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Chapter 1. INTRODUCTION 

l.!E is the name of a software package under development at CWI since January 1988. 
Its purpose is to enable mathematicians and physicists to obtain on-line information 
as well as to interactively perform computations of a Lie group theoretic nature. It 
focuses on the representation theory of complex semisimple (reductive) Lie groups 
and algebras, and on the structure of their Weyl groups and root systems. 

The basic objects of computation are vectors and matrices with integer en­
tries, and polynomials with integral coefficients. These objects are used to represent 
weights, (sets of) roots, characters and similar objects relating to Lie groups and al­
gebras. l.!E does not compute directly with elements of the Lie groups and algebras 
themselves, but the computations may be parametrised by the type of the Lie group 
or algebra for which they should be performed. Our primary goal in realising the 
present version has been to cover (on-line) the mathematical content of the following 
three books: 

[Tits 1967] J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstel­
lungen, Lecture Notes in Math. 40, Springer, Berlin, 1967. 

[Brem ea 1985] M. R. Bremner, R. V. Moody, J. Patera, Tables of dominant 
weight multiplicities for representations of simple Lie algebras, 
Monographs and Textbooks in Pure and Appl. Math. 90, Dekker, 
New York, 1985. 

[McKay ea 1981] W. G. McKay & J. Patera, Tables of dimensions, indices and 
branching rules for representations of simple Lie algebras, Lecture 
Notes in Pure and Appl. Math. 69, Dekker, New York, 1981. 

The package establishes an interactive environment from which commands can 
be given, involving basic programming primitives as well as powerful built-in mathe­
matical functions ( the package can be run in batch mode as well.) These commands 
are read by an interpreter built into the package and passed through to the core of 
the system: a collection of programs representing the various available mathemati­
cal functions. Furthermore, the interpreter offers online facilities which explain the 
operations and functions available, give background information about Lie group the­
oretical concepts, and give information about currently valid definitions and values. 

l!E is written in C, and can be made available on any system running UNIX or 
comparable operating systems, and ( with a little more effort) probably on many other 
machines with a C-compiler. The interpreter has been set up with the help of the 
UNIX program "yacc" . The present version is available for the following computers: 
SUN 3, SUN 4 and SparcStation (under SunOS 4.0) , VAX (under BSD UNIX 4.3 and 
under VMS) , IBM RT (under AIX) , DEC3100 (Ultrix) and Apple Macintosh. Should 
you want to order the package, please contact: Computer Algebra Group, c/o Marc 
van Leeuwen, CWI, P. 0. Box 4079, 1009 AB Amsterdam, The Netherlands, email: 
maavl@cwi.nl. 
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1.1. About the content of this manual 

Chapter 2 explains the environment offered by the l.!E interpreter. It explains how to 
evaluate expressions, call built-in functions, and invoke the online help facilities. It 
also defines a programming language in which users may define their own algorithms, 
making use of the built-in operations and functions. The interpreter recognises the 
following types of objects. 

type name example comment 
integer mt -12344321267 arbitrary size 
vector vec [1,2,-7,6,9,8] machine size integer entries 
matrix mat [ [1, 2] , [3, -4]] row length should not vary 
polynomial pol X[1,0]-7X[3,-5] multivariate Laurent polynomials 
group grp A6A6E8F4T4 T4 is a 4-dimensional torus 
text tex "any string" quotes are required 
void vid to unify functions and procedures 

The about 100 mathematical functions which form the heart of the l.!E package 
are described in detail in Chapter 4; these involve amongst others root systems, Wey! 
groups, multiplicities and degrees of highest weight modules, tensor product decom­
positions, branching (i.e., restriction of modules) to reductive subgroups, centralisers 
of a semisimple elements, and the spectrum of such elements on a module. In order to 
describe these functions, it is necessary to introduce the relevant mathematical terms 
and concepts, and the way in which these are represented in l.!E; these matters are 
described in Chapter 3. 

The l.!E programming language makes it possible to customise and extend the 
package with more mathematical functions ; examples of this are given in Chapter 5. 

1.2. Theoretical aspects 

The package is mainly intended for computations concerning semisimple Lie groups 
and algebras. Since reductive groups provide a more general and at the same time 
more convenient setting, they form the class of groups we have chosen to work with. 
For notational convenience, we adapt names only for groups whose semisimple part 
is simply connected. Since all other reductive groups are quotients of these by finite 
central subgroups, we feel that this is not a major limitation. 

Most mathematical functions implemented in l.!E have a Lie group as argument. 
No multiplication of Lie algebra or Lie group elements is available. The notion of group 
we use is hardly more than an indication of its isomorphism class. The computations 
are mainly done on the level of vectors, matrices and polynomials corresponding 
to various relevant objects in Lie group theory. For instance, representations are 
parametrised by vectors via the so-called highest weights, and the elements of the 
Wey! group of a Lie group appear in different guises ( they can be represented both as 
vectors, indicating a product of fundamental reflections, and as matrices, indicating 
the image in the reflection representation). 

The emphasis has been on the development of basic routines that perform the 
mathematical operations in the greatest generality. Therefore, it is quite likely that 
greater speed could have been achieved in specific cases with more specialised pro­
grams. In one instance we have also realised algorithms specific for certain types of 
groups, namely the Young tableau techniques, giving fast implementations for certain 
computations in the special linear groups (notably the Littlewood-Richardson rule). 
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1.3. The authors 

3 

Arjeh M. Cohen developed the idea, wrote some mathematical functions and a first 
version of this manual and is the project leader. Bert Lisser made the interpreter 
and provided the information for Chapter 2 of this manual. Marc van Leeuwen is 
the author of the current version of this manual, and implemented the Young tableau 
algorithms. An earlier version of the package was constructed with aid of Ron Som­
meling, Bart de Smit and Bert Ruitenburg, who are no longer involved in the project ; 
we hope that they still appreciate what we have done to l!E. 

For more information beyond what this manual has to offer, bug reports, inter­
esting algorithms you may want us to know, or any other helpful comments, contact: 
Arjeh M. Cohen, CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, email: 
marc@cwi.nl. 
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Chapter 2. THE INTERPRETER 

In this chapter, the facts needed to run a successful l!E session are described. We 
discuss the features of the interactive shell, that interprets the commands entered 
during a session. After an introductory session, we give more details of the types of 
objects the interpreter recognises. Then, in Section 2.3, the operators defined in the 
package are listed, and Section 2.4 similarly treats functions. Section 2.5 discusses 
the ingredients needed to construct larger programs, and Section 2.6 shows how to 
define your own functions. Finally Section 2.7 describes some features that allow the 
user additional control over l!E. A note about the typography of this chapter: in the 
introductory section, all commands as typed by the user and the responses of l!E are 
reproduced in typewriter type style, to indicate the exact appearance on the screen, 
but in the further sections a more aesthetically pleasing form of rendering expressions 
is chosen, distinguishing identifiers ( italic type), keywords (bold type) and direct 
commands to l!E (typewriter type). 

2.1. A first look 

An interactive session of l!E starts by ·executing the command LiE on your machine 
(provided l!E has been installed; the leaflet accompanying the software package ex­
plains how to do that). You will then enter the Lie shell, a sign-on message will 
be printed, followed by the prompt '>'. In this mode, you can enter commands. A 
command will be executed upon completion of the line by hitting (Return). The 
command will be read by an interpreter built into l!E and, if necessary, will invoke 
some of the mathematical functions. The system will respond to the command by 
returning an answer if relevant. In the examples given below, the lines starting with 
the prompt character '>' are the commands as typed by the user, the other lines are 
l!E's response. 

Your first concern after entering l!E is of course if it is possible to get out again; 
the answer is yes, it suffices to type 

> quit 

and l!E will sign off with 'end program' and stop (synonyms for quit are exit and©). 
Should you at any moment find that l!E has embarked on a (seemingly) endless com­
putation, then you can always force it to abort the computation and prompt for a new 
command by typing (control)C, i.e., press the control key and the c simultaneously. 

The simplest commands are to perform arithmetic computations; the interpreter 
then behaves like a pocket calculator, evaluating the expression typed in and printing 
the result. 
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> 19+68 
87 

> 1111111111•1111111111 
1234567900987654321 

> $/1111111111 

1111111111 
> -$ % 1000003 

892225 
> 

5 

Here $ means "the previous result", and% means "modulo". Variables may be used 
to save values in a more permanent way than in$. 

> a=345 
> a~2+3•a-5 

120055 
> $/7•a 

5916750 

Besides integer arithmetic, l!E can also calculate with vectors and matices with integer 
entries. Here are a few operations with vectors, from these the reader may guess which 
computations are performed. 

> v=[3,2,6873,-38] 
) V 

(3, 2, 6873, -38] 
> v[3] 

6873 
> v[5] 
Index(= 5) out of range 
(in _select) 
> v+v 

(6, 4, 137 46, - 76] 

47239586 
> v+234786 

[3,2,6873,-38,234786] 
> v-3 

(3,2,-38] 

[3,2,6873,-38,3,2,6873,-38] 

We can play similarly with matrices. 

> ((1,0,3,3], (12,4,-4,7], (-1,9,8,0], (3,-5,-2,9]] 
[ 

[ 1, 0, 3 ,3], 
(12, 4,-4, 7], 
(-1, 9, 8,0], 
[ 3,-5,-2,9] 
] 
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> m=$ 

> *m 
[ 

[1,12,-1, 3], 
[O, 4, 9,-5], 
[3,-4, 8,-2], 
[3, 7, 0, 9] 

] 

[ 

[ 220, 87, 81, 375], 
[-168,-1089, 13,1013], 
[1550, 357,-55,1593], 
[-854, -652, 98,-170] 
] 

[-6960,62055,55061,-319] 

[20508,-27714,54999,-14089] 

> v*m*v 
378549605 

> m+v 
[ 

[ 1, 0, 3, 3], 
[12, 4, -4, 7], 
[-1, 9, 8, OJ, 
[ 3,-5, -2, 9], 
[ 3, 2,6873,-38] 

> m-2 

] 

[ 

[ 1, 0, 3,3], 
[-1, 9, 8,0], 
[ 3,-5,-2,9] 
] 
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Apart from integers, vectors and matrices, l!E can also calculate with (multivari­
ate) polynomials. Because of the specific intended applications to Lie group theory, 
polynomials are represented in a way that may seem a bit unusual. First of all, 
there are no formal names such as X, Y, . .. , for the polynomial in determinates: the 
indeterminates are simply discriminated by their position in a fixed ordering, and 
monomials are represented by the symbol 'X' followed by a vector as "exponent", 
where the first number gives the exponent of the first indeterminate, etc. Moreover, 
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l!E will not mix terms with different numbers of indeterminates, so zeros should be 
added as necessary to make all exponents the same size. Finally negative integer ex­
ponents are allowed, so we are in fact dealing with Laurent polynomials; the ground 
ring is Z. Here is a session with some simple polynomial calculations. 

> X [1,2J 

1X[1,2J 

> -3•$ 

-3X[1,2J 

> $+4X[-1,4] 

4X[-1,4J - 3X[ 1,2] 

> $+X[6,7,8J 

Number of variables in polynomials unequal 
( 2 <-> 3 variables). 
(in+) 

> $•(X[2,0J-X[0,-4J) 

-4X[-1, OJ + 3X[ 1,-2J + 4X[ 1, 4J - 3X[ 3, 2J 

> $-$ 

OX[O,OJ 

The core of l!E is a batch of built-in functions which can be called by the inter­
preter. We give two simple examples of such calls: 

> partitions(6) 
[ 

[6,0,0,0,0,0J, 

[5,1,0,0,0,0J, 

[4,2,0,0,0,0J, 

[4,1,1,0,0,0J, 

[3,3,0,0,0,0J, 

[3,2,1,0,0,0J, 

[3, 1, 1, 1, 0, OJ , 

[2,2,2,0,0,0J, 

[2,2,1,1,0,0J, 

[2,1,1,1,1,0J, 

[1,1,1,1,1,1J 

J 

> diagram(E8) 

0 2 
I 
I 

o---o---o---0---0---0---o 
1 3 4 5 6 7 8 

ES 
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The former call returns the matrix whose rows represent partitions of 6; the latter 
command prints the diagram shown, but does not deliver a resulting value, so some 
might wish to call diagram a procedure rather than a function . 

The user may also define in a natural way functions that are not built into l!E, 
for example 

> f(int x)=2*x 
> f(984) 

1968 

Instead of giving the resulting value at once, as in this example, one may also specify 
a sequence of statements to be executed first (separated by semicolons), followed by 
the expression giving the result. 

> f(int n)= a=3*n-7; if a<O then a=-a fi; 1~a+a~3-4*a-57 

> f (2) 

-53 
> f(5) 

5765224 

For conditional statements ( and expressions) as in the above example, logical ex­
pressions are useful; there is a number of relational and logical operators, which are 
represented in the same style as in the programming language "C". Some examples 
of logical expressions are 

i<=n 

n==8 

p>10 &&: p!=13 
f(3)<=7 I I k+l >= 5 

Some commands describe an action to be performed rather than a value to be com­
puted, and are called statements; examples are 

a=[2,3]; b=7; v[2]=7 

for i=1 ton do print(i*i) od 

Statements do not yield a value, so unless the specified action explicitly produces 
output ( as in the case of print), nothing will appear on the screen. In the last 
example we showed a loop entered directly to the interpreter; here is an example of 
the use of a loop within a function 

> sum_sq(vec v)= s=O; for i=1 to size(v) do s=s+v[iJ-2 od; s 
> sum_sq([i,-3,5,2,7]) 

88 

There are commands for global control of l!E, such as 'quit ' above, and to control 
the input and output flow ; some examples are 

on monitor 

edit script 

of which the first starts recording the session on a file "monfil", and the second 
invokes an editor on the file "script", which presumably contains commands to l!E 
that will be read by l!E upon completion of the edit session. 

Finally, there are some features to help you out , such as 
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listvars 

learn lie group 

The former lists the variables that have been given a value, while the latter prints a 
text indicating what the authors of l!E think a Lie group is. 

The objects that l!E can manipulate are of the following types (in each case the 
indication l!E uses to designate the type is added in parentheses): integer (int), vector 
(vec), matrix (mat), polynomial (pol), group (grp), or text (tex); there is also the 
indication vid that stands for void, which is not really a type since there is no void 
value that could be assigned to a variable or passed to a function, but is used to 
indicate the result type of a function that does not yield any value. Variables do not 
have a declared type: they simply assume the type of any value that is assigned to 
them. However, once created variables cannot change their type during a computa­
tion: their type can only change by an assignment typed directly by the user ( which 
of course can only happen to global variables). 

We end this section with a few essential details. 

2.1.1. Command prolongation 

As mentioned above, a command normally ends at the end of a line. We have im­
plemented this rule because, usually, one line suffices for a command. However, if 
the line ends with one of the characters '+','-','*','; ' , ' , ' or'\' (none of which can 
be the last character of a valid command) then the command will be considered to 
continue onto the next line. When used in this way the character '\' is equivalent to 
a space (and it can therefore be inserted at almost any convenient place), while the 
other characters stand for themselves. A command is also assumed to continue be­
yond the end of a line when there are still unclosed left parentheses, brackets, braces, 
or unfinished conditional or loop clauses, which means that in most cases you need 
not bother to type any backslashes. To indicate that the remainder of a command is 
awaited, the prompt changes from '>' to'\'. This command prolongation cannot be 
used after?, help, or : , or within a string or comment. 

2.1.2. Getting help 

Use ? , help, or ?help to make enquiries. Other text following ? can be used to get 
more detailed information about a particular topic. For example, ?functions returns 
the list of built-in functions . The command ?(name) returns information about the 
variable, function(s) or operator(s) with the specified name. So, for instance ?lierank 
will return information on the built-in function lierank. For built-in functions, similar 
information can also be found in Chapter 4 of this manual. 

The commands listvars, listfuns and listops print lists of the variables, or 
functions defined in the session, respectively of the operators known to l!E ( cf. Sec­
tion 2.3). 

2.1.3. Variables 

Variable names are strings of letters, digits and underscores; the first character must 
be a lower case letter (this requirement is necessary because for instance A68 denotes 
a group, and therefore cannot be a variable) . 

The special variable $ is given the value returned by the last command that did 
in fact deliver a value (so assignments and calls for help etc. do not alter the value 
of$) . Note that only commands set the value of$; this implies that 
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> 10 

10 
> 13; $ 

returns 10 rather than 13. 

2.1.4. File management 
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Commands contained in a file named (name) can be read with command read (name) . 
The same file can be edited by issuing the command edit (name). When the editing 
session is completed, the file will automatically be read in. 

2.1.5. Comments 

Comments are enclosed between a pair of characters '#' ( and accordingly comments 
cannot contain the character '#') . If the closing '#' is missing, the comment will be 
closed at the end of the line. 

2.1.6. Escape to the shell 

The character ' : ' appearing as first character of a command line means that the 
remainder of the line is passed to the shell (this feature applies to UNIX implemen­
tations of l!E only) . This is a newly created subshell, not the (login) shell from which 
l!E was called, so for instance it makes little sense to invoke a cd command in this 
manner. 

2.2. Values 

As mentioned above, l!E handles values of the types integer, vector, matrix, polyno­
mial, group and text. We now treat these kinds of values in some more detail. 

2.2.1. Integer 

Integers are represented by l!E by values of type int; as usual, they may be denoted 
by a sequence of digits, optionally preceded by a minus sign. 

Integers and coefficients of polynomials effectively have unlimited length. The 
integer entries of vector, matrices and the exponents in polynomials are restricted 
however by the word size of the machine (usually this allows values up to 231 in 
magnitude). This restriction is made for efficiency reasons; for most purposes it 
is hardly a limitation since the running time of most Lie group theoretic functions 
becomes excessively large long before the entries of the vectors and matrices occurring 
as parameters or results of these functions reach their limits. Note that whereas a 
warning is issued if one tries to insert too big an integer into a vector, matrix, or 
polynimial exponent, no such warning is generated when overflow occurs within an 
operation on vectors, matrices and (very unlikely) polynomials themselves, e.g., when 
calculating a huge power of a matrix. 

2.2.2. Vector 

An object of type vec is a vector, which consists of a sequence of integers: it has a 
size s ( which may be O), and entries indexed by the numbers 1, . .. , s. A vector may be 
formed by a comma separated list of integer expressions enclosed in square brackets, 
such as [1, 9, 6, 8], [32*13*9497 ,30-9*101*677] and [] . It is also possible to form 
vectors whose size is determined at run time by calling null(n) or all_one(n), where 
in either case n stands for an arbitrary integer expression whose value determines the 
size of the vector created; in the case of null all entries are set to 0, while in case 
of all_one they are all set to 1. If v is a vector of size n, then its individual entries 
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may be referred to as v[i] for 1 ::; i ::; n. The built-in function size allows the size of 
the vector v to be obtained as size( v ). 

2.2.3. Matrix 

An object of type mat is a matrix, which consists of a rectangular array of integers: 
it has a number of rows r and a number of columns c, and integer entries indexed 
by pairs i, j of integers with 1 ::; i ::; r and 1 ::; j ::; c. A matrix may be formed 
by a comma separated list of vector expressions enclosed in square brackets, such as 
[[5,-4], [-6,5]], and [[4-7,11] ,v] after assigning v=[6,9]. Since matrices are 
always rectangular, it is required that all vectors occurring have the same size; they 
will be taken in order to form the successive rows of the matrix (note that it is possible 
to denote matrices with O columns in this way, but not with O rows; the latter can 
be created with the call null(O, n)). This notation is in accordance with the general 
convention in l!E that whenever a matrix is considered as a sequence of vectors, these 
correspond to the rows (rather than the columns) of the matrix. The functions null 
and all_one can also be used to create matrices, by supplying them with two integer 
arguments: the first argument determines the number of rows and the second the 
number of columns of the matrix, while the entries are all O or all 1 as in the case of 
vectors. 

A matrix is printed in the same way as it is entered, with the vectors representing 
the rows on separate lines, and the opening and closing brackets of the whole matrix 
on lines by themselves (note however that it is possible to alter the style of printing 
such that a matrix appears just as a rectangular block of numbers enclosed in vertical 
bars, by means of the system parameter lprint, see Section 2. 7.4). This method 
of printing is slightly ambiguous ( an not in agreement with the input format) when 
matrices with O rows are concerned. 

Since a matrix is often viewed as a sequence of its rows, the rows of is a matrix m 
with r rows, may be referred to as m[i) for 1 ::; i ::; r; the individual entries of the 
matrix may be referred to as m[i, j) or as m[i)[j), both denoting the same entry. 
Similarly to the function size for vectors, there are functions n_rows and n_cols to 
determine the number of rows and columns of matrices. 

2.2.4. Polynomials 

An object of type pol is a Laurent polynomial in a fixed number n of indeterminates. 
It consists of a set of terms ( which are automatically sorted by l!E) where each term 
has an integer coeflicient, and an exponent, which is a vector of n integers, the i-th of 
which represents the power in which the i-th indeterminate occurs. Whenever terms 
with equal exponents would occur, they are automatically combined by l!E, whence 
it is guaranteed that all terms occurring have distinct exponents. There is always at 
least one term: the zero polynomial is represented by a term with coefficient O and a 
zero vector of the appropriate size as exponent; apart from this case coefficients are 
always non-zero. Terms are denoted as an optional integer coefficient ( the default is 1) 
followed by the symbol X followed by a vector as exponent; polynomials with multiple 
terms can be formed by addition and subtraction of terms. For polynomials in 1 inde­
terminate one may also write an integer exponent, which is automatically converted 
into a vector of size l. Polynomials are printed in the same format as they are en­
tered ( assuming the default setting of the lprint parameter), with coefficients always 
explicitly represented ( even if equal to 1) and exponents always rendered as vectors. 
Polynomials in n indeterminates corresponding to the integer numbers O and 1 can 
be formed by poly _null(n) anpoly_one(n) respectively; these calls are equivalent to 
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OXnull(n) and lXnull(n). 
The order in which the terms of a polynomial are sorted depends on the setting of 

system parameters; the default is lexicographic ordering of the exponents, but the user 
may also select total degree ordering (in which case the sum of the exponents entries 
takes precedence over the lexicographic ordering) and the reverse ordering of either of 
these two possibilities. This ordering influences the selection of terms: the i-th term 
of a polynomial p can be referred to as p(i] (which is a polynomial of one term) . The 
coefficient of the i-th term can be obtained as coef (p, i), and the exponent of that 
term as monom(p, i) (which is a vector). Further functions to obtain information 
about polynomials are n_vars, giving the number of indeterminates, length, giving the 
number of terms, degree, giving the total degree of p, i.e., the largest integer obtainable 
as sum of entries of some exponent. It is not only possible to select coefficients by 
their position, they may also be selected by exponent: plv denotes the coefficient of 
the term with exponent v, or zero if no such term exists. One may also assign to plv 
in order to alter the coefficient of the term with exponent v ; this may cause a term 
to be created or deleted as appropriate, as the following example shows. 

> p = X[1,5] 
> p 

1X[1,5] 

> p I [3, 7J =-5 

> p 
1X[1,5] - 5X[3,7] 

> pl [1,5]=8; p 
8X[1,5] - 5X[3,7] 

> pl [1,5]=0; p 
-5X [3, 7] 

It is also possible to supersede an entire term p(i] of a polynomial by another one 
by assigning to it, but note that because the polynomial is normalised afterwards by 
possibly rearranging and merging of terms, it is not generally true that after assigning 
p(i] = term we have that p(i] == term holds. 

2.2.5. Group 

A value of type grp specifies an isomorphism class of reductive complex Lie groups 
with simply connected semisimple part. As will be explained in Section 3.1, such 
groups are a direct product of simple groups (its simple components) and a central 
torus, where simple groups are characterised by their type and the central torus by its 
dimension. Therefore, l.!E represents groups by a sequence of types of simple groups 
together with the dimension of the central torus. Types of simple groups are of the 
form Ln where L is an upper case letter from the set {A, B , C, D, E, F, G} and n is 
a positive number, subject to the restrictions n ~ 2 if LE {B, C}, n ~ 3 if L = D, 
n E {6, 7, 8} if L = E, n = 4 if L = F and n = 2 if L = G . The letters A-D 
correspond to the classical groups (cf. (Bourb 1968]), which groups are also known 
by proper names as follows : 

The type of the n-dimensional torus ( C* )n is Tn . To denote a group in 1.!E one simply 
concatenates the types of the simple components and the central torus. The order 
of the simple components is retained by l.!E, but each term Tn simply increases the 
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dimension of the central torus by n; when a group is printed by l!E, the central torus 
appears at the end. For instance, if you enter C3T4B12A4T6A1E7 then l!E will print 
C3B12A4A1E7T10 as a result, which specifies the group 

Sp(6, C) x Spin(25, C) x SL(5, C) x SL(2, C) x E7(C) x (C*)10 

For a group g, the simple group that is its i-th component may be referred to as g(i), 
while its central torus may be referred to as g(O), so for g as in the above example, 
we have g(O] = T1o and g[2] = B12. In some cases the mathematical specification 
would require that a function returns a group whose semisimple part is not simply 
connected ( e.g., the function centr ). Since such groups are not representable in l!E, 
the group of which it is a central quotient with finite kernel, and whose semisimple 
part is simply connected, is returned instead in such cases. 

2.2.6. Text 

l!E has some basic means to manipulate character strings for output, in the form of 
values of type tex. Strings are denoted by enclosing them in double quote characters, 
and they should be given on a single line, for instance "this is a string"; it follows 
that strings cannot contain the double quote and newline characters. 

2.3. Operators 

We describe the operators defined in l!E. Contrary to functions, it is not possible to 
define new operators, or additional instances of existing operators. The meaning of 
an operator and the type of its result depend on the types of its operands (this holds 
for functions as well). Each operator has a priority, which determines how expression 
are parsed: as usual, the implicit parentheses fit more closely around operators of 
higher priority. At each priority level association is to the left, i.e., among operators 
of equal priority implicit parentheses group towards the left. 

There is no type 'Boolean', so that truth values are represented by integers: 
relational and logical operators yield 1 when true and O when false. When an arbitrary 
integer is interpreted as a truth value, all values except O are considered as representing 
true. There are however syntactic restrictions that prevent perfoming arithmetic with 
truth values: expressions such as 100+(3 < 4) are forbidden. The result of a relational 
or logical operator may only be used between 'if' and 'then' or while and do, as 
operand of a logical operator, in an assignment to a variable, or in a list of function 
parameters or of vector entries. 

We give the operators, their priorities and their various meanings by a table. In 
each case the first operand is called a, the second b; there might be only one argument, 
in which case the operator is used monadically, written before its operand. In the 
case of vector, matrix and polynomial operands, some restriction is often imposed on 
the size, respectively on the number of rows, columns, or indeterminates; we use the 
notation O' a for the size of a vector a, Pa and K-a for number of rows and columns 
respectively of a matrix a, and Va for the number of indeterminates of a polynomial a. 

oper- pno- type type type of meaning, comments 
ator rity of a of b result 

+ 6 int int int a+b 
vec vec vec a+ b (vector addition) {O'a = O'b} 
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* 
I 

% 

6 

10 

7 

10 
7 

7 

mat 
pol 
int 
vec 
mat 
tex 
tex 
int 
tex 

mat 
pol 
vec 
int 
vec 
tex 
int 
tex 
grp 

grp tex 
int int 
vec 
mat 
pol 
vec 
mat 

int 
vec 
mat 
pol 

vec 
mat 
pol 
int 
int 

int int 
int vec 
vec vec 

int mat 
vec mat 

mat mat 
mat vec 

int pol 
pol pol 
pol mat 

pol int 
grp grp 

int tex 
tex int 
mat 
int int 
vec int 
mat int 
int int 
vec int 
mat int 

mat 
pol 
vec 
vec 
mat 
tex 
tex 
tex 
tex 
tex 
int 
vec 
mat 
pol 
vec 
mat 

int 
vec 
mat 
pol 
int 
vec 
int 

mat 
vec 

mat 
vec 

pol 
pol 
pol 

pol 
grp 

tex 
tex 
mat 
int 
vec 
mat 
int 
int 
int 
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a+ b (matrix addition) {pa = Pb, "'a = 1,,b} 
a+ b (polynomial addition) {lla = lib} 
[ a, b[l], b(2], ... , b( crb] ] 
(a[l], a[2], ... , a(cral, b] 
(a(l], a(2], ... , a[pal, b] { "'a = O"b} 
concatenation 
a + t where t is textual representation of b 
t + b where t is textual representation of a 
a + t where t is textual representation of b 
t + b where t is textual representation of a 
a-b 

a - b { a a = O"b} 
a - b {Pa= Pb, "'a= 1,,b} 
a - b {lla = lib} 
make a one shorter by removing a[b] 
make a one row shorter by removing 
row a[b] 
-a 
-a 

-a 

-a 
ab 
a · b ( scalar multiplication by a) 
ab T = I:~;1 a[i]b[i] (standard inner product 
of a and b) {era = ab} 
a · b ( scalar multiplication by a) 
ab (right multiplication by matrix b) 
{aa = Pb} 
ab ( matrix multiplication) { "'a = Pb} 
ba T = ( ab T) T (left multiplication of column 
vector b by matrix a) { "'a = crb} 
a · b ( scalar multiplication by a) 
a* b (polynomial multiplication) {lla = lib} 
multiply all exponents of terms of a on the 
right by band normalise result {lla = Pb} 
a* (b · id(lla)) (see previous line) 
a x b ( concatenation of simple factors, 
addition of dimensions of central torus) 
the string b repeated a times 
the string a repeated b times 
a T (matrix transposition) 
a/b rounded towards 0 
[a[l]/b, ... , a[aa]/b] 
[a[l]/b, ... , a[pa]/b] (see previous line) 
a mod b {b > O; 0::; a mod b < b} 
[a[l] mod b, ... , a[cra] mod b] 
[a[l] % b, ... , a[pa] % b] (see previous line) 
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mat 
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vec 

mat 
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int 
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vec 
mat 
int 
int 
int 
int 
int 
vec 
mat 
pol 
int 
vec 
mat 
pol 
int 
int 
int 

int 
int 
int 
vec 

mat 

int 
vec 
mat 

int 
int 
int 
int 
int 
vec 
mat 
pol 
int 
vec 
mat 
pol 
int 
int 

2.4. Using functions 

2.4.1. Function call 

A function call has the form 

int 
mat 
pol 
vec 

mat 

pol 
pol 
pol 
pol 
pol 
pol 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 
int 

( name ) ( ( argi), ... , ( argn ) ) 

ab 

ab {Pa = Ka} 
ab 

[ a[l], . . . , a[ cr al, b[l], ... , b[ crb]] ( concatena­
tion) 
[ a[l], .. . , a[pal, b[l], . . . , b[pb]] ( vertical 
concatenation) { Ka = Kb} 
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aX[b] (standing for aXf) 
the term aXb (standing for axt[l] . . . x!~crb]) 
1:f!, aXb[i] 
1x[a} 
1xa 
.,_.p. X a[ iJ 
wi=l 
a<b 
a~b 
a>b 
a~b 
a=b 
a = b ( componentwise equality) 
a = b ( componentwise equality) 
a= b (termwise equality) 
a=/=b 
a=/=b 
a=/=b 
a=/=b 
if a =I= 0 then 1 else b =I= 0 (logical or) 
if a = 0 then O else b =I= 0 (logical and) 
if a = 0 then 1 else O (logical not) 

where (name) is the name of the function to be called, and ( arg1 ) , ... , ( argn ) are 
arbitrary expressions giving the actual arguments of the function; among the possi­
bly numerous definitions for the given function name, the one is selected for which 
the types of the formal parameters match those of the actual arguments. To call a 
parameterless function , the name of the function may or may not be followed by an 
empty pair of parentheses; the former possibility looks like a variable, but is really 
different , since the function body will be executed only at the time of the call. (In 
fact it is also allowable to write an empty parentheses after a name that refers to a 
variable, but this appears to be needlessly misleading.) Whenever a function is called, 
its arguments are evaluated first . 

2.4.2. Basic functions 

There are a few built-in functions of non mathematical nature that supplement the 
built-in operators. These built-in functions cannot be redefined for the given argument 
types, although one may add user defined meanings for other types; the same is true 
for the built-in mathematical functions listed in Chapter 4. Again, we give these 
functions by means of a table. 
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function parameter( s) result meaning, comments 
type 

abs 
factor 

size 
null 
all_one 
n_rows 
n_cols 
id 
null 
all_one 
diag 
vecmat 
matvec 

blockmat 
sort 

sort 

int X 

int n 

vec v 
int n 
int n 
mat m 
mat m 
int n 
int n,m 
int n,m 
mat m 
mat m 
vec v; int n 

mat a,b 
vec v 

mat m 

redsetmat mat m 

n_vars 
length 
coef 
monom 
poly_null 
poly_one 
compsize 
void 

print 
error 

pol p 
pol p 
pol p; int n 
pol p; int n 
int n 
int n 
grp g 
any x 

any x 
text 

int 
vid 

int 
vec 
vec 
int 
int 
mat 
mat 
mat 
vec 
vec 
mat 

mat 
vec 

mat 

mat 

int 
int 
int 
vec 
pol 
pol 
int 
vid 

vid 
tex 

2.5. Statements and clauses 

lxl ; the absolute value 
prints a tentative factorisation of n; only prime 
factors up to 215 are found. 
the number of entries of v 
a vector of length n with all entries 0 
a vector of length n with all entries 1 
the number Pm of rows of m 
the number Km of columns of m 
the n x n identity matrix 
the n x m matrix with all entries 0 
the n x m matrix with all entries 1 
the main diagonal of m 
concatenation of rows of m: m[l] ' m[2] ' · · · 
matrix with column size n and rows [v(l], ... , v(n]], 
[v[n + 1], ... , v[2n]],. . . { n divides O'v} 
the block matrix ( ~ ~) 
vector with same entries as v, but sorted into 
decreasing order 
matrix with same rows as m, but sorted into the 
same order as polynomial exponents 
A reduced matrix, representing the same set of 
rows as m, but without duplicates . The rows are 
also reordered as in sort(m). 
the number Vp of indeterminates of p 
the number of terms of p 
the coefficient of the n-th term of p 
the exponent of n-th term of p 
the zero polynomial in n indetermines 
the unit polynomial in n indetermines 
the number of simple components of g 

no result , useful to force void type, for instance to 
make types match between branches of conditional 
clause 
print the value of x 
print text t and terminate; prompt for new 
command 

We have treated the main ways of forming expressions; however, expressions usually 
do not suffice to perform complicated calculations, so we need basic actions and 
ways to combine them into larger programs. The basic actions are performed by 
statements, the larger structures built from them are called clauses. The distinction 
between expressions, statements and clauses is not absolute, however, since on one 
hand expressions are considered to be statements as well, and on the other hand 
clauses (which may very well yield values) are themselves expressions (and hence a 
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fortiori statements). If a clause yields no value, then the clause is said to return void, 
and is of type vid. 

We first treat assignment statements, which are the most important kind of 
statements, apart from expressions. Then we treat the clauses, of which there are 
three kinds: blocks, conditional clauses and loops. Finally we treat the remaining 
kinds of statements, namely the break, return and setdefault statements. 

2.5.1. Assignment statements 

Assignment statements have the effect of altering the value of a variable, and return 
void. They come in five forms. 

( identifier ) = ( expression ) 

The execution of this statement consists of evaluating the expression (which may be 
of any type), and assigning its value to the variable denoted by the identifier. This 
statement may optionally be preceded by loc, in which case a new local variable is 
created at the current level, which will be denoted by the identifier, and which is 
initialised to the value of the (expression). For more details see Section 2.6.2. 

(identifier) [ ( expression1 ) ) = ( expression2 ) 

Here (identifier) must denote a vector, matrix or polynomial variable, and corre­
spondingly ( expression2 ) must be of type integer, vector, or polynomial respectively, 
while ( expression1 ) must be of type integer in all cases. Both expressions are evalu­
ated, and the value of ( expression2 ) replaces the entry of the vector variable respec­
tively the row of the matrix variable or the term of the polynomial variable, whose 
index is the value of ( expression1 ) . In the case of a matrix or polynomial variable it 
is required that the yield of ( expression2 ) has the same size as the the row or term 
replaced by it; in particular it may not be a polynomial of length > 1. 

(identifier) [ ( expression1 ) , ( expression2 ) ) = ( expression3) 

Here ( identifier ) must denote a matrix variable, and all expressions must be of type 
integer; the value yielded by ( expression3 ) replaces the entry of the matrix variable 
whose indices are the values yielded by ( expression1 ) and ( expression2 ) . 

(identifier) I ( expression1 ) = ( expression2) 

Here (identifier) must denote a polynomial variable, ( expresion1) must be of type 
vector and ( expression2) of type integer. The term of the polynomial is searched 
whose exponent coincides with the value of ( expression1 ) (if none exists, a new such 
term with coefficient O is created), and its its coefficient is replaced by the value of 
( expression2 ) . 

( identifier ) + = ( expression ) 

This statement is equivalent to 

( identifier ) = ( identifier ) + ( expression ) 

but it is easier to write and in most cases more efficiently executed. 

2.5.2. Series 

Before we treat clauses, we must briefly mention series, which form part of all forms 
of clauses. A series is nothing more than a sequence of statements, separated by 
semicolons: 
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( statement1 ) ; ( statement2 ) ; · · · ; ( statementn ) 

When the series is executed, its statements are executed in order from left to right, 
and the value of ( statementn) (if any) becomes the value of the whole series ( any 
values yielded by any of the other statements are cast away). 

2.5.3. Blocks 

A block is formed by enclosing a series in braces: 

{ (series) } 

Since a block is an expression, this allows the value of a series to enter into larger 
expresssions. Furthermore, a bl-0ck establishes a range for the definition of local 
variables, see also Section 2.6.2. Here is a rather silly example that shows both 
aspects of blocks: 

a = 2; {loc a = (6, 19, 10, 1, 14, 10]; a/2} + a 

which returns the value (3, 9, 5, 0, 7, 5, 2]. 

2.5.4. Conditional clauses 

There are two forms of conditional clauses: 

if ( expression ) then ( series1 ) else ( series2 ) fl 

and 

if ( expression ) then ( series1 ) fl 

In each case (expression) is evaluated first ; if the (integer) value yielded is unequal 
to 0 then ( series1 ) is evaluated and its value becomes the value of the conditional 
clause, and otherwise ( series2 ) is evaluated if present and its value becomes that 
of the conditional clause. In the second form of the conditional expression, where 
( series2 ) is absent, it is required that ( series1 ) has void type, so that no value is 
yielded either way. 

2.5.5. Loop clauses 

There are two main kinds of loop clauses: while loops and for loops, of which the 
latter kind has a few variants; all loop clauses are recognisable by the keywords do, 
and od. A while loop has the form 

while (expression) do (series) od 

When a while loop is executed, the (expression) is first evaluated; if it yields 0 
then the execution of the loop terminates, and otherwise the (series) is executed, 
after which execution of the while loop resumes from the beginning. When the loop 
terminates, it returns the value of the last execution of its (series), or void if the 
(expression) had value 0 the first time it was evaluated. 

There are three variants of the for loop, namely for looping over an interval of 
the integers, over the entries of a vector, and over the rows of a matrix. The first 
form is 

for (identifier) = ( expression1 ) to ( expression2 ) do (series) od 

The identifier denotes a fresh variable, local to this loop, which will disappear when 
the loop is terminated; call this the loop variable. First both expressions, which should 
be of type integer, are evaluated. The value of ( expression1 ) is assigned to the loop 
variable, and the value of ( expression2 ) is stored away for comparison; call it limit . 
Then the following sequence of operations is performed until the loop is terminated: 
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the value of the loop variable is compared with limit, and if it exceeds that value, the 
loop terminates; otherwise the (series) is evaluated and finally the loop variable is 
incremented by 1. Having terminated, the loop returns the value of the most recent 
evaluation of (series), or void if it was not evaluated even once (i.e., if the value of 
( expression1 ) exceeds limit). It is permitted-but not recommended-to assign to 
the loop variable within ( series ) . 

The second form of the loop clause is 

for ( identifier ) in ( expression ) do ( series ) od 

Here ( expression ) should yield a vector v, and again ( identifier) denotes a loop 
variable local to this loop. The execution of this kind of loop is similar to that of the 
first kind, but rather than initialising, testing and incrementing the loop variable, the 
(series) is evaluated as many times as the size of v, and prior to the i-th evaluation, 
the value v(i] is assigned to the loop variable. Again the value of the last execution 
of (series) determines the value of the loop clause itself. As an example, the sum of 
the entries of a vector can be computed as follows: 

sum( vec v) = loc s = O; for entry in v do s = s + entry od; s 

The third form is analogous to the second, looping over the rows of a matrix 
rather than over the entries of a vector. Its form is 

for ( identifier ) row ( expression ) do ( series ) od 

Here (expression) should yield a matrix m, and again (identifier) denotes a loop 
variable local to this loop; in this case it is a vector variable. The only further 
difference with the previous form of the loop clause is that the number of times 
(series) is evaluated equals the row size of m, and prior to the i-th evaluation, the 
value m(i], i.e., the i-th row of m, is assigned to the loop variable. 

2.5.6. Break, return and setdefault 

It is possible to exit a while or for loop before the termination conditions given in 
Section 2.5.5 are satisfied by executing a statement break contained somewhere in 
the (series) of the loop (but not in any loop contained in that (series)). This is a 
statement of the form 

break or break ( expression ) 

Executing break forces termination of the smallest enclosing loop; the value of 
(expression) if present becomes the value of the loop*. The following example defines 
a primality test using this feature. 

* This is true for any ordinary use of break, but in fact the rule is a bit more 
complicated, since l!E completes the evaluation of any statement in the loop that is 
being evaluated at that point; this can only happen if some clause containing the 
break is being used as a proper subexpression of some statement (or expression). 
For instance in 'a = {break 5}' the value 5 is assigned to the variable a, instead of 
forming the result of the loop. The rule is that the value of break becomes that of the 
enclosing clause, and may be used to complete evaluation of the statement containing 
that clause; the value of that statement then moves outward to the enclosing clause, 
etc., until the value of the loop itself is determined. 
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prime(int n) = loc v = [2]; \ 
for i = 3 to n do if primetest( i) then v+ = i fl od; v 

primetest(int k) = for n in v do if k % n == 0 then break O else 1 fl od 
prime(68) 

which returns [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67] . Note how 
prime test uses the local variable v of prime, which is possible according to the ( dy­
namic) binding rules for variables; see Section 2.6.2. 

The statement return is analogous to break, but it terminates the function 
currently being executed rather than the smallest enclosing loop; this may in fact 
also force termination of any loops within that function (but the converse is not true: 
break can only terminiate a loop within the current function). Its form is 

return or return (expression) 

In the same fashoin as for break, the expression after return will determine the result 
of the function. The function primetest in the previous example could therefore also 
be written as 

primetest(int k) = for n in v do if k % n == 0 then return O fl od; 1 

The statement setdefault is not related to break or return; it is simply used 
to set or inspect an important system parameter, the default group. Its form is 

setdefault or setdefault (expression ) 

Many of the mathematical functions, which are described in Chapter 4 involve compu­
tation within some Lie group, or its root system or representation theory etc. These 
functions need to be told for which group they should do their computation, and by 
convention this group is passed as the final argument . For convenience however, since 
one often does a number of computations for the same group, one may define a default 
group, in which case it is allowable to omit this final argument ; the default group will 
be implicitly assumed. To set the default group execute setdefault (expression) 
with ( expression ) yielding the desired group; to find out what the default group is 
currently, execute setdefault without parameters. For example, the commands 

setdefault A3 ; worbi t([l , 1, 1]) 

will produce the same result as worbit([l, 1, 1], A3), but it will also have set the default 
group to A3 , so that it can be omitted in further function calls. 

2.6. User defined functions 

We have already seen some simple examples of functions defined by the user; in this 
section we treat this subject in more detail. 

Functions can only be defined on top level, i.e., not within function bodies. At 
the moment of definition of a function, it is only checked for syntactic correctness, 
and then effectively stored textually. Only at the time of the function call does the 
interpreter determine the types and values of the contained symbols (this makes it 
possible, for instance, to define a function that calls upon other functions that are 
yet to be specified, as long as these functions are defined before the first function is 
actually called) . At the time the function is called, the interpreter checks that all 
variables and functions are used with consistent types, and only after this has been 
successfully done does the real execution start . Before the function is invoked, all of 
its arguments are computed ; thereafter the function itself is executed. 

Like for operators, there can be more than one meaning for a function, as long 
as they can be distinguished by the number and types of their parameters. It is for 
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instance possible for the user to extend functions that are built into l.!E to other types 
of values, as is demonstrated in Section 5.7. The name of a function can even be 
simultaneously used as a variable, but the uses of a name for a parameterless instance 
of a function and as a variable are mutually exclusive. 

2.6.1. Function definition 

A function definition consists of the function identifier followed by a list of formal 
parameters, an equals sign and the (possibly compound) statement that computes the 
result of the function (the latter may be as simple as a single expression). Function 
definitions can take two similar forms: 

( name ) = ( ( type ) ( variables ) ; ... ; ( type ) ( variables ) ) = ( series ) 
( name ) = ( ( type ) ( variables ) ; ... , ( type ) ( variables ) ) { ( series ) } 

where each (type) is one of int, vec, mat , pol, grp and tex, and each (variables) 
consists of one or more identifiers, separated by commas. The first form of the function 
definition is most convenient for simple functions, for instance when the function body 
consists of a single expression; the second form on the other hand is more suitable 
for large functions, especially since command prolongation up to the closing brace 
is guaranteed. The identifiers denote the parameters of the function, in order; each 
identifier in ( variables ) has the type specified by the preceding ( type ) . The function 
parameters are considered as local variables, which are initialised during a call to the 
values of the arguments. Therefore they can be changed, but this has no effect on the 
values of variables outside the function ( call by value) . A parameterless function may 
be defined by writing an empty pair of parentheses, but unlike in calls the parentheses 
may not be omitted altogether, for then one would obtain an assignment rather than 
a function definition. Examples of function definitions are: 

f ( int X) = 2 * X 
J(tex a; int x, y; tex b) = print(a); print(x'y); print(b) 
gcd(int x, y) = if y == 0 then x else gcd(y, x % y) fl 
hi() {print("How do you do?")} 

Now the call /(3) yields 6, while f ( "r 51 =" , 7, 51, "That's 44 digits") prints the 
three lines 

r51 = 

12589255298531885026341962383987545444758743 
That's 44 digits 

and yields no value, gcd(51566870, 2371954630) yields 1990, and finally the response 
to hi is How do you do? . As an example of a slightly less trivial function definition, 
we present the following function that extends gcd above in the sense that it not 
only computes the value d = gcd(x, y), but also determines integers k, l such that 
d = kx + ly, by means of the so-called "extended Euclidian algorithm" . The result is 
encoded as a vector [d, k, l]. 

extgcd(int x, y) \ 
{ loc m = [[x, 1, 0], [y, 0, 1]]; 

} 

# invariant: m[i, 1] = xm[i, 2] + ym(i, 3] for i E {1, 2} # 
for i = 1 to 2 do if m(i, 1] < 0 then m[i] = -m[i] fl od; 
while m(l, 1] # stop when smaller number becomes 0 # 
do loc q = m(2, 1]/m[l, 1]; m = (m[2] - q * m[l], m[l]] od; 
m[2] 
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2.6.2. Local variables and blocks 

We have already encountered local variables when discussing assignments, block and 
function parameters. We now discuss these in more detail. 

During execution, l!E maintains a hierarchy of levels for defining the scope of 
variables. Command execution always starts at the top level; variables defined on this 
level are global variables. Lower levels are created whenever the execution of a new 
series starts, and remain in existence until the execution of that series is completed. 
Here is a complete list of the series that correspond to separate levels: 

- The series of a block, which is enclosed in curly braces '{' and '}'. 
- The series between then and else ( or fl) or between else and fl, 
- The series between do and od, 
- The body of a function, 

An assignment of the form loc (variable) = (expression) introduces a new 
(initialised) local variable at the current level. The variable will cease to exist when 
this level disappears and l!E returns to a higher level. The range in which such a local 
variable can be accessed, extends from the statement following its loc assignment to 
the end of the series defining the current level; this is almost obvious from the fact 
that nothing can be accessed before it is created, but note that for instance 

a= 3; for i = 1 to a do print(a); loc a= a+ l; print(a) od 

will print the values 3, 4, 3, 4, 3, 4, since the first call of print always prints the 
global a (in fact no local a exists whenever this statement is executed). 

When a variable is assigned to in an assignment without loc, or when it is used in 
an expression, it is first checked whether a variable of that name exists at the current 
or any higher level (in that order), which ends with checking if a global variable of 
that name exists. As soon as a matching variable is found, that variable is used; if no 
variable of that name is found at all, then if the variable is being assigned to, a new 
variable is created at the current level (as if the assignment were preceded by loc), 
and otherwise an error message is generated. As a consequence, it is not possible to 
create new global variables except from the top level. Furthermore, it is not allowed 
at lower levels to change the type of any variable: it is only allowed to change the 
value to another value of the same type. 

Note that the variable identified by an identifier used non-locally within a function 
depends on the chain of active functions at the point of reference; situations in which 
such an identifier denotes different variables during the execution of a single command 
are even possible. Therefore use of loc is always recommended for intermediate 
results within functions. Note also that although the call-by-value rule excludes the 
possibility that a function when called by another one modifies values in the calling 
function by assignment to its own parameters, it can modify the local variables of 
the calling function by means of direct assignments to them that are not shielded by 
any loc. 

2.6.3. Make and apply 

To l!E, functions are not values in the sense that they could be assigned to variables, 
or passed to or returned from (other) functions. However, there is a number of built 
in operations, under the names make and a few variants of apply that do accept 
a function as one of their parameters, and that yield values computed using this 
parameter function. 

The function that appears as an argument to make or apply should be user 
defined, and it is treated as a mathematical function, so it should not have side 
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effects (i.e., external changes obtained by calling the function, other than the value 
yielded), as it is not defined in what way exactly the function is called. 

There are a number of meanings for each of the operations, depending on the 
number and type of arguments supplied. To facilitate specification of these meanings 
we use the letter f throughout to denote the function parameter, and for the other 
parameters we use n, n' for integers, v, v', v" for vectors and m for matrices. 

The operation make is useful to tabulate a function f on certain sample values. 
The simplest case is to tabulate a function on the numbers 1, ... , n. For a function 
f: int --> int , we have 

make(!, n) = [f(l), ... ,f(n)], 
in other words make(!, n) is a vector v of size n, with v[i] = f ( i) for each i. For 
example, with the definitions given in Section 2.6.1, make(!, 4) returns [2, 4, 6, 8]. It 
is also possible to tabulate the same function on explicitly given values, so again for 
a function f: int--> int, we have 

make(f,v) = [f(v[l]), ... ,f(v[n]), 

where n is the size of v, in other words make(!, v) is a vector v' of the same size as v, 
with v'(i] = f( v[i]) for each i. We give an example with the same f defined above: 
make(!, [47, 11, 30, -531, 425]) returns [94, 22, 60, -1062, 950]. 

Similar operation are available for functions of two integer arguments. So let 
f : (int, int) --> int, then we have 

(

f(l,1) 

make(!, n, n') = : 
f(n, 1) 

!(1; n')) ' 
f(n, n') 

in other words make(!, n, n') is an n x n' matrix m that satisfies m[i, j] = f ( i, j) for 
all applicable i, j. As an example 

make(gcd, 3, 7) - ( : 
1 
2 
1 

1 1 
1 2 
3 1 

1 
1 
1 

1 1) 
1 2 . 
3 1 

Again there is a variant to present arbitrary sample data to f, namely by providing 
two equal length vectors, where the first argument to f is taken from the first, and 
the second argument from the second vector. In this case only pairs of entries at 
matching positions are selected, so the result is a vector rather than a matrix. We 
have 

make(!, v, v') = [!( v[l], v'(l]), ... , f( v[n], v'[n])] 

where n is the size of v and of v', in other words make(!, v, v') is a vector v" of 
the same size as v and v', with v"[i] = f(v[i], v'[i]) for each i. As an example 
make(gcd, [3, 5, 8, 21, 91], [8, 10, 12, 14, 39]) yields [1, 5, 4, 7, 13]. 

The operations iapply, vapply and mapply are used to compute iterates ( or 
powers) of the specified function. For convenience, define the notation fn ( x) by 

if n = 0 
if n > 0 

Here x can be an integer, vector or matrix as applicable for f . The corresponding 
cases have different names in l!E, however: 
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iapply(J, n, n') = r(n') 
vapply(J, n, v) = r(v) 
mapply(J, n, m) = r(m) 

where f: int - int 
where/: vec - vec 
where /: mat - mat 
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As a simple example we have iapply(/, 4, 3) = 48 for the function f given above. For 
the case of f: int - int there is also a variant that accumulates all the intermediate 
values into a vector; we have 

vapply(/, n, n') = [n', f(n'), /2(n'), ... , r(n')], 

in other words, vapply(f, n, n') is a vector v of length n + l, with v(l] = n' and 
v[i] = f(v[i - l]) for 2 Si Sn+ l. For example, still using the doubling function f 
from above, we have vapply(/, 4, 3) = [3, 6, 12, 24, 48]. A final variant of vapply uses 
a function f: vec - int to incrementally build up a vector; it can be formulated in 
terms of the first instance of vapply: 

vapply(J, n, v) = vapply(F, n, v) where F(v) = v + f(v) 

Here F is a function that extends a vector with a new entry computed by f from that 
vector. A typical example is the following procedure to compute Fibonacci numbers. 
First a function f is defined to compute the next Fibonacci number from a vector of 
preceding ones: 

/(vec v) = loc s = size(v); v[s - l] + v[s] 

With this function we compute the first 12 Fibonacci numbers in the sequence starting 
with (1, l] by calling vapply(/, 10, [l, l]) = [l, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,144]. Note 
that l!E decides whether to take the second or third instance of vapply depending on 
the result type off when applied to a vector. 

2.7. Global commands 

In addition to the commands mentioned above, there are a number of commands 
that do not really form a part of the language of the interpreter, but allow the user 
a number of controls over the l!E session. All these commands can only be invoked 
from top level. 

2.7.1. File management 

It is possible to collect a number of commands to the l!E interpreter in a file and 
then execute these commands as if typed from the keyboard. If these commands are 
contained in the file (name), then execution of the commands can be invoked by the 
command ' read (name)'. The file can also be edited during the l!E session by giving 
the command 'edit (name)'; after editing is finished, the resulting file is directly read 
into l!E as if the read command were given. The editor which is invoked is either the 
standard editor of your machine, or, if you are in a UNIX environment and the shell 
variable $EDITOR has been set, the editor named by that variable. The command 
edit can also be used without a filename argument, in which case the same file is 
edited as in the previous edit command. The file named 'ini tf ile', if present in 
the directory from which l!E is invoked, will be read upon entrance of the program 
l!E, before the first prompt appears; the same file will also be used when no filename 
is supplied in the first edit commmand of a session. 

To save the user defined functions of a particular session, execute the command 
'write (name) ' . As a result, these functions are written in the file (name). See also 
the command 'on monitor' below. 
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2. 7.2. Information retrieval 

Information about a function, operator or a reserved word (like for) can be obtained 
by typing '? (topic)' (you may also use 'help' as a synonym for '?'). A list of the 
reserved words can be obtained by typing '?index'. Information produced by'?' (or 
'help') can also be written on a file by typing '? (topic) > (filename)', or appended 
to an existing file by '? ( topic ) > > ( filename ) ', 

Information about a mathematical term can be obtained by giving the command 
'learn (term)'. For example 'learn lie group' will give all available information 
on the term 'lie group' and on on any terms containing that string (this won't work 
unless you type lower case letters, apologies to Sophus Lie). A list of the documented 
terms can be obtained by entering 'learn index'. 

2.7.3. Memory management 

Memory management is performed automatically, and should be of no concern to the 
user. At certain points, l!E will deem it advisable to reduce the amount of memory in 
use, and will do so by invoking the garbage collector, which attempts to locate and 
free objects that are no longer accessible to the user. Although this is generally done 
automatically at convenient points in the calculation, it is also possible to explicitly 
call the garbage collector by the function gcol, and it is also possible-by stating 
off gc-to (temporarily) inhibit garbage collection at points where one knows that 
there will be no memory to free anyway, see Section 2.7.4. To monitor the amount 
of memory in use, the function used provides the number of variables and functions 
in use at this point. There is no way to explicitly remove a global variable from l!E's 
tables, but by assigning O to the variable, most relevant resources occupied by the 
variable are freed. 

2. 7.4. System parameters 

There is a number of system parameters, which may be set and altered by the user. 
The command to do this has the form 'on (feature)' or 'off (feature)'; the various 
features are given in th follwing table: 

feature default 'effect of' non-default setting 
state 

bigint on 
lprint on 

monitor off 

prompt on 
runtime off 

gc on 

'off bigint' banishes arbitrary length integers 
'off lprint' prints vectors, matrices and polynomials 
in rectanglular from 
'on monitor' writes all output to the file 'monfil' in 
l!E's start-up directory, as well as to the screen, 
'off prompt ' suppresses the prompt character '>' 
'on runtime' shows the amount of time spent executing 
each command, after printing its result 
'off gc' inhibits garbage collection, 

The effect of 'off lprint' on vectors and matrices is only slight: commas are replaced 
by spaces, and in case of matrices the square brackets bordering the rows are repleced 
by verical bars. For polynomials however the difference is significant: the terms are 
listed vertically by printing the exponents as rows of a matrix, with the coefficient of 
the term preceding vertical bar at the left of the matrix. The running time shown by 
' on runtime ' is divided into 'user' time, spent on actual computation, and 'system' 
time spent on operating system services. 
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The system parameter that determines the ordering of terms in a polynomial 
( and of the rows in a matrix in calls of sort and redsetmat) has four possible values, 
and requires a slightly different form of the ' on' command (while the 'off' command 
is not used in this context) : 

on+ lex 
on - lex 
on+ degree 
on - degree 

select lexicographic ordering 
select inverse lexicographic ordering 
select total degree ordering 
select inverse total degree ordering 

Two more system parameters, which determine the amount of memory that l!E allo­
cates for representing programs and data, take a numeric value, and are set by the 
commands 

on n maxnodes set maximum number of nodes (for programs) ton 

on n maxptrs set maximum number of objects to n 

The current values of all the system parameters can be obtained by giving the 'on' 
command without parameters (in this case the 'off' command is synonymous to 'on'). 

Finally, we repeat that the abort character ( control ) C terminates the currently 
running command. 
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Chapter 3. TERMINOLOGY 

In l!E, various mathematical notions are encoded by means of a limited number of dif­
ferent types ( viz. integer, vector, matrix, polynomial), and it is important to now how 
the mathematical notions and the concrete objects manipulated by l!E correspond. 
It is the purpose of the current chapter helps to explain these correspondences. To 
this end a large part of this chapter is dedicated to listing the names of mathe­
matical notions that are representable in l!E, with an indicatation of how can be 
represented by l!E objects. For example, a root of a semisimple Lie group g of rank r 
may be represented by a vector v = [vi , . . . , Vr] such that the given root is equal to 
I::;=l viai E EB;=l Zai, where the a ; (for 1 :S i :S r) are the fundamental roots of the 
root system of g. 

It may be clear from this very example that some theoretical background is re­
quired in order to explain these things. We do not intend to give a comprehensive 
introduction to the subject here (for this one may consult standard textbooks, a num­
ber of which can be found in Chapter 7), but we shall try to give the basic definitions 
and properties that are relevant to understanding the mathematical functions present 
in l!E. The remainder of this chapter is divided into a number of sections, each one 
treating one of the follwing subjects: Lie groups and algebras, roots and weights, Weyl 
groups and their action, representations of Lie groups, and the symmetric groups and 
related matters (the same subdivision is used in Chapter 4 in which the mathematical 
functions built into l!E are discussed, and in the help system provided by 1.!E). At the 
end of each section an alphabetic listing of the relevant terms related to the subject 
is given for reference, with explanantions (if you are unsure under which subject a 
term is classified, the index gives references to all terms). We start with listing the 
different ways in which several types of l!E objects may be interpreted in general. 

Matrix A matrix can either stand for a linear transformation ( acting by right-
multiplication on row vectors) for a set of vectors , in which case each row of the 
matrix represents a vector in the set, or in a special way such as for a character 
table. For instance, a matrix representing a set of roots will be termed a root 
matrix. See also character matrix, orbit matrix, and restriction matrix. 

Polynomial A polynomial may either stand for itself (i.e. , for a Laurent polyno­
mial) , or it may encode a set of vectors with multiplicities. In the latter case each 
term represents the occurrence of its exponent in the indicated set ( where it is usu­
ally interpreted as a weight), occurring with multiplicity equal to the coefficient of 
the term. See also decomposition polynomial and multiplicity polynomial. 

Vector A vector may represent an element of a vector space ( or strictly speaking 
rather of a free Z-module, since its entries must be integral) , such as the weight 
space, or it may just be interpreted as a set or sequence of integers. In the former 
case it is always to be interpreted as a row-vector, so that matrices are to be applied 
from the right. In either case there are a further distinctions as to how the vector 
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is to be interpreted. See also root vector, weight vector Wey] word, partition and 
toral element. 

3.1. Lie groups and algebras 

As the textbooks say, Lie groups are groups that also have the structure of a (real or 
complex) differentiable manifold, such that the maps of multiplication and inversion 
are differentiable maps. This definition however is not the most useful viewpoint 
when we consider Lie groups as treated in l!E: the differentiable structure is beyond 
the scope of !.!E's computations, and the package only rarely deals with individual 
elements of Lie groups. Moreover, l!E only deals with a particularly well behaved 
subclass of Lie groups, namely the connected reductive complex Lie groups. This 
class of groups the semisimple Lie groups, but also important non-semisimple groups, 
such as GL(n, C) (the group of all invertible n x n-matrices). The chosen class is quite 
convenient, mainly for two reasons: the groups have a clearly structured classification, 
as well as a pleasing representation theory. 

By the classification of the connected reductive complex groups ( cf. (Bourb 1975]), 
each such Lie group is the homomorphic image of a direct product of a simply con­
nected semisimple complex group and a complex torus (i.e., a direct product of copies 
of C*), where the homomorphism has a finite kernel, which is contained in the center. 
The semisimple factor in the product may be reconstructed up to isomorphy as the 
universal cover of the commutator subgroup, and the torus factor as the identity com­
ponent of the center. Every simply connected semisimple group in its turn is a direct 
product of simply connected simple groups. Each of the latter groups is isomorphic 
either to one of the classical groups SL(n, C) (for n ?: 2; the Special Linear group, 
consisting of all n X n matrices with determinant 1), Spin(n, C) (for n?: 5; the Spin 
group, covering the Orthogonal group: the group of all invertible n x n matrices m 
with m-1 = m T), Sp(2n, C) (for n ?: 3, the Symplectic group, consisting of all in­
vertible 2n x 2n matrices m with m-1 = jm T j-1 for a fixed invertible antisymmetric 
matrix j), or to one of the exceptional groups, which have types E5, E1, Es, F4 , 

and G2 . 
The groups directly representable in l!E are the complex Lie groups which are 

a direct product of simply connected simple groups and a central torus (i.e., groups 
that do not need the homomorphism with finite central kernel) . The type of such 
a group is formed by concatenating the types of the individual factors, where Tn is 
used to denote an n-dimensional torus. We shall occasionally use a type indication to 
stand for the group of that type itself. Since any (not necessarily simply) connected 
reductive complex group g is the quotient of a simply connected reductive group g by 
a finite central subgroup, g can be described by specifying the central elements of g 
that are in the kernel of the canonical morphism g --> g . For example, if g = G £(2, C), 
then g can be taken to be of type A1T1 , the direct product of SL(2, C) = A1 and 
a 1-dimensional torus C* = T1 , and the canonical surjective morphism g --> g has 
kernel {(1, 1), (-1, -1)} C A1T1 , where -1 E A1 and -1 E T1 stand for the central 
elements minus the identity in the respective groups. We shall assume from now on 
that g is simply connected, and that it is the direct product of simply connected 
simple groups, together forming the so-called semisimple part g1 of g, and a torus S , 
the so-called central torus of g, 

Any Lie group g contains subgroups that are isomorphic to a ( complex) torus , and 
are moreover maximal (with respect to inclusion) for this property; such a subgroup 
is called a maximal torus. All maximal tori are conjugate in g, so we may fix an 
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arbitrary maximal torus in g and call it T. Then T is the direct product of the 
central torus S and a maximal torus T' of the semisimple part, (which in turn is 
the product of maximal tori of the simple components). The Lie rank of g is the 
dimension of T, which we shall denote by r; the semisimple Lie rank of g is the Lie 
rank of g', we shall denote it by s. 

Much of the structure of a Lie group can be deduced from the structure of a 
Lie algebra which it induces on the tangent space to the group taken at the identity 
element (in particular, any finite dimensional representation of one of them leads to 
a similar representation of the other), and indeed much of the theory of Lie groups 
is derived by studying the representation of the Lie group on its Lie algebra (by 
conjugation). In l.!E the point of view of Lie algebras is usually not stressed, but 
many of the computations may be interpreted for Lie algebras as well as for Lie 
groups. 

Central torus Each simply connected reductive Lie group g (the groups l.!E deals 
with) splits as a direct product of a semisimple group (its semisimple part) and 
a torus; the latter torus which ( contrary to the maximal torus of the semisimple 
part) lies in the center of g is called the central torus of g. 

Diagram The (Dynkin) diagram of a semisimple Lie group is a graph indicating the 
isomorphy type of the group; the number of vertices is equal to the (semisimple) 
Lie rank, and the number of connected components of the diagram is equal to the 
number of simple factors of the group. The vertices are labeled with positive integer 
numbers, following the conventions of [Bourb 1975]. The diagram represents the 
information contained in the Cartan matrix of the group in a compact form. 

Fundamental Lie subgroup A closed subgroup h of a Lie group g is called fun­
damental if it contains a maximal torus of g. If h contains T and is reductive, it is 
determined by the set of roots in the root system q> of g that are also roots of h; 
these form a closed subsystem of roots. 

General Linear group The group of all invertible linear transformations of a 
vector space V is called the general linear group of V, written GL(V). Up to 
isomorphism this depends only on n = dim V, and this group is also written as 
GL(n, C) (assuming the vector space is over C). A Lie group homomorphism of 
some Lie group to G L(V) is called a representation of that Lie group on the vector 
spave V. See also special linear group. 

Lie group A group is called a Lie group if its underlying set is a differentiable 
variety, and the multiplication and inversion maps are differentiable. The group 
is called complex, connected, simply connected, etc., if the variety is respectively 
complex, connected, simply connected, etc. Each reductive complex Lie group is 
an algebraic group and the representation theory can be dealt with in an entirely 
algebraic manner. See [Serre 1987]. 

Lie algebra A finite-dimensional vector space V supplied with a bilinear operation 
[ ·, · ]: V x V-+ V satisfying [x, y] = -[y, x] and [[x, y], z] + [[y, z], x] + [[z, x], y] = 
0 for all x, y, z E V (anti-commutativity and the Jacobi identity, respectively) 
is called a Lie algebra. Every Lie group defines a Lie algebra structure on the 
tangent space to the group at the identity element. Although Lie algebras play 
no explicit role in this package, the representation theory of simply connected 
reductive complex Lie groups which l.!E deals with coincides with the representation 
theory of reductive Lie algebras over C, see [Hum 1972]. See also [Jae 1962] 
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Maximal torus A torus that is not properly contained in any other torus within g 
is called a maximal torus of g. If g is a reductive Lie group, such tori exist and 
any two are conjugate. In l!E, we always assume a fixed maximal torus T of g to 
be chosen, and weights and roots are defined with respect to T. 

Reductive group A group is reductive if each of its finite dimensional represen­
tations decomposes into a direct sum of irreducible representations. A connected 
reductive complex Lie group g is isomorphic to the quotient of the direct product 
of a semisimple group and a torus by a finite central subgroup. An example is 
the general linear group GL(n, C). The (images of) the semisimple factor and the 
torus can be found as the commutator subgroup g' of g and the central torus of g 
respectively. In l!E, the type group always refers to a simply connected reductive 
complex Lie group (so no quotient is involved). 

Semisimple element All conjugates of elements of the torus T are called semi­
simple elements (not to be confused with the term semisimple for groups); in any 
representation of g they correspond to diagonalisable transformations. Hence each 
conjugacy class of semisimple elements has representatives in T, and some elements 
of T namely those of finite order, can be represented in l!E; see below under toral 
element. 

Semisimple group A reductive Lie group is called semisimple if it contains no non­
trivial central torus. Note that a non-trivial semisimple group necessarily contains 
non-semisimple elements. 

Special Linear group For a vector space M the special linear group SL(M) is 
defined as the Lie subgroup of the General Linear group G L( M) of all transforma­
tions with determinant equal to 1. 

Torus A group which is isomorphic to (C*t for some n is called a torus (plural: 
tori); it is a reductive Lie group of dimension n. Any subgroup of a Lie group g all 
of whose elements are semisimple is a torus, called a torus of g. Every torus of g 
is contained in a maximal torus, and every maximal torus is conjugate to T, the 
fixed maximal torus. See also semisimple element. A fundamental property of a 
torus is that all of its irreducible representations are 1-dimensional. Since in such 
a representation of T each element acts as a scalar, the representation is essentially 
given by an algebraic group morphism T--+ C*, a so-called weight. Any represen­
tation of g may be restricted to a representation of T, and as such decomposed 
into 1-dimensional representations. The resulting formal sum of weights is called 
the (formal) character of the representation with respect to T. 

3.2. Roots and weights 

Consider the set A(T) of group morphisms T --+ C* ( or equivalently, of 1-dimensional 
T-modules); its elements are called weights. Weights may be composed in a natural 
way by multiplication as C*-valued functions, which makes A(T) into an Abelian 
group. We use an additive notation for this group, and it is therefore convenient to 
denote the image of some t E T under weight .X E A(T) by t>•, so that we have t>..+µ, = 
t>'•t/l-. As an Abelian group, A(T) is isomorphic to zr; moreover there is a natural 
Z-linear action on A(T) of the finite group W = Ng(T)/T, the Wey] group of g (with 
respect to T). The group A(T) naturally decomposes into a direct sum A(S) EB A(T'); 
the subgroup A(S) is pointwise fixed by W. The group T is diagonalisable in any 
g-representation. In other words, if Mis a g-module, then the restriction of M to Tis 
a direct sum of 1-dimensional T-modules, and therefore described by a set of weights 



Chapter 3 Terminology 31 

(with multiplicities). The adjoint representation of g is its representation on the Lie 
algebra of g, which (as a set) is the tangent space tog at the identity element 1. The 
set of nonzero weights of T occurring in the adjoint representation is called the root 
system of g, and (often) denoted by <I>. The elements of <I>, the so-called roots, span 
the sublattice of A(T') of finite index, known as the root lattice. 

There is a non-degenerate W-invariant inner product on the root lattice Z<I>; it is 
unique up to a scalar factor for each simple factor of g, and can be chosen to take values 
in Z. We choose such an inner product, and extend it to a bilinear symmetric positive 
definite form ( ·, ·) on A(T) in such a way that A(S) is perpendicular to A(T'), and 
the restriction to the former has an orthonormal basis. The reflections in W ( acting 
on the weight lattice), are precisely the orthogonal reflections in the hyperplanes 
perpendicular to the roots (a pair of opposite roots giving rise to the same reflection). 

Embedding A(T') in a real vector space, we choose (and fix) a hyperplane H 
through the origin, but not through any root, and a half space with respect to H, 
which we shall call the 'positive half-space'. Then there is a unique system of funda­
mental roots, i.e., a set { a 1 , ... , a 8 } C <I> of s linearly independent roots such that 
any root (3 is an integral linear combination of the ai, and the non-zero coefficients 
are either all positive or all negative, according as (3 lies in the positive or negative 
half-space; we accordingly call (3 a positive or negative root. We have (ai, aj) ::; 0 
for i =/- j. Apart from determining a choice of a set of positive roots, we shall make 
no use of the hyperplane H and the positive half-space. 

We define a partial ordering of weights: for weights v, v' we write v' -< v if v -v' is 
a linear combination of the fundamental roots with non-negative integral coefficients; 
we say that v' lies under a weight v, and that v is higher than v' ( so by construction 
all positive roots are higher than 0, which in its turn is higher than all negative roots). 
Note that v and v' can only be comparable with respect to -< if they lie in the same 
coset of the root lattice; in particular any set of weights that has a highest element is 
contained in a single such coset. 

Any root a defines a linear form (·,a) on A(T) defined by (x, a) = (~,';f, which 
value is independent of the scalar involved in the choice of the inner product, and 
moreover is always integral. In fact there exist w1 , ... , w8 in A(T') that form a 'dual 
basis' to the linear forms ( · , a 1), ... , ( · , a.), i.e., which are such that (wi, ai) = Di,j 
for all 1::; i,j::; s; from this it follows that thew; form a Z-basis of A(T'). We extend 
w1 , ... , w. by an orthonormal basis w •+l, ... , Wr of A( S) to a basis of A(T), called the 
basis of fundamental weights. Note that the image of a weight x under reflection in 
the hyperplane perpendicular to a root a is given by x - (x, a)a, and therefore lies 
in the same coset of the root lattice as x. 

Cartan matrix The matrix ( (ai, aj)) l~i,j~• is called the Cartan matrix ( of the 
semisimple part) of g; its rows express the fundamental roots on the basis of fun­
damental weights. 

Cartan type The Cartan type of a closed subsystem W of roots of <I> is the type of 
the semisimple group h such that W is isomorphic to the root system of h. 

Closed subsystem Given a root system <I>, a closed subsystem is a subset \JI that 
is itself a root system, and has the property that whenever a + /3 E <I> for a, 
/3 E \JI then a+ (3 E \JI. If <I> is the root system of g, then every closed subsystem 
corresponds to a fundamental Lie subgroup of g. 

Fundamental reflection For a chosen set of fundamental roots a 1 , ... , a 8 , the 
reflections in the hyperplanes perpendicular to these roots are called fundamental 
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reflections; they are. often denoted by r 1 , ... , r 8 • These reflections generate the 
-term Weyl group. 

Fundamental root It is often assumed that a subset of the roots has been chosen 
as the set of fundamental roots, and are then denoted by a 1 , ... , a 8 ; this set must 
form a basis of the root lattice such that any root can be expressed as a linear 
combination of them with either all positive or all negative integer coefficients. 
This is the basis on which root vectors are expressed. The function inprod gives a 
W-invariant inner product for weights on this basis. 

Fundamental weight For a chosen set of fundamental roots there is a basis of 
the weight lattice consisting of weights w1 , ... , Wr such that ( Wi, a j) = 8i,j for all 
i, j E {1, ... , s }; these weights are called the fundamental weights. It is this basis 
on which weight vector are expressed. 

Highest root This is the maximum of the set of roots with respect to the partial 
ordering'-<' (see above). It is the highest weight of the adjoint representation. 

Levi subgroup Any subset of the set of fundamental roots determines a closed 
subsystem ( of which it is a basis fundamental roots) of the root system, and the 
semisimple part of the fundamental Lie subgroup corresponding to this subsystem 
is called a Levi subgroup of g. The Dynkin diagrams of the Levi subgroups of g 
are therefore obtained by taking subsets of nodes of the diagram of g and retaining 
the edges between elements of the subset. 

One parameter subgroup Any 1-dimensional subtorus h of T is called a one 
parameter subgroup; there is a group isomorphism¢: C* --> h. Such one parameters 
subgroups may be represented in the following way, which is very similar to the 
representation of toral elements. For 1 ~ i ~ r we have a group homomorphism 
z f--> </J(z)w; from C* to C*; this homomorphism is equal to some map z f--> za; 
for ai E Z. The one parameter subgroup h is now represented by the vector 
[a1, .. . , ar, OJ, where the final O serves to distinguish it from toral elements, which 
are valid in the same positions where one parameter subgroups may be used (e.g., 
as parameter to centroots ). The integers a 1 , ... , ar should not all have a non-trivial 
factor in common, because the morphism </J would then fail to be injective. Any 
toral element obtained by substituting some number d for the final zero lies in h 
(it is </J( () for ( = e21ri/ d). The restriction matrix of h is obtained by arranging the 
ai (for i = 1, 2, ... , r) vertically into a one-column matrix. 

Positive root A root that can be expressed as a linear combination of fundamental 
roots with non-negative coefficients is called a positive root. For every root a 
exactly one of { a, -a} is positive. 

Root A non-zero weight for the adjoint representation of g is called a root of g. For 
each root the orthogonal reflection in the hyperplane perpendicular to it preserves 
the weight lattice. 

Root lattice The sublattice of the weight lattice generated by the roots of g is 
called the root lattice. For semisimple groups the root lattice has finite index in 
the weight lattice; for simple groups of type An, Bn, Cn, Dn, En, F4 and G2 this 
index is n + 1, 2, 2, 4, 9 - n, 1 and 1 respectively. The fundamental roots form a 
basis of the root lattice, and the elements of the root lattice are root vectors. See 
also weight. 

Root matrix A root matrix is a matrix whose rows specify a set of roots, repre­
sented as root vectros. Root matrices may be used to denote subsystems of the 
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root sysytem of g. 

Root system The set of all roots is called the root system of g. It is usually denoted 
by <I>. 

Root vector When an elemnt of the root lattice is represented by its coefficients 
on the basis consisting of the fundamental roots ai, ... , as, the result is called a 
root vector. So a root vector has as size the semisimple rank of the group, and 
such a vector v =[vi, . .. , v 8 ] is interpreted as the sum I::=l Viai. 

Toral element To describe elements of T we can use the fundamental weights Wi. 
Recall that weights are in fact mappings T --+ C*, and a weight A can therefore 
be evaluated at an element t E T, the resulting value be written t\ the set of 
fundamental weights form a complete set of coordinates in the sense that any 
element t E T in uniquely determined by the values tw, for i = 1, ... , r. Since 
l!E cannot represent arbitrary complex numbers, it explicitly deals only with torus 
elements of finite order, i.e., for which all tw, are roots of unity. To this end, a vector 
[ a1, ... , ar, n] in l!E may represent the element t E T for which tw, = e2'ria;/ n = (a• 

for i = 1, ... , r, where ( = e21ri/n is a canonical n-th root of unity. See also one 
parameter subgroup. Since this is not the usual presentation of a toral element 
in a Lie group like GL(n, C) (namely by the diagonal entries occurring when the 
element is diagonalised), an example is given in Chapter 5 of how to transform 
from one presentation to another. 

Weight A weight with respect to a torus T is an algebraic group morphism T --+ C*; 
it describes a 1-dimensional representation of T. These arise in the decomposi­
tion of the restriction to T of representations of g, in which case they are called 
the weights of the g-representation with respect to T. The set A(T) of weights 
is an Abelian group, where the group operation is multiplication of weights as 
C*-valued functions (which corresponds to the tensor product of 1-dimensional 
T-representations); this is written additively, and we consequently use the expo­
nential notation t>• to indicate application of a weight A to t E T, so that we have 
t>•-+µ = t>•tµ . The fundamental weights span the weight lattice as a free Z-module; 
expressing a weight on this basis we obtain a so-called weight vector. 

Weight lattice The set A(T) of all weights of g with respect to T is called the 
weight lattice. The addition defined for weights makes A(T) into an Abelian group 
isomorphic to zr. 

Weight vector When a vector is represented by its coefficients on the basis con­
sisting of the fundamental weights wi, ... Wr the result is called a weight vector. So 
a weight vector v =[vi, ... , vs] is interpreted as the sum I:;=i ViWi. 

3.3. The Weyl group and its action 

Recall that the Weyl group W is defined as the quotient of the normaliser in G of T 
by T (which is its own centraliser) . If g is a reductive group, its Weyl group is the 
same as the Weyl group of its semisimple part. By construction W has a faithful 
action by conjugation on T , which induces an action on A(T); often we will identify 
W with the corresponding set of transformations of A(T). A fundamental domain for 
this action is the set A+ (T) of weights of the form I:;=l a;wi with ai ~ 0 for all i ::;; s, 
which means that any weight can be transformed by W into a unique unique element 
of A +(T); the set A +(T) is usually referred to as the Weyl chamber. A weight is 
called dominant if it lies in A +(T). There is no direct relation between dominance 
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and the ordering'-<' (for instance for all positive roots a we have O-< a, but usually 
very few (often only one) of these positive roots are dominant); however we have the 
following fact: the unique dominant weight in any W-orbit is also the highest element 
of that orbit . 

The group W is generated by the fundamental reflections, i.e., the orthogonal 
reflections in the hyperplanes perpendicular to the fundamental roots; the reflection 
corresponding to ai is denoted r;. As we have seen, xri = x-(x, a;)a;, where we follow 
the convention, used consistently throughout l!E, of writing linear transformations 
( and their matrices) to the right of the vector they operate upon. For any pair of 
distinct i,j with 1 :S i,j :S s , the product TiTj fixes the space perpendicular to both 
a i and ai, and induces a rotation in the plane spanned by a i and ai. The angle of 
rotation is 21r/mij, where mii is the order of riri (i .e., the least number m > 0 such 
that (r;rjr = 1). Consequently we have (ai , aj) = -J(ai, a i )(ai, ai) cos(1r/mij) , 
which holds also in the case i = j, since m ii = 1. Then W has the following abstract 
presentation: 

This presentation of W in terms of generators and relations shows that W is a Coxeter 
group. Elements of W can be represented in l!E both as products of fundamental 
reflections (see Weyl word below) and as r x r matrices. There are convenient ways 
to switch from one representation to another. 

Coxeter matrix A Coxeter matrix is a symmetric matrix m = (m;,j )i~i,j~• with 
positive integer coefficients such that m ;,j = 1 if and only if i = j . Such a matrix is 
used to define a Coxeter group: the group presented by ( 91, ... , g. I (9i9j )m,.; = 1) . 
The presentation of W given above shows that every Weyl group is a Coxeter group, 
with Coxeter matrix given by m i,j = order( r ;r i) . 

Distinguished coset representative Within the Weyl group W we may con­
sider left- , right- and double cosets with respect to a subgroup (or in the case of 
double cosets, two subgroups) generated by fundamental reflections; in each case 
the unique element of smallest length in its coset is called the distinguished coset 
representative. 

Dominant weight A weight whose inner products with all fundamental roots are 
non-negative is called dominant . Therefore, if the weight is written on the basis of 
the fundamental weights w1 , ... , Wr, then the first s coefficients ( corresponding to 
the semisimple part of the weight lattice A(T)) are non-negative. 

Exponents The exponents of a Lie group g form a sequence of numbers e1 , ... , er, 
where r is the Lie rank of g , such that the polynomial I: w EW xt(w ), where l denotes 
the length function on the Weyl group, decomposes as a product I1;=1 I;.i~O X J. 
Another property of the exponents is that the algabra of polynomial functions 
invariant under the action of the Weyl group of g in its standard reflection repre­
sentation is generated by r homogeneous polynomials of respective degrees e1 + 1, 
e2 + 1, .. . , er+ 1. Usually the exponents of g are given in weakly increasing order. 

Length The length of a Weyl group element w is the smallest number l such that 
w is a product of l fundamental reflections. Hence, it is the size of a reduced Weyl 
word representing w. 

Orbit When a group W acts (from the right) on a set X , any x EX has an orbit , 
which is the set of all distinct values of x · w for w E W. 
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Orbit matrix When a finite group acts on the weight or root lattice, any orbit may 
be represented by an orbit matrix, each row of which represents one element of the 
orbit. 

Reduced Weyl word When an element w of the Weyl group is expressed as a 
product r a 1 • · • ram of fundamental reflections, and no product of fewer than m 
fundamental reflections yields w then the sequence [ a1 , .. . , am] is a reduced Weyl 
word for w. 

Reflection A Weyl group element that acts on the weight lattice, fixing a sublattice 
of rank r - 1, is an orthogonal reflection in the hyperplane perpendicular to some 
root. The Weyl group is generated by such reflections. 

Weyl group The Weyl group Wis defined as the quotient of the normaliser N9 (T) 
of the maximal torus Ting by the centraliser of Ting (which is T itself). W is a 
finite group, and has a faithful linear representation on the weight lattice A(T), and 
the elements of W are often identified with their images in this representation. The 
fundamental reflections r1 , . .. , r 8 in this representation are canonical generators 
of W. 

Weyl word An element of the Weyl group W may be presented as a product of 
the fundamental reflections ri (1 :S i :S s). If ra 1 ···ram is such a product, the 
corresponding Weyl group element may be represented by the so-called Weyl word 
[a1, ... , am] -

3.4. Representation theory 

An important reason for choosing reductive groups as the class of groups to work with 
in l!E, are the nice properties of representations of such groups. A representation of 
a Lie group g on a finite dimensional vector space V is a Lie group homomorphism 
g __. GL(V). Equivalent information is given by specifying a (left) action of g on V 
such that each map v i---. g • v is linear and depends in a differentiable way on g; when 
taking this point of we we call V a g-module. A g-module V is called irreducible 
if it is non-zero, and has no subspaces fixed under the action of g except O and 
V itself. Two fundamental facts about reductive groups are of great importance. 
First, every g-module decomposes as a direct sum of irreducible representations, i.e. , 
every g-stable subspace has a g-stable complementary subspace. Second, the set of 
( finite dimensional) irreducible representations is in bijection with the set A+ (T) of 
dominant weights, by assigning to each irreducible module its highest weight (which 
always exists , is unique, and occurs with multiplicity 1). According to the first fact 
each module M is determined up to isomorphism by the multiplicity or frequency 
in M of each irreducible module, (i.e. , the number of times it occurs in a direct sum 
decomposition), while according to the second fact this may be recorded by the set 
of the highest weights of consituent irreducible modules , with their multiplicities. 
Representing this set with multiplicities by a polynomial we obtain a decomposition 
polynomial. 

It is also possible to represent the set of all weights occurring in M, i.e., the char­
acter of M, by a polynomial Since W permutes the weigths occurring in the character 
of M, it suffices for the determination of the character to find just the dominant 
weights occurring in it with their multiplicities; recording these in a polynomial we 
obtain a multiplicity polynomial for the module M . 

On the set of g-modules a number of operations can be defined, such as forma­
tion of cartesian products and tensor products; also, if a Lie group homomorphism 
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f: h----. g is given then any g-module may be viewed (by restriction) via fas h-module 
(this is called branching from g to h). In terms of characters of the g-modules these 
operations are easily computed, because each weight corresponds to a !-dimensional 
T-module. Cartesian and tensor products correspond to addition respectively mul­
tiplication of the polynomials representing the characters. Branching amounts to a 
linear transformation being applied to all of the exponents in such a polynomial, cor­
responding to the transition from weights for the maximal torus of g to that of h; the 
matrix representing the linear transformation is called the restriction matrix. Even 
when the maximal tori of g and h should coincide, the restriction matrix may not 
be equal to identity, since it should perform the coordinate transformation from the 
basis of fundamental weights for g to those for h. Despite the simplicity of these 
operations for characters, it is awkward to have to compute the characters for any 
modules one would like to perform these operations upon, since the character of a 
module is usually very much larger than its decomposition polynomial. Therefore 
some of the most powerful built-in functions of ~E deal with the computation of these 
operations on the level of decomposition polynomials. 

Adjoint representation Each Lie group g acts on its Lie algebra (whose underly­
ing space is the tangent space to the group at the identity element) by conjugation, 
and this defines a representation of the group, the so-called adjoint representation. 
The non-zero weights of this representation are called the roots of g and all have 
multiplicity 1. 

Branching Branching is another word for restricting a g-module M to a subgroup 
h of g. Suppose h is a closed reductive Lie subgroup of the Lie group g. The 
branching problem concerns finding the decomposition into highest weight mod­
ules of M when viewed as an h-module. Since 'the maximal torus T9 of g is unique 
up to conjugacy, and similarly for h, the maximal torus Th of h may be chosen 
within T9 • Consequently, each weight with respect to T9 determines by restriction 
a weight with respect to Th, which defines a linear transformation A(T9 ) ----. A(Th). 
The matrix m which describes this transformation on the respective bases of fun­
damental weights, plays a crucial role in the function branch. The function resmat 
helps to find the restriction matrix in cases where h is a fundamental Lie subgroup. 
See Chapter 5 for further examples of restriction matrices. 

Character For a representation of a group on a finite dimensional vector space we 
may define a function on the group by assigning to each group element the trace 
of the corresponding transformation of the vector space. This function, which is 
constant on conjugacy classes, is called the character of the representation. For 
reductive complex Lie groups the character determines the representation up to 
isomorphism, and this is already true for the restriction of the character to the 
maximal torus T. Now the restriction to T of the representation decomposes 
into a direct sum of 1-dimensional representations, and the character of such a 
1-dimensional representation is just a weight. Hence the restriction to T of the 
character of the whole representation can be correspondingly written as a formal 
sum of weights (formal because we don't use the Abelian group structure of A(T) 
here, but just count the occurring weights with multiplicities, in other words, the 
sum is taken in the group algebra of A(T)) and this is called the formal character 
of the representation. In ~E, the formal character of an irreducible representation 
given by its highest weight can be obtained by calling branch with subgroup Tr 
(i.e., the maximal torus), and restriction matrix id(r) . 
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Decomposition polynomial The decomposition of a g-module M into irreducible 
modules may be represented by a decomposition polynomial d. Each term nX .X 
of d represents a dominant weight .X such that the highest weight module V,x occurs 
in M with multiplicity n. In certain circumstances we allow n to be negative, in 
which case there is no module corresponding to d, but we may think of M as a 
formal sum ( with integral scalar coefficients) of irreducible modules. In this case M 
is called a virtual module, and the polynomial a virtual decomposition polynomial. 

Degree The dimension of the underlying vector space of a representation is called 
the degree of the representation. 

Highest weight The maximum of the set of weights of some irreducible represen­
tation of g with respect to the partial ordering '-<' is called the highest weight; it 
always exists and is a dominant weight that occurs with multiplicity 1. Conversely, 
every dominant weight occurs as the highest weight of a unique irreducible rep­
resentation V,x of g. By definition N -< .X holds if and only if .X - .X' is a sum of 
positive roots, and in this case .X is called higher than .X'. 

Highest weight module For a dominant weight .X the unique irreducible repre­
sentation of g with .X as highest weight, is called the highest weight module ( or 
representation) of g for .X, and is denoted V,x 

Irreducible representation A representation of a group g is called irreducible if 
the representation space has no proper non-zero subspace that is stable under g. 

In case g is a reductive group it suffices that the representation space cannot be 
decomposed as a direct sum of two non-trivial g-stable subspaces. 

Module See representation. 

Multiplicity polynomial Sets of weights with multiplicities may be represented 
by a multiplicity polynomial m, where each distinct weight v with multiplicity n 
is represented by a term of m, with coefficient n and exponent v, where vis to be 
interpreted on the basis of fundamental weights. In the case of a virtual multiplicity 
polynomial, multiplicities are allowed to be negative. 

Representation An action by linear transformations of a group g on a finite dimen­
sional vector space V is called a (linear) representation of the group; the space V 
is then called a module for g. This is equivalent to giving a (Lie) group mor­
phism g--. GL(V). The irreducible representations of finite groups as well as Lie 
groups are (up to equivalence) determined by their characters. For reductive Lie 
groups, the irreducible representations are parametrised by their highest weights. 
For the general and special linear groups, the representations can alternatively be 
indexed by partitions (this is where Young tableaux come in): in the case of the 
special linear group SL(n, C), the representation corresponding to the partition 
v = [vi, ... , vd] (with d :S n) has highest weight [v1 - v2, v2 - v3, .. . , Vn-1 - vn], 
where v; = 0 ford< i :Sn. The standard module of SL(n, C), obtained from the 
injective morphism SL(n, C)--. GL(n, C), corresponds to the partition [1] and has 
highest weight [1, 0, ... , O]. The partition [d] corresponds to the d-th symmetric 
power of the standard module, which has highest weight [d, 0, ... , OJ, and the par­
tition [1, 1, ... , 1] of d corresponds to the d-th alternating power of the standard 
module, which has highest weight [O, ... , 0, 1, 0, ... , O], with coefficient 1 in the d-th 
position. 

Restriction matrix If h is a reductive subgroup of g, and a maximal torus of h is 
chosen within the maximal torus T of g, then any weight of g with respect to T 



38 l.!E 2.0 Manual DRAFT 

( which is a function on T) becomes by restriction to the maximal torus of h a 
weight of h. Consequently there is a map from the weight lattice of g to that of h, 
and this map is linear; it can therefore be given by a matrix, called the restriction 
matrix for the subgroup h. Each row of this matrix represents the restriction to 
the maximal torus of h of a fundamental weight of g, viewed as a weight of h. The 
restriction matrix plays a role in branching. 

Virtual decomposition polynomial See decomposition polynomial. 

Virtual multiplicity polynomial See multiplicity polynomial. 

3.5. The Symmetric group and related matters 

Although it is not a ( connected) Lie group, the Symmetric group enters into a number 
of computations performed by 1.!E, in particular into plethysm. The representation 
theory of the General Linear group is closely linked with that of the Symmetric group, 
and either of these theories has a convenient description in terms of partitions and 
Young tableaux, whereas such a description is not applicable to reductive Lie groups in 
general. We do not intend to go deeply into these matters here (see [JamKer 1981] for 
details), suffice it here that partitions of n parametrise the irreducible representations 
of the Symmetric group Sn on n letters , and that partitions of arbitrary numbers into 
at most n parts provide an alternative way (besides dominant weights) to parametrise 
the irreducible representations of GLn . 

To explain the relation of the Symmetric group to representations of arbitrary 
reductive Lie groups, consider some g-module V and its tensor square V @ V. The 
(diagonal) action of g on V @ V obviously commutes with the involution of that 
space that exchanges the two tensorands, and consequently the two eigenspaces of 
that involution (viz. the spaces of symmetric respectively antisymmetric tensors) are 
submodules of V @ V . Therefore we may define operations of forming the symmetric 
and antisymmetric tensor square of a module, and the ordinary tensor square is 
the direct sum of these. More generally we may consider arbitrary symmetric and 
antisymmetric tensor powers of V , consisting of the (fully) symmetric respectively 
antisymmetric tensors in V @ V @ · · · @ V . For n > 2 however, the n-th symmetric 
and antisymmetrtic tensor powers together do not combine to the full n-th tensor 
power V ®n, rather one can decompose V ®n into parts corresponding to all of the 
irreducible representations of Sn (not just the linear ones) . The part thus obtained 
for the Sn-representation R>. corresponding to a partition .X can be written as a tensor 
product of some g-module y (>.), say, with that Sn-representation R>. ; the module y ( >. ) 

is then called the plethysm of V with respect to the partition .X. 

Character matrix For the symmetric group on n letters, the conjugacy classes 
are parametrised by partitions of n , where the parts of the partition correspond to 
the disjoint cycles of the permutation . Therefore a character x of the symmetric 
group may be represented by a character matrix, which is a matrix with n + 
1 columns in which the first n entries of each row represent a partition µ of n 
(padded with trailing zeros) and the last entry is the value x(µ) of the character x 
on the conjugacy class corresponding to µ . 

Partition A partition of a natural number n is a weakly decreasing sequence of 
numbers whose sum is n ; adding or removing trailing zeros does not alter the 
partition. Any partition of n can be represented as a vector v = [v1 , ... , vn] of 
length n. The l.!E function partitions( n) produces a matrix whose rows represent the 
partitions of n. Partitions of n parametrise the conjugacy classes of the symmetric 
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group on n letters and also their irreducible characters; they also parametrise 
representations of GL(M). 

Plethysm A representation of a group g on a vector space M corresponds to a 
group morphism g--+ GL(M); as such it can be composed with any representation 
of the group GL(M) on a vector space N , giving rise to a representation of g on 
the space N . Now if we take for the representation of G L(M) the irreducible one 
parametrised by the partition .X , then the resulting representation of g is called the 
plethysm, or symmetrised tensor, of M with respect to .X . 

Symmetric group The set of permutations of {1 , .. . , n} is called the symmetric 
group on n letters, oftem denoted by Sn . Its conjugacy classes are described by 
partitions, as well as its characters. They play a role in plethysm. 
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Chapter 4. BUILT-IN MATHEMATICAL FUNCTIONS 

In this chapter, we list the mathematical functions built into l.!E. With each function 
listed, we give an interpretation of its arguments and the result of its call; furthermore, 
whenever worthy of mention, a brief indication is given of the algorithm involved in 
its implementation. For terminology see Chapter 3. 

For each function we give a sample heading, in a format similar to what a user 
defined function would start with, but we allow ourselves to use uppercase and Greek 
letters, replace any semicolons by commas. A final parameter of type group may be 
enclosed in an extra pair of parentheses to indicate that it is optional; if corresponding 
argument is omitted in a call, the default group will be substituted. Then following 
a colon the result type is given, and whenever appropriate we give enclosed in square 
brackets additional information about how certain vectors, matrices and polynomials 
among the parameters and the result should be interpreted. 

The possible interpretations for an object of type vector are 
o root, indicating that it is expressed on the basis of fundamental roots, 
o weight, indicating expression on the basis of fundamental weights, 
o ints, denoting the set or sequence of integers forming its entries, 
o Weyl word, denoting a Weyl group element expressed as a product of fundamental 

reflections, 
o tora,l, denoting either an toral element of finite order or a one parameter subgroup, 

as decribed in Section 3.3, or 
o partition, denoting a partition in the usual way. 

For objects of type matrix the possible interpretations are 
o lin(a, b), representing the matrix of a Z-linear transformation, always assumed 

to act from the right on vectors, where a gives the interpretation (basis) of the 
vectors acted upon, and b gives the interpretation of the vectors yielded, 

o character, representing the character of a representation of a symmetric group 
by its character matrix, or 

o vectors, roots, weights, torals or partitions, representing a set of equal sized 
vectors without multiplicities-each row giving one vector-with the indicated 
interpretation of the individual vectors. 

Finally, for polynomials the possible interpretations are 
o polynomial, representing itself as polynomial 
o decomposition, representing a g-module by the decomposition polynomial for its 

decomposition into irreducible g-modules, 
o dominant, representing a set of dominant weights with multiplicities ( often the 

dominant part of the formal character of a representation) by a multiplicity 
polynomial, 

The terms used here are decribed in more detail in Chapter 3. The notation Vi. will 
be used througout to denote the irreducible g-module with highest weight .X. 
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4.1. Lie groups 

center((grp g)): mat [result: torals] . . Returns a matrix whose rows are semisimple 
elements or one parameter subgroups generating the center of g. The center of 
a semisimple Lie group g is a finite Abelian group isori-10rphic to the quotient of 
the weight lattice by the root lattice (for reductive groups the central torus is 
also included). For most simple groups g the center is a cyclic group of order 
detcartan(g) (which order appears in the last column of the result), but for groups 
of type D2n, the center is a Klein 4-group, so simple components of g of type D2n 
will account for two rows of the result. 

diagram ( (grp g)): vid. Prints the Dynkin diagram of g, also indicating the type of 
each simple component printed, and labeling the nodes as done by Bourbaki (for 
the second and further simple components the labels are given an offset so as to 
make them disjoint from earlier labels). 

dim ((grp g)): int. Returns the dimension of the Lie group g, which is equal to 
dim( adjoint(g ), g ). Algorithm: We compute 2 * numproots(g) + lierank(g ). 

liecode (grp g): vec [result: ints]. It is required that g be a simple group or a torus; 
the function returns a vector [t, n] of size 2, such that liegroup(t, n) = g. 

liegroup (int t, int n): grp. Returns a torus or a simple group according to the 
following rule: liegroup(O, n) = Tn, liegroup(l, n) = An, liegroup(2, n) = Bn, 
liegroup(3,n) = Cn, liegroup(4,n) = Dn, liegroup(5,n) = En, liegroup(6,4) = F4, 
liegroup(7, 2) = G2, and for any other numbers an error is indicated. This function 
can be useful in order to run examples over many Lie groups using a for loop. 

lierank ((grp g)): int. Returns the Lie rank of g; for simple groups and tori this 
equals liecode(g )[2], while for composite groups it is the sum of the Lie ranks of 
the component groups. 

4.2. Root systems 

cartan ((grp g)): mat [result: lin(root, weight)]. Returns the Cartan matrix of g, 
which is the transformation matrix from the root lattice to the weight lattice, 
using the bases of fundamental roots and fundamental weights respectively. Hence 
the i-th row of the Cartan matrix equals the i-th fundamental root, expressed 
as weigth vector. For simple groups g the labeling of the fundamental roots is 
Bourbaki's, see [Bourb 1968]. When g is semisimple, the ( i, j)-entry of the Cartan 
matrix is (ai, aj)- When the semisimple ranks of g is differs from the rank r, then 
the matrix is not square, as it is an s x r matrix, but all entries beyond column s 
are zero. 

cartan (vec a, (3, (grp g)): int (o:, (3: root]. Returns the 'Cartan product' (a, (3), i.e., 
the integral value 2(a,(3)/(/3,/3), where /3 must be a root, and a is any root vector. 
(This is is not really an inner product because the function is not linear in (3. The 
function is linear in a, and indeed any weight would have been acceptable in place 
of a, still giving an integral value; nevertheless, to avoid confusion, and because it 
is most common to take for a a root, we stick to the root basis for a as well as 
for /3]. See also inprod and norm. 

carttype (mat R, (grp g)): grp [R: roots]. Returns type of the fundamental Lie 
subgroup whose root system is the minimal subsystem of the root system of g 
containing all the roots in R. A basis of fundamental roots of this subsystem may 
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be obtained as fundam( R, g). See also closure and centrtype. Algorithm: The 
same algorithm as fundam is performed, but only the type of the root system is 
returned. 

centroots (vec t, (grp g)): mat [t: toral, result: roots] . Returns the matrix whose 
rows form the set of all positive roots centralising the semisimple element t E T ( or 
the specified one parameter subgroup). Here a root a E <Pis said to centralise t if t 
commutes with all elements of the fundamental Lie subgroup of type A1 and closed 
subsystem of roots {a, -a}. Equivalently, a centralises t if and only if a (which 
is a weight, and hence a map T ---. C*) vanishes in t. Algorithm: Let n be the 
final entry of t, and t' the vector of remaining entries. First all positive roots are 
obtained by posroots, from which those roots a are selected for which aw * t' = 0 
(mod n), where aw denotes a expressed on the basis of fundamental weights, and 
aw * t' is the standard inner product. 

centroots (mat S, (grp g)): mat (S: torals, result: roots]. Returns the matrix whose 
rows form the set of all positive roots centralising the semisimple elements and/or 
one parameter subgroups represented by the rows of S, which set is the intersection 
of all sets centroots(t, g) with t traversing the rows of S. One may apply carttype or 
fundam to the result to obtain the type respectively the set of fundamental roots 
of the centraliser. See also centrtype. 

centrtype (vec t, (grp g)): grp [t: toral, result: roots] . Returns the centraliser C9 (t) 
of the semisimple element t E T ( or of the specified one parameter subgroup); 
effectively only the type is computed. See also centroots. (Actually the centraliser 
(although connected) need not be simply connected, so the interpretation of the 
type grp of Section 2.2.5 does not admit a precise description of the actual cen­
traliser; the result refers to the unique simply connected group C covering the 
centraliser subgroup (in other words, there is a finite central subgroup Z of C such 
that the precise centraliser is isomorphic to the quotient C / Z of C by Z).] 

centrtype(mat S,(grp g)): grp [S:torals, result:roots]. Returns the (universal 
cover of the) centraliser of the semisimple elements and/or one parameter sub­
groups of T represented by the rows of S, i.e., the intersection of the groups 
centrtype(t,g) fort traversing the rows of S. Algorithm: The set centroots(S,g) 
is divided into connected components ( where a pair of roots is considered to be 
joined if they have a non-zero inner product); then in most cases l!E recognises 
the type from the size of these components. This function can also be computed 
as carttype(centroots(S,g),g), which provides a useful check, since in that case 
the result is obtained by analysing the Dynkin diagram for a base of fundamental 
roots for the centraliser, rather than by simple counting. (A pre-l!E version of this 
function, only implemented for types En, has been used for (CohGri 1987] .) 

closure (mat R, (grp g)): mat [R, result: roots]. Returns the basis of fundamental 
roots of the minimal closed subsystem of roots of the group g that contains all the 
roots in R, and moreover consists of positive (for g) roots only. Algorithm: First 
fundam( R, g) is computed. Then if g has roots of different lengths, all pairs ( a, /3) 
of short roots in the resulting set are tested to see whether a - /3 is a positive root 
(necessarily a long one), and if so this root replaces a . It can be shown that such 
changes do not destroy property that the set of roots is fundamental (no positive 
inner products), so fundam need not be applied to the result once more. 

detcartan ((grp g)): int. Returns the determinant of cartan(g). This number is the 
index of the root lattice in the weight lattice, and it is also the order of the center 
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of g. See also icartan. 

domweights (vec A, (grp g)): mat [A: weight, result: weights]. Returns the set of 
dominant weights which lie under A, i.e., the set { µ E A +(T) I µ ~ A}. This 
is equal to the set of weights that occur in domchar( A, g). Algorithm: Starting 
with the singleton set {A}, the closure is formed within the set A+ (T) under the 
operation of subtracting positive roots. Note that it would not suffice to subtract 
just fundamental roots, because certain weights µ E A+ (T) would then only be 
reachable via weights that are not dominant. 

fundam (mat R, (grp g)): mat [R, result: roots]. Returns the basis of fundamental 
roots of the minimal subsystem of the root system of g that contains all the roots 
in R, and moreover consists of positive (for g) roots only. The order in which the 
the fundamental roots are returned is compatible with the standard labeling for a 
root system of type carttype(R, g). Algorithm: As a criterion for a set of positive 
roots to be a fundamental basis for the minimal subsystem containing them, l!E 
uses the condition that all mutual inner products be ::; 0 (note that this implies 
that the roots are independent). First, all negative roots in Rare replaced by their 
opposites, then each pair of roots that has a positive inner product is replaced 
by the positive basis of fundamental roots of the rank 2 subsystem they generate, 
while duplicates are removed by calls of redsetmat. This is repeated until no more 
changes occur. 

highroot ((grp g)): vec [result: root]. Returns the highest root of the root system of 
the group g, which must have exactly one simple component (for otherwise there 
exists no highest root). This root is the last row of posroots(g). See also adjoint. 

icartan ( (grp g) ): mat [ result: Jin( weight, root)]. Returns detcartan(g) times the 
inverse of cartan(g ) . The scalar factor detcartan(g) is required in order to keep all 
matrix entries integral. To transform an element of the root lattice that is given 
as A in weight coordinates to root coordinates, compute A* icartan(g) / detcartan(g). 

inprod (vec x, y, (grp g)): int [x, y: root]. Returns the Weyl group invariant inner 
product of x and y . The inner product is normalised such that for each simple 
component of g the short roots n have inprod(n, n) = 2. 

norm (vec n, (grp g)): int. Returns the norm inprod(n, n) of the root vector n. 
When n is a root, this is one of {2, 4, 6}, and the inner product is chosen such 
that for each simple component the short roots have norm 2. Note that this 
normalisation differs from that used in [Bourb '68] in the case of groups of type 
Bn, as the short roots are given norm 1 there. 

numproots ((grp g)): int. Returns the number of positive roots of the root system 
of g, which is equal to rowsize(posroots(g)). The number of all roots is twice as 
much, and can also be computed as dim(g) - lierank(g ). 

posroots ((grp g)): mat [result: roots]. Returns a matrix whose rows are the positive 
roots of g. The first rows are the fundamental roots (i.e., the top r rows form the 
matrix id(r ), and if g is simple the last row, which has index numproots(g ), is 
highroot(g). 

4.3. The Weyl group 

dominant (vec A, (grp g)): vec [\ result: weight]. Returns the unique dominant 
weight in the Weyl group orbit of the weight A. 
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dominant (mat m, (grp g)): mat (m, result: weights]. Returns the set of weights 
obtained by replacing each row of m by the unique dominant weight in its Weyl 
group orbit. 

exponents ((grp g )): vec [result: ints]. Returns the exponents of the given Lie group. 
For composite groups the exponents are not necessarily increasing, as they are 
grouped according to the simple factors of the group, with the exponents for the 
central torus ( all zeros) at the end. 

length (vec w, (grp g)): int [w: Weyl word]. Returns the length of the Weyl group 
element w. If w is already reduced (e.g., after w = reduce(w, g)), then length(w) = 
size(w). Algorithm: The function reduce(w,g) is simulated, recording only length 
changes. 

longword ((grp g)): vec [result: Weyl word]. Returns a Wey! word for longest ele­
ment of the Wey! group. Algorithm: We compute wword(-alLone[lierank(g)], g). 

lreduce ( vec l, w, (grp g) ): vec [l: ints, w, result: Weyl word]. The set l determines a 
subgroup W1 of W generated by the fundamental reflections ri for i E l. The func­
tion returns a Wey! word for the distinguished representative ( element of minimal 
length) of the left coset W1w. This Weyl word is obtained by deleting certain en­
tries from w; in particular, if w is already a reduced expression for the distinguished 
representative, then w itself is returned. Algorithm: A variant of the algorithm 
for reduce is used, replacing the strictly dominant weight by one that has W1 as 
stabiliser. 

lrreduce (vec l, w, r, (grp g)): vec [l, r: ints, w, result: Weyl word] . The sets l and r 
determine subgroups W1 and Wr of W generated by the fundamental reflections 
ri for i E l respectively for i E r. The function returns a Weyl word for the dis­
tinguished representative ( element of minimal length) of the double coset W1wWr. 
This Wey! word is obtained by deleting certain entries from w; in particular, if w 
is already a reduced expression for the distinguished representative, then w itself is 
returned. Algorithm: After computing lreduce(l, w, g) the resulting reflections are 
applied from right to left to a weight whose stabiliser is Wr, and each reflection 
that stabilises the intermediate value is thrown away. It can be shown that the 
result is still left reduced with respect to l. 

orbit (vec v, mat M): mat [result: vectors]. Here v is a vector with an arbitrary 
interpretation, and M is a matrix whose column size c equals size( v), and whose 
row size is a multiple of c, say kc. We interpret M as a collection of k square 
matrices of size c X c, vertically concatenated. The function orbit attempts to 
compute the orbit of v under the group generated by the collection of matrices, 
i.e., a minimal set V of vectors containing v and closed under right multiplication by 
any of the matrices in the given collection. As the orbit might be infinite, and the 
algorithm has no means to detect this situation, it gives up when more than 1000 
vectors in the orbit have been computed. For larger orbits, see orbit(n, v, M) . 

orbit (int n , vec v, mat M): mat [result: vectors]. This function operates in the 
same way as orbit(v, m), but n replaces the limit of 1000 elements in the orbit. 

reduce (vec w, (grp g)): vec [w, result: Weyl word]. Returns a Wey! word of minimal 
length representing the same element of W as w. This Weyl word is obtained by 
deleting certain entries from w; in particular, if w is already a reduced expression, 
then w itself is returned. See also lreduce en rreduce and lrreduce. Algorithm: 
We apply the reflections in the word w from left to right to a strictly dominant 
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weight, and whenever the intermediate value is found to have a negative coefficient 
at the position of the reflection being applied (i.e., a negative inner product with 
the corresponding simple root), then the reflection in question is cancelled against 
a previous one, which exists by the exchange condition. 

reflection (vec o:, (grp g)): mat [o:: root, result: lin(weight, weight)]. Returns ma­
trix of the reflection of the weight lattice in the hyperplane perpendicular to the 
root o:, expressed with respect to the basis of fundamental weights. See also 
waction. 

rreduce (vec w, r, (grp g)) : vec [r: ints, w, result: Weyl word] . The set r deter­
mines a subgroup Wr of W generated by the fundamental reflections Ti for i E r. 
The function returns a Weyl word for the distinguished representative of the right 
coset wWr . This Weyl word is obtained by deleting certain entries from w; in par­
ticular, if w is already a reduced expression for the distinguished representative, 
then w itself is returned. 

waction (vec A, vec w, (grp g)): vec [A: weight, w: Weyl word]. (Weyl action) Re­
turns the weight that is the image A • w of the weight A under the Weyl group 
element w E W . 

waction ( vec w, (grp g) ): mat [w: Weyl word, result : Jin( weight, weight)] . Returns 
the matrix giving the action of the Weyl group element w E W on the weight lattice, 
expressed on the basis of fundamental weights. See also reflection and wword. 

worbit (vec A, (grp g)): mat [A: weight , result: weights]. (Weyl orbit) Returns the 
orbit of the weight A under the Weyl group of g. Algorithm: for the classical 
groups of types An, Bn, Cn and Dn, the orbit is generated by permutations and 
(for types other than An) sign changes, after a suitable linear transformation, using 
a procedure similar to nextpermu. For the exceptional groups (of type En, F4, and 
G2), a large subgroup of the Weyl group W is chosen that is of classical type, 
for which the same method is employed; it remains to traverse the small number 
of cosets of this subgroup in W . This algorithm is much faster than the general 
function orbit. 

worbitsize ( vec A, (grp g) ): mat . (Weyl orbit size) Returns the length of the orbit 
of the weight A under the Weyl group of g. This is equal to worder(g) / worder( I , g), 
where I is a vector whose entries indicate the positions at which the vector A has 
zero entries. 

worder((grp g)): int. (Weyl group order) Returns the order of the Weyl group 
of g. 

worder (vec I, (grp g)): int [J: ints]. Returns the order of the subgroup Wi of the 
Weyl group of g generated by the fundamental reflections r; for i E /. This sub­
group is the stabiliser subgroup of any weight vector that has zero entries precisely 
at positions i for which i E /. Algorithm: We compute worder( carttype(R, g ), g ), 
where R is the set of roots obtained by taking for each element i E J the i-th 
fundamental root. 

wrtaction (vec o:, w, (grp g)): vec [o:: root, w: Weyl word] . (Weyl root action) Re­
turns the root that is the image o: • w of the root vector o: under the Weyl group 
element w E W. 

wrtaction (vec w, (grp g)): mat [w: Weyl word, result: lin(root, root)] . Returns the 
matrix giving the action of the Weyl group element w E W on the root lattice, 
expressed on the basis of fundamental roots. 
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wrtorbit (vec a, (grp g)): mat [a: root, result: roots]. (Weyl root orbit) Returns 
the orbit of the root vector a under the Weyl group of g. 

wword (mat m, (grp g)): vec [m: lin(weight, weight), result: Weyl word] . Returns 
a Weyl word for the Weyl group element w-if it exists-whose its action on the 
weight lattice is given by the square matrix m. This function is the inverse of 
waction applied to Weyl words, except that it may return another representative 
for the same element; in fact ( after setdefault(g )), for each Weyl word w the call 
wword ( waction( w)) returns a canonical representative for the equivalence class 
of w. See also waction. 

wword (vec >., (grp g)) : vec. Returns a Weyl word for a Weyl group element w 
sending the weight >. to a dominant weight. In fact, w is the distinguished repre­
sentative of the coset wWs, where Ws is the stabiliser of>.' = dominant(>.) (here 
S is the set of indices of fundamental reflections which stabilise >.' , i.e., the set of 
indices i for which >.'[i] = 0) . 

4.4. Representations 

adams (int n, vec >., (grp g)): pol [>.: weight, result: dominant]. Returns the virtual 
multiplicity matrix of the virtual module of the simple group g, whose character 
is obtained from that of Vi. by multiplying all the occuring weights by n, while 
retaining the multiplicities. The adams operator is the 'weight analog' of the 
operator that, given a character x of a group g and a number n, computes the 
decomposition of the class function 1 1-+ x( ,n) as an integral linear combination 
of irreducible characters. The adams operator is used in plethysm, symtensor, and 
alttensor. Algorithm: Effectively, vdecomp(domchar(>.,g) * id(n),g) is computed. 

adams (int n , pol d, (grp g)): pol [d: decomposition, result: dominant]. This is like 
adams(n, >., g), but with the irreducible module Vi. replaced by the (reducible) 
module represented by the decomposition polynomial d. 

adjoint ((grp g)): vec [result: weight] . Returns the highest weight of the adjoint 
representation of the group g. The group has to be simple, for otherwise the 
adjoint representation is not irreducible; en example of how the decomposition 
matrix of the adjoint representation can be computed for non-simple groups is 
given in Section 5.2 .3. Since the non-zero weights of the adjoint representation are 
precisely the roots , one has adjoint(g) = highroot(g) * cartan(g). 

alttensor (int n, vec >., (grp g)): mat [>.: weight, result: decomposition]. (alternat­
ing tensor) Returns the decomposition matrix of /\ n Vi., the n-th exterior power 
of Vi.. The group g has to be simple. See also symtensor and plethysm. 

branch (vec >., grp h, mat m, (grp g)): mat [>.: weight, m : lin(weight, weight), result: 
decomposition]. Returns the decomposition matrix of the restriction to h of Vi., 
with respect to the restriction matrix m. Here the matrix m is such that any 
weight >.1 , ( expressed on the basis of fundamental weights for g) when restricted 
to the maximal torus of h becomes a weight >.1 * m ( expressed on the basis of 
fundamental weights for h); the group g has to be simple. For fundamental Lie 
subgroups (among which the Levi subgroups) this matrix can be obtained by use 
of resmat. Branching to Tr with m = id( r ), where r = lierank(g) amounts to 
computing the character of Vi. . Algorithm: The whole character of Vi. is traversed 
by generating for each weight occuring in mul(>.,g) its Weyl group orbit. To every 
weight thus generated the matrix m is applied; if the result is a dominant weight 
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of h, it is appended as a row to a matrix a. Finally decomp(a, h) is computed. 
Within each Weyl group orbit l!E generates the weights one at a time, using a 
dynamic version of worbit to prevent storage problems. 

collect (mat d, grp h, mat m, (grp g)): mat [d, result: decomposition, m: lin(weight, 
weight)]. The matrix m should be invertible (and in particular square); let r = 
m-1 . Then collect returns the decomposition matrix of the g-module whose re­
striction to the reductive subgroup h with respect to the restriction matrix r has 
decomposition matrix d (provided that such a matrix exists). In other words, it is 
an inverse of branch in the same sense that decomp is an inverse of mul: the call 
collect(branch()..,h,r,g),h,m,g) should return the decomposition matrix[>.+ 1]. 
Algorithm: Essentialy, this function is identical to branch, except that no Weyl 
group orbits are generated, since it is assumed that for any weight >. E A(Th) 
the corresponding weight >. * m E A(Tg) can only be dominant if >. was already 
dominant; this assumption is valid if m is the inverse of a resrtiction matrix to a 
subgroup. The fact that collect performs the inverse action of branch is mainly 
accounted for by the fact that the inverse of the restriction matrix is to be supplied. 

contragr (vec >., (grp g)): vec [>., result: weight]. Yields the highest weight of the 
contragredient (or dual) representation V.x* of V.x, which equals dominant(->.,g). 
The group g has to be simple. 

decomp (mat m, (grp g)): mat [m: dominant, result: decomposition] . Returns the 
decomposition matrix of the g-module with multiplicity matrix m, in other words, 
it is essentially an inverse of mul: the call decomp(mul()..,g),g) should return the 
decomposition matrix ( >. + 1], indicating that a single irreducible constituent >. was 
found with multiplicity 1. See also vdecomp. 

dim (vec >., (grp g)): int (>.: weight]. Returns the dimension of the representa­
tion V_x. 

domchar(vec >.,(grp g)): mat [>.:weight, result:dominant]. Returns the polyno­
mial representing the dominant part of the character of the g-module V_x. Algo­
rithm: Freudenthal's multiplicity formula, see (Hum 1972] and [Kruse 1971]. 

domchar (vec >., µ, (grp g)): int [>. , µ:weight] . Returns the multiplicity ofµ in the 
character of V_x. The weight >. should be dominant, butµ may be any weight. 

ptensor (int n, vec >., (grp g)): mat [>.: weight, result: decomposition]. Returns the 
decomposition matrix of the n-th tensor power ®n Vi of V_x. The group g has to 
be simple. 

ptensor (int n, mat d, (grp g)): mat [d, result: decomposition]. Returns the de­
composition matrix of the n-th tensor power of the g-module with decomposition 
matrix d. The group g has to be simple. 

resmat (mat R, (grp g)) : mat [R: roots, result: lin(weight, weight)]. It is assumed 
that the set R consists of roots forming a fundamental basis for a closed subsys­
tem <I>' of the root system <I> of g ( as for instance obtained by a call of closure) . 
The function returns the restriction matrix for the semisimple Lie subgroup of g 

with root system <I>'. 

spectrum (vec >., t, (grp g)): vec [>.: weight, t: toral , result: ints] . Let n be the last 
entry oft, then the semisimple element t E Twill act in any representation of gas a 
diagonalisable transformation whose as eigenvalues are all n-th roots of unity. The 
function spectrum returns the vector of length n, whose i + 1-st entry (0 ::; i < n) 
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is the multiplicity of the eigenvalue (i in the action of the semisimple element on 
the irreducible g-module Vi., where ( is the complex number e21ri/n. The group g 

has to be simple. The result can also be obtained by calling branch to compute 
the restriction to the one parameter subgroup containing the semisimple element, 
see Section 5.5.3. Algorithm: The character is computed using mul and worbit; for 
each occurring weight the contribution to the result is easily computed. [A pre-1.!E 
version of this function, only implemented for En, has been used for [CohGri 1987].] 

symtensor (int n, vec A, (grp g)): mat [,t weight, result: decomposition]. (symmet­
ric tensor) Returns the decomposition matrix of sn(Vi.), then-th symmetric tensor 
of Vi.. The group g has to be simple. See also alttensor and plethysm. Algorithm: 
We use the recursion 

n 

n · symtensor(n, .X) = I: symtensor(n - k, .X) © adams(k, .X). 
k=l 

This formula turns into a recursion formula for alttensor upon including a sign 
(-1)k- 1 in the summand. 

tensor (vec .X, µ, (grp g)): mat [\µ:weight, result: decomposition]. Returns the 
decomposition matrix of the tensor product Vi. © V,,, The group g has to be simple. 
Algorithm: Klimyk's formula has been implemented, see [Hum 1972, Exerc. 24.9]. 
Like in branch, a dynamic version of worbit is used to prevent storage of a complete 
Wey! group orbit. 

tensor (vec .X, µ, v, (grp g)): int [.X, µ, v: weight]. Returns the multiplicity of the 
weight v in the tensor decomposition of Vi. © V,,,. The group g has to be simple. 

tensor (mat d, d', (grp g)): mat. Returns the decomposition matrix of the tensor 
product of the g-modules with respective decomposition matrices d and d'. The 
group g has to be simple. 

vdecomp (mat m, (grp g)): mat [m: dominant, result: decomposition]. (virtual de­
composition) Returns the virtual decomposition matrix of the virtual g-module 
with multiplicity matrix m. The algorithm is the same as for decomp, but no 
restriction is put on the sign of the multiplicities. This function is used in adams. 

4.5. Operations related to the Symmetric group 

nextpart (vec .X): vec [\ result: partition]. Returns the next partition of I.XI in re­
verse lexicographic order. If.Xis the last one, i.e., if .X = [1, 1, . .. , 1], it will return 
.X again. See also partitions. 

nextpermu (vec p): vec [p, result: ints]. Returns the next permutation of the entries 
of p, in reverse lexicographical order reading from right to left. If p is the last such 
permutation, i.e., if the entries of p are increasing, then p itself will be returned 
again. If there are repetitions among the entries of p, then this function will not 
attempt to permute identical entries, and in such cases it will take fewer applica­
tions of nexpermu to go from the weakly decreasing order to the weakly increasing 
order. See also symorbit. 

partitions (int n) : mat [result: partitions]. Returns a matrix whose rows are the 
partitions of n in reverse lexicographic order, and extended by zeros to length n. 
See also nextpart. 
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plethysm ( vec A,µ, (grp g)): mat [ A: partition, µ: weight, result: decomposition]. 
Returns the decomposition matrix of the g-module obtained from V,,, by taking the 
symmetrised tensor with respect to the partition A. For example plethysm([n], µ, g) 
equals symtensor(n, µ, g) and plethysm([l, 1, . .. , 1], µ, g) where the partition has 
n parts is equal to alttensor( n, µ, g) [it makes sense to check these facts since the 
algorithms differ]. The group g has to be simple. Algorithm: We use the classical 
Frobenius Formula (cf. [And 1967] and [JamKer 1981]) 

1(1<) 

plethysm(A, µ) = ~ EB conjord(l'.)x>.(I'.) Q9 adams(I'.; , µ), 
n. 

1<EPn i=l 

where n = jAj, I'. runs over all partitions of n, the number conjord(I'.) counts then 
order of the conjugacy class in the symmetric group on n letters of permutations 
with cycle type I'., x>. is the irreducible character of that symmetric group corre­
sponding to the partition A, and l(A) denotes the number of non-zero parts l'.i of I'.. 

Hence the algorithm uses addmul, partitions, symchar, adams, and tensor. 

symchar (vec A) : mat [A: partition, result: character]. (symmetric group charac­
ter) Returns the character matrix of the character x>. of the symmetric group on 
IAI letters, corresponding to the partition A. Algorithm: For each partition µ in 
partitions(IAI) the function symchar(\ µ) is called. 

symchar (vec A, vec µ): int [\µ:partition]. (symmetric group character) We 
should have IAI = jµj ; the function returns the (integral) value x>.(µ) of the charac­
ter of the symmetric group on IAI letters corresponding to A on the conjugacy class 
with cycle type µ. Algorithm: We use the formula that expresses the character as 
an alternating sum of characters of permutation representations on sets of "flags", 
see [JamKer 1981]. 

symorbit (vec v) : mat [result: vectors] . (symmetric group orbit) The symmetric 
group on n letters acts on zn by permuting the coordinates; the function returns 
the orbit of v in this action, where n = size( v). The rows of the result are ordered 
reverse lexicographically, reading from right to left . See also nextpermu. 
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In this chapter we illustrate how l!E can be used to study Lie groups and their rep­
resentations, and how one can use the built-in functions and the capabilities of the 
interpreter to tailor solutions to specific problems. 

5.1. General 

5.1.1. Reversing the ordering 

The standard function sort sorts the entries of a vector v into decreasing order. To 
sort a vector into increasing order, call ' - sort ( - v)'. The same trick works for matrices 
instead of vectors. 

5.1.2. Union of sets of vectors 

Suppose a and b are matrices representing sets of vectors. Then a matrix representing 
the union of these set can be obtained by the call 'redsetmat( a" b )'. 

5.1.3. Sum and product of vector entries 

The following commands define functions that compute the sum and product of the 
entries of a vector. 

sum( vec v) = loc ans = O; for i in v do ans = ans + i od; ans 
prod( vec v) = loc ans = O; for i in v do ans = ans * i od; ans 

Incidentally, there is a slicker solution in the first case, namely to form the inner 
product with the all-one vector, so one could alternatively define 

one(int i) = 1 
ones(int i) = make( one, i) 
sum(vec v) = v * ones(size(v)) 

The latter solution is more efficient than the former one, and even then, most time 
is spent computing ones( size( v )); this is so because built-in operations (such as the 
standard inner product) are executed much more efficiently than programs executed 
by the interpreter. 

5.1.4. Comparing groups 

The operator == is not defined for groups. The function equal defined below will 
test equality of groups, where groups that differ in the order of their simple factors­
although isomorphic-are considered to be distinct. 

equal(grp g, h) = \ 
if compsize(g) != comp size( h) then O else \ 

for i = 0 to compsize(g) do \ 

fl 

if liecode(g[i]) != liecode(h[i]) then break(O) else 1 fl \ 
od \ 
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5.2. Roots 

Here are a few simple examples of how to obtain information about root systems. 

5.2.1. All roots 
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The function roots that computes the full root system of g can be defined as follows: 

roots(grp g) = loc m = posroots(g); m·-m 

5.2.2. The half sum of the positive roots 

In many cases one needs the weight 

the half sum of the positive roots. It can be computed directly by 

rho(grp g) = loc sum= null(lierank(g)); \ 
for alpha row posroots(g) do sum= sum+ alpha od; sum/2 

or, using the same trick as in Section 5.1.3, and the same function ones, 

rho(grp g) = posroots(g) * ones(numproots(g))/2 

Using the fact that p, when expressed on the basis of fundamental weights has all 
coordinates equal to 1, there is an even quicker solution to this question, namely to 
use the coordinate transformation icartan/ detcartan: 

rho(grp g) = ones( lierank(g)) * icartan(g )/ detcartan(g) 

The only problem with this solution is that it fails for non-simple groups, since these 
are refused by icartan and detcartan. This could be circumvented by a loop similar 
to the one in Section 5.1.4. 

5.2.3. Adjoint representation of a non-simple group 

The function adjoint has only been defined for simple groups g. For general groups g, 
the following function computes a the decomposition matrix of the adjoint represen­
tation. 

gadjoint(grp g) = loc d = null(O, O) ; \ 
for i = 1 to compsize(g) do d = blockmat( d, [ adjoint(g[ i])]) od; \ 
if lierank(g[O]) == 0 # no central torus # \ 
then *(*d + ones(rowsize(d))) # add multiplicities 1 # \ 
else loc tr = lierank(g[O]); \ 

*(*blockmat(d, null(l , tr))+ (ones(rowsize(d)) + tr))\ 
fi 

5.3. Weyl words 

5.3.1. From a Weyl word to a Weyl group element 

The function wword transforms a matrix on the weight basis into a corresponding 
Weyl word. For the inverse function, the function waction is useful: 
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# welt is short for Weyl element # 
welt(vec w) = loc r = size(w); loc m = id(r); \ 

for i = 1 to r do m(i] = waction(m[i], w) od; m 

It is also possible to use weylmat, which actually performs the requested operation, 
but returns a matrix on the root basis. So it is necessary to conjugate by the cartan 
matrix: 

welt(vec w) = cartan * weylmat(w) * icartan/detcartan 

which assumes, as does the first solution, that the default group has been set appro­
priately. 

5.3.2. The Coxeter matrix 

The Coxeter matrix of a Weyl group is the matrix with entries mi,j equal to the 
order of the product r ir i of the fundamental reflections r i and r i. Here is a ( rather 
inefficient) way to compute it. 

coxmat() = m = id(lierank()); \ 
for i = 1 to rowsize(m) - 1 do for j = i + 1 to rowsize(m) \ 
do m(i,j] = ord(fund_refi(i) * fund_refi(j)); m[j, i] = m(i,j] \ 
od od; m 

fund_refi(int n) = refiection(id(lierank)[n]) 

ord(mat m) = loc p = m; loc idmat = id(rowsize(m)); \ 
for i = 1 to 6 do if p == idmat then break( i) else p = p * m fl od 

Note how the function fund_refi obtains standard basis vectors as rows of the identity 
matrix. In the same vein it is possible implement the function ones by taking the 
diagonal of the identity matrix. Of course this is a rather wasteful approach when the 
vectors become really big, but if their size does not exceed 100, say, then this solution 
is probably as efficient as any, since the built-in operation of matrix creation is really 
quite fast. 

5.3.3. All reduced Weyl words of a given element 

Tits has shown that, to produce all reduced Weyl words corresponding to the same 
Weyl element, all that is needed is to start with one such word, and to continue 
substituting occurrences of the subword (i, j, i, ... ] of length m, where mis the order 
of the product rirj of the corresponding fundamental reflections, by [j, i, j, .. . ] of the 
same length. The following routine nextrewrite could form a basic ingredient in the 
enumeration of all equivalent Weyl words: it produces the indicated replacement (if 
possible) in the Weyl word v for the subword that begins at the k-th entry of v. 

# try rewriting reduce ( v) at position k # 
setdefault(g) 
nextrewrite(vec v; int k) = loc v = reduce(v); \ 

loc m = coxmat[v[k], v[k + 1]]; loc check= 1; \ 
for j = 1 to (m - 1)/2 do \ 

if 2*j + k > size(v) II v(2 *J + k] != v[k] then check= 0; break fl\ 
od; \ 
if check then for j = 1 to m/2 - 1 do \ 

if 2 * j + k + 1 > size( v) 11 v(2 * j + k + 1] != v [ k + 1] \ 
then check = O; break fl \ 

od fl; \ 
if check then vswap( v, k, m) else v fl 
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vswap(vec v; int k, m) = loc t = v[k + m - 2]; \ 
for j = k to k + m - 1 do v[j] = v[j + 1] od; v[k + m - l] = t; v 

The function coxmat is as in the previous subsection. 

5.3.4. The Bruhat ordering 

The following function bruhat returns a Weyl word for each Weyl group element that 
is covered by a given element v in the so-called Bruhat order. 

bruhat(vec v) = loc v = reduce(v); loc m = null(O, size(v)-1); \ 
for i = 1 to size ( v) do \ 

loc w = reduce( v - i); if size( w) == size( v) - 1 then m = m + w fl \ 
od; \ 
m = redsetmat(m); \ 

# it remains to check whether two rows represent wwords # \ 
# corresponding to the same Weyl group element # \ 
rho= ones(lierank); \ 
for i = 1 to rowsize(m) - 1 do for j = i + 1 to rowsize(m) do \ 

if waction(rho, m[i]) == waction(rho, m[j]) then m[j] = m[i] fi \ 
od od; \ 
redsetmat( m) 

5.4. Cosets in The Weyl group 

There are many ways to compute cosets in W with respect to Weyl subgroups gener­
ated by a subset of the set of fundamental reflections. Here, we show how to recover 
some of the results in [BrouCoh 1985]. 

5.4.1. Right cosets 

Suppose Sis a subset of {l, ... , r} and Wis a Weyl group of rank r. Then there is 
a natural system of representatives of the cosets of the Weyl subgroup Ws of W gen­
erated by the fundamental reflections ri for i E S. This is the set of all distinguished 
right coset representatives, i.e.,, all elements w of W that satisfy rreduce( w, S) = w. 
Here is how to generate this set, using the fact that Ws is the stabiliser of any weight 
vector that has zeros precisely at those positions whose index occurs in S. 

charv(vec s) = loc y = ones(lierank); \ 
for i = 1 to size(s) do y[s[i]] = 0 od; y 

rcosets( vec r) = for wt row worbit( charv( r)) do print( wword( wt)) od 

Again, before invoking the function rcosets, a default group has to be set; for exam­
ple, after the above definitions of charv and lcosets have been read, the left coset 
representatives for the subsystem A1A1A1 in D4 can be found as follows: 

setdefault(D4 ); w = [1,3,4]; rcosets(w) 

Note that [l, 3, 4] represents the nodes corresponding to the subsystem A1A1A1, which 
can be verified by calling diagram(D4 ). Another-more elaborate-way to verify this 
is to ask for the Cartan type of the subsystem generated by the fundamental roots 
with indices 1, 3, and 4, by calling carttype(id(4) - 2, D4 ). 

5.4.2. Left cosets 

Using the fact that a Weyl word v is left reduced with respect to the subset S 
of {1, ... ,s} if and only if its inverse [v[l],v[l-1], ... ,v[l]], where l = size(v), 1s 



54 l.!.E 2.0 Manual DRAFT 

right reduced with respect to S, we can write the following variation to the previous 
example to obtain a print of the list of left coset representatives: 

inverse(vecv)= locvinv=v; locs=size(v)+l ; \ 
for i = 1 to s - l do vinv[s - i] = v[i] od; vinv 

lcosets(vec l) = \ 
for x row worbit(charv(l)) do print(inverse(wword(x))) od 

where charv is as before. 

5.4.3. Double cosets 

We now construct a function dcosets printing the full set of distinguished double 
coset representatives, displayed as left and right reduced Weyl words, with respect to 
specified subsets L and R of {1, ... , r }. It suffices to modify rcosets such that it only 
prints those Weyl words (already right reduced for R) that are left reduced for L. 

dcosets(vec l, r) = \ 
for x row worbit(charv(r)) do loc w = wword(x); \ 

if w == lreduce( l, w) then print( w) fl \ 
od 

Of course it is also possible to put the coset representatives in a matrix. For this 
purpose, the Weyl words need to have the same length, which can be achieved by 
padding with zeros, as already illustrated in the function bruhat above. A good 
upper bound for the number of columns needed is lrreduce( v, longword, w ). 

5.5. Semisimple elements 

In l.!.E, a semisimple element is represented by a vector [a1, ... , ar, d]. This vector 
corresponds to the element t of the maximal torus T with tw• = e21ria;/ d for 1 S i S r. 

5.5.1. SL(n, C) 

For the special linear group SL(n, C) there is a much more familiar way to describe 
a semisimple element, namely by its diagonal entries in diagonalised form. If t is a 
diagonal matrix with entries (ti, .. . , tn) on the main diagonal in the standard repre­
sentation, then the values of the fundamental weights wi on t are given by 

tWi = II tj, 
j=l 

Therefore, for g of type An-1 , let t be a semisimple element whose diagonalised 
form has entries [(b1 , ••• , (b"] along the main diagonal, where ( = e21ri/d is an d-th 
root of unity (note that Ej=l bj = 0 (mod d) since t E SL(n, C)). Then t can 
be represented in l.!.E by applying the following function mksselt (an abbreviation for 
make semisimple element), to the vector [b1 , ... , bn] and the number d: 

mksselt(vec b; int d) = loc n = size( b ); \ 
for i = 2 to n - l do b[i] = (b[i -1] + b[i]) % d od; b[n] = d; b 

Note that we use the parameter b itself (in fact a copy of the actual argument) to 
build up the result in; all entries may be reduced modulo d, and the redundant final 
entry is used to record the denominator d. 
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5.5.2. S0(12, C) 

Here is yet another example, now with the group of type D 6 . Consider the standard 
12-dimensional representation where it acts as the orthogonal group S0(12, C) (note: 
since "the group of type D5" should be read as the simply connected group of that 
type, which is Spin(12, C), this is not a faithful representation: the kernel consists of a 
central subgroup of order 2). We fix a basis e1 , ... , e6 , Ji, ... , f6 of the underlying 12-
dimensional complex vector space with respect to which the bilinear form ( · , · ) fixed 
by S0(12, C) satisfies (ei , ej) = (Ii , fi) = 0 and (ei, Ji)= Oi,i for all i , j E {1 , ... , 6} . 
Suppose now that t E S0(12, C) is given by the diagonal matrix with diagonal entries 
[(a1 , •.. , (a6 , (-ai, ... , (-aa], where again ( = e21ri/d _ Then the following function, 
using the given matrix m and the integer d that is assumed to have an appropriate 
value, transforms the vector [a1 , a 2 , ... , a 6] into the form used by l!E to represent t . 

m = [[2, 2, 2, 2, 1, 1], [0, 2, 2, 2, 1, 1], [0, 0, 2, 2, 1, 1], \ 
[0, 0, 0, 2, 1, 1], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, -1, 1]] 

mkss(vec a) = a* m + d 

5.5.3. Spectrum 

The function spectrum provides a means to recognize the semisimple element specified 
in a more natural form. For instance, we perform the following computation for a 
semisimple element t of order 2 in SL(5, C): 

setdefault(A4); t = [1, 0, 0, 0, 2]; sr = [1, 0, 0, 0] # standard representation # 
spectrum( sr, t) 

which returns [3, 2], showing that t (an element of order 2) has 3 eigenvalues 1, and 2 
eigenvalues -1 in the standard representation. It is therefore conjugate to the element 
mksselt([0, 0, 0, 1, 1], 2) , with mksselt as above, which equals [0, 0, 0, 1, 2] ; the element 
t itself can be obtained as mksselt([l, 1, 0, 0, 0], 2). To obtain information about the 
whole 1-dimensional torus containing t (which may be represented by replacing the 
final entry oft by 0), one can use the function branch. The restriction matrix needed 
for such a 1-dimensional torus is essentialy obtained by transposition of the vector, 
in the current case *[t - 5] . Computing branch(sr, T1 , *[t - 5]) we find the matrix 

which shows that an arbitrary element of that 1-dimensional torus parametrised by 
some z E C* has 3 eigenvalues 1, 1 eigenvalue z and 1 eigenvalue z- 1 ; this is in 
accordance with the fact that such an element has matrix 

(

z 0 
0 z-1 

0 0 
0 0 
0 0 

0 0 0) 0 0 0 
1 0 0 
0 1 0 
0 0 1 

(the element t corresponds to z = -1). The centraliser oft can be found by the call 
centrtype(t), which returns A2A1T1, and the centraliser centrtype(t - 5 + 0) of its 
containing 1-dimensional torus is A 2T2 • On the other hand, spectrum(adjoint, t)[l] 
returns the dimension of the Lie subalgebra fixed by t (where t is viewed as an 
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automorphism of the Lie algebra of g ), which is the Lie algebra of the centraliser 
of t; the call returns 12, which is indeed equal to dim( centrtype( t) ). To obtain the 
corresponding dimension of the centraliser of the 1-dimensional torus we can again 
use branch: the call branch(adjoint, T1,*[t- 5]) returns 

(:r t} 
which shows that that subalgebra fixed by this torus has dimension 10, in accordance 
with dim(A2T2 ). In general we see that the function spectrum may be simulated by 
using branch, as follows: 

spec(vec wt, t) = loc s = size(t); lo c d = t[s]; loc res= null(d); \ 
for x row branch(wt, Ti,*[t- s]) \ 
do loc p = x[l) % d + l; res[p] = res[p] + x[2) od; \ 
res 

5.5.4. Branching to a centraliser 

We continue with the semisimple element of the preceding paragraph; we wish to com­
pute how the standard representation decomposes when restricted to the centraliser of 
the semisimple element t, which we have already seen to be of type A2A1T1 . We start 
with computing the centraliser more explicitly by calling centroots ( t); this returns 

( 

1 0 0 0) 0 0 1 0 
0 0 0 1 . 
0 0 1 1 

This is the full set of positive roots centralising t; we would like to have a basis 
of fundamental roots and the corresponding type, to which end we compute f = 
fundam($) and carttype(f), which give respectively 

(

0 0 1 0) 
!= 0 0 0 1 

1 0 0 0 
and 

where we note that the central torus part of the centraliser is no longer represented, 
since there are no corresponding roots. In order to branch to the centraliser we need 
the restriction matrix m = resmat(f) which gives 

(
0 0 1) 
0 0 0 

m= 1 0 0 · 

0 1 0 

Finally we can compute branch(sr, A2A1 , m), which returns 

( 
1 0 
0 0 

0 
1 

indicating that the standard representation of SL(5, C) decomposes into the direct 
product of the standard representations of SL(3, C) and SL(2, C), when restricted to 
the centraliser oft. 
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5.6. Checks 

Numerous checks are possible to verify the consistency between results produced by 
different functions. We have already mentioned many of them above and in Chapter 4, 
which we will not repeat here, but we note a number of additional checks that can be 
made. 

5.6.1. Multiplicities 

Since mul(>.) computes the dominant part of the character of Vi, it is possible to 
check the dimension of V,x; we should have 

L mul(>., µ) * worbitsize(µ) = deg(>.). 
µ.EA+(T),µ.-<>. 

The best way to chack this in l!E is by the following function: 

checkdim(vec wt)= loc c = size(wt) + 1; loc d = O; \ 
for r row mul(wt) do d = d + worbitsize(r - c) * r[c] od; d == deg(wt) 

The function mul itself is also very useful in performing tests, since many operations 
such as tensor and plethysm have an easily expressed effect on the characters, because 
the representation theory of tori is much simpler than that of semisimple Lie groups. 

5.6.2. Branching 

We may similarly check for branching operations that the dimension of the resulting 
sum of h-modules equals that of the original g-module Vi. We should have 

L mul( branch(>., h, m), µ)*deg(µ, h) = deg(>.), 
µ.EA+(Th) 

where his a reductive subgroup of g with restriction matrix m (when mis not really a 
restriction matrix from g to h, the test may easily fail). Here we have used a function 
mul(m, >.) which extracts the multiplicity of a weight).. from a multiplicity matrix m; 
such a function is not built-in, but the user might add such a function written in the 
l!E language. In the present case however, that function is not really needed; we may 
write a function chkbranch as follows: 

chkbranch(vec wt; grp h; mat m) = loc c = lierank(h) + l; loc d = O; \ 
for r row branch(wt,h,m) do d = d+r[c]*deg(r-c,h) od; d == deg(wt) 

5.6.3. The functions symtensor and alttensor 

It was already mentioned how symtensor and alttensor can be compared with special 
cases of plethysm. Here is how to check that the second tensor power of a module 
decomposes into a symmetric and alternating part: 

addmul( alttensor(2, wt), symtensor(2, wt)) == redmulmat(ptensor(2, wt)) 

The same simple relation does not hold for third and higher tensor powers, since one 
needs all plethysms to decompose the tensor power, moreover plethysm(>., µ) occurs 
a number of times in ptensor(n, µ) with n = l>.I, The number of times it occurs is 
the dimension of the representation Sn corresponding to >., .i.e, x.\ ( e), which can be 
computed by 

chardim(vec lambda)= symchar(lambda, ones(sum(lambda))) 

We can now set up the following test. 

nmul(int n; mat m) = # multiply multiplicities by n # \ 
loc s = colsize(m); loc f = id(s); f[s, s] = n; m * f 
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chkptensor(int n; vec wt)= loc d = null(O, size(wt) + 1); \ 
for lambda row partitions( n) \ 
do d = addmul( d, nmul( chardim( lambda), plethysm( lambda, wt))) od; \ 
d == redmulmat(ptensor(n, wt)) 

5.7. Extending the function branch 

The function branch is defined only for irreducible modules and simple groups. We 
now show how the function can be extended within the l!E language to deal with 
reducible modules and composite groups. 

5.7.1. Branching reducible modules 

When we are given a decomposition matrix d instead of a highest weight .X, it is not 
difficult to determine the branching to a subgroup, using the built-in function branch. 
The function nmul that multiplies multilpicities by a factor was already defined above; 
we can now proceed to define 

branch(mat d; grp h; mat m; grp g) = \ 
loc res = null(O, lierank( h) + 1 ); loc c = colsize( d); \ 
for r row d do res= addmul(res, nmul(r[c], branch(r - c, h, m, g))) od; \ 
res 

Note that we can use the same name branch as the built-in function has, since they 
can be distinguished by the types of their arguments, making it clear for instance that 
this function does not recursively call itself, but rather it calls the built-in function. 

5. 7.2. Branching in semisimple groups 

In order to define branch in non-simple groups g, we first need to consider the basic 
case g = h x h, in which h is embedded diagonally ( the restriction matrix consists 
of two identity matrices on top of each other). In this case a weight for g is just a 
pair (.X, µ) of weights for h, and branching V(.\,µ,) from g to h gives V,x ® V,,,, so this 
case reduces to the function tensor. From this one deduces the following procedure 
for branching in non-simple groups: take the restriction matrix apart into pieces that 
map the weight lattices of the individual components of g to that of h, compute the 
branching of the appropriate parts of the weight vector ( or decomposition matrix) 
to h, and then form the tensor product in h of the results. 

gbranch(vec wt; grp h; mat m; grp g) = \ 
loc c = colsize(m); \ 
if lierank(h) != c II lierank(g) != rowsize(m) \ 

then error("wrong size restriction matrix") fl; \ 
loc r = lierank(g[O]); loc wk= null(r); loc mk = null(r, c); \ 
loc i = lierank(g) - r; \ 
for j = 1 to r do mk[j] = m[i + j]; wk[j] = wt[i + j] od; \ 
loc res = [ wk * mk + 1]; # torus part, no branching # \ 
i = O; \ 
for k = 1 to compsize(g) \ 
do r = lierank(g[k]); wk= null(r); mk = null(r, c); \ 

for j = 1 to r do mk[j] = m[i + j]; wk[j] = wt[i + j] od; \ 
res= tensor(res, branch( wk, h, mk, g[k]), h); i = i + r \ 

od; \ 
res 
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5.8. Overflow 
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Due to the choice of type int rather than bin for matrix and vector entries, vector 
and matrix operations leading to big integer entries are not to be trusted. In the 
example below, we found an 'orbit' of length 33 , apparently due to the computer's 
arithmetic modulo 232 . 

r = refiection([l , 1, 1, l] , D4 ) ; orbit([l, 0, 0, 0], 2* r) 

5.9. Maximal semisimple subgroups 

Information on subgroups of a Lie group can be stored on a file and read whenever 
convenient. We have begun such a documentation by creating a file MAXSUB, defining 
two functions giving information about maximal subgroups simple groups of rank ~ 8, 
one function giving the subgroup types, the other giving the corresponding restriction 
matrices (which are needed for branch). 

5.9.1. Levi subgroups 

Before going into the more involved examples, we note that the maximal Levi sub­
groups, i.e. , those fundamental Lie subgroups of which a system of fundamental roots 
can be obtained by removing a node from the diagram of g, can be dealt with in a 
uniform way. Here are the definitions of some functions which suffice to determine 
branching: 

levimat(int i) = fundam( id( lierank) - i) # remove i-th row and reorder # 
levitype(int i) = carttype( levimat( i)) 

levidiagram(int i) = diagram( levitype( i)) 

levires(int i) = resmat(levimat(i)) 

levibranch(vec v ; int i) = \ 
loc m = levimat(i); branch(v, carttype(m) , resmat(m)) 

It will be clear that levibranch gives the decomposition matrix of the Levi subgroup 
of type levitype. The diagram printed by levidiagram gives the ordering of the fun­
damental roots of the Levi subgroup, with respect to which ordering the restriction 
matrix (returned by levires) and the resulting decomposition matrix are given. 

5.9.2. The functions maxsub and resmat 

This function prints a list of isomorphism types of non-maximal rank maximal semi­
simple subgroups of g (We believe, but do not guarantee that the list is complete!) . 
Also resmat(g, g' , n) returns the restriction matrix of then-th maximal subgroup of g 
in the list produced by maxsub, that has type g'. We list here only the part of the 
MAXSUB file pertaining to the types E 6 , E7 , Es, F4 , and G2 ; the complete file is part 
of the l!E package. The first part of the file (more than half of it) deals with auxiliary 
functions of purely administative nature, then comes the actual data about maximal 
subgroups. 

off gc 

# Since garbage collection can be time consuming and does not # 

# make sense during reading this file in is better to turn it # 
#off.But do not forget to put a on gc at the and of the file.# 
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# Global variables:# 
stackgroup=TO 
resmatgroup=TO 
nsubgr=O 
sta=TO;stb=TO;stc=TO;std=TO;ste=TO;stf=TO;stg=TO 
rga= [ []] ; rgb= [ []] ; rgc= [ []] ; rgd= [ []] ; rge= [ []] ; rgf= [ []] ; rgg= [ []] 

equal(grp g,h)=\ 
if compsize(g) !=compsize(h) then xxeq=O\ 
else xxeq=1;\ 
for t=O to compsize(g) do\ 
if !(liecode(g[t])==liecode(h[t])) then xxeq=break(O) fi od\ 
fi; xxeq 

prstack()=\ 
if nsubgr>O then print (sta) fi;\ 
if nsubgr>1 then print(stb) fi;\ 
if nsubgr>2 then print(stc) fi;\ 
if nsubgr>3 then print(std) fi;\ 
if nsubgr>4 then print(ste) fi;\ 
if nsubgr>5 then print(stf) fi;\ 
if nsubgr>6 then print(stg) fi 

# A set of functions in order to put a sequence# 
# of groups on the stack: sta, stb, .. ,stg. # 
stack(grp ga)=nsubgr=l;sta=ga 
stack(grp ga,gb)=nsubgr=2;sta=ga;stb=gb 
stack(grp ga,gb,gz)=nsubgr=3;sta=ga;stb=gb;stc=gz 
stack(grp ga,gb,gz,gd)=nsubgr=4;sta=ga;stb=gb;stc=gz;std=gd 
stack(grp ga,gb,gz,gd,ge)=nsubgr=5;sta=ga;stb=gb;stc=gz;\ 
std=gd; ste=ge 
stack(grp ga,gb,gz,gd,ge,gf)=nsubgr=6;sta=ga;stb=gb;stc=gz;\ 
std=gd;ste=ge;stf=gf 
stack(grp ga,gb,gz,gd,ge,gf,gg)=nsubgr=7;\ 
sta=ga;stb=gb;stc=gz;std=gd;ste=ge;stf=gf;stg=gg 

# Find the place j on the stack, such that the i-th # 
# appearance of the group g has number j. # 
onstack(grp h;int i)=\ 
xxon=O;\ 
for j=1 to nsubgr do\ 
if equal(h,maxsub(j)) then\ 
i=i-1;\ 
if i==O then xxon=break(j) fi fi od;\ 
xxon 
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# A set of functions in order to put a sequence# 
# of matrices on the stack: rga, rgb, .. ,rgg. # 
resm(mat ga)=rga=ga 
resm(mat ga,gb)=rga=ga;rgb=gb 
resm(mat ga,gb,gz)=rga=ga;rgb=gb;rgc=gz 
resm(mat ga,gb,gz,gd)=rga=ga;rgb=gb;rgc=gz;rgd=gd 
resm(mat ga,gb,gz,gd,ge)=rga=ga;rgb=gb;rgc=gz;rgd=gd;rge=ge 
resm(mat ga,gb,gz,gd,ge,gf)=rga=ga;rgb=gb;rgc=gz;rgd=gd;rge=ge;\ 
rgf=gf 
resm(mat ga,gb,gz,gd,ge,gf,gg)=\ 
rga=ga;rgb=gb;rgc=gz;rgd=gd;rge=ge;rgf=gf;rgg=gg 

# Getting the n-th matrix 
resm(int n)=\ 
if n==1 then ans=rga fi;\ 
if n==2 then ans=rgb fi;\ 
if n==3 then ans=rgc fi;\ 
if n==4 then ans=rgd fi;\ 
if n==5 then ans=rge fi;\ 
if n==6 then ans=rgf fi;\ 
if n==7 then ans=rgg fi;\ 
*ans 

# Some help functions:# 
el O=e (1) 
e20=e(2) 
e30=e (3) 
e40=e (4) 
e5 0 =e (5) 
e60=e(6) 
e70=e(7) 
e80=e(8) 
l()=lierank(resmatgroup) 

on the stack 

e(int i)=xxxx=null(l); xxxx[i]=1; xxxx 

rga, .. ,rgg. # 

e(int i,j)=xxxx=null(l); xxxx[i]=1; xxxx[j]=xxxx[j]+l; xxxx 
e(int i,j,k)=xxxx=null(l); xxxx[i]=1; xxxx[j]=xxxx[j]+l;\ 
xxxx[k]=xxxx[k]+1; xxxx 

# Put all maximal subgroups on the stack# 
# and returns them in a list. # 
maxsub(grp g)=\ 
if liecode(g)[1]<5 I I 7<liecode(g)[1] then\ 
print(\ 
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"Maximal subgroups available only for simple groups of type EFG."\ 
) fi;\ 
if !equal(g,stackgroup) then stackfil(g) fi;\ 
prstack 
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# Getting then-th group on the stack sta, .. ,stg. # 
maxsub(int i)=\ 
ans=TO;\ 
if i==1 then ans=sta fi;\ 
if i==2 then ans=stb fi;\ 
if i==3 then ans=stc fi;\ 
if i==4 then ans=std fi;\ 
if i==5 then ans=ste fi;\ 
if i==6 then ans=stf fi;\ 
if i==7 then ans=stg fi;\ 
ans 

# Getting the restriction matrix for the group g with# 
# subgroup h. The k indicates the k-th occurrence of h # 
# as subgroup. Omitting k is the same as taking k=1. # 
resmat(grp g,h;int k)=\ 
if liecode(g) [1]<5 I I 7<liecode(g)[1] then\ 
print("Resmat available only for simple groups of type EFG.") fi;\ 
if !equal(g,stackgroup) then stackfil(g) fi;\ 
xxre=onstack(h,k);\ 
if xxre==O then error("Not available as maximal subgroup") fi;\ 
if !equal(g,resmatgroup) then resmatfil(g) fi;\ 
resm(xxre) 

resmat(grp g,h)=resmat(g,h,1) 

# The concrete information for groups of type EFG. # 
stackfil(grp g)=\ 
stackgroup=g;\ 
if equal(g,E6) then stack(C4,F4,A2,G2,A2G2) fi;\ 
if equal(g,E7) then stack(A2,A1,A1,A1F4,G2C3,A1G2,A1A1) 
if equal(g,E8) then stack(G2F4,C2,A1A2,A1,A1,A1) 
if equal(g,F4) then 
if equal(g,G2) then 

resmatfil(grp g)=\ 
resmatgroup=g;\ 

stack(A1,A1G2) 
stack(A1) fi 

if equal(g,E6) then resm(\ 
[e(3,5) ,e(1,6), [0,0,1,2,1,0] ,e2] ,\ 
[e2,e4,e(3,5) ,e(1,6)], \ 
[ [2 , 1 , 2 , 5 , 5 , 2] , [2 , 4, 5 , 5 , 2 , 2] ] , \ 

fi;\ 
fi;\ 

[[2,1,2,5,2,2] ,e(2,3,5)], \ 
[e(1,3,4)+e(2,3),e(4,5,6)+e(5,2),e1+e(4,6,2),e(3,4,5)])\ 
fi;\ 
if equal(g,E7) then resm(\ 
[ [ 4, 7, 9, 11, 10, 6, 6] , [ 4, 4, 6, 11, 7, 6, OJ] , \ 

fi;\ 
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[[34,49,66,96,75,52,27]] ,\ 
[[26,37,50,72,57,40,21]] ,\ 
[[0,1,0,2,1,2,1] ,e1,e(3,4) ,e(5,6,2) ,e(4,5,7)], \ 
[[1,0,2,1,1,2,1] ,e(4,5,2), [0,0,1,1,1,0,1] ,\ 
[1,0,0,1,1,1,0] ,e(3,4,2)], \ 
[ [2, 3, 4, 4, 5, 4, 1] , [2, 1, 2, 4, 4, 1, OJ , [O, 1, 1, 1, 0, 1, 1]] , \ 
[[4,8,10,18,12,8,6], [6,7,10,12,11,8,3]])\ 
fi;\ 
if equal(g,E8) then resm(\ 
[ [1, 0, 2, 1, 1, 2, 1, 1] , e ( 4, 5, 2) , e (5, 6, 7) , \ 
e(2,3,4),e1+e(4,5,6),e(7,8)+e(3,4,5)] ,\ 
[[4,6,8,16,12,8,8,2] ,[4,6,8,9,8,7,3,3]] ,\ 
[[8,12,16,22,16,14,10,6], [2,3,4,8,6,4,4,1], [2,3,4,5,6,4,1,1]] ,\ 
[[72,106,142,210,172,132,90,46]] ,\ 
[[60,88,118,174,142,108,74,38]] ,\ 
[[92,136,182,270,220,168,114,58]])\ 
fi;\ 
if equal(g,F4) then resm(\ 
[[22,42,30,16]] ,\ 
[[4,4,4,2] ,e(l,2,4) ,e(2,3)]) fi;\ 
if equal(g,G2) then resm([[6,10]]) fi 
on gc 
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In this chapter the complete formal syntax accepted by the interpreter is given for 
reference. It is given in the usual form of a BNF context free grammar. Literally 
represented symbols are given in typewriter type, and every rule is terminated by 
a period. At the end ellipses( ... ) occur twice, we assume that the reader is familiar 
with the enumeration of the alphabet. The syntax includes a few cases that are not 
described anywhere in this manual, such as the command type (expression). These 
are of little or no interest to the average user, but you may experiment if you like; the 
reason we give them here is mainly because one should be aware that the identifiers 
ocurring in these rules are reserved words, and should not be used for variables or 
functions. 

(command) ::= (series) I ( function definition) I learn (tail) I listvars 
listfuns I listops I (on) (identifier) I off (identifier) 
(on) I off I read (tail) I edit (tail) I edit I write ( tail ) 
exec (tail) I monfil (tail) I type ( arithmetic expr) I (quit) 
(quit) (tail) I (help) (subject) I (help) (subject) > (tail) 
(help) (subject) » (tail) I : (tail) I (empty) . 

(series) ::= (statement) I (statement) ; (series) I (statement) ; . 

(statement) ::= (assignment) I (expression) I return (expression) 
I break (expression) I return I break I setdefault 
I setdefaul t (expression) I ; . 

(assignment) : := (identifier) = (expression) I loc (identifier) = (expression) 
I ( arithmetic expr) += (expression ) I (selection ) = ( arithmetic expr) . 

(expression) ::= ( arithmetic expr) I ( logical expr) . 

( arithmetic expr) ::= (variable) I (number) I (group) 
I (string) I ( arithmetic expr) (operator) ( arithmetic expr) 
I - ( arithmetic expr) I * ( arithmetic expr) I X ( arithmetic expr) 
I ( ( arithmetic expr) ) I (selection) I [ ( list option) ] 
I ( block ) I ( identifier ) ( ) I ( identifier) ( ( list option ) ) 
I ( conditional expr) I (loop) I make ( (variable) , ( arithmetic expr) ) 
I make ( (variable) , ( arithmetic expr) , ( arithmetic expr) ) 
I (apply) ( (variable) , ( arithmetic expr) , ( arithmetic expr) ) . 

( logical expr) ::= ( arithmetic expr) (relation) ( arithmetic expr) 
I ( expression ) ( boolean operator ) ( expression ) I ! ( expression ) 
I ( ( logical expr) ) . 

(selection) ::= ( arithmetic expr) [ ( list option) ] 
I ( arithmetic expr) I ( arithmetic expr) . 
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( variable ) : : = ( identifier ) J ( sysident ) . 

( conditional expr) ::= if (expression) then (series) else (series) fi 
I if ( expression ) then ( series) f i . 
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(loop) ::= for (identifier) = ( arithmetic expr) to ( arithmetic expr) do (series) od 
I for (identifier) in ( arithmetic expr) do (series) od 
I for (identifier) row ( arithmetic expr) do (series) od 
I while (expression) do (series) od . 

( function definition) ::= (identifier) ( (formals) ) = (series) 
J ( identifier) ( ) = ( series) I ( identifier ) ( ( formals) ) { ( series ) } 
I ( identifier ) ( ) { ( series) } . 

( formals) : : = ( type ) ( variables ) J ( type ) ( variables ) ; ( formals ) . 

(variables) ::= (variable) I (variable) , (variables) . 

( list option) ::= (list) I (empty) . 

(list) ::= (expression) I (expression) , ( list option) . 

( block ) : : = { ( series ) } I { ( series ) } ( ( list ) ) . 

(on)::= on I on (number) I on+ I on - . 

(empty) ::= . 

(number) ::= (digit) I (digit) (number) . 

(digit) ::= o I 1 I 2 I 3 I 4 I s I 6 I 1 I a I 9 . 

(identifier) ::= ( lower case letter) I (identifier) ( letter or digit) . 

(lower case letter)::= a I b I ... I z. 

( letter or digit) ::= (lowercase letter) I (digit) I _ J A J . . . I Z . 

( sysident) ::= $ I $ (number) . 

(group) ::= ( simple group) I (group) ( simple group) . 

( simple group) ::= (family) (number) . 

(family) ::= A I B I C I D I E I G I T . 

(operator) ::= + I - I * J / I % I ~ I X I Y • 

(relation)::= == I != I < I > I <= >= · 

( boolean operator) ::= &:&: I 11 • 

(string) ::= 11 
{ any sequence of characters except " 11

" and newline } 11 
• 

(tail) : := { any sequence of characters except "(" and newline } . 

(help) ::= help I ? . 

(subject) ::= (empty) J { any sequence of characters not including spaces, 
newline, parentheses or ">" } . 

(quit) ::= quit I exit I ©. 

(type) ::= int I vec J mat trm I pol I grp . 

(apply) ::= iapply I vapply I mapply . 
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Chapter 8. INDEX 

In this index you will find all functions, and operators defined in l!E, and many of 
the commands, keywords and terms that are used. When a term coincides with the 
name of a function, references to both the term and the function are listed after the 
function name. 

( ·, ·) ...... . ...... . ...... 31, 43 branching .... ...... .... .. . 36, 38 
( • , a) .................... 31, 41 break . .... ... . . ......... .. 19 
A .... . .. . .... . ... . .... . ... 30 bruhat ..................... 53 
+ .. ....... . . . . ..... ..... 9, 13 cart an .... .. . .. . ... . . .. .. .. 41 
- ... . ................... 9, 14 Cartan matrix . ... ......... 29, 31 
* .. .. ... ......... ..... . . 9, 14 Cartan product ....... .. ...... 41 
I .... .. .. . ..... . .. ... ..... 14 Cartan type ................. 31 
% . . .... .. ....... ... .. . . .. 14 carttype .................... 41 
........ . .... .. ... . . ... . . 15 center ... . .. . . . .. . .... ... .. 41 

< ......................... 15 central torus . .... .. . ... ... . 29, 30 
<= ....................... 15 centraliser . . ................ 55 
> ...... . .... . .. ... ... ... 15, 25 centroots ................... 42 
>= ...... . .. . ...... .. . .. . . 15 centrtype . . .. .... .. .. . . . . . .. 42 
! .. ....... . . ...... . . . ... .. 15 character .. .. . . ... .. 36, 37, 38, 40 
! = ........................ 15 character matrix . . . . . . . . . . . . . . 38 

....................... 15 classical groups ......... . ..... 28 
&& ....................... 15 clause ................... .. . 16 
11 ........................ 15 closed subsystem . ..... . . . 29, 31 , 32 
\ ........... .. ........ .. ... 9 closure ..................... 42 
? ....... . ...... ......... 9, 25 coef ....... ... ..... ..... ... 16 
© .......................... 4 coefficient . . . . . . . . . . . . . . . . . . . 11 
$ ... .... ............. . .. ... 9 collect ........... ..... . . ... 4 7 
--< ......................... 31 compsize ............... . ... 16 
p . . ...... . ... ..... .. . . . ... 51 contragr .... ...... .......... 4 7 
abort .. ........ . .... ..... ... 4 coset ................. 31, 34, 53 
abs .. ........ . .... . ... . ... 16 coxeter matrix ............. 34, 52 
a dams . . ................. . . 46 decamp . .................... 47 
adjoint . .. .. . . . . . .... . . .... . 46 decomposition ................ 40 
adjoint representation ..... 31, 32, 36 decomposition polynomial ..... 35, 37 
all_one ... ... ............... 16 default group ................ 20 
alttensor . .. ...... ... ..... .. 46 deg . . . .. . . .... ...... . . .... . . 
bigint ..... ... .. ... ........ 25 degree .... .. ............... 37 
blockmat . . .. .. . .. ... .. .... .. 16 detcartan . ........ . . . . . . .. .. 42 
blocks ..................... 18 diag ....................... 16 
branch ..................... 46 diagram .................. 29, 41 
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dim . .. ... . . . . . . . . ...... .41, 47 
distinguished coset representative .. 34 
dominant . ......... . 33, 40, 43, 44 
dominant weight . . . . . . . . . . . . . . 34 
domweights . ................ . 43 
edit ...... . ... . .. . ..... .. . 24 
error .. ... . . . .. ............ 16 
exceptional groups . . . ....... .. 28 
exit . . .. . ... . ... . .. . . .. .... 4 
exponents .............. 11, 34, 44 
factor ..... . ............ . .. 16 
frequency . . . . . . . . . . . . . . . . . . . 35 
fundam ... . .... . . . .. ....... 43 
fundamental domain . . . . . . . . . . . 33 
fundamental lie subgroup ... 29, 31, 36 
fundamental reflection .... . 31, 34, 35 
fundamental root .... ... . ... 31, 32 
fundamental weight . . 31, 32, 33, 34, 38 
garbage collector ........ . ..... 25 
gc ... ..... . .. . .. . .... . . ... 25 
gcol .. .. . . . . ... .... . . . .. . .. 25 
General Linear group . .... ... . 29, 30 
grp . . . . ... . . . ... . ....... . . 12 
help ..... . .... . ..... . .. .. .. 9 
higher than . . . . . . . . . . . . . . . . . . 31 
highest root . . . . . . . . . . . . . . . . . 32 
highest weight . ... . ..... . . 2, 32, 37 
highest weight module ....... . .. 37 
highroot .... . . . . ... . . . .. . . . . 43 
iapply . .... . . ..... . .. . . ... . 23 
icartan . . .. ... . ........ . .. . . 43 
id . .. . . .......... .. ... . ... 16 
initfile ..... .. . . .... .... . . 24 
inner product ... . . .... . .. .. .. 43 
inprod .... . .. . ... ... .. .. .. . 43 
int . . . . . . . .. ... .. . ... ... . 10, 40 
irreducible representation .. . .. . .. 37 
Laurent polynomial . . . . . . . . . . 7, 11 
learn .. . ..... . . . .... . . .. ... 25 
length ........... .. ... 16, 34, 44 
Levi subgroup .... . .. . .. ..... . 32 
lexicographic ordering . . . . ... . .. 12 
Lie algebra . .. ... .... ... .. . 29, 36 
Lie group .. . .. . . . .. . ..... . .. 29 
Lie rank .. .. .. ... . .. .. .. . . .. 29 
lie under . . ....... . .......... 31 
liecode . . . .. . . . .......... . .. 41 
liegroup ... . . . . .. .. .. ....... 41 
lierank ... ............. . .. .. 41 
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lin . . .. . ..... . ...... . . . . ... 40 
listfuns . .. . ... .. . .......... 9 
list ops ........... .. . ..... .. 9 
listvars ....... . . ..... .. . .. . 9 
local variable .. . .. .. ... ...... 22 
longword . . . . . . . . . . . . . . . . . . . 44 
lprint ....... ......... .. . .. 25 
lreduce ........ . .... . . .. . . .. 44 
lrreduce . . . . . . . . . . . . . . . . . . . . 44 
make .. . . . . .. . ......... .... 23 
mapply ....... ............ . 23 
mat ... ... ..... ........... . 11 
matrix ....... . . .. . ..... . . .. 27 
matvec . ... . . .. . .. .. ....... . 16 
maximal torus ........... . . 28, 30 
module ........ . . . . . . ... . . 35 , 37 
monfil . .. . .. . ... . . . ... . .. . . 25 
monitor .. . .. ... . .. . .. .. . . . . 25 
monom . ..... .. . ........ . . . 16 
mul . .. .. .. . .. .. .. ... .. . . . . . . 
multiplicity . . .. . .. .. . .. . ..... 35 
multiplicity polynomial . ... . . . 35, 37 
n_cols ....... . . . . . . .. . ... . . . 16 
n_rows ... .. ........ . .. . .... 16 
n_vars ........ .. . .. . . . .. . . . 16 
nextpart .. . .. . ........ . ..... 48 
nextpermu ..... . . . . . .... . .. . 48 
norm ... . ... . ......... .. ... 43 
null ... .. . .. . .. .. . . . . .. .... 16 
numproots . .. .. . ......... . .. 43 
off ... .. .. . .. . .. . ....... .. 25 
on ..... . .... .. ...... ...... 25 
one parameter subgroup .. .... 32, 33 
ones . ...... . .... . ... .. . .... 50 
orbit . ... . ... . . ... . .... .. 34, 44 
orbit matrix .......... ...... . 35 
partitions . . . . .. .. . 37, 38 , 39, 40, 48 
plethysm . ....... .. . . . . ... . 39, 49 
pol . .. ... . . ....... ... .... . 11 
polynomial . . ... ... . . . .. . .. 27, 40 
positive root ...... .. .. . .... 32, 37 
posroots . .. . . .. . ... ... . ..... 43 
print .... .. . .. . . .. . .... . . . . 16 
prompt . .. ........ . .. . ... . .. 25 
ptensor .......... . .... . .... 47 
quit . ......... . .. .. .. .. .... 4 
read . ..... . . . . . .. .. .. ... . . 24 
redsetmat ...... . ..... ..... . . 16 
reduce . .. . .... . . . ... . . ..... 44 
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reduced Weyl word .......... 34, 35 
reductive .................. . 29 
reductive group ............... 30 
reflection ................. 35, 45 
representation .............. 36, 37 
resmat ............. .. . .. ... 47 
restriction matrix ........... 36, 37 
return . ................. .. . 20 
root ............. 30, 31, 32, 36, 40 
root lattice ................ 31, 32 
root matrix ........ ... ... . .. . 32 
root system ............... 31, 33 
root vector . ...... ......... 32, 33 
rreduce . .................... 45 
runtime ..... .. ... . ......... 25 
semisimple element .......... 30, 54 
semisimple group . ... ......... 30 
semisimple Lie rank ............ 29 
semisimple part ............... 28 
series ...................... 17 
setdefault .. . ... ... .. ..... .. 20 
size ............ .. .. ... . . .. 16 
sort . . .. ...... .. .. ......... 16 
Special Linear group ...... 28, 30, 37 
spectrum ................ .47, 55 
Spin group .... . . .... ... ..... 28 
statement ... ................ 16 
symchar . ................... 49 
symmetric group .............. 39 
symmetrised tensor . . . . . . . . . . . . 39 
symorbit . . ....... .... ....... 49 
symplectic group .... ..... ... .. 28 
symtensor ... ... ........ . . .. 48 
term ...................... 11 
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tensor ... ............... ... 48 
tex ....................... 13 
torus ...................... 30 
total degree ordering ........... 12 
transposition ................ 14 
type ........................ 9 
used . .. . ....... ... ... ...... 25 
vapply .................... 23 
variable ..................... 9 
vdecomp .................... 48 
vec ....................... 10 
vecmat ..... .... ....... ..... 16 
vector ................... 27, 40 
vid .. ..... . ........ ..... 9, 17 
virtual decomposition polynomial .. 38 
virtual multiplicity polynomial .. 37, 38 
void . ...................... 16 
waction .................... 45 
weight .. .. .. ..... 30, 33, 36, 37, 40 
weight lattice ........... 32, 33, 35 
weight vector .............. 32, 33 
Weyl chamber ...... ..... . . ... 33 
Weyl group ...... ...... . .. . 30, 35 
Weyl word ................ 35, 40 
weylmat ..................... . 
worbit . . . .... ....... ...... . 45 
worbitsize ................... 45 
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