
ARCHIEF BIBLIOTHEEK CWI - 14-~03

L!E l\!IANU AI. D RA!-'T
ciesc:ribing l!E \f<!nl'·~,i '.!. (

Arjeh M. Cot.rn
Bert Lis&er

l!f. i!: ~ , oftware ;,acl<.age for Lie gri::-up t hf".:-,.etknl cocnputat;ot:5

developed by fae

Computer Algebra Group
of the
CWI

Krui!?iaail 41:\, 1098 SJ Amsterdam, The ~fe:berl:mc.i:i

!1E L!E l.!E l.!E l.!E L:E ~E i.!E
L!E L!E l.!E l.!E l.!E l1E l!E =.!E
t.!E l!E l!E l!E L!E l!E
L!E ~E L!E l!E l!E L!E
l!E l!E l!E l!E l!E L!E !.!E t'.f:
l!E l!E l!E l.!E l.!E l.!E L!E EE
l!E l.!E l!E l.!E l.!E L!E
L!E L!E ~!E '.!E
l!E L!E l.iE :~E L!E .. !E l!E U.: I:[
l.!E l.!E l!E i.!E l.!E i.!E. 1~E l:E l:;~

~E MANUAL DRAFT
describing l!E version 2.0

Marc A. A. van Leeuwen
Arjeh M. Cohen

Bert Lisser

l!E is a software package for Lie group theoretical computations

developed by the

Computer Algebra Group
of the
CWI

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

~E ~E ~E ~E ~E ~E ~E ~E
~E ~E ~E ~E ~E ~E ~E ~E
~E ~E ~E ~E ~E ~E
~E ~E ~E ~E ~E ~E
~E ~E ~E ~E ~E ~E ~E ~E
~E ~E ~E ~E ~E ~E ~E ~E
~E ~E ~E ~E ~E ~E
~E ~E ~E ~E
~E ~E ~E ~E ~E ~E ~E ~E ~E
~E ~E ~E ~E ~E ~E ~E ~E ~E

Chapter 1 Introduction 1

l.!E Manual

Chapter 1. INTRODUCTION

l.!E is the name of a software package under development at CWI since January 1988.
Its purpose is to enable mathematicians and physicists to obtain on-line information
as well as to interactively perform computations of a Lie group theoretic nature. It
focuses on the representation theory of complex semisimple (reductive) Lie groups
and algebras, and on the structure of their Weyl groups and root systems.

The basic objects of computation are vectors and matrices with integer en­
tries, and polynomials with integral coefficients. These objects are used to represent
weights, (sets of) roots, characters and similar objects relating to Lie groups and al­
gebras. l.!E does not compute directly with elements of the Lie groups and algebras
themselves, but the computations may be parametrised by the type of the Lie group
or algebra for which they should be performed. Our primary goal in realising the
present version has been to cover (on-line) the mathematical content of the following
three books:

[Tits 1967] J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstel­
lungen, Lecture Notes in Math. 40, Springer, Berlin, 1967.

[Brem ea 1985] M. R. Bremner, R. V. Moody, J. Patera, Tables of dominant
weight multiplicities for representations of simple Lie algebras,
Monographs and Textbooks in Pure and Appl. Math. 90, Dekker,
New York, 1985.

[McKay ea 1981] W. G. McKay & J. Patera, Tables of dimensions, indices and
branching rules for representations of simple Lie algebras, Lecture
Notes in Pure and Appl. Math. 69, Dekker, New York, 1981.

The package establishes an interactive environment from which commands can
be given, involving basic programming primitives as well as powerful built-in mathe­
matical functions (the package can be run in batch mode as well.) These commands
are read by an interpreter built into the package and passed through to the core of
the system: a collection of programs representing the various available mathemati­
cal functions. Furthermore, the interpreter offers online facilities which explain the
operations and functions available, give background information about Lie group the­
oretical concepts, and give information about currently valid definitions and values.

l!E is written in C, and can be made available on any system running UNIX or
comparable operating systems, and (with a little more effort) probably on many other
machines with a C-compiler. The interpreter has been set up with the help of the
UNIX program "yacc" . The present version is available for the following computers:
SUN 3, SUN 4 and SparcStation (under SunOS 4.0) , VAX (under BSD UNIX 4.3 and
under VMS) , IBM RT (under AIX) , DEC3100 (Ultrix) and Apple Macintosh. Should
you want to order the package, please contact: Computer Algebra Group, c/o Marc
van Leeuwen, CWI, P. 0. Box 4079, 1009 AB Amsterdam, The Netherlands, email:
maavl@cwi.nl.

2 l.!E 2.0 Manual DRAFT

1.1. About the content of this manual

Chapter 2 explains the environment offered by the l.!E interpreter. It explains how to
evaluate expressions, call built-in functions, and invoke the online help facilities. It
also defines a programming language in which users may define their own algorithms,
making use of the built-in operations and functions. The interpreter recognises the
following types of objects.

type name example comment
integer mt -12344321267 arbitrary size
vector vec [1,2,-7,6,9,8] machine size integer entries
matrix mat [[1, 2] , [3, -4]] row length should not vary
polynomial pol X[1,0]-7X[3,-5] multivariate Laurent polynomials
group grp A6A6E8F4T4 T4 is a 4-dimensional torus
text tex "any string" quotes are required
void vid to unify functions and procedures

The about 100 mathematical functions which form the heart of the l.!E package
are described in detail in Chapter 4; these involve amongst others root systems, Wey!
groups, multiplicities and degrees of highest weight modules, tensor product decom­
positions, branching (i.e., restriction of modules) to reductive subgroups, centralisers
of a semisimple elements, and the spectrum of such elements on a module. In order to
describe these functions, it is necessary to introduce the relevant mathematical terms
and concepts, and the way in which these are represented in l.!E; these matters are
described in Chapter 3.

The l.!E programming language makes it possible to customise and extend the
package with more mathematical functions ; examples of this are given in Chapter 5.

1.2. Theoretical aspects

The package is mainly intended for computations concerning semisimple Lie groups
and algebras. Since reductive groups provide a more general and at the same time
more convenient setting, they form the class of groups we have chosen to work with.
For notational convenience, we adapt names only for groups whose semisimple part
is simply connected. Since all other reductive groups are quotients of these by finite
central subgroups, we feel that this is not a major limitation.

Most mathematical functions implemented in l.!E have a Lie group as argument.
No multiplication of Lie algebra or Lie group elements is available. The notion of group
we use is hardly more than an indication of its isomorphism class. The computations
are mainly done on the level of vectors, matrices and polynomials corresponding
to various relevant objects in Lie group theory. For instance, representations are
parametrised by vectors via the so-called highest weights, and the elements of the
Wey! group of a Lie group appear in different guises (they can be represented both as
vectors, indicating a product of fundamental reflections, and as matrices, indicating
the image in the reflection representation).

The emphasis has been on the development of basic routines that perform the
mathematical operations in the greatest generality. Therefore, it is quite likely that
greater speed could have been achieved in specific cases with more specialised pro­
grams. In one instance we have also realised algorithms specific for certain types of
groups, namely the Young tableau techniques, giving fast implementations for certain
computations in the special linear groups (notably the Littlewood-Richardson rule).

Chapter 1 Introduction

1.3. The authors

3

Arjeh M. Cohen developed the idea, wrote some mathematical functions and a first
version of this manual and is the project leader. Bert Lisser made the interpreter
and provided the information for Chapter 2 of this manual. Marc van Leeuwen is
the author of the current version of this manual, and implemented the Young tableau
algorithms. An earlier version of the package was constructed with aid of Ron Som­
meling, Bart de Smit and Bert Ruitenburg, who are no longer involved in the project ;
we hope that they still appreciate what we have done to l!E.

For more information beyond what this manual has to offer, bug reports, inter­
esting algorithms you may want us to know, or any other helpful comments, contact:
Arjeh M. Cohen, CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands, email:
marc@cwi.nl.

4 l!E 2.0 Manual DRAFT

l!E Manual

Chapter 2. THE INTERPRETER

In this chapter, the facts needed to run a successful l!E session are described. We
discuss the features of the interactive shell, that interprets the commands entered
during a session. After an introductory session, we give more details of the types of
objects the interpreter recognises. Then, in Section 2.3, the operators defined in the
package are listed, and Section 2.4 similarly treats functions. Section 2.5 discusses
the ingredients needed to construct larger programs, and Section 2.6 shows how to
define your own functions. Finally Section 2.7 describes some features that allow the
user additional control over l!E. A note about the typography of this chapter: in the
introductory section, all commands as typed by the user and the responses of l!E are
reproduced in typewriter type style, to indicate the exact appearance on the screen,
but in the further sections a more aesthetically pleasing form of rendering expressions
is chosen, distinguishing identifiers (italic type), keywords (bold type) and direct
commands to l!E (typewriter type).

2.1. A first look

An interactive session of l!E starts by ·executing the command LiE on your machine
(provided l!E has been installed; the leaflet accompanying the software package ex­
plains how to do that). You will then enter the Lie shell, a sign-on message will
be printed, followed by the prompt '>'. In this mode, you can enter commands. A
command will be executed upon completion of the line by hitting (Return). The
command will be read by an interpreter built into l!E and, if necessary, will invoke
some of the mathematical functions. The system will respond to the command by
returning an answer if relevant. In the examples given below, the lines starting with
the prompt character '>' are the commands as typed by the user, the other lines are
l!E's response.

Your first concern after entering l!E is of course if it is possible to get out again;
the answer is yes, it suffices to type

> quit

and l!E will sign off with 'end program' and stop (synonyms for quit are exit and©).
Should you at any moment find that l!E has embarked on a (seemingly) endless com­
putation, then you can always force it to abort the computation and prompt for a new
command by typing (control)C, i.e., press the control key and the c simultaneously.

The simplest commands are to perform arithmetic computations; the interpreter
then behaves like a pocket calculator, evaluating the expression typed in and printing
the result.

Chapter 2 The Interpreter

> 19+68
87

> 1111111111•1111111111
1234567900987654321

> $/1111111111

1111111111
> -$ % 1000003

892225
>

5

Here $ means "the previous result", and% means "modulo". Variables may be used
to save values in a more permanent way than in$.

> a=345
> a~2+3•a-5

120055
> $/7•a

5916750

Besides integer arithmetic, l!E can also calculate with vectors and matices with integer
entries. Here are a few operations with vectors, from these the reader may guess which
computations are performed.

> v=[3,2,6873,-38]
) V

(3, 2, 6873, -38]
> v[3]

6873
> v[5]
Index(= 5) out of range
(in _select)
> v+v

(6, 4, 137 46, - 76]

47239586
> v+234786

[3,2,6873,-38,234786]
> v-3

(3,2,-38]

[3,2,6873,-38,3,2,6873,-38]

We can play similarly with matrices.

> ((1,0,3,3], (12,4,-4,7], (-1,9,8,0], (3,-5,-2,9]]
[

[1, 0, 3 ,3],
(12, 4,-4, 7],
(-1, 9, 8,0],
[3,-5,-2,9]
]

6

> m=$

> *m
[

[1,12,-1, 3],
[O, 4, 9,-5],
[3,-4, 8,-2],
[3, 7, 0, 9]

]

[

[220, 87, 81, 375],
[-168,-1089, 13,1013],
[1550, 357,-55,1593],
[-854, -652, 98,-170]
]

[-6960,62055,55061,-319]

[20508,-27714,54999,-14089]

> v*m*v
378549605

> m+v
[

[1, 0, 3, 3],
[12, 4, -4, 7],
[-1, 9, 8, OJ,
[3,-5, -2, 9],
[3, 2,6873,-38]

> m-2

]

[

[1, 0, 3,3],
[-1, 9, 8,0],
[3,-5,-2,9]
]

l!E 2.0 Manual DRAFT

Apart from integers, vectors and matrices, l!E can also calculate with (multivari­
ate) polynomials. Because of the specific intended applications to Lie group theory,
polynomials are represented in a way that may seem a bit unusual. First of all,
there are no formal names such as X, Y, . .. , for the polynomial in determinates: the
indeterminates are simply discriminated by their position in a fixed ordering, and
monomials are represented by the symbol 'X' followed by a vector as "exponent",
where the first number gives the exponent of the first indeterminate, etc. Moreover,

Chapter 2 The Interpreter 7

l!E will not mix terms with different numbers of indeterminates, so zeros should be
added as necessary to make all exponents the same size. Finally negative integer ex­
ponents are allowed, so we are in fact dealing with Laurent polynomials; the ground
ring is Z. Here is a session with some simple polynomial calculations.

> X [1,2J

1X[1,2J

> -3•$

-3X[1,2J

> $+4X[-1,4]

4X[-1,4J - 3X[1,2]

> $+X[6,7,8J

Number of variables in polynomials unequal
(2 <-> 3 variables).
(in+)

> $•(X[2,0J-X[0,-4J)

-4X[-1, OJ + 3X[1,-2J + 4X[1, 4J - 3X[3, 2J

> $-$

OX[O,OJ

The core of l!E is a batch of built-in functions which can be called by the inter­
preter. We give two simple examples of such calls:

> partitions(6)
[

[6,0,0,0,0,0J,

[5,1,0,0,0,0J,

[4,2,0,0,0,0J,

[4,1,1,0,0,0J,

[3,3,0,0,0,0J,

[3,2,1,0,0,0J,

[3, 1, 1, 1, 0, OJ ,

[2,2,2,0,0,0J,

[2,2,1,1,0,0J,

[2,1,1,1,1,0J,

[1,1,1,1,1,1J

J

> diagram(E8)

0 2
I
I

o---o---o---0---0---0---o
1 3 4 5 6 7 8

ES

8 l!E 2.0 Manual DRAFT

The former call returns the matrix whose rows represent partitions of 6; the latter
command prints the diagram shown, but does not deliver a resulting value, so some
might wish to call diagram a procedure rather than a function .

The user may also define in a natural way functions that are not built into l!E,
for example

> f(int x)=2*x
> f(984)

1968

Instead of giving the resulting value at once, as in this example, one may also specify
a sequence of statements to be executed first (separated by semicolons), followed by
the expression giving the result.

> f(int n)= a=3*n-7; if a<O then a=-a fi; 1~a+a~3-4*a-57

> f (2)

-53
> f(5)

5765224

For conditional statements (and expressions) as in the above example, logical ex­
pressions are useful; there is a number of relational and logical operators, which are
represented in the same style as in the programming language "C". Some examples
of logical expressions are

i<=n

n==8

p>10 &&: p!=13
f(3)<=7 I I k+l >= 5

Some commands describe an action to be performed rather than a value to be com­
puted, and are called statements; examples are

a=[2,3]; b=7; v[2]=7

for i=1 ton do print(i*i) od

Statements do not yield a value, so unless the specified action explicitly produces
output (as in the case of print), nothing will appear on the screen. In the last
example we showed a loop entered directly to the interpreter; here is an example of
the use of a loop within a function

> sum_sq(vec v)= s=O; for i=1 to size(v) do s=s+v[iJ-2 od; s
> sum_sq([i,-3,5,2,7])

88

There are commands for global control of l!E, such as 'quit ' above, and to control
the input and output flow ; some examples are

on monitor

edit script

of which the first starts recording the session on a file "monfil", and the second
invokes an editor on the file "script", which presumably contains commands to l!E
that will be read by l!E upon completion of the edit session.

Finally, there are some features to help you out , such as

Chapter 2 The Interpreter 9

listvars

learn lie group

The former lists the variables that have been given a value, while the latter prints a
text indicating what the authors of l!E think a Lie group is.

The objects that l!E can manipulate are of the following types (in each case the
indication l!E uses to designate the type is added in parentheses): integer (int), vector
(vec), matrix (mat), polynomial (pol), group (grp), or text (tex); there is also the
indication vid that stands for void, which is not really a type since there is no void
value that could be assigned to a variable or passed to a function, but is used to
indicate the result type of a function that does not yield any value. Variables do not
have a declared type: they simply assume the type of any value that is assigned to
them. However, once created variables cannot change their type during a computa­
tion: their type can only change by an assignment typed directly by the user (which
of course can only happen to global variables).

We end this section with a few essential details.

2.1.1. Command prolongation

As mentioned above, a command normally ends at the end of a line. We have im­
plemented this rule because, usually, one line suffices for a command. However, if
the line ends with one of the characters '+','-','*','; ' , ' , ' or'\' (none of which can
be the last character of a valid command) then the command will be considered to
continue onto the next line. When used in this way the character '\' is equivalent to
a space (and it can therefore be inserted at almost any convenient place), while the
other characters stand for themselves. A command is also assumed to continue be­
yond the end of a line when there are still unclosed left parentheses, brackets, braces,
or unfinished conditional or loop clauses, which means that in most cases you need
not bother to type any backslashes. To indicate that the remainder of a command is
awaited, the prompt changes from '>' to'\'. This command prolongation cannot be
used after?, help, or : , or within a string or comment.

2.1.2. Getting help

Use ? , help, or ?help to make enquiries. Other text following ? can be used to get
more detailed information about a particular topic. For example, ?functions returns
the list of built-in functions . The command ?(name) returns information about the
variable, function(s) or operator(s) with the specified name. So, for instance ?lierank
will return information on the built-in function lierank. For built-in functions, similar
information can also be found in Chapter 4 of this manual.

The commands listvars, listfuns and listops print lists of the variables, or
functions defined in the session, respectively of the operators known to l!E (cf. Sec­
tion 2.3).

2.1.3. Variables

Variable names are strings of letters, digits and underscores; the first character must
be a lower case letter (this requirement is necessary because for instance A68 denotes
a group, and therefore cannot be a variable) .

The special variable $ is given the value returned by the last command that did
in fact deliver a value (so assignments and calls for help etc. do not alter the value
of$) . Note that only commands set the value of$; this implies that

10

> 10

10
> 13; $

returns 10 rather than 13.

2.1.4. File management

l!E 2.0 Manual DRAFT

Commands contained in a file named (name) can be read with command read (name) .
The same file can be edited by issuing the command edit (name). When the editing
session is completed, the file will automatically be read in.

2.1.5. Comments

Comments are enclosed between a pair of characters '#' (and accordingly comments
cannot contain the character '#') . If the closing '#' is missing, the comment will be
closed at the end of the line.

2.1.6. Escape to the shell

The character ' : ' appearing as first character of a command line means that the
remainder of the line is passed to the shell (this feature applies to UNIX implemen­
tations of l!E only) . This is a newly created subshell, not the (login) shell from which
l!E was called, so for instance it makes little sense to invoke a cd command in this
manner.

2.2. Values

As mentioned above, l!E handles values of the types integer, vector, matrix, polyno­
mial, group and text. We now treat these kinds of values in some more detail.

2.2.1. Integer

Integers are represented by l!E by values of type int; as usual, they may be denoted
by a sequence of digits, optionally preceded by a minus sign.

Integers and coefficients of polynomials effectively have unlimited length. The
integer entries of vector, matrices and the exponents in polynomials are restricted
however by the word size of the machine (usually this allows values up to 231 in
magnitude). This restriction is made for efficiency reasons; for most purposes it
is hardly a limitation since the running time of most Lie group theoretic functions
becomes excessively large long before the entries of the vectors and matrices occurring
as parameters or results of these functions reach their limits. Note that whereas a
warning is issued if one tries to insert too big an integer into a vector, matrix, or
polynimial exponent, no such warning is generated when overflow occurs within an
operation on vectors, matrices and (very unlikely) polynomials themselves, e.g., when
calculating a huge power of a matrix.

2.2.2. Vector

An object of type vec is a vector, which consists of a sequence of integers: it has a
size s (which may be O), and entries indexed by the numbers 1, . .. , s. A vector may be
formed by a comma separated list of integer expressions enclosed in square brackets,
such as [1, 9, 6, 8], [32*13*9497 ,30-9*101*677] and [] . It is also possible to form
vectors whose size is determined at run time by calling null(n) or all_one(n), where
in either case n stands for an arbitrary integer expression whose value determines the
size of the vector created; in the case of null all entries are set to 0, while in case
of all_one they are all set to 1. If v is a vector of size n, then its individual entries

Chapter 2 The Interpreter 11

may be referred to as v[i] for 1 ::; i ::; n. The built-in function size allows the size of
the vector v to be obtained as size(v).

2.2.3. Matrix

An object of type mat is a matrix, which consists of a rectangular array of integers:
it has a number of rows r and a number of columns c, and integer entries indexed
by pairs i, j of integers with 1 ::; i ::; r and 1 ::; j ::; c. A matrix may be formed
by a comma separated list of vector expressions enclosed in square brackets, such as
[[5,-4], [-6,5]], and [[4-7,11] ,v] after assigning v=[6,9]. Since matrices are
always rectangular, it is required that all vectors occurring have the same size; they
will be taken in order to form the successive rows of the matrix (note that it is possible
to denote matrices with O columns in this way, but not with O rows; the latter can
be created with the call null(O, n)). This notation is in accordance with the general
convention in l!E that whenever a matrix is considered as a sequence of vectors, these
correspond to the rows (rather than the columns) of the matrix. The functions null
and all_one can also be used to create matrices, by supplying them with two integer
arguments: the first argument determines the number of rows and the second the
number of columns of the matrix, while the entries are all O or all 1 as in the case of
vectors.

A matrix is printed in the same way as it is entered, with the vectors representing
the rows on separate lines, and the opening and closing brackets of the whole matrix
on lines by themselves (note however that it is possible to alter the style of printing
such that a matrix appears just as a rectangular block of numbers enclosed in vertical
bars, by means of the system parameter lprint, see Section 2. 7.4). This method
of printing is slightly ambiguous (an not in agreement with the input format) when
matrices with O rows are concerned.

Since a matrix is often viewed as a sequence of its rows, the rows of is a matrix m
with r rows, may be referred to as m[i) for 1 ::; i ::; r; the individual entries of the
matrix may be referred to as m[i, j) or as m[i)[j), both denoting the same entry.
Similarly to the function size for vectors, there are functions n_rows and n_cols to
determine the number of rows and columns of matrices.

2.2.4. Polynomials

An object of type pol is a Laurent polynomial in a fixed number n of indeterminates.
It consists of a set of terms (which are automatically sorted by l!E) where each term
has an integer coeflicient, and an exponent, which is a vector of n integers, the i-th of
which represents the power in which the i-th indeterminate occurs. Whenever terms
with equal exponents would occur, they are automatically combined by l!E, whence
it is guaranteed that all terms occurring have distinct exponents. There is always at
least one term: the zero polynomial is represented by a term with coefficient O and a
zero vector of the appropriate size as exponent; apart from this case coefficients are
always non-zero. Terms are denoted as an optional integer coefficient (the default is 1)
followed by the symbol X followed by a vector as exponent; polynomials with multiple
terms can be formed by addition and subtraction of terms. For polynomials in 1 inde­
terminate one may also write an integer exponent, which is automatically converted
into a vector of size l. Polynomials are printed in the same format as they are en­
tered (assuming the default setting of the lprint parameter), with coefficients always
explicitly represented (even if equal to 1) and exponents always rendered as vectors.
Polynomials in n indeterminates corresponding to the integer numbers O and 1 can
be formed by poly _null(n) anpoly_one(n) respectively; these calls are equivalent to

12 1.!E 2.0 Manual DRAFT

OXnull(n) and lXnull(n).
The order in which the terms of a polynomial are sorted depends on the setting of

system parameters; the default is lexicographic ordering of the exponents, but the user
may also select total degree ordering (in which case the sum of the exponents entries
takes precedence over the lexicographic ordering) and the reverse ordering of either of
these two possibilities. This ordering influences the selection of terms: the i-th term
of a polynomial p can be referred to as p(i] (which is a polynomial of one term) . The
coefficient of the i-th term can be obtained as coef (p, i), and the exponent of that
term as monom(p, i) (which is a vector). Further functions to obtain information
about polynomials are n_vars, giving the number of indeterminates, length, giving the
number of terms, degree, giving the total degree of p, i.e., the largest integer obtainable
as sum of entries of some exponent. It is not only possible to select coefficients by
their position, they may also be selected by exponent: plv denotes the coefficient of
the term with exponent v, or zero if no such term exists. One may also assign to plv
in order to alter the coefficient of the term with exponent v ; this may cause a term
to be created or deleted as appropriate, as the following example shows.

> p = X[1,5]
> p

1X[1,5]

> p I [3, 7J =-5

> p
1X[1,5] - 5X[3,7]

> pl [1,5]=8; p
8X[1,5] - 5X[3,7]

> pl [1,5]=0; p
-5X [3, 7]

It is also possible to supersede an entire term p(i] of a polynomial by another one
by assigning to it, but note that because the polynomial is normalised afterwards by
possibly rearranging and merging of terms, it is not generally true that after assigning
p(i] = term we have that p(i] == term holds.

2.2.5. Group

A value of type grp specifies an isomorphism class of reductive complex Lie groups
with simply connected semisimple part. As will be explained in Section 3.1, such
groups are a direct product of simple groups (its simple components) and a central
torus, where simple groups are characterised by their type and the central torus by its
dimension. Therefore, l.!E represents groups by a sequence of types of simple groups
together with the dimension of the central torus. Types of simple groups are of the
form Ln where L is an upper case letter from the set {A, B , C, D, E, F, G} and n is
a positive number, subject to the restrictions n ~ 2 if LE {B, C}, n ~ 3 if L = D,
n E {6, 7, 8} if L = E, n = 4 if L = F and n = 2 if L = G . The letters A-D
correspond to the classical groups (cf. (Bourb 1968]), which groups are also known
by proper names as follows :

The type of the n-dimensional torus (C*)n is Tn . To denote a group in 1.!E one simply
concatenates the types of the simple components and the central torus. The order
of the simple components is retained by l.!E, but each term Tn simply increases the

Chapter 2 The Interpreter 13

dimension of the central torus by n; when a group is printed by l!E, the central torus
appears at the end. For instance, if you enter C3T4B12A4T6A1E7 then l!E will print
C3B12A4A1E7T10 as a result, which specifies the group

Sp(6, C) x Spin(25, C) x SL(5, C) x SL(2, C) x E7(C) x (C*)10

For a group g, the simple group that is its i-th component may be referred to as g(i),
while its central torus may be referred to as g(O), so for g as in the above example,
we have g(O] = T1o and g[2] = B12. In some cases the mathematical specification
would require that a function returns a group whose semisimple part is not simply
connected (e.g., the function centr). Since such groups are not representable in l!E,
the group of which it is a central quotient with finite kernel, and whose semisimple
part is simply connected, is returned instead in such cases.

2.2.6. Text

l!E has some basic means to manipulate character strings for output, in the form of
values of type tex. Strings are denoted by enclosing them in double quote characters,
and they should be given on a single line, for instance "this is a string"; it follows
that strings cannot contain the double quote and newline characters.

2.3. Operators

We describe the operators defined in l!E. Contrary to functions, it is not possible to
define new operators, or additional instances of existing operators. The meaning of
an operator and the type of its result depend on the types of its operands (this holds
for functions as well). Each operator has a priority, which determines how expression
are parsed: as usual, the implicit parentheses fit more closely around operators of
higher priority. At each priority level association is to the left, i.e., among operators
of equal priority implicit parentheses group towards the left.

There is no type 'Boolean', so that truth values are represented by integers:
relational and logical operators yield 1 when true and O when false. When an arbitrary
integer is interpreted as a truth value, all values except O are considered as representing
true. There are however syntactic restrictions that prevent perfoming arithmetic with
truth values: expressions such as 100+(3 < 4) are forbidden. The result of a relational
or logical operator may only be used between 'if' and 'then' or while and do, as
operand of a logical operator, in an assignment to a variable, or in a list of function
parameters or of vector entries.

We give the operators, their priorities and their various meanings by a table. In
each case the first operand is called a, the second b; there might be only one argument,
in which case the operator is used monadically, written before its operand. In the
case of vector, matrix and polynomial operands, some restriction is often imposed on
the size, respectively on the number of rows, columns, or indeterminates; we use the
notation O' a for the size of a vector a, Pa and K-a for number of rows and columns
respectively of a matrix a, and Va for the number of indeterminates of a polynomial a.

oper- pno- type type type of meaning, comments
ator rity of a of b result

+ 6 int int int a+b
vec vec vec a+ b (vector addition) {O'a = O'b}

14

*

*
I

%

6

10

7

10
7

7

mat
pol
int
vec
mat
tex
tex
int
tex

mat
pol
vec
int
vec
tex
int
tex
grp

grp tex
int int
vec
mat
pol
vec
mat

int
vec
mat
pol

vec
mat
pol
int
int

int int
int vec
vec vec

int mat
vec mat

mat mat
mat vec

int pol
pol pol
pol mat

pol int
grp grp

int tex
tex int
mat
int int
vec int
mat int
int int
vec int
mat int

mat
pol
vec
vec
mat
tex
tex
tex
tex
tex
int
vec
mat
pol
vec
mat

int
vec
mat
pol
int
vec
int

mat
vec

mat
vec

pol
pol
pol

pol
grp

tex
tex
mat
int
vec
mat
int
int
int

l!E 2.0 Manual DRAFT

a+ b (matrix addition) {pa = Pb, "'a = 1,,b}
a+ b (polynomial addition) {lla = lib}
[a, b[l], b(2], ... , b(crb]]
(a[l], a[2], ... , a(cral, b]
(a(l], a(2], ... , a[pal, b] { "'a = O"b}
concatenation
a + t where t is textual representation of b
t + b where t is textual representation of a
a + t where t is textual representation of b
t + b where t is textual representation of a
a-b

a - b { a a = O"b}
a - b {Pa= Pb, "'a= 1,,b}
a - b {lla = lib}
make a one shorter by removing a[b]
make a one row shorter by removing
row a[b]
-a
-a

-a

-a
ab
a · b (scalar multiplication by a)
ab T = I:~;1 a[i]b[i] (standard inner product
of a and b) {era = ab}
a · b (scalar multiplication by a)
ab (right multiplication by matrix b)
{aa = Pb}
ab (matrix multiplication) { "'a = Pb}
ba T = (ab T) T (left multiplication of column
vector b by matrix a) { "'a = crb}
a · b (scalar multiplication by a)
a* b (polynomial multiplication) {lla = lib}
multiply all exponents of terms of a on the
right by band normalise result {lla = Pb}
a* (b · id(lla)) (see previous line)
a x b (concatenation of simple factors,
addition of dimensions of central torus)
the string b repeated a times
the string a repeated b times
a T (matrix transposition)
a/b rounded towards 0
[a[l]/b, ... , a[aa]/b]
[a[l]/b, ... , a[pa]/b] (see previous line)
a mod b {b > O; 0::; a mod b < b}
[a[l] mod b, ... , a[cra] mod b]
[a[l] % b, ... , a[pa] % b] (see previous line)

Chapter 2

X

X

<
<=
>

>=

!=

11
&&

8

9

10

5
5
5
5
4

4

1
2
3

The Interpreter

int
mat
pol
vec

mat

int
int
int
int
vec
mat
int
int
int
int
int
vec
mat
pol
int
vec
mat
pol
int
int
int

int
int
int
vec

mat

int
vec
mat

int
int
int
int
int
vec
mat
pol
int
vec
mat
pol
int
int

2.4. Using functions

2.4.1. Function call

A function call has the form

int
mat
pol
vec

mat

pol
pol
pol
pol
pol
pol
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

(name) ((argi), ... , (argn))

ab

ab {Pa = Ka}
ab

[a[l], . . . , a[cr al, b[l], ... , b[crb]] (concatena­
tion)
[a[l], .. . , a[pal, b[l], . . . , b[pb]] (vertical
concatenation) { Ka = Kb}

15

aX[b] (standing for aXf)
the term aXb (standing for axt[l] . . . x!~crb])
1:f!, aXb[i]
1x[a}
1xa
.,_.p. X a[iJ
wi=l
a<b
a~b
a>b
a~b
a=b
a = b (componentwise equality)
a = b (componentwise equality)
a= b (termwise equality)
a=/=b
a=/=b
a=/=b
a=/=b
if a =I= 0 then 1 else b =I= 0 (logical or)
if a = 0 then O else b =I= 0 (logical and)
if a = 0 then 1 else O (logical not)

where (name) is the name of the function to be called, and (arg1) , ... , (argn) are
arbitrary expressions giving the actual arguments of the function; among the possi­
bly numerous definitions for the given function name, the one is selected for which
the types of the formal parameters match those of the actual arguments. To call a
parameterless function , the name of the function may or may not be followed by an
empty pair of parentheses; the former possibility looks like a variable, but is really
different , since the function body will be executed only at the time of the call. (In
fact it is also allowable to write an empty parentheses after a name that refers to a
variable, but this appears to be needlessly misleading.) Whenever a function is called,
its arguments are evaluated first .

2.4.2. Basic functions

There are a few built-in functions of non mathematical nature that supplement the
built-in operators. These built-in functions cannot be redefined for the given argument
types, although one may add user defined meanings for other types; the same is true
for the built-in mathematical functions listed in Chapter 4. Again, we give these
functions by means of a table.

16 l!E 2.0 Manual DRAFT

function parameter(s) result meaning, comments
type

abs
factor

size
null
all_one
n_rows
n_cols
id
null
all_one
diag
vecmat
matvec

blockmat
sort

sort

int X

int n

vec v
int n
int n
mat m
mat m
int n
int n,m
int n,m
mat m
mat m
vec v; int n

mat a,b
vec v

mat m

redsetmat mat m

n_vars
length
coef
monom
poly_null
poly_one
compsize
void

print
error

pol p
pol p
pol p; int n
pol p; int n
int n
int n
grp g
any x

any x
text

int
vid

int
vec
vec
int
int
mat
mat
mat
vec
vec
mat

mat
vec

mat

mat

int
int
int
vec
pol
pol
int
vid

vid
tex

2.5. Statements and clauses

lxl ; the absolute value
prints a tentative factorisation of n; only prime
factors up to 215 are found.
the number of entries of v
a vector of length n with all entries 0
a vector of length n with all entries 1
the number Pm of rows of m
the number Km of columns of m
the n x n identity matrix
the n x m matrix with all entries 0
the n x m matrix with all entries 1
the main diagonal of m
concatenation of rows of m: m[l] ' m[2] ' · · ·
matrix with column size n and rows [v(l], ... , v(n]],
[v[n + 1], ... , v[2n]],. . . { n divides O'v}
the block matrix (~ ~)
vector with same entries as v, but sorted into
decreasing order
matrix with same rows as m, but sorted into the
same order as polynomial exponents
A reduced matrix, representing the same set of
rows as m, but without duplicates . The rows are
also reordered as in sort(m).
the number Vp of indeterminates of p
the number of terms of p
the coefficient of the n-th term of p
the exponent of n-th term of p
the zero polynomial in n indetermines
the unit polynomial in n indetermines
the number of simple components of g

no result , useful to force void type, for instance to
make types match between branches of conditional
clause
print the value of x
print text t and terminate; prompt for new
command

We have treated the main ways of forming expressions; however, expressions usually
do not suffice to perform complicated calculations, so we need basic actions and
ways to combine them into larger programs. The basic actions are performed by
statements, the larger structures built from them are called clauses. The distinction
between expressions, statements and clauses is not absolute, however, since on one
hand expressions are considered to be statements as well, and on the other hand
clauses (which may very well yield values) are themselves expressions (and hence a

Chapter 2 The Interpreter 17

fortiori statements). If a clause yields no value, then the clause is said to return void,
and is of type vid.

We first treat assignment statements, which are the most important kind of
statements, apart from expressions. Then we treat the clauses, of which there are
three kinds: blocks, conditional clauses and loops. Finally we treat the remaining
kinds of statements, namely the break, return and setdefault statements.

2.5.1. Assignment statements

Assignment statements have the effect of altering the value of a variable, and return
void. They come in five forms.

(identifier) = (expression)

The execution of this statement consists of evaluating the expression (which may be
of any type), and assigning its value to the variable denoted by the identifier. This
statement may optionally be preceded by loc, in which case a new local variable is
created at the current level, which will be denoted by the identifier, and which is
initialised to the value of the (expression). For more details see Section 2.6.2.

(identifier) [(expression1)) = (expression2)

Here (identifier) must denote a vector, matrix or polynomial variable, and corre­
spondingly (expression2) must be of type integer, vector, or polynomial respectively,
while (expression1) must be of type integer in all cases. Both expressions are evalu­
ated, and the value of (expression2) replaces the entry of the vector variable respec­
tively the row of the matrix variable or the term of the polynomial variable, whose
index is the value of (expression1) . In the case of a matrix or polynomial variable it
is required that the yield of (expression2) has the same size as the the row or term
replaced by it; in particular it may not be a polynomial of length > 1.

(identifier) [(expression1) , (expression2)) = (expression3)

Here (identifier) must denote a matrix variable, and all expressions must be of type
integer; the value yielded by (expression3) replaces the entry of the matrix variable
whose indices are the values yielded by (expression1) and (expression2) .

(identifier) I (expression1) = (expression2)

Here (identifier) must denote a polynomial variable, (expresion1) must be of type
vector and (expression2) of type integer. The term of the polynomial is searched
whose exponent coincides with the value of (expression1) (if none exists, a new such
term with coefficient O is created), and its its coefficient is replaced by the value of
(expression2) .

(identifier) + = (expression)

This statement is equivalent to

(identifier) = (identifier) + (expression)

but it is easier to write and in most cases more efficiently executed.

2.5.2. Series

Before we treat clauses, we must briefly mention series, which form part of all forms
of clauses. A series is nothing more than a sequence of statements, separated by
semicolons:

18 l.!.E 2.0 Manual DRAFT

(statement1) ; (statement2) ; · · · ; (statementn)

When the series is executed, its statements are executed in order from left to right,
and the value of (statementn) (if any) becomes the value of the whole series (any
values yielded by any of the other statements are cast away).

2.5.3. Blocks

A block is formed by enclosing a series in braces:

{ (series) }

Since a block is an expression, this allows the value of a series to enter into larger
expresssions. Furthermore, a bl-0ck establishes a range for the definition of local
variables, see also Section 2.6.2. Here is a rather silly example that shows both
aspects of blocks:

a = 2; {loc a = (6, 19, 10, 1, 14, 10]; a/2} + a

which returns the value (3, 9, 5, 0, 7, 5, 2].

2.5.4. Conditional clauses

There are two forms of conditional clauses:

if (expression) then (series1) else (series2) fl

and

if (expression) then (series1) fl

In each case (expression) is evaluated first ; if the (integer) value yielded is unequal
to 0 then (series1) is evaluated and its value becomes the value of the conditional
clause, and otherwise (series2) is evaluated if present and its value becomes that
of the conditional clause. In the second form of the conditional expression, where
(series2) is absent, it is required that (series1) has void type, so that no value is
yielded either way.

2.5.5. Loop clauses

There are two main kinds of loop clauses: while loops and for loops, of which the
latter kind has a few variants; all loop clauses are recognisable by the keywords do,
and od. A while loop has the form

while (expression) do (series) od

When a while loop is executed, the (expression) is first evaluated; if it yields 0
then the execution of the loop terminates, and otherwise the (series) is executed,
after which execution of the while loop resumes from the beginning. When the loop
terminates, it returns the value of the last execution of its (series), or void if the
(expression) had value 0 the first time it was evaluated.

There are three variants of the for loop, namely for looping over an interval of
the integers, over the entries of a vector, and over the rows of a matrix. The first
form is

for (identifier) = (expression1) to (expression2) do (series) od

The identifier denotes a fresh variable, local to this loop, which will disappear when
the loop is terminated; call this the loop variable. First both expressions, which should
be of type integer, are evaluated. The value of (expression1) is assigned to the loop
variable, and the value of (expression2) is stored away for comparison; call it limit .
Then the following sequence of operations is performed until the loop is terminated:

Chapter 2 The Interpreter 19

the value of the loop variable is compared with limit, and if it exceeds that value, the
loop terminates; otherwise the (series) is evaluated and finally the loop variable is
incremented by 1. Having terminated, the loop returns the value of the most recent
evaluation of (series), or void if it was not evaluated even once (i.e., if the value of
(expression1) exceeds limit). It is permitted-but not recommended-to assign to
the loop variable within (series) .

The second form of the loop clause is

for (identifier) in (expression) do (series) od

Here (expression) should yield a vector v, and again (identifier) denotes a loop
variable local to this loop. The execution of this kind of loop is similar to that of the
first kind, but rather than initialising, testing and incrementing the loop variable, the
(series) is evaluated as many times as the size of v, and prior to the i-th evaluation,
the value v(i] is assigned to the loop variable. Again the value of the last execution
of (series) determines the value of the loop clause itself. As an example, the sum of
the entries of a vector can be computed as follows:

sum(vec v) = loc s = O; for entry in v do s = s + entry od; s

The third form is analogous to the second, looping over the rows of a matrix
rather than over the entries of a vector. Its form is

for (identifier) row (expression) do (series) od

Here (expression) should yield a matrix m, and again (identifier) denotes a loop
variable local to this loop; in this case it is a vector variable. The only further
difference with the previous form of the loop clause is that the number of times
(series) is evaluated equals the row size of m, and prior to the i-th evaluation, the
value m(i], i.e., the i-th row of m, is assigned to the loop variable.

2.5.6. Break, return and setdefault

It is possible to exit a while or for loop before the termination conditions given in
Section 2.5.5 are satisfied by executing a statement break contained somewhere in
the (series) of the loop (but not in any loop contained in that (series)). This is a
statement of the form

break or break (expression)

Executing break forces termination of the smallest enclosing loop; the value of
(expression) if present becomes the value of the loop*. The following example defines
a primality test using this feature.

* This is true for any ordinary use of break, but in fact the rule is a bit more
complicated, since l!E completes the evaluation of any statement in the loop that is
being evaluated at that point; this can only happen if some clause containing the
break is being used as a proper subexpression of some statement (or expression).
For instance in 'a = {break 5}' the value 5 is assigned to the variable a, instead of
forming the result of the loop. The rule is that the value of break becomes that of the
enclosing clause, and may be used to complete evaluation of the statement containing
that clause; the value of that statement then moves outward to the enclosing clause,
etc., until the value of the loop itself is determined.

20 l!E 2.0 Manual DRAFT

prime(int n) = loc v = [2]; \
for i = 3 to n do if primetest(i) then v+ = i fl od; v

primetest(int k) = for n in v do if k % n == 0 then break O else 1 fl od
prime(68)

which returns [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67] . Note how
prime test uses the local variable v of prime, which is possible according to the (dy­
namic) binding rules for variables; see Section 2.6.2.

The statement return is analogous to break, but it terminates the function
currently being executed rather than the smallest enclosing loop; this may in fact
also force termination of any loops within that function (but the converse is not true:
break can only terminiate a loop within the current function). Its form is

return or return (expression)

In the same fashoin as for break, the expression after return will determine the result
of the function. The function primetest in the previous example could therefore also
be written as

primetest(int k) = for n in v do if k % n == 0 then return O fl od; 1

The statement setdefault is not related to break or return; it is simply used
to set or inspect an important system parameter, the default group. Its form is

setdefault or setdefault (expression)

Many of the mathematical functions, which are described in Chapter 4 involve compu­
tation within some Lie group, or its root system or representation theory etc. These
functions need to be told for which group they should do their computation, and by
convention this group is passed as the final argument . For convenience however, since
one often does a number of computations for the same group, one may define a default
group, in which case it is allowable to omit this final argument ; the default group will
be implicitly assumed. To set the default group execute setdefault (expression)
with (expression) yielding the desired group; to find out what the default group is
currently, execute setdefault without parameters. For example, the commands

setdefault A3 ; worbi t([l , 1, 1])

will produce the same result as worbit([l, 1, 1], A3), but it will also have set the default
group to A3 , so that it can be omitted in further function calls.

2.6. User defined functions

We have already seen some simple examples of functions defined by the user; in this
section we treat this subject in more detail.

Functions can only be defined on top level, i.e., not within function bodies. At
the moment of definition of a function, it is only checked for syntactic correctness,
and then effectively stored textually. Only at the time of the function call does the
interpreter determine the types and values of the contained symbols (this makes it
possible, for instance, to define a function that calls upon other functions that are
yet to be specified, as long as these functions are defined before the first function is
actually called) . At the time the function is called, the interpreter checks that all
variables and functions are used with consistent types, and only after this has been
successfully done does the real execution start . Before the function is invoked, all of
its arguments are computed ; thereafter the function itself is executed.

Like for operators, there can be more than one meaning for a function, as long
as they can be distinguished by the number and types of their parameters. It is for

Chapter 2 The Interpreter 21

instance possible for the user to extend functions that are built into l.!E to other types
of values, as is demonstrated in Section 5.7. The name of a function can even be
simultaneously used as a variable, but the uses of a name for a parameterless instance
of a function and as a variable are mutually exclusive.

2.6.1. Function definition

A function definition consists of the function identifier followed by a list of formal
parameters, an equals sign and the (possibly compound) statement that computes the
result of the function (the latter may be as simple as a single expression). Function
definitions can take two similar forms:

(name) = ((type) (variables) ; ... ; (type) (variables)) = (series)
(name) = ((type) (variables) ; ... , (type) (variables)) { (series) }

where each (type) is one of int, vec, mat , pol, grp and tex, and each (variables)
consists of one or more identifiers, separated by commas. The first form of the function
definition is most convenient for simple functions, for instance when the function body
consists of a single expression; the second form on the other hand is more suitable
for large functions, especially since command prolongation up to the closing brace
is guaranteed. The identifiers denote the parameters of the function, in order; each
identifier in (variables) has the type specified by the preceding (type) . The function
parameters are considered as local variables, which are initialised during a call to the
values of the arguments. Therefore they can be changed, but this has no effect on the
values of variables outside the function (call by value) . A parameterless function may
be defined by writing an empty pair of parentheses, but unlike in calls the parentheses
may not be omitted altogether, for then one would obtain an assignment rather than
a function definition. Examples of function definitions are:

f (int X) = 2 * X
J(tex a; int x, y; tex b) = print(a); print(x'y); print(b)
gcd(int x, y) = if y == 0 then x else gcd(y, x % y) fl
hi() {print("How do you do?")}

Now the call /(3) yields 6, while f ("r 51 =" , 7, 51, "That's 44 digits") prints the
three lines

r51 =

12589255298531885026341962383987545444758743
That's 44 digits

and yields no value, gcd(51566870, 2371954630) yields 1990, and finally the response
to hi is How do you do? . As an example of a slightly less trivial function definition,
we present the following function that extends gcd above in the sense that it not
only computes the value d = gcd(x, y), but also determines integers k, l such that
d = kx + ly, by means of the so-called "extended Euclidian algorithm" . The result is
encoded as a vector [d, k, l].

extgcd(int x, y) \
{ loc m = [[x, 1, 0], [y, 0, 1]];

}

invariant: m[i, 1] = xm[i, 2] + ym(i, 3] for i E {1, 2} #
for i = 1 to 2 do if m(i, 1] < 0 then m[i] = -m[i] fl od;
while m(l, 1] # stop when smaller number becomes 0 #
do loc q = m(2, 1]/m[l, 1]; m = (m[2] - q * m[l], m[l]] od;
m[2]

22 l!E 2.0 Manual DRAFT

2.6.2. Local variables and blocks

We have already encountered local variables when discussing assignments, block and
function parameters. We now discuss these in more detail.

During execution, l!E maintains a hierarchy of levels for defining the scope of
variables. Command execution always starts at the top level; variables defined on this
level are global variables. Lower levels are created whenever the execution of a new
series starts, and remain in existence until the execution of that series is completed.
Here is a complete list of the series that correspond to separate levels:

- The series of a block, which is enclosed in curly braces '{' and '}'.
- The series between then and else (or fl) or between else and fl,
- The series between do and od,
- The body of a function,

An assignment of the form loc (variable) = (expression) introduces a new
(initialised) local variable at the current level. The variable will cease to exist when
this level disappears and l!E returns to a higher level. The range in which such a local
variable can be accessed, extends from the statement following its loc assignment to
the end of the series defining the current level; this is almost obvious from the fact
that nothing can be accessed before it is created, but note that for instance

a= 3; for i = 1 to a do print(a); loc a= a+ l; print(a) od

will print the values 3, 4, 3, 4, 3, 4, since the first call of print always prints the
global a (in fact no local a exists whenever this statement is executed).

When a variable is assigned to in an assignment without loc, or when it is used in
an expression, it is first checked whether a variable of that name exists at the current
or any higher level (in that order), which ends with checking if a global variable of
that name exists. As soon as a matching variable is found, that variable is used; if no
variable of that name is found at all, then if the variable is being assigned to, a new
variable is created at the current level (as if the assignment were preceded by loc),
and otherwise an error message is generated. As a consequence, it is not possible to
create new global variables except from the top level. Furthermore, it is not allowed
at lower levels to change the type of any variable: it is only allowed to change the
value to another value of the same type.

Note that the variable identified by an identifier used non-locally within a function
depends on the chain of active functions at the point of reference; situations in which
such an identifier denotes different variables during the execution of a single command
are even possible. Therefore use of loc is always recommended for intermediate
results within functions. Note also that although the call-by-value rule excludes the
possibility that a function when called by another one modifies values in the calling
function by assignment to its own parameters, it can modify the local variables of
the calling function by means of direct assignments to them that are not shielded by
any loc.

2.6.3. Make and apply

To l!E, functions are not values in the sense that they could be assigned to variables,
or passed to or returned from (other) functions. However, there is a number of built
in operations, under the names make and a few variants of apply that do accept
a function as one of their parameters, and that yield values computed using this
parameter function.

The function that appears as an argument to make or apply should be user
defined, and it is treated as a mathematical function, so it should not have side

Chapter 2 The Interpreter 23

effects (i.e., external changes obtained by calling the function, other than the value
yielded), as it is not defined in what way exactly the function is called.

There are a number of meanings for each of the operations, depending on the
number and type of arguments supplied. To facilitate specification of these meanings
we use the letter f throughout to denote the function parameter, and for the other
parameters we use n, n' for integers, v, v', v" for vectors and m for matrices.

The operation make is useful to tabulate a function f on certain sample values.
The simplest case is to tabulate a function on the numbers 1, ... , n. For a function
f: int --> int , we have

make(!, n) = [f(l), ... ,f(n)],
in other words make(!, n) is a vector v of size n, with v[i] = f (i) for each i. For
example, with the definitions given in Section 2.6.1, make(!, 4) returns [2, 4, 6, 8]. It
is also possible to tabulate the same function on explicitly given values, so again for
a function f: int--> int, we have

make(f,v) = [f(v[l]), ... ,f(v[n]),

where n is the size of v, in other words make(!, v) is a vector v' of the same size as v,
with v'(i] = f(v[i]) for each i. We give an example with the same f defined above:
make(!, [47, 11, 30, -531, 425]) returns [94, 22, 60, -1062, 950].

Similar operation are available for functions of two integer arguments. So let
f : (int, int) --> int, then we have

(

f(l,1)

make(!, n, n') = :
f(n, 1)

!(1; n')) '
f(n, n')

in other words make(!, n, n') is an n x n' matrix m that satisfies m[i, j] = f (i, j) for
all applicable i, j. As an example

make(gcd, 3, 7) - (:
1
2
1

1 1
1 2
3 1

1
1
1

1 1)
1 2 .
3 1

Again there is a variant to present arbitrary sample data to f, namely by providing
two equal length vectors, where the first argument to f is taken from the first, and
the second argument from the second vector. In this case only pairs of entries at
matching positions are selected, so the result is a vector rather than a matrix. We
have

make(!, v, v') = [!(v[l], v'(l]), ... , f(v[n], v'[n])]

where n is the size of v and of v', in other words make(!, v, v') is a vector v" of
the same size as v and v', with v"[i] = f(v[i], v'[i]) for each i. As an example
make(gcd, [3, 5, 8, 21, 91], [8, 10, 12, 14, 39]) yields [1, 5, 4, 7, 13].

The operations iapply, vapply and mapply are used to compute iterates (or
powers) of the specified function. For convenience, define the notation fn (x) by

if n = 0
if n > 0

Here x can be an integer, vector or matrix as applicable for f . The corresponding
cases have different names in l!E, however:

24

iapply(J, n, n') = r(n')
vapply(J, n, v) = r(v)
mapply(J, n, m) = r(m)

where f: int - int
where/: vec - vec
where /: mat - mat

l!E 2.0 Manual DRAFT

As a simple example we have iapply(/, 4, 3) = 48 for the function f given above. For
the case of f: int - int there is also a variant that accumulates all the intermediate
values into a vector; we have

vapply(/, n, n') = [n', f(n'), /2(n'), ... , r(n')],

in other words, vapply(f, n, n') is a vector v of length n + l, with v(l] = n' and
v[i] = f(v[i - l]) for 2 Si Sn+ l. For example, still using the doubling function f
from above, we have vapply(/, 4, 3) = [3, 6, 12, 24, 48]. A final variant of vapply uses
a function f: vec - int to incrementally build up a vector; it can be formulated in
terms of the first instance of vapply:

vapply(J, n, v) = vapply(F, n, v) where F(v) = v + f(v)

Here F is a function that extends a vector with a new entry computed by f from that
vector. A typical example is the following procedure to compute Fibonacci numbers.
First a function f is defined to compute the next Fibonacci number from a vector of
preceding ones:

/(vec v) = loc s = size(v); v[s - l] + v[s]

With this function we compute the first 12 Fibonacci numbers in the sequence starting
with (1, l] by calling vapply(/, 10, [l, l]) = [l, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,144]. Note
that l!E decides whether to take the second or third instance of vapply depending on
the result type off when applied to a vector.

2.7. Global commands

In addition to the commands mentioned above, there are a number of commands
that do not really form a part of the language of the interpreter, but allow the user
a number of controls over the l!E session. All these commands can only be invoked
from top level.

2.7.1. File management

It is possible to collect a number of commands to the l!E interpreter in a file and
then execute these commands as if typed from the keyboard. If these commands are
contained in the file (name), then execution of the commands can be invoked by the
command ' read (name)'. The file can also be edited during the l!E session by giving
the command 'edit (name)'; after editing is finished, the resulting file is directly read
into l!E as if the read command were given. The editor which is invoked is either the
standard editor of your machine, or, if you are in a UNIX environment and the shell
variable $EDITOR has been set, the editor named by that variable. The command
edit can also be used without a filename argument, in which case the same file is
edited as in the previous edit command. The file named 'ini tf ile', if present in
the directory from which l!E is invoked, will be read upon entrance of the program
l!E, before the first prompt appears; the same file will also be used when no filename
is supplied in the first edit commmand of a session.

To save the user defined functions of a particular session, execute the command
'write (name) ' . As a result, these functions are written in the file (name). See also
the command 'on monitor' below.

Chapter 2 The Interpreter 25

2. 7.2. Information retrieval

Information about a function, operator or a reserved word (like for) can be obtained
by typing '? (topic)' (you may also use 'help' as a synonym for '?'). A list of the
reserved words can be obtained by typing '?index'. Information produced by'?' (or
'help') can also be written on a file by typing '? (topic) > (filename)', or appended
to an existing file by '? (topic) > > (filename) ',

Information about a mathematical term can be obtained by giving the command
'learn (term)'. For example 'learn lie group' will give all available information
on the term 'lie group' and on on any terms containing that string (this won't work
unless you type lower case letters, apologies to Sophus Lie). A list of the documented
terms can be obtained by entering 'learn index'.

2.7.3. Memory management

Memory management is performed automatically, and should be of no concern to the
user. At certain points, l!E will deem it advisable to reduce the amount of memory in
use, and will do so by invoking the garbage collector, which attempts to locate and
free objects that are no longer accessible to the user. Although this is generally done
automatically at convenient points in the calculation, it is also possible to explicitly
call the garbage collector by the function gcol, and it is also possible-by stating
off gc-to (temporarily) inhibit garbage collection at points where one knows that
there will be no memory to free anyway, see Section 2.7.4. To monitor the amount
of memory in use, the function used provides the number of variables and functions
in use at this point. There is no way to explicitly remove a global variable from l!E's
tables, but by assigning O to the variable, most relevant resources occupied by the
variable are freed.

2. 7.4. System parameters

There is a number of system parameters, which may be set and altered by the user.
The command to do this has the form 'on (feature)' or 'off (feature)'; the various
features are given in th follwing table:

feature default 'effect of' non-default setting
state

bigint on
lprint on

monitor off

prompt on
runtime off

gc on

'off bigint' banishes arbitrary length integers
'off lprint' prints vectors, matrices and polynomials
in rectanglular from
'on monitor' writes all output to the file 'monfil' in
l!E's start-up directory, as well as to the screen,
'off prompt ' suppresses the prompt character '>'
'on runtime' shows the amount of time spent executing
each command, after printing its result
'off gc' inhibits garbage collection,

The effect of 'off lprint' on vectors and matrices is only slight: commas are replaced
by spaces, and in case of matrices the square brackets bordering the rows are repleced
by verical bars. For polynomials however the difference is significant: the terms are
listed vertically by printing the exponents as rows of a matrix, with the coefficient of
the term preceding vertical bar at the left of the matrix. The running time shown by
' on runtime ' is divided into 'user' time, spent on actual computation, and 'system'
time spent on operating system services.

26 l!E 2.0 Manual DRAFT

The system parameter that determines the ordering of terms in a polynomial
(and of the rows in a matrix in calls of sort and redsetmat) has four possible values,
and requires a slightly different form of the ' on' command (while the 'off' command
is not used in this context) :

on+ lex
on - lex
on+ degree
on - degree

select lexicographic ordering
select inverse lexicographic ordering
select total degree ordering
select inverse total degree ordering

Two more system parameters, which determine the amount of memory that l!E allo­
cates for representing programs and data, take a numeric value, and are set by the
commands

on n maxnodes set maximum number of nodes (for programs) ton

on n maxptrs set maximum number of objects to n

The current values of all the system parameters can be obtained by giving the 'on'
command without parameters (in this case the 'off' command is synonymous to 'on').

Finally, we repeat that the abort character (control) C terminates the currently
running command.

Chapter 3 Terminology 27

l!E Manual

Chapter 3. TERMINOLOGY

In l!E, various mathematical notions are encoded by means of a limited number of dif­
ferent types (viz. integer, vector, matrix, polynomial), and it is important to now how
the mathematical notions and the concrete objects manipulated by l!E correspond.
It is the purpose of the current chapter helps to explain these correspondences. To
this end a large part of this chapter is dedicated to listing the names of mathe­
matical notions that are representable in l!E, with an indicatation of how can be
represented by l!E objects. For example, a root of a semisimple Lie group g of rank r
may be represented by a vector v = [vi , . . . , Vr] such that the given root is equal to
I::;=l viai E EB;=l Zai, where the a ; (for 1 :S i :S r) are the fundamental roots of the
root system of g.

It may be clear from this very example that some theoretical background is re­
quired in order to explain these things. We do not intend to give a comprehensive
introduction to the subject here (for this one may consult standard textbooks, a num­
ber of which can be found in Chapter 7), but we shall try to give the basic definitions
and properties that are relevant to understanding the mathematical functions present
in l!E. The remainder of this chapter is divided into a number of sections, each one
treating one of the follwing subjects: Lie groups and algebras, roots and weights, Weyl
groups and their action, representations of Lie groups, and the symmetric groups and
related matters (the same subdivision is used in Chapter 4 in which the mathematical
functions built into l!E are discussed, and in the help system provided by 1.!E). At the
end of each section an alphabetic listing of the relevant terms related to the subject
is given for reference, with explanantions (if you are unsure under which subject a
term is classified, the index gives references to all terms). We start with listing the
different ways in which several types of l!E objects may be interpreted in general.

Matrix A matrix can either stand for a linear transformation (acting by right-
multiplication on row vectors) for a set of vectors , in which case each row of the
matrix represents a vector in the set, or in a special way such as for a character
table. For instance, a matrix representing a set of roots will be termed a root
matrix. See also character matrix, orbit matrix, and restriction matrix.

Polynomial A polynomial may either stand for itself (i.e. , for a Laurent polyno­
mial) , or it may encode a set of vectors with multiplicities. In the latter case each
term represents the occurrence of its exponent in the indicated set (where it is usu­
ally interpreted as a weight), occurring with multiplicity equal to the coefficient of
the term. See also decomposition polynomial and multiplicity polynomial.

Vector A vector may represent an element of a vector space (or strictly speaking
rather of a free Z-module, since its entries must be integral) , such as the weight
space, or it may just be interpreted as a set or sequence of integers. In the former
case it is always to be interpreted as a row-vector, so that matrices are to be applied
from the right. In either case there are a further distinctions as to how the vector

28 l!E 2.0 Manual DRAFT

is to be interpreted. See also root vector, weight vector Wey] word, partition and
toral element.

3.1. Lie groups and algebras

As the textbooks say, Lie groups are groups that also have the structure of a (real or
complex) differentiable manifold, such that the maps of multiplication and inversion
are differentiable maps. This definition however is not the most useful viewpoint
when we consider Lie groups as treated in l!E: the differentiable structure is beyond
the scope of !.!E's computations, and the package only rarely deals with individual
elements of Lie groups. Moreover, l!E only deals with a particularly well behaved
subclass of Lie groups, namely the connected reductive complex Lie groups. This
class of groups the semisimple Lie groups, but also important non-semisimple groups,
such as GL(n, C) (the group of all invertible n x n-matrices). The chosen class is quite
convenient, mainly for two reasons: the groups have a clearly structured classification,
as well as a pleasing representation theory.

By the classification of the connected reductive complex groups (cf. (Bourb 1975]),
each such Lie group is the homomorphic image of a direct product of a simply con­
nected semisimple complex group and a complex torus (i.e., a direct product of copies
of C*), where the homomorphism has a finite kernel, which is contained in the center.
The semisimple factor in the product may be reconstructed up to isomorphy as the
universal cover of the commutator subgroup, and the torus factor as the identity com­
ponent of the center. Every simply connected semisimple group in its turn is a direct
product of simply connected simple groups. Each of the latter groups is isomorphic
either to one of the classical groups SL(n, C) (for n ?: 2; the Special Linear group,
consisting of all n X n matrices with determinant 1), Spin(n, C) (for n?: 5; the Spin
group, covering the Orthogonal group: the group of all invertible n x n matrices m
with m-1 = m T), Sp(2n, C) (for n ?: 3, the Symplectic group, consisting of all in­
vertible 2n x 2n matrices m with m-1 = jm T j-1 for a fixed invertible antisymmetric
matrix j), or to one of the exceptional groups, which have types E5, E1, Es, F4 ,

and G2 .
The groups directly representable in l!E are the complex Lie groups which are

a direct product of simply connected simple groups and a central torus (i.e., groups
that do not need the homomorphism with finite central kernel) . The type of such
a group is formed by concatenating the types of the individual factors, where Tn is
used to denote an n-dimensional torus. We shall occasionally use a type indication to
stand for the group of that type itself. Since any (not necessarily simply) connected
reductive complex group g is the quotient of a simply connected reductive group g by
a finite central subgroup, g can be described by specifying the central elements of g
that are in the kernel of the canonical morphism g --> g . For example, if g = G £(2, C),
then g can be taken to be of type A1T1 , the direct product of SL(2, C) = A1 and
a 1-dimensional torus C* = T1 , and the canonical surjective morphism g --> g has
kernel {(1, 1), (-1, -1)} C A1T1 , where -1 E A1 and -1 E T1 stand for the central
elements minus the identity in the respective groups. We shall assume from now on
that g is simply connected, and that it is the direct product of simply connected
simple groups, together forming the so-called semisimple part g1 of g, and a torus S ,
the so-called central torus of g,

Any Lie group g contains subgroups that are isomorphic to a (complex) torus , and
are moreover maximal (with respect to inclusion) for this property; such a subgroup
is called a maximal torus. All maximal tori are conjugate in g, so we may fix an

Chapter 3 Terminology 29

arbitrary maximal torus in g and call it T. Then T is the direct product of the
central torus S and a maximal torus T' of the semisimple part, (which in turn is
the product of maximal tori of the simple components). The Lie rank of g is the
dimension of T, which we shall denote by r; the semisimple Lie rank of g is the Lie
rank of g', we shall denote it by s.

Much of the structure of a Lie group can be deduced from the structure of a
Lie algebra which it induces on the tangent space to the group taken at the identity
element (in particular, any finite dimensional representation of one of them leads to
a similar representation of the other), and indeed much of the theory of Lie groups
is derived by studying the representation of the Lie group on its Lie algebra (by
conjugation). In l.!E the point of view of Lie algebras is usually not stressed, but
many of the computations may be interpreted for Lie algebras as well as for Lie
groups.

Central torus Each simply connected reductive Lie group g (the groups l.!E deals
with) splits as a direct product of a semisimple group (its semisimple part) and
a torus; the latter torus which (contrary to the maximal torus of the semisimple
part) lies in the center of g is called the central torus of g.

Diagram The (Dynkin) diagram of a semisimple Lie group is a graph indicating the
isomorphy type of the group; the number of vertices is equal to the (semisimple)
Lie rank, and the number of connected components of the diagram is equal to the
number of simple factors of the group. The vertices are labeled with positive integer
numbers, following the conventions of [Bourb 1975]. The diagram represents the
information contained in the Cartan matrix of the group in a compact form.

Fundamental Lie subgroup A closed subgroup h of a Lie group g is called fun­
damental if it contains a maximal torus of g. If h contains T and is reductive, it is
determined by the set of roots in the root system q> of g that are also roots of h;
these form a closed subsystem of roots.

General Linear group The group of all invertible linear transformations of a
vector space V is called the general linear group of V, written GL(V). Up to
isomorphism this depends only on n = dim V, and this group is also written as
GL(n, C) (assuming the vector space is over C). A Lie group homomorphism of
some Lie group to G L(V) is called a representation of that Lie group on the vector
spave V. See also special linear group.

Lie group A group is called a Lie group if its underlying set is a differentiable
variety, and the multiplication and inversion maps are differentiable. The group
is called complex, connected, simply connected, etc., if the variety is respectively
complex, connected, simply connected, etc. Each reductive complex Lie group is
an algebraic group and the representation theory can be dealt with in an entirely
algebraic manner. See [Serre 1987].

Lie algebra A finite-dimensional vector space V supplied with a bilinear operation
[·, ·]: V x V-+ V satisfying [x, y] = -[y, x] and [[x, y], z] + [[y, z], x] + [[z, x], y] =
0 for all x, y, z E V (anti-commutativity and the Jacobi identity, respectively)
is called a Lie algebra. Every Lie group defines a Lie algebra structure on the
tangent space to the group at the identity element. Although Lie algebras play
no explicit role in this package, the representation theory of simply connected
reductive complex Lie groups which l.!E deals with coincides with the representation
theory of reductive Lie algebras over C, see [Hum 1972]. See also [Jae 1962]

30 l!E 2.0 Manual DRAFT

Maximal torus A torus that is not properly contained in any other torus within g
is called a maximal torus of g. If g is a reductive Lie group, such tori exist and
any two are conjugate. In l!E, we always assume a fixed maximal torus T of g to
be chosen, and weights and roots are defined with respect to T.

Reductive group A group is reductive if each of its finite dimensional represen­
tations decomposes into a direct sum of irreducible representations. A connected
reductive complex Lie group g is isomorphic to the quotient of the direct product
of a semisimple group and a torus by a finite central subgroup. An example is
the general linear group GL(n, C). The (images of) the semisimple factor and the
torus can be found as the commutator subgroup g' of g and the central torus of g
respectively. In l!E, the type group always refers to a simply connected reductive
complex Lie group (so no quotient is involved).

Semisimple element All conjugates of elements of the torus T are called semi­
simple elements (not to be confused with the term semisimple for groups); in any
representation of g they correspond to diagonalisable transformations. Hence each
conjugacy class of semisimple elements has representatives in T, and some elements
of T namely those of finite order, can be represented in l!E; see below under toral
element.

Semisimple group A reductive Lie group is called semisimple if it contains no non­
trivial central torus. Note that a non-trivial semisimple group necessarily contains
non-semisimple elements.

Special Linear group For a vector space M the special linear group SL(M) is
defined as the Lie subgroup of the General Linear group G L(M) of all transforma­
tions with determinant equal to 1.

Torus A group which is isomorphic to (C*t for some n is called a torus (plural:
tori); it is a reductive Lie group of dimension n. Any subgroup of a Lie group g all
of whose elements are semisimple is a torus, called a torus of g. Every torus of g
is contained in a maximal torus, and every maximal torus is conjugate to T, the
fixed maximal torus. See also semisimple element. A fundamental property of a
torus is that all of its irreducible representations are 1-dimensional. Since in such
a representation of T each element acts as a scalar, the representation is essentially
given by an algebraic group morphism T--+ C*, a so-called weight. Any represen­
tation of g may be restricted to a representation of T, and as such decomposed
into 1-dimensional representations. The resulting formal sum of weights is called
the (formal) character of the representation with respect to T.

3.2. Roots and weights

Consider the set A(T) of group morphisms T --+ C* (or equivalently, of 1-dimensional
T-modules); its elements are called weights. Weights may be composed in a natural
way by multiplication as C*-valued functions, which makes A(T) into an Abelian
group. We use an additive notation for this group, and it is therefore convenient to
denote the image of some t E T under weight .X E A(T) by t>•, so that we have t>..+µ, =
t>'•t/l-. As an Abelian group, A(T) is isomorphic to zr; moreover there is a natural
Z-linear action on A(T) of the finite group W = Ng(T)/T, the Wey] group of g (with
respect to T). The group A(T) naturally decomposes into a direct sum A(S) EB A(T');
the subgroup A(S) is pointwise fixed by W. The group T is diagonalisable in any
g-representation. In other words, if Mis a g-module, then the restriction of M to Tis
a direct sum of 1-dimensional T-modules, and therefore described by a set of weights

Chapter 3 Terminology 31

(with multiplicities). The adjoint representation of g is its representation on the Lie
algebra of g, which (as a set) is the tangent space tog at the identity element 1. The
set of nonzero weights of T occurring in the adjoint representation is called the root
system of g, and (often) denoted by <I>. The elements of <I>, the so-called roots, span
the sublattice of A(T') of finite index, known as the root lattice.

There is a non-degenerate W-invariant inner product on the root lattice Z<I>; it is
unique up to a scalar factor for each simple factor of g, and can be chosen to take values
in Z. We choose such an inner product, and extend it to a bilinear symmetric positive
definite form (·, ·) on A(T) in such a way that A(S) is perpendicular to A(T'), and
the restriction to the former has an orthonormal basis. The reflections in W (acting
on the weight lattice), are precisely the orthogonal reflections in the hyperplanes
perpendicular to the roots (a pair of opposite roots giving rise to the same reflection).

Embedding A(T') in a real vector space, we choose (and fix) a hyperplane H
through the origin, but not through any root, and a half space with respect to H,
which we shall call the 'positive half-space'. Then there is a unique system of funda­
mental roots, i.e., a set { a 1 , ... , a 8 } C <I> of s linearly independent roots such that
any root (3 is an integral linear combination of the ai, and the non-zero coefficients
are either all positive or all negative, according as (3 lies in the positive or negative
half-space; we accordingly call (3 a positive or negative root. We have (ai, aj) ::; 0
for i =/- j. Apart from determining a choice of a set of positive roots, we shall make
no use of the hyperplane H and the positive half-space.

We define a partial ordering of weights: for weights v, v' we write v' -< v if v -v' is
a linear combination of the fundamental roots with non-negative integral coefficients;
we say that v' lies under a weight v, and that v is higher than v' (so by construction
all positive roots are higher than 0, which in its turn is higher than all negative roots).
Note that v and v' can only be comparable with respect to -< if they lie in the same
coset of the root lattice; in particular any set of weights that has a highest element is
contained in a single such coset.

Any root a defines a linear form (·,a) on A(T) defined by (x, a) = (~,';f, which
value is independent of the scalar involved in the choice of the inner product, and
moreover is always integral. In fact there exist w1 , ... , w8 in A(T') that form a 'dual
basis' to the linear forms (· , a 1), ... , (· , a.), i.e., which are such that (wi, ai) = Di,j
for all 1::; i,j::; s; from this it follows that thew; form a Z-basis of A(T'). We extend
w1 , ... , w. by an orthonormal basis w •+l, ... , Wr of A(S) to a basis of A(T), called the
basis of fundamental weights. Note that the image of a weight x under reflection in
the hyperplane perpendicular to a root a is given by x - (x, a)a, and therefore lies
in the same coset of the root lattice as x.

Cartan matrix The matrix ((ai, aj)) l~i,j~• is called the Cartan matrix (of the
semisimple part) of g; its rows express the fundamental roots on the basis of fun­
damental weights.

Cartan type The Cartan type of a closed subsystem W of roots of <I> is the type of
the semisimple group h such that W is isomorphic to the root system of h.

Closed subsystem Given a root system <I>, a closed subsystem is a subset \JI that
is itself a root system, and has the property that whenever a + /3 E <I> for a,
/3 E \JI then a+ (3 E \JI. If <I> is the root system of g, then every closed subsystem
corresponds to a fundamental Lie subgroup of g.

Fundamental reflection For a chosen set of fundamental roots a 1 , ... , a 8 , the
reflections in the hyperplanes perpendicular to these roots are called fundamental

32 l!E 2.0 Manual DRAFT

reflections; they are. often denoted by r 1 , ... , r 8 • These reflections generate the
-term Weyl group.

Fundamental root It is often assumed that a subset of the roots has been chosen
as the set of fundamental roots, and are then denoted by a 1 , ... , a 8 ; this set must
form a basis of the root lattice such that any root can be expressed as a linear
combination of them with either all positive or all negative integer coefficients.
This is the basis on which root vectors are expressed. The function inprod gives a
W-invariant inner product for weights on this basis.

Fundamental weight For a chosen set of fundamental roots there is a basis of
the weight lattice consisting of weights w1 , ... , Wr such that (Wi, a j) = 8i,j for all
i, j E {1, ... , s }; these weights are called the fundamental weights. It is this basis
on which weight vector are expressed.

Highest root This is the maximum of the set of roots with respect to the partial
ordering'-<' (see above). It is the highest weight of the adjoint representation.

Levi subgroup Any subset of the set of fundamental roots determines a closed
subsystem (of which it is a basis fundamental roots) of the root system, and the
semisimple part of the fundamental Lie subgroup corresponding to this subsystem
is called a Levi subgroup of g. The Dynkin diagrams of the Levi subgroups of g
are therefore obtained by taking subsets of nodes of the diagram of g and retaining
the edges between elements of the subset.

One parameter subgroup Any 1-dimensional subtorus h of T is called a one
parameter subgroup; there is a group isomorphism¢: C* --> h. Such one parameters
subgroups may be represented in the following way, which is very similar to the
representation of toral elements. For 1 ~ i ~ r we have a group homomorphism
z f--> </J(z)w; from C* to C*; this homomorphism is equal to some map z f--> za;
for ai E Z. The one parameter subgroup h is now represented by the vector
[a1, .. . , ar, OJ, where the final O serves to distinguish it from toral elements, which
are valid in the same positions where one parameter subgroups may be used (e.g.,
as parameter to centroots). The integers a 1 , ... , ar should not all have a non-trivial
factor in common, because the morphism </J would then fail to be injective. Any
toral element obtained by substituting some number d for the final zero lies in h
(it is </J(() for (= e21ri/ d). The restriction matrix of h is obtained by arranging the
ai (for i = 1, 2, ... , r) vertically into a one-column matrix.

Positive root A root that can be expressed as a linear combination of fundamental
roots with non-negative coefficients is called a positive root. For every root a
exactly one of { a, -a} is positive.

Root A non-zero weight for the adjoint representation of g is called a root of g. For
each root the orthogonal reflection in the hyperplane perpendicular to it preserves
the weight lattice.

Root lattice The sublattice of the weight lattice generated by the roots of g is
called the root lattice. For semisimple groups the root lattice has finite index in
the weight lattice; for simple groups of type An, Bn, Cn, Dn, En, F4 and G2 this
index is n + 1, 2, 2, 4, 9 - n, 1 and 1 respectively. The fundamental roots form a
basis of the root lattice, and the elements of the root lattice are root vectors. See
also weight.

Root matrix A root matrix is a matrix whose rows specify a set of roots, repre­
sented as root vectros. Root matrices may be used to denote subsystems of the

Chapter 3 Terminology 33

root sysytem of g.

Root system The set of all roots is called the root system of g. It is usually denoted
by <I>.

Root vector When an elemnt of the root lattice is represented by its coefficients
on the basis consisting of the fundamental roots ai, ... , as, the result is called a
root vector. So a root vector has as size the semisimple rank of the group, and
such a vector v =[vi, . .. , v 8] is interpreted as the sum I::=l Viai.

Toral element To describe elements of T we can use the fundamental weights Wi.
Recall that weights are in fact mappings T --+ C*, and a weight A can therefore
be evaluated at an element t E T, the resulting value be written t\ the set of
fundamental weights form a complete set of coordinates in the sense that any
element t E T in uniquely determined by the values tw, for i = 1, ... , r. Since
l!E cannot represent arbitrary complex numbers, it explicitly deals only with torus
elements of finite order, i.e., for which all tw, are roots of unity. To this end, a vector
[a1, ... , ar, n] in l!E may represent the element t E T for which tw, = e2'ria;/ n = (a•

for i = 1, ... , r, where (= e21ri/n is a canonical n-th root of unity. See also one
parameter subgroup. Since this is not the usual presentation of a toral element
in a Lie group like GL(n, C) (namely by the diagonal entries occurring when the
element is diagonalised), an example is given in Chapter 5 of how to transform
from one presentation to another.

Weight A weight with respect to a torus T is an algebraic group morphism T --+ C*;
it describes a 1-dimensional representation of T. These arise in the decomposi­
tion of the restriction to T of representations of g, in which case they are called
the weights of the g-representation with respect to T. The set A(T) of weights
is an Abelian group, where the group operation is multiplication of weights as
C*-valued functions (which corresponds to the tensor product of 1-dimensional
T-representations); this is written additively, and we consequently use the expo­
nential notation t>• to indicate application of a weight A to t E T, so that we have
t>•-+µ = t>•tµ . The fundamental weights span the weight lattice as a free Z-module;
expressing a weight on this basis we obtain a so-called weight vector.

Weight lattice The set A(T) of all weights of g with respect to T is called the
weight lattice. The addition defined for weights makes A(T) into an Abelian group
isomorphic to zr.

Weight vector When a vector is represented by its coefficients on the basis con­
sisting of the fundamental weights wi, ... Wr the result is called a weight vector. So
a weight vector v =[vi, ... , vs] is interpreted as the sum I:;=i ViWi.

3.3. The Weyl group and its action

Recall that the Weyl group W is defined as the quotient of the normaliser in G of T
by T (which is its own centraliser) . If g is a reductive group, its Weyl group is the
same as the Weyl group of its semisimple part. By construction W has a faithful
action by conjugation on T , which induces an action on A(T); often we will identify
W with the corresponding set of transformations of A(T). A fundamental domain for
this action is the set A+ (T) of weights of the form I:;=l a;wi with ai ~ 0 for all i ::;; s,
which means that any weight can be transformed by W into a unique unique element
of A +(T); the set A +(T) is usually referred to as the Weyl chamber. A weight is
called dominant if it lies in A +(T). There is no direct relation between dominance

34 l!E 2.0 Manual DRAFT

and the ordering'-<' (for instance for all positive roots a we have O-< a, but usually
very few (often only one) of these positive roots are dominant); however we have the
following fact: the unique dominant weight in any W-orbit is also the highest element
of that orbit .

The group W is generated by the fundamental reflections, i.e., the orthogonal
reflections in the hyperplanes perpendicular to the fundamental roots; the reflection
corresponding to ai is denoted r;. As we have seen, xri = x-(x, a;)a;, where we follow
the convention, used consistently throughout l!E, of writing linear transformations
(and their matrices) to the right of the vector they operate upon. For any pair of
distinct i,j with 1 :S i,j :S s , the product TiTj fixes the space perpendicular to both
a i and ai, and induces a rotation in the plane spanned by a i and ai. The angle of
rotation is 21r/mij, where mii is the order of riri (i .e., the least number m > 0 such
that (r;rjr = 1). Consequently we have (ai , aj) = -J(ai, a i)(ai, ai) cos(1r/mij) ,
which holds also in the case i = j, since m ii = 1. Then W has the following abstract
presentation:

This presentation of W in terms of generators and relations shows that W is a Coxeter
group. Elements of W can be represented in l!E both as products of fundamental
reflections (see Weyl word below) and as r x r matrices. There are convenient ways
to switch from one representation to another.

Coxeter matrix A Coxeter matrix is a symmetric matrix m = (m;,j)i~i,j~• with
positive integer coefficients such that m ;,j = 1 if and only if i = j . Such a matrix is
used to define a Coxeter group: the group presented by (91, ... , g. I (9i9j)m,.; = 1) .
The presentation of W given above shows that every Weyl group is a Coxeter group,
with Coxeter matrix given by m i,j = order(r ;r i) .

Distinguished coset representative Within the Weyl group W we may con­
sider left- , right- and double cosets with respect to a subgroup (or in the case of
double cosets, two subgroups) generated by fundamental reflections; in each case
the unique element of smallest length in its coset is called the distinguished coset
representative.

Dominant weight A weight whose inner products with all fundamental roots are
non-negative is called dominant . Therefore, if the weight is written on the basis of
the fundamental weights w1 , ... , Wr, then the first s coefficients (corresponding to
the semisimple part of the weight lattice A(T)) are non-negative.

Exponents The exponents of a Lie group g form a sequence of numbers e1 , ... , er,
where r is the Lie rank of g , such that the polynomial I: w EW xt(w), where l denotes
the length function on the Weyl group, decomposes as a product I1;=1 I;.i~O X J.
Another property of the exponents is that the algabra of polynomial functions
invariant under the action of the Weyl group of g in its standard reflection repre­
sentation is generated by r homogeneous polynomials of respective degrees e1 + 1,
e2 + 1, .. . , er+ 1. Usually the exponents of g are given in weakly increasing order.

Length The length of a Weyl group element w is the smallest number l such that
w is a product of l fundamental reflections. Hence, it is the size of a reduced Weyl
word representing w.

Orbit When a group W acts (from the right) on a set X , any x EX has an orbit ,
which is the set of all distinct values of x · w for w E W.

Chapter 3 Terminology 35

Orbit matrix When a finite group acts on the weight or root lattice, any orbit may
be represented by an orbit matrix, each row of which represents one element of the
orbit.

Reduced Weyl word When an element w of the Weyl group is expressed as a
product r a 1 • · • ram of fundamental reflections, and no product of fewer than m
fundamental reflections yields w then the sequence [a1 , .. . , am] is a reduced Weyl
word for w.

Reflection A Weyl group element that acts on the weight lattice, fixing a sublattice
of rank r - 1, is an orthogonal reflection in the hyperplane perpendicular to some
root. The Weyl group is generated by such reflections.

Weyl group The Weyl group Wis defined as the quotient of the normaliser N9 (T)
of the maximal torus Ting by the centraliser of Ting (which is T itself). W is a
finite group, and has a faithful linear representation on the weight lattice A(T), and
the elements of W are often identified with their images in this representation. The
fundamental reflections r1 , . .. , r 8 in this representation are canonical generators
of W.

Weyl word An element of the Weyl group W may be presented as a product of
the fundamental reflections ri (1 :S i :S s). If ra 1 ···ram is such a product, the
corresponding Weyl group element may be represented by the so-called Weyl word
[a1, ... , am] -

3.4. Representation theory

An important reason for choosing reductive groups as the class of groups to work with
in l!E, are the nice properties of representations of such groups. A representation of
a Lie group g on a finite dimensional vector space V is a Lie group homomorphism
g __. GL(V). Equivalent information is given by specifying a (left) action of g on V
such that each map v i---. g • v is linear and depends in a differentiable way on g; when
taking this point of we we call V a g-module. A g-module V is called irreducible
if it is non-zero, and has no subspaces fixed under the action of g except O and
V itself. Two fundamental facts about reductive groups are of great importance.
First, every g-module decomposes as a direct sum of irreducible representations, i.e. ,
every g-stable subspace has a g-stable complementary subspace. Second, the set of
(finite dimensional) irreducible representations is in bijection with the set A+ (T) of
dominant weights, by assigning to each irreducible module its highest weight (which
always exists , is unique, and occurs with multiplicity 1). According to the first fact
each module M is determined up to isomorphism by the multiplicity or frequency
in M of each irreducible module, (i.e. , the number of times it occurs in a direct sum
decomposition), while according to the second fact this may be recorded by the set
of the highest weights of consituent irreducible modules , with their multiplicities.
Representing this set with multiplicities by a polynomial we obtain a decomposition
polynomial.

It is also possible to represent the set of all weights occurring in M, i.e., the char­
acter of M, by a polynomial Since W permutes the weigths occurring in the character
of M, it suffices for the determination of the character to find just the dominant
weights occurring in it with their multiplicities; recording these in a polynomial we
obtain a multiplicity polynomial for the module M .

On the set of g-modules a number of operations can be defined, such as forma­
tion of cartesian products and tensor products; also, if a Lie group homomorphism

36 ~E 2.0 Manual DRAFT

f: h----. g is given then any g-module may be viewed (by restriction) via fas h-module
(this is called branching from g to h). In terms of characters of the g-modules these
operations are easily computed, because each weight corresponds to a !-dimensional
T-module. Cartesian and tensor products correspond to addition respectively mul­
tiplication of the polynomials representing the characters. Branching amounts to a
linear transformation being applied to all of the exponents in such a polynomial, cor­
responding to the transition from weights for the maximal torus of g to that of h; the
matrix representing the linear transformation is called the restriction matrix. Even
when the maximal tori of g and h should coincide, the restriction matrix may not
be equal to identity, since it should perform the coordinate transformation from the
basis of fundamental weights for g to those for h. Despite the simplicity of these
operations for characters, it is awkward to have to compute the characters for any
modules one would like to perform these operations upon, since the character of a
module is usually very much larger than its decomposition polynomial. Therefore
some of the most powerful built-in functions of ~E deal with the computation of these
operations on the level of decomposition polynomials.

Adjoint representation Each Lie group g acts on its Lie algebra (whose underly­
ing space is the tangent space to the group at the identity element) by conjugation,
and this defines a representation of the group, the so-called adjoint representation.
The non-zero weights of this representation are called the roots of g and all have
multiplicity 1.

Branching Branching is another word for restricting a g-module M to a subgroup
h of g. Suppose h is a closed reductive Lie subgroup of the Lie group g. The
branching problem concerns finding the decomposition into highest weight mod­
ules of M when viewed as an h-module. Since 'the maximal torus T9 of g is unique
up to conjugacy, and similarly for h, the maximal torus Th of h may be chosen
within T9 • Consequently, each weight with respect to T9 determines by restriction
a weight with respect to Th, which defines a linear transformation A(T9) ----. A(Th).
The matrix m which describes this transformation on the respective bases of fun­
damental weights, plays a crucial role in the function branch. The function resmat
helps to find the restriction matrix in cases where h is a fundamental Lie subgroup.
See Chapter 5 for further examples of restriction matrices.

Character For a representation of a group on a finite dimensional vector space we
may define a function on the group by assigning to each group element the trace
of the corresponding transformation of the vector space. This function, which is
constant on conjugacy classes, is called the character of the representation. For
reductive complex Lie groups the character determines the representation up to
isomorphism, and this is already true for the restriction of the character to the
maximal torus T. Now the restriction to T of the representation decomposes
into a direct sum of 1-dimensional representations, and the character of such a
1-dimensional representation is just a weight. Hence the restriction to T of the
character of the whole representation can be correspondingly written as a formal
sum of weights (formal because we don't use the Abelian group structure of A(T)
here, but just count the occurring weights with multiplicities, in other words, the
sum is taken in the group algebra of A(T)) and this is called the formal character
of the representation. In ~E, the formal character of an irreducible representation
given by its highest weight can be obtained by calling branch with subgroup Tr
(i.e., the maximal torus), and restriction matrix id(r) .

Chapter 3 Terminology 37

Decomposition polynomial The decomposition of a g-module M into irreducible
modules may be represented by a decomposition polynomial d. Each term nX .X
of d represents a dominant weight .X such that the highest weight module V,x occurs
in M with multiplicity n. In certain circumstances we allow n to be negative, in
which case there is no module corresponding to d, but we may think of M as a
formal sum (with integral scalar coefficients) of irreducible modules. In this case M
is called a virtual module, and the polynomial a virtual decomposition polynomial.

Degree The dimension of the underlying vector space of a representation is called
the degree of the representation.

Highest weight The maximum of the set of weights of some irreducible represen­
tation of g with respect to the partial ordering '-<' is called the highest weight; it
always exists and is a dominant weight that occurs with multiplicity 1. Conversely,
every dominant weight occurs as the highest weight of a unique irreducible rep­
resentation V,x of g. By definition N -< .X holds if and only if .X - .X' is a sum of
positive roots, and in this case .X is called higher than .X'.

Highest weight module For a dominant weight .X the unique irreducible repre­
sentation of g with .X as highest weight, is called the highest weight module (or
representation) of g for .X, and is denoted V,x

Irreducible representation A representation of a group g is called irreducible if
the representation space has no proper non-zero subspace that is stable under g.

In case g is a reductive group it suffices that the representation space cannot be
decomposed as a direct sum of two non-trivial g-stable subspaces.

Module See representation.

Multiplicity polynomial Sets of weights with multiplicities may be represented
by a multiplicity polynomial m, where each distinct weight v with multiplicity n
is represented by a term of m, with coefficient n and exponent v, where vis to be
interpreted on the basis of fundamental weights. In the case of a virtual multiplicity
polynomial, multiplicities are allowed to be negative.

Representation An action by linear transformations of a group g on a finite dimen­
sional vector space V is called a (linear) representation of the group; the space V
is then called a module for g. This is equivalent to giving a (Lie) group mor­
phism g--. GL(V). The irreducible representations of finite groups as well as Lie
groups are (up to equivalence) determined by their characters. For reductive Lie
groups, the irreducible representations are parametrised by their highest weights.
For the general and special linear groups, the representations can alternatively be
indexed by partitions (this is where Young tableaux come in): in the case of the
special linear group SL(n, C), the representation corresponding to the partition
v = [vi, ... , vd] (with d :S n) has highest weight [v1 - v2, v2 - v3, .. . , Vn-1 - vn],
where v; = 0 ford< i :Sn. The standard module of SL(n, C), obtained from the
injective morphism SL(n, C)--. GL(n, C), corresponds to the partition [1] and has
highest weight [1, 0, ... , O]. The partition [d] corresponds to the d-th symmetric
power of the standard module, which has highest weight [d, 0, ... , OJ, and the par­
tition [1, 1, ... , 1] of d corresponds to the d-th alternating power of the standard
module, which has highest weight [O, ... , 0, 1, 0, ... , O], with coefficient 1 in the d-th
position.

Restriction matrix If h is a reductive subgroup of g, and a maximal torus of h is
chosen within the maximal torus T of g, then any weight of g with respect to T

38 l.!E 2.0 Manual DRAFT

(which is a function on T) becomes by restriction to the maximal torus of h a
weight of h. Consequently there is a map from the weight lattice of g to that of h,
and this map is linear; it can therefore be given by a matrix, called the restriction
matrix for the subgroup h. Each row of this matrix represents the restriction to
the maximal torus of h of a fundamental weight of g, viewed as a weight of h. The
restriction matrix plays a role in branching.

Virtual decomposition polynomial See decomposition polynomial.

Virtual multiplicity polynomial See multiplicity polynomial.

3.5. The Symmetric group and related matters

Although it is not a (connected) Lie group, the Symmetric group enters into a number
of computations performed by 1.!E, in particular into plethysm. The representation
theory of the General Linear group is closely linked with that of the Symmetric group,
and either of these theories has a convenient description in terms of partitions and
Young tableaux, whereas such a description is not applicable to reductive Lie groups in
general. We do not intend to go deeply into these matters here (see [JamKer 1981] for
details), suffice it here that partitions of n parametrise the irreducible representations
of the Symmetric group Sn on n letters , and that partitions of arbitrary numbers into
at most n parts provide an alternative way (besides dominant weights) to parametrise
the irreducible representations of GLn .

To explain the relation of the Symmetric group to representations of arbitrary
reductive Lie groups, consider some g-module V and its tensor square V @ V. The
(diagonal) action of g on V @ V obviously commutes with the involution of that
space that exchanges the two tensorands, and consequently the two eigenspaces of
that involution (viz. the spaces of symmetric respectively antisymmetric tensors) are
submodules of V @ V . Therefore we may define operations of forming the symmetric
and antisymmetric tensor square of a module, and the ordinary tensor square is
the direct sum of these. More generally we may consider arbitrary symmetric and
antisymmetric tensor powers of V , consisting of the (fully) symmetric respectively
antisymmetric tensors in V @ V @ · · · @ V . For n > 2 however, the n-th symmetric
and antisymmetrtic tensor powers together do not combine to the full n-th tensor
power V ®n, rather one can decompose V ®n into parts corresponding to all of the
irreducible representations of Sn (not just the linear ones) . The part thus obtained
for the Sn-representation R>. corresponding to a partition .X can be written as a tensor
product of some g-module y (>.), say, with that Sn-representation R>. ; the module y (>.)

is then called the plethysm of V with respect to the partition .X.

Character matrix For the symmetric group on n letters, the conjugacy classes
are parametrised by partitions of n , where the parts of the partition correspond to
the disjoint cycles of the permutation . Therefore a character x of the symmetric
group may be represented by a character matrix, which is a matrix with n +
1 columns in which the first n entries of each row represent a partition µ of n
(padded with trailing zeros) and the last entry is the value x(µ) of the character x
on the conjugacy class corresponding to µ .

Partition A partition of a natural number n is a weakly decreasing sequence of
numbers whose sum is n ; adding or removing trailing zeros does not alter the
partition. Any partition of n can be represented as a vector v = [v1 , ... , vn] of
length n. The l.!E function partitions(n) produces a matrix whose rows represent the
partitions of n. Partitions of n parametrise the conjugacy classes of the symmetric

Chapter 3 Terminology 39

group on n letters and also their irreducible characters; they also parametrise
representations of GL(M).

Plethysm A representation of a group g on a vector space M corresponds to a
group morphism g--+ GL(M); as such it can be composed with any representation
of the group GL(M) on a vector space N , giving rise to a representation of g on
the space N . Now if we take for the representation of G L(M) the irreducible one
parametrised by the partition .X , then the resulting representation of g is called the
plethysm, or symmetrised tensor, of M with respect to .X .

Symmetric group The set of permutations of {1 , .. . , n} is called the symmetric
group on n letters, oftem denoted by Sn . Its conjugacy classes are described by
partitions, as well as its characters. They play a role in plethysm.

40 l.!E 2.0 Manual DRAFT

l.!E Manual

Chapter 4. BUILT-IN MATHEMATICAL FUNCTIONS

In this chapter, we list the mathematical functions built into l.!E. With each function
listed, we give an interpretation of its arguments and the result of its call; furthermore,
whenever worthy of mention, a brief indication is given of the algorithm involved in
its implementation. For terminology see Chapter 3.

For each function we give a sample heading, in a format similar to what a user
defined function would start with, but we allow ourselves to use uppercase and Greek
letters, replace any semicolons by commas. A final parameter of type group may be
enclosed in an extra pair of parentheses to indicate that it is optional; if corresponding
argument is omitted in a call, the default group will be substituted. Then following
a colon the result type is given, and whenever appropriate we give enclosed in square
brackets additional information about how certain vectors, matrices and polynomials
among the parameters and the result should be interpreted.

The possible interpretations for an object of type vector are
o root, indicating that it is expressed on the basis of fundamental roots,
o weight, indicating expression on the basis of fundamental weights,
o ints, denoting the set or sequence of integers forming its entries,
o Weyl word, denoting a Weyl group element expressed as a product of fundamental

reflections,
o tora,l, denoting either an toral element of finite order or a one parameter subgroup,

as decribed in Section 3.3, or
o partition, denoting a partition in the usual way.

For objects of type matrix the possible interpretations are
o lin(a, b), representing the matrix of a Z-linear transformation, always assumed

to act from the right on vectors, where a gives the interpretation (basis) of the
vectors acted upon, and b gives the interpretation of the vectors yielded,

o character, representing the character of a representation of a symmetric group
by its character matrix, or

o vectors, roots, weights, torals or partitions, representing a set of equal sized
vectors without multiplicities-each row giving one vector-with the indicated
interpretation of the individual vectors.

Finally, for polynomials the possible interpretations are
o polynomial, representing itself as polynomial
o decomposition, representing a g-module by the decomposition polynomial for its

decomposition into irreducible g-modules,
o dominant, representing a set of dominant weights with multiplicities (often the

dominant part of the formal character of a representation) by a multiplicity
polynomial,

The terms used here are decribed in more detail in Chapter 3. The notation Vi. will
be used througout to denote the irreducible g-module with highest weight .X.

Chapter 4 Built-in mathematical functions 41

4.1. Lie groups

center((grp g)): mat [result: torals] . . Returns a matrix whose rows are semisimple
elements or one parameter subgroups generating the center of g. The center of
a semisimple Lie group g is a finite Abelian group isori-10rphic to the quotient of
the weight lattice by the root lattice (for reductive groups the central torus is
also included). For most simple groups g the center is a cyclic group of order
detcartan(g) (which order appears in the last column of the result), but for groups
of type D2n, the center is a Klein 4-group, so simple components of g of type D2n
will account for two rows of the result.

diagram ((grp g)): vid. Prints the Dynkin diagram of g, also indicating the type of
each simple component printed, and labeling the nodes as done by Bourbaki (for
the second and further simple components the labels are given an offset so as to
make them disjoint from earlier labels).

dim ((grp g)): int. Returns the dimension of the Lie group g, which is equal to
dim(adjoint(g), g). Algorithm: We compute 2 * numproots(g) + lierank(g).

liecode (grp g): vec [result: ints]. It is required that g be a simple group or a torus;
the function returns a vector [t, n] of size 2, such that liegroup(t, n) = g.

liegroup (int t, int n): grp. Returns a torus or a simple group according to the
following rule: liegroup(O, n) = Tn, liegroup(l, n) = An, liegroup(2, n) = Bn,
liegroup(3,n) = Cn, liegroup(4,n) = Dn, liegroup(5,n) = En, liegroup(6,4) = F4,
liegroup(7, 2) = G2, and for any other numbers an error is indicated. This function
can be useful in order to run examples over many Lie groups using a for loop.

lierank ((grp g)): int. Returns the Lie rank of g; for simple groups and tori this
equals liecode(g)[2], while for composite groups it is the sum of the Lie ranks of
the component groups.

4.2. Root systems

cartan ((grp g)): mat [result: lin(root, weight)]. Returns the Cartan matrix of g,
which is the transformation matrix from the root lattice to the weight lattice,
using the bases of fundamental roots and fundamental weights respectively. Hence
the i-th row of the Cartan matrix equals the i-th fundamental root, expressed
as weigth vector. For simple groups g the labeling of the fundamental roots is
Bourbaki's, see [Bourb 1968]. When g is semisimple, the (i, j)-entry of the Cartan
matrix is (ai, aj)- When the semisimple ranks of g is differs from the rank r, then
the matrix is not square, as it is an s x r matrix, but all entries beyond column s
are zero.

cartan (vec a, (3, (grp g)): int (o:, (3: root]. Returns the 'Cartan product' (a, (3), i.e.,
the integral value 2(a,(3)/(/3,/3), where /3 must be a root, and a is any root vector.
(This is is not really an inner product because the function is not linear in (3. The
function is linear in a, and indeed any weight would have been acceptable in place
of a, still giving an integral value; nevertheless, to avoid confusion, and because it
is most common to take for a a root, we stick to the root basis for a as well as
for /3]. See also inprod and norm.

carttype (mat R, (grp g)): grp [R: roots]. Returns type of the fundamental Lie
subgroup whose root system is the minimal subsystem of the root system of g
containing all the roots in R. A basis of fundamental roots of this subsystem may

42 l!E 2.0 Manual DRAFT

be obtained as fundam(R, g). See also closure and centrtype. Algorithm: The
same algorithm as fundam is performed, but only the type of the root system is
returned.

centroots (vec t, (grp g)): mat [t: toral, result: roots] . Returns the matrix whose
rows form the set of all positive roots centralising the semisimple element t E T (or
the specified one parameter subgroup). Here a root a E <Pis said to centralise t if t
commutes with all elements of the fundamental Lie subgroup of type A1 and closed
subsystem of roots {a, -a}. Equivalently, a centralises t if and only if a (which
is a weight, and hence a map T ---. C*) vanishes in t. Algorithm: Let n be the
final entry of t, and t' the vector of remaining entries. First all positive roots are
obtained by posroots, from which those roots a are selected for which aw * t' = 0
(mod n), where aw denotes a expressed on the basis of fundamental weights, and
aw * t' is the standard inner product.

centroots (mat S, (grp g)): mat (S: torals, result: roots]. Returns the matrix whose
rows form the set of all positive roots centralising the semisimple elements and/or
one parameter subgroups represented by the rows of S, which set is the intersection
of all sets centroots(t, g) with t traversing the rows of S. One may apply carttype or
fundam to the result to obtain the type respectively the set of fundamental roots
of the centraliser. See also centrtype.

centrtype (vec t, (grp g)): grp [t: toral, result: roots] . Returns the centraliser C9 (t)
of the semisimple element t E T (or of the specified one parameter subgroup);
effectively only the type is computed. See also centroots. (Actually the centraliser
(although connected) need not be simply connected, so the interpretation of the
type grp of Section 2.2.5 does not admit a precise description of the actual cen­
traliser; the result refers to the unique simply connected group C covering the
centraliser subgroup (in other words, there is a finite central subgroup Z of C such
that the precise centraliser is isomorphic to the quotient C / Z of C by Z).]

centrtype(mat S,(grp g)): grp [S:torals, result:roots]. Returns the (universal
cover of the) centraliser of the semisimple elements and/or one parameter sub­
groups of T represented by the rows of S, i.e., the intersection of the groups
centrtype(t,g) fort traversing the rows of S. Algorithm: The set centroots(S,g)
is divided into connected components (where a pair of roots is considered to be
joined if they have a non-zero inner product); then in most cases l!E recognises
the type from the size of these components. This function can also be computed
as carttype(centroots(S,g),g), which provides a useful check, since in that case
the result is obtained by analysing the Dynkin diagram for a base of fundamental
roots for the centraliser, rather than by simple counting. (A pre-l!E version of this
function, only implemented for types En, has been used for (CohGri 1987] .)

closure (mat R, (grp g)): mat [R, result: roots]. Returns the basis of fundamental
roots of the minimal closed subsystem of roots of the group g that contains all the
roots in R, and moreover consists of positive (for g) roots only. Algorithm: First
fundam(R, g) is computed. Then if g has roots of different lengths, all pairs (a, /3)
of short roots in the resulting set are tested to see whether a - /3 is a positive root
(necessarily a long one), and if so this root replaces a . It can be shown that such
changes do not destroy property that the set of roots is fundamental (no positive
inner products), so fundam need not be applied to the result once more.

detcartan ((grp g)): int. Returns the determinant of cartan(g). This number is the
index of the root lattice in the weight lattice, and it is also the order of the center

Chapter 4 Built-in mathematical functions 43

of g. See also icartan.

domweights (vec A, (grp g)): mat [A: weight, result: weights]. Returns the set of
dominant weights which lie under A, i.e., the set { µ E A +(T) I µ ~ A}. This
is equal to the set of weights that occur in domchar(A, g). Algorithm: Starting
with the singleton set {A}, the closure is formed within the set A+ (T) under the
operation of subtracting positive roots. Note that it would not suffice to subtract
just fundamental roots, because certain weights µ E A+ (T) would then only be
reachable via weights that are not dominant.

fundam (mat R, (grp g)): mat [R, result: roots]. Returns the basis of fundamental
roots of the minimal subsystem of the root system of g that contains all the roots
in R, and moreover consists of positive (for g) roots only. The order in which the
the fundamental roots are returned is compatible with the standard labeling for a
root system of type carttype(R, g). Algorithm: As a criterion for a set of positive
roots to be a fundamental basis for the minimal subsystem containing them, l!E
uses the condition that all mutual inner products be ::; 0 (note that this implies
that the roots are independent). First, all negative roots in Rare replaced by their
opposites, then each pair of roots that has a positive inner product is replaced
by the positive basis of fundamental roots of the rank 2 subsystem they generate,
while duplicates are removed by calls of redsetmat. This is repeated until no more
changes occur.

highroot ((grp g)): vec [result: root]. Returns the highest root of the root system of
the group g, which must have exactly one simple component (for otherwise there
exists no highest root). This root is the last row of posroots(g). See also adjoint.

icartan ((grp g)): mat [result: Jin(weight, root)]. Returns detcartan(g) times the
inverse of cartan(g) . The scalar factor detcartan(g) is required in order to keep all
matrix entries integral. To transform an element of the root lattice that is given
as A in weight coordinates to root coordinates, compute A* icartan(g) / detcartan(g).

inprod (vec x, y, (grp g)): int [x, y: root]. Returns the Weyl group invariant inner
product of x and y . The inner product is normalised such that for each simple
component of g the short roots n have inprod(n, n) = 2.

norm (vec n, (grp g)): int. Returns the norm inprod(n, n) of the root vector n.
When n is a root, this is one of {2, 4, 6}, and the inner product is chosen such
that for each simple component the short roots have norm 2. Note that this
normalisation differs from that used in [Bourb '68] in the case of groups of type
Bn, as the short roots are given norm 1 there.

numproots ((grp g)): int. Returns the number of positive roots of the root system
of g, which is equal to rowsize(posroots(g)). The number of all roots is twice as
much, and can also be computed as dim(g) - lierank(g).

posroots ((grp g)): mat [result: roots]. Returns a matrix whose rows are the positive
roots of g. The first rows are the fundamental roots (i.e., the top r rows form the
matrix id(r), and if g is simple the last row, which has index numproots(g), is
highroot(g).

4.3. The Weyl group

dominant (vec A, (grp g)): vec [\ result: weight]. Returns the unique dominant
weight in the Weyl group orbit of the weight A.

44 ~E 2.0 Manual DRAFT

dominant (mat m, (grp g)): mat (m, result: weights]. Returns the set of weights
obtained by replacing each row of m by the unique dominant weight in its Weyl
group orbit.

exponents ((grp g)): vec [result: ints]. Returns the exponents of the given Lie group.
For composite groups the exponents are not necessarily increasing, as they are
grouped according to the simple factors of the group, with the exponents for the
central torus (all zeros) at the end.

length (vec w, (grp g)): int [w: Weyl word]. Returns the length of the Weyl group
element w. If w is already reduced (e.g., after w = reduce(w, g)), then length(w) =
size(w). Algorithm: The function reduce(w,g) is simulated, recording only length
changes.

longword ((grp g)): vec [result: Weyl word]. Returns a Wey! word for longest ele­
ment of the Wey! group. Algorithm: We compute wword(-alLone[lierank(g)], g).

lreduce (vec l, w, (grp g)): vec [l: ints, w, result: Weyl word]. The set l determines a
subgroup W1 of W generated by the fundamental reflections ri for i E l. The func­
tion returns a Wey! word for the distinguished representative (element of minimal
length) of the left coset W1w. This Weyl word is obtained by deleting certain en­
tries from w; in particular, if w is already a reduced expression for the distinguished
representative, then w itself is returned. Algorithm: A variant of the algorithm
for reduce is used, replacing the strictly dominant weight by one that has W1 as
stabiliser.

lrreduce (vec l, w, r, (grp g)): vec [l, r: ints, w, result: Weyl word] . The sets l and r
determine subgroups W1 and Wr of W generated by the fundamental reflections
ri for i E l respectively for i E r. The function returns a Weyl word for the dis­
tinguished representative (element of minimal length) of the double coset W1wWr.
This Wey! word is obtained by deleting certain entries from w; in particular, if w
is already a reduced expression for the distinguished representative, then w itself is
returned. Algorithm: After computing lreduce(l, w, g) the resulting reflections are
applied from right to left to a weight whose stabiliser is Wr, and each reflection
that stabilises the intermediate value is thrown away. It can be shown that the
result is still left reduced with respect to l.

orbit (vec v, mat M): mat [result: vectors]. Here v is a vector with an arbitrary
interpretation, and M is a matrix whose column size c equals size(v), and whose
row size is a multiple of c, say kc. We interpret M as a collection of k square
matrices of size c X c, vertically concatenated. The function orbit attempts to
compute the orbit of v under the group generated by the collection of matrices,
i.e., a minimal set V of vectors containing v and closed under right multiplication by
any of the matrices in the given collection. As the orbit might be infinite, and the
algorithm has no means to detect this situation, it gives up when more than 1000
vectors in the orbit have been computed. For larger orbits, see orbit(n, v, M) .

orbit (int n , vec v, mat M): mat [result: vectors]. This function operates in the
same way as orbit(v, m), but n replaces the limit of 1000 elements in the orbit.

reduce (vec w, (grp g)): vec [w, result: Weyl word]. Returns a Wey! word of minimal
length representing the same element of W as w. This Weyl word is obtained by
deleting certain entries from w; in particular, if w is already a reduced expression,
then w itself is returned. See also lreduce en rreduce and lrreduce. Algorithm:
We apply the reflections in the word w from left to right to a strictly dominant

Chapter 4 Built-in mathematical functions 45

weight, and whenever the intermediate value is found to have a negative coefficient
at the position of the reflection being applied (i.e., a negative inner product with
the corresponding simple root), then the reflection in question is cancelled against
a previous one, which exists by the exchange condition.

reflection (vec o:, (grp g)): mat [o:: root, result: lin(weight, weight)]. Returns ma­
trix of the reflection of the weight lattice in the hyperplane perpendicular to the
root o:, expressed with respect to the basis of fundamental weights. See also
waction.

rreduce (vec w, r, (grp g)) : vec [r: ints, w, result: Weyl word] . The set r deter­
mines a subgroup Wr of W generated by the fundamental reflections Ti for i E r.
The function returns a Weyl word for the distinguished representative of the right
coset wWr . This Weyl word is obtained by deleting certain entries from w; in par­
ticular, if w is already a reduced expression for the distinguished representative,
then w itself is returned.

waction (vec A, vec w, (grp g)): vec [A: weight, w: Weyl word]. (Weyl action) Re­
turns the weight that is the image A • w of the weight A under the Weyl group
element w E W .

waction (vec w, (grp g)): mat [w: Weyl word, result : Jin(weight, weight)] . Returns
the matrix giving the action of the Weyl group element w E W on the weight lattice,
expressed on the basis of fundamental weights. See also reflection and wword.

worbit (vec A, (grp g)): mat [A: weight , result: weights]. (Weyl orbit) Returns the
orbit of the weight A under the Weyl group of g. Algorithm: for the classical
groups of types An, Bn, Cn and Dn, the orbit is generated by permutations and
(for types other than An) sign changes, after a suitable linear transformation, using
a procedure similar to nextpermu. For the exceptional groups (of type En, F4, and
G2), a large subgroup of the Weyl group W is chosen that is of classical type,
for which the same method is employed; it remains to traverse the small number
of cosets of this subgroup in W . This algorithm is much faster than the general
function orbit.

worbitsize (vec A, (grp g)): mat . (Weyl orbit size) Returns the length of the orbit
of the weight A under the Weyl group of g. This is equal to worder(g) / worder(I , g),
where I is a vector whose entries indicate the positions at which the vector A has
zero entries.

worder((grp g)): int. (Weyl group order) Returns the order of the Weyl group
of g.

worder (vec I, (grp g)): int [J: ints]. Returns the order of the subgroup Wi of the
Weyl group of g generated by the fundamental reflections r; for i E /. This sub­
group is the stabiliser subgroup of any weight vector that has zero entries precisely
at positions i for which i E /. Algorithm: We compute worder(carttype(R, g), g),
where R is the set of roots obtained by taking for each element i E J the i-th
fundamental root.

wrtaction (vec o:, w, (grp g)): vec [o:: root, w: Weyl word] . (Weyl root action) Re­
turns the root that is the image o: • w of the root vector o: under the Weyl group
element w E W.

wrtaction (vec w, (grp g)): mat [w: Weyl word, result: lin(root, root)] . Returns the
matrix giving the action of the Weyl group element w E W on the root lattice,
expressed on the basis of fundamental roots.

46 l!E 2.0 Manual DRAFT

wrtorbit (vec a, (grp g)): mat [a: root, result: roots]. (Weyl root orbit) Returns
the orbit of the root vector a under the Weyl group of g.

wword (mat m, (grp g)): vec [m: lin(weight, weight), result: Weyl word] . Returns
a Weyl word for the Weyl group element w-if it exists-whose its action on the
weight lattice is given by the square matrix m. This function is the inverse of
waction applied to Weyl words, except that it may return another representative
for the same element; in fact (after setdefault(g)), for each Weyl word w the call
wword (waction(w)) returns a canonical representative for the equivalence class
of w. See also waction.

wword (vec >., (grp g)) : vec. Returns a Weyl word for a Weyl group element w
sending the weight >. to a dominant weight. In fact, w is the distinguished repre­
sentative of the coset wWs, where Ws is the stabiliser of>.' = dominant(>.) (here
S is the set of indices of fundamental reflections which stabilise >.' , i.e., the set of
indices i for which >.'[i] = 0) .

4.4. Representations

adams (int n, vec >., (grp g)): pol [>.: weight, result: dominant]. Returns the virtual
multiplicity matrix of the virtual module of the simple group g, whose character
is obtained from that of Vi. by multiplying all the occuring weights by n, while
retaining the multiplicities. The adams operator is the 'weight analog' of the
operator that, given a character x of a group g and a number n, computes the
decomposition of the class function 1 1-+ x(,n) as an integral linear combination
of irreducible characters. The adams operator is used in plethysm, symtensor, and
alttensor. Algorithm: Effectively, vdecomp(domchar(>.,g) * id(n),g) is computed.

adams (int n , pol d, (grp g)): pol [d: decomposition, result: dominant]. This is like
adams(n, >., g), but with the irreducible module Vi. replaced by the (reducible)
module represented by the decomposition polynomial d.

adjoint ((grp g)): vec [result: weight] . Returns the highest weight of the adjoint
representation of the group g. The group has to be simple, for otherwise the
adjoint representation is not irreducible; en example of how the decomposition
matrix of the adjoint representation can be computed for non-simple groups is
given in Section 5.2 .3. Since the non-zero weights of the adjoint representation are
precisely the roots , one has adjoint(g) = highroot(g) * cartan(g).

alttensor (int n, vec >., (grp g)): mat [>.: weight, result: decomposition]. (alternat­
ing tensor) Returns the decomposition matrix of /\ n Vi., the n-th exterior power
of Vi.. The group g has to be simple. See also symtensor and plethysm.

branch (vec >., grp h, mat m, (grp g)): mat [>.: weight, m : lin(weight, weight), result:
decomposition]. Returns the decomposition matrix of the restriction to h of Vi.,
with respect to the restriction matrix m. Here the matrix m is such that any
weight >.1 , (expressed on the basis of fundamental weights for g) when restricted
to the maximal torus of h becomes a weight >.1 * m (expressed on the basis of
fundamental weights for h); the group g has to be simple. For fundamental Lie
subgroups (among which the Levi subgroups) this matrix can be obtained by use
of resmat. Branching to Tr with m = id(r), where r = lierank(g) amounts to
computing the character of Vi. . Algorithm: The whole character of Vi. is traversed
by generating for each weight occuring in mul(>.,g) its Weyl group orbit. To every
weight thus generated the matrix m is applied; if the result is a dominant weight

Chapter 4 Built-in mathematical functions 47

of h, it is appended as a row to a matrix a. Finally decomp(a, h) is computed.
Within each Weyl group orbit l!E generates the weights one at a time, using a
dynamic version of worbit to prevent storage problems.

collect (mat d, grp h, mat m, (grp g)): mat [d, result: decomposition, m: lin(weight,
weight)]. The matrix m should be invertible (and in particular square); let r =
m-1 . Then collect returns the decomposition matrix of the g-module whose re­
striction to the reductive subgroup h with respect to the restriction matrix r has
decomposition matrix d (provided that such a matrix exists). In other words, it is
an inverse of branch in the same sense that decomp is an inverse of mul: the call
collect(branch()..,h,r,g),h,m,g) should return the decomposition matrix[>.+ 1].
Algorithm: Essentialy, this function is identical to branch, except that no Weyl
group orbits are generated, since it is assumed that for any weight >. E A(Th)
the corresponding weight >. * m E A(Tg) can only be dominant if >. was already
dominant; this assumption is valid if m is the inverse of a resrtiction matrix to a
subgroup. The fact that collect performs the inverse action of branch is mainly
accounted for by the fact that the inverse of the restriction matrix is to be supplied.

contragr (vec >., (grp g)): vec [>., result: weight]. Yields the highest weight of the
contragredient (or dual) representation V.x* of V.x, which equals dominant(->.,g).
The group g has to be simple.

decomp (mat m, (grp g)): mat [m: dominant, result: decomposition] . Returns the
decomposition matrix of the g-module with multiplicity matrix m, in other words,
it is essentially an inverse of mul: the call decomp(mul()..,g),g) should return the
decomposition matrix (>. + 1], indicating that a single irreducible constituent >. was
found with multiplicity 1. See also vdecomp.

dim (vec >., (grp g)): int (>.: weight]. Returns the dimension of the representa­
tion V_x.

domchar(vec >.,(grp g)): mat [>.:weight, result:dominant]. Returns the polyno­
mial representing the dominant part of the character of the g-module V_x. Algo­
rithm: Freudenthal's multiplicity formula, see (Hum 1972] and [Kruse 1971].

domchar (vec >., µ, (grp g)): int [>. , µ:weight] . Returns the multiplicity ofµ in the
character of V_x. The weight >. should be dominant, butµ may be any weight.

ptensor (int n, vec >., (grp g)): mat [>.: weight, result: decomposition]. Returns the
decomposition matrix of the n-th tensor power ®n Vi of V_x. The group g has to
be simple.

ptensor (int n, mat d, (grp g)): mat [d, result: decomposition]. Returns the de­
composition matrix of the n-th tensor power of the g-module with decomposition
matrix d. The group g has to be simple.

resmat (mat R, (grp g)) : mat [R: roots, result: lin(weight, weight)]. It is assumed
that the set R consists of roots forming a fundamental basis for a closed subsys­
tem <I>' of the root system <I> of g (as for instance obtained by a call of closure) .
The function returns the restriction matrix for the semisimple Lie subgroup of g

with root system <I>'.

spectrum (vec >., t, (grp g)): vec [>.: weight, t: toral , result: ints] . Let n be the last
entry oft, then the semisimple element t E Twill act in any representation of gas a
diagonalisable transformation whose as eigenvalues are all n-th roots of unity. The
function spectrum returns the vector of length n, whose i + 1-st entry (0 ::; i < n)

48 l.!E 2.0 Manual DRAFT

is the multiplicity of the eigenvalue (i in the action of the semisimple element on
the irreducible g-module Vi., where (is the complex number e21ri/n. The group g

has to be simple. The result can also be obtained by calling branch to compute
the restriction to the one parameter subgroup containing the semisimple element,
see Section 5.5.3. Algorithm: The character is computed using mul and worbit; for
each occurring weight the contribution to the result is easily computed. [A pre-1.!E
version of this function, only implemented for En, has been used for [CohGri 1987].]

symtensor (int n, vec A, (grp g)): mat [,t weight, result: decomposition]. (symmet­
ric tensor) Returns the decomposition matrix of sn(Vi.), then-th symmetric tensor
of Vi.. The group g has to be simple. See also alttensor and plethysm. Algorithm:
We use the recursion

n

n · symtensor(n, .X) = I: symtensor(n - k, .X) © adams(k, .X).
k=l

This formula turns into a recursion formula for alttensor upon including a sign
(-1)k- 1 in the summand.

tensor (vec .X, µ, (grp g)): mat [\µ:weight, result: decomposition]. Returns the
decomposition matrix of the tensor product Vi. © V,,, The group g has to be simple.
Algorithm: Klimyk's formula has been implemented, see [Hum 1972, Exerc. 24.9].
Like in branch, a dynamic version of worbit is used to prevent storage of a complete
Wey! group orbit.

tensor (vec .X, µ, v, (grp g)): int [.X, µ, v: weight]. Returns the multiplicity of the
weight v in the tensor decomposition of Vi. © V,,,. The group g has to be simple.

tensor (mat d, d', (grp g)): mat. Returns the decomposition matrix of the tensor
product of the g-modules with respective decomposition matrices d and d'. The
group g has to be simple.

vdecomp (mat m, (grp g)): mat [m: dominant, result: decomposition]. (virtual de­
composition) Returns the virtual decomposition matrix of the virtual g-module
with multiplicity matrix m. The algorithm is the same as for decomp, but no
restriction is put on the sign of the multiplicities. This function is used in adams.

4.5. Operations related to the Symmetric group

nextpart (vec .X): vec [\ result: partition]. Returns the next partition of I.XI in re­
verse lexicographic order. If.Xis the last one, i.e., if .X = [1, 1, . .. , 1], it will return
.X again. See also partitions.

nextpermu (vec p): vec [p, result: ints]. Returns the next permutation of the entries
of p, in reverse lexicographical order reading from right to left. If p is the last such
permutation, i.e., if the entries of p are increasing, then p itself will be returned
again. If there are repetitions among the entries of p, then this function will not
attempt to permute identical entries, and in such cases it will take fewer applica­
tions of nexpermu to go from the weakly decreasing order to the weakly increasing
order. See also symorbit.

partitions (int n) : mat [result: partitions]. Returns a matrix whose rows are the
partitions of n in reverse lexicographic order, and extended by zeros to length n.
See also nextpart.

Chapter 4 Built-in mathematical functions 49

plethysm (vec A,µ, (grp g)): mat [A: partition, µ: weight, result: decomposition].
Returns the decomposition matrix of the g-module obtained from V,,, by taking the
symmetrised tensor with respect to the partition A. For example plethysm([n], µ, g)
equals symtensor(n, µ, g) and plethysm([l, 1, . .. , 1], µ, g) where the partition has
n parts is equal to alttensor(n, µ, g) [it makes sense to check these facts since the
algorithms differ]. The group g has to be simple. Algorithm: We use the classical
Frobenius Formula (cf. [And 1967] and [JamKer 1981])

1(1<)

plethysm(A, µ) = ~ EB conjord(l'.)x>.(I'.) Q9 adams(I'.; , µ),
n.

1<EPn i=l

where n = jAj, I'. runs over all partitions of n, the number conjord(I'.) counts then
order of the conjugacy class in the symmetric group on n letters of permutations
with cycle type I'., x>. is the irreducible character of that symmetric group corre­
sponding to the partition A, and l(A) denotes the number of non-zero parts l'.i of I'..

Hence the algorithm uses addmul, partitions, symchar, adams, and tensor.

symchar (vec A) : mat [A: partition, result: character]. (symmetric group charac­
ter) Returns the character matrix of the character x>. of the symmetric group on
IAI letters, corresponding to the partition A. Algorithm: For each partition µ in
partitions(IAI) the function symchar(\ µ) is called.

symchar (vec A, vec µ): int [\µ:partition]. (symmetric group character) We
should have IAI = jµj ; the function returns the (integral) value x>.(µ) of the charac­
ter of the symmetric group on IAI letters corresponding to A on the conjugacy class
with cycle type µ. Algorithm: We use the formula that expresses the character as
an alternating sum of characters of permutation representations on sets of "flags",
see [JamKer 1981].

symorbit (vec v) : mat [result: vectors] . (symmetric group orbit) The symmetric
group on n letters acts on zn by permuting the coordinates; the function returns
the orbit of v in this action, where n = size(v). The rows of the result are ordered
reverse lexicographically, reading from right to left . See also nextpermu.

50

l!E Manual

Chapter 5. EXAMPLES

l!E 2.0 Manual DRAFT

In this chapter we illustrate how l!E can be used to study Lie groups and their rep­
resentations, and how one can use the built-in functions and the capabilities of the
interpreter to tailor solutions to specific problems.

5.1. General

5.1.1. Reversing the ordering

The standard function sort sorts the entries of a vector v into decreasing order. To
sort a vector into increasing order, call ' - sort (- v)'. The same trick works for matrices
instead of vectors.

5.1.2. Union of sets of vectors

Suppose a and b are matrices representing sets of vectors. Then a matrix representing
the union of these set can be obtained by the call 'redsetmat(a" b)'.

5.1.3. Sum and product of vector entries

The following commands define functions that compute the sum and product of the
entries of a vector.

sum(vec v) = loc ans = O; for i in v do ans = ans + i od; ans
prod(vec v) = loc ans = O; for i in v do ans = ans * i od; ans

Incidentally, there is a slicker solution in the first case, namely to form the inner
product with the all-one vector, so one could alternatively define

one(int i) = 1
ones(int i) = make(one, i)
sum(vec v) = v * ones(size(v))

The latter solution is more efficient than the former one, and even then, most time
is spent computing ones(size(v)); this is so because built-in operations (such as the
standard inner product) are executed much more efficiently than programs executed
by the interpreter.

5.1.4. Comparing groups

The operator == is not defined for groups. The function equal defined below will
test equality of groups, where groups that differ in the order of their simple factors­
although isomorphic-are considered to be distinct.

equal(grp g, h) = \
if compsize(g) != comp size(h) then O else \

for i = 0 to compsize(g) do \

fl

if liecode(g[i]) != liecode(h[i]) then break(O) else 1 fl \
od \

Chapter 5 Examples

5.2. Roots

Here are a few simple examples of how to obtain information about root systems.

5.2.1. All roots

51

The function roots that computes the full root system of g can be defined as follows:

roots(grp g) = loc m = posroots(g); m·-m

5.2.2. The half sum of the positive roots

In many cases one needs the weight

the half sum of the positive roots. It can be computed directly by

rho(grp g) = loc sum= null(lierank(g)); \
for alpha row posroots(g) do sum= sum+ alpha od; sum/2

or, using the same trick as in Section 5.1.3, and the same function ones,

rho(grp g) = posroots(g) * ones(numproots(g))/2

Using the fact that p, when expressed on the basis of fundamental weights has all
coordinates equal to 1, there is an even quicker solution to this question, namely to
use the coordinate transformation icartan/ detcartan:

rho(grp g) = ones(lierank(g)) * icartan(g)/ detcartan(g)

The only problem with this solution is that it fails for non-simple groups, since these
are refused by icartan and detcartan. This could be circumvented by a loop similar
to the one in Section 5.1.4.

5.2.3. Adjoint representation of a non-simple group

The function adjoint has only been defined for simple groups g. For general groups g,
the following function computes a the decomposition matrix of the adjoint represen­
tation.

gadjoint(grp g) = loc d = null(O, O) ; \
for i = 1 to compsize(g) do d = blockmat(d, [adjoint(g[i])]) od; \
if lierank(g[O]) == 0 # no central torus # \
then *(*d + ones(rowsize(d))) # add multiplicities 1 # \
else loc tr = lierank(g[O]); \

*(*blockmat(d, null(l , tr))+ (ones(rowsize(d)) + tr))\
fi

5.3. Weyl words

5.3.1. From a Weyl word to a Weyl group element

The function wword transforms a matrix on the weight basis into a corresponding
Weyl word. For the inverse function, the function waction is useful:

52 l!E 2.0 Manual DRAFT

welt is short for Weyl element #
welt(vec w) = loc r = size(w); loc m = id(r); \

for i = 1 to r do m(i] = waction(m[i], w) od; m

It is also possible to use weylmat, which actually performs the requested operation,
but returns a matrix on the root basis. So it is necessary to conjugate by the cartan
matrix:

welt(vec w) = cartan * weylmat(w) * icartan/detcartan

which assumes, as does the first solution, that the default group has been set appro­
priately.

5.3.2. The Coxeter matrix

The Coxeter matrix of a Weyl group is the matrix with entries mi,j equal to the
order of the product r ir i of the fundamental reflections r i and r i. Here is a (rather
inefficient) way to compute it.

coxmat() = m = id(lierank()); \
for i = 1 to rowsize(m) - 1 do for j = i + 1 to rowsize(m) \
do m(i,j] = ord(fund_refi(i) * fund_refi(j)); m[j, i] = m(i,j] \
od od; m

fund_refi(int n) = refiection(id(lierank)[n])

ord(mat m) = loc p = m; loc idmat = id(rowsize(m)); \
for i = 1 to 6 do if p == idmat then break(i) else p = p * m fl od

Note how the function fund_refi obtains standard basis vectors as rows of the identity
matrix. In the same vein it is possible implement the function ones by taking the
diagonal of the identity matrix. Of course this is a rather wasteful approach when the
vectors become really big, but if their size does not exceed 100, say, then this solution
is probably as efficient as any, since the built-in operation of matrix creation is really
quite fast.

5.3.3. All reduced Weyl words of a given element

Tits has shown that, to produce all reduced Weyl words corresponding to the same
Weyl element, all that is needed is to start with one such word, and to continue
substituting occurrences of the subword (i, j, i, ...] of length m, where mis the order
of the product rirj of the corresponding fundamental reflections, by [j, i, j, .. .] of the
same length. The following routine nextrewrite could form a basic ingredient in the
enumeration of all equivalent Weyl words: it produces the indicated replacement (if
possible) in the Weyl word v for the subword that begins at the k-th entry of v.

try rewriting reduce (v) at position k #
setdefault(g)
nextrewrite(vec v; int k) = loc v = reduce(v); \

loc m = coxmat[v[k], v[k + 1]]; loc check= 1; \
for j = 1 to (m - 1)/2 do \

if 2*j + k > size(v) II v(2 *J + k] != v[k] then check= 0; break fl\
od; \
if check then for j = 1 to m/2 - 1 do \

if 2 * j + k + 1 > size(v) 11 v(2 * j + k + 1] != v [k + 1] \
then check = O; break fl \

od fl; \
if check then vswap(v, k, m) else v fl

Chapter 5 Examples 53

vswap(vec v; int k, m) = loc t = v[k + m - 2]; \
for j = k to k + m - 1 do v[j] = v[j + 1] od; v[k + m - l] = t; v

The function coxmat is as in the previous subsection.

5.3.4. The Bruhat ordering

The following function bruhat returns a Weyl word for each Weyl group element that
is covered by a given element v in the so-called Bruhat order.

bruhat(vec v) = loc v = reduce(v); loc m = null(O, size(v)-1); \
for i = 1 to size (v) do \

loc w = reduce(v - i); if size(w) == size(v) - 1 then m = m + w fl \
od; \
m = redsetmat(m); \

it remains to check whether two rows represent wwords # \
corresponding to the same Weyl group element # \
rho= ones(lierank); \
for i = 1 to rowsize(m) - 1 do for j = i + 1 to rowsize(m) do \

if waction(rho, m[i]) == waction(rho, m[j]) then m[j] = m[i] fi \
od od; \
redsetmat(m)

5.4. Cosets in The Weyl group

There are many ways to compute cosets in W with respect to Weyl subgroups gener­
ated by a subset of the set of fundamental reflections. Here, we show how to recover
some of the results in [BrouCoh 1985].

5.4.1. Right cosets

Suppose Sis a subset of {l, ... , r} and Wis a Weyl group of rank r. Then there is
a natural system of representatives of the cosets of the Weyl subgroup Ws of W gen­
erated by the fundamental reflections ri for i E S. This is the set of all distinguished
right coset representatives, i.e.,, all elements w of W that satisfy rreduce(w, S) = w.
Here is how to generate this set, using the fact that Ws is the stabiliser of any weight
vector that has zeros precisely at those positions whose index occurs in S.

charv(vec s) = loc y = ones(lierank); \
for i = 1 to size(s) do y[s[i]] = 0 od; y

rcosets(vec r) = for wt row worbit(charv(r)) do print(wword(wt)) od

Again, before invoking the function rcosets, a default group has to be set; for exam­
ple, after the above definitions of charv and lcosets have been read, the left coset
representatives for the subsystem A1A1A1 in D4 can be found as follows:

setdefault(D4); w = [1,3,4]; rcosets(w)

Note that [l, 3, 4] represents the nodes corresponding to the subsystem A1A1A1, which
can be verified by calling diagram(D4). Another-more elaborate-way to verify this
is to ask for the Cartan type of the subsystem generated by the fundamental roots
with indices 1, 3, and 4, by calling carttype(id(4) - 2, D4).

5.4.2. Left cosets

Using the fact that a Weyl word v is left reduced with respect to the subset S
of {1, ... ,s} if and only if its inverse [v[l],v[l-1], ... ,v[l]], where l = size(v), 1s

54 l.!.E 2.0 Manual DRAFT

right reduced with respect to S, we can write the following variation to the previous
example to obtain a print of the list of left coset representatives:

inverse(vecv)= locvinv=v; locs=size(v)+l ; \
for i = 1 to s - l do vinv[s - i] = v[i] od; vinv

lcosets(vec l) = \
for x row worbit(charv(l)) do print(inverse(wword(x))) od

where charv is as before.

5.4.3. Double cosets

We now construct a function dcosets printing the full set of distinguished double
coset representatives, displayed as left and right reduced Weyl words, with respect to
specified subsets L and R of {1, ... , r }. It suffices to modify rcosets such that it only
prints those Weyl words (already right reduced for R) that are left reduced for L.

dcosets(vec l, r) = \
for x row worbit(charv(r)) do loc w = wword(x); \

if w == lreduce(l, w) then print(w) fl \
od

Of course it is also possible to put the coset representatives in a matrix. For this
purpose, the Weyl words need to have the same length, which can be achieved by
padding with zeros, as already illustrated in the function bruhat above. A good
upper bound for the number of columns needed is lrreduce(v, longword, w).

5.5. Semisimple elements

In l.!.E, a semisimple element is represented by a vector [a1, ... , ar, d]. This vector
corresponds to the element t of the maximal torus T with tw• = e21ria;/ d for 1 S i S r.

5.5.1. SL(n, C)

For the special linear group SL(n, C) there is a much more familiar way to describe
a semisimple element, namely by its diagonal entries in diagonalised form. If t is a
diagonal matrix with entries (ti, .. . , tn) on the main diagonal in the standard repre­
sentation, then the values of the fundamental weights wi on t are given by

tWi = II tj,
j=l

Therefore, for g of type An-1 , let t be a semisimple element whose diagonalised
form has entries [(b1 , ••• , (b"] along the main diagonal, where (= e21ri/d is an d-th
root of unity (note that Ej=l bj = 0 (mod d) since t E SL(n, C)). Then t can
be represented in l.!.E by applying the following function mksselt (an abbreviation for
make semisimple element), to the vector [b1 , ... , bn] and the number d:

mksselt(vec b; int d) = loc n = size(b); \
for i = 2 to n - l do b[i] = (b[i -1] + b[i]) % d od; b[n] = d; b

Note that we use the parameter b itself (in fact a copy of the actual argument) to
build up the result in; all entries may be reduced modulo d, and the redundant final
entry is used to record the denominator d.

Chapter 5 Examples 55

5.5.2. S0(12, C)

Here is yet another example, now with the group of type D 6 . Consider the standard
12-dimensional representation where it acts as the orthogonal group S0(12, C) (note:
since "the group of type D5" should be read as the simply connected group of that
type, which is Spin(12, C), this is not a faithful representation: the kernel consists of a
central subgroup of order 2). We fix a basis e1 , ... , e6 , Ji, ... , f6 of the underlying 12-
dimensional complex vector space with respect to which the bilinear form (· , ·) fixed
by S0(12, C) satisfies (ei , ej) = (Ii , fi) = 0 and (ei, Ji)= Oi,i for all i , j E {1 , ... , 6} .
Suppose now that t E S0(12, C) is given by the diagonal matrix with diagonal entries
[(a1 , •.. , (a6 , (-ai, ... , (-aa], where again (= e21ri/d _ Then the following function,
using the given matrix m and the integer d that is assumed to have an appropriate
value, transforms the vector [a1 , a 2 , ... , a 6] into the form used by l!E to represent t .

m = [[2, 2, 2, 2, 1, 1], [0, 2, 2, 2, 1, 1], [0, 0, 2, 2, 1, 1], \
[0, 0, 0, 2, 1, 1], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, -1, 1]]

mkss(vec a) = a* m + d

5.5.3. Spectrum

The function spectrum provides a means to recognize the semisimple element specified
in a more natural form. For instance, we perform the following computation for a
semisimple element t of order 2 in SL(5, C):

setdefault(A4); t = [1, 0, 0, 0, 2]; sr = [1, 0, 0, 0] # standard representation #
spectrum(sr, t)

which returns [3, 2], showing that t (an element of order 2) has 3 eigenvalues 1, and 2
eigenvalues -1 in the standard representation. It is therefore conjugate to the element
mksselt([0, 0, 0, 1, 1], 2) , with mksselt as above, which equals [0, 0, 0, 1, 2] ; the element
t itself can be obtained as mksselt([l, 1, 0, 0, 0], 2). To obtain information about the
whole 1-dimensional torus containing t (which may be represented by replacing the
final entry oft by 0), one can use the function branch. The restriction matrix needed
for such a 1-dimensional torus is essentialy obtained by transposition of the vector,
in the current case *[t - 5] . Computing branch(sr, T1 , *[t - 5]) we find the matrix

which shows that an arbitrary element of that 1-dimensional torus parametrised by
some z E C* has 3 eigenvalues 1, 1 eigenvalue z and 1 eigenvalue z- 1 ; this is in
accordance with the fact that such an element has matrix

(

z 0
0 z-1

0 0
0 0
0 0

0 0 0) 0 0 0
1 0 0
0 1 0
0 0 1

(the element t corresponds to z = -1). The centraliser oft can be found by the call
centrtype(t), which returns A2A1T1, and the centraliser centrtype(t - 5 + 0) of its
containing 1-dimensional torus is A 2T2 • On the other hand, spectrum(adjoint, t)[l]
returns the dimension of the Lie subalgebra fixed by t (where t is viewed as an

56 l.!E 2.0 Manual DRAFT

automorphism of the Lie algebra of g), which is the Lie algebra of the centraliser
of t; the call returns 12, which is indeed equal to dim(centrtype(t)). To obtain the
corresponding dimension of the centraliser of the 1-dimensional torus we can again
use branch: the call branch(adjoint, T1,*[t- 5]) returns

(:r t}
which shows that that subalgebra fixed by this torus has dimension 10, in accordance
with dim(A2T2). In general we see that the function spectrum may be simulated by
using branch, as follows:

spec(vec wt, t) = loc s = size(t); lo c d = t[s]; loc res= null(d); \
for x row branch(wt, Ti,*[t- s]) \
do loc p = x[l) % d + l; res[p] = res[p] + x[2) od; \
res

5.5.4. Branching to a centraliser

We continue with the semisimple element of the preceding paragraph; we wish to com­
pute how the standard representation decomposes when restricted to the centraliser of
the semisimple element t, which we have already seen to be of type A2A1T1 . We start
with computing the centraliser more explicitly by calling centroots (t); this returns

(

1 0 0 0) 0 0 1 0
0 0 0 1 .
0 0 1 1

This is the full set of positive roots centralising t; we would like to have a basis
of fundamental roots and the corresponding type, to which end we compute f =
fundam($) and carttype(f), which give respectively

(

0 0 1 0)
!= 0 0 0 1

1 0 0 0
and

where we note that the central torus part of the centraliser is no longer represented,
since there are no corresponding roots. In order to branch to the centraliser we need
the restriction matrix m = resmat(f) which gives

(
0 0 1)
0 0 0

m= 1 0 0 ·

0 1 0

Finally we can compute branch(sr, A2A1 , m), which returns

(
1 0
0 0

0
1

indicating that the standard representation of SL(5, C) decomposes into the direct
product of the standard representations of SL(3, C) and SL(2, C), when restricted to
the centraliser oft.

Chapter 5 Examples 57

5.6. Checks

Numerous checks are possible to verify the consistency between results produced by
different functions. We have already mentioned many of them above and in Chapter 4,
which we will not repeat here, but we note a number of additional checks that can be
made.

5.6.1. Multiplicities

Since mul(>.) computes the dominant part of the character of Vi, it is possible to
check the dimension of V,x; we should have

L mul(>., µ) * worbitsize(µ) = deg(>.).
µ.EA+(T),µ.-<>.

The best way to chack this in l!E is by the following function:

checkdim(vec wt)= loc c = size(wt) + 1; loc d = O; \
for r row mul(wt) do d = d + worbitsize(r - c) * r[c] od; d == deg(wt)

The function mul itself is also very useful in performing tests, since many operations
such as tensor and plethysm have an easily expressed effect on the characters, because
the representation theory of tori is much simpler than that of semisimple Lie groups.

5.6.2. Branching

We may similarly check for branching operations that the dimension of the resulting
sum of h-modules equals that of the original g-module Vi. We should have

L mul(branch(>., h, m), µ)*deg(µ, h) = deg(>.),
µ.EA+(Th)

where his a reductive subgroup of g with restriction matrix m (when mis not really a
restriction matrix from g to h, the test may easily fail). Here we have used a function
mul(m, >.) which extracts the multiplicity of a weight).. from a multiplicity matrix m;
such a function is not built-in, but the user might add such a function written in the
l!E language. In the present case however, that function is not really needed; we may
write a function chkbranch as follows:

chkbranch(vec wt; grp h; mat m) = loc c = lierank(h) + l; loc d = O; \
for r row branch(wt,h,m) do d = d+r[c]*deg(r-c,h) od; d == deg(wt)

5.6.3. The functions symtensor and alttensor

It was already mentioned how symtensor and alttensor can be compared with special
cases of plethysm. Here is how to check that the second tensor power of a module
decomposes into a symmetric and alternating part:

addmul(alttensor(2, wt), symtensor(2, wt)) == redmulmat(ptensor(2, wt))

The same simple relation does not hold for third and higher tensor powers, since one
needs all plethysms to decompose the tensor power, moreover plethysm(>., µ) occurs
a number of times in ptensor(n, µ) with n = l>.I, The number of times it occurs is
the dimension of the representation Sn corresponding to >., .i.e, x.\ (e), which can be
computed by

chardim(vec lambda)= symchar(lambda, ones(sum(lambda)))

We can now set up the following test.

nmul(int n; mat m) = # multiply multiplicities by n # \
loc s = colsize(m); loc f = id(s); f[s, s] = n; m * f

58 l!E 2.0 Manual DRAFT

chkptensor(int n; vec wt)= loc d = null(O, size(wt) + 1); \
for lambda row partitions(n) \
do d = addmul(d, nmul(chardim(lambda), plethysm(lambda, wt))) od; \
d == redmulmat(ptensor(n, wt))

5.7. Extending the function branch

The function branch is defined only for irreducible modules and simple groups. We
now show how the function can be extended within the l!E language to deal with
reducible modules and composite groups.

5.7.1. Branching reducible modules

When we are given a decomposition matrix d instead of a highest weight .X, it is not
difficult to determine the branching to a subgroup, using the built-in function branch.
The function nmul that multiplies multilpicities by a factor was already defined above;
we can now proceed to define

branch(mat d; grp h; mat m; grp g) = \
loc res = null(O, lierank(h) + 1); loc c = colsize(d); \
for r row d do res= addmul(res, nmul(r[c], branch(r - c, h, m, g))) od; \
res

Note that we can use the same name branch as the built-in function has, since they
can be distinguished by the types of their arguments, making it clear for instance that
this function does not recursively call itself, but rather it calls the built-in function.

5. 7.2. Branching in semisimple groups

In order to define branch in non-simple groups g, we first need to consider the basic
case g = h x h, in which h is embedded diagonally (the restriction matrix consists
of two identity matrices on top of each other). In this case a weight for g is just a
pair (.X, µ) of weights for h, and branching V(.\,µ,) from g to h gives V,x ® V,,,, so this
case reduces to the function tensor. From this one deduces the following procedure
for branching in non-simple groups: take the restriction matrix apart into pieces that
map the weight lattices of the individual components of g to that of h, compute the
branching of the appropriate parts of the weight vector (or decomposition matrix)
to h, and then form the tensor product in h of the results.

gbranch(vec wt; grp h; mat m; grp g) = \
loc c = colsize(m); \
if lierank(h) != c II lierank(g) != rowsize(m) \

then error("wrong size restriction matrix") fl; \
loc r = lierank(g[O]); loc wk= null(r); loc mk = null(r, c); \
loc i = lierank(g) - r; \
for j = 1 to r do mk[j] = m[i + j]; wk[j] = wt[i + j] od; \
loc res = [wk * mk + 1]; # torus part, no branching # \
i = O; \
for k = 1 to compsize(g) \
do r = lierank(g[k]); wk= null(r); mk = null(r, c); \

for j = 1 to r do mk[j] = m[i + j]; wk[j] = wt[i + j] od; \
res= tensor(res, branch(wk, h, mk, g[k]), h); i = i + r \

od; \
res

Chapter 5 Examples

5.8. Overflow

59

Due to the choice of type int rather than bin for matrix and vector entries, vector
and matrix operations leading to big integer entries are not to be trusted. In the
example below, we found an 'orbit' of length 33 , apparently due to the computer's
arithmetic modulo 232 .

r = refiection([l , 1, 1, l] , D4) ; orbit([l, 0, 0, 0], 2* r)

5.9. Maximal semisimple subgroups

Information on subgroups of a Lie group can be stored on a file and read whenever
convenient. We have begun such a documentation by creating a file MAXSUB, defining
two functions giving information about maximal subgroups simple groups of rank ~ 8,
one function giving the subgroup types, the other giving the corresponding restriction
matrices (which are needed for branch).

5.9.1. Levi subgroups

Before going into the more involved examples, we note that the maximal Levi sub­
groups, i.e. , those fundamental Lie subgroups of which a system of fundamental roots
can be obtained by removing a node from the diagram of g, can be dealt with in a
uniform way. Here are the definitions of some functions which suffice to determine
branching:

levimat(int i) = fundam(id(lierank) - i) # remove i-th row and reorder #
levitype(int i) = carttype(levimat(i))

levidiagram(int i) = diagram(levitype(i))

levires(int i) = resmat(levimat(i))

levibranch(vec v ; int i) = \
loc m = levimat(i); branch(v, carttype(m) , resmat(m))

It will be clear that levibranch gives the decomposition matrix of the Levi subgroup
of type levitype. The diagram printed by levidiagram gives the ordering of the fun­
damental roots of the Levi subgroup, with respect to which ordering the restriction
matrix (returned by levires) and the resulting decomposition matrix are given.

5.9.2. The functions maxsub and resmat

This function prints a list of isomorphism types of non-maximal rank maximal semi­
simple subgroups of g (We believe, but do not guarantee that the list is complete!) .
Also resmat(g, g' , n) returns the restriction matrix of then-th maximal subgroup of g
in the list produced by maxsub, that has type g'. We list here only the part of the
MAXSUB file pertaining to the types E 6 , E7 , Es, F4 , and G2 ; the complete file is part
of the l!E package. The first part of the file (more than half of it) deals with auxiliary
functions of purely administative nature, then comes the actual data about maximal
subgroups.

off gc

Since garbage collection can be time consuming and does not #

make sense during reading this file in is better to turn it #
#off.But do not forget to put a on gc at the and of the file.#

60 l!E 2.0 Manual DRAFT

Global variables:#
stackgroup=TO
resmatgroup=TO
nsubgr=O
sta=TO;stb=TO;stc=TO;std=TO;ste=TO;stf=TO;stg=TO
rga= [[]] ; rgb= [[]] ; rgc= [[]] ; rgd= [[]] ; rge= [[]] ; rgf= [[]] ; rgg= [[]]

equal(grp g,h)=\
if compsize(g) !=compsize(h) then xxeq=O\
else xxeq=1;\
for t=O to compsize(g) do\
if !(liecode(g[t])==liecode(h[t])) then xxeq=break(O) fi od\
fi; xxeq

prstack()=\
if nsubgr>O then print (sta) fi;\
if nsubgr>1 then print(stb) fi;\
if nsubgr>2 then print(stc) fi;\
if nsubgr>3 then print(std) fi;\
if nsubgr>4 then print(ste) fi;\
if nsubgr>5 then print(stf) fi;\
if nsubgr>6 then print(stg) fi

A set of functions in order to put a sequence#
of groups on the stack: sta, stb, .. ,stg. #
stack(grp ga)=nsubgr=l;sta=ga
stack(grp ga,gb)=nsubgr=2;sta=ga;stb=gb
stack(grp ga,gb,gz)=nsubgr=3;sta=ga;stb=gb;stc=gz
stack(grp ga,gb,gz,gd)=nsubgr=4;sta=ga;stb=gb;stc=gz;std=gd
stack(grp ga,gb,gz,gd,ge)=nsubgr=5;sta=ga;stb=gb;stc=gz;\
std=gd; ste=ge
stack(grp ga,gb,gz,gd,ge,gf)=nsubgr=6;sta=ga;stb=gb;stc=gz;\
std=gd;ste=ge;stf=gf
stack(grp ga,gb,gz,gd,ge,gf,gg)=nsubgr=7;\
sta=ga;stb=gb;stc=gz;std=gd;ste=ge;stf=gf;stg=gg

Find the place j on the stack, such that the i-th #
appearance of the group g has number j. #
onstack(grp h;int i)=\
xxon=O;\
for j=1 to nsubgr do\
if equal(h,maxsub(j)) then\
i=i-1;\
if i==O then xxon=break(j) fi fi od;\
xxon

Chapter 5 Examples

A set of functions in order to put a sequence#
of matrices on the stack: rga, rgb, .. ,rgg. #
resm(mat ga)=rga=ga
resm(mat ga,gb)=rga=ga;rgb=gb
resm(mat ga,gb,gz)=rga=ga;rgb=gb;rgc=gz
resm(mat ga,gb,gz,gd)=rga=ga;rgb=gb;rgc=gz;rgd=gd
resm(mat ga,gb,gz,gd,ge)=rga=ga;rgb=gb;rgc=gz;rgd=gd;rge=ge
resm(mat ga,gb,gz,gd,ge,gf)=rga=ga;rgb=gb;rgc=gz;rgd=gd;rge=ge;\
rgf=gf
resm(mat ga,gb,gz,gd,ge,gf,gg)=\
rga=ga;rgb=gb;rgc=gz;rgd=gd;rge=ge;rgf=gf;rgg=gg

Getting the n-th matrix
resm(int n)=\
if n==1 then ans=rga fi;\
if n==2 then ans=rgb fi;\
if n==3 then ans=rgc fi;\
if n==4 then ans=rgd fi;\
if n==5 then ans=rge fi;\
if n==6 then ans=rgf fi;\
if n==7 then ans=rgg fi;\
*ans

Some help functions:#
el O=e (1)
e20=e(2)
e30=e (3)
e40=e (4)
e5 0 =e (5)
e60=e(6)
e70=e(7)
e80=e(8)
l()=lierank(resmatgroup)

on the stack

e(int i)=xxxx=null(l); xxxx[i]=1; xxxx

rga, .. ,rgg. #

e(int i,j)=xxxx=null(l); xxxx[i]=1; xxxx[j]=xxxx[j]+l; xxxx
e(int i,j,k)=xxxx=null(l); xxxx[i]=1; xxxx[j]=xxxx[j]+l;\
xxxx[k]=xxxx[k]+1; xxxx

Put all maximal subgroups on the stack#
and returns them in a list. #
maxsub(grp g)=\
if liecode(g)[1]<5 I I 7<liecode(g)[1] then\
print(\

61

"Maximal subgroups available only for simple groups of type EFG."\
) fi;\
if !equal(g,stackgroup) then stackfil(g) fi;\
prstack

62 l.!E 2.0 Manual DRAFT

Getting then-th group on the stack sta, .. ,stg. #
maxsub(int i)=\
ans=TO;\
if i==1 then ans=sta fi;\
if i==2 then ans=stb fi;\
if i==3 then ans=stc fi;\
if i==4 then ans=std fi;\
if i==5 then ans=ste fi;\
if i==6 then ans=stf fi;\
if i==7 then ans=stg fi;\
ans

Getting the restriction matrix for the group g with#
subgroup h. The k indicates the k-th occurrence of h #
as subgroup. Omitting k is the same as taking k=1. #
resmat(grp g,h;int k)=\
if liecode(g) [1]<5 I I 7<liecode(g)[1] then\
print("Resmat available only for simple groups of type EFG.") fi;\
if !equal(g,stackgroup) then stackfil(g) fi;\
xxre=onstack(h,k);\
if xxre==O then error("Not available as maximal subgroup") fi;\
if !equal(g,resmatgroup) then resmatfil(g) fi;\
resm(xxre)

resmat(grp g,h)=resmat(g,h,1)

The concrete information for groups of type EFG. #
stackfil(grp g)=\
stackgroup=g;\
if equal(g,E6) then stack(C4,F4,A2,G2,A2G2) fi;\
if equal(g,E7) then stack(A2,A1,A1,A1F4,G2C3,A1G2,A1A1)
if equal(g,E8) then stack(G2F4,C2,A1A2,A1,A1,A1)
if equal(g,F4) then
if equal(g,G2) then

resmatfil(grp g)=\
resmatgroup=g;\

stack(A1,A1G2)
stack(A1) fi

if equal(g,E6) then resm(\
[e(3,5) ,e(1,6), [0,0,1,2,1,0] ,e2] ,\
[e2,e4,e(3,5) ,e(1,6)], \
[[2 , 1 , 2 , 5 , 5 , 2] , [2 , 4, 5 , 5 , 2 , 2]] , \

fi;\
fi;\

[[2,1,2,5,2,2] ,e(2,3,5)], \
[e(1,3,4)+e(2,3),e(4,5,6)+e(5,2),e1+e(4,6,2),e(3,4,5)])\
fi;\
if equal(g,E7) then resm(\
[[4, 7, 9, 11, 10, 6, 6] , [4, 4, 6, 11, 7, 6, OJ] , \

fi;\

Chapter 5 Examples

[[34,49,66,96,75,52,27]] ,\
[[26,37,50,72,57,40,21]] ,\
[[0,1,0,2,1,2,1] ,e1,e(3,4) ,e(5,6,2) ,e(4,5,7)], \
[[1,0,2,1,1,2,1] ,e(4,5,2), [0,0,1,1,1,0,1] ,\
[1,0,0,1,1,1,0] ,e(3,4,2)], \
[[2, 3, 4, 4, 5, 4, 1] , [2, 1, 2, 4, 4, 1, OJ , [O, 1, 1, 1, 0, 1, 1]] , \
[[4,8,10,18,12,8,6], [6,7,10,12,11,8,3]])\
fi;\
if equal(g,E8) then resm(\
[[1, 0, 2, 1, 1, 2, 1, 1] , e (4, 5, 2) , e (5, 6, 7) , \
e(2,3,4),e1+e(4,5,6),e(7,8)+e(3,4,5)] ,\
[[4,6,8,16,12,8,8,2] ,[4,6,8,9,8,7,3,3]] ,\
[[8,12,16,22,16,14,10,6], [2,3,4,8,6,4,4,1], [2,3,4,5,6,4,1,1]] ,\
[[72,106,142,210,172,132,90,46]] ,\
[[60,88,118,174,142,108,74,38]] ,\
[[92,136,182,270,220,168,114,58]])\
fi;\
if equal(g,F4) then resm(\
[[22,42,30,16]] ,\
[[4,4,4,2] ,e(l,2,4) ,e(2,3)]) fi;\
if equal(g,G2) then resm([[6,10]]) fi
on gc

63

64

1.!E Manual

Chapter 6. SYNTAX

l!E 2.0 Manual DRAFT

In this chapter the complete formal syntax accepted by the interpreter is given for
reference. It is given in the usual form of a BNF context free grammar. Literally
represented symbols are given in typewriter type, and every rule is terminated by
a period. At the end ellipses(...) occur twice, we assume that the reader is familiar
with the enumeration of the alphabet. The syntax includes a few cases that are not
described anywhere in this manual, such as the command type (expression). These
are of little or no interest to the average user, but you may experiment if you like; the
reason we give them here is mainly because one should be aware that the identifiers
ocurring in these rules are reserved words, and should not be used for variables or
functions.

(command) ::= (series) I (function definition) I learn (tail) I listvars
listfuns I listops I (on) (identifier) I off (identifier)
(on) I off I read (tail) I edit (tail) I edit I write (tail)
exec (tail) I monfil (tail) I type (arithmetic expr) I (quit)
(quit) (tail) I (help) (subject) I (help) (subject) > (tail)
(help) (subject) » (tail) I : (tail) I (empty) .

(series) ::= (statement) I (statement) ; (series) I (statement) ; .

(statement) ::= (assignment) I (expression) I return (expression)
I break (expression) I return I break I setdefault
I setdefaul t (expression) I ; .

(assignment) : := (identifier) = (expression) I loc (identifier) = (expression)
I (arithmetic expr) += (expression) I (selection) = (arithmetic expr) .

(expression) ::= (arithmetic expr) I (logical expr) .

(arithmetic expr) ::= (variable) I (number) I (group)
I (string) I (arithmetic expr) (operator) (arithmetic expr)
I - (arithmetic expr) I * (arithmetic expr) I X (arithmetic expr)
I ((arithmetic expr)) I (selection) I [(list option)]
I (block) I (identifier) () I (identifier) ((list option))
I (conditional expr) I (loop) I make ((variable) , (arithmetic expr))
I make ((variable) , (arithmetic expr) , (arithmetic expr))
I (apply) ((variable) , (arithmetic expr) , (arithmetic expr)) .

(logical expr) ::= (arithmetic expr) (relation) (arithmetic expr)
I (expression) (boolean operator) (expression) I ! (expression)
I ((logical expr)) .

(selection) ::= (arithmetic expr) [(list option)]
I (arithmetic expr) I (arithmetic expr) .

Chapter 6 Syntax

(variable) : : = (identifier) J (sysident) .

(conditional expr) ::= if (expression) then (series) else (series) fi
I if (expression) then (series) f i .

65

(loop) ::= for (identifier) = (arithmetic expr) to (arithmetic expr) do (series) od
I for (identifier) in (arithmetic expr) do (series) od
I for (identifier) row (arithmetic expr) do (series) od
I while (expression) do (series) od .

(function definition) ::= (identifier) ((formals)) = (series)
J (identifier) () = (series) I (identifier) ((formals)) { (series) }
I (identifier) () { (series) } .

(formals) : : = (type) (variables) J (type) (variables) ; (formals) .

(variables) ::= (variable) I (variable) , (variables) .

(list option) ::= (list) I (empty) .

(list) ::= (expression) I (expression) , (list option) .

(block) : : = { (series) } I { (series) } ((list)) .

(on)::= on I on (number) I on+ I on - .

(empty) ::= .

(number) ::= (digit) I (digit) (number) .

(digit) ::= o I 1 I 2 I 3 I 4 I s I 6 I 1 I a I 9 .

(identifier) ::= (lower case letter) I (identifier) (letter or digit) .

(lower case letter)::= a I b I ... I z.

(letter or digit) ::= (lowercase letter) I (digit) I _ J A J . . . I Z .

(sysident) ::= $ I $ (number) .

(group) ::= (simple group) I (group) (simple group) .

(simple group) ::= (family) (number) .

(family) ::= A I B I C I D I E I G I T .

(operator) ::= + I - I * J / I % I ~ I X I Y •

(relation)::= == I != I < I > I <= >= ·

(boolean operator) ::= &:&: I 11 •

(string) ::= 11
{ any sequence of characters except " 11

" and newline } 11
•

(tail) : := { any sequence of characters except "(" and newline } .

(help) ::= help I ? .

(subject) ::= (empty) J { any sequence of characters not including spaces,
newline, parentheses or ">" } .

(quit) ::= quit I exit I ©.

(type) ::= int I vec J mat trm I pol I grp .

(apply) ::= iapply I vapply I mapply .

66

l!E Manual

Chapter 7. REFERENCES

l!E 2.0 Manual DRAFT

A list of the main books and papers that have been of use and/or influence to us
while preparing Lie and may be of use to anyone wishing to be familiarised with Lie
groups. As for a survey of the field, the list is far from complete.

[And 1977) C. M. Andersen, Clebsch-Gordan series for symmetrized tensor
products, J. Math. Phys., 8 (1977), 988-997.

[BecKol 1977) R. E. Beck & B. Kolman (eds.), Computers in Nonassociative
Rings and Algebras, Acad. Press, New York, 1977.

[Bourb 1968) N. Bourbaki, Groupes et algebres de Lie, Chap 4, 5, et 6, Hermann,
Paris, 1968.

[Bourb 1975) N. Bourbaki, Groupes et algebres de Lie, Chap 7 et 8, Hermann,
Paris, 1975.

[Brem ea 1985) M. R. Bremner, R. V. Moody, J. Patera, Tables of dominant
weight multiplicities for representations of simple Lie algebras,
Monographs and Textbooks in Pure and Appl. Math. 90, Dekker,
New York, 1985.

[BrouCoh 1985] A. E. Brouwer & A. M. Cohen, Computation of some parameters
of Lie geometries, Annals of Discrete Math., 26 (1985), 1-48.

[CohGri 1987] A. M. Cohen & R. L. Griess, On finite simple subgroups of the
complex Lie group of type E8 , pp. 367-405 in: Proc. of Symp. in
Pure Math. 47[2) (eds.: P. Fong), Amer. Math. Soc., Providence,
1987.

[Hum 1974] Humphreys, J.E., Introduction to Lie algebras and representation
theory, Springer, New York, 1974.

[Jae 1962] N. Jacobson, Lie algebras, Wiley & Sons, New York, 1962.

[JamKer 1981] G. James & A. Kerber, The Representation Theory of the Sym­
metric Group, Addison-Wesley, Reading MA, 1981.

[Kruse 1971) M. I. Krusemeyer, Determining multiplicities of dominant weights
in irreducible Lie algebra representations, using a computer, BIT,
11 (1971), 310-316.

[McKay ea 1981] W. G. McKay & J. Patera, Tables of dimensions, indices and
branching rules for representations of simple Lie algebras, Lecture
Notes in Pure and Appl. Math. 69, Dekker, New York, 1981.

[MoodPat 1984] R. V. Moody & J. Patera, Characters of elements of finite order
in Lie groups, SIAM J. Alg. Discr. Meth., 5 (1984), 359-383.

Chapter 7 References 67

[Serre 1987]

[Tits 1967]

J.-P. Serre, Complex Semisimple Lie algebras, Springer Verlag,
Berlin, 1987.

J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstel­
lungen, Lecture Notes in Math. 40, Springer, Berlin, 1967.

68 l!E 2.0 Manual DRAFT

l!E Manual

Chapter 8. INDEX

In this index you will find all functions, and operators defined in l!E, and many of
the commands, keywords and terms that are used. When a term coincides with the
name of a function, references to both the term and the function are listed after the
function name.

(·, ·) 31, 43 branching 36, 38
(• , a) 31, 41 break 19
A 30 bruhat 53
+ 9, 13 cart an 41
- 9, 14 Cartan matrix 29, 31
* 9, 14 Cartan product 41
I 14 Cartan type 31
% 14 carttype 41
........ 15 center 41

< 15 central torus 29, 30
<= 15 centraliser 55
> 15, 25 centroots 42
>= 15 centrtype 42
! 15 character 36, 37, 38, 40
! = 15 character matrix 38

....................... 15 classical groups 28
&& 15 clause 16
11 15 closed subsystem 29, 31 , 32
\ 9 closure 42
? 9, 25 coef 16
© 4 coefficient 11
$ 9 collect 4 7
--< 31 compsize 16
p 51 contragr 4 7
abort 4 coset 31, 34, 53
abs 16 coxeter matrix 34, 52
a dams 46 decamp 47
adjoint 46 decomposition 40
adjoint representation 31, 32, 36 decomposition polynomial 35, 37
all_one 16 default group 20
alttensor 46 deg
bigint 25 degree 37
blockmat 16 detcartan 42
blocks 18 diag 16
branch 46 diagram 29, 41

Chapter 8 Index

dim41, 47
distinguished coset representative .. 34
dominant 33, 40, 43, 44
dominant weight 34
domweights 43
edit 24
error 16
exceptional groups 28
exit 4
exponents 11, 34, 44
factor 16
frequency 35
fundam 43
fundamental domain 33
fundamental lie subgroup ... 29, 31, 36
fundamental reflection 31, 34, 35
fundamental root 31, 32
fundamental weight . . 31, 32, 33, 34, 38
garbage collector 25
gc 25
gcol 25
General Linear group 29, 30
grp 12
help 9
higher than 31
highest root 32
highest weight 2, 32, 37
highest weight module 37
highroot 43
iapply 23
icartan 43
id 16
initfile 24
inner product 43
inprod 43
int 10, 40
irreducible representation 37
Laurent polynomial 7, 11
learn 25
length 16, 34, 44
Levi subgroup 32
lexicographic ordering 12
Lie algebra 29, 36
Lie group 29
Lie rank 29
lie under 31
liecode 41
liegroup 41
lierank 41

69

lin 40
listfuns 9
list ops 9
listvars 9
local variable 22
longword 44
lprint 25
lreduce 44
lrreduce . 44
make 23
mapply 23
mat 11
matrix 27
matvec 16
maximal torus 28, 30
module 35 , 37
monfil 25
monitor 25
monom 16
mul
multiplicity 35
multiplicity polynomial 35, 37
n_cols 16
n_rows 16
n_vars 16
nextpart 48
nextpermu 48
norm 43
null 16
numproots 43
off 25
on 25
one parameter subgroup 32, 33
ones 50
orbit 34, 44
orbit matrix 35
partitions 37, 38 , 39, 40, 48
plethysm 39, 49
pol 11
polynomial 27, 40
positive root 32, 37
posroots 43
print 16
prompt 25
ptensor 47
quit 4
read 24
redsetmat 16
reduce 44

70

reduced Weyl word 34, 35
reductive 29
reductive group 30
reflection 35, 45
representation 36, 37
resmat 47
restriction matrix 36, 37
return 20
root 30, 31, 32, 36, 40
root lattice 31, 32
root matrix 32
root system 31, 33
root vector 32, 33
rreduce 45
runtime 25
semisimple element 30, 54
semisimple group 30
semisimple Lie rank 29
semisimple part 28
series 17
setdefault 20
size 16
sort 16
Special Linear group 28, 30, 37
spectrum47, 55
Spin group 28
statement 16
symchar 49
symmetric group 39
symmetrised tensor 39
symorbit 49
symplectic group 28
symtensor 48
term 11

l!E 2.0 Manual DRAFT

tensor 48
tex 13
torus 30
total degree ordering 12
transposition 14
type 9
used 25
vapply 23
variable 9
vdecomp 48
vec 10
vecmat 16
vector 27, 40
vid 9, 17
virtual decomposition polynomial .. 38
virtual multiplicity polynomial .. 37, 38
void 16
waction 45
weight 30, 33, 36, 37, 40
weight lattice 32, 33, 35
weight vector 32, 33
Weyl chamber 33
Weyl group 30, 35
Weyl word 35, 40
weylmat
worbit 45
worbitsize 45
warder 45
write 24
wrtaction 45
wrtorbit 46
wword 46
X 15

l!E MANUAL

Table of Contents

1 Introduction

1.1 About the content of this manual

1.2 Theoretical aspects

1.3 The authors .

2 The Interpreter .

2.1 A first look .
2.1.1 Command prolongation .
2.1.2 Getting help . . .
2.1.3 Variables
2.1.4 File management
2.1.5 Comments
2.1.6 Escape to the shell

2.2 Values
2.2.1 Integer .
2.2 .2 Vector .
2.2 .3 Matrix .
2.2.4 Polynomials
2.2.5 Group
2.2.6 Text .. .

2.3 Operators . . .

2.4 Using functions
2.4.1 Function call
2.4.2 Basic functions

2.5 Statements and clauses
2. 5 .1 Assignment statements
2.5.2 Series
2.5.3 Blocks
2.5.4 Conditional clauses
2.5.5 Loop clauses
2.5.6 Break, return and setdefault

2.6 User defined functions
2.6.1 Function definition
2.6.2 Local variables and blocks
2.6.3 Make and apply .

2.7 Global commands
2.7.1 File management ..
2. 7. 2 Information retrieval
2.7.3 Memory management .
2.7.4 System parameters

- 1 -

1

2

2

3

4

4
9
9
9

10
10
10

10
10
10
11
11
12
13

13

15
15
15

16
17
17
18
18
18
19

20
21
22
22

24
24
25
25
25

3 Terminology

3.1 Lie groups and algebras

3.2 Roots and weights ...

3.3 The Weyl group and its action

3.4 Representation theory

3.5 The Symmetric group and related matters

4 Built-in mathematical functions

4.1 Lie groups

5

4.2 Root systems . .

4.3 The Weyl group .

4.4 Representations .

4.5 Operations related to the Symmetric group

Examples

5.1 General
5.1.1 Reversing the ordering
5.1.2 Union of sets of vectors .
5.1.3 Sum and product of vector entries
5.1.4 Comparing groups

5.2 Roots
5.2.1 All roots
5.2.2 The half sum of the positive roots
5.2.3 Adjoint representation of a non-simple group

5.3 Weyl words
5.3.1 From a Wey! word to a Wey! group element
5.3.2 The Coxeter matrix
5.3.3 All reduced Weyl words of a given element
5.3.4 The Bruhat ordering

5.4 Cosets in The Wey! group
5.4.1 Right cosets .
5.4.2 Left cosets .. .
5.4.3 Double cosets .

5.5 Semisimple elements
5.5.1 SL(n , C)
5.5.2 S0(12, C) .. .
5.5.3 Spectrum . . .
5.5.4 Branching to a centraliser

5.6 Checks
5.6.1 Multiplicities
5.6.2 Branching
5.6.3 The functions symtensor and alttensor

5.7 Extending the function branch
5. 7.1 Branching reducible modules ..
5. 7.2 Branching in semisimple groups

5. 8 Overflow

- 11 -

27

28

30
33
35

38

40

41

41

43

46

48

50

50
50
50
50
50

51
51
51
51

51
51
52
52
53

53
53
53
54

54
54
55
55
56

57
57
57
57

58
58
58

59

5.9 Maximal semisimple subgroups
5.9.1 Levi subgroups
5.9.2 The functions maxsub and resmat

59
59
59

6 Syntax 64

7 References . 66

8 Index 68

- m -

	Scanned-image
	Scanned-image-1

