. MODELLING THE MANCHESTER MATCHING FUNCTIONS 

In this section we will show that the matching functions of the Manchester 

Dataflow Machine defined in section 1.5.2.2. can be implemented in dataflow 

directly, although in the actual machine there is a special piece of hardware, 

the matching unit, that performs these functions. In our model the matching 

function is performed by a dataflow subnet that is placed in front of the 

target node, except (of course) the standard matching functions EW and BY 

(see figure 2.8.1.). 

non standard 
matching function 

Figure 2.8.1. Implementing a special matching function. 

We will only implement the more interesting matching functions ED, PD, 

EA and PG. The left input carries the special matching function. An EMPTY­

token is represented by a O over a special output line. 

ED: EXTRACT DEFER (success: put out both tokens, 

failure: recycle the left input token) 

The dataflow net for the ED-matching function is shown in figure 2.8.2. 

When a left input token arrives there is either a right input token available 

or not. If the right input is available both tokens are passed Cs-action ex­

tract), otherwise the left input token is sent back and is merged fairly with 

other incoming left input tokens (£-action defer). Recall that the THERE-box 

emits a zero on the no-line if there is no input. The 1-subnet emits a one 

every time it receives a token. 



d 
e 
f 
e 
r 

1 

e x t r a c t 

Figure 2.8.2. The ED-matching function. 

PD: PRESERVE DEFER (success: put out the left input and the memory token, 

failure : recycle the left input token) 

55 

The dataflow net for the PD-matching function is shown in figure 2 .8.3. 

When a first left input token arrives there is either a right input token 

or not. If there is no right input token, the left input token is sent back 

d 
e 
f 
e 
r 

preserve 

p a s s 

Figure 2.8 .3. The PD-matching function. 



56 

to the input of the net and fairly merged with other left inputs. Subsequent 

left input tokens are dealt with similarly until a right input token is avail­

able. If a right input token is available it is (i) extracted, i.e. passed 

together with the left input token, and (ii) kept in a memory. Subsequent 

left input tokens are matched with the memory contents. Subsequent right 

input tokens are ignored. 

EA-EXTRACT ABORT (success: put out both tokens 

failure: put out a special EMPTY signal) 

The dataflow net for the EA-matching function is shown in figure 2.8.4. 

When a left input arrives and a right input token is available, both inputs 

are extracted. If no right input is available, the left input is gated to 

a SINK-box and an EMPTY signal is emitted over the abort-output line. 

1 

extract 
left 

abort xtract 
right 

Figure 2.8.4. The EA-matching function. 

PG: PRESERVE GENERATE (success: put out the left input and the memory token, 

failure: put the left input token in the memory and 

put out a special EMPTY token) 

The dataflow net for the PG-matching function is shown in figure 2.8.5. 

When the first left input token arrives and there is a right input token avail­

able the right token is preserved, and both input tokens are extracted. If 

no right input is available, the left input is preserved and an EMPTY token 

is emitted over the abort line. Subsequent left input tokens are matched with 

the preserved value. 



1 
57 

abort 

Figure 2.8.5. The PG-matching function. 

In practice primitive building blocks such as memory cells and matching 

functions are realized as a piece of special hardware and not by a dataflow 

program. However, these results show the adequacy of our model, i.e., we can 

describe the meaning of the matching functions within the model of dataflow 

nets. 

2.9. MODELLING PETRI-NETS 

In this section we will show that Petri-nets can be modelled by our 

dataflow nets very naturally. Petri-nets are non-deterministic, and so to 

model - this non-determinism we will build a random generator based on FM­

subnets. Our definition of Petri-nets conforms to Peterson [69]. 

Definition 2.9.1. A Petri-net is a four-tuple (P,T,I,O) where 

Pis a set of Places, 

Tis a set of Transitions, 

I is an input function I: T ➔ Power(P), 

0 is an output function O: T ➔ Power(P), 

and where Power(P) is the set of all subsets of P. 

The places can be marked with a number of tokens . Tokens do not have distinct 

values. A transition can fire if all its input places are marked. Firing means 



58 

removing one token from all input places and adding one token to all output 

places. An execution is a sequence of markings µ
0

,µ 1 , ... The first marking 

µ0 is called the initial marking. Every other marking µi+ 1 is derived from 

its predecessor µi by the firing of one transition. 

□ 

A Petri-net can be drawn as a bipartite directed graph with two types 

of nodes (drawn as Qfor places and for transitions). If place pis in I(t) 

then there is an edge from p tot. If place pis in O(t) then there is an 

edge from t top. As an example, figure 2.9.1. shows the graph representation 

of the Petri-net N defined as follows: 

N = ({P1,P2,P3,P4,P5},{t1,t2,t3,t4},{t1 ➔ {P1 } ,t2 ➔ {P2,P3,P5},t3 ➔ {P3}, 

t4 ➔ {P4}},{t1 ➔ {P2,P3,P5},t2 ➔ {P5},t3 ➔ {p4},t4 ➔ {P2,P3}}) 

Figure 2.9.1. A Petri-net. 

Dots in a place(~) represent the marking of that place. The non­

deterministic behaviour of Petri-nets is exemplified by two phenomena: con­

fl ict and sharing . Conflicting transitions have a common input place (figure 

2.9.2.(a)). Either one of the transitions can fire if the place is marked. 

Two (or more) transitions can share a common output place (figure 2.9.2.(b)). 

The place is marked after firing of either one of the transitions. 



59 

(a) 

Figure 2.9.2. Non-determinism in Petri-nets. 

Theorem 2.9.1. For every Petri-net N with initial marking µ
0 

there is a data­

flow net simulating it , i . e ., for every execution of the Petri-net there is 

an equivalent execution of the dataflow net. 

Proof . We simulate a Petri-net N by mapping every transition with m inputs 

and n outputs to a dataflow subnet T(m,n) and by mapping every place with 

m inputs, n outputs and k initial tokens to a dataflow subnet P(m,n,k). The 

T and P subnets are then put together just as their counterparts in the graph 

representation of the Petri-net are. 

(i) Construction of T(m,n). 

T(m,n) must take in m inputs, one from each of its input lines and pro­

duce n outputs, one on each of its output lines. The construction of T(m,n) 

is therefore straightforward. It consists of an A(m,n) subnet defined below 

surrounded by a sluice construction. The sluice is needed here to prevent 

incomplete input tuples from passing and marking places that might not be 

marked in the corresponding Petri-net. If m=n, A(m,n) consists of m edges 

(figure 2.9.3.(a)). If m>n, m-n input lines are shut off by a SINK-box (figure 

2.9.3. (b)). If m<n, n-m DUP-boxes are added (figure 2.9 . 3 . (c)). 

lll l ll lh 
(a) m=n (b) m>n (c) m<n 

Figure 2.9 . 3. A(m,n) subnets. 



60 

(ii) Construction of P(m,n,k). 

First we shall construct P(m,n,o) that simulates an initially empty 

p-lace. A P(m,n,o) subnet must take in a token from any of its m inputs and 

send it to one of its output-lines chosen at random. This is accomplished 

by a fan-in fan-out construction as in figure 2.9.4 . 

Figure 2.9.4. A P(m,n,o) subnet. 

A fan-in subnet with m inputs and one output is just a tree of m-1 FM-subnets, 

with one exception when m=O (see figure 2.9.5.). 

(a) m=4 (b) m=1 (c) m=O 

Figure 2.9.5. Fan-in subnets. 

A fan-out subnet with one input and n outputs is the same as a T(1,n)-subnet, 

but with ANY-subnets instead of DUP-boxes. An ANY-subnet (see figure 2.9.6.) 

copies its input to either of its two outputs. 

Figure 2.9.6. The ANY-subnet. 



61 

A P(m,n,k) net is just a P(m+k , n,o) net with k of its inputs connected 

to ZERO-boxes. 

Now clearly, for every execution of N there is an execution of the data­

flow net simulating it. 

□ 

The contrary, though, happens not to be true: there are executions in 

the dataflow net for which there are no equivalent executions in N. This oc­

curs , for example, when N contains a subnet as shown in figure 2.9.7. 

Figure 2.9.7. Petri subnet. 

In a certain execution of the simulating dataflow net P
1 

can send a token to 

the right while P2 sends a token to the left. 



62 

CHAPTER THREE 

THE DESIGN AND IMPLEMENTATION OF A HIGH LEVEL DATAFLOW LANGUAGE: 

DYNAMIC NETWORKS OF PROCESSES 

3.1. INTRODUCTION 

To express and analyse parallel algorithms we need a programming lan­

guage based on a parallel model of computation. In our study this will be the 

model of data driven computation, where computing stations communicate with 

each other via channels, i.e., buffers of values operated in queue fashion. 

A program in our language will specify the topology of such a computation 

graph and the behaviour of the computing stations. We want this language to 

be powerful enough to serve as a problem solving tool yet simple enough to be 

elegantly defined and implemented. The following considerations were used as 

guidelines in the design of the language. 

- Parallelism must be explicitly expressible. 

There must be a simple mapping from processes in our language to com­

puting stations in the computation graph. 

- The processes in our language must have the expressive power of proce­

dures or modules (the dataflow processing elements from chapter two do 

not suffice). 

- The computation graph must be adaptable to the problem size and data, 

i.e., we need a mechanism for dynamic process creation. 

- There must be no need for global information about the computation 

graph when part of the graph is changing (because of dynamic process 

creation). The only communication must be via the edges of the graph. 

We call this the locality principle. 

- The number of connections to "the outside world" on program level as 

well as on process level must be limited (not variable with the problem 

size) corresponding to physical reality. 

~ In the design we will concentrate on novel aspects, the choice of the 

rest of the language will be made such that it is easily implemented. 



63 

Parallelism inside processes will not be considered. A reasonable compiler 

can identify it and translate it for a given target machine. Also, if the 

,target machine is a dataflow machine, processes will be translated into data­

flow nets using dataflow analysis techniques as studied in ([85],[88],[3], 

[66]). 

The programming language CSP [39] matches our requirements closely, 

excep t that CSP programs are static, i.e., they have a fixed computation 

graph. Moreover, CSP processes communicate with each other by name thus pre­

venting most useful forms of dynamic process creation (knowing each others 

name is in fact a violation of the locality principle). The family of lan­

guages based on monitors and remote procedure calling (SIMULA, concurrent 

PASCAL, MODULA-2, DP) is even further away from our goals: the underlying 

computation graphs are again static, processes share data, and remote pro­

cedure calling violates the locality principle. 

The simple language for parallel programming presented by Kahn [46] 

provides a good starting point for our language, and can be easily extended 

with dynamic process creation. 

This chapter will introduce the language DNP (Dynamic Networks of Pro­

cesses) based on Kahn's language. In section 3.2. we shall describe the lan­

guage, and in section 3.3. we shall deal with an experimental implementation 

of it. 

3.2. THE LANGUAGE DNP: DYNAMIC NETWORKS OF PROCESSES 

DNP was implemented using a parser generator called PGEN [27]. There­

fore, the syntax of DNP will be presented here in the format used by PGEN. 

In section 3.2.2. we will describe the static part of DNP, and in section 

3.2.3. the dynamic part . 

3.2.1. Syntax format. 

The format is an extension of the familiar BNF-notation and figure 

3.2.1.1. shows a self-definition of this format, taken from [27]. 



64 

A non-terminal is enclosed by the brackets< and>. A terminal is either a key­

word or a string. A keyword is a sequence of upper-case letters denoting the 

same sequence in lower case. A string is a non-empty sequence of characters 

surrounded by a single quotes. So the keyword BEGIN denotes the terminal symbol 

begin, and so does 'begin'. <id> stands for identifier. 

<syntax> 

<rule> 

<rule-body> 

<alternative> 

<primary> 

··= <rule>*, 

::=<rule-name>'::=' <rule-body>'.'. 

··= {<alternative>' I'}*. 

··= <primary>+. 

··= (<terminal-symbol>l<rule-name>l<compound>)['+' I '*'] 

!<list> 

!<option> . 

<option> ··= '['<rule-body>']'. 

<list> ··= '{'<primary> <terminal-symbol>'}' ('+'I'*'). 

<compound> ::= '('<rule-body>')'. 

<terminal-symbol>··= <keyword>l<string>. 

<rule-name> ··= '<'<id>'>'. 

Figure 3.2.1.1. The syntax format. 

Using the terminology from figure 3.2.1.1., a syntax consists of a 

sequence of rules, where each rule is a non-terminal followed by::= followed 

by a series of alternatives separated by vertical bars I, An <option> indi­

cates that one of the enclosed alternatives may not occur. An asterisk* in­

dicates zero or more repetitions of some notion; a plus-sign+ indicates one 

or more repetitions. A <compound> groups a structure into a notion. A <list> 

is a sequence of notions separated but not terminated by a terminal symbol. So 

stands for zero or more identifiers followed by a comma, such as 

a,b,c, 

while 



65 

stands for zero or more identifiers separated by commas, such as 

a,b,c 

We will comment on the use of PGEN i n section 3.3.1. 

3.2.2. DNP - static part. 

A DNP program consists of a number of process declarations and a main 

body. 

syntax: 

<dnp-program> <process-dee!>* <main>. 

In the main body processes are activated . They are connected together 

and to the outside world by channels, which are queues of tokens or value s . 

For every channel there is one producing process and one consuming process. 

A process declaration consists of a heading and a body. In the heading formal 

channels are declared, specifying whether the channel is an input channel 

or an output channel. A process heading must contain at least one formal chan­

nel. Apart from formal channels, formal value parameters can also occur in 

the heading. 

syntax: 

<process-dee!> 

<process-heading> 

<channels> 

<inchannels> 

<outchannels> 

<values> 

<process-heading> ' :' <process-body>. 

PROCESS <id> ' ( ' <channels> [<values>]')'. 

( <inchannels>l<outchannels> )+. 

IN {<id>','}+. 

OUT {<id> ' ,'}+. 

(<type> {id ', '}+)+. 

where <type> is a type declaration such as i nt or char . 

The body of a process declaration consists of three types of components: 

(i) internal statements and declarations 

(ii) communication statements 

(iii) expansion statements. 



66 

Internal statements and declarations are ordinary statements (condition, 

loop, internal data declaration) that only change the internal state of the 

process. They could have been borrowed from any programming language, and in 

our case were borrowed from C [49], the UNIX system implementation language. 

Communication statements allow a process to read (consume a value from 

an input channel) and write (produce a value on an output channel). If a chan­

nel is empty when the consumer process performs a read on it, the consumer 

process is blocked until the producer process has written a value on the chan­

nel. The communication statements are in fact implemented as ordinary C-func­

tions, supplied in the run-time environment. There is therefore no syntactic 

difference between internal statements, declarations and communication state­

ments: they all look like C. 

syntax: 

<process-body> BEGIN ( <expansion>l<c> )* END. 

where <c> stands for a piece of C program text inside a C function declaration. 

A main body declaration has the same structure as a process declaration. 

The input and output channels in its heading are the input and output files 

connecting the program to the outside world, and in the body the initial com­

putation graph is set up by naming the internal channels and processes in an 

expand statement causing the main body to create processes and connecting them 

by channels. (A dynamic version of expansion where the network can be changed 

while executing will be introduced in section 3.2.3.) 

syntax: 

<main> .. - MAIN <id> I ( I <channels> I) II: I 

BEGIN [<c>] 

EXPAND [CHAN {<id> I' I}+] 

<creation>+ 

ENDEXP 

[<c>] 

END. 

<creation> ::= CREATE <id> I ( I <channels> [<values>] I) I • 



67 

The CHAN part declares the internal channels. The create statements initiate 

processes with either internal channels or the channels of the main body as 

actual channel parameters. Every input channel of the main body will occur 

once as an actual input channel in a creation, just as every output channel 

of the main body will occur once as an actual output channel. The internal 

channels will occur twice, once as an actual input channel and once as an 

actual output channel of distinct processes. This gives us a well-formed 

graph (every internal channel being an edge), connected to the environment 

by the input and output channels of the main body. 

We have now defined the static part of DNP and will illustrate it by 

an example: this program will produce the integers 2i3j in ascending order 

on an output channel (see figure 3.2.2.1.). 

process times(in i out o int f) : 
begin int v; 

while (read_int(i,&v)) write_int(o,f*v); 
end 
process order(in i2,i3 out m) : 
begin int v2,v3; 

read_int(i2,&v2); read_int(i3,&v3); 
do { if(v2<v3) {write_int(m,v2); read_int(i2,&v2);} 

else if (v3<v2) 

else 
{write_int(m,v3); read_int(i3,&v3);} 

{write int(m,v2); 
read_int(i2,&v2); 
read int(i3,&v3); 

} -
while (1); 

end 

process triplicate(in m out o1,o2,o3 int init) : 
begin int v = init; 

while(write int(o1,v),write int(o2,v),write int(o3,v)) 
read_int(m,&v); - -

end 
main Hamming(out f23) : 
begin int one= 1, two= 2, three= 3; 

end 

expand chan m,i2,i3,o2,o3 

endexp 

create triplicate(in m out f23,i2,i3 int one) 
create times(in 12 out o2 int two) 
create times(in 13 out o3 int three) 
create order(in o2,o3 out m) 

Figure 3.2.2.1. A static DNP program. 



68 

This program is connected to the outside world by the output channel f23. 

Figure 3.2.2.2. shows the computation graph of program Hamming. 

i2 

o2 times 2 

tripli- m 
f23 order 

cate 

times 3 

i3 

Figure 3.2.2.2. Computation graph of program Hamming. 

3.2.3. DNP - dynamic part. 

A process can replace itself by a subgraph (subnetwork) of processes by 

performing an expansion. The newly created subgraph is connected to the rest 

of the graph by the same channels as the old process was. An expand statement 

consists of a declaration of the new internal channels and a number of process 

activations. A process activation is either a process creation, i.e., a new 

process that starts in its initial state, or a survival. In a survival, the 

old process that caused the expansion is resumed possibly with different 

actual channels. Survival provides a way of inheriting the process state 

(data and control environment). At most one survival is allowed in an expan­

sion. 



syntax: 

.<exp ans ion> 

<survival> 

::= EXPAND [CHAN {<id> ',' }+] 

(<creation>+ [<survival>] 

!<survival>) 

ENDEXP. 

KEEP <id>'(' <channels>')'. 

69 

Notice the similarity between an expansion and the declaration of the initial 

graph in the main body. The newly created internal channels will occur twice, 

once as an input channel and once as an output channel. The old formal chan­

nels will occur once and their type (input or output) will not change. When 

an expansion is performed, the following takes place: 

- the old process is disconnected from the network; its channels are 

temporarily closed, 

- for every <creation> a new process is created, 

- the newly created processes, and the old process if a survival occurred, 

are connected into a subnetwork by means of the internal channels, 

- the subnetwork is connected to the rest of the graph by the temporarily 

closed channels, 

- the new processes start computing in their initial state and, if it 

is still part of the subnetwork, the old process proceeds after the 

expand statement. 

The rest of the network can carry on computing while the expansion takes 

place. Consider the following process declaration: 

process compile (in source out object): 

begin. 

expand crzan el,e2,e3,e4 , e5 

endexp 

end 

create lex (in source out el,e2) 

create scanl (in el out e3,e4) 

create scan2 (in e2,e4 out e5) 

create codegen (in e3,e5 out object) 



70 

The expansion in this process declaration can be pictured as in figure 3.2.3.1. 

D 

Figure 3.2.3.1. Expansion into a subnetwork. 

An example of a dynamic DNP program is given in figure 3.2.3.2. It is a 

parallel version of the prime sieve of Eratosthenes. This example was inspired 

by an example given by Mcllroy [61] for demonstrating the use of coroutines. 



process filter(in ints out primes int factor): 
begin inti; 

end 

process 
begin 

end 

read int(ints,&i); 
while(i>O) 

{if((i % factor) != 0) write_int(primes,i); 
read int(ints,&i); 

} ; -
write_int(primes,-1); 

primesv(in factors out primes): 
inti; 
read int(factors,&i); 
while(i>O) 

{expand chan inter 

endexp 

create filter(in factors out inter inti) 
keep primesv(in inter out primes) 

write int(primes,i); 
read int(factors,&i); 

}; -

process ints(out o): 
begin inti; 

end 

main 
begin 

end 

for (i:2; i<BO; i++) write_int(o,i); 
write_int(o,-1); 

Eratosthenes(out primes): 
expand chan interl 

create ints(out inter1) 
create primesv(in interl 

endexp 
out primes) 

Figure 3.2.3.2. A dynamic DNP program. 

71 



72 

3.3. AN EXPERIMENTAL IMPLEMENTATION OF DNP 

3.3.1. Introduction. 

To implement a parallel language one needs a parallel machine, real or 

virtual. The UNIX operating system [72] is a parallel machine, with so called 

pipes for interprocess communication, forking for dynamic process creation, 

and with C as its machine language. The reason that C was chosen for the 

internal DNP statements, was that the task of implementing DNP was made 

easier, since only a preprocessor for C is needed. Figure 3.3.1.1. shows 

DNP features and their UNIX/C counterparts. 

DNP UNIX/C 

channel pipe/file 

process declaration C function declaration 

process process 

creation forking 

internal statements in C same C statements 

Figure 3.3.1.1. DNP features and their UNIX counterparts. 

In a DNP program there is no limit to the total number of processes and 

channels, to the number of channels connected to one process, nor to the size 

of a channel, where the size of a channel is the number of values written 

but not yet read. In UNIX, unfortunately, there is a limit to all these values. 

We call our implementation experimental because we have chosen to live with 

these system limits, even though some of them, e.g . the maximum number of pro­

cesses, are rather severe. Care has been taken to implement DNP so that a 

maximal number of DNP processes can be created by not wasting UNIX processes. 

We will come back to this when we discuss the translation of the expand state­

ment. 

The DNP compiler was implemented using the parser generator PGEN [27], 

constructed at the Mathematical Centre, Amsterdam. As PGEN accepts only LL(1) 

grallllllars it was necessary to express DNP in that form, but this caused no 



73 

particular problems. The virtue of PGEN is that it automatically generates 

error messages in terms of the syntactic notions. The semantic actions must 

be written in SUMMER [51], a language well suited for that purpose. The facil­

ities for communication between parser and semantic actions and between vari­

ous semantic actions are unfortunately rather poor in PGEN. This kind of com­

munication should proceed via derived and inherited attributes ([53],[54]). 

Only a very simple kind of derived attributes is implemented in PGEN: a notion 

or action is allowed to return one value. For the rest the compiler writer 

is forced to resign to the use of global v~riables. A revised implementation 

of PGEN with better collUilunication facilities seems worth while because apart 

from this shortcoming PGEN is pleasant to work with. 

The compiler is, according to the rules of PGEN, structured as a lexical 

scanner (dnp.n s ), a parser extended with semantic actions (dnp . syn ), and a file 

containing global variables and procedures (dnp.ud). Figure 3.3.1.2. shows the 

various parts of the DNP-system in terms of T-diagrams [25], where V stands 

for a computer or its machine language, rts for a runtime system, and f for a 

user program. Running a compiled DNP-program (the result of 3.3.1.2.(c)) in­

volves linking it with the run-time system (the result of 3.3.1.2.(b)). 



74 

DNP dnp.ns C DNP C DNP C 

dnp.syn dnp.sm dnp 

dnp.ud 
SUM SUM PGEN 

MER SUMMER MER V 
V PGEN 

V V 

(a) DNP-compiler gene.ration 

C V 
cc 

V 

(b) Run-time system generation 

DNP C C V 
dnp cc 

V V 

(c) DNP-compilation. 

Figure 3.3.1.2. The DNP-system. 



75 

3.3.2. The translation of DNP to C. 

The DNP compiler is a preprocessor that translates DNP into C. Every 

DNP-process is translated to a C-function and a DNP-main body is translated to 

a C-main procedure. Channels connecting the network to the outside world are 

implemented by files. Channels connecting processes to each other are imple­

mented by pipes. A pipe is a communication buffer between UNIX-processes re­

presented by a read-file-descriptor and a write-file-descriptor. The compiler 

will ensure that only one process, viz. the consumer process, will control 

the read-file descriptor and only one process, viz. the producer process, 

will control the write-file-descriptor. 

A process-heading is translated into a C-function heading, and the re­

levant information about formal input and output channels is kept in some glo­

bal variables. 

A process-body is a sequence of <c>-s and <expansion>-s. The lexical 

scanner collects all C-text between a BEGIN and an <expansion>, or an <expan­

sion> and an <expansion>, or an <expansion> and an END, and yields it as one 

lexical symbol to the parser. The parser just outputs this piece of C-text. 

Errors in the C-text will be detected by the C-compiler. An <expansion> will 

be translated into a C compound statement. 

When an <expansion> is encountered the compiler checks whether the for-

mal and internal channels are used properly. If so, it generates code 

(1) to allocate pipes for the internal channels, 

(2) to allocate processes for all activations except the last one, 

(3) to make the appropriate process-channel connections, 

(4) to start the processes with the right formal/actual channel-identifi­

cations. 

For the last activation, whether a creation or survival, no process 

needs to be allocated, because the process that performs the expansion can 

be used for it. This trick saves one UNIX-process per expansion, but makes 

the code-generation process more complex. The last activation must be handled 



76 

differently but, because the parser is based on the 11(1) recursive descent 

technique, it only knows that a particular activation is the last one after it 

has been parsed completely. We therefore generate code for an activation when 

we encounter its successor, or we encounter the ENDEXP symbol. 

Pipe and process allocation are implemented by standard UNIX system calls 

(pipe and fork). A new process is an exact copy of the process that produced 

it, except for an integer returned by the fork operation. Because a new process 

is an excact copy of the old one, all pipes and files available to the old pro­

cess are available to the new one via their descriptor. It is therefore neces­

sary for a process to close the files and pipes it does not need. 

Starting a creation is implemented by a function call. Starting a sur­

vival is implemented by a number of channel assignments. As a survival is the 

last activation of an expansion, control will pass automatically to the correct 

instruction. 

In order to make the above description more concrete we will consider the 

translation of the process of figure 3.3.2.1. 

process T (in i out o): 

begin 

end 

if (test) 

expand chan l1,l2,l3,l4 

create T (in ll out l2) 

create T (in L3 out l4) 

create N (in i, l2,l4, out o,ll,l3) 

endexp 

Figure 3.3.2.1. Example process. 

The heading of DNP-process Tis translated such that there is a UNIX-process 

where i is identified with a read-file-descriptor and o is identified with a 

write-file-descriptor. This UNIX process will execute the C-function T(i,o) 

as pictured in figure 3.3.2.2. 



77 

Figure 3.3.2.2. T(i,o). 

Upon encountering expand chan ll , l2 , l3 , l4 code could be generated to 

a llocate four pipes. This is not done because: 

(i) UNIX allows a rather small number of open files (a pipe counts for 

two files) per process, and 

(ii) as a process is only allowed to control a subset of all the pipes, 

most of these will have to be closed afterwards. 

Therefore code is generated to allocate a pipe only when it is really needed. 

create T (in ll out l2) will be checked for correct use of channels, 

and will be translated to: 

(1) allocate two pipes 11 and 12, 

(2) create a new process (by means of a f ork statement). Now there are 

two processes, a par ent and a child . Both processes control pipes 11 

and 12, and files i and o, 

(3) the child will perform T(in ll out l2) and will therefore close the 

write-file-descriptor of 11, the read-file-descriptor of 12 and the 

files i and o, 

the parent closes the read-file-descriptor of 11 and the write-file­

descriptor of 12, 

(4) the child calls T(ll , l2) , 

the parent goes on with the expansion. 

These steps are picture in figure 3.3.2.3., where a pipe is an arrow D-{> 
with the front part I> its read-file and the back O its write-file. 



78 

12 

( 1) (2) (3) (4) 

Figure 3.3.2.3. Steps in a process activation. 

create T(in l3 out l4) will be translated similarly. For the last process 

activation create N(in i , l3 , l4 out o , ll , l2) no new process is needed. It is 

translated to a function N(i,l3,l4,o,ll,l2). The end of a process declaration 

is translated to 

(1) write end of information on all output files, 

(2) read all input files until end of information, 

(3) exit. 

Figure 3.3.2.4. shows the C translation of the example program 

Erathostenes from figure 3.2.3.2. 



#include "rts.h" 
filter(ints,primes,factor) 
inchan ints; 
outchan primes; 
int factor; 
{ 

inti; 
read int(ints,&i); 
while(i>O) 
{ 

if((i % factor) != 0) write_int(primes,i); 
read_int(ints,&i); 

} ; 
write_int(primes,-1); 

putc(primes,EOF); 
while(getc(ints)l:EOF); 
exit(O); 

primesv(factors,primes) 
inchan factors; 
outchan primes; 
{ 

inti; 
read int(factors,&i); 
while(i>O) 
{ 

struct channel inter; 
connection(&inter); 

79 

if(( f=fork())==-1) error("Cannot create process"); 
if( f:=0){ /* son */ 

} ; 

- close(primes); 
close(inter.i); 
filter(factors,inter.o,i); 

close(factors); 
close(inter.o); 
init queue(& m); 
ins q(& m,inter.i); 
ins-q(&-m,primes); 
factors-= del q(& m); 
primes= del_q(&_m); 

write int(primes,i); 
read_int(factors,&i); 

putc(primes,EOF); 
while(getc(factors)!:EOF); 
exit(O); 



80 

ints(o) 
outchan o; 
{ 

main() 
{ 

inti; 
for (i:2; i<80; i++) write_int(o,i); 
write_int(o,-1); 

putc(o,E0F); 
exit(0); 

int primes; 
primes:creat("primes",0666); 
{ 

} 
exit(0); 

struct channel inter1; 
connection(&inter1); 
if(( f:fork())==-1) error("Cannot create process"); 
if( f==O){ /* son *I 

- close(primes); 
close(inter1.i); 
ints(inter1 .o); 

close(inter1.o); 
primesv(inter1.i,primes); 

Figure 3.3.2.4. C translation of Eratosthenes. 

3.3.3. Appendix: the compiler and the run-time system. 

DNP was implemented on a VAX 11/780 running Berkeley UNIX 4.1, using PGEN 

[27] and Summer [51]. It consists of dnp.ud (user definitions), dnp.ns (a lex­

ical scanner) and dnp.syn (the compiler). The run-time system is written in C. 



81 

lldnp. nsil 

#-------------------------------------------------------------------------------
Communication between the parser, generated from dnp.syn 
and this lexical analyser proceeds via global variables: 

sy 
t-sy 
lnr 
keytab 
predef 
kartab. 

The procedure nextsym yields the input lexical symbols as 
declared in dnp.syn. It also keeps track of linenumbers 
in lnr and signals end of file EOF. A next lexical symbol 
is put in sy and its type is put in t-sy. For further 
details see the PGEN defining MC-report: 

G. Florijn & G. Rolf 
PGEN - A general purpose Parser Generator 
MC IW157/81 januari 1981 

-------------------------------------------------------------------------------# 

const STATE_C := O, 
STATE_DNP := 1; 

var letter . - upper 11 
alpha . - letter 11 
true . - 1, 
layout ·- ' \t'' 
empty . - ',. 

' 
var state:= STATE_DNP, 

infile := stand_in; 

lower, 
digit, 

proc ermsg(msg, lino) #print errormessage on standard error output# 
(stand er.put(•error near line', lino,':', msg, '\n') 
); -



82 

#-------------------------------------------------------------------------------
proc nextsym is either in STATE_C or in STATE DNP 
when in STATE_C it yields: 

- EOF if there is no more input 
- all C-text until the next DNP keyword (and goes in STATE_DNP) 

if there is C-text on input 
- the next DNP symbol if there is no C-text (and it goes into STATE_DNP) 

when in STATE DNP it yields: 
- EOF-if there is no more input 
- the next DNP symbol 

if the symbol is begin or endexp it goes into STATE C 

------------------------------------------------------------------------------# 
proc nextsym() 
( case state of 

STATE C: 
var pre, kw; 
SY :: I I; 

while true 
do scan line 

for 
if pre:= break(letter) 
then 

sy •- sy 11 pre; 
kw·- span(alpha); 
if kw= •end' I kw= •expand' 
then 

state: : STATE DNP; 
if scan sy for-(span(' \t\n') I lit(••)) & rpos(O) rof 
then 

sy := kw; 
t_sy := keytab[sy]; 
return; 

else 
move(-kw.size); 

fi 
else 

t_sy := predef['c_text•]; 
return 

sy ·- sy 11 kw 
fi 

else 

fi 

sy := sy 11 line.rtab(O) 11 1 \n'; 
if line:= scan string(infile.get()) fails 
then -

sy := 'EOF'; t_sy := predef['EOF']; return 
else 

lnr := lnr + 
fi 

rof 
od, 



) ; 

STATE DNP: 
while true 
do line.span(layout) I empty; 

if sy ,- line,any(letter) 
then 

od; 
esac 

sy ,- sy 11 (line.span(alpha) I empty); 
if keytab[sy] -= undefined 
then 

t_sy ,- keytab[sy] 
else 

t_sy ,- predef['id'] 
fi; 
if sy = 'begin' I sy = •endexp' 
then 

state,- STATE C 
fi; 
return 

elif sy := line.move(1) 
then 

else 

fi 

t_sy := kartab[sy]; 
return 

if line:= scan_string(infile.get()) fails 
then 

sy : = 'EOF'; 
t sy := predef['EOF']; 
return; 

else 
lnr := lnr + 1 

fi; 

83 



84 

# dnp,ud # 

var 
in_formals, 

out_formals, 

# formal input channels of a process declaration 
built up while parsing <process-heading> or <main> 
read by <expansion>, <survival>, <process-body> 

# 

# same for formal output channels# 

free_in_formals, //unused formal input channels in an expansion 
initially equal to in_formals 

# 

emptied successively by /checkin/ actions 
checked by <expansion>.EXIT 

free out_formals,#same for formal output channels in an expansion# 

intermediates, 

free_in_parts, 

# the new intermediate channels in an expansion 

# 

for an intermediate we must generate code to create 
a pipe, which is done the first time the intermediate 
is used as an actual input or output channel 

# unused input parts of intermediates during parsing 
of an expansion 
checked and emptied by chechin actions 

# 

free_out_parts, # same for unused output parts of intermediates # 

to_close, 

procname, 

curproc, 

# open files: formal channels, input parts of intermediates, 
output parts of intermediates. 

some files are already created, because for complete channels 
a pipe is created, but are not needed in a certain process. 
these files must be closed 
when a pipe is created for an intermediate x, x.i and x.o 
are added to to close in checkin or checkout actions. 
when x.i is used in a process, it is removed from to close 

# 

# process name in a creation or survival# 

# current process declaration# 



proctab ·- table(20, 11 ), 

# key: process name 

# 

entry: io-channel-pattern 
used for checking consistency of def and uses of 
a process by checkchan ud 

firsttab ·- table(20,0), 

gen_call, 

# key: process name 
entry: line number first occurence 
used for error msg by checkchan ud 

# 

# this one is needed because we cannot see when parsing 
a creation or survival that it is the last one. So 
code generation for creations will happen when the 
next creation or survival or expend is encountered. 

we have two cases: 
(1) a creation x which is not the last process 

determined when encountering successor of x, only 
if x exists (gen_call = TRUE). 
this happens in init ud 

(2) xis the last process 

85 

(2.1) creation (gen call= TRUE): generate function call 
this happens In <expansion>.EXIT 

actualparts, 

actualvals, 

pre, 
post, 
rest; 

# 

(2.2) survival: generate channel part assignments 
this happens in <survival>.EXIT 

# actual channel parts of of creation or survival# 

# same for actual value parameters# 

# used for pattern matching# 

proc match(str,pat) #pattern matching# 
( 

return( 
scan str for pre:= find(pat) & lit(pat) & post ·- rtab(O) 

rof & 
rest:= pre I I post 



86 

# init ud generates code for previously parsed creation, if any (gen_call) 
initializes global variables for the new creation or survival 

proc init_ud() 
(var actuals; 

if gen call= 'TRUE' 
then put('if(( f=fork())==-1) 

put('if(_f==O){ /* son 
error("Cannot create process");\n'); 
*l\n'); 

fi; 

scan to close 
for move(1); 

rof; 

while pre:= find(',') 
do move(1); 

put('close(' ,pre, ');\n'); 
od 

actuals•- actualparts I I actualvals; 
put(procname,'(',actuals.substr(O,actuals.size-1),');\n'); 
put('}\n'); 
scan actualparts 
for while pre:= find(',') 

do move(1); 

rof 

put('close(' ,pre, ');\n'); 
od 

actualparts := ''; actualvals ·­
gen_call ·- 'TRUE'; 

It• , 

#checkchan ud checks consistency of def and use of channels in process 
declaration, creation and survival 

proc checkchan ud(pnm,iopat) 
( if proctab[pnm] = '' 

then proctab[pnm] := iopat; firsttab[pnm] := lnr 
else if proctab[pnm] -= iopat 

fi 

then ermsg('channels inconsistent with line' I I 
string(firsttab[pnm]),lnr 

) 
fi 



#checkin ud generates pipe creation code (connection) if needed 
checks correct use of input channel 

proc checkin_ud(nm) 
( scan intermediates #if channel used first generate "connection"# 

for if pre:= find(',' I I nm I I ',') 
then lit(',' I 1nm); intermediates:: pre I I rtab(O); 

put(•connection(&• ,nm, 1 );\n'); 
to close·- to close I I nm I I '.i,' I I nm I I •.o,'; 

fi 
rof; 

if scan free in parts 
for pre : -;- find ( ' , ' I I nm I I ' , ' ) 

& 
(lit(',' II nm); free_in_parts := pre II rtab(O); 

scan to close 
for if pre : = find ( ' , ' I I nm I I ' • i, ' ) 

then lit (' , ' I I nm I I ' • i'); 
to close:= pre I I rtab(O); 

fi 

rof; 
actualparts • - actualparts 11 nm 11 '.i,' 

) 

rof fails 
then 
if scan free in formals 

for pre : = - find ( I ' I I I nm I I ' ' I ) 

& 
(lit(',' II nm); free_in_formals ·- pre II rtab(O); 
scan to close 
for if pre : = find ( ' , ' I I nm I I ' , ' ) 

then lit(','I 1nm); 

fi 
rof; 

to close:= pre I I rtab(O); 

actualparts .- actualparts I I nm I I 
) 

rof fails 

I I 

' 

then ermsg('wrong input channel 'I I nm, lnr) 
fi 

fi; 

87 



88 

proc ·checkout_ud(nm) # see comment checkin ud # 
( scan intermediates 

for if pre : = find ( ' , ' I I nm I I ' , ' ) 
then lit(','llnm); intermediates:= prellrtab(O); 

put(•connection(&• ,nm, ');\n'); 
to close,- to close II nm II '.i,' II nm II •.o,' 

fi 
rof; 
if scan free out parts 

for pre : ; find ( • , • I I nm I I ' , ' ) 
& 
(lit(',' II nm); free_out_parts ,- pre II rtab(O); 

scan to close 
for if pre:= find(','llnmll',o,') 

th en lit ( • , • I I nm I I ' • o ' ) ; 
to close:= pre I I rtab(O); 

fi 

rof; 

actualparts ,- actualparts I I nm I I •.o,' 
) 

rof fails 
then 
if scan free out formals 

for pre : = - find ( ' , ' I I nm I I ' , ' ) 
& 
(lit(',' II nm); free out formals,- pre II rtab(O); 

scan to close 
for if pre : = find ( ' , ' I I nm I I ' , ' ) 

then lit(','llnm); 

fi 
rof; 

to close:= pre I I rtab(O); 

actualparts ,- actualparts I I nm I I 
) 

rof fails 

' ' ' 

then ermsg(•wrong output channel 'I I nm, lnr) 
fi 

fi; 



II dnp.syn II 

LEXICAL id, c-text. 

<dnp-program> ::: <process-decl>* <main> 

INIT: put ( 'flinclude "rts .h 11 \n' ) ; 

<process-decl> <process-heading> ':' <process-body> • 

<process-body> BEGIN 

END. 
(<expansion> I <c>) * 

INIT: put ( ' { \n ' ) ; 

EXIT: 
while match(out formals, ',') 

89 

do put(•putc(' ,pre, ' ,EOF);\n' ); out formals·- post od; 
while match(in_formals, ', ' ) 

do 
put('while(getc(' ,pre, ')!:EOF);\n'); 
in formals:: post; 

od; 
put(•exit(0);\n}\n'); 

<c> ::= t: <c-text>. 

EXIT: put(t, '\n'); 



90 

<process-heading>::= PROCESS pid: <id> /procname/ 
' (' ( ( IN { nm: <id> /inname/ ',' }+ ) 

!NIT: 

I ( OUT { nm: <id> /outname/ ',' }+ ) 
)+ 

(t: <type> {nm: <id> /valname/ ','}+ )* 
t ) I • 

var val_formals := 1 •, c_pack ,- • 1 

in formals,- ''; out formals,- t I• 

' 
iopat ,-

/procname/: curproc ,- pid; 

/inname/: 
in formals:= in formals I I nm I I 
c pack:= c pack-I I run I I 1 , 1 ; 

iopat := iopat I I 1 i'; 

I I, 

' ' 

/outname/: 
out formals:= out formals I I run I I 
C pack== C pack IT run I I ', 1 ; 

iopat := iopat I I 1 0 1 ; 

/valname/: 

I I, 

' ' 

''. ' 

val formals:= val formals I I t I I 1 
' I I run I I 1 ;\n 1

; 

c_pack ·- c_pack IT run I I ', 1
; 

EXIT: checkchan ud(pid,iopat); 
put(pid, 1 ( 1 ); 

if c pack-= 1 • then put(c_pack,substr(O,c_pack.size-1)) fi; 
put(')\n' ); 
if in formals-= 11 

then put( 1 inchan '); 
put(in formals.substr(O,in formals.size-1)); 
put( 1 ;\n') -

fi; 
if out formals-= 11 then put(•outchan 1 ); 

put(out formals.substr(O,out formals.size-1)); 
put( I j\Il 1 ) -

fi; 
if val formals-= 1 • then put(val_formals) fi; 



<type>::: INT /i/ I CHAR /c/ • 

INIT: var kw• 
' 

/i/: kw . - 'int'; 

/c/: kw ·- 'char•; 

EXIT: return(kw); 

<expansion>::= 

INIT: 

EXPAND 
[ CHAN {run: <id> /chname/ ','}+ 
/chdecl/ 
<creation>* [<survival>] 

ENDEXP. 

var m,actuals; 
free in formals : = ',' 11 in formals; 
free_out_formals == ',' I I out_formals; 
intermediates:= ','; 
gen call:= 'FALSE'; 
to close:: ',' I I in formals I I out_formals; 
put('{\n'); 

/chname/: intermediates.- intermediates I I run I I I I• 

' ' 

/chdecl/: if intermediates-=',' 
then put(•struct channel', 

intermediates.substr(1,intermediates.size-2), 
I ;\nl 

) 

fi; 

91 

free_in_parts := intermediates; free_out_parts ·- intermediates; 

EXIT: m .- free in formals I I free out formals I I 
free=in=parts I I free_out_parts; 

if m -= I,,,, I 
then while match(m, 1 , 1 ) do m := pre II 1 ' I I post od; 

ermsg(•unused channel(s) 'I Im, lnr) 
fi; 

if gen call= 'TRUE' 
then actuals:: actualparts I I actualvals; 

put(procname, 1 ( 1 ,actuals.substr(O,actuals.size-1),');\n') 
fi; 
actualparts := ''; actualvals := 
put ( ' } \n' ) ; 

I lo 

' 



92 

<creation>::= 

!NIT: 

CREATE pid: <id> /processname/ 
'(' ( ( IN {nm: <id> /checkin/ ','}+) 

I ( OUT {nm: <id> /checkout/ ','}+) 
)+ 

( <type> {nm: <id> /addval/ ','}+ )• 
I ) I 

var iopat .­
init_ud(); 

, ,. 
' 

/processname/: procname :: pid; 

/checkin/: checkin ud(nm); 
iopat :; iopat I I 1 1 1 ; 

/checkout/: checkout ud(nm); 
iopat ==-iopat I I 1 0 1 ; 

/addval/ actualvals •- actualvals I I nm I I 

EXIT: checkchan_ud(pid,iopat); 

I I• 

' ' 



<survival>::= 

!NIT: 

KEEP pid: <id> /procname/ 
'(' ( ( IN {nm: <id> /checkin/ ','}+) 

I ( OUT {nm: <id> /checkout/ ','}+ 
)+ 

' ) ' 
var formals, iopat •­
init_ud(); 

',. 
' 

/procname/: if pid -= curproc 
then ermsg('incorrect process in survival', lnr) 
fi; 

/checkin/: checkin ud(nm); 
iopat :-;;- iopat I I 'i'; 

/checkout/: checkout ud(nm); 
iopat :=-iopat 11 'o'; 

EXIT: checkchan ud(pid,iopat); 
formals:-;;- in formals I lout formals; 

put('init queue(& m);\n'); 
while match(actualparts,',') 

do actualparts := post; 
put('ins_q(&_m,•,pre,•);\n') 

od; 
while match(formals,',') 

do formals:= post; 
put(pre,' = del_q(&_m);\n') 

od; 
gen_call := 'FALSE'; 

93 



94 

<main> 

!NIT: 

MAIN <id> 
• ( • ( ( IN { nm: <id> /inname/ ',' }+ ) 

I ( OUT { nm: <id> /outname/ ',' }+ 
)+ 

' ) ' , : ' /head/ 
BEGIN /open/ 

[<c>] 
<expansion> 
[<c>] 
/close/ 

END 

var files; 
in formals:= ''; out_formals ·- , , . 

' 
/inname/: in_formals := in_formals I I nm I I I Io 

' ' 
/outname/: out formals:= out formals I I nm I I I I• 

' ' 
/head/: put(•main()\n{'); 

files:= in formals I I out formals; 
put('int ,,-files.substr(O~files.size-1), ';\n'); 
files:= in formals; 
while match(files, 1 , 1 ) 

do put(pre, '=open("', pre, 111 ,0);\n'); 
files:= post; 

od; 
files:= out formals; 
while match(files, 1 , 1 ) 

do put(pre, '=creat("', pre, 111 ,0666);\n'); 
files := post; 

od; 

/open/: put( 1 {\n 1 ); 

/close/: put('}\n'); 

EXIT: put(•exit(O);\n}\n'); 



/*rts.c */ 

/!include "rts .h" 

/* ERROR MESSAGE *I 
I*------------- *I 

error(msg) char *msg; 
{ printf("ERROR: Js\n", msg); exit(O); } 

/* CHANNEL CREATION*/ 
I*---------------- *I 

connection(ch) struct channel *ch; 
{ int fildes [ 2]; 

if(pipe(fildes) I= 0) 
error("Cannot create pipe"); 

ch->i = (inchan) fildes[O]; 
ch->o = (outchan) fildes[1]; 

I* INPUT OUTPUT*/ 
I*------------ *I 

putc(f,c) 
int f; 
char c; 
{ write(f,&c,1); 

char getc(f) 
int f; 
{ char c; 

if (read(f,&c,1) != 1) 
return ( EOF) ; 

else return(c); 

95 



96 

int read_int(from,val) 
inchan from; 
int •val; 
{ int fdfrom = (int) from, res= O, sign= 1,h = *val; 

char c; 
•val= O; 
do { c = getc(fdfrom); 

} while (!isdigit(c) && (c I= '-') && (c !: EOF)); 
if(c __ '-') 

sign = -1; 
c = getc(fdfrom); 

} 
while (isdigit(c)) 

{res= 1; 
•val= *val• 10 + c - '0'; 
c = getc(fdfrom); 

•val= sign• *val; 
if (Ires) *val= h; 

return(res); 

write_int(to,val) 
outchan to; 
int val; 
{ int fdto = (int) to; 

if(val < 0) 
{ putc(fdto,'-'); val= -val; } 

wint(fdto, val); 
putc(fdto,' '); 

wint(fdto, val) 
int fdto, val; 
{ if (val<= 9) { putc(fdto, '0' + val); 

else { wint(fdto, val/ 10); 
putc(fdto, '0' +val% 10); 



read_item(from) /* an int, SEP or E0M */ 
inchan from; 
{ int fdfrom = (int) from, res= 0; 

char c; 
while ((c:getc(from))I='*' && cl='$' && isdigit(c):=0); 
while (isdigit(c)) 

{res= res• 10 + c - '0'; 
c = getc(fdfrom); 

if (c == '*') res= E0M; 
else if (c == '$')res= SEP; 
return(res); 

write_item(to,val) /* an int, SEP or EOM •; 
outchan to; int val; 
{ int fdto = (int) to; 

char c; 
if (val -- E0M) 

{ putc(fdto, '*'); putc(fdto, '\n'); return; 
else if (val== SEP) 

{ putc(fdto, 1 $ 1 ); putc(fdto,'\n'); return; } 
wint(fdto, val); 
putc(fdto, ' '); 

isdigit(c) 
char c; 
{ 

return('0' <= c && c <= '9'); 

97 



98 

I* Some functions for the example programs 
from chapter four 

*I 

/* functions handling DEQUES */ 
I*------------------------- *I 

init deque(d) struct deque *d; 
{ d->left:DQL/2 + 1; d->right:DQL/2;} 

empty deque(d) struct deque *d; 
{ return(d->left > d->right); } 

ins r(d, el) struct deque *d; int el; 
{ d->cont[++d->right]:el; } 

ins l(d, el) struct deque *d; int el; 
{ d->cont[--d->left]=el; } 

del r(d) struct deque *d; 
{ return( d->cont[d->right--J ); } 

left(d) struct deque *d; 
{ return( d->cont[d->left] ); } 

right(d) struct deque *d; 
{ return( d->cont[d->right] ); } 

del l(d) struct deque *d; 
{ return( d->cont[d->left++] ); } 



/* functions handling QUEUES*/ 

1• ------------------------- •1 

init queue(d) struct queue •ct; 
{ d->left=1; d->right:O;} 

empty queue(d) struct queue •ct; 
{ return(d->left > d->right); } 

ins q(d, el) struct queue *d; int el; 
d->cont[++d->right]=el; } 

left q(d) struct queue •ct; 
{ return( d->cont[d->left] ); } 

right q(d) struct queue •ct; 
{ return( d->cont[d->right] ); } 

del q(d) struct queue •ct; 
{ return( d->cont[d->left++J ); } 

/* DIVIDE&CONQUER PRIMITIVES*/ 
1• ------------------------- •1 

twolog(n) int 
{ int 1 = O; 

while(n>1) 
{ n I= 2; l++; } 

return(!); 

size(p) int p; 
{ return(p); } 

solve seq(p) int p; 
{ return(p); } 

combine(p1,p2) int p1,p2; 
{ return(p1+p2); } 

split(p,p1,p2) int p,*p1,*p2; 
{ *p1:p/2; *p2 = p - *p1;} 

99 



100 

/* rts.h 

some definitions to be included in rts.c and the c version of 
a DNP program 

*I 

#define EOF '\01' 
#define EOM -1 
#define SEP -2 
#define DQL 100 
#define QUL 100 

int _f; /* used for forking*/ 

typedef int inchan; 
typedef int outchan; 
struct channel { 

inchan i; 
outchan o; 

} ; 

struct deque 

struct queue 

int left; int right; int cont[DQL];} 

int left; int right; int cont[QUL];} 

struct queue _m; /* used for multiple channel assignment in survivals*/ 



101 

CHAPTER FOUR 

THE COMPLEXITY OF DNP PROGRAMS 

4.1. INTRODUCTION 

This chapter presents a number of algorithms all programmed in the lan­

guage DNP defined in the previous chapter. The algorithms (e.g. for matrix mul­

tiplication) are believed to be prototypical for dataflow computing and illus­

trate the criteria used for an evaluation of their efficiency. Section 4.2. is 

devoted to algorithms that have an essentially linear computation graph: sorting 

and matrix multiplication, and to an algorithm that uses a binary tree of pro­

cesses to implement a general divide-and-conquer routine efficiently. The rest 

of the chapter is devoted to an appraisal of the expressive power of DNP. In 

section 4.3. we consider the limitations of the language. The main theorem is 

that not all (important) classes of computation graphs can be generated by DNP 

programs. In sections 4.4. to 4.6. a comparison is made with the standard com­

plexity classes. 

Dataflow algorithms can be classified according to the topology of their 

computation graphs. The graphs that can be generated by a certain DNP program 

coincide with the graphs produced by a context free graph grammar in the sense 

of graph grammar theory (see [77]). Therefore, algorithms with context free 

computation graphs can be expressed in DNP in the following way, using the 

expand mechanism: 

"grow" the graph according to the input data, and 

- let the processes in the nodes of the graph perform their particular t?.sk. 

Take, for example, systolic algorithms [57], most of which can be ex­

pressed in DNP even though their underlying computation model (systolic ar­

rays) · is synchronous instead of asynchronous. Systolic arrays are regularly 

structured networks of simple processing elements that rhythmically act on 



102 

streams of data passing through the network. To show that systolic algorithms 

can be expressed in DNP, consider the algorithm for a "systolic stack" as giv­

en by Kramer and van Leeuwen [55), originally due to Leiserson [59). The design 

consists of a linear array of cells with an I/0 connection to the environ-

ment left of the first cell (see figure 4.1.1.) 

Figure 4.1.1. A systolic array. 

Every cell has two registers, A and B, each of which can contain a num­

ber or a special empty token. The I/0 cell is a passive cell, the registers 

of which can be set and inspected by the outside world. A push is represented 

by setting both the A and B register to a number, while a pop is represented 

by setting both the A and B register to empty. The systolic array is synchro­

nized so that odd and even cells "beat" alternately. When it acts, a cell will 

inspect the registers of its left neighbour, which is inactive at that moment. 

When the left neighbour has numbers in both of its registers, one is copied 

into the active cell. When the left neighbour has two empty registers the ac­

tive cell copies one into the neighbour. In this way pushes and pops ripple 

through the array without causing race hazards. 

A dataflow program for a systolic stack neither has nor needs the global 

synchronization. Instead, the computation is controlled by the availability 

of tokens (the number itself for push, the empty token for pop) streaming 

through the array. A cell process has two inputs and two outputs (see figure 

4.1.2.), 

in-left 

□ A 
out-right 

out-left 

□ 
in-right 

B 

Figure 4.1.2. A cell-process. 



103 

and essentially performs the loop of figure 4.1.3. Note that a cell process 

only acts when it has a token (perhaps the empty token) on its in-left or in­

right ports. 

repeat 

read (in- le f t , A); 

if A= empty 

fi 

forever 

I* pop *I 
then wr ite (out - left, BJ ; 

if B I empt y 

t hen wr i t e (out-ri ght , empty) ; 

r ead (i n-right, B) 

fi 

I* push ;, / 

else if B I empt y 

then wri t e (out -ri ght , BJ 

fi ; 

B:=A 

Figure 4.1.3. 

Kramer and van Leeuwen prove that the systolic array can process push/pop 

commands in 0 (1) response times, as long as the number of elements in the 

stack remains less than the number of cells. This boundedness of the systolic 

algorithm can be overcome in DNP easily by having a "bumper" process at the 

right end of the array, which answers a pop command by sending an empty token 

to the left and a push command by expanding into a cell process that gets the 

pushed e lement and a bumper process (see figure 4.1.4.). Many other systolic 

a l gorithms c an be translated to DNP in the same way, as long as their compu­

tation graph can be generated. 



104 

4.2. 

used: 

C) WA 
Bo 

bum 

Figure 4.1.4. Expansion of a bumper process. 

SOME DNP PROGRAMS AND THEIR COMPLEXITY 

When analyzing a DNP program the following complexity measures can be 

(i) The number of processes . 

We can measure the total number of processes created during the whole 

computation, the maximal number of processes active at a certain moment, and 

the minimal number of processors needed to run a program. The last two meas­

ures are of interest if a processor can be reallocated when a process is 

no longer running on it or, if the creation of a process can be suspended 

until a processor becomes available. 

(ii) The number of channels and their size. 

Clearly the number of channels depends on the number of processes. The 

size of a channel at a certain moment is defined as the number of items writ­

ten on the channel and not yet read from it. Hence the size of a channel de­

pends on the timing of the algorithm. 

(iii) The number of time- steps necessary to execute the program. 

We will assume that all processes run in parallel and are equally fast, 

i.e., they perform the same DNP statement in the same number of time-steps. 

Such an execution could be characterized as "asynchronously synchronous". 



105 

4.2.1. A sorting program. 

Parallel programs in general can be divided into (i) those where the in­

put data is already in the parallel processes or memories, (ii) those where 

the input resides on a number of files and where the number of files depends 

on the size of the particular problem, and (iii) those where the input resides 

on a fixed number of files. Examples of programs in the first class are bi­

tonic sorting [9 land a derivative of it that runs on a mesh-connected paral­

lel computer [79]. A program in the second class is Kung's matrix multipli­

cation on a hexagonal array of processors [57]. DNP programs fall in the third 

class and will therefore have a time complexity of at least O(n). 

An interesting sorting algorithm in the third class is Todd's parallel 

merge sort [83] . This algorithm takes only log(n) processors to sort n num­

bers in about 2n+log(n) time-steps. In Todd's sort the passes of merge sort 

execute overlapped. Each pass resides on a separate processor, so one proces­

sor repeatedly combines single numbers into sorted runs of size two, the next 

processor repeatedly combines two runs of size two into one run of size four 

etc. (see figure 4.2.1.1.). 

8 713 1 5 3 2 1 

8 7 6 5 4 3 2 1 

6 415 2 8 7 6 4 

Figure 4.2.1.1. Todd's sort. 

When the last number enters the first processor it will take O(log n) 

steps to get the first sorted number out of the sorting net. 

The sorting algorithm we will present here is faster in the sense that 

immediately after the last number enters the net, the first number of the 

sorted sequence is output. This makes our sorting net easily adaptable to a 

priority queue that reacts on insert/delete commands in constant time. We will 

call it "pipeline sort". 



106 

The program starts as in figure 4.2.1.2., where bottom is a process do­

ing nothing, i.e., sending an empty sequence over channel r to the process 

sort. The process sort will start reading elements of the unsorted sequence 

from channel u . The sorted sequence will eventually be written on channels. 

Figure 4.2.1.2. The initial sorting network. 

Channel e never receives a token and is there for reasons of synnnetry which 

will become clear below. 

The sort process reads in and sorts elements in an internal datastruc­

ture, as long as it can do this in a constant time per element. Otherwise, 

it expands (see chapter three) into a subnet consisting of a new sort process 

(by means of a creation) and itself (by means of a suPVivaZ). The newly 

created sort process takes over the reading and internal sorting of the un­

sorted sequence. In order to do this it has to gain control of the input chan­

nel u and the output channels. The old sort process will, after the expan­

sion, merge its internal sorted sub-sequence with a sorted sub-sequence coming 

from channel r. (For the first sort process the sorted sub-sequence from r 

will be empty.) The resulting (bigger) sorted sub-sequence will be sent to 

the newly created sort process over an intermediate channel rr . The channels 

necessary for the computation are drawn in figure 4.2.1.3. 

r 

Figure 4.2.1.3. Necessary channels in sort expansion (but syntactically 

incorrect). 



107 

The expansion as pictured in figure 4.2.1.3. is however inexpressible in DNP, 

because processes must have the same channel configuration before and after 

expansion. For this reason the dummy channels e and ee are introduced (see 

figure 4.2.1.4.). We will come back to this phenomenon in section 4.3. where 

the limitations of DNP are discussed. 

~ 
~ 0 r 

Figure 4.2.1.4. The syntactically correct expansion of sort. 

Reading in elements and sorting them in constant time per element can 

be done in many ways. A possibility is to use a deque and to put elements 

that are greater or equal to the maximal element on one end and elements that 

are less or equal to the minimal element on the other end, and to stop when 

an element arrives that falls in between. This requires a flexible random ac­

cess structure inside the sort process. We will see when analysing the program 

that this gives no great advantage as the average number of elements sorted 

internally in this way will be less than 5. A much simpler way is to allow a 

fixed number of elements to be internally sorted per process. An interesting 

number is one, because it will eliminate the need for internal sorting alto­

gether. The pictures of figure 4.2.1.5. exemplify sorting the file 5,1,2,4 

when the internal sorting is done using a deque. 



108 

==Qu='o[J =01] 

Figure 4.2.1.5. Pipeline sort in action. 

Figure 4.2.1.6. shows the corresponding program and figure 4.2.1.7. 

shows the program where every process keeps only one internal number. 



process sort(in u,r out s,e int f): 
begin inti; 

end 

struct deque d; init_deque(&d); ins_l(&d,f); 

while(read int(u,&i)) 
{ if(i <= left(&d)) ins l(&d,i); 
else if (i >= right(&d)) ins r(&d,i); 

else { -
expand chan ee,rr 

create sort(in u,rr out s,ee inti) 
keep sort(in ee,r out rr,e) 

endexp; 
break; 
} 

while(read int(r,&i)) 
{while(!empty deque(&d) && (i >= left(&d))) 

write_int(s,del_l(&d)); 

write int(s,i); 
} -

while(!empty_deque(&d)) write_int(s,del_l(&d)); 

process bottom(in e out r): 

main m(in unsorted out sorted): 
begin 

begin end 

end 

inti; 
if(read_int(unsorted,&i)) 

expand chan e,r 
create bottom(in e out r) 
create sort(in unsorted, rout sorted, e inti) 

endexp; 
} 

Figure 4.2.1.6. Pipeline sort using a deque. 

109 



110 

process 
begin 

end 

sort(in u,r out s,e): 
int i,j; 
if(read int(u,&i)) 

{expand chan ee,rr 
create sort(in u,rr out s,ee) 
keep sort(in ee,r out rr,e) 

endexp; 

while(read int(r,&j)) 
{if(j<i) write int(s,j); 
else {write int(s,i); 

i:j; -
} 

write_int(s,i); 
} 

else while(read_int(r,&j)) write_int(s,j); 

process bottom(in e out r): begin end 

main m(in unsorted out sorted): 
begin 

end 

expand chan e,r 
create bottom(in e out r) 
create sort(in unsorted, rout sorted, e) 

endexp 

Figure 4.2.1.7. Pipeline sort with only one internal element. 



111 

4.2.1.1. Analysis of pipeline sort. 

The number of processes 

The number of processes generated by pipeline sort with single numbers 

internally (figure 4.2.1.7.) is simply n+2: one bottom process, one process 

that detects end-of-file and one process for every number to be sorted. In 

the deque version (figure 4.2.1.6.) the number of processes depends on the 

order of the numbers on input. If the sequence is, e.g., already sorted, the 

number is two: one bottom process and one sort process. On the other hand, the 

number of processes is f n/21+1 when every (1+2i)-th number falls in between 

the preceeding two. In order to determine the average number of processes, we 

de fine a semirun as a sub-sequence of the unsorted sequence that can be sorted 

using one deque. Any sequence can be divided into a number of semiruns. Semi­

runs have a size of at least two. 

Definition 4.2.1.1. Let I be a sequence of numbers v 1,v 2 , .. (1 ~vi~N). I models 

the unsorted sequence of numbers, v
1 

is the first number to be read. A suh­

sequence I[l .. u], (l<u), is defined as the sequence v , ... ,v. The longest 
1 u 

sub- sequence I[l .. u] such that for all k from 1+1 to u · 

either vj ~vk for all j from 1 to k-1 

or vj ~vk for all j from 1 to k-1 

is called a semirun . A prefix is any initial sub-sequence of a semirun. 

D 

Thus a semirun is the longest sub-sequence such that each subsequent number 

is either less than or greater than all the previous numbers in the semirun. 

We will determine the average length of the first semirun I[1 .. u] of a 

sequence I assuming that the numbers in the sequence are uniformly distributed 

over 1 to N, i.e., P(vi=n) = 1/N for all n from 1 to N. We write PN(k) for the 

probability that u=k by a given N, and Nk(i,j) for the number of prefixes 

v 1, ... ,vk such that min(v 1, ... ,vk) = i and max(v 1 , ... ,vk) = j. 



112 

We then have 

# sequences v 1 , ... ,vk+l such that 1(1 .• k] is a semirun 

total# sequences v 1 , ... ,vk+l 

LL (Nk(i,j) .(j-i-1)) 
1 ;;, i ;;,j :5:N 

where# stands for "the number of". 

In order to determine Nk(i,j) we observe the following: 

Nk+1 (i,j) = # prefixes such that the last number (vk+1) is equal 

to the old minimum or maximum (i.e., the bounds don't 

change) 

+ # prefixes such that vk+1 is the new maximum 

+ # prefixes such that vk+1 l.S the new minimum. 

There are two cases: (1) i=j and (2) i<j. Using these cases and the above 

expression for Nk+ 1(i,j) we can write down a recurrence relation for Nk+l(i,j). 

( 1 ) Nk+l(i,i) Nk(i,i) 

(2) Nk+1 (i ,j) 2Nk(i,j) (vk+1 min or vk+l max) 

j-1 
+ I. Nk (i,l) (vk+1 j) 

1=1. 

j 
+ I Nk (l ,j) (vk+1=i) 

l=i+1 (N1) 

j 

I (Nk(i,l) + Nk (l , j)) 
l=i 

The basis of this recurrence relation is ; 

(1) N
1 
(i,i) 

(2) 0 

The above equations (N1) suggest that Nk+l (i,j) depends on the values 

i and j independently, although it is intuitively clear that Nk+l(i,j) depends 

on the number of values vk+l (not) hitting the interval i to j, i.e., Nk+ 1(i,j) 

depends on j-i only. 



113 

Lemma 4.2.1.1.1. Nk(i,j) depends on j-i only . 

Proof. By induction on k. 

Base: N1 (i,j) depends on j-i only. 

Step: Suppose Nk(i,j) = Fk(j-i) for some function F. Now check cases: 

(1) Nk+l (i ,j) Fk (j-i) if (j-i) = 0 

So in both cases Nk+l (i,j) depends on (j-i) only. 

D 

j-i 
2 I Fk(m) 

m=O 

If we define the function Fk by Fk(j-i) 

forms into: 

Nk(i,j), the equation (Nl) trans-

Note that Fk is independent of N. 

if l ~n~N-1 

if n=O 

Lemma 4.2.1.1.2. Fk+l(n), n~O, is a polynomial of degree (k-1 ) . 

Proof. By induction on k. 

Base: F 
1 

(n) 0 

F
2

(n) 2 

F
3

(n) 2n+2 

Step: Fk(n) is a polynomial of degree (k-2). Now observe that 

Fk+l(n+l) - Fk+l(n) = 2Fk(n+1). 

It is well-known that if P(x) is a polynomial then 

degree(P(x)) = d+l.,. degree(P(x+l)-P(x)) = d. 

We therefore conclude that Fk+l(n) is a polynomial of degree k-1. 

D 

We write Fk(n) 

i t into (Fl): 

k-2 
I akl n

1 
for certain coefficients akl (k>l) and substitute 

l=O 

z(_I Fk(j) + 1) 
J =1 

k-2 n 
2 I akl I jl + 2 

1=0 j=l 

(F2) 



114 

From the theory of Bernoulli-polynomials and Bernoulli-numbers [52) we use 

the following facts: 

. ( 1) B (x) = 
n 

(3) B (x+ 1) 
n 

n 1 (4) p~1 p 

n-k 
X 

- Bn(x) = nx 
n-1 

• {::,(Bl +1 (n+1) 

Bernoulli-polynomials 

Bernoulli-numbers 

- Bl+1) if l a:: 1 

if 1=0 

Substituting property (4) into equation (F2) yields: 

k-2 akl k-2 ~ 
2 + 2akO n - 2 I l+l Bl+l + 2 I l+~ B1+1(n+1) 

1=1 1=1 

k-2 akl k-2 l 
= 2 + 2akO n - 2 I I+T Bl+l + 2 l akl n + 

1=1 1=1 

Further manipulation shows: 

Therefore: 

k-2 akl - k-2 akl(l+1(1+1) 1+1-j) 

l
l=1 1+1 Bl+1(n) - I 1 1 l . B. n 

1=1 + j =0 J J 

k-2 akl 1+1( l+l) 
= l 1+1 I 1+1-p Bl+1-p np 

1=1 p=0 

k-1 ( k-2 akl( l+l \ ) 1 np _l 1+1 1+1-p)Bl+1-p + 
p-2 l-p-1 

k-2 akl 
+ ' - B + 1:1 1+1 1+1 

1 n + 

k-1 1( k-2 ak ( +l) ) 
+ 2 1 n _I p+; p~1-l Bp+1-l 

1-2 p-1-1 

k-2 akl 
2 I 1+1 Bl+1 (n) 

1=1 

(by (1)) 

(p 1+1-j) 



115 

We conclude: 

2 

2( akO + :~>kl Bl) + 2<i,1 

2 2k~2 akp ( p+1 )B 2$1$k-2 
akl + l p+l p+1-l p+l-1 

p=l-1 

And therefore: 

Now we substitute Fk(n) into equation (P1): 

N-1 
PN(k) = ~+l l Fk(n)(N-n). (n-1) 

N n=1 

N-1 N-1 2 
N-1 

N l Fk(n) l Fk(n).n (N+1) l Fk (n) .n 
n=1 n=1 n=1 

Nk+1 
+ 

Nk+1 Nk+1 
(P2) 

ANk BNk + CNk 

Definition 4.2.1.1. 2. P(k) = lim PN(k). 
N--

D 
2k 

Theorem 4.2.1.1.3. P(k) (k-1) for k~2. = 
(k+ 1) ! 

Proof. By (P2) we have that PN(k) = - ANk - BNk + CNk. 

~k = 0(1/N) because Fk(n) is a polynomial of degree k-2. 

We use the following notation: Z(n,r) 
n 

= L .r = r+1
1 

nr+l + O(nr). Then 
j=1 J 

1 
= -- a Z(N-1,k) + 0(1 /N). 

Nk+1 k,k-2 

k 
l (ak ._2 Z(N-1,j)) 

j =2 ,J 



116 

Hence 

0 

P(k) 

la . nJ = _+_ la . 
(

k-1 ·) N 1 k-1 

j = 1 k, r 1 Nk+ 1 j = 1 k, r 1 

Nk ak,k-Z Z(N- 1,k-1) + 0(1/N). 

ak,k-Z(Z(N-1,k-1).N - Z(N-1 ,k)) 

Nk+1 
+ 0(1/N) 

Z (N-1 ,j) 

ak k-2 
k(k+1) + 0(1/N) 

2k-l (k-1) 
(k+ 1) ! + 0 ( 1 /N) . 

2k-l (k-1) 
(k+1)! 

If we had assumed all numbers in the sequence to be unequal, i.e., 

v.~v. (i~j), the argument would have been much simpler. If there are p permu-
1. J 

tations of n unequal numbers such that they can be sorted in one deque, there 

are 2p such permutations of n+1 unequal numbers. As there are 2 permutations 
k-1 of 2 unequal numbers, there are 2 such permutations of k unequal numbers 

and therefore 

P(first semirun has length :C:k) 2k-1 

k! 
or 

2k-1 2k 2k-1 
P(first has length k) 

(k-1) 
semi.run k! (k+TTT (k+1) ! 

In order to determine the average length of the first semirun and its 

standard deviation we use a moment generating function [4]: 

M(t) 
= kt 

k~lP(k)e 
= 2k-l (k-1) kt 

k~1 (k+1) ! e 



117 

The mean length is M'(O) = }ce
2
-1) ~ 3.19 

The standard deviation is ~"(O) - (M'(0)) 2 ~ 1.17 

Determining the average length of the i-th semirun becomes horribly 

complicated because it depends on the previous semirun. The distribution 

of the first number of a semirun is not uniform and differs per semirun, 

though the distribution of the other numbers is again uniform. If we assume 

that the first number has no effect on the length of the semirun, because 

the second and third fall around it, the average length of the semirun will 

be 4.19, (1 for the first plus 3.19 for the uniformly distributed rest). 

So we conclude that the average length of any semirun will be less than 4.19. 

The above analysis shows that sorting with a flexible internal sorting struc­

ture such as a deque is not worthwhile. 

The number of time-steps. 

We will now analyse the number of time-steps used. First we consider 

pipeline sort with single numbers internally. We can distinguish three types 

of processes (see Figure 4.2.1.1 .1.): 

(1) one bottom process 

(2) n internal sort processes 

(3) one last process detecting end-of-file. 

Figure 4.2.1.1.1. 

From the program text in figure 4.2.1.7. it is clear that a sort-process 

performs at most 2 ordinary statements between reading, writing and expanding. 

We will therefore only take communication and expand otatements into account. 

We will assume that writing, expansion, reading an already available number, 

and reading from a permanently empty channel will each take one time-step, and 

reading from a temporarily empty channel will be finished one time-step after 



118 

a number has been written on the channel by the producing process. 

· 1 t process goes through the following stages: An interna sor i 

(1) create 

(2) read i-th number from unsorted sequence 

(3) keep 
d b and write out (4) merge i-th number into sorte su -sequence si-l,l .. i-l 

sorted sub-sequence si,l .. i 

The last sort process goes through the following stages: 

(1) create 

(2) read from empty channel of unsorted sequence 

(3) copy sorted sequence sn,l,.n to outside world 

(writing number j to outside world: 

We will use the following additional notation: 

reading number j from sub-sequence si_ 1: 

writing number j on sub-sequence si: 

reading from empty channel si_ 1: 

(c) 

(ru) 
e 

ws.) 
J 

rsi-1 j 
ws .. 

iJ 
rsi-1 e 

A typical execution is shown in figure 4.2.1.1.2. Note that the last sort 

process has to wait one time-step for the first number from the sorted sequence. 

Proposition 4.2.1.1.6. Pipeline soI't with single numbeI's inteI'nally I'eads the 

unsoI'ted sequence in 0(1) time-steps peI' numbeI' and WI'ites out the soI'ted se­

quence in 0(1) time- steps peI' numbeI' immediately afteY'WClI'ds. 

Proof. Sarti is created at time-step 2i-2 and reads its number vi at time­

step 2i-1, so reading proceeds at 0(1) time-steps per number. Writing the j-th 

number on the i-th sorted sub-sequence (ws .. ) is done at time-step 2(i+j) by 
iJ 

sorti; the same number is read by sorti+l at time-step 2(i+j)+1 (i/n). The last 

sort process is created at time-step 2n; it reads from sn at time-step 2n+2 

and receives the first number (rsn
1

) at time-step 2n+3. The j-th number from sn 

is read at time-step 2(n+j)+1 and written at time-step 2(n+j)+2. 

□ 



time steps 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

p 
sort 1 c ru1 k rsoe WS11 

r sort2 k 
0 

c ru2 rs 11 ws21 rs1e ws22 

C sor t
3 

k C ru
3 rs21 ws31 rs22 ws32 rs2e ws33 e 

s sort
4 

k C ru4 rs31 ws41 rs32 ws42 rs33 ws43 rs3e ws44 s 
e sort5 k C rus rs41 ws51 rs42 ws52 rs43 ws53 rs44 ws54 rs4e ws55 s 

last C ru rs51 rs51 ws 1 rs
52 

ws
2 

rs
53 

ws
3 

rs
54 

ws
4 

rs
55 

ws
5 e 

Figure 4.2.1.1.2 . A time diagram for n=S. 

'° 



120 

We will now analyse the timing of pipeline sort with deques internally. 

Again we assume the same timing for reading, writing and expanding, and neg­

lect the rest of the statements because there are only a (small) constant number 

of them between reading, writing and expanding. An internal sort process reads 

at least two numbers from the unsorted sequence so the total number of reads 

and writes on (internal) sorted sub-sequences will be less than in the previous 

case. The important property is that when an internal sort process reads from 

the channel r containing the sorted sub-sequence either a number is immediately 

available or the channel is permanently empty. The last sort process reads zero 

or more numbers from the unsorted sequence. Time diagram 4.2.1.1.3. shows a 

worst case where 5 numbers are sorted by three sort-processes with deque-lengths 

2,2 and 1 respectively. 

time-steps 

0 2 3 4 5 6 7 8 ••• 
p 
r main ru

1 
0 bottom C 
C 

e sort 1 cu, ru
2 

ru
3 

k rsoe ws,, ws
12 s k 3*r, 4*W s sort2 cu

3 
ru

4 
ru

5 
e last cu

5 
ru 5*r, 5*W e s 

Figure 4.2.1.1.3. A time diagram for sort using deques. 

Proposition 4.2.1.1.7. Pipelir.e sort with deques internally reads its input 

nwnbers in 0(1) time-steps per number and outputs the sorted sequence in 0(1) 

time-steps per nwnber immediately afteruards. 

i-1 Proof. Process sort1.. is created at time-steps c. = .r
1

(dq.+1) where dq. is the 
l. J= J J 

length of the j-th deque. Sort. then reads dq. numbers and performs a keep at 
1. 1. i-1 i 

time-step kl..= c1.. + dq1.. + 1, and then performs (.~
1 

dq. + 1) reads and .I
1
dq . 

J- J J= J 

writes mixed through each other such that there is at least one write after 



121 

each read so time-step (r. 
1 

.) ~ (k.+2j-1) and 
1.- J 1. 

time-step (w .. ) ~ (k.+2j). 
l.J 1. 

If sort. writes to another internal sort 1. process sorti+l' which is created 

a.t ci+l ; ki' we have that dqi+l ~ 2 and therefore ki+l ~ (ki+3), which 

means that the numbers from the sorted sub-sequence are immediately avail-

able when needed. Now if sorti writes to the last process, last sort per­

forms at least one read from the unsorted sequence and then starts merging 

after time-step (ki+2) so the last sort process may have to wait one time­

step for its first number after which the last sort process and sorti are 

synchronized. 

D 

The channel-sizes. 

We shall analyze the size of the channels carrying the sorted sub­

sequences in the case of pipeline sort with deques. The channel-size is defined 

as the number of items written but not yet read at a certain moment. These 

quantities are, in this case, stochastic. 

Proposition 4.2.1.1.8. In the worst case the i-th channel carrying sorted sub-
1. 

sequences s1.. assumes the size .L
1
dq .. 

J; J 

Proof. For this to happen sorti+l must read and sort its internal numbers into 

deque. 1 in at least as many time-steps as it takes sort. to put out its sorted 1.+ 1. 
sub-sequence. As sorti+l take~ one time-step for reading and sorting one num-

ber, and sortl.. must perform .r1dq. writes, the worst case occurs when 
J; J 

D 

Again we must conclude that using a flexible structure for internal sorting 

and thereby introducing unpredictable behaviour of the program is not really 

worthwhile. 



122 

4.2.2. Matrix multiplication. 

In this section we will consider an algorithm for matrix multiplication, 

restricted to square matrices. The matrix multiplication algorithm designed 

by Kung [57] has the form of a hexagonal grid (see figure 4.2.2.1.). 

Figure 4.2.2.1. Kung's systolic matrix multiplication. 

This algorithm needs O(n) connections to the outside world to multiply 

n by n matrices, which makes it unsuitable for VLSI implementation. The al­

gorithm presented here needs only a constant number of connections to the out­

side world: two input channels and one output channel. Both input channels 

contain an input matrix. One matrix is in row format and the other is in col­

umn format. A matrix in row (column) format is a sequence of rows (columns) 

closed by an end of matrix mark (EOM or*). A row (column) is a sequence of 

numbers preceded by a begin of row (column) mark (SEP or$). The program will 

deliver the output in row format. 

If there are n rows and columns the dataflow net will expand into two 

linear branches connected by a "central process" (see figure 4.2.2.2.) 



123 

rows of A 

Figure 4.2.2.2. Basic form of a matrix multiplier. 

Every process will compute a diagonal of the product matrix by traditional 

means. The centre-process will compute the central diagonal. The i-th up­

process will compute the i-th upper diagonal, the i-th low-process will compute 

the i-th lower diagonal. In order to compute these diagonals centre needs all 

rows of A and columns of B, upi needs the first to (n-i)-th row of A and the 

(i+1)-th ton-th column of B, lowi needs the (i+1)-th ton-th row of A and the 

first to (n-i)-th column of B. 

An important part of the program is concerned with getting the rows and 

columns where they are needed. Figure 4.2.2.3. shows how this is done for n=3. 

The general case is analoguous. The O processes are duplicators. A row dupli­

cator (dr) sends the first row it receives to the right and the rest of the 

rows both to the right and down. A column duplicator (de) sends the first column 

it receives down and the rest of the columns both down and to the right. 



124 

*r3 r2 r1 

* 
c3 
c2 
c1 

* 

l
c3 
c2 

Figure 4.2.2.3. Distribution of rows and columns 

in the 3*3 matrix multiplication. 



125 

After the diagonals have been computed, they are sent back to centre 

such that this process can format the product matrix in row order. The process 

of sending back and reformatting diagonals into row format differs slightly 

for the up and low processes. An up process first sends its i-th diagonal 

element to the left and then copies the row part from the right to the left. 

A low process will also form row parts. Figure 4.2.2.4. shows how the reformat­

ting takes place when n = 3 and product-matrix-element(i,j) = 10*i+j. 

Figure 4.2.2.4. Reformatting the product matrix. 

The above pictures are incomplete in that not all the required channels 

have been drawn. Figure 4.2.2.5. sketches an expansion into horizontal direc­

tion with all channels involved, where the process upO expands into the 

encircled subgraph. 



126 

Figure 4.2.2.5. Complete expansion of an upO process. 

Figure 4.2.2.6. gives the complete program. The program starts as in 

the left-hand side of figure 4.2.2.5. The upO and lowO processes are intro­

duced to perform the expansion and do not take part in the computation of 

the diagonals. 

\ 

I 



127 

process centre (in Mr,Mc,uptriangle,downtriangle 
out outrows,outcols,result): 

begin 

end 

int a,b,x; 
struct queue q; 
x = 0; init_queue(&q); 

write_item(outrows ,SEP); write_item(outcols ,S.EP); 

/* create the middle diagonal of the product matrix*/ 

a= read item(Mr); b = read item(Mc); 
write item(outrows,a); write_item(outcols,b); 
while-(a!:EOM) 

{ 

if (a==SEP) 
{ ins q(&q,x); x = 0; } 

else x += a*b; 
write item(outrows,a:read item(Mr)); 
write-item(outcols,b:read-item(Mc)); 
} ins=q(&q,x); -

/* collect upper and lower triangles*/ 
a= read item(uptriangle); 
if (a==EOM) /* we had a 1*1 "matrix"*/ 

else 

{ 
write item(result,SEP); 
write-item(result,del q(&q)); 
write-item(result,EOM); 
} -

/* form complete rows out of upper and lower triangles*/ 

do {write item(result,SEP); 
while-((b:read item(downtriangle))l:SEP && bl:E0M) 

write item(result,b); 
write item(result~del q(&q)); 
if (b-1= E0M) -

while ((a:read item(uptriangle))!:SEP && a!= EOM) 
- write_item(result,a); 

while (b I= E0M); 

write_item(result,EOM); 



128 

process up0(in incols,inrows out res): 
begin 

end 

int a,b; 
a= read item(incols); 
if (a::EOM) write_item(res,EOM); 

else { b = read item(inrows); 
if (a==SEP) 

expand chan Mc1,Mc2,outr,upt 
create dup(in incols out Mc1,Mc2) 
create up0(in Mc2,outr out upt) 
create up(in Mc1,inrows,upt out outr,res) 

endexp 

process up(in incols,inrows,intriangle out outrows,outtriangle): 
begin 

end 

int a,b,x; struct queue q; 
x:0; init_queue(&q); 

write_item(outrows,SEP); 

I* form an upper diagonal*/ 
a= read item(incols); b = read_item(inrows); 
while (a!:EOM) 

{ 
write item(outrows,b); 
if (a;=SEP) { ins q(&q,x); x=0; } 
else x += a*b; -
a= read item(incols); b = read_item(inrows); 
} -

write item(outrows,EOM); 
ins_q(&q,x); 

I* send up the upper triangle in row format*/ 

while ((a:read_item(intriangle)) I= EOM) 
{ 

if (a::SEP) 
{ 

write item(outtriangle,SEP); 
write-item(outtriangle,del q(&q)); 
} - -

else write_item(outtriangle,a); 

write item(outtriangle,SEP); 
write-item(outtriangle,del q(&q)); 
write=item(outtriangle,EOM); 



process low0(in inrows,incols out res): 
begin 

end 

int a,b; 
a= read item(inrows); 
if (a::EOM) write item(res,E0M); 
else { b = read item(incols); 

if (a==SEP) 
expand chan Mr1,Mr2,outc,downt 

create dup(in inrows out Mr1,Mr2) 
create low0(in Mr2,outc out downt) 
create low(in Mr1,incols,downt out outc,res) 

endexp 

process low(in inrows,incols,intriangles out outcols,outtriangle): 
begin 

int a,b,x; struct queue q; 
init_queue(&q); x:0; 

;• create lower diagonal•; 
write item(outcols,SEP); 
a= read item(inrows); 
b = read-item(incols); 
while (a-!= EOM) 

{ 
write item(outcols,b); 
if (a;:SEP) 

{ ins q(&q,x); x:0; } 
else x += a•b; 

a= read item(inrows); b = read_item(incols); 
} -

write item(outcols,EOM); 
ins_q (&q ,x); 

;• send up the lower triangle in row format•; 
write_item(outtriangle,SEP); 

do { 
a= read item(intriangle); 

129 

if (a==SEP I I a==EOM) write item(outtriangle,del q(&q)); 
write item(outtriangle,a); -

while (a!:EOM); 
end 



130 

process dup(in a out b,c): 
begin 

end 

inti; 

1• copy first row or col to channel b •1 
while ((i = read item(a)) !: EOM && i I= SEP) 

write_item(b,i); 

1• copy the rest to channels band c •1 
if (i == EOM) 

{ write item(b,EOM); write_item(c,EOM); 
else { while (i-1= EOM) 

{ write item(b,i); write item(c,i); 
i = read_item(a); -

write_item(b,EOM); write_item(c,EOM); 

main madm(in Mr, Mc out product): 
begin int a,b; 

end 

a= read item(Mr); b = read_item(Mc); 
if(a == EOM) 

write item(product,EOM); 
else -

expand chan Mr1,Mr2,Mc1,Mc2,upt 1downt,outr,outc 
create dup(in Mr out Mr1,Mr2) 
create dup(in Mc out Mc1,Mc2) 
create upO(in Mc2,outr out upt) 
create lowO(in Mr2,outc out downt) 
create centre(in Mr1,Mc1,upt,downt 

out outr,outc,product) 
endexp 

Figure 4.2.2.6. Matmul. 



131 

4.2.2.1. Analysis of Matmul. 

The analysis of Matmul is straightforward as there 1s no randomness in­

volved. If n=l the net is as drawn in figure 4.2.2.1.1. 

Figure 4.2.2.1.1. The net for n=1. 

Proposition 4.2.2.1.1. The nwnber of processes ever created by Matmul is 6n-1. 

The maximwn nwnber of active processes at any moment is 4n+1. 

Proof. Figure 4.2.2.1.1. shows that initially there are 5 processes. If n>1, 

there will be (n-1) expansions of upO and lowO processes (see figure 

4.2.2.1.2.), 

0 

Figure 4.2.2.1.2. The i-th upO process expanding. 



132 

causing 2*3*(n-1) process creations. The total number of processes ever created 

is therefore 6n-1. The maximal number of processes active at the same time is 

reached when all expansions have been performed. From that moment on the net 

consists of: 

centre process 

2n dup processes 

n-1 up processes which adds up to 4n+1 processes 
n-1 low processes 

upO process 

lowO process 

D 

An up or low process needs at most n storage locations for keeping its dia­

gonal. 

We will now analyse the number of time-steps needed to execute Matmul. 

Again we will only count reads, writes and expansions as the number of other 

statements between them is only a small constant. 

Proposition 4.2.2.1.2. Matrrrul takes O(n2) time-steps to read, multiply and 

write. 

Proof. The program starts executing as in figure 4.2.2.1.3., where rr, re, w, e, 

and c stand for reading a row element, reading a column element, writing, expan­

sion, and creation respectively. The moment of expansion of an upO(lowO) proce3s 

depends only on the input it receives from a dup process dr(dc). 

0 2 3 4 5 ••• 

main rr re e 

centre C 

dr1 C rr w rr 

dcl C re w re 

upO C 

lowO C 

Figure 4.2 . 2.1.3 . First steps of Matmul. 



133 

The analysis of the timing of the expansion into the final net is therefore 

independent of the behaviour of centre, up and low_processes. The timing of 

lowO processes is the same as that of upO processes. 

The first column is only sent to centre by dc1. Process up01 will receive 

its first item($ or*) after O(n) time-steps. If n>1 up01 will expand and dcl 

will send the columns to dc2 at the speed of one item per three time-steps. 

Except for the first column, which is written at the speed of one item per two 

time-steps, all other items are written at the speed of one item per three time­

steps. The net will therefore be expanded after O(n2) time-steps. 

The row items are sent to upl through to up(n-1) by centre which will 

send a row element at the speed of one element per four time-steps after some 

initial waiting for input. Process up1 will get its row elements one per four 

time-steps and its column elements one per three time-steps so the pace of 

the whole net is determined by the slowest process: centre. Every process 

(centre, upi and lowi) performs an assignment 

which implies that the diagonals are calculated in O(n
2

) time-steps. 

The speed of the collecting phase is again dictated by the centre process, 

which reads and writes an item every two time-steps. We can conclude that the 
. ( 2) . whole computation takes On time-steps. 

D 

The size of the channels carrying the rows from centre (upi) to upl 

(upi+l) is at least n because the corresponding column will arrive at upl 

(upi+l) only when centre (upi) has processed a complete row. All other channel 

sizes can be limited to one. 

4.2.3. Divide-and-conquer algorithms. 

In this section we will discuss an efficient implementation of divide­

and-conquer algorithms on a tree of processors. The divide-and-conquer paradigm 

can be expressed as in figure 4.2.3.1. 



134 

proc div&co (problem p) answer r: 

begin if simple{p) 

end. 

then r = solve-simple{p) 

else problem pl, p2; 

split(p, pl, p2); 

r = combine(div&co(pl), div&co(p2)) 

fi 

Figure 4.2.3. 1. The divide and conquer algorithm. 

An interesting subclass of divide-and-conquer algorithms is the class 

of recursive doubling algorithms [78] where the divide-phase is not needed be­

cause the problem presents itself in an already divided form. The classical 

example is the calculation of a 1+ ..• +an. Figure 4.2.3.2. shows a computation 
j 

graph (for n=8) that computes all partial sums y. = .r
1
a. (j=1, .. ,8). 

J 1= 1 

as Y3 

a7 Y7 

a6 y6 

as Y5 

a4 Y4 

a3 Y3 

a2 Y2 

al Y1 

Figure 4 . 2.3.2. Summation of eight numbers. 

Dark circles represent additions. 

Open circles represent copy operations. 



135 

Stone [78] shows that the inver se perfect shuffle (see figure 4.2.3.3.) exact­

l y provides the connections needed to evaluate recurrence relations of the form 

0 

as long as o is an a ssociative operator. 

Figure 4.2.3.3. The inverse perfect shuffle of size 8. 

8 
If, in the example of addition, only the total sum i~lai is needed, the 

calculation can be done using the much simpler interconnection structure of a 

tree of processes which we discuss here. Notice that in figure 4.2.3.2. this 

tree, indicated by thick lines, is a sub-structure of the complete computation 

graph. 



136 

Peters [68] discusses the implementation of divide-and-conquer on a 

binary tree machine. Communication between the processes is modelled as in 

CSP, which is equivalent to allowing channels of size zero in DNP. The calls 

div&co(pl) and div&co(p2) are executed in parallel on the two son processors 

of the processor running div&co(p). Let the size of problem p be characte­

rized by an integer n. For the time being we will assume' n to be a power of 

two. The size of subproblems p1 and p2 is assumed to be n/2. A function g(n) 

denotes the time to execute the split and combine steps plus the time for 

parameter passing. The time s(n) required to execute the sequential version 

of divide-and-conquer is defined by the recurrence relation 

s(1) = C 

s(n) 2s(n/2) + g(n) 

while the time t(n) required to execute the parallel version is defined as 

t(l) = C 

t(n) t(n/2) + g(n) . 

Assuming g(n) is a simple polynomial inn of the form anP, the recurrence 

relations have the solutions (68]: 

s(n) 
2p-1 

anP + c
1
n 

l 2p-1 - 1 

zP P 
for p I 0, p # 1 

t(n) --- an + c2 
zP - 1 

s(n) an log n + c
1
n ) 

l 
t(n) 2an + c

2 J for p 

s(n) -a+ c 1n l for p 0 
t(n) a log n + c2 j 

where c 1 and c 2 are constants. 

From these solutions it follows that it is only worthwhile, in terms 

of execution time, to apply tree machines when p$1. The most interesting case 

is the case p=O, where the run-time reduces from O(n) to O(log n). 



137 

The algorithm uses its processors rather inefficiently: only one level 

of the tree is active while the other processes wait for subproblems to be 

solved. We will discuss two improvements of the algorithm that do not change 
n the order of t(n) but reduce the number of processes from 2n-1 to -

1
--
og n 

The first improvement is to keep processes busy after they have submitted 

subproblems to their children. For that purpose a special root process is 

placed above the tree of divide-and-conquer processes (see figure 4.2.3.4.). 

The root process is special in that it does not submit both subproblems down 

the tree, but keeps one to itself to divide-and-conquer recursively. In the 

following step the subproblem it kept is split into two sub-subproblems, one 

of which it will send down and one of which it will keep again, etc. It should 

be observed that this technique is analoguous to tail-recursion removal. 

div&co 

tree 

Figure 4.2.3.4. The divide-and-conquer net. 

Figure 4.2.3.5. shows how a problem of size 8 is step-wise divided over 

eight processes, where pi .. j denotes a problem of size j-i+l and pi denotes a 

problem of size one. The tree grows with the size of the problem. Initially it 

will be as in figure 4.2.3.6. 



138 

time-step 1, 9 2,8 3,7 4,5,6 

Figure 4.2.3.5. Divide-and-conquer in action. 

Figure 4.2.3.6. Initial state of the net. 

A leaf process will, upon receipt of a problem, check whether the prob- ­

lem is simple or not. If it is simple the leaf process will solve the problem 

and send the result upwards, otherwise it will expand as in figure 4.2.3.7. 



139 

Figure 4.2.3.7. Expansion of a leaf process. 

The divide-combine process in figure 4.2.3.7. will split the problem, 

send it down, wait for more problems to be split and sent down, solve a simple 

problem, send up the simple result, and combine and send up the results it 

gets from below. Figure 4.2.3.5. also outlines the timing of the algorithm. 

At time-step 2 to 4 the problem is split into simple problems. At time-step 

5 all simple problems are being solved. At time-steps 6 to 8 the results are 

sent up and combined and at time step 9 the result is output. 

Proposition 4.2.3.1. The first improvement of t he divide-and-conquer algorithm 

causes t he a lgor ithm to use only n processes while keeping the time complexity 

of the original algor ithm. 

Proof. In the original version of the algorithm only leaf processes solve the 

simple problems. A perfect binary tree with n (=2k) leafs contains 2n-1 nodes. 

In the first improvement of the algorithm every process solves a simple prob­

lem, so only n processes are needed. The time complexity of the algorithm does 

not change because the same actions are performed at the same time but by 

different processes. 

D 



140 

Up till now we have assumed an ideal situation: the size of the original 

problem is a power of two. What happens if this is not so .? A problem of size n 

is split in one of size P1 = ln/2J and one of size P2 = r n/21- Clearly 1P ,-P2 [:a1. 

Every division step will yield twice as many subproblems with at most two dif­

ferent sizes s 1 and s 2 such that [s 1-s 2 [ = 1. After llog nJ division steps all 

subproblem are of size one or two. Dividing the remaini~g problems of size two 

causes the tree of processes to be unbalanced and complicates the logic of the 

processes. The remaining problems of size two will therefore not be split any­

more but solved sequentially. 

The idea of not splitting the subproblems until their size is one can be 

exploited further. Every next division step yields just as many new processes 

as already present. It is therefore not worthwhile to keep splitting until the 

problem size is one or two. Consider the case where splitting and combining 

takes a constant time. The time complexity of the overall algorithm is then 

O(log n). In order to preserve this time complexity, problems will be split 

until their size is about log n and then solved sequentially. This can be im­

plemented in combination with a method to keep the tree perfect: a process 

will be parameterized in a fashion that indicates how many problems it is going 

to have to split. This number is calculated by the root process and is spread 

and decreased through the tree. The root process will split llog n - loglog nj 

problems and a divide-combine process on level i will split llog n - loglog nJ-i 

problems. This we call the second improvement to the divide-and-conquer algo­

rithm. 

Proposition 4.2.3.2. The second improvement to the divide-and-conquer aZgorithm 

causes the aZgorithm to use 0(-
1 

n ) processes. If the spZit and combine oper­
og n 

ations take constant time, the time compZexity of the overaZZ algorithm is 

0 (log n). 

Proof. If we split the subproblems until their size is one or two we create a 

d h l J 
. . 2 L log nJ tree of processes of ept log n containing processes. Every lowest 

level of the tree of processes we save gains us half of the processes in use. 

Splitting the subproblems until their size is llog nJ will therefore take 

O(n - ~ - - _n_) 0(-n-) processes (see figure 4.2.3.6.). 
2 log n log n 



problem size O(log n) 

problem size 0(1) n/2 processes 
~-------------~ 

Figure 4.2.3.6. Saving more processes. 

og n - log n 
oglog n 

The time complexity of the algorithm now changes. First there will be 

141 

O(log n - loglog n) timesteps to divide the problem into subproblems of size 

O(log n). Then these subproblems will be solved sequentially which takes s(log n) 

timesteps. As we have assumed that splitting and combining takes constant time, 

i.e., g(n) = a, we conclude that s(log n) = O(log n). Then the results are sent 

up which takes again O(log n - loglog n) time-steps. The overall time complexity 

of the algorithm will therefore remain O(log n). 

□ 

As the sequential divide-and-conquer algorithm has time complexity O(n), 

the -
1 

n processes versus O(log n) timesteps is optimal, i.e., cannot be low­og n 
ered without incurring a greater compute time. 

Figure 4.2.3.7. shows a general divide-and-conquer program with both im­

provements incorporated. In this program problems and results are represented 

by integers. The primitive functions size, split, solve-seq and combine are 

assumed to be predefined. In our case they are part of the run-time system. 



142 

process root (in prb, subress out res, subprbs): 
begin int i,c,n; 

end 

int p,p1 ,p2; 
int s1 ,s2; 
read int(prb,&p); 
n = size(p); 
if (n == 1) write_int(res,solve seq(p)); 
else 

{ n I= twolog(n); 
C: n; 
write int(subprbs,c/2); 
while((c I= 2) > 0) 

{ split(p,&p1,&p2); 
write_int(subprbs,p2); 
p:p1; 

s1=solve_seq(p); 
C: n; 
while((c I= 2) > O) 

{ read int(subress,&s2); 
s1:combine(s1,s2); 

write_int(res,s1); 

process leaf (in prbs out ress): 
begin int p,c; 

end -

if(read int(prbs,&c)) 
{ if(c ;-= 1) 

{ read int(prbs,&p); 
write_int(ress,solve_seq(p)); 

else 
expand chan subprbsleft, subprbsright, 

subressleft, subressright 
create leaf(in subprbsleft out subressleft) 
create leaf(in subprbsright out subressright) 
create divco(in prbs, subressleft, subressright 

endexp 

out ress,subprbsleft, subprbsright 
int c) 



process divco (in prbs, subressleft, subressright 
out ress, subprbsleft, subprbsright 
int c): 

begin 

end 

int i,p; 
int p1,p2,s,s1,s2; 
i = c; 
write_int(subprbsleft,c/2); write_int(subprbsright,c/2); 

while( (c I= 2) > 0) 
( 

read int(prbs,&p); 
split(p,&p1,&p2); 
write int(subprbsleft,p1); 
write-int(subprbsright,p2); 
} -

read int(prbs,&p); 
write_int(ress,solve_seq(p)); 
C: ij 
while( (c I= 2) > 0) 

( 
read int(subressleft,&s1); 
read-int(subressright,&s2); 
s:combine(s1,s2); 
write int(ress,s); 
} -

main divconq (in prb out res): 
begin expand chan subprbs, subress 

end 

create root(in prb, subress 
out res, subprbs) 

create leaf(in subprbs out subress) 
endexp 

Figure 4.2.3.7. Divconq. 

143 



144 

4.3. LIMITATIONS OF DNP 

The following limitations of DNP are apparent: 

(1) a process cannot change its channel configuration, 

(2) there is no inverse of expansion: contraction, 

(3) it is impossible to create all computation graphs. 

We discuss various aspects of these limitations in the following subsections. 

4.3.1. Changing the channel configuration. 

The wish to change the channel configuration of a process presents it­

self naturally when programming in DNP. An extension is to allow a surviving 

process to close one or more channels. Consider as an example the pipeline sort 

algorithm of section 4.2.1. The sort processes have two input channels u and 

rand two output channels sand e. Thee channel is connected to the u channel 

of the predecessor so that the rules for channel usage in an expansion are sat­

isfied. What we like to express is that a sort process needs two input channels 

before expansion but needs only one input channel afterwards (see figure 

4. 3. 1. 1.). 

Figure 4.3.1.1. Changed channel configuration. 

This can be expressed using a new keyword close as in figure 4.3.1.2. 



process sort(in u, routs): 

begin 

end 

expand chan rr 

create sort(in u, rr outs) 

keep sort(in close, rout rr) 

endexp 

Figure 4.3.1.2. An expand statement that closes a channel. 

145 

The problem with changing the channel configuration of a process is that 

the static check for correct channel usage in a (next) expansion does not work 

anymore. In the simple case of a closed channel in a surviving process we can 

consider the closed channel as a channel connected to a dummy process. In more 

complex cases of adding channels or creating a process with closed channels, 

the simple and elegant properties of the expand statement are lost. For this 

reason we have decided not to extend the language in this direction. 

4.3.2. Contraction. 

One can think of various types of contraction: 

(i) Any subgraph can contract into a node, i.e., all nodes and all channels 

connecting these nodes together are replaced by one node connected to 

the rest of the graph by the channels that connected the old subgraph 

to the rest of the graph. An example of the use of such a contraction is 

the following. Suppose we have a problem P that can be solved recursively: 

P(n,m) 

P(n,1) 

P( 1,m) 

H(P(n-1,m), P(n,m-1)) 

One could write down a divide-and-conquer style program for this problem 

as sketched in figure 4.3.2.1. 



146 

process solve-P(out r int n,m) 

begin. 

expand chan rl, r2 

endexp 

end 

create H(in rl, r2 out r) 

create solve-P(out rl int n-1, m) 

create solve-P(out r2 int n, m-1) 

Figure 4.3.2.1. 

This is, however, rather inefficient because the subproblem P(n-1, m-1) 

is going to be solved twice (see figure 4.3.2.2.). 

Bo 

Figure 4.3.2.2. Inefficient divide-and-conquer solution for P. 

Clearly one would like to "contract" the two P(n-1,m-1) processes. There 

are, however, serious problems with this type of contraction: (a) the 

locality principle is violated, (b) a process can wind up with an arbitra-

. ry number of channels, and (c) it is unclear how and where to define the 

process that will run in the newly created node. 



147 

(ii) One can allow a subgraph that was created in one expansion to contract 

back into the process from which it originated. This form of expansion 

is know as parallel procedure calling and is studied by Misra and Chandi 

[63]. In this model there is no place for surviving processes, because 

the state of a just contracted process is then ambiguous. So parallel 

procedure calling is an alternative to expansion rather then an exten­

sion. 

(iii) A node can be killed if it does not execute further output instructions, 

or if all the processes it writes to are killed. This is in fact an im­

plementation consideration and not a language feature. It can be com­

pared to garbage collection in conventional languages. 

4.3.3. It is impossible to create all computation graphs in DNP. 

In this section we will reformulate the graph generating capabilities 

of DNP in graph grammar terminology and prove that there are important classes 

of graphs that cannot be generated. Similar work has been done for other types 

of grammars ([75],[33]). Our model of graph expansion turns out to be equiva­

lent to Slisenko's version of context-free graph grammars [77]. 

Definition 4.3.3.1. A star graph is a pair <K,B> where 

K is a graph, and 

D 

Ba finite set of edges different from the edges of K, and every 

edge in Bis connected to one node of K, though each node of K 

can be connected to zero or more edges of B. B can be empty. 

K is called the kernel and Bis called the boundary. 

Figure 4.3.3 . 1. A star graph. 



148 

Figure 4.3.3.1. shows a star graph, where K consists of ten nodes and ten edges 

connecting these nodes and B consists of five edges b0 to b
4 

connecting K to 

the outside world. A simple star is a star graph where K consists of one node 

without edges. 

Definition 4.3.3.2. A context- f r ee graph grarronar (GFGG)· is a four-tuple 

G = <N,T,~,S> where 

N and Tare two disjoint finite alphabets for labelling 

non- terminal and terminal nodes respectively, 

Pis a finite set of production rules , 

Sis an element of N, the start i ng symbo l . 

Production rules are pairs (SL,SR), with SL <~,BL> and SR= <~,BR> 

sta r graphs such that jBL I = IBR I and SL is a simple star. ~ is labelled 

with a non-terminal. All nodes in~ are labelled too, with either terminal 

labels or non-terminal labels. Two production rules with the same~ must 

have the same BL. Productions are denoted as: 

D 

Figure 4.3.3.2. is an example of a production rule. 

~ Mr 
Figure 4.3.3.2. A production rule. 

A context-free graph grammar G will be used to generate a class of labelled 

graphs through the process of "derivation". A derivat i on step according to 

a production rule <X,BL> ➔ <K,BR> consists of replacing a node l abelled X in 

a graph W by a subgraph K such that the boundary edges rema. in unchanged with 

respect to the nodes connected to the node labelled X in W. Clearly the sub­

graph K can be "glued" into Win many different ways. Figure 4.3.3.3. shows 

one possible derivation step. 



A B 

y r y 

0 
y r 

C 

C 

Figure 4.3.3.3. A derivation step using the production 

rule of figure 4.3 . 3.2. 

149 

Definition 4.3.3.3. The graph consisting of only one node labelled with the 

starting symbol Sis called the initiaZ graph. A graph is called a terminaZ 

graph if all its nodes are labelled with terminal symbols. The Zanguage L(G) 

determined by a CFGG G is the set of all terminal graphs that can be derived 

from the initial graph. 

D 

Because Pis finite, there is a constant upper bound to the degree of 

the nodes of every g E L(G). This implies already that not all classes of 

graphs are context-free. The class of wheeZs, where then-th wheel consists of 

a circle of n nodes all connected to one centre node (see figure 4.3.3.4.), 

is an example of a non context-free class of graphs. 

Figure 4.3.3.4 . A wheel. 



150 

The following lemmas are more specific about the classes of graphs that are 

or are not context-free. If P and Qare graphs, PQ denotes a graph consisting 

of P and Q and a number of edges connecting P and Q. 

Lemma 4.3.3.1(The pwrrping lemma ). Let G be a CFGG. If L(G) contains arbitrarily 

lar>ge (in terms of number of nodes) graphs , then L(G) contains graphs TMiO 

for all i=0,1, ... where TMi is a star graph (see figu:r>e 4. 3. 3. 5. ) . 

3 Figure 4.3.3.5. A graph TM Q. 

Proof. Because L(G) contains graphs of arbitrary size, there must be a non-ter­

minal N producing itself: 

* * 
s • w 

where P and Qare subgraphs containing non-terminals and/or terminals. From N, 

P and Q we can generate subgraphs T, O, and M respectively, containing only 

terminal nodes. The star graph <NQ,B> is derived from <N,A> where B contains 

the same number of edges as A. The derivation of <NQ,B> from <N,A> can be re-



151 

peated arbitrarily many times before the terminal subgraph T, 0 and Mare 

generated yielding a graph TMiO for any i. 

□ 

~orollary_ 4.3.3. 2 . If L(G) contains arbitrarily large graphs then there are 

constants c and k such that L( G) contains graphs of size c+i.k for all i=0,1, ... 

□ 

rn □ 

Figure 4.3.3.6. Some square grids. 

Figure 4.3.3.7. Some perfect shuffles. 



152 

It follows directly from this corollary that the class of square grids 

(see figure 4.3.3.6.) and the class of perfect shuffles are not context-free. 

A perfect shuffle is a bipartite graph LR, where both Land R contain N=2k 

nodes. The nodes from Land Rare connected through an interlaced intercon­

nection pattern (see figure 4.3.3.7.). In these cases we simply count the 
. ( 2 n . . ) number of nodes in the members of the class n and 2 , respectively. In 

most cases, however, this counting argument is too weak and we have to take 

the interconnection structure of the graphs into account. 

Definition 4.3.3.4. A (k, d )-reduction of a graph is the substitution of a 

star subgraph (H,E) by a simple star (h,F) such that 

(1) IEI = IFI and F connects h to the same nodes of the rest of the graph 

as E did with H, 

(2) H contains at most k nodes, 

(3) all nodes of H have a degree at most d. 

0 

Clearly reduction is the inverse of derivation. Slisenko uses a similar no­

tion, contraction, in order to prove that for every CFGG there is a polynomial­

time algorithm for recognizing its language. The difference between reduction 

and contraction is that reduction is defined independently of a CFGG. 

Definition 4.3.3.5. A graph is (k,d)-reducible . iff it can be successively 

transformed into one node without edges by a sequence of (k,d)-reductions. 

A class of graphs is (k,d)-reducible iff all its members are. 

0 

If a graph is (k,d)-reducible, all stars in its reduction have at most d 

boundary edges. For example, the class of binary trees is (3,3)-reducible. 

Sufficient reductions are given in figure 4.3.3.8. 

In the following we will ignore the labelling of graphs and consider 

their structure only. 

➔ l\➔ O I ➔ 0 

Figure 4.3.3.8. Reductions of a binary tree. 



153 

Lemma 4.3.3.3. Consider a class of graphs C. There is a CFGG G such that 

C ~ L(G) iff there are a k and d such ihat C is (k,d)-reducible . 

Proof. Assume C ~ L(G), for some CFGG G. For all c EC there is a derivation 

in G. All right-hand-sides of the productions are finite, so there are a k and 

d such that the number of nodes in each right-hand-side· is at most k and all 

nodes are of degree at most d. A (k,d)-reduction is just the inverse of a de­

rivation. (This part of the proof corresponds to a similar argument of Slisenko 

[77]). 

Let C be (k,d)-reducible. For a given k and d there is only a finite 

number of stars St with at most k nodes of degree at most d and at most d 

boundary edges. Each of these stars will be used to form a production rule. 

There will be d+1 non-terminals S , .•• ,Sd and one terminal t. S. will be used 
0 1 

only at nodes of degree i. For every star graph St with more than one node 

and i boundery edges we form the production rule: 

Every node in St is labelled S. iff it has the degree j. For every i we include 
J 

a production rule: 

Now let G; <{ s
0

, ... ,Sd},{t},P,S
0

> where Pis the set of production rules 

defined above. Clearly every c EC can be derived using G, and Cc L(G). 

D 



154 

Theorem 4.3.3.4(The connectivity theor em ). Let a set of graphs S contain 

arbitrarily large graphs . Let all suhgraphs of n nodes of a graph in S of 

at least 2n nodes be connected to the rest of the graph by at least F(n) 

edges , where F is an increasing integer function . Then S is not (k ,d) ­

reducible for any k and d (and t herefore not a suhset of a context- free 

graph language) . 

Proof. Suppose on the contrary, that every s ES is (k,d)-reducible f or some 

k and d. Choose ans ES with at least 2n nodes suc h that n>k
2 

and F(I)>d. 

A reduction of s i s a sequence of graphs s=s0 , s
1

, . .. , sm whe r e s i is the r e ­

sult of a (k,d)-reduc tion of si-l and sm is a single node. Every node in 

every si has a degree less than d. With every node x in a n si we associate 

a number determining from how many original nodes in s
0 

x has been reduced. 

Consider the sequence M
0

,M 1, ... ,Mm where Mi= max{associated number of an 

x in si } . Clearly M
0

=1 and Mm~2n. The sequence is non-decreasing and 

Mi ~k.Mi_ 1. So 

Let M be the 

n n 2 
there i s a p such that Mp-l~ and t<Mp ~n (because n>k ). 

p 
associated number of a node Yins . Y has a degreed equal p y 

to the number of edges that connects the subgraph consisting of the M 
p 

o riginal nodes of Yin s
0 

and all their internal edges to the rest of the 

graph, so <ly~F(Mp)~F(I). But we have chosen s s uch that F(I)>d which contra -

die ts the supposition. 

D 

In a square grid of at least Zn nodes all subgraphs of k<n nodes are 

connected to the rest of the graph by more than v'k edges so any set of graphs 

containing square grids (such as the class of all grids) is not contex t-free. 

If one wants to generate graphs with high connectivity such as grids or 

shuffles, a more powerful kind of expansion is needed. Two extensions of the 

expand statement are considered. The first is to allow the declaration of 

channel arrays combined with a loop construct in an expand statement such 

that any graph can be generated in one expansion. Generating a perfect shuffle 

can be written as in figure 4.3.3.9. 



k 
n = 2; / * k~l */ 
expand chan cl [0 .. 2n-1], c2[0 .. n-1] 

for i in [0 .. n-1] 

endexp 

do create l(in c2[i] out c1[2i], c1[ 2i + 1]) 

create r(in cl[i], cl[n + i] out ,c2[i]) 
od 

Figure 4.3.3.9. Generating a shuffle iteratively. 

155 

A second possible extension is to allow arrays of channels as formal 

parameters in process declarations and as actual parameters in creations. 

The recursive nature of the graphs one wants to generate can then be expressed 

elegantly. This kind of graph expansion is a generalization of separators 

as defined be Hoey and Leiserson [41). A separator is defined as follows. A 

bisection Sofa graph G=(V ,E) into graphs G'=(V',E') and G"=(V",E") is a 

disjoint partition of nodes V=V'U V" together with a disjoint partition of the 

edges E=E 'U E"U E such that IV' I and IV" [ differ at most one. IE I is called 
s' s 

the bisection width of S. A separator for a class of graphs is a set of bi-

sections, at least one for every graph in the class. The generation of a per­

fect shuffle is now written as in figure 4.3.3.10. The two wings making up a 

shuffle are shown in figure 4.3.3.11. 



156 

begin 
k 

n = 2 ; I* k ~ 1 */ 
k - 1 

if n ~ 4 then m = 2 ; l k- 2 - ~ . - '-' , 

expand chan c [O .. n- 1 ] 

endexp 

cr eate wing (in c [O .. l - 1 ], c [m .. 3l- 1 ] 

out c[O .. m- 1 ]) 

create wing (in c [l .. m- 1 ], c [3l . . n- 1 ] 

out c [m .. n- 1 ] 

else expand chan c [0 .. 1 ] 

cr eate wing (in c [O], c [l ] out c [0 .. 1 ]) 

endexp 

fi 

end 

process wing ( in cl [O •. l ], c2 [0 .. m] out c3 [0 .. n ]) : 

begin 

end 

if l>O then expand cr eate wing (in cl [O .. l/2 ], c2 [0 .. m/2 ] 

out c3 [0 .. n/2 ]) 

endexp 

cr eate wing (in cl [l/2+1 . . l ], c2 [m/2+1 . . m] 

out c3 [n/2+1 .. n ]) 

else expand chan i [0 .. 3 ] 

endexp 

fi 

create left(in cl [O] out i [0 .. 1 ]) 

create right(in i [O], i [2 ] out c3 [0 ]) 

create left(in c2 [0 ] out i [2 .. 3]) 

create right(in i [l ], i[3 ] out c3 [1 ]) 

Figure 4.3.3.10. Generating a perfect shuffle recursively. 



157 

Figure 4.3.3.11. A perfect shuffle viewed as two wings. 

4.4. SOME DEFINITIONS AND THEOREMS FROM THE THEORY OF NP-COMPLETENESS 

To characterize the computional power of DNP programs in general we will 

need the following definitions and theorems from the theory of NP-completeness 

(32]. 

A problem TT is a set of instances of a question. Take as an example the 

problem PRIMES, an element of which is : is 1234567 a prime number? We will 

consider problems that can be posed as decision problems, the instances having 

two possible answers: yes or no. 

Definition 4.4.1. An encoding scheme e for a problem TT provides a way to de­

scribe each instance of TT by an appropriate string of symbols over some alpha­

bet[. TT and e partition r* into three classes of strings: 

(1) those strings that do not encode an instance of TT, 

(2) those strings that encode a yes-instance of TT, 

(3) those strings that encode a no-instance of TT. 



158 

The language associated with TT and e, 1(TT,e), is the class of strings encoding 

yes-instances of TT. 

~ 

Definition 4.4.2. Consider a deterministic Turing machine (DTM) or non­

deterministic Turing machine (NDTM) M, reading strings over Land having two 

halt states q and q . The language 1 accepted by Mis the set of input 
y n M 

strings x EL* for which (one of the computations of) M halts in q . y 
□ 

Definition 4.4.3. A Turing machine M solves a decision problem TT under en­

coding e iff 1M=1(TT,e). 

□ 

Definition 4.4.4. P = {1: there is a polynomial time bounded DTM M such that 

1 = 1M}. In other words, TT belongs to P under encoding e if there is a poly­

nomial time DTM solving TT under e . 

□ 

Definition 4.4.5. NP 

that 1 = 1M}. 

{1: there is a polynomial time bounded NDTM M such 

□ 

It is open whether P and NP are equal (the P = NP problem, see [18]). 

Definition 4.4.6. A polynomial transfoY'171ation (or p-reduction) from a language 
* * . * * 1

1
= L 1 to a language 1 2= r2 is a function f: L 1➔L2 such that 

(1) there is a polynomial time DTM computing f, and 

(2) for all x E L1: x E 1
1 

iff f(x) E 1 2 . 

If there is a p-reduction from 1
1 

to 1 2 we write 1
1
tt 1

2
• 

□ 

Definition 4.4.7. 1 E NPC iff 1 E NP and for all 1 1 E NP: 1 1
tt 1. 

In other words, a decision problem is NP-complete if it is in NP and all NP 

problems can be polynomially transformed to it. 

□ 

Assuming P ~ NP, the world of NP can be pictured as in figure 4.4.1. 

Figure 4.4.1. The world of NP. 



159 

The satisfiability problem (SAT) can be stated as follows. We have a set 

of boolean variables U, a subset B of the 16 possible binary boolean operators 

and a well-formed boolean expression E over U and B. The question is whether 

there is a truth assignment for U satisfying E. 

Theorem 4.4.1. SAT is NP-complete. ([18]) 

□ 

Definition 4.4.8. PSPACE 

that L = ~}. 

□ 

{L: there is a polynomial space bounded DTM M such 

Definition 4.4.9. LE PSPACEC iff LE PSPACE and for all L' E PSPACE: L'~L. 

In other words, TT is PSPACE-complete if it belongs to PSPACE and all PSPACE 

problems are p-reducible to TT. 

□ 

Clearly Pc PSPACE and NP c PSPACE. 

The quantified boolean formulas problem (QBF) can be stated as follows. 

We have a well-formed quantified boolean formula F = (Q 1x 1)(Q2x2) .. (Qnxn)E, 

where Eis a boolean expression involving variables x 1, ... ,xn and each Qi is 

one of the quantifiers 3 and V. The question is whether there is a truth 

assignment for x 1, .•. ,xn satisfying F. 

Theorem 4.4.2. QBF is PSPACE-compZete . 

□ 

Further details and proofs can be found in the book of Garey and Johnson 

[32]. 

4.5. DNP-PROGRAMS FOR NP-COMPLETE AND PSPACE-COMPLETE PROBLEMS 

Unless somebody proves that P=NP after all, there seems to be no better 

way to tackle NP-complete problems than by trial and error. A trial and error 

algorithm consists of two stages, the first being a guessing stage and the 

second being a checking stage. Both guessing and checking of one solution can 

be done in polynomial time for NP-complete problems, but the number of possi­

ble guesses is exponential in the length of the instance of the problem. On a 

sequential machine this trial and error technique has therefore an exponent­

ial worst case time complexity. 



160 

A useful property of the trial and error technique is that the various 

checks are independent of each other. This makes the technique suitable for a 

parallel implementation. Generally speaking, in a parallel implementation the 

guesses are issued in polynomial time, all guesses are checked by independent 

processes simultaneously, and the answers are combined again in polynomial 

time. Implementations of particular problems may be clever by pruning the 

tree of all guesses. The scheme is very similar to the divide-and-conquer algo­

rithms of section 4.2.3. 

Proposition 4.5.1. A complete binary tree of 2n-1 processes can be generated 

in O(n) time· ·steps using the tree expansion of figure 4 . 5.1 . 

D 

0 
Figure 4.5.1. Tree expansion. 

We say that a DNP program accepts an instance of a problem TT under encoding 

e, if upon receipt of the encoded instance the program outputs "YES". 

Definition 4.5.1. PDNP = {L: there is a polynomial time DNP program accepting 

L}. 

Theorem 4.5.2. NP:: PDNP. 

Proof. The root process goes through the input and transforms it to an in­

stance of SAT, which takes polynomial time P. This yields a boolean expres­

sion E. If E contains no variables, it will be evaluated and the result will 

be output. Otherwise, a variable v in Eis selected and two expressions ET 



161 

and EF are generated where ET is E with TRUE substituted for v and EF is E 

with FALSE substituted for v. The root now expands as suggested in proposition 

4.5.1. The left child will deal recursively with ET' the right child with EF. 

The root will combine the answers. Let the length of Eben and let E contain 

m variables. Both m and n are less than P. The resulting tree will be at most 

m layers deep. Evaluating E, selecting v and generating' ET and EF takes 

O(length of E) steps. Therefore the whole algorithm takes O(m.n+P) steps. 

D 

Theorem 4.5.3. PSPACE = PDNP' 

Proof. The root process goes through the input and transforms it to an instance 

of QBF, (see section 4.4.), which takes polynomial time. This yields a quan-· 

tified boolean formula E. The root handles x
1

. It generates two expressions 

ET and EF from E just as in theorem 4.5.2. It expands, the left child deals with 

(Q2x2) ... (Qnxn)ET, the right child with (Q 2x 2) ... (Qnxn)EF' and afterwards 

the root combines the answers according to the quantifier Q
1

. The same reasoning 

as in theorem 4.5.2. shows that the program takes polynomial time. 

D 

4.6. DNP PROGRAMS AND N-RAMS 

An N-RAM (Wyllie (90)) consists of an unbounded set of processors 

P
0

,P
1

, ... , an unbounded set of communication links c0 ,c 1, ... , a set of input 

registers and a finite program. Each processor has an accumulator, an un­

bounded local memory, a program counter, and a flag indicating whether or 

not the processor is running. All memory locations are capable of holding 

non-negative integers. A program consists of a sequence of possibly labelled 

instructions chosen from the list in figure 4.6.1. 

Initially the input to the N-RAM is placed in the input registers, all 

memory is cleared, the length of the input is placed in the accumulator of P0 , 

and P0 is started at the first instruction of the program. 



162 

Instruction 

LOAD 

STORE 

ADD 

SUB 

JUMP 

JZERO 

READ 

FORK 

HALT 

SEND 

RECEIVE 

operand} 

operand 

operand} 

operand 

label} 
label 

operand 

label 

operand 

operand 

Meaning 

{

Transfer to/from accumulator from/to 

local memory. 

{

Add/substract the value of operand 

to/from the accumulator. 

{Branch/branch on zero-accumulator 

to label. 

{Place contents of specified input 

in accumulator. 

see text. 

see text. 

see text. 

see text. 

register 

Figure 4.6.1. The N-RAM instruction set. 

A program is non-deterministic if some label occurs more than once, deter­

ministic otherwise. Each operand may be a literal, and address or an indirect 

address. Execution is synchronous. At each step each running processor executes 

the instruction given by its program counter. A FORK ZabeZ instruction executed 

by processor Pi selects an inactive processor Pj, clears Pj-s local memory, 

copies Pi-s accumulator into Pj-s accumulator and starts running at ZabeZ . A 

HALT instruction causes a processor to stop running. 

For a word to be sent from one processor to another, one processor must 

execute a SEND operand instruction while the other simultaneously executes a 

RECEIVE operand instruction. The parameters to SEND and RECEIVE specify one of 

the possible communication links. An unmatched SEND or RECEIVE behaves as a 

null instruction. The accumulator serves as source and target for the value to 

be transmitted. Execution of a FORK instruction causes the father and child 

process to be connected by a communication link, the number of which is 

available to both. This enables the father process to send necessary informa-



163 

tion for example about the communication links the child is allowed to use. 

Wyllie shows that new communication links can be allocated without giving rise 

to conflicts, i.e. a communication link will never be used by more than one 

sender and one receiver simultaneously. 

We want to show that N-RAMs can simulate DNP-programs within a polynomial 

time factor. Because N-RAMs cannot multiply in one unit of time and because we 

want the N-RAMs to model the parallelism in DNP-programs we restrict the opera­

tors in the expressions in ordinary DNP-statements to additions and subtractions. 

We call such programs r estricted DNP programs .(Note that the DNP-programs for 

NP- and PSPACE-problems constructed in section 4.5. are all restricted in this 

sens e. ) 

Definition 4.6.1. PRestricted-DNP 

DNP program accepting L} . 

{L: there is a polynomial time restricted 

Theorem 4 · 6 · 1· PRestr icted- DNP = PN- RAM" 

Proof. Transl a ting DNP-programs to N-RAMs is very similar to translating DNP 

to UNIX as presented in chapter three. A difference is that N-RAM processors 

communicate instantaneously. We therefore allocate for a DNP-channel an N-RAM 

processor, whose local memory will contain the queue of tokens. These channel 

processors are used just as the UNIX pipes. They are represented by two commu­

nication links, one for inserting and one for deleting tokens. Simulating ex­

pansion by means of repeated forking is also done as in the UNIX implementation 

of DNP. The actual channel information needed by a newly created process will 

be passed over the communication links connecting the FORKer and the FORKed. 

The process to be run in the new processor is represented by the label in the 

FORK instruction. The DNP-program and its N-RAM simulation differ only by a 

polynomial factor in running time. 

□ 

Because PN-RAM PSPACE [90] we can conclude the following. 

Theorem 4.6.2. PRestricted-DNP = PSPACE. 

□ 



164 

Theorem 4.6.3. PRestricted- DNP = PSPACE. 

P~oof. In the proof of theorem 4.5.3. that PSPACE:: PDNP' we did not rely on 

multiplication in one unit of time, so we can conclude: 

PSPACE:: PRestricted-DNP" Together with theorem 4.6.2. this implies: 

PRestricted-DNP = PSPACE. 
□ 



165 

CHAPTER FIVE 

THE CORRECTNESS OF DNP PROGRAMS 

5.1. INTRODUCTION 

In this chapter we develop correctness proofs for some of the programs 

from chapter four. The proofs are based on a semantics of DNP based on the 

work of Kahn [46]. For the sake of completeness we present an informal in­

troduction to this semantics. 

A process takes its input values one by one from its input channels. 

Its actions are completely deterministic. If a process terminates it writes 

a special end-of- file mark (EOF) on all its output channels. The last value 

on an input channel of the net will also be EOF. 

A process specifies a function which takes input histories as argu­

ments and yields output histories as values . A history models the sequence 

of va lues that travelled over a channel from the beginning of the computa­

tion until a certain moment. Histories can be ordered according to the a­

mount of information they contain. History Y contains more information than 

history X, written X:: Y, iff Xis a prefix of Y. 

The history functions defined by processes have a number of important 

properties. If input history Xis a prefix of input history Y, the process 

will act identically on the common prefix and will thus generate the same 

values on the output channel. The remaining input on Y can only have the 

effect of writing more values on the output channel. In formula: if X c Y 

then f(X) c f(Y) where f is the function describing the behaviour of the pro­

cess. This property is called monotonicity . In Kahn's model all processes 

compute monotonic history functions. 



166 

A second important property of. the history functions is continuity , 

which concerns the approximation of an infinite sequence by it s finite pre­

f-ixes. The prefixes of a history X form a chain , i.e., a sequence of histories 

x1,x2 , .. such that Xi=. Xi+l for every i ~ 1. 

Lennna 5.1.1[46]. Every chain has a least upper bound UXi. 

Proof. Either the chain i s stable, i.e., there i s a k such tha t Xk = ~+l 

and UXi =~'or the chain is not stable. But then every element Xi has a 

successor of length greater than Xi and UXi will be the infinite history X 

with the property that all Xi are a prefix of X. 

□ 

A one-input-channel one-output-channel process P yields an output his­

tory f(X) when given an input history X, where f is the function associated 

with P. Consider a chain x
1
,x

2
, .. with UXi = X. Because f is monotonic the 

values f(X
1
),f(X

2
), .. also form a chain. This means that an arbitrary finite 

approximation of f(X) is obtained by letting P work on a finite input history 

~ c X, i.e., for every element Y of f(X) only a finite number of elements 

of X have been read at the moment it is generated. Furthermore, the whole se­

quence up to Y has then been generated. This is equivalent to saying that 

f(X) = f(UXi) = Uf(Xi). This property is called continuity. In Kahn's words: 

continuity prevents the possibility of a process deciding to send some out­

put only after it has received an infinite amount of input. 

In [46] it is stated that the function describing the meaning of a 

process can be obtained "by the usual method of McCarthy for converting flow­

chart programs to recursive definitions". It is not clear how to apply this 

method to processes containing expand statements even though the semantics of 

an expand statement is not much different from that _of a series of procedure 

calls. What is needed is a formal semantics of the language. Such a formal 

semantics for a syntactically simplified version of DNP is given in [14], 

where an operator is defined that (i) takes a process-declaration and trans­

lates it into a function from input-histories to output-histories and (ii) 

takes a DNP program (a sequence of process-declarations and a main body) and 

translates it into a set of equations. To each channel of the (initial) net 

of the program a variable is associated. For all variables X associated 



167 

with input channel s to the net there is an equation X=I where I is an input 

hi s tory . For each process with n input channels x
1

, ... ,Xn and m output 

channels Y1, ... ,Ym there are m equations Yi= fi(x
1

, ... ,Xn) where fi is the 

function that describes the behaviour of the process as far as the i-th 

output channel i s concerned. The meaning of a DNP program is defined as the 

minimal solution to the set of equations. 

Theorem 5.1.2[46]. The set of equations descr ibing t he meaning of a ne-twork 

admits a unique minimal solution . Executing t he pr ogram r esults in a set of 

histories described by the minimal solution . 

0 

We will now dis cuss how a function is derived from a process declara­

tion. A formal treatment can be found in [14]. The process heading of a pro­

cess declaration determines the number of input and output parameters of 

the function to be derived. If, for example, a process heading has two in­

put channe ls and three output channels the associated function will have 

the form f(X,Y) = (P,Q,R). The output that a process yields is generally 

not only dependent on the input histories but also on the value parameters 

and the values of the local variables. The associated function will there­

fore often have extra parameters giving the relevant part of the internal 

state of the process. 

A process body is a sequence of statements s
1
;s

2
; ... ;Sn. The associated 

function can be derived stepwise by concatenating the effect of s
1 

to a func­

tion f' describing the effect of s
2

, ... ,Sn. In the above example: 

f(X,Y,Z) = (<p>,<q>,<r>)-f' (X' ,Y' ,Z') 

where <p>,<q>, and <r> stand for the sequences of values written by s
1 

on 

P, Q and R, ~ denotes simultaneous concatenation defined as 

(X 1, ... ,Xn)-(Y 1, ... ,Yn) = (x
1

~Y
1

, ... ,xn-yn), X' and Y' stand for the input 

histories that may have changed because of s
1

, and Z' denotes the changed 

internal state Z. 

The above expression is rather general. We will be more concrete and 

take for s
1 

a read statement, a write statement, an assignment, a conditional 

statement, a loop, and an expand statement respectively. Where needed we will 

add internal state-parameters to f'. 



168 

If s
1 

is r ead(X,x), the associated function is f(X,Y) = f'(R(X),Y,F(X)). 

F(X) stands for the first element of X. F(X) has become part of the internal 

state. R(X) stands for the rest of X, f' denotes the effect of the rest of 

the process. 

If s
1 

is wr ite(P, p) , the associated function is f(X,Y) =· (<p>,<>,<>)-f'(X, Y). 

If s
1 

is x = e , the associated function is f(X,Y) = f'(X,Y,e). 

If s
1 

is i f (b) { S
2

} else {s
3

} , the associated function is 

f(X,Y) [b ➔ (<p>,<q>,<r>)-f'(X' ,Y') 

, (<p'>,<q'>,<r'>)-f"(X",Y") 

l. 

The construct [A ➔ B,C] denotes the conditional function. Depending on the 

truth value of A either B or C applies . 

If s
1 

is while(b) {s
2
}, the associated function is 

f(X,Y) = [b ➔ (<p>,<q>,<r>)-f(X',Y') 

, f'(X,Y)]. 

If s
1 

is an expand statement, the effect of s
1 

is defined as the effect of 

the network into which it expands, i.e., the solution of a set of equations 

derived from the network. The right hand sides of these equations have the 

form g(Z
1

, ••• ,Zk) and the g-s are specified by either a creation or a sur­

vival. The function corresponding to a creation is defined (recursively) by 

a process declaration. The function corresponding to a survival will be de­

rived from the rest of the process declaration, i.e., from the statements 

S2 , •.• ,Sn. So if s
1 

is 

expand c han C 

create f ilter (i n X out CJ 

keep me (in C, Y out P, Q, R) 

endexp 

the associated function is f(X,Y) f'(C,Y) where C ffilter(X). 

In subsequent sections we will prove properties of programs by first 

translating a program into a set of equations and then solving these equa­

tions. 



169 

5.2. CORRECTNESS OF PIPELINE SORT WITH SINGLE NUMBERS INTERNALLY 

Consider the sort program from figure 4.2.1.7. Figure 5.2.1. shows the 

initial network. 

bot­
tom 

Figure 5.2.1. Initial sorting network. 

The two processes are described by the functions fsort and fbottorn for which 

the following holds: 

fbot torn (E) 

fsort(X,Y) 

<EOF> 

[F(X) EOF ➔ (Y,<EOF>) 

, f (R(X),Y,F(X))] 
sort-merge 

The function f reflects the test whether there are (still) elements to 
sort 

be sorted and the actions taken upon that test; f describes the sort-merge 
action taken when there are elements to be sorted: the net expands as shown 

in figure 5.2.2. 

0 
Figure 5.2.2. Expansion of sort. 

f (X Y v) 
sort-merge ' ' (f (X,f (E',Y,v)+1)+1,f (E',Y,v)+2) sort merge merge 

where E' f (X,f (E',Y,v)+1)+2 sort merge 

f (X,Y,v) = [F(Y) = EOF ➔ (<v,EOF>,<EOF>) 
merge 

, (rnin(F(Y),v),<>)~f (X,R(Y),rnax(F(Y),v))] 
merge 



170 

The functions min and max yield the minimum and maximum of their arguments, 

respectively. The +i-operator is defined as (X 1, ... ,Xn)+i = Xi (l~i ~n). 

Now we can write down the equations which denote the meaning of the 

program: 

(sorted,E) f (X,Y) sort 

y fbottom(E) 

which are transformed straightforwardly into: 

(sorted,E) = f (X,<EOF>) sort 

In proving that f (X,<EOF>)+l is an ordering of X we use the following 
sort 

lemmas. 

Lemma 5.2.l(Behaviour off ). If Y is a finite and ordered sequence of merge 
numbers and vis an arbitrary number, then f (X,Y',v)+l is an ordered merge 
permutation of Y-<v>, followed by <EOF>, where Y' = Y-<EOF>. 

Proof . By induction on the length of Y. 

D 

Base: IY I 

Step: IYI 

0: f (X, Y ' , v) + 1 <v, EOF> 
merge 

k>O: f (X ' y I 'V) merge 
<min(F(Y'),v)>-f (X,R(Y'),max(F(Y'),v))+l 

merge 
We have: 

(1) min(F(Y'),v) ~ max(F(Y'),v) 

(2) min(F(Y'),v) ~ x, for all x E R(Y') 

From (1), (2) and the induction hypothesis we conclude that 

f (X,Y 1 ,v)+1 is an ordered permutation of Y-<v> followed merge 
by <EOF>. 

Lemma 5.2.2(Behaviour off ). If X .is a finite sequence of numbers --- sort-merge ' 
Y is a finite and ordered sequence of numbers, and van arbitrary number, 

then f t (X',Y',v)+l is an ordered permutation of x-Y-<v> followed by sor -merge 
<EOF>, where X' = x-<EOF> and Y' = y-<EOF>. 



171 

Proof. By induction on the length of X. 

Base: IXI ; 0: f (X' Y' v)+l ; f (X' f (E' Y' v)+1)+1 ; 
sort-merge ' ' sort ' merge ' ' 

f (E',Y',v)+l ; z~<EOF> where Z is an ordered permu-
merge 

tation of y~<v> (previous lemma) 

Step; IXI k>O: f (X ' Y' v)+l ; f (X' f (E' Y' v)+1)+1 
sort-merge ' ' sort ' merge ' ' 

f (R(X'),Z-<EOF>,F(X'))+l 
sort-merge 

(1) Z is an ordered permutation of y~<v> (previous lemma) 

According to (1) and the induction hypothesis we can conclude that 

f (X' Y' v)+l is an ordered permutation of x~YA<v>, fol-
sort-merge ' ' 

lowed by <EOF>. 
D 

Theorem 5.2.3(Behaviour of the sorting program) . If X is a f i nite sequence of 

nwnbers , then f (X-<EOF>,<EOF>)+1 is an ordered permutati on of X, followed 
sort 

by <EOF>. 

Proof. By definition of fsort and lemma 5.2 . 2. 

D 

The correctness proof of pipeline sort with deques internally (figure 

4.2.1.6) is slightly more complica ted [10]. The third parameter off 
merge 

becomes a finite sequence of numbers playing the role of the deque din pr o-

cess s ort. The proof extends in that we have to show that deque d stays or­

dered and that given an ordered deque and an ordered input sequence f 
merge 

yields an ordered output sequence. 

5.3. CORRECTNESS OF MATMUL 

Consider the program Matmul (figure 4.2.2.6.) for multiplying two square 

matrices. The data travelling over the channels has a prescribed format: a se­

quence of sequence s of integers, separated and po s sibly preceeded by SEP-tokens 

($) and terminated by an EOM-token (*). The program does not check whether the 

input matrices have the correct format, nor whether the input matrices have 

the same size. The main process madm determines whether the input matrices are 

empty(<*>) and if not, expands into the initial network shown in figure 5.3.1. 



172 

Figure 5.3.1. Initial network of Matmul. 

The function describing madm is: 

f d (A,B) = [F(A) = * ➔ <*> ma m 
, f (fd (R(A))+1,fd (R(B))+1,C,D)+3] centre up up 

where C f 0 (fd (R(B))+2,f (fd (R(A))+l ,fd (R(B))+1,C,D)+1) up up centre up up 

and D f
1 0 (fd (R(A))+2,f (fd (R(A))+l ,fd (R(B))+1 ,C,D)+2) ow up centre up up 

f (A,B,C,D) = (<$>,<$>,<>)-f ,(A,B,C,D,0,<>) centre centre 

fcentre' has four input history parameters and two value parameters. The first 

two histories model the input rows and coltllllns, the third and fourth model 

the upper and lower triangles of the product matrix which are computed by upO 

and lowO respectively. The two value parameters model the relevant part of the 

internal state of centre: the first parameter plays the role of the variable 

x, the second parameter plays the role of the variable q. Consequently, the 

second parameter takes the form of a sequence. fcollect describes the collect­

ing phase of centre. 

f ,(A,B,C,D,x,q) centre 
[F(A) * ➔ (<,~>,<*>,<>)-fcollect (R(A) ,R(B) ,C,D,q-<x>), 

[F(A) 

(<F(A)>,<F(B)>,<>)-f ,(R(A),R(B),C,D,x+F(A).F(B),q)]] 
centre 



f ll t(A,B,C,D,q) co ec 
[F(C) = * ➔ (<>,<>,<$,F(q),*>) 

(<>,<>,<$,F(q)>)~f ll (A,B,R(C),R(D),R(q))] co ectup 

f ll (A,B,C,D,q) = co ectup 
[F(C) * ➔ (<>,<>,<$>)-f ll l (A,B,R(C),D,q), co ect ow 

[F (C) $ ➔ (<>,<>,<$>)-f ll l (A,B,R(C),D,q), co ect ow 

(<>,<>,<F(C)>)~f ll (A,B,R(C),D,q)]] 
co ectup 

f ll l (A,B,C,D,q) = co ect ow 
[F(D) * ➔ (o,<>,<F(q),*>), 

[F(D) = $ ➔ (<>,<>,<F(q)>)~f ll (A,B,C,R(D),R(q)), co ectup 

(<>,<>,<F(D)>)~f ll l (A,B,C,R(D),q)]] co ect ow 

173 

An upO process detennines by reading a collll!ln item whether it will have to 

compute a diagonal. If so it expands as shown in figure 5.3.2. We now get a 

similar arglll!lent for upO and lowO as for centre. 

f 
0

(A,B) up [F(A) 

Figure 5.3.2. Expansion of upO. 

* ➔ <*> 

, f (fd (R(A))-1-1 ,R(B) ,C)-1-2) up up 

where C f 0 (fd (R(A))-1-2,f (fd (R(A))-1-1,R(B),C)-l-1) up up up up 

f (A,B,C) (<$>,<>)~f ,(A,B,C,0,<>) up up 



174 

f ,(A,B,C,x,q) = up 
[F(A) 

[F(A) 

* ➔ 
$ ➔ (<$>,<>)-f ,(R(A),R(B),c,o,q-<x>), 

up 

(F(B),<>)-f ,(R(A),R(B),C,x+F(A).F(B),q)]) 
up 

fuptriangle(A,B,C,q) = 
[F(C) * ➔ 
[F(C) = $ ➔ 

(<>,<$,F(q),*>), 

(<>,<$,F(q)>)-f . l (A,B,R(C),R(q)), uptn.ang e 

(<>,<F(C)>)-f . l (A,B,R(C),q))] uptn.ang e 

A lowO process determines whether it will have to compute a diagonal. If so, 

it expands as shown in figure 5.3.3. 

[F (A) 

Figure 5.3.3. Expansion of lowO. 

* ➔ <*> 

, fl (fd (R(A))+1,R(B) ,C)+2] ow up 

where C fl 
0

(fd (R(A))+2,f 1 (fd (R(A))+1,R(B),C)+1) ow up ow up 

flow'(A,B,C,x,q) = 

[F(A) 

[F(A) 

* ➔ (<*>,<$>)-f
1 

. l (R(A),B,C,q-<x>), owtr1.ang e 

$ ➔ (<$>,<>)-flow'(R(A),R(B),C,O,q-<x>), 

(<F(B)>,<>)-flow'(R(A),R(B),C,x+F(A).F(B),q)]] 



flowtriangle(A,B,C,q) 
[F(C) * ➔ (<>,<F(q),*>), 

[F(C) $ ➔ (<>,<F(q),$>)-f 1 . l (A,B,R(C),R(q)), owtn.ang e 

(<>,<F(C) >)-f 1 . l (A,B,R(C),q))] 
owtriang e 

The function describing dup is: 

fd (A) = [F (A) 
up 

fd I (A) up 

[F (A) 

[F(A) 

* ➔ ( <"'>, <*>) , 

$ ➔ (<$>,<$>)-fd ,(R(A)), 
up 

(<F(A)> ,<>)-fd (R(A))]] up 

* ➔ (<*>,<*>) 

, (<F(A)>,<F(A) >)-fd ,(R(A))] up 

The equation denoting the meaning of the program is: 

product= fmadm(Mr,Mc) 

175 

As before we state some lemmas that will be used to prove the main theorem. 

In these lemmas we will use a special notation for the format of the input 

and output sequences. 

Notation. Suppose R
1

, ••• ,Rn are finite sequences of integers. Then 

- [R . , ... ,R. 
1

) 
l 1.-

- [R
1

, ••• ,Rn] 

Furthermore {R
1

, ••• ,Rn] 

[] = <"'> 

<$>-R
1
-[R

2
, ... ,Rn] 

R
1 
-[R

2
, ••• ,Rn] (n>O) 

Lemma 5.3.l(Behaviour of fd ). --- up 
Let n~l and A= {A

1
, ••• ,An]-x. 

Then fdup(A) ({A 1 , ••• ,An],[A2 , ••• ,An]). 

Proof. I: fdup(A) = (A 1 , <>)-fdup( [A2 , ••• ,An] ) by induction on the length 

of A
1

• 

II: fd ,({A., ... ,A ]) up 1. n 
= (A.,A.)-fd ,([A. 

1
, ••• ,A ]) 

1. l up 1.+ n 
(i~n) by induc-

tion on the length of A .. 
l 

III: The lemma now follows by induction on n. 

□ 



176 

Lerrnna 5.3.2(Behaviour of f . 
1 

). --- uptriang e 
Let k~O. 

Then f . l (A,B, [c 1, ... ,Ck] ,<x 1, ... ,x. 1>) uptriang e K+ 

(<>,[<x 1>-C1,···,<~>-Ck'<xk+1>]). 

Proof. I: If k~ l fuptriangle(A,B,[C 1, ... ,ck],<x1, ... ,~+l>) 

(<>,<$,x1>)-fuptriangle(A,B,{C1, ... ,Ck],<x2, ... ,~+1>) per defi­

nition. 

□ 

Lerrnna 

II: fuptriangle(A,B,{C1,···,Ck],<x2,···,xk+l>) = 

(<>,C 1)-fuptriangle(A,B,[c2 , ... ,Ck],<x2 , ... ,xk+ 1>) by induction 

of the length of c
1

• 

III: The lerrnna now follows by induction on k. 

5. 3 .3(Behaviour off ). up 
Let 1:an :am, A = {A1, ... ,An], B = {B 1, . . . ,Bm]-B', and for all 1 :a i :an 

IAil = IBil, AiBi the inpr oduct of Ai and Bi. 

Then f (A, B, C) = ( [ B 1 , .•. , B ] , <> )-f . l ( <>, B", C, <A B , ... , A B >) up n uptriang e 1 1 n n 
f or some B". 

Proof. I: f (A,B,C) = (<$>,<>)-f ,(A,B,C,0,<>) per definition. 
up up 

D 

I I: f ,({A
1

, ... ,A ),{B
1

, ... ,B J-B',C,x,q) 
up n m 

(B 1,<>)-fup'([A2 , ... ,An],[B2 , ... ,Bm]-B',x+A1B1,q) by induction on 

the length of A
1

. 

III: The lerrnna now follows by induction on n. 

Lemma 5.3.4(Behav iour off 0). up 
Let O:an :am, and for all 1:ai,j :an IA. I = IB. I. 

1 J 

Then fupO([A 1, ... ,An],[B 1, ... ,Bm]-B') = [R1, ... ,Rn] 

where R. = <A.B., ... ,A B.>. 
1 1 1 n 1 



177 

Proof. By induction on n. 

D 

Base: n=O 

Step: n~1 

f 0 ([],B) =[]per definition. up 
f 

0
([A

1
, ••• ,A ],[B1, ... ,B ]-B') up n m 

f (fd ({A
1

, ... ,A ])+1,{B
1

, ... ,B J-B',C)+2 up up n m 

f ({A1, ... ,A l,{B 1, ... ,B J-B',C)+2 (by Lemma 5.3.1.) up n m 

where C = f 
0

(fd ({A1, ... ,A ])+2, up up n 

f (fd ({A
1

, ... ,A ])+1,{B1, ... ,B J-B',C)+1) 
~ ~ n . m 

f o([A2,····A ],f ({A,, ... ,A ],{B,, ... ,B 1-B',c)+l) up n up n m 
(by Lemma 5.3.1.) 

. f 0 ([A2 , ... ,A l,(([B 1, ... ,B l,<>)-up n n 

f . l (<>,B",C,<A
1
B1, •.. ,A B >))+1) uptriang e n n 

(by Lemma 5.3.3.) 

f 
0

([A2 , ... ,A ],[B 1, ... ,B ]) (by Lemma 5.3.2.) up n n 

[R2, ... ,Rn] (induction hypothesis) 

So f 
0

([A
1

, ... ,A ],[B
1

, ... ,B J-B') 
up n m 

f ({A
1

, ... ,A ],{B
1

, ... ,B ]-B',[R2 , ... ,R ])+2 up n m n 

f . l ( <> , B" , [ R2 , ... , R ] , <A 1 B 1 , ... , A B >) + 2 uptriang e n n n 
(by Lemma 5.3.3.) 

[R', ... ,R'] (by Lemma 5.3.2.) 
1 n 

where R! 
i 

R' 
n 

<AiBi>-Ri+l = <AiBi, ... ,AnBi> 

<AB>. 
n n 

Lemmas 5.3.5. to 5.3.7., which are the low-counterparts of lemmas 5.3.2. to 

5.3.4., are stated without proof. 

Lemma 5.3.5(Behaviour of f
1 

• 
1 

) . owtriang e 

D 

Let k~O. 

Then flowtriangle(A,B,[C2,···•Ck+1],<x1'···•~+1> 

(<>,[<xl>,c2-<x2>, ... ,Ck+1-<xk+1>]). 



178 

Lemma 5.3.6(Behaviour of flow). Same conditions as f or lemma 5. 3. 3. 

D 

fl (A, B, C) = ( [ B 1 , ... , B ], <>)~fl . l ( <>, B", C, <A 1 B 1 , ... , A B >) . ow n owtriang e n n 

Lemma 5.3.7(Behaviour of f
10

w0). Same conditions as f or lemma 5. 3. 4. 

flowO([A 1, ... ,An],[B 1, ... ,BmrB') = [R 1, ... ,Rn] 

D 

Lemma 5.3.S(Behaviour of fcollect). 

Let k;;; o. 

Then fcollect(A,B,[c,, ... ,ck],[Dz,···•Dk+1]'<x1, ... ,~+1>) 

(<>,<>, [R1 ' ... •¾+1]) 

where R
1 

Proof. I: k=O fcollect(A,B,[],[],<x 1>) = (<>,<>,[x 1]) 

II: k=1 fcollect(A,B,[c 1],[Dzl,<x 1, xz> 

(<> '<> ,<$ ,x1> )~f collectup (A,B' {C1] ' {Dz]' <xz>) 

(<>,<>,<$, x ,>~c 1)~fcollectup(A, B,[] ,{Dz],<xz>) 

(by induc tion on the length of c
1

) 

(<>,<>,<$,x1>~c1~<$>)~fcollectlow(A,B,<>,{Dz],<xz>) 

(<>,<>,<$, x 1>~c,~<$>-Dz)-fcollectlow(A,B,<>,[],<xz>) 

(by induc tion on the length of Dz) 

(<>,<>,<$,x 1>~c
1
~<$>~Dz~<xz,*>) 

(<>,<>,[R1,Rz]). 

III: k;;: z fcollect(A,B,[c 1, ... ,Ck],[Dz,···•Dk+l]'<x1, ... ,~+l>) 

(<>,<>,<$,x1>)~fcollectup(A,B, {C1' 000 'Ck], {Dz,···•Dk+1], 

<xz, ... ,xk+1>) 

(<>,<>,<$,x1>~c1 )~fcollectup (A,B, [Cz, ... ,Ck]' {Dz, ... ,Dk+1]' 

<xz, ... ·~+1>) 

(by induction on the length of c
1

) 



179 

( <> '<> ,<$ ,x,>~c 1 -<$>)-f callee t low (A, B' {C2' ... 'Ck]' 

{D2' ... ,Dk+1] ,<x2' ... ,xk+l>) 

(<>,<>,<$,xl>~cl-<$>-D2-<x2>)-fcollectlow(A,B,{C2,·· .,Ck], 

[D3,·· .,Dk+l],<x3,···,xk+l>) 

(by induction on the length of D2) 

(<>,<>,<$,xl>~c,-<$>-D2)-fcollectup(A,B,[C2'" .. ,Ck], 

[D3,···,Dk+l],<x2,···•xk+l>). 

IV: The lemma follows by induction on k. (Base: k=l) 

□ 

Lemma 5.3.9(Behaviour of fcentre). Same conditions as for lemma 5. 3. 4. 

fcentre ({Al' ... ,An] ,{Bl' ... ,Bn] ,C,D) = 

([A 1, ... ,A ],[B
1

, ... ,B ],<>)-f ll (<>,<>,C,D,<A1B1, ... ,A B >). n n co ect n n 

Proof. Same as lemma 5. 3. 3. 

□ 

Theor em 5.3.lO(Behaviour of f madm). 

Let n~O and for all 1i i,j ~n IAil IB. I. 
J 

Then fmadm([A 1, ... ,An],[B 1, ... ,Bn)) = [R 1, ... ,Rn] 

where R. = <A.B 1, ... ,A.B >. 
1 1 1 n 

Proof. n=O f d ((],[])=[]per definition ma m 

n~ l fmadm([Al, ... ,An), [Bl, ... ,Bn]) 

f (fd ({A1, ... ,A ))+1,fd ({B 1, ... ,B ])+1,C,D)+3 centre up n up n 

f ({A1, ... ,A ),{B 1, ... ,B ],C,D)+3 centre n n 

where C = f 0 (fd ({B1, ... ,B ])+2,f (fd ({A1, ... ,A ])+1, up up n centre up n 

fd ({B1, ... ,B ]+1,C,D)+l) up n 

f 
0

([B
2

, ... ,B ],[A
1

, ... ,A ])-A' (for some A') 
up n n 

(by Lemmas 5.3.1 ., 5.3.9.) 

= [T 1, ... ,Tn_l] (by Lemma 5.3.4.) 



180 

D 

and D = [ s
2

, ... , S ] 
11 

where S . = <A.B ..... ,A.B . 
1
> (same reasoning as for C). 

i ii' ii-

Combining this we get (by Lemma 5.3.9.) 

fcentre({A1,···,An],{B1,···•Bn],C,D)+ 3 

f ({A1, ... ,A ],{B 1, ... ,B ],[T1, ... ,T 
1
),[s2 , ... ,S ]) +3 centre n n n- n 

f 11 (<>,<>,[T1,····T 1),[s2,···,s ],<A1B1,····A B >)+3 co ect n- n n n 

We now apply lemma 5.3.8.: 

I: n=l fcollect(<>,<>,[],[],<A1B1>)+3 = [A1B1] 

II: n~Z fcollect(<>,<>,[T1,···•Tn-1],[S2,···• 5n],<A1B1, ... ,AnBn>) 

= [R1, ... ,Rn] 

where R1 

R. 
i 



181 

5.4. CORRECTNESS OF DIVCONQ 

We prove the correctness of Divconq (figure 4.2.3.7.) independently 

of the precise specification of the primitive functions solve-seq, size, 

combine, and split. These primitives must, however, have certain properties 

which we discuss first. 

The sequential program solve-seq takes a problem p and yields a result 

r, where pis an element of the problem domain P and ran element of the re­

sult domain R. 

f : P ➔ R 
solve-seq 

We will show that Divconq behaves just like solve-seq: 

Vp E P: f . (p) = f (p) divconq solve-seq 

The primitive function size measures the size of a problem. The size of a 

problem is a positive integer. 

f. :P ➔ JN size 

If the size of a problem is one, we call it a simple problem. The primitive 

function split takes a non-simple problem and yields two problems p1 and p2. 

We will use two functions to describe split. 

fsplit1 

fsplit2 PNS ➔ P 

where PNS P\ {p If . (p) = 1} 
size 

such that f. (f 1 .t 1(p)) size sp i 

f . (f 1·t2(p)) size sp i 

Lf . Cp)/2J size 

The primitive function combine takes two results and yields one result. 

fcombine: Rx R ➔ R 

such that Vp E PNS fcombine(fsolve-seq(fsplit1(p)), 

fsolve-seq(fsplit2(p))) 

fsolve-seq(p) 



182 

In the sequel the/ operator will perform a truncation towards zero for posi­

tive operands, just as in C. We have introduced one extra primitive function 

twolog. The only property we demand of twolog is: 

where g(n) denotes the meaning of twdlog. 

We will assume no other properties of the primitives than the ones stated 

above . We will now derive the functions describing Divconq. The initial net­

work is shown in figure 5.4.1. 

fd. (prb) 1.vconq 

where Y 

f (prb,Y)+1 root 

f 1 f(f . (prb,Y)+2) ea root 

prb 

Figure 5.4.1. Initial network of Divconq. 

The process root determines whether it must split the problem. If not, it just 

solves the problem sequentially. This is the only case where a leaf process 

is needlessly created, and could have been prevented by making the main pro­

cess Divconq check for it. If the problem has to be split, root first sends 

down a measure of the row of problems which will follow, and then goes into 

a "splitloop" followed by a matching "combineloop". 

f (prb,subress) root 

[x=l ➔ (<f l (F(prb)),EOF>,<EOF>) so ve-seq 

, (<>,<x/2>)-f 
1

. 
1 

(R(prb),subress,x,x,F(prb))] 
sp 1.t oop 

where x = fsize(F(prb))/g(fsize(F(prb))) 



183 

fsplitloop(prb,subress,c,n,p) = 

[c/2>0 ➔ (<>,<f 
1
.t2 (p)>)-f 

1
. 

1 
(prb,subress,c/2,n,f 

1
. 

1
(p)) sp i spit oop spit 

, f b' 1 (prb,subress,n,f 
1 

(p))] com ine oop so ve-seq 

f b' 
1 

(prb,subress,c,r) = com ine oop 

[c/2>0 ➔ f b' 1 (prb,R(subress),c/2,f b' (r,F(subress))) com ine oop com ine 

, (<r,EOF>,<EOF>)] 

A leaf process reads the measure of the row of problems it will receive. If 

it will receive one problem it will solve that problem sequentially, otherwise 

it will expand as shown in figure 5.4.2. 

where rl 

rr 

R(prbs) 

Figure 5.4.2. Expansion of leaf. 

[F (prbs) 

[F(prbs) 

EOF ➔ <EOF>, 

➔ <f l (F(R(prbs))),EOF> so ve-seq 

, fd. (R(prbs),rl,rr,F(prbs))+1]] ivco 

fleaf(fdivco(R(prbs),rl,rr,F(prbs))+2) 

fleaf(fdivco(R(prbs),rl,rr,F(prbs))+3) 

A divco process splits and divides all problems it receives except the last 

one. The last problem is solved sequentially and the result is sent up. Then, 

the results of the problems sent down are combined and sent up. 



184 

fd . (prbs,rl,rr,n) = (<>,<n/2>,<n/2>)-fd bl 1 . (prbs,rl,rr,n,n) ivco ou esp it 

fd bl 1 . (prbs,rl,rr,c,n) = . ou esp it 

[c/2>0 ➔ (<>,<f 
1

. 
1

(F(prbs))>,<f 
1

. 2 (F(prbs))>)-sp it Sp it 

fd bl 1 . (R(prbs),rl,rr,c/2,n) ou esp it 

, (<f 
1 

(F(prbs))>,<>,<>)-
so ve-seq 

fd bl b' (R(prbs),rl,rr,n)] ou ecom ine 

fdoublecombine(prbs,rl,rr,c) = 

[c/2>0 ➔ (<f b ' (F(rl),F(rr))>,<>,<>)­com ine 

fdoublecombine(prbs,R(rl),R(rr),c/ 2) 

, (<EOF>,<EOF>,<EOF>)] 

The rows of problems and results travelling over the channels have certain 

well-formedness properties which are defined as follows: 

Definition 5.4.1(Well-formed row of problems). 

□ 

Let c E N and pk, ... ,p0 E P. 

Then (1) <O> is an (empty but) well- formed row of problems , written 

<O> WFP 

(2) <c,pk, ... ,p0> is a well-formed row of problems , written 

<c,pk, ... ,p0> WFP 

iff: ( i) 2k:£c<2k+ 1 (k~O) 

(ii) f . (p. ) ,;: zi 
size i 

Definition 5.4.2(Well-formed row of results). 

Let c E lN, and rk, ... ,r 1 ER. 

Then <c,r 1, ... ,rk> is a well-formed r ow of r esults , written 

<c,r 1, ... ,rk> WFP , 

iff 2k$c<2k+ l • 
□ 



We also define the transitive closure of fcombine· 

D~finition 5.4.3. f~ombine 

f* . (r <>) = r 
combine ' 

RX R* ➔ R 

f* b' (r0 ,r 1-x) com ine 
f* . (f . (r r ) X) 

combine combine 0' 1 ' 

D 

Clearly f* b' (r
0

,x-r) = f b' (f* b' (r0 ,X),r). com ine com ine com ine 

Lemma 5.4.l(Behaviour off b' 1 ). 
com ine oop 

Let <c,r
1

, ... ,rk> WFR. 

Then f b ' 
1 

(prb,<r
1

, ... ,rk>-X, c ,r) = 
com ine oop 

(<f* b' (r,<r
1

, ... ,rk>),EOF>,<EOF>). 
com ine 

Proof. By induction on c. 

D 

Base: c=l 

fcombineloop(prb,X,1,r) = (<r,EOF>,<EOF>) 

(<f~ombine(r ,<>),EOF>,<EOF>). 

Step: c>l 

f b' 1 (prb,<r 1 , ... ,rk>-x,c,r) com ine oop 

f b' 1 (prb,<r2 , ... ,rk>-X,c/2,f b' (r,r
1
)) com ine oop com ine 

c>l and (c,r
1

, ... ,rk) WFR ➔ (c/2,r
2

, ... ,rk) WFR 

So we may apply the induction hypothesis: 

f b ' 1 (prb,<r2 , ... ,rk>-X,c/2,f b' (r,r
1
)) com ine oop com ine 

(<f* b' (f b' (r,r 1),<r2 , ... ,rk>),EOF>,<EOF>) com ine com ine 

Lemma 5.4.2(Behaviour off 
1

. 
1 

). 
sp it oop 

Let fsize(p) ~c , c ~ 1, n~c . 

Then f 
1

. 
1 

(prb , subress ,c,n,p) 
spit oop 

(<>,<pk 
1

, ... ,p
0
>)-f b' 

1 
(prb,subress,n,f 

1 
(p

0
)) 

- com ine oop so ve-seq 

where (1) <c/2,pk_
1

, ... ,p
0

> WFP 

(2) f* . (f (p ) 
combine solve-seq O' 

185 

<fsolve-seq(po), ... ,fsolve-seq(pk-1)>) f 1 (p). so ve-seq 



D 

186 

Proof. By induction on c. 

Base : c=1 

f 
1

. 
1 

(prb,subress,1,n,p) 
sp it oop 

f b' 
1 

(prb,subress,n,f 
1 

(p)) 
com ine oop so ve-seq 

p
O
=p,<pk-l',, · ,p

O
> = <> and (1) and (2) are. satisfied. 

Step: c ~2 

Now 

f 
1

. 
1 

(prb,subress,c,n,p) 
sp it oop 

(<>,<f 
1

. 
2

(p)>)-f 
1

. 
1 

(prb,subress,c/2,n,f 1 .t
1

(p)) 
spit spit oop sp i 

f . (p) ~c ➔ f . (f 1 · 1 (p)nc/2. 
size size spit 

So we may apply the induction hypothesis : 

f 
1

. 
1 

(prb,subress,c,n,p) 
spit oop 

(<>,<fsplit2(p)>)-(<>,<pk-2'··•,Po>)~ 

f b' 1 (prb,subress,n,f 1 (p
O

)) com ine oop so ve-seq 

(<>,<fsplit2(p),pk-2'··•,Po>)~ 

f b' 
1 

(prb,subress,n,f 1 (p
O
)) 

com ine oop so ve-seq 

where (1) <c/4,pk_
2

, ... ,p
O

> WFP 

( 2) f * . ( f (p ) 
combine solve-seq O' 

<f (pO), ... , f 1 (pk 2)>) solve-seq so ve-seq -

f 1 ( f 1 . 1 (p)) . so ve-seq spit 

Now we must c heck (1) and (2) for f 
1

. 
1 

(prb,subress,c,n,p): 
spi t oop 

( 1 ) f . (p)~c ➔ f . (f 
1

. 
2

(p))~c/2 
size size spit 

and therefore <c/2,fsplit 2 (p),pk_2 , ... ,pO> WFP, 

(2) f* b' (f 1 <iio),<f 1 (po), ... ,f 1 (pk 2), com ine so ve-seq so ve-seq so ve-seq -

fsolve-seq(fsplit2(p))>) 

f b · (f* b . (f 1 (po)' com ine com ine so ve-seq 

<f 1 (pO), ... ,f 1 (pk 2)>),f 1 (f 1· 2(p)) so ve-seq so ve-seq - so ve-seq spit 

f . (f (f . (p)) f (f . (p)) 
combine solve-seq splitl 'solve-seq split2 

f 1 (p). so ve-seq 



Lemma 5.4.3(Behaviour of fdoublecombine). 

Let <c,r;, ... ,r~> WFR, <c,r1', ... ,rk> WFR. 

Then fdoublecombine (X,<r;, ... ,r{>-Y ,<r',', ... ,rk>-z,c) 

Proo!. By induction on c. 

D 

Lemma 

Base: c=1 

f . (X Y Z 1) doubl ecombine ' ' ' (<EOF>,<EOF>,<EOF>) 

Step: c~2 

f (X <' ' - 11 11 -z ) doublecombine 'r1,···,rk> Y,<r1,···,rk> ,c 

(<f b' (r1',r'1')>,<>,<>)-com 1.ne 

fd bl b' (X,<r2', ... ,rk'>-Y ,<r2
11

, ••• ,rk11>-z,c/2) ou e com 1.ne 

No~, <c/2,r;, ... ,r{> WFR and <c/2,rz,···,rk> WFR 

So we may apply the induction hypothesis: 

fd bl b ' (X,<r 1
1

, ••• ,rk1 >-Y,<r 1

1
1

, ••• ,rk11>-z,c) ou ecom 1.ne 

5.4.4(behaviour of fd bl 1 . ). ou esp 1.t 
Let <c,pk, ... ,p0> WFP, c~ l, n~c. 

Then fd bl 1 . (<pk, ... ,p 0>-X,rl,rr,c,n) ou esp l.t 

(<f 1 (po)>,<pk' 1•···,Po' >,<pk
11 

1•··•,Po
11
>)-so ve-seq - -

fd bl b ' (X,rl,rr,n) ou ecom 1.ne 

where pi 
11 p. 
l. 

f 
1

. 1(p. ) and <c/2,pk'_ 1, ... ,p0
1 > WFP sp 1.t i.+1 

fsplit2(pi+1) and <c/ 2 ,Pk-1•···,Po> WFP. 

Proof. By induction on c. 

Base: c=l 

fd bl 1 . (<p0>-X,rl,rr,l,n) ou esp 1.t 

(<f 1 (pO)>,<>,<>)-fd bl b ' (X,rl,rr,n) so ve-seq ou ecom 1.ne 

187 



188 

□ 

Step: c ,;: 2 

fd bl 1 . (<pk, ... ,p0>-X,rl,rr,c,n) o•J esp 1t 

(<>,<f 1· 1(pk)>,<f 1· 2(pk)>)-sp 1t sp 1t 

fd bl 1 . (<pk 1, ... ,p0>-X,rl,rr, c /2,n) 
OU esp lt -

Because <c/2,pk_
1

, ... ,p
O

> WFP, the induction hypothes is applie s : 

fd bl 1 · (<pk•··•,Po>-X,rl,rr,c,n) ou esp 1t 

( I U ) - ( f ( ) > < I I> < U ">) -<>,<pk-1>,<pk-1> < solve-seq Po 'Pk-2•···,Po 'Pk-2•···,Po 

fd bl b ' (X,rl,rr,n) ou ecom 1ne 

( f ( ) I I U "> ) -< solve-seq Po >,<pk-1•··•,Po>,<pk-l''''•Po 

fdoublecombine(X,rl,rr,n) 

where pi 

p'.' 
1 

f . (p . ) 
spllt1 1+1 

f 1· 2(p. 1) sp 1t 1+ 

and, because fsize(pk_ 1) 

fsize(pk-1) 

(and induction hypothesis) we have: 

<c/2,pk-1•··•,Po> WFP 

/ 2 " "> WFP <c ,Pk-1'"'•Po . 

Lemma 5.4.5(Behaviour of fleaf). 

Let <c,pk, ... ,pO> WFP. 

Then fleaf(<c,pk, ... ,pO>-X) = <rO, ... ,rk,EOF> 

where r. = f 
1 

(p . ). 
1 so ve-seq 1 

Proof. By induction on c. 

Base: c=1 

flea/<l ,po>-x) <f l (pO),EOF>. so ve-seq 



D 

Step: c.:: 2 

fleaf(<c,pk,···,Po>-X) = fdivco(<pk•···,Po>-X,rl,rr,c)+1. 

where rl fleaf(fdivco(<pk,···,Po>-x,rl,rr,c)+ 2) 

rr £1 f(fd. (<pk, ... ,p0>-X,rl,rr,c)+3). ea 1.VCO 

fd. (<pk ' ... ,pO>-X,rl,rr,c) 1.VCO 

(<>,<c/2>,<c/2>)-fd bl 
1

. (<pk, ... ,p
0
>-X,rl,rr,c,c) ou esp 1.t 

(<f 1 (po)>,<c/Z,pk' 1•···,Po'>,<c/ 2 ,Pk11 1•···,Po">)-so ve-seq - -

fd bl b . (X,rl,rr,c) (by Lemma 5.4.4.) ou ecom 1.ne 

where pi 

p'.' 1. 

fsplit1(pi+1) and <c/2,pk_,, ... ,po> WFP 

f 
1

. 2 (p. ) and <c/2,pk"_ 1, ... ,p
0
"> WFF sp 1.t 1.+l 

189 

rl fleaf(<c/ 2 ,Pk-l''''•po>-x') = <ra,···,rk-1'EOF> 

(because <c/2,pk-1•··•,Po> WFF so the induction hypo­

thesis applies) 

where r! = f (p!) 1. solve-seq 1. f 1 (f 1. 1 (p. ) ) so ve-seq sp 1.t 1.+1 

rr <ro,···,rk-1'EOF> 

where r'.' = f (p'.') 1. solve-seq 1. f 1 (f 1. 2 (p. ) ) • so ve-seq sp 1.t 1.+1 

fdivco(<pk'' .. ,p0>-x,rl,rr,c)+1 

<f (p
0

)>-f . (X,<r', ... ,r' ,EOF>, 
solve-seq doublecomb1.ne O k-1 

<ro•····rk-1'EOF>,c)+1 

(<c,pk,···,Po> WFF implies <c,ra,····rk-1> WFR ➔ Lemma 5.4.3.) 

<f l (p0)>-<r0 , ... ,rk 1,EOF> so ve-seq -

where r. 1. f b. (r!,r'.') com 1.ne 1. 1. 

f b . (f 1 (f 1. 1 (p. 1))' com 1.ne so ve-seq sp 1.t 1.+ 

f 1 (f 1· 2(p. 1))) so ve-seq sp 1.t 1.+ 

<fsolve-seq(po), ... ,fsolve-seq(pk),EOF>. 



190 

Theorem 5.4.6. fd. (<p>-X) = <f 
1 

(p),EOF>. 
---- ivconq so ve-seq 

Proof. fd. (<p>-X) = froot(<p>-X,Y)+1 ivconq 

D 

There are two cases : 

x=f. (p)/g(f. (p))=1: 
size size 

f (<p>-X,Y) = (<f l (p),EOF>,<EOF>). 
root so ve-seq 

x>1: 

f (<p>-X,Y) = (<>,<x/2>)-f 
1

. l (X,Y,x,x,p) 
root spit oop 

(Lemma 5. 4. 2. applies because f . (p) ~x ) 
size 

(<>,<x/2>)-(<>,<pk 
1

, .. ,p
0
>)-f b' l (X,Y,x,f l (p0 )) - com ine oop so ve-seq 

(<>,<x/2,pk 1 , ... ,p0>-f b' l (X,Y,x,f l (p0 )) - com ine oop so ve-seq · 

where (1) <x/2,pk_
1

, ... ,p
0

> WFP 

(2) f* . (f (p) 
combine solve-seq O' 

<f 1 (po)' ... 'f 1 (pk 1 )>) so ve-seq so ve-seq -

f 1 (p) • 
so ve-seq 

f (<p>-X,Y)+2 = <x/2,pk 
1

, ... ,p
0
>-X' 

root -

We therefore have that 

y fleaf(<x/Z,pk-1' 0 ·•,Po>-X') 

<r
0

, ... ,rk_
1

,EOF> (by Lellllna 5.4.5 .) 

where r. = f 
1 

(p.). 
i so ve-seq i 

£root (<p>-x, Y)+ 1 

f b ' l (X,<r0 , ... ,rk 1 ,EOF>,x,f l (p0 ))+1 com ine oop - so ve-seq 

<f* . (f (p ) <f (p ) ... f (p )>) EOF> 
combine solve-seq O ' solve-seq O ' ' solve-seq k-1 ' 

(by Lemma 5.4.1.) 

<f l (p),EOF>. 
so ve-seq 



191 

5. 5. REMARKS 

The above sections show that realistic DNP programs can be proved 

correct using Kahn's two step method of translating programs into sets of 

equations and solving these equations. The proofs are long (about the size 

of the programs) because we have to deal with many deta
0

ils. The proofs may 

be stated in a more direct way using a Hoare style system for the language. 

At this moment work is being done to construct such Hoare style proof rules 

and axioms [21]. 

Another drawback of the semantics used here is that we can only prove 

properties of the complete histories travelling over the channels (because 

these are the solutions of the equations). We cannot make statements about 

the relative ordering of say, reads and writes in various processes which 

might be the very purpose of a certain program (such as the implementation 

of a protocol). In a Hoare style system one may prove properties of this 

kind. 



192 

REFERENCES 

·[1] ACKERMAN, W.B., DENNIS, J .B., VAL - A Value oriented Algorithmic lan ­

guage . Preliminary reference manual , MIT/LCS/TR-218, Lab. for Comp. 

Sci ., MIT , Cambridge , Mass , 1979. 

[2] ADI.MS, D.A. , A Computational Model with Data Flow Sequencing , TR/CS-117, 

School of Humanities and Sciences, Stanford Univ., Stanford, 

California, 1968. 

[3] ALLAN, S.J., OLDEHOEFT, A.E., A flow analysis Procedure for the Trans ­

lation of High- level languages to a Data Flow Language , IEEE Trans­

actions on Computers, 29,9 (1980), pp. 826-831. 

[4] ALLEN , A.O., Probability , Statistics and Queuing Theory . With Computer 

Science Applications , Academic Press, New York, 1978. 

[5] ARVIND , GOSTELOW, K.P., Some Relationships between asynchronous inter­

preters of a dataflow language , in NEUHOLD, E. J. (ed.), Formal 

descriptions of Prograrroning Concepts , North Holland Publishing 

Company, New York, 1977, pp. 95-119. 

[6] ARVIND, IANUCCI, R.A., A Critique of Multiprocessing von Neumann Style , 

MIT/LCS /TM-226, Lab. for Comp. Sci., MIT, Cambridge, Mass, 1983. 

[7] ASHCROFT, E.A., WADGE, W.W., LUCID , a Nonprocedural Language with Iter­

ation , CACM, 20 ,7 (1977), pp. 519-526. 

[8] BACKUS, J ., Can Prograrroning be liberated from the von Neumann Style? 

A functional Style and its Algebra of Programs , CACM, 21,8 (1978), 

pp. 631-641. 

[9] BATCHER, K.E., Sorting networks and their applications , Proc. AF IPS 

1968 SJCC, 32, AFIPS Press, Montvale, N.J ., 1968, pp . 307- 314. 



193 

(10] BOHM, A.P.W., DE BRUIN, A., Dynamic Networks of Parallel Processes, 

IW 192/82, Dept. of Comp. Sci., Mathematisch Centrum, Amsterdam, 

1982. 

(11] BOUSSINOT, F., Proposition de Semantique denotationelle pour des reseaux 

de processus avec operateur de m~lange equitable , Report 2487, 

Thomson CSF, Corbeville , France, 1980. 

(12] BOWEN, D.L., Implementation of Data Structures in a Dataflow Computer , 

Ph.D. Thesis, Dept. of Comp. Sci., Victoria University of Manches­

ter,1981. 

(13] BROCK, J.D., Operational Semantics of a Data Flow Language , MIT/LCS/ 

TM-120, Lab. for Comp. Sci., MIT, Cambridge, Mass, 1978. 

(14] DE BRUIN, A., BOHM, A.P.W., The denotational semantics of dynamic net-

1,;orks of processes , RUU-CS-82-13, Dept. of Comp. Sci., Univ. of 

Utrecht, 1982. 

(15] BURKS, A.W., GOLDSTINE, H.H., VON NEUMANN, J., Pre liminary discussfon of 

the logical design of an electronic computing instrument, U.S. Army 

Ordnance Department Report, 1946. 

(16] CATTO, A.J., GURD, J., Nondeterministic Dataflow Graphs , Proc. 8th IFIP 

World Computer Congress . IFIPSO, North Holland Publishing Company, 

Amsterdam, 1980, pp. 251-256. 

(17] CHAMBERLIN, D.D., The 'Single-Assignment ' Approach to Parallel Proces ­

sing,, AFIPS Conf. Proc. 39, 1971 FJCC, 1971, pp. 263-269. 

(18] COOK, S.A., The complexity of theorem proving procedures, Proc. 3rd. 

Ann. ACM Symposium on the theory of Computing, ACM, New York, 

1971, pp. 151-158. 



194 

[19] DAVIS, A.L., A data flow evaluation system based on the concept of re ­

cursive locality , AFIPS Proc. of the National Computer Conf., 

New York, 1979, pp. 1079-1086. 

[20] DAVIS , M., Computability and unsolvabi lity , McGraw-Hill, New York, 1958. 

[21] DE ROEVER, W.P ., DE BRUIN, A., ZWIERS, J., A sound proof system for 

dynamic networks of processes , in CLARKE, E., KOZEN, D.(eds.), 

Proc . 2nd Workshop on Logics of PY'ograrroning , (to appear in LNCS), 

1983. 

[22 ] DENNIS , J . B., First· Version of a Data Flow Procedure Language , LNCS 19 , 

Spr i nger-Verlag , Berlin, 1974, pp. 362-376. 

[2 3] DENNIS, J . B., MISUNAS, D.P., A Preliminary Ar chitecture for a Basic 

Data Flow Architecture , The Second Ann. Symp. on Comp. Architec­

ture: Conference Proceedings, IEEE, 1975, pp. 126-1 32 . 

[24 ] DENNI S, J. B., Data Flow Supercomputer s , IEEE Computer, Nov. 1980, 

pp. 48-56. 

[25] EARLEY, J., STURGIS, H., A Formalism f or t ranslator Interactions , CACM, 

13,10 (1970), pp. 607-617. 

[26 ] FAUSTINI, A.A., An Operational Semantics for Pure Dataflow , in NIELSEN, 

M. , SCH.MIDT, E.M. (eds . ) , Autamata , Languages and Prograrroning , Ninth 

Colloquium (Aarhus , Denmark), LNCS140, Springer-Verlag , Berl in , 

1982, pp. 

[27] FLORIJN, G., ROLF, G., PGEN - A General Purpose Parser Generator , I W 

157/81, Dept. of Comp. Sci., Mathematisch Centrum, Amsterdam, 1981. 

[28 ] FLYNN , M.J., Very High- Speed Computing Systems , Proc. IEEE, 54,1 2 ( 1966), 

pp. 1901-1909. 



195 

[29] FOSSEEN, J.B., Representation of Algorithms bij maximally Parallel Sche­

mata, M.Sc. Thesis, Dept. of Electr. Eng., MIT, Cambridge, Mass, 

1972. 

[30] FRIEDMAN, D.P., WISE D.S., Cons should not evaluate its arguments, 

Automata languages and programming, Edinburgh Univ. Press, 

Edinburgh, Scotland, 1976, pp. 257-284. 

[31] GAJSKI, D.P., PADUA, D.A., KUCK, D.J., KUHN, R.H., A Second Opinion on 

Data Flow Machines and Programming, IEEE Computer, febr. 1982, 

pp. 58-69. 

[32] GAREY, M.R., JOHNSON, D.S., Computers and Intractability - A guide to the 

Theory of NP-Completeness, W.H. Freeman and Company, San Francisco, 

1979. 

[33] GHEZZI, C., DELLA VIGNA, P.L., Context free graph grammars, Information 

and Control, 37 (1978), pp. 207-233. 

[34] GLAUERT, J.R.W., A Single-Assignment Language for Dataflow Computing, 

M.Sc. Dissertation, Dept. of Comp. Sci., Victoria University of 

Manchester, 1978. 

[35] GURD, J., WATSON, I., A Prototype data flow computer with token label­

ling, AFIPS proc. of the National Computer Conf., New York, 1979, 

pp. 623-682. 

[36] GURD, J., WATSON, I., Data Driven system for high speed parallel com­

puting, part 1 and 2, Computer Design, June/July (1980), pp. 91-99/ 

pp. 97-105. 

[37] HANKIN, C.L., GLASER, H.W., The Data Flow Programming Language CAJOLE, 

SICPLAN Notices, 16,7 (1981), pp. 35-44. 

[38] HANSEN, P.B., Operating Systems Principles, Prentice Hall Inc., 

Englewood Cliffs, N.J., 1973. 



196 

[39] HOARE, C.A.R., Communicating Sequential Processes , CACM, 21,8 (1978), 

pp. 666-677. 

[40] HOCKNEY, R.W., and JESSHOPE, C.R., Parallel Computers , Adam Hilger Ltd., 

Bristol, 1981. 

[41] HOEY, D., LEISERSON . C. E., A layout for the Perfect Shuffle Exchange 

Network ,CMU-CS-80-139, Dept . of Comp. Sci., CMU, Pittsburg, 1980. 

[42] HOPCROFT, J.E., ULLMAN, J .D., Introduction to Automata theory , Languages, 

and Computation, Addison-Wesley Publishing Company, Reading, Mass, 

1979. 

[43] HOSSFELD, F., Parallelprozessoren und Algorithmenstruktur, Bericht Jiil­

Spez. 87, Zentralinstitut f. angewandte Mathematik, Kernforschungs­

anlage Jiilich GmbH, Jiilich, 1980. 

[44] JAFFE, J.M., The equivalence of r.e. program schemes and dataflow 

schemes , Journal of Computer and System science, 21 (1980), 

pp. 92-109. 

[45] JENSEN, J.C., Basic Program Representation in the Texas Instruments 

Data Test Bed Compiler , Unpublished Memo, Texas Instruments Inc., 

1980. 

[46] KAHN, G., The Semantics of a simple language for parallel programming, 

IFIP74, North Holland Publishing Company, Amsterdam, 1974, pp. 471-

475. 

[47] KARP, R.M., and MILLER, R.E., Properties of a model for parallel com­

putations: determinacy , termination , queuing , SIAM Journal of 

applied Mathematics, 14,6 (1966), pp. 1390-1411. 

[48] KELLER, R.M., JAYARAMA, B., ROSE, D., Lindstrom, G., FGL Programmers 

Guide , Technical Memo 1, Dept. of Comp. Sci., Univ. of Utah, Salt 

Lake City, 1980. 



197 

[49] KERNIGHAN, B. W., RITCHIE, D.M., The C programming language , Prentice Hall 

Software Series, Englewood Cliffs, N.J., 1978. 

[SO] KLEENE, S.C., Gene1•al 1•ecursive functions o.f natural nwnbers, Mathe­

matische Annalen , 112 (1936), pp. 727-742. 

[51] KLINT, P., Summer Reference Manual , Dept. of Comp. Sci., Mathematisch 

Centrum, Amsterdam, 1981. 

[52] KNUTH, D.E., The art of Computer programming , Vol 1/Fundamental Algo­

rithms, Addison Wesley Publishing Company, Reading, Mass, 1973. 

[53] KNUTH, D.E., Semantics o.f context free languages , Mathematical Systems 

Theory, 2,2 (1968), pp. 127-145. 

[54] KOSTER, C.H.A., Affix Grammars , in PECK, J.E.L.(ed.), Algol 68 Imple­

mentation , North Holland Publ. Co., Amsterdam, 1971, pp. 95-106. 

(55] KRAMER, M.R., VAN LEEUWEN, J., Systolic Computation and VLSI , RUU-CS-

82-9, Dept. of Comp. Sci., University of Utrecht, 1982. 

(56] KUCK , D.J., A Survey of Parallel Machine Organisation and Programming, 

ACM Computing Surveys, 9,1 (1977), pp. 29-59. 

(57] KUNC, H.T., LEISERSON, C.E., Systolic Arrays(for VLSI), in DUFF, I.S., 

STEWART, I.S.(eds.), Sparse .'.{atrix Proc . 1978 , Society for Indus­

trial and Applied Mathematics, 1979, pp. 256-282. 

(58] KUNG, S.Y ., ARUN , K.S., GAL-EZER, R.J., BHASKAR RAO, D.V., Wave front 

Array Processor: Language , Architecture and Applications , IEEE 

Transactions on Computers, C31,11 (1982), pp. 1054-1066. 

(59] LEISERSON, C.E., Systolic Priority Queues, CMU-CS-79-115, Dept. of Comp. 

Sci., CMU, Pittsburg, 1979. 



198 

[60] LISKOV, B.H., et.al., CLU Reference Manual, Memo 161, Comp. Structures 

Group, Lab. for Comp. Sci., MIT , Cambridge, Mass, 1978. 

[61] MCILROY, M.D., Coroutines , Techn. Rep., Bell Labs., Murray Hill, N.J., 

1968. 

[62] MINSKY, M.L., Computation : Finite and Infinite Machines, Prentice Hall 

Inc., Englewood Cliffs, N.J., 1967. 

[63] MISRA, J., CHANDI, K.M., Proofs of Networks of Processes , IEEE Trans­

actions on Software Engineering, 7,4 (1981) pp. 417-426. 

[64] MISUNAS, D.F. (ed.), Workshop on Data Flow Computer and Program Organi­

zation , Computer Architecture News, SIGARCH, 6,4 (1977), pp. 6-22. 

[65] MISUNAS, D. F . (ed.), Report on the second Workshop on Data Flow Computer 

and Program Organization , MIT/LCS/TM-136, Lab. for Comp. Sci., MIT, 

Cambridge, Mass, 1979. 

[66] OLDEHOEFT, A.E., ALLAN, S., THORESON, S., RETNADHAS, C., ZINGG, R.J., 

Translation of High level Programs to Data Flow and their Simulated 

Execution on a Feedback Interpreter, TR 78-2, Dept. of Comp. Sci., 

Iowa State University, Ames, 1977. 

[67] PARK, D., The "fairness " problem and nondeterministic computing net­

works, in DE BAKKER, J.W., VAN LEEUWEN J.(eds.), Foundations of 

Computer science IV. Distributed systems: Part 2, Semantics and 

logia , Mathematical Centre Tracts 159, Mathematisch Centrum, Amsterdam, 

1983, pp. 133-161. 

[68] PETERS, F . J., Tree machines and divide- and-conquer algorithms , in 

HANDLER, W.(ed.), Proa . of Compar Bl , LNCS 111, Springer-Verlag , 

Berlin, 1981, pp. 25-35. 



199 

[69] PETERSON, J.L., Petri Nets , ACM Computing Surveys, 9,3 (1977), pp. 223-

252. 

[70] PLAS , A., et.al., LAU System Architecture: a parallel data- driven proces­

sor based on single assignment , Proc. 1976 International Conf. on 

Parallel Processing , IEEE, 1976 , pp. 293-302; 

(71] PLOUFFE , W., ARVIND, GOSTELOW, K.P., An asynchronous Programming Language 

and Computing Machine , TR 114a, Information and Comp. Sci. Dept., 

University of California, Irvine, 1978. 

[72] RITCHIE, D.M., THOMSON, K., The UNIX Time Sharing System , CACM, 17,7 

(1974), pp. 365-375. 

[73] RODRIGUEZ, J.E., A graph model for Parallel Computation , MIT/LCS/TR-64, 

Lab. for Comp. Sci., MIT, Cambridge, Mass, 1969. 

[74] ROGERS, Jr. H., Theory of recursive functions and effective computability, 

Mc Graw Hill, New York , N.Y., 1967. 

[75] ROZENBERG, G., JANSSENS, D., On the structure of Node- label Controlled 

Graph Languages , Information Sciences, 20 (1980), pp. 191-216. 

[76] RUMBAUGH, J., A data flow multiprocessor, IEEE Transactions on Com­

puters, C26,2 (1977), pp. 138-146. 

[77] SLISENKO, A.O., Context free grammars as a tool for describing poly­

nomial- time subclasses of hard problems , Information Processing 

letters, 14,2 (1982), pp . 52-56. 

[78] STONE, H.S., Parallel Computers , in STONE, H.S.(ed.), Introduction to 

Computer Architecture , second edition, SRA Computer Science Series, 

Science Research Associates, Chicago, 1980, pp. 363-425. 

(79] THOMPSON, C.D., KUNG, H.T., Sorting on a Mesh- connected Parallel Com­

puter , CACM, 20,4 (1977), pp. 263-271 . 



200 

[80 ] THORNTON, J.E., Design of a Computer , The Control Data 6600 , Scott 

Foresman and Company , Glenview, Illinois , 1970. 

[ 81 ] THURBER , K. J ., Large Scale Computer Architectures : Parallel and Asso­

ciative Processors , Hayden Book Company, Rochelle Park , N.J. , 1976. 

[82] TIEN CHI CHEN, Overlap and Pipeline Processing , in STONE, H.S.(ed.), 

Introduction to Computer Architecture , second edition, SRA Com­

puter Science Series, Science Research Associates, Chicago, 1980, 

pp. 427-485. 

[83 ] TODD, s., Algorithm and Hardware for Merge Sort using multiple Processors, 

IBM J . Res. Develop ., 22,5 (1978), pp . 509-517 . 

[84] TRELEAVEN, P . C. , BROWNBRIDGE, D.R., HOPKINS, R. P. , Data-driven and 

Demand- driven Computer Architecture , ACM Computing Surveys , 14,1 

(1982) , pp. 93-1 43. 

[85 ] VEEN , A.H ., Reconciling Data Flow Machines and Conventional Languages , in 

HANDLER, W.(ed.), Proc . of Conpar 81 , LNCS 111, Springer- Verlag, 

Berlin, 1981, pp. 127-140. 

[86] WADGE, W.W., An extensional treatment of dataflow deadlock , in KAHN, G. 

(ed.), Semantics of Concurrent Computation , Proc. Evian, France, 

LNCS 70, Springer-Verlag, Berlin, 1979, pp. 285- 299 . 

[87 ] WALLACH, Y., Alternating sequential/parallel processing , LNCS 127, 

Springe r-Verlag , Berlin, 1982. 

[88 ] WHITELOCK, P . J ., A conventional Language for Dataflow Computing , M. Sc. 

Dissertation, Victoria University of Manchester , 197 8 . 

[89 ] WIRTH, N., Modula 2, Report 36, Institut fiir I nformatik , ETH , Zurich , 

1980. 



201 

[90] WYLLIE, J.C., The Complexity of Parallel Computations, Ph.D. Thesis, 

TR-79-387, Dept. of Comp. Sci., Cornell Univ., Ithaca, New York, 

1979. 



202 

ITEM 

abort 

accept 

applicative model 

arbitration network 

asynchronous 

bisection 

bisection width 

boundary 

box 

bypass 

call node 

central processor 

chain 

channel 

channel array 

channel configuration 

channel-size 

checking 

clean snapshot 

close 

code copying 

colour 

communication statements 

complexity measures 

computation graph 

computer architecture 

computing a (partial) function 

computing station 

conflict 

connectivity theorem 

context-free graph grammar 

continuity 

INDEX 

SECTION 

1.5.2.2. 

4 . 4. 

1.3. 

1.5.1. 

1.4. 

4.3.3. 

4.3.3. 

4.3.3. 

1.4. 

1 .5. 2 .2. 

1.4.1. 

1.1. 

5 .1. 

3.1. 

4.3.3. 

4.3.1. 

4.2. 

4.5. 

2.2. 

4.3.1. 

1. 4. 1. 

1. 4. 1. 

3.2.2. 

4.2. 

3.1. 

1.1. 

2.2. 

3.1. 

2.9. 

4.3.3. 

4.3.3. 

5 .1. 

PAGE 

18 

158 

5 

16 

6 

155 

155 

147 

6 

19 

13 

2 

166 

62 

154 

144 

104 

159 

35 

144 

13 

13 

65 

104 

62 

2 

28 

62 

58 

154 

148 

166 



contraction 

control value 

controlled merge node 

correctness 

counter machine 

creation 

cycle 

data driven model 

data path 

dataflow architecture 

dataflow machine 

dataflow net 

decision problem 

deer-box 

decrement 

defer 

deque 

derivation step 

deterministic turing machine 

diagonal 

distribution network 

divide-and-conquer 

DNP-compiler 

dup-box 

dynamic dataflow model 

dynamic part of DNP 

dynamic process creation 

empty token 

enable 

encoding scheme 

equivalent executions 

executable package 

execution 

exist 

expansion 

4.3. 4.3.3. 

1.4. 

1.4. 

5. 1. 

2 .6. 

3.2.3. 

1. 4. 2 .2. 

1. 3. 

1.4. 

1.5. 

1. 3. 

1 .4. 2 .2. 

4.4. 

2.2. 

1 .5 .2. 2. 

1 .5 .2 .2. 

4 .2. 1. 

4.3.3. 

4.4. 

4.2.2. 

1.5.1. 

4.2.3. 

3.3. 

2.2. 

1 .4. 1. 

3.2.3. 

3. 1. 

1 .5 .2 .2 

2.3. 

4.4. 

2.3. 

1.5 .1. 

2.3. 

2.3. 

3.2.3. 

203 

144,152 

8 

9 

165 

46 

69 

6,28 

5 

6 

14 

4 

5 

157 

29 

18 

18 

107 

148 

158 

123 

16 

133 

72 

28 

14 

68 

62 

18 

31 

157 

33 

16 

32 

32 

68 



204 

explicity parallel algorithms 

extract 

f~action 

fair merge 

fairness 

firing 

forking 

formal semantics 

functionality theorem 

gate 

generate 

group package 

guessing 

higher level Manchester Machine 

history 

Hoare style proof rule 

in-set 

inchannel 

incr-box 

increment 

initial graph 

inproduct 

input history 

input-line 

instance of a problem 

internal statement 

inverse perfect shuffle 

join-box 

k-bounded parallel timing 

Kahn principle 

(k,d)-reducible 

(k,d)-reduction 

kernel 

label 

labelling 

1.8.2. 

1 .5 .2 .2. 

1.5.2.2. 

2.7. 

2.7. 

1 .4. 2 .2. 

3. 3. 1. 

5.1. 

2.3. 

2.2 . 

1 .5 .2 .2. 

1.5. 1. 

4.5. 

1 .5 .2. 3. 

2.3. 5.1. 

5.5. 

2.3. 

3.2.2. 

2 .2. 

1 .5 . 2 .2. 

4.3.3. 

5.3. 

5. 1. 

2.2. 

4.4. 

3.2.2. 

4.2.3. 

2 .2. 

2 .3. 

1. 7. 

4.3.3. 

4.3.3. 

4. 3. 3. 

1.4.1. 

4.3.3. 

24 

18 

17 

50 

50 

6,28 

72 

166 

34 

29 

19 

16 

159 

19 

31,165 

191 

31 

65 

28 

18 

149 

176 

165 

27 

157 

65 

135 

29 

35 

22 

152 

152 

147 

13 

148 



language 

locality principle 

l'oopfree block 

lower sluice gate 

main body 

Manchester Dataflow Machine 

map 

marking 

matching function 

matching unit 

matrix multiplication 

memory cell 

MIMD 

MIMD shared memory multiprocessor 

MIMD ultracomputer 

minimal solution 

model of computation 

monotonicity 

multifunction cpu 

N-RAM 

no-instance 

node store 

non-deterministic merge node 

non-deterministic turing machine 

non-terminal node 

NP 

NP-completeness 

NPC 

out-set 

outchannel 

output history 

output-line 

p 

p-reduction 

prestricted-DNP 

4.4. 

205 

4.3.3. 149,158 

3.1. 62 

1.8. 1. 23 

2 .4. 37 

3.2.2. 66 

1.5.1. 15 

2. 3. 32 

1. 4. 11 

1 .5 .2 . 2. 17 

1.5.1. 16 

4.2.2. 122 

2 . 7. 48 

1. 3. 5 

1. 3. 4 

1. 3. 4 

5. 1. 167 

1.3. 4 

5 .1. 165 

1. 3. 4 

4.6. 161 

4.4. 157 

1.5.1. 16 

1.4. 9 

4.4. 158 

4.3.3. 148 

4.4. 158 

4.4. 157 

4.4. 158 

2.3. 31 

3.2.2. 65 

5. 1. 165 

2.2. 27 

4.4. 158 

4.4. 158 

4.6. 163 



206 

parallel computer architectures 1.3. 3 

parallel mathematics 1. 2. 3 

parallel merge sort 4. 2 .1. 105 

parallel procedure calling 4.3.2. 147 

parallel timing 2. 3. 35 

parallelism 1.2. 2 

PDNP 4.5. 160 

perfect shuffle 4.3.3. 151 

Petri-net 2. 9. 57 

Petri-net marking 2. 9. 58 

PGEN 3.3.1. 72 

pipe 3.3.1. 72 

pipeline sort 4. 2. 1. 105 

pipeline theorem 2.5. 44 

pipelined net 2 .4. 36 

pipelining 1. 3. 4 

polynomial transformation 4.4. 158 

prefix of semirun 4.2.1.1. 111 

preserve 1 .5 .2 .2. 18 

problem 4.4. 157 

process 3.1. 62 

process activation 3.3.2. 76 

process-declaration 3.2.2. 65 

process-heading 3.2.2. 65 

processing element 1.5.1. 1.4. 5, 16 

production rule 4.3.3. 148 

proper 2.3. 33 

PSPACE 4.4. 159 

PSPACE-complete 4 .4. 159 

pumping lemma 4.3.3. 150 

QBF 4.4. 159 

queued interpretation 1. 7. 22 

re-entrant 1.4.1. 13 

re-usable net 2.4. 35 

recursive doubling 4.2.3. 134 



reduction machine 

result token 

round robin timing 

s-action 

SAT 

semantics 

semirun 

separator 

sequential timing 

sharing 

sieve of Eratosthenes 

SIMD 

SIMD processor array 

SIMD vector processor 

simple star 

single assignment language 

single assignment principle 

single assignment rule 

sink-box 

sluice 

snapshot 

solve 

sorting 

1. 3. 

1.5.1. 

2.3. 

1 .5 .2 .2. 

4.4. 

1.7. 5.1. 

4.2.1.1. 

4.3.3. 

2.3. 

2. 9. 

3 .2.3. 

1. 3. 

1. 3. 

1. 3. 

4.3.3. 

1.5.2.1. 1.6.1. 

1.6.1. 

1.6.1. 

2 .2. 

2.4. 

2.3. 

4.4. 

4.2.1. 

special matching function (implementation of) 

speed-up 

2.8. 

1.1. 

1. 4. 

2.2. 

split node 

split-box 

star graph 

start shot 

starting symbol 

static dataflow model 

static part of dnp 

SUMMER 

survival 

switch 

4. 3. 3. 

2.3. 

4.3.3. 

1.4.1. 

3.2.2. 

3.3.1. 

3.2.3. 

1.5.1. 

207 

4 

16 

35 

17 

159 

22, 165 

111 

155 

35 

58 

71 

4 

4 

4 

148 

17,20 

20 

20 

28 

36 

31 

158 

105 

54 

8 

29 

147 

32 

148 

13 

65 

73 

69 

16 



208 

systolic algorithm 4. 1. 101 

systolic array 4 .1. 101 

systolic stack 4.1. 102 

terminal graph 4.3.3. 149 

terminal node 4.3.3. 148 

there-box 2 .2. 29 

tick 2 .3. 35 

time diagram 4.2.1.1. 119 

time-step 4.2. 104 

token 1. 4. 2 .2. 6,27 

token colouring 1.4.1. 13 

token queue 1.5.1. 16 

token-level-functional 1. 4. 6 

transitive closure 5.4. 185 

trial and error 4.5. 159 

Turing machine 2.6. 46 

universality theorem 2.5 . 38 

unraveling interpretation 1.4.1. 1. 7. 13,22 

upper sluice gate 2 .4. 37 
VSLI 1.5. 15 

von Neumann 1.1. 

wait 1 .5. 2 .2. 18 
well-formed net 2.2. 30 
well-formed row of problems 5.4. 184 
well-formed row of results 5.4. 184 

wheel 4.3.3. 149 
yes-instance 4.4. 157 
zero-box 2.2. 28 



209 

SAMENVATTING 

Dit proefschrift is gewijd aan "dataflow" berekeningen , een bepaald 

soort parallelle berekeningen . De studie van parallelle berekeningen komt 

voort uit de behoefte aan snellere computers. Hoofdstuk een bevat een kart 

overzicht van parallelle computer architecturen en hun onderliggende bereke­

ningsmodellen. Het dataflow berekeningsmodel wordt in wat meer detail behandeld. 

Een dataflow programma of dataflow net is een gerichte graaf waarin de knopen 

operaties en de kanten data paden voorstellen. Er wordt niets aangenomen over 

de tijd die een operatie of een data transport vergt. Omdat het gedrag van 

knopen en kanten op verschillende manieren gesoecificeerd kan warden, zijn er 

een aantal verschillende ·dataflow modellen. 

Met dataflow netten als onderliggend berekeningsmodel kan men een nieuw 

soort computers ontwerpen die het intrinsieke parallellisme in dataflow netten 

uitbuiten. Een bestaande dataflow machine, de "Manchester Dataflow Machine" 

wordt behandeld. De rest van hoofdstuk een behandelt de ontwikkeling van pro­

grammeertalen en algoritmes voor dataflow machines. 

Hoofdstuk twee introduceert een elementair dataflow berekeningsmodel. 

Dit model verschilt van het algemeen geaccepteerde, door Rodriguez en Adams 

geintroduceerde model. De operaties zijn meer elementair en het model weerspie­

gelt het tijdsafhankelijke, niet-functionele gedrag van dataflow machines. Er 

wordt aangetoond dat voor zogenaamd welgevormde dataflow netten het asynchrone, 

parallelle gedrag niet leidt tot niet-functionaliteit. Er wordt aangetoond 

dat het model universele berekeningsmacht heeft, en hiervan warden enkele toe­

passingen gegeven. Andere berekeningsmodellen zoals "counter " machines, Petri­

netten, geheugen cellen en de niet-functionele "matching functions" van de 

Manchester Dataflow Machine, warden gesimuleerd. 

Als mensen programmeren denken ze in berekeningseenheden met de bereke­

ningskracht van procedures en niet in laag niveau operaties zoals de dataflow 

operaties. Men wil dan ook parallellisme op procedure niveau kunnen uitdrukken. 

Hoofdstuk drie introduceert een programmeertaal met expliciet parallellisme op 

procedure niveau, gebaseerd op Kahn's "simple language for parallel progrannning". 



210 

Een programma in executie is een dynamisch veranderend netwerk van proces-

sen die met elkaar communiceren via kanalen waarover rijen waarden getrans­

porteerd warden. (Vandaar de naam van de taal: DNP, voor Dynamische Netwerken 

van Processen). Een belangrijke eigenschap van de taal is dater geen behoefte 

is aan globale informatie over de toestand van het net als twee processen met 

elkaar communiceren of als een deel van het net verandert. Een implementatie 

van de taal wordt beschreven. 

In hoofdstuk vier wordt een aantal algoritmes, geschreven in DNP, gepresen­

teerd. Deze algoritmes zijn typerend voor dataflow omdat grote datastructuren 

in stukken worden gebroken en door vele processen tegelijkertijd warden gema­

nipuleerd. De complexiteit van deze algoritmes wordt geanalyseerd. Tevens 

warden de beperkingen van DNP behandeld. De belangrijkste stelling is dat niet 

alle klassen van berekenings grafen gegenereerd kunnen warden. Uitbreidingen 

van de taal die deze beperking opheffen warden aangegeven. In de rest van 

hoofdstuk vier wordt een vergelijking gemaakt met standaard complexiteit­

klassen. 

In hoofdstuk vijf warden enkele DNP programma's van hoofdstuk vier cor­

rect bewezen. De bewijzen zijn gebaseerd op een semantiek voor DNP die over­

eenkomt met Kahn's ideeen. De bewijzen zijn lang omdat er met vele details 

rekening gehouden moet warden. Een tekortkoming van de gebruikte semantiek 

is dater alleen uitspraken gedaan kunnen warden over de gehele rij waarden 

die gedurende een executie van een programma over een kanaal getransporteerd 

warden. Er kunnen geen uitspraken gedaan warden over de relatieve ordening van 

bepaalde gebeurtenissen in verschillende processen. Onderzoek aan dit onder­

werp wordt elders uitgevoerd. 



211 

SUMMARY 

This thesis is devoted to dataflow computation, a particular kind of 

parallel computation. The motivation for parallel computation is the need 

for faster computing machines. Chapter one gives a short overview of parallel 

computer architectures and their underlying model of computation. The data­

flow model of computation is discussed in some detail. A dataflow program or 

dataflow net is a directed graph in which the nodes represent processing ele­

ments and the edges represent data paths. No assumptions are made about the 

timing of processing elements or data transports. Various options in specify­

ing the behaviour of the nodes and edges lead to a number of different data­

flow models. 

Having dataflow nets as the underlying model of computation an unconven­

tional computer architecture can be designed to exploit the intrinsic paral­

lelism of these dataflow nets. An existing and working dataflow machine, the 

Manchester Dataflow Machine, is discussed. The remainder of chapter one sketches 

the development of programming languages and algorithms for dataflow machines. 

Chapter two introduces an elementary model of dataflow computation. This 

model differs from the widely accepted dataflow model introduced bij Rodriguez 

and Adams in that its processing elements are even more primitive and that it 

mirrors the time-de~endent, non-functional behaviour of dataflow machines. It 

is shown that for so called well-formed dataflow nets the asynchronous, paral­

lel execution mode does not lead to non-functional behaviour. The model is 

shown to have universal computing power and some applications of this result 

are given. Other models of computation such as counter machines, Petri-nets, 

memory cells and the non-functional matching functions of the Manchester Data­

flow Machine are simulated. 

When programming, people tend to think in terms of units of action with 

the power of procedures and not of low level operations such as the dataflow 

primitives . Consequently people want to express parallelism at the procedure 

level. Chapter three introduces a programming language with explicit paral­

lelism on the procedure level based upon Kahn's simple language for parallel 

programming. A program in execution is a dynamically changing network of pro­

cesses communicating with each other via channels, i.e., queues of values 



212 

(hence the name of the language: DNP, for Dynamic Networks of Processes). 

An important aspect of the language is that there is no need for global infor­

mation about the computation graph while processes are communicating or part 

of the graph is changing. The implementation of the language is described. 

Chapter four presents a number of algorithms written in DNP. These algo­

rithms are believed to be prototypical for dataflow computing in that large 

datastructures are broken up and manipulated in parallel by many processes. 

The complexity of the algorithms is analysed. The limitations of DNP are consid­

ered. The main theorem is that not all classes of computation graphs can be 

generated. Ways to overcome this are indicated. In the remainder of chapter 

four a comparison is made with standard complexity classes. 

In chapter five some of the DNP programs of chapter four are proved 

correct by detailed reasoning. The proofs are based upon a semantics of DNP 

according to Kahn's ideas. The proofs are long and tedious because many details 

have to be dealt with. A shortcoming of the semantics used is that only proper­

ties of complete sequences of values travelling over channels during a com­

putation can be stated. No statements can be 1,1ade about the relative ordering 

of certain events in various processes. Research on these problems is being 

carried out at a number of institutions. 



Naam 

Geboren 

1967 

1967-1968 

1968-1980 

1974 

1974-1978 

1978-heden: 

CURRICULUM VITAE 

Bohm, Anton Pedro Willem. 

4 juli 1948, te Rotterdam. 

Eindexamen HBS-B, Dalton HBS te Rotterdam. 

Programmeur, Unilever Rotterdam, 

opleiding bij IBM Amsterdam. 

Part time systeem analist, Unilever Rotterdam. 

Ingenieursexamen Wiskunde, afstudeerrichting 

Informatica, Technische Hogeschool Delft. 

Wetenschappelijk medewerker, 

Mathematisch Centrum Amsterdam. 

Wetenschappelijk medewerker, 

Rijksuniversiteit Utrecht. 

213 




	Scanned-image
	Scanned-image-1
	Scanned-image-2
	Scanned-image-3

