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A GENERATOR OF PSEUDORANDOM SEQUENCES WITH 

CLOCK CONTROLLED LINEAR FEEDBACK SHIFTREGISTERS 

C.G. Gunther 

Brown Boveri Research Center 

CH-5405 Baden, Switzerland 

EXTENDED ABSTRACT*): During the last years two types of pseudorandom number 

generators based on linear feedback shift registers (LFSR's) have been investi­

gated intensively. The first type of generators is based on the nonlinear 

correlation-immune feedforward combination of the output of one or several 

LFSR's [l]-[2], and the second one is based on a chain of LFSR's in which the 

clock of a given LFSR is controlled by the output of the preceeding LFSR in 

that chain [3]-[S]. The generators of the first type can be chosen to have a 

very large period and excellent statistical properties and to be secure against 

a correlation attack on one or several LFSR's. These generators, however, have 

a linear complexity that only depends algebraically on the length of the 

various LFSR's. The generators of the second type can be chosen to have a very 

large period and a linear complexing that is an exponential function of the 

length of one LFSR. Depending on the exact specifications of the generators 

one will, however, either have bad statistics (stop and go generator) [4] or a 

reduced bit rate (binary rate multiplier) [S]. Furthermore, in both cases the 

generators show some cryptographic weaknesses due to a lack of correlation 

immunity. 
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Considering the complementarity of the strengths and weaknesses of both 

schemes it is tempting to combine them to a new type of generators. These 

generators are composed of n+l LFSR's with the clock of n LFSR's controlled by 

the output of the remaining one and with the output of then LFSR's combined 

by a correlation immune feedforward function to give the output of the genera­

tor. One of the simplest such generator contains three LFSR Is 1\( 'Ttt. and m 
which regularly clocked would generate the sequences K, µandµ. In the genera­

tors considered, the output K of 'k, however, clocks ltt. and its complement 

clocks oil. The outputs of l7l and ffi are finally added to given the pseudorandom 

sequence w: 

t-1 
with ft:= I K s' 

s=O 
ft= t-ft (see Fig. 1). Under certain simple assumptions 

these sequences have a period T which is the product of the periods of K, µ and 

µ and a linear complexity which is lower bounded by a quantity proportional to 

the period K of K. The statistical properties of these sequences are described 

by two measures of randomness based on the autocorrelations 

T-1 
L (l-2wt+T

1
) ... (l-2wt+Tn) 

t=O 

and the frequency of patterns a of length l 

1 
card 1 t £ 1-Tlw . = a T l t+i . i' 

respectively. These measures describe the deviations of the quantities C and C 

from the expectation of C and C for a sequence of statistically independent 
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equidistributed random variables. Under suitable conditions the first measure 

for w is upper bounded by the product of the corresponding quantities forµ 

andµ and the second measure is small for patterns of short lengths. 

These results show that the new scheme can generate sequences which 

fulfil the classical requirements and which are generated at a rate equal to 

the maximal clock rate of the shift registers. Finally we note that the scheme 

is also immune against classical correlation attacks. 
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m 

Fig. 1: A particularly simple generator of the new type. 
The feedback connections of the LFSR's are omitted, 
the inputs represent the clocks. 
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GENERATION OF BINARY SEQUENCES WITH CONTROLLABLE COMPLEXITY 

ANO IDEAL r-TUPEL DISTRIBUTION 

Thomas Siegenthaler Rejane Forre 

Institute for Corrmunications 

Technology 

Amstein Walthert Kleiner 

Information Systems Engineering AG 

Leutschenbachstr_ 45 ETH Zentrum 

8050 Zurich, Switzerland 8092 Zurich, Switzerland 

Abstract: 

A Keystream generator is analyzed which consists of a 

single linear feedback shift register (LFSR) with a 

primitive connection polynomial and a nonlinear feed­

forward logic_ It is shown, how, for arbitrary integers n 

and r and a binary LFSR of length L = n·r the linear 

complexity of the generated Keystream can be determined 

for a large class of nonlinear feedforward logics. More­

over, a simple condition imposed on these logics ensures 

an ideal r-tupel distribution for these Keystreams_ 

Practically useful solutions exist where the keystream 

has linear complexity n-,...-.- 1 together with an ideal r­

tupel distribution_ 

I Introduction 

A common type of keystream generator consists of a single binary 

linear feedback shift register (LFSR) and a feedforward logic (see 

Fig . 1). 

LFSR 

feed. f orwQra' 
ke.~ sfrearn 

Fig. 1 A common type of keystream generator. 
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If the sequence produced by the LFSR has period p, all binary (key-

stream-) sequences of length p are generated by suitable feed-

forward logics. This makes the keystream generator of Fig. 1 

attractive from the theoretical point of view. The type shown in 

Fig. 1 is also of considerable practical interest because it needs 

only a single (instead of several) LFSR. However, in the general 

case the analysis of this type of keystream generator has shown to 

be rather difficult (1). Groth [2) proposed a layered structure for 

the feedforward logic to control the linear complexity of the 

generated keystream. This arrangement generates keystreams of large 

linear complexities, however, the statistics of these keystreams 

are hard to control. Rueppel suggested (3) a simple realisable and 

therefore practically useful class of feedforward logics such that 

a lower bound for the keystream's linear complexity is guaranteed. 

A closely related structure had independently been proposed by 

Gunther/Bernasconi (4) which is also simple realisable and also 

guarantees a minimal linear complexity of the keystream. The latter 

two methods are based on the existence of one or several high order 

products in the corresponding algebraic normalform of the feed-

forward logic. A new approach (8) is proposed here. First, a number 

of "well choosen" delayed replicas (called "phases") of the seqence 

generated by the LFSR are picked then every nonlinear feedforward 

logic is allowed. The analysis uses the theory of finite fields 

GF ( 2...,) . The approach is strongly based on an interpretation of two 

results recently obtained by Brynielsson. It is assumed that the 

LFSR of Fig. 1 has a primitive connection polynomial. 

II Synthesis of keystream generators 

In finite fields every function GF(q) --> GF(q) with x --> f(x) can 

be expressed as a polynomial (5): 

f(x) 

with coefficients 

a .. = 

Oefin1t1on: 

= 

-l 
f(x) )x , 

( 1 ) 

a .. 6 GF(q) 

If the symbol Yk of the sequence {yk} over GF(q) is obtained as yk 

where f denotes the polynomial in 

sequence over GF(q) then {yk} is called a polynomial sequence. 

The following theorem is shown to be crucial for the computation of 
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the linear complexity of the keystream produced by a generator as 

given in Fig. 1. 

Theorem: 1 (Brynielsson [6]) 

Let {xk} be a maximum length sequence over GF(2~) with a primitive 

characteristic polynomial of degree r and let H(i) denote the 

Hamming weigth of the integer i. The polynomial sequence {yk} with 

Yk = f(xk} has linear complexity LK({yk}): 

~ rH(i) 
LK ( {yk}) = LJ a-1 € GF ( 2~), 

Qi.*O 

where the a-1's denote the coefficients in (1). 

At a first glance polynomial sequences together with theorem 1 seem 

not to have any connection to the system of Fig. 1 . Next, this 

connection is worked out with the help of Lemma 1 and Lemma 2 . We 

consider a maximum length sequence {xk} over GF(2~) . Symbols xk 

from GF(2~) may be written as 

xk = X--1.k·u~- 1 + X ·u~- 2 + (2) •• ~-2.k + . . . X1.k"U + Xo.k , 
where the x-1.k's belong to GF(2) and where u denotes a primitive 

element of GF(2~). Then binary sequences {x-1.k}, i = 0,1, .. . ,n-1, 

in (2) are called the binary subsequences of {xk}. 

Lenma 1: (Brynielsson [7]) 

Let {xk} be a maximum length sequence over GF(2~) with (primitive) 

characteristic polynomial p(x) of degree r. The binary subsequences 

{x-1.k}, i = 0,1, ... ,n-l, of {xk} are linear independent and fulfil 

the same linear recursion with an associated (primitive) character­

istic polynomial q(x) of degree L = r·n . 

Therefore, the subsequences {x-1.k} differ only by delays of each 

other. The polynomial q(x) can be determined (7,8]. The following 

Lemma 2 is well known. 

Lerrma 2: 

Let {zk} be a binary maximum length sequence with (primitive) char­

acteristic polynomial q(x) of degree L. Every delayed version {Zk ­

ci}, where d denotes an integer in the range (0, ... ,2L-1] of {zk} 

can be obtained by some linear combination of the sequences {Zk-

1},{zk-::d, ... ,{Zk-L}. 

This means that every 

generated by the LFSR 

phase of 

of Fig . 

the maximum length sequence 

1 can be obtained as a linear 



1-8 

comb1nat1on of the sequences from the L stages of this LFSR. we are 

now ready to establish the connection between Theorem 1, Lemma 1, 

Lemma 2 and a system as given in Fig. 1. Consider a maximum length 

sequence {xk} over GF(2~). Choose any of the binary subsequences 

{x1.k} mentioned in Lemma 1, say {xo.k} . This binary subsequence is 

generated by a binary LFSR of length L, its feedback connections 

are known from q(x). The binary subsequences {x1.k}, i =1,2, 

n-1, are only phase shifts of {xo.k} (Lemma 1) and can be obtained 

as linear combinations of the sequences at the L stages of the LFSR 

that generates {xo.k} due to Lemma 2. (Instead of generating the 

maximum length sequence {xk} over GF(2~) by a corresponding LFSR 

of length r with feedback connections due to p(x), {xk} is 

generated by a (binary) LFSR of length L with feedback connections 

due to q(x) and linear combinations of the sequences occuring at 

the L stages of this LFSR.) Every feedforward logic can now be 

applied to the n bi nary sequences {xo. k}, {x 1 • k}, . . . , {x~-i. k} to 

produce the binary keystream {yk}. This feedforward logic is then 

described as a polynomial f: GF(2~) --> GF(2) with Yk = f(xk) as 

given in expression (1) . The linear complexity of {yk} is computed 

by theorem 1 . The corresponding system is shown in Fig.2 . 

binQr~ LFSR of 

Len9i h L= r-n 

>ro,k 

ED : E:1rklvs~v~ Or 
( EXOR} 

Fig.2 Synthesis of keystream generators. 

Because of the required EXOR blocks, the system of Fig . 2 is a 

slightly restricted version of that shown in Fig. 1. But the linear 

complexity can be exactly determined for arbitrary feedforward 

logics as given in Fig . 2 . So far we have not mentioned the r-tupel 

distribution of the keystream {yk} . The r-tupel ~1 is defined as a 

sequence [Y1 ,Y1+1, .. ,Y1+..--1] of successing symbols of {yk}. The 

set Y = [Yo,Y1, .. ,Y~-1] contains all r-tupels of the sequence 

{yk} of period p. The following definition is useful: 
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Definition: 

A binary sequence {yk} of period p = 2L - 1 exhibits an ideal r-

tupel distribution ~. 1 < r < L, if exactly one of the 2r 

possible and disjoint binary r-tuples occurs 2L-r - 1 times in a 

period of {yk} and each of the others occurs 2L-r times. 

Lerrma 3: 

An ideal r-tupel distribution of~ implies ideal r'-tupel distri-

butions of Y for all r' with 1 < r' < r. 

Proof: 

From an ideal r-tupel distribution follows that exactly one of the 

2r possible and disjoint binary r-tupels occurs 2L-r - 1 times and 

each of the others 2L-r times. Therefore, exactly one r'-tupel, 1 

< r' < r, 

and each of the others occurs 2L-r • 2r-r• = 2L-r• times, as was to 

be shown. 

Theorem 2: 

Let {xk} denote a maximum length sequence over GF(2 .... ) of period 

1 and fa polynomial f: GF(2 .... ) --> GF(2). 

quence {yk} = {f(xk)} exhibits an ideal r'-tupel 

A polynomial se­

distribution for 

a 11 r' with 1 < r' < r for x 6 GF ( 2 .... ) if and on 1 y if 

I {x:f(x) = 1} I ( 3) 

where denotes the cardinality of the enclosed set{.}. 

Proof: 

Assume i{x:f(x) = l}I =band l{x:f(x) = O}i = c with b+c = 2 .... 

and f(O) = 0 . 

. . . 2 .... r - 1 in the maximum length sequence {xk} are disjoint and 

every possible 2 .... -ary nonzero r-tupel occurs exactly once. Binary 

r-tupels in {yk} occur from ~1 = [X-1,X-1+1, .. ,X'"f+.--1] as :t.1 = 
(Y1,Y1•1, ... ,Y1+r-1] with Y1 = f(x1) . First, we note that the 1-

tupel distribution of~ is such that [1)-tupels occur b times and 

(0)-tupels occur c-1 times. Therefore, the 1-tupel distribution of 

Y is ideal iff b=c=2 .... - 1 . Lemma 3 implies that none of the r'-tupel 

distributions for 1 < r' is ideal if the 1-tupel distribution of~ 

Therefore, (3) is a necessary condition for an ideal r-is not . 

tupel distrubution of~- This condition is also sufficient as is 

shown now . First, nonzero r-tupels :i(.1 are considered. From the 
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assumption f(0) = 0 follows that for nonzero ~1's the involved ~ 1 's 

are nonzero too. From (3) follows that there exist 2~- 1 values x 1 , 

such that f(x1) = Y1 = 1 (or 0). Hence, the number of r-tupels ~1 
which are mapped into the same nonzero binary r-tupel ~ 1 is (2~- 1 )r 

or 2L-r for L = n·r. It remains to consider r-tupels ~1 = 0. From 

(3) follows that c2~- 1 )r 1 or 2L-r - 1 for L = n·r r-tupels ~1 

are mapped into ~ 1 = Q, where the -1 accounts for the missing r-

tupel ~1 =Qin the maximum length sequence {xk}. This completes 

the proof. If f(0) = 1 is assumed, a similar proof exists. 

From theorem 2 follows that a system as given in Fig. 2 generates a 

keystream {yk} with an ideal r-tupel distribution iff the poly-

nomial f:GF(2~) --> GF(2) which describes the feedforward logic of 

Fig. 2 fulfils condition (3). The designer of such a system prefers 

polynomials f as given in (1) such that the following properties 

hold: 

i) f:GF(2~) --> GF(2) (produces a b1nary sequence) 

ii) f such that l{x:f(x) = l}I = l{x:f(x) = 0}I (ideal r-tupel 

distribution) 

iii ) 

iv) 

f produces a keystream of large linear complexity 

f is easy to implement. 

Solutions which fulfil all of the above requirements are described 

in (9) and will be discussed. For given integers rand n binary 

keystreams {yk} are produced which exhibit ideal r-tupel distri-

bution together with a linear complexity LK({yk})=n·r~- 1 . 

III Conclus1ons 

Keystream generators have been discussed which consist of a single 

binary LFSR and some feedforward logic. A new synthesis method has 

been proposed which is based on results recently obtained by 

Brynielsson. This method allows for a large class of feedforward 

logics to determine the linear complexity of the generated 

keystream. Moreover a simple necessary and sufficient condition has 

been derived to obtain keystreams which exhibit ideal r-tupel 

tributions. 

dis-
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Some Remarks on the 

Cross Correlation Analysis of Pseudo Random Generators 

S. Mund, D. Gollmann, T. Beth 

Abstract 

We consider pseudo random generators consisting of linear feedback shift 

registers and a coupling function. Siegenthaler has shown how cross 

correlation techniques can be used to identify the initial state of such 

a pseudo random generator. His algorithm takes time O(R2rN) to identify 

the initial state of one register. r denotes the length of the register, 

R the number of primitive polynomials of degree r, and N the number of 

bits one has to observe. Employing Walsh-Hadamard transform one can 

achieve a speed up to an O(R(r2r+ N)) algorithm. 

We can show that there exists a trade-off between the dimension of the 

Hadamard matrix and the number of bits one has to observe. This 

yield a further speed up to an O(R(r2r-
6

+ 26N)) algorithm. We then 

the Multiplex-Generator as an example to demonstrate this algorithm. 

may 

use 

Furthermore we examine the correlation immunity of the S-boxes used in 

the DES. Some of these show an "outlier" behaviour which is compared to 

the known irregularities of S-Boxes that have been reported. 
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Sequences with almost perfect linear complexity profile 

Harald Niederreiter (Vienna, Austria) 

Extended abstract 

For stream ciphers one needs pseudorandom sequences, i.e. 

deterministic sequences with acceptable randomness properties (see 

[2], [4]). A useful measure for randomness from the cryptographic 

viewpoint is the linear complexity of a sequence (see [1], [4]). 

Sequences with a linear complexity profile similar to that of truly 

random sequences may be viewed as pseudorandom sequences. We 

establish connections between the linear complexity profile of a 

sequence and the continued fraction expansion for the generating 

function of the sequence and we use these connections to analyze 

randomness properties of the sequence. 

Let F be the finite field with q elements, where q is an 
q 

arbitrary prime power. For a sequence s
1
,s

2
, ••• 

and any positive integer n, the linear complexity 

of elements of F 
q 

L(n) is defined 

as the least k such that the initial segment s
1
,s2 , ••• ,sn of the 

sequence can be generated by a kth-order linear recursion (or equivalently 

by a feedback shift register with k delay elements), with the provision 

that L(n) = 0 

L(1),L(2), ••• 

if s = 0 for 1 Li L n. The nondecreasing sequence 
i 

of nonnegative integers is called the linear complexity 

profile of the sequence s
1

,s
2

, •••• In the binary case q = 2, 

Rueppel [3] has shown that for random sequences the expected value 

n L L 5 of L(n) is 
2 

+ en with O en_ 18. This has led to the following 

notion: a binary sequence has a perfect linear complexity profile if 

L(n) = l(n+1)/2j for all n ~ 1. Wang and Massey [5] proved that the 

binary sequence s
1
,s

2
, ••• has a perfect linear complexity profile if 

and only if it satisfies s = 1 1 
and for all 
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Thus, every second term in a binary sequence with perfect linear 

complexity profile depends in a known manner on previous terms, an 

unsatisfactory state of affairs in a pseudorandom sequence. 

Therefore we consider sequences with almost perfect linear 

complexity profile, i.e. sequences for which small deviations of 

L(n) from its expected value are allowed. A relationship with continued 

fraction expansions is obtained 

be a sequence of elements of F 
q 

in the followi~ way .. Let 
~ -1 

and let S = ,e__ s.x 
i=l 

1 
be its 

generating function, viewed as a formal power series in 

S has a unique continued fraction expansion 

-1 
x Then 

where are polynomials over 

K( S) = s u p 
j ~ 1 

deg(a.). 
J 

F 
q 

of positive degree. We put 

Theorem 1. If s
1
,s

2
, •.. is nonperiodic (or, equivalently, if S is 

not a rational function) and K(S) < oc , then 

½(n + 1 - K(S)) L L(n) ~ ½(n + K(S)) for all n ~ 1. 

With an appropriate choice of the polynomials a. 
J 

we can therefore 

construct sequences for which L(n) is always close to (n+l)/2 . We 

have the following partial converse of Theorem 1. 

Theorem 2. If satisfies L(n) L (n+l)/2 

and lim L(n) = co, then K(S) = 1. 
n-}>oo 

for all n ~ 1 

Corollary. The sequence s
1

,s
2

, .•• satisfies L(n) = l(n+l)/2J for 

all n ~ 1 if and only if it is nonperiodic and K(S) = 1. 

In the case q = 2 we get in particular a new proof of the Wang­

Massey characterization of binary sequences with a perfect linear 

complexity profile. Applications of these results to the construc­

tion of cryptographically useful pseudorandom sequences will also be 

discussed. 
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Eurocrypt 87, April 13-15, Amsterdam, The 

When Shift Registers Clock Themselves 

Rainer A, Rueppel 
Crypto AG 

6312 Steinhausen 
Switzerland 

A new class of sequences, which we term (d,k]-self-decimated 
sequences, is investigated. It is proved that when a binary m­
sequence of degree L is [d,k]-self-decimated and [d,k]=t[l,2] 
with gcd(t,2L-1), the resulting sequence is periodic with period 
l(2/3)(2L-l)j. Whens denotes the semi-infinite periodic part of 
such a [d,k]-self-decimated m-sequence, it is shown that the 
short-term statistics of s are close to being ideal. The number 
of ones within a period of sis proved to be l(l/3)(2L-l)j which 
results in a perfectly balanced distribution when L is even. 
Tight upper and lower bounds for the frequencies of bit-pairs 
within a period of§ are derived which imply that the most 
frequent bit-pair can occur at most 3 times more often than the 
least frequent bit-pair, thereby demonstrating the flatness of 
the pair-distribution. Furthermore, exhaustive searches indicate 
that almost always the linear complexity (or linear span) of§ 
meets its theoretical maximum (which is the period length). Also 
empirically it is shown that the periodic autocorrelation 
function of§ has in general a low out-of-phase magnitude. These 
properties suggest that this new class of sequences may have some 
applications in cryptography and spread spectrum communications. 
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1. Introduction 

Imagine we let the output sequence of a binary linear feedback 
shift register determine its own clock in the following way: 
whenever the output symbol is a 'O', d clock pulses are applied 
to the LFSR, and, in case the output symbol is a '1', k clock 
pulses are applied to the LFSR. Figure 1 illustrates the system. 

-s - rn- LFSR 
dock 

0-+- ~ 
i~k 

Suppose the above LFSR has a primitive connection polynomial 
C(D)=l+D 2 +D 3 +D 4 +D 5 and is started in state [1 1 1 1 1]. When the 
self-clocking rule [d,k] is chosen to be [1,2] (i.e., for a 'O', 
the LFSR is clocked once, and for a '1' the LFSR is clocked 
twice), then the following periodic sequence will appear at the 
output of the system: 

s = (1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 1) 

This sequence has remarkable properties: (1) the distribution of 
k-tuples is 'balanced' (to be more precise: for l<k<3, the 
frequencies of k-tuples differ by at most 2); (2) the linear 
complexity (or linear span) of s is 20, which is the maximum 
possible for a sequence of period 20; (3) the periodic 
autocorrelation function of s has a peak out-of-phase magnitude 
of 0. 
This self-clocking operation can be interpreted as a 
generalization of the well-known and widely-studied decimation 
operation for LFSR-sequences. The conventional decimation of a 
sequencer by a constant dis defined as the extraction of every 
d-th digit of r, usually denoted as r[d]. When a binary 
sequence r is [d,k]-"self-clocked", then it is no longer 
decimated by a constant but by a function which depends on the 
value of the previous sequence digit; we will term the resulting 
sequence a [d,k]-self-decimated sequence. Let r be the original 
m-sequence produced by the LFSR in Figure 1. Then the following 
figure compares decimation by 2, and the [1,2)-self-decimation of 
r into s. 

re 21 = 

? = ! \'>~1 0 1 1 0 1 0 1 0 o ••. 

JI/~~ 
r[l,2] = 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 o .•• 



II-7 

2. Theoretical Results 

Let r be a binary m-sequence whose characteristic polynomial has 
degree L, and lets be the periodic part of r[d,k] (which is 
equivalent to assuming that the phase of r was chosen such that 
r[d,k] has no preperiod. Then the following results can be 
proved. 

Theorem 1: 
The period of any [d,k]-self-decimated sequence s=r[d,k], 
where [d,k]=t[l,21 mod (2L-l) with gcd(t,2L-1)=1, is 

T = l (2/3) (2L-l)j 

Theorem 2: 
The absolute frequencies of bits, N(b), within a period of 
any [d,k]-self-decimated sequence ~=r[d,k], where 
[d,k]=t[l,2] mod (2L-1) with gcd(t,2L-l)=l, are given as 

N(l) = L (1/3) (2L-l)j 
N(0) = T-N(l) 

Note that theorem 2 implies that when L is even the bit 
distribution is perfectly balanced, that is, N(0)=N(l)=T/2. 

Theorem 3: 
The absolute frequencies of bit-pairs, N(b1bz ), within a 
period of any [d,k]-self-decimated sequence s=r[d,k], 
where [d,k]=t[l,2] mod (2L-l) with gcd(t,2 1 -1)=1, are bound 
by 

with 

N■ 1a(b1bz) 'N(b1bz) ~ Na1a(b1bz) + 2 

N.1 a (00) = l (1/6) (2L-8) j 
N.1.(0l) = L (1/6)(2L-4) J 
Na1a(l0) = Naia(ll) = l (1/6)(2 1 -2) J 

Since the lower bounds on the absolute frequencies of the bit­
pairs differ by at most 1, we conclude that the most frequent 
bit-pair can appear at most 3 times more often than the least 
frequent bit-pair within one period of s. 

3. Simulation Results 

In our simulations we concentrated so far on (1,2]-self-decimated 
m-sequences for degrees L=3, ••• ,ll. It showed that the pair­
distributions, for a given L, where independent of the 
characteristic polynomial of the m-sequence. Exhaustive searches 
over all primitive polynomials of degree L=5,6,7,8 revealed the 
following averages and minimum values for the linear complexities 
of (1,2]-self-decimated sequences: 



L 

T 

L■ 1 ■ 

5 

20 

19,3 

16 

11-8 

6 

42 

38,7 

33 
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84 

82 

78 

8 

170 

169,3 

166 

The proximity of Lavi to the period length T and the largeness of 
the minimal encountered linear complexity L■ 1 ■ speak for 
themselves. 
Another topic of interest is the periodic autocorrelation 
function. Exhaustive searches over all primitive polynomials of 
degrees L=4,5,6,7 revealed the following averages Ravi and 
minimum values R■ 1 ■ for the peak out-of-phase autocorrealtion 
magnitude of [1,2)-self-decimated sequences: 

L 

R■ 1 ■ 

4. Conclusion 

4 

4 

2 

5 

4 

0 

Both the theoretical and the empirical 
ease of generation, indicate that the set 
m-sequences may have some applications in 
spectrum communications. 
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results, as well as the 
of [d,k]-self-decimated 
cryptography and spread 
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Finite State Machine Modelling of Cryptographic Systems in LOOPS 

Franz R Pichler 
Systems Theory and Informations Engineering 
Institute of Systems Science 
Universisity of Linz 
A-4O4O Linz,Austria 

Abstract 

Finite State Machines constitute important mathematical objects 

for modelling electronic hardware specified above the register transfer 

level. Furthermore,by their recursiveness Finite State Machines are 

convenient means for realizing infinite wordfunctions built over 

finite alphabets. The related theory, the "finite automata theory" 

or also the "theory of sequential switching circuits" is well developed. 

However, by the poor standard of computer aided design tools in 

earlier years, engineers could not use this theory a lot in logic 

design. We believe that today, by the availability of modern workstations 

and object-oriented programming techniques, it is possible to 

enhance the design environment of an engineer by automata theory 

in an important way. 

It is wellknown that many functions of cryptographic systems can 

be modelled by finite state machines. In that area of application 

they are appropriate means for model specification which give support 

to hardware-realization as well - and this is the more important part 

for our work here - to theoretical analysis tasks, such as machine­

structure identification by experiments, investigation of controllability 

and observability properties or machine decomposition.In our lecture 

we want to deal which such tasks. For doing this we introduce the 

classes of VERNAM-machines,outputfeedback-machines,prime-machines 

and one-way machines to define important classes of finite automata 

which are used in stream-ciphering, block-ciphering and for the 

realization of one-way functions. 
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The lecture continues to investigate subclasses of finite state 

achine which have important properties for cryptographic applications. 

For example, in the class of outputfeedback-machines the subclass 

of machines with finite memory is important for the construction 

of selfsynchronizing cryptographic systems, as used for example 

in analog speech scrambling in mobil communication networks. 

A main goal in investigating subclasses is to find classes of 

machines which have a nice algebraic or combinatorical structure 

to allow by the existing theories efficient symbolic computation. 

In order that finite state machine theory becomes effective in 

cryptographic applications it is badly needed to know about methods 

to speed up existing algorithms and to be able to make some estimation 

on lower bounds of complexity measures. 

For computer support of our research in that direction we use 

the AI programming system LOOPS and the programming language 

INTERLISP-D running on a SIEMENS/XEROX dandelion workstation. 

A goal for the future is to build an expertsystem for finite state 

machine theory which is applicable to cryptography. It is my hope 

that the lecture will convince the cryptographic research community 

that by the existing modern tools for explorative programming 

and Rapid-Prototyping the theory of finite state machines has high 

potentials for beeing used in cryptographic design. 
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Random Sources for Cryptographic Systems 

G.B. Agnew 
Dept. of Electrical Engineering 

University of Waterloo 
Waterloo, Ontario, Canada 

Random and pseudorandom sources have long been of interest in 
the study of statistical processes. In these systems, pseudorandom 
sources (PRS) are preferred over true random sources (TRS) as repeata­
bility (recreatability) of observations is important. 

In cryptographic systems, true random sources are preferred in 
some instances to prevent penetration or influence of the system (some 
cryptographic systems in fact assume the availability of a true random 
source [1], [2]). It is observed that the strongest cryptographic system 
may be rendered insecure if an attacker can influence the generation of 
keys (presumably either by a PRS or TRS). 

In this study we define a binary true random source (BTRS) as a 
device which generates an output pattern of 1 's and O's such that they 
are bitwise iid and all 2n sequences of n bits are equally likely for any 
integer n. BTRS are generally based on measuring naturally occurring 
events such as sampling diode shot noise [31, time between radioactive 
particle decay, etc.. These devices are generafly built external to the dev­
ice using the random source. This is done for a number of reasons. First, 
the technology used for the random source is generally incompatible with 
the technology used for the cryptographic system ( cryptodevice ). Second, 
due to the nature of the process observed, temperature control or com­
pensation is generally required. Third, shielding to prevent influence or 
observation may be required. Finally, if the random source is proven bias 
at a later date, it can be replaced by another source without redesign of 
the cryptodevice. 

There are several drawbacks in using an external random source. 
If the system is subject to observation or influence along the path from 
the source to the cryptodevice, then the system may be insecure (in some 
cryptographic systems, it may not be necessary or desirable to expose the 
outcome of the random source to the external environment, e.g., Diffie­
Hellman key exchange protocol [2]). To provide a cryptographically 
strong BTRS for implementation on a cryptodevice, several criteria must 
be met: 

i) Compatibility with device technology 
ii) Immunity to observation or influence 
iii) Stability of source output and freedom from bias. 

By including the BTRS as part of the cryptodevice, most observation 
attacks can be avoided. Outside influence on the other hand, can take on 
several forms. A good BTRS should provide immunity from outside influ­
ence due to: 
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i)Modulation of grounds, power, input or output lines 
ii) electromagnetic fields or radiation 
iii) temperature manipulation 
iv) forced resetting of the device to a known starting state. 
In this study we examine several techniques and structures for a 

VLSI implementation of a BTRS compatible within a cryptodevice. We 
model these structures, examine their output patterns and study how 
these designs meet the above requirements. 

References 
1. R. Rivest, A. Shamir, L. Adleman, 'On digital signatures and public 

key cryptosystems', Comm. of ACM, Vol. 21, Feb. 1978, pp.120-126 

2. W. Diffie, M. Hellman, 'Privacy and authentication : An introduction 
to cryptography', Proc. of the IEEE, Vol. 67, March 1979, pp. 
397-427. 

3. D. Kahn, 'Cryptography and the origin of spread spectrum', IEEE 
Spectrum, Vol. 21, no. 9, Sept. 1984, pp. 70-80. 
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Physical Protection of Cryptographic Devices 

Andrew J. Clark BSc. (Hons) A.M.I.E.E. 
R & D Manager, Computer Security Limited 

With the growth of user awareness for the need to protect 
sensitive computer data by cryptographic means, this paper 
explains the need to protect critical cryptographic variables 
(particularly cryptographic keys, and in some cases algorithms) 
in a secure environment within cryptographic equipment. 

The principles of cryptographic device design are outlined, 
leading to the concept of tamper resistant and not tamper proof 
devices to protect key data, whether the data be retained within 
physically large devices or on small portable tokens. 

Tamper resistant design criteria for the detection of attempts to 
gain access to sensitive data rather than attack prevention are 
outlined, together with two types of attack scenario - invasive 
and non-invasive. 

Potential adversary's attack objectives are suggested together 
with a system designer's defence strategy; including design 
solutions to invasive and non-invasive attacks. 

Typical detection mechanisms and sensor systems are discussed 
plus the design trade-offs that must be made in implementing 
tamper resistant cryptographic devices; in particular 
manufacturing and maintenance costs versus scope of attack 
protection. 

Once an attack is detected, various data destruction mechanisms 
may be employed. The desirability of active data destruction by 
"intelligent" means is proposed, together with a discussion of 
alternative techniques with particular reference to the data 
storage device characteristics. These device characteristics 
(physical, electrical, electrostatic etc.) may well limit the 
practicality of reusable data storage and demand the use of a 
non-reversible destruction technique. Some potential problems of 
latent data retention in memory devices are explained with some 
alternative storage strategies. 

Some experiences of tamper resistant research and development 
highlight the potential manufacturing problems - particularly in 
respect of quality assurance, product fault analysis and life­
testing. Production engineering goals are identified both for 
current types of technology and future systems. 

The desirability of tamper resistant standards and independent 
assessment facilities is expressed and a comprehensive check-list 
of design features is included which a prospective system builder 
may find useful when specifying requirements for cryptographic 
products. The applicability of such standards and large scale 
protection methods on intelligent tokens, in particular smart 
cards and personal authenticators, is discussed. 
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The presentation closes with a view of future 
product design with particular reference to 
distributed network security. 

trends in secure 
EFTPOS systems and 



111-5 

THE RSA CRYPTOGRAPHY PROCESSOR 
The First Very High Speed One-Chip Solution 

Bolger Sedlak 
Institut fiir Theoretische Informatik 

Technische Universitat Braunschweig 
D-3300 Braunschweig 

Federal Republic of Germany 
(531) 391-2384 

Extended Abstract 

In commercial applications a minimum ciphering rate of 64 Kbit/ sec is required which will be the 

transmission rate of public digital networks. In contrast, the RSA method has a very slow ciphering 

rate particular when using software implementations of the algorithm. The solution of this problem 

is a hardware implementation of the RSA algorithm. A cryptography processor, however, consisting 

of standard chips like bit slice processors again does not achieve the necessary speed . Moreover, in 

a multi-chip processor, the security of the key management system cannot be guaranteed. Therefore, a 

single-chip implementation of the RSA algorithm seems to be the only solution, for example the presented 

RSA Cryptography Processor. 

The problem which now arises is the handling of very long numbers . If one wishes to cipher a 200 

digit decimal number, then the length of each key is 660 bits. The RSA Cryptography Processor has to 

execute the following function 

C=MEmodN 

C is the generated code, M is the data, and E and N together are the public encoding key. The same 

function is used for decoding, so the fast execution of this function is the heart of the problem. In this 

form, the function is not executable, but after some transformations the function is reduced to a sequence 

of additions and subtractions, i.e. inverse additions. In order to get a ciphering rate of 64 Kbit/ sec, the 

RSA Cryptography Processor has to add two 660 bit numbers with a speed of 30 million operations per 

second. The time critical phase of each addition is the delay of the carry bit as long as the lowest bit 

position may influence the highest one. 

Rather than using a normal arithmetic logic unit, a special "elementary" cell was designed which is 

only capable of calculating the RSA ciphering, i.e. high speed additions. A new carry look ahead logic 

(CLA) was designed reducing the time for carry bit calculation to a minimum. In this CLA, the addition 

is normally calculated in a single processor cycle. For long carry bit calculations, the CLA increases the 

calculation time for this addition to more than one cycle. The major advantage of this proceeding lies in 

the fact that the rate of addition is not determined by the longest lasting addition, but by the average 

adding time. 
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Furthermore, look ahead methods were developed which reduce the maximum number of additions. 

This reduction is achieved by auxiliary circuits operating in parallel with the actual addition circuits. 

The addition and the auxiliary circuits resulted in a relatively large elementary cell of 40 x 600 lambda. 

These features enable the Ciphering Unit (CU) of the RSA Cryptography Processor to encode and 

decode data with a minimum rate of 64 I<bit/ sec, even if, in the worst case, the keys have their maximum 

length of 660 bits. This rate of ciphering is about 10 000 times faster than any software solution of the 

RSA method . Compared with the hardware solution of Rivest (2], the CU is more than 50 times faster 

and the maximum length of the keys is about 30 percent higher. The acceleration of the CU is based on 

its specialized architecture. In contrast, the chip of Rivest has the same architecture as a general purpose 

arithmetic logic unit. 

All the other RSA implementations known to the author suffer from one or more of the following 

restrictions: the ciphering rate is too low (e.g. the "Security Processor C .R.I.P.T ." in (6] with a rate of 

less than 10 I<bit/ sec); the key length is too low; or several chips are needed ( e.g. the "NEC/Miyaguchi" 

design in (5) with a rate of 29 I<bit/ sec, a key length of 660 bits and a solution of 333 chips). 

In contrast to all of them is the RSA Cryptography Processor. The heart of it consists of two 

independent CUs with a size of 340 and 440 bits. For encoding, both CUs work together as one 780 bit 

sized CU, for decoding each of them work independently using the ad vantages of the Chinese Remainder 

Theorem. This results in an encoding rate of 3 Mbit/ sec if using as exponent Fermat's 4th number and 

in a decoding rate of 0.2 Mbit/ sec if the two primes do not exceed the size of the CUs. 

Furthermore, the RSA Cryptography Processor has a shell around its kernel. So it is not only a very 

fast ciphering processor but a "Cryptograhic Area" which means that 

• "Cryptographic Actions" like "Load a new key and accept it only if the certificate is correct" can 

only be started but not manipulated from outside the chip, 

• signatures (certificates) are automatically generated respectively checked, 

• secret memory is neither readable nor writeable from outside the chip, and 

• it exists the possibility of generating new keys. 

The hash function implemented to compute the signature is the one developed at SEPT (6] . This function 

has no additionally redundancy bits: 

l. Divide M into m blocks B; less than N 

Ho= 0, 
2. Perform 

H; = (H;-1 + B;) 2 + B; mod N 

3. Hm is the result. 

The key generation is done by the Monte Carlo method using only the strong pseudoprime test. The two 

primes p and q were computed in the known way: p - I has a large factor p', p' - 1 has a large factor p11
, 

and the same for q, respectively. But in addition to that caution, q is calculated such that 

gcd ( N - I , E) = gcd (p x q - 1, E) = E = ~• + l. 
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This property prevents an illegal installation of a key N Attad:er which is not certificated by the secret key 

DAuthority but by the manipulated "secret" key 

D~ttacker = E-l mod (NAuthority -1). 

This attack is possible if NAuthority is a pseudoprime to the base H(NAttacker) and if gcd (NAuthority -

1, E) = 1. The possibility of the last condition is very high if the two primes are computed in the known 

way. The presented way of key generation prevents this attack. 

For users, the following features of the RSA Cryptography Processor are of intersest: 

• operation as a co-processor, 

• three DMA channels for three independent data streams of 64 Kbit/ sec, 

• key generation takes an average time of 2 sec, 

• 8 bit wide data bus, 

• parallel operation of the CU and the 1/0 Unit, 

• about 150 000 transistors in 1.5µ-CMOS technology, and 

• chip size of approximately 5mm x 4.8mm. 

So far, a prototype consisting of about 5000 5µ-NMOS transistors has been realized . This chip 

contains all major parts of the RSA Cryptography Processor in a small version. Furthermore, based 

on the experience with the 5µ-NMOS process, the performance rates of the 1.5µ-CMOS process were 

obtained by theoretical considerations and at full length simulations. The development of a 1.5µ-CMOS 

design of the RSA Cryptography Processor will soon be completed and therefore, first prototypes will be 

available for testing in fall 1987. 
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Extension of Brickell's Algorithm for Breaking 
High Density Knapsacks 

F. Jorissen, J. Vandewalle, R. Govaerts 
Katholieke Universiteit Leuven, 

Department of Electrical Engineering, ESAT Laboratory 
K. Mercierlaan 94, B-3030 Heverlee, Belgium 

Extended Abstract 

A knapsack (or subset-sum) problem that is useful for 
cryptographic purposes, consists of a set of n positive integers 
a= {a1, a2,··· ,an}, called the knapsack a, and a sum s. 
The density d of a knapsack is defined to be n/log2(ai)max· 
The knapsack problem then consists of finding the set, if any, of 
binary numbers x = {x1, x2,··· ,xn}, such that ~xi.ai = s. 

In {2}, E.F.Brickell presented an algorithm for breaking 
knapsacks of low density. It was expected {2} that an improved 
version of it would solve most knapsacks of density less than 
.54. For knapsacks of increasing density, the probability of 
having so-called "small coefficient identities" (SCI's) in the 
knapsack also increases. The presence of these SCI's appears to 
be the reason for the failure of Brickell's algorithm for 
knapsack problems of high density. 

In_ this_2aperL_ a _simple_technigue_ is_proposed _ _ for __ circumventing 
this __ problem _ _ effectivelyL_so_that_ the _algorithm_becomes_capable 
of _solving_knapsacks_of_higher_densities. 

Tests have shown that the effectiveness of the algorithm can thus 
be increased to solve knapsacks of densities even> .9 with high 
probability and reasonable supplementary computer power. 
Since the number of available knapsacks decreases very quickly 
with its density (cfr. fig. p.7), only a relatively small set of 
high density knapsacks remains safe for cryptographic purposes. 
Finding safe knapsacks may therefore become very hard. 
Moreover, all the advantages of Brickell's algorithm are 
preserved. The most important of these is that the algorithm is 
applicable to any knapsack public-key cipher based on the 
knapsack problem mentioned above, whether the cipher already 
exists or is to be invented. 
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We shall now give a very brief overview of Brickell's algorithm 
and the improvements that have been accomplished. More details 
can be found in {2},{1}. Brickell made the basic observation that 
a knapsack problem ~xi.ai=s is in fact a linear equation inn 
binary unknown xi and with non-zero sums. He concluded that if n 
linear equations (Exi•Yji sj(k)) could be found such that: 
- they are not linearly dependent of each other 
- they all conform to the solution x of the knapsack problem 
- that finding such set of equations is computationally feasible 
that then each knapsack (problem) for which this is possible may 
be regarded as solved. 

In the first part of his algorithm, a technique is described to 
construct a nxn matrix Y from which the rows Yj correspond to the 
coefficients of the n equations in then unknown xi. The first 
row Y1 of Y consists of the elements bi= ai.W mod M. The other 
rows of Y are derived by applying modular mappings with the small 
sum property on previous rows of Y.{2},{1} These modular mappings 
are calculated with the L.L.L. - algorithm {3}. 

In the second part of his algorithm it is proven that 
~xi.bi e {s', s'+M, ... 
Thus n integers s'(k) 

,s'+(n- 1)M} , with s' = s.W mod M. 
= s'+k.M (Osksn-1) are derived , exactly one 

of which corresponds to the correct binary solution x. Because 
all rows of Y, except for the first one, have been calculated by 
applying modular mappings with the small sum property on previous 
rows, we can now calculate {2},{1} from the set of possible sums 
of the first rows' (k), a new set of possible sums sj(k) for 
every other row j, with: 

sj(k) = Exi•Yji ' assuming that Exi.bi = s'(k). 
(for exactly one constant value of k , sj(k) will be the sum of 
the new knapsack problem LXi•Yji = sj(k) with the same x as the 
original knapsack problem, and this for every row Yj of Y.) 
For each of the values k we can thus compose a nx1 matrix S(k) 
and we can calculate the possible solutions x as nx1 matrices X 

from the matrix problems Y.X = S(k). 
If indeeds is the sum of a subset of the ai 's then one of the 
vectors S(k) will give a correct Qi~~~y solution X for y- 1 .s(k) . 

If the first part of the algorithm can be completed then it is 
always straightforward to execute the second part 
the knapsack problem. 

and to solve 

In experiments run by 
always successful except 
the ai's of the form: 
Ea .a = 0, with Lia 

i i 

Brickell, 
when there 

s n. 

his algorithm appeared to be 
were identities satisfied by 

i 
Such an identity is called a "small coefficient identity" (SCI) . 



It appears that some "dangerous'' types of these SCI's are easily 
"inherited'' from one vector to another through the use of modular 
mappings, and in particular by modular mappings with the small 
sum property.{1} Brickell also demonstrated that the expected 
number of SCI's of a given knapsack increases with its density. 

Through experiments it has come clear to us that the basic 
algorithm of Brickell fails for knapsacks of high densities 
because the given knapsack contains one or more SCI's. Since the 
first row Y1=b of Y, consisting of the numbers bi, is derived 
from the numbers ai through a modular mapping, some of the SCI's 
present in the knapsack a are inherited by the first row of Y. 
Since all the other rows of Y are analogously derived through 
modular mappings with the small sum property of the previous 
rows, it may happen that one or more of the dangerous SCI's of 
the initial knapsack are present in all the possible rows of Y. 
As a consequence of this, it becomes impossible to find a matrix 
Y with linearly independent rows and the algorithm fails. 

In order to be able to still use Brickell's algorithm in these 
cases, we propose to construct the first row b of Y such that its 
expected number of SCI's is smaller than unity. Hereto we proved 
that the density of bis so small for practical dimensions n that 
it would normally not contain any SCI's if it was constructed 
randomly. It is also proven that, by construction, b can 
exclusively inherit SCI's present in a, for practical dimensions 
{1}. It may therefore be concluded that the SCI's of bare mainly 
introduced by the non-random character of b. 
We therefore propose to construct bas bi= 
The numbers ki can initially be regarded 
random numbers. It can be proven that as 
LXi.bi e {s', s'+M, ... ,s'+(n-1+Lki)}. 

ai.W mod M + ki.M. 
as relatively small 
a consequence of this 

So it remains possible for this choice of b to determine LXi.bi, 
but n+Lki vectors S(k) have to be tested instead of n. It is 
therefore advantageous to keep Lki small, e.g. by restricting 
all the ki's to ki e [1,K], in which K is a small positive 
integer value. It has been mathematically and experimentally 
verified that this new technique has several advantages: 
- b can still exclusively contain SCI's of the knapsack a. 
- Therefore,b can only contain SCI's if at least one of the SCI's 

of a is still present in b, the probability of which decreases 
with increasing K. 

- The average supplementary computer power needed, however, can 
be roughly estimated as the processing of (K-1).n/2 extra 
vectors S(k), and the implications of larger values of the 
bi's, mainly on the execution time of the L.L.L.-algorithm. 
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These results have been verified experimentally for knapsacks of 
low dimensions n, in two ways. 
1. Knapsack problems with knapsacks of low dimensions and high 

density have been tested. 
For example the knapsack problems with knapsack: 
- a { 2 5 , 6 , 1 0 , 20 } , with - dimension n = 5 

- high density d = 1.16 
could not be solved with the original algorithm of Brickell due 
to the inheritance of the SCI a= { 0 , 0 , 0 , 2 , -1 } from a 
to band from there to all possible rows of the matrix Y. 
This knapsack was however solved with the better choice of b. 
2. Computer tests have been run on the effectiveness of both 

the original and the new version of Brickell's algorithm. 
The purpose of these Monte-Carlo tests was to gain experimental 
results on the probability that b contains SCI's, for both 
algorithms. As parameters were chosen the dimension n and the 
density d, plus, for the new algorithm, the value of Kand the 
number of trials T ( i.e. the number T of vectors k that may be 
chosen for a given knapsack to try to find a SCI-free vector b 
for it). While considering the figures (p. 5), we must bear the 
following in mind: 
- All figures represent dimension 5. Calculations were also made 

for dimension 8. For higher dimensions, the figures appear to 
remain flat till higher densities but then fall steeper. 

- The figures give rather pessimistic results since: 
- Pessimistic approximations had to be made to calculate them. 

It has been assumed that finding a SCI-free vector b is a 
necessary condition for solving a knapsack. To our experience 
however, a lot of knapsacks with b contaminated by SCI's 
could be solved,since only for dangerous SCI's the probabili­
ty is high that they are inherited by all possible rows of Y. 

- In case only one SCI is transported through all possible rows 
of Y, a special countermeasure can be taken. {2} 

- The set of knapsacks that will remain unsolved will contain a 
relatively large fraction of "useless" knapsacks, since for 
increasing density, the probability also increases that 
knapsacks are not one-to-one. 

Conclusion 

In our work, Brickell's algorithm {2} has been extended to the 
use of better vectors b. {1} This makes the algorithm capable of 
solving knapsacks of high densities even larger than .9, with 
reasonable supplementary computer power. We expect that this 
algorithm will reduce the set of safe knapsacks to such an extent 
that knapsack public-key ciphers may become impractical. 
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Abstract 

An additive privacy homomorphism is an encryption function in which the decryption of a 

sum (or possibly some other operation) of ciphers is the sum of the corresponding message. 

Rivest, Adleman, and Dertouzos have proposed four different additive privacy homomorphisms. 

In this paper, we show that two of them are insecure under a ciphertext only attack and the 

other two can be broken by a known plaintext attack. We propose an additive privacy 

homomorphism which we hope will either be secure or at least will be a challenge to break. 
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1. Introduction 

A privacy homomorphism is an encryption function which allows the encrypted data to be 

operated on without knowledge of the decryption function. Privacy homomorphisms were 

introduced by Rivest, Adleman, and Dertouzos [RAD]. 

[RAD] mentioned that privacy homomorphisms could be used to establish data base systems 

in which an encrypted total of a list of items could be computed using only the encrypted values 

of the list of items. Privacy homomorphisms could also be used to establish a secure conference 

telephone call. In a typical conference call, a central facility adds together the signals of the 

speakers. If the signals were encrypted using an additive privacy homomorphism, then the 

central facility could "add" the signals together without decrypting them. 

We must now give a more formal definition. A privacy homomorphism 1s a family of 

functions (e,1:, d,1:, o, 1 ) such that d,1:(,(eA:(m 1) , ••• , e,1:(m,)) = o(m 1 , ••• , m,) for each k in key 

space Kand any m1 , •.• , m, in message space M. The definition given in [RAD] is more general. 

It would include, for instance, an encryption function e,1: in which the question "Is m1 > m?" 

could be answered using only ek(m 1) and ek(m 2). In considering the security of these systems, we 

will assume that the cryptanalyst knows the functions e,1:, dk, o, 1 but does not know the key k. 

One privacy homomorphism mentioned in [RAD] is based on the multiplicative property ·of 

the RSA encryption function [RSA]. Let n = pq where p and q are large primes. Let 

o(m 1 , ••• , m,) = m1 ••• m, mod n and,= o. Define e and d in the usual manner for RSA. This 

privacy homomorphism is as secure as RSA. 

There are four more privacy homomorphisms mentioned in [RAD]_. There are weaknesses in 

each of these which will be discussed in section 2. 
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We still say that (eA:, "•• o, "Y) is an R-additive privacy homomorphism if Mis the set of 

positive integers less than or equal to some bound M, o(m 1 , ••• , m,) = m 1 +···+ m,, and 

For the remainder of this paper we will consider the problem of finding R-additive privacy 

homomorphisms. It would be interesting to know whether such a function exists that is provably 

secure in the sense that cryptanalysis can be shown equivalent to some well studied problem. It 

is also desirable to limit the data expansion. 

In section 3, we will present a function that is an R-additive privacy homomorphism. In 

section 4, we will show that if we weaken this system in various ways, then it can be 

cryptanalyzed. 

2. Cryptanalysis or (RAD] privacy homomorphisms. 

We present cryptanalysis of four privacy homomorphism systems which appear m [RAD] 

(examples 1,5,3,4 in this order). 

System 1 

A: 
Let g be a generator modulo a prime p, where p -1 = [/ Pi\ and for all i, Pi ~ B, for some 

i-1 

small B. Let q be a large prime and let n = p · q. Encryption of message Af 1s done as 

follows: C = gM mod n. Decryption is M = logg C mod p. The structure of p enables 

computation of the discrete logarithm by the method of Pohlig and Hellman [PH] in time O(B
1

' ). 

This is a privacy homomorphism with a being addition mod p -1 and I multiplication mod n. 

Cryptanalysis 



Lemma 1. plgcd(a8
'" -1, n). 

' •· II,.• 
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Proof. aP-l = 1 modp, hence a•-1 = 1 modp. 

There appears to be potential problems with this attack. The cryptanalyst does not know the 

values of B or d. Also, gcd(a 8 '" -1, n) could be n instead of p. However, in many cases, the 

cryptanalyst will make a good choice for B and d and the gcd will be p. For those cases when 

the gcd is 1, the cryptanalyst will just choose a larger B and d, and if the gcd is n , he will 

choose a smaller B and d. This is very similar to the Pollard p -1 factoring algorithm [P]. 

The expected running time for this cryptanalysis is O(dBlogBlogn). 

System 2 

This is an additive privacy homomorphism. Let /c be chosen so that any intermediate result 

1s <2\ and let a0, a 1 , ... , "k-l be randomly chosen positive integers. Let x0, x1 , ... , xk - l be the 

k-1 
binary representation of integer x, and let / ( z) = E x, · z'. Encryption of x 1s the le-tuple 

,-o 

y = (I 
20

( a0) , ••• , f 
20

( ak_1)). Operations are done componentwise. Decryption 1s preformed by 

solving a set of /c linear equations in k variables. 

Cryptanalysis 

Suppose j is the largest index such that z; = 1, i.e., z;+i , ... , xk-l = 0. Let z be any positive 

integer. Then z; :s; / 20 (z) :s; E zi < (z +l)i. Thus lf20 (z)11iJ = z. This leads to an obvious 
,-o 

ciphertext only attack. Given a cipher y = (y0 , ... , Yk-1), guess a value for j, the largest index 

such that z; = 1. Compute lYJ/; J = b0• Write Yo in base b0 notation. If all the coefficients are 0 

and 1, _then probably b0 = a0 and x is easily found. If not try a different choice for j. The 

values of y 1 , ••• , Yk-l can be used as an additional check. 
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System 3 

Let p and q be large primes. Encryption of message M is an ordered pair 

(M mod p, M mod q ). The bridge can perform addition, subtraction or multiplication 

componentwise, without knowing the moduli p and q. Decryption is done using the Chinese 

remainder theorem. 

Cryptanalysis 

We assume known plaintext attack. Let Ci = Mi mod p, i = 1, 2, 3 , ... , r. 

Ci· C2 = C2 Mi= Ci· M2 modp. Therefore p ICi · M2 - C2 • Mi. Taking many pairs, p 

most probably equals the gcd of their corresponding differences Ci · M; - C; · M,. 

Cryptanalysis for q is likewise. 

System 4 

In this system encryption is just writing the message in a secret radix system. Referring to 

the least significant digit, this reduces to the cryptanalysis of the previous system. 

3. An R-additive privacy homomorphism. 

In this section we present an R-additive privacy homomorphism for which we have not found 

an attack. 

Let the message space M be the integers between O and M. Let N =RM. Let p be a prime 

larger than N. (The first prime larger than N will be satisfactory.) Let A be an e by l matrix 

chosen randomly such that A is nonsingular modp. Let q be an integer >Rp. Let z be an 

integer randomly chosen in the interval [Rpqt-i, 2Rpl-i], and let y be chosen relatively prime 

to z. 
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A block of l messages m1 , ••• , mt will be encrypted by taking the vector m = (m 1 , .•• , mt) 

t-1 
and forming i =Am modp. Let i = (s 1 , ••• , st). Compute t = E si qi. Finally set 

i-0 

c = ty modz. 

There is one step in this process that we must elaborate on. Let f be a pseudo random 

function from Mt - { 0, 1}. When forming s = A m mod p, if si =I= 0 mod p, then let si be the 

smallest nonnegative residue mod p. However if si = 0 mod p, we want to randomly set si to be 

either O or p. We do this using the function f, letting si = p if /(m 1 , ••. , mt)= 1 and si = 0 

otherwise. This is to avoid a chosen plaintext attack on this system. We will discuss this further 

in the next section. 

The decryption process is obvious. Given a cipher c form t = cy- 1 mod z. Write t base q to 

obtains= (s 1 , •.• , St)· Then A-1 s mod p gives the desired message m. 

Showing that this is an R-additive privacy homomorphism is straightforward as well. 

Suppose ml, ... , m, are r messages for r ~ R. Let s; = (s; ,1 , ... , s;,t), t;, and C; be the values 

computed in the encryption of m;. We need to show that when c = c1 +···+ c, is decrypted the 

result ism = (m11 +···+ m, 1 , ... , ml t +···+ m, tl• 
I I I I 

Clearly t = cy-1 = t1 +···+ t, modz. But Et;= E tE s; ,i qi= tE [± s;,il qi. Also 
j-1 j-1 i-0 i-0 j=l 

, , , 
E s1 ,i < q, for O ~ i ~ l -1. So E t; < z and writing t base q gives the values E s; ,i, for 
j-1 j-1 j=l 

l~i~l. Let a=[Es;,1,···,Es;,tl· Then sA-1 =m1+···+m, modp. But since 
;-1 ;-1 

m1,i +···+ m,,i < p, for O ~ i < l-1, the result follows. 
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•· Possible cryptanalysis or this privacy homomorphism. 

Since this encryption system uses modular multiplication, it is immediately suspect to the 

attacks that broke the knapsack cryptosystems [B,S]. These attacks, based on the Lovasz 

algorithm [LLLJ, do seem to give some additional information about the secret key for R > 2. 

For l = 1 and 2, it is clear that this information can be used to break the system. For larger f., 

say f. ~ 30, it is not known whether this information can be used. The details of this attack and 

the chosen plaintext attack referred to in section 3 will be discussed in the full paper. 

5. Open problems. 

We have introduced an R-additive privacy homomorphism for which we can make no 

convincing arguments about its security. Is this scheme secure? It would also be interesting to 

find other privacy homomorphisms. 
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AN IMPROVED PROTOCOL FOR 

DEMONSTRATING POSSESSION OF A DISCRETE LOGARITHM 

AND SOME GENERALIZATIONS 

Abstract: 

(Extended Abstract) 

DavidChaum 

Jeroen van de Graaf 

Centre for Mathematics and Computer Science 

Kruislaan 413; 1098 SJ Amsterdam; The Netherlands. 

An improved protocol is presented that allows A to convince B that she knows a solution to the Discrete Log Problem-i.e. 

that she knows an x such that a." = 13 ( moo N) holds-without revealing anything about x to B. Protocols are given both for 

N prime and for N composite. 

We also give protocols for extensions of the Discrete Log problem: 

Showing possession of multiple discrete logarithms to the same base at the same time, i.e. knowing x 1 , • •• , xK such 

that a."• = 131 , ... , a."« = PK-
Showing possession of several discrete logarithms to different bases at the same time, i.e. knowing x 1 , • •• , xK such 

that the prcxluct a.i'a.i1 
• • • a.;= 13-

Showing possession of a discrete logarithm that is the simultaneous solution of two (or more) different instances, i.e. 

knowing x such that a.f = 131 and a.! = 132-

We can prove that the sequential versions of these protocols are zero knowledge. provided that A if she knows the order of 

a., or a multiple thereof. By changing the protocols slightly, the parallel versions of these protocols are reducible to solving 

Discrete Log. 

The protocols presented in this paper can be applied in any group in which the group operation can be computed by both par­

ties. An interesting new candidate group might be the set of points of an elliptic curve over a Galois field. 

1. Introduction 

Consider the following problem: 

• Alice knows a solution to the Discrete Log (DL) problem: for a particular a., 13 and N, she knows the exponent x such 
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that <r = p ( mod N) holds. 

• Alice wants to convince Bob that she knows x. 

• Alice is not willing to reveal the value of x. 

• Bob accepts an exponentially small chance that Alice is cheating, i.e. that she pretends to know an x but doesn ' t. More 

precisely, the chance that Alice succeeds in cheating without being detected by Bob, is rr, where Tis proportional to 

the time and space required. 

This paper presents a protocol which solves this problem, both for the case Na prime, and for the case N = P I P 2 , where P 1 

and P 2 are prime and are of roughly the same size. Notice that there is no probabilistic polynomial time algorithm known for 

finding x given a, P and N (for N composite we have to assume that factoring N is hard). When Alice is restricted to polyno­

mial computational power this protocol is still of interest, since given a and N she can choose x E { 1, ... , N-1} at random 

and then compute p simply by exponentiation (or a third party could supply Alice with x and p). 

In [CEGP86] protocols were presented that solve the same problem. Compared to those protocols, the protocol presented 

here is perhaps easier to understand, to use, and to generalize. The existence of a protocol with the same functionality is 

implied by results of [GMW86], [BrCr86] and [Ch86]. However, these protocols are not very useful in practice. In [Ch87] 

efficient protocols that solve this problem are needed; this was the major motivation for our research. 

We also present protocols for proving possession of a solution to some generalisations of the Discrete Log problem: 

Multiple Discrete Log (MDL): 

A shows to B that, given a and Pi, ... , PK, she knows x 1, • • • ,xK such that a" ' =pi, . .. , a"c = PK- This protocol is 

more efficient than applying the basic DL-protocol for the pairs (x 1, P1 ), .. . , (xK, PK) retaining the same probability of 

catching a cheating A. When a third party creates the xi's at random and supplies Alice with the xi's and pi 's, this pro­

tocol also offers the possibility to use DL as the basis for an authentication scheme in a way similar to Fiat & Shamir 

[FiSh86], whose scheme is based on the hardness of factoring. 

2 Relaxed Discrete Log (RDL): 

A shows to B that, given a 1, .•• , aK and p, she knows x 1, •• • , xK such that a; ' a;' · · · a~ = p. 
3 Simultaneous Discrete Log (SDL): 

A shows to B that, given a 1, • •• , aK and P1, ••. , PK, she knows x such that ai = P1 and a1 = P2 and · · · and 

aK = PK· Note that the a/scan be in different groups. 

Above the Discrete Log problem is stated in the group Z~, the multiplicative group modulo N, with N prime or composite. 

However, in any group we can state a Discrete Log problem: let G be a group, <XE G, (a) the group generated by a , and 

PE (a) ; then findx such that a"= pin G. The protocols presented in this paper are feasible in any group G, provided that A 

and B can apply the group operation in polynomial time and that A knows (a multiple of) the order of a in G. (For the RDL­

protocol we also have to assume that G is Abelian.) With a slight modification the protocols are still feasible when A does 

not know a multiple of the order of a in G, but then the protocols leak information about x. 

Of course, these protocols make sense only if no efficient algorithm for computing the Discrete Log in G exists . Apart from 

the case G = z;, with P prime, and the case G = Z~, with N composite, we can also take G = E (P), the set of points of an of 

elliptic curves over GF (P), imposed with the usual group structure. (Discrete Log in E(P) may not be computable in ran­

dom polynomial time [Mi85][Ka86].) 
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For describing the protocols, we use the same protocol notation throughout the paper. The meaning of this notation is 

straightforward; only the next few things might need explanation: 

T is the security parameter, agreed upon before the protocol starts. Increasing T reduces A's chance of successfully 

cheating exponentially, but increases the amount of communication and computation only linearly. 

In the zeroth step of the protocol, A and B agree on a, ~ and N. 

Expressions shown on the left or right are known to that party only, and are secret from the other party. 

Expressions between square brackets indicate that the receiver of the message only gets to know the result of the com­

putation. If not indicated otherwise, these expressions are to be taken (mod N). 

e ER S means that an element e is chosen at random from the set S, where all elements of Shave an equal probability of 

being chosen, independent of all previous events. 

In some steps of the protocol a party checks if a particular equality holds; this is denoted as: check a :lb. If the check 

fails, cheating is detected and the protocol halts. 

2. The basic protocol: Discrete Log 

Instance : N, (lE z~. ~E (a) 

Solution: x such that ax = ~ ( mod N ) 

Note that knowing a discrete logarithm xis indeed a secret because of the following two assumptions: 

Assumption 1: If N is a prime number, then there is no random-polynomial time algorithm for finding the solution to all 

instances of the Discrete Log problem. 

Assumption 2: If N is composite and hard to factor, then there is no random-polynomial time algorithm for finding the solu­

tion to all instances of the Discrete Log problem. 

The first assumption is well-known; the second follows from the fact that factoring integers is hard: if such an algorithm for 

finding x would exist, it could easily be used to find multiples of (j>(N), and this is random-polynomial time reducible to fac­

toring [De84] . Though the cases N prime versus N composite differ, we develop the protocols simultaneously and point out 

the differences. If N is composite, we assume that A knows its factorisation. 

Protocol 1: Discrete Log: a:=~ ( modN) 

A B 

Step 0: 

<------------------------> 

Repeat T times: 

r E R { 1, . .. , (j>(N)} 

Step 1: 

--------------------------> 

bER {O, 1} 
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Step 2: b 

<------------------------

Step 3: [(r + bx) modq,(N)] 

------------------------> 

Theorem 1 . 

( a) A can cheat in protocol 1 with probability at most 2-T if she does not know x, and 

(b) there exists a polynomial-time prover simulator for A. 

Proof: 

( a) Correctness: If A does not know x, then she is not able answer both the case b = 0 and b = 1. Hence she will get caught 

with probability at least½ in each round. Thus A will get caught cheating with probability at least 1- 2-r. 

(b) Security: (in the final paper) D 

3. Generalisation 1: Multiple Discrete Log 

Instance : N, aE z~. P1, ... ,PKE (a) 

Solution: xi, ... ,xK such that a"' = Pt ( modN ), a"'=~ (modN ), ... ,a"•= PK (modN) 

Protocol 2: Multiple Discrete Log: a"' = Pt ( mod N ), a"' = P2 ( mod N ), ... , a"• = PK ( mod N) 

A B 

Step 0: a, Pt ' ... ' PK, N 

<-----------------------> 

Repeat T times: 

rER {l, ... ,q>(N)} 

Step I : [a'] 

------------------------> 

Step 2: 

<------------------------

Step 3: 

------------------------·> 

Lemma: Suppose that A does not know the discrete logarithm (with respect to a) of ypf', ... , p~ for at least one vector 
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b = (b 1, ..• , bK) E {0, l} K. Then she doesn't know the discrete log for at least half the vectors b E {0, l} K_ 

Proof: We proceed by induction on K. For K = 1 the lemma is trivial. Suppose the lemma is true for K = L - I, where L = -

2> (induction hypothesis). We shall prove the lemma for K = L. 

Suppose that A knows the discrete logarithms of all the products ypf•, ... , PfL_:j with b 1, ••• , bL-I E {0, l}. Then she does 

not know the discrete logarithm of PL· Hence she cannot form the discrete logarithms of the products ypf•, ... , PfL_:j PfL 

with bL = I. This implies our lemma. If we suppose instead that A knows the discrete logarithms of all the products 

ypt•, ... , PfL_:j PL then the lemma can be proved in the same way. 

Now suppose that A does not know the discrete logarithm of at least one of the products ypt•, ... , PfL.=1 with 

b 1 , ••• , bL-t E {0, 1} and also not the discrete logarithm of at least one of the products ypt•, ... , Pt, PL with 

b 1 , .•. , bL-t E {0, 1} . Then by the induction hypothesis she does not know the discrete logarithm of at least half of the pro­

ducts ypt•, . . . , Pti with b 1, •• • , bL-t E {0, l}, and also, by the induction hypothesis with YPL instead of y, she does not 

know the discrete logarithm of at least half the products ypt•, ... , PfL-=iPL-t with b 1, ••• , bL E {0, l}. This completes the 

proof of our lemma. D 

Theorem 2 . 

( a) A can cheat in protocol 2 with probability at most i-7 if she does not know every xi, and 

(b) there exists a polynomial-time prover simulator for A. 

Proof sketch 

( a) Correctness: Assume Alice knows all xi except one: x 1 (possibly after renumbering). Now Alice passes the protocol 

only if she guesses b I correctly in each round of the protocol. This happens with probability 2-r. 

If we assume that A doesn't know x 1 and x 2 , then she still might know [x 1 +x2 ] if she did the following: 1) choose y at ran• 

dom and compute y= a!. 2) choose P1 at random. 3) compute P2 = yp-11 . Then A succeeds in cheating if b 1 = b 2 in each 

round, which happens also with probability i-7
• 

In general, if A doesn't know at least one xi then for each K she passes the protocol with probability½ in each round because 

of the lemma. 

(b) Security: (in the final paper) D 

If we assume that not A, but another party (B, or some mutually trusted party) generates the xi at random and supplies the x/s 

and P/s to B, protocol 2 can be used as an interactive identification scheme as introduced by Fiat and Shamir [FiSh86]. In 

that scheme possession of several square roots modulo a composite (instead of several discrete logarithms) has to be shown. 

When compared, our scheme used with a prime has the advantage that there is no trapdoor information to be kept secret. 

However, this trapdoor enables putting relevant information in the value for which possession of the square root has to be 

shown. Moreover, the scheme of Fiat and Shamir is far more efficient, because it needs only squaring where we need a full 

exponentiation of a log N-bit number. 
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4. Generalisation 2: Relaxed Discrete Log 

Instance: N, Cli, Cl2, ... '<lK E z~. 13 E z~ 
Solution: x 1, ... , xK such that a~' a;' · · · a~ = 13 Finding the solution of a RDL problem is hard: 

Theorem 3 . Under assumptions 1 and 2, there exists no random-polynomial time algorithm for finding the solution of all 

instances of the Relaxed Discrete Log problem, neither for N prime, nor N composite. 

Protocol 3: Relaxed Discrete Log: ai ' a;• · · · a~ = 13 ( mod N) 

A 

Step 0: 

B 

<------------------------> 
Repeat T ti.mes: 

Step 1: 

-------------------------> 

Step 2: b 

<-------------------------

Step 3: 

-------------------------'> 

check a[',+bx,J(lr,+bx,] . .. ar•+bx,] -

=[Cl~' ], ... '[Cll]f3b 

Theorem 4. 

( a) A can cheat in protocol 3 with probability at most i-r if she does not know x := (x 1, ••• , xK ), and 

(b) there exists a polynomial-time prover simulator for A. 

5. Generalisation 3: Simultaneous Discrete Log 

Instance: N, <X1, <X2, 131, 132 E Z~ 

Solution: x such that af = 131 and a~ = 132 

(Protocol and theorem in the final version) 
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ABSI'RACT 

In this abstract we present a public key cryptosystem based on error correct­
ing codes [l, 7, 15]. The new public key system is obtained by extending the pub­
lic key cryptosystem of McEliece [6, 12]. 

In this scheme a message M, consisting of a column vector of @k@ elements 
from a finite fi.eld is fi.rst scrambled by multiplying it by a non singular matrix 
@Q@ to get 

M'=QM 

This scrambl~ message has parity check variables added to it, by multiplying it 
by a generator matrix G and then has all the variables reordered by multiplication 
by a permutation matrix P. Noise is then added to obtain the encrypted message 

C=P G QM+ Z (1) 

The product of the three matrices G' = P G Q is made public, but the factors are 
not. 

The analogs of these digital operations are integral transforms, while the 
column vectors are functions which we take to be square integrable on (0.1) or 
(0.2) [2-5, 11, 13, 14, 18]. The message M will now be denoted by x = x (t ), and 
x' = Q xwill mean 

1 

x ' (t ) = f q (t .s ) x (s ) ds 
0 

(2) 

where q (t .s) is the kernel of the transformation. P will be a similar operator 
except that it must be an orthogonal operator to avoid changing the magnitude of 
the noise. This noise will consist of a realization of a random process z (t) on (0.2). 
The operator G will have a special form to be discussed below. 

In the McEliece digital scheme, the matrix G = [ !A J where the submatrix 
@A@ introduces the new variables [12]. Decryption is accomplished by multiply­
ing both sides of 

pT C =G Q M + pT z (3) 

by a matrix H = [A I]. This annihilates the term G Q M and leaves the syndrome 
S = H pT C on the left. Coding Theory is used to estimate pTZ which in turn is 
used with (3) to estimate G Q M. An estimate for M then is obtained by a projec­
tion operator followed by Q-1• 

In the analog scheme G is based on a kernel k (t .s ). t .se(0.1) and is given 
by 



IV-25 

1 

( Gx )(t ) = J { 8 (t -s ) - k (t -1.s ) } x (s ) ds . 0 < t < 2 
0 

and H is given by 

1 2 

(Hy )(t )= f k(t .s) y(s) ds + J~(t +1-s) y(s) ds. 0<t < 1. 
0 1 

Clearly both are continuos operators and H G = 0. The analog encryption con­
sists of first operating with Q , then G , then P on x and then adding noise, i.e. the 
ciphertext is 

y= PG Q x+Z (4) 

where y = y (t) is in L 2 (0.2). The kernel q (t .s) of the operator Q and k (t .s) may 
be taken to be Green's functions of appropriate differential operators. The kernel 
p (t .s ) of P may be taken to be 

P (t .S )= L </>i(n) (t) </>n (s) 
n 

where l<l>n} is a complete orthonormal system in L 2 (0.2), and i (n) is a permuta­
tion of the integers. 

Decryption begins by operating with H on 

p-1 y=G Q x+P-1 Z 

to obtain the syndrome S = HP-1y. The value of p-12 of minimum error which 
satisfies 

H Z '=H p-1z =S 

is then found. This can be done by using the generalized inverse 

wheres· is the adjoint operator. This then is used to estimate p-1z and p-1y-Z · 
restricted to (0.1) is used to estimate Qx which is then inverted to obtain the esti­
mate of the message. 

The final estimate cannot be made completely noise free as in the digital case 
but the noise can be reduced by this method. Also the three operators P, G and Q 

can be combined in a single integral transform which can then serve as a public 
key. 
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Message Authentication with Arbitration of 
Transmitter/Receiver Disputes• 
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Extended Abstract 

In the most general model of message authentication, there are 
four essential participants: a transmitter who observes an infor­
mation sourcet, such as a coin toss, and wishes to communicate these 
observations to a remotely located receiver over a publicly exposed, 
noiseless, communications channel; a receiver who wishes to not only 
learn the state of the source (as observed by the transmitter) but 
also to assure himself that the communications (messages) he accepts 
actually were sent by the transmitter and that no alterations have 
been made to them subsequent to the transmitter having sent them, and 
two other parties, the opponent and the arbiter. The opponent wishes 
to deceive the receiver into accepting a message that will misinform 
him as to the state of the source. We assume, in accordance with 
Kerckhoffs' criteria in cryptography, that the opponent is fully know­
ledgeable of the authentication system and that in addition he is able 
to both eavesdrop on legitimate communications in the channel and to 
introduce fraudulent communications of his own choice. Given this, he 
can achieve his objective in either of two ways: 

or 

1) he can impersonate the transmitter and send a fraudulent 
message when in fact no message was sent by the transmitter, 

t Ideally we would call the states of the source "messages" as is the 
practice in communications theory. However, if we did this we 
would be forced to introduce terminology to designate the collec­
tion of sequences that are actually transmitted through the chan­
nel, perhaps "authenticating codewords," paralleling "error detect­
ing and correcting codewords" from communications theory. Unfor­
tunately, the natural contraction "codeword" already has an 
accepted meaning in communications theory so that we would either 
have to coin a new term to designate the specific sequence of 
symbols transmitted to convey and authenticate a message -- none of 
which seem very natural -- or else use the cumbersome term "authen­
ticating codeword." The term "authenticator," which is usually 
used to denote an authenticating suffix appended to the information 
that is to be authenticated, has too restricted a connotation for 
the general case. We have opted instead to use the term "message" 
to designate the sequence of symbols actually transmitted and to 
tolerate the rather artificial device that the information conveyed 
by a message is the state of a hypothetical source. 

* This work performed at Sandia National Laboratories supported by 
the u. S. Dept. of Energy under contract no. DE-AC04-76DP00789. 



2) he can wait to intercept a legitimate message from the trans­
mitter and substitute in its stead some other message of his 
own devising. 

In either case, the opponent wins if the receiver accepts the fraudu­
lent message as being a legitimate and unmodified communication from 
the transmitter. 

In the simplest model of authentication, the transmitter and 
receiver are assumed to be mutually trusting and trustworthy and to 
act with the joint purpose of detecting attempted deceptions by the 
opponent. Authentication codes have been devised by Brickell, 
Simmons, Stinson and others that not only achieve this end, but also 
make perfect use of the information content of the transmitted message 
in the process. Unfortunately, up till now this has required that the 
transmitter and receiver be privy to precisely the same secret (from 
the opponent) information about the specific authentication protocol 
being used and hence, that each be able to do anything the other can 
do, i.e., to be able to impersonate each other. What this means, of 
course, is that if the assumption of mutual trustworthiness doesn't 
hold, that either will be able to defraud the other in a way that 
cannot be verified -- or demonstrated -- to a third party. It is here 
that the fourth party, the arbiter, comes in. The arbiter is provided 
with secret (known only to him and the transmitter) information as to 
which messages the transmitter is supposed to use in the communica­
tions protocol and may also include information that the arbiter 
shares in secret with the receiver as to which messages the receiver 
will accept. His sole function is to certify on demand whether a 
particular message presented to him is one that the transmitter could 
have used under the established protocol. He cannot say that the 
transmitter did send it -- only that he could have under the estab­
lished protocol. In this setting, the transmitter can cheat if 

3) he can cause the receiver to accept and act on a message that 
he (the transmitter) can later disavow. To be successful, he 
must choose a message that not only will the receiver accept, 
but which the arbiter will not certify, because it is not one 
that would have been used by the transmitter under the 
established authentication protocol. 

If the transmitter succeeds in disavowing the message, the 
receiver will be, according to the terms of the protocol, held 
(unjustly) liable. 

The receiver can cheat if he can successfully attribute a message 
of his own devising to the transmitter, i.e., a message not sent by 
the transmitter, but one which the arbiter will certify as being one 
that could have been sent by the transmitter under the established 
authentication protocol. There are two strategies for cheating avail­
able to the receiver, paralleling the two strategies available to the 
opponent: 



or 

V-3 

4) He can claim to have received a message (which he fabricated) 
from the transmitter, when in fact no message was sent by the 
transmitter, 

5) he can wait until he receives a legitimate message from the 
transmitter and then claim to have received some other mes­
sage conveying different information than that communicated 
by the transmitter's message: replacing an order to buy with 
one to sell, for example. 

In either case, if the arbiter later certifies the fraudulent message 
as being one that the transmitter might have sent under the estab­
lished authentication protocol, the transmitter will, according to the 
terms of the protocol, be held (unjustly) liable. 

The presence of an arbiter has no effect on the outcome of the 
opponent's attempted deception. If the opponent is successful in 
deceiving the receiver, the transmitter will, of course, appeal to the 
arbiter when he is later held liable (by the receiver) for a message 
that he (the transmitter} didn't send. The arbiter in this case, 
depending on whether the opponent chose a message that was not only 
acceptable to the receiver but which also might have been sent by the 
transmitter under the established authentication protocol, will assign 
the liability for the receiver's actions to the transmitter or other­
wise to the receiver. The assignment of liability by the arbiter is 
unjust in either case since neither the transmitter nor the receiver 
cheated or failed to properly use the authentication protocol, however 
the arbiter can only verify whether a message is or is not consistent 
with the protocol in use, and not what its source might be. He can, 
therefore, never ascribe the liability to the opponent, even though 
there is always some nonzero probability that this is the source of 
the message. In keeping with the earlier definition of perfect 
authentication (without arbitration) systems by Simmons, an authenti­
cation system with arbitration will also be defined to be perfect if 
the probability of success for each of the five types of possible 
deception is simply the probability of randomly choosing a message 
that will result in the particular deception occurring. 

The smallest example of a perfect authentication code, capable of 
detecting attempted deceptions by an opponent, but providing no pro­
tection against deception by either the transmitter or the receiver, 
i.e., without arbitration, is the following: The source is a fair 
coin toss, by the transmitter, whose outcome denoted Hor T we take to 
be the state of the source. There are four encoding rules, ei, which 
encode states of the source into one of four possible message~, mj, 
according to the system 
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ml m2 m3 m4 

el H T 

( 1) e2 H T 

e3 H T 

e4 H T 

The transmitter and receiver choose (in secret from the opponent) an 
encoding rule with the uniform probability distribution on thee. 
(their optimal authentication strategy) in advance of the communica­
tion that they wish to authenticate. The opponent knows (1) and their 
strategy for choosing an ei. If he chooses to impersonate the trans­
mitter and send an unauthentic message when no message has yet been 
sent by the transmitter, it should be obvious that irrespective of 
which message, m1 , he chooses, the probability that it will correspond 
to an encoding or a source state under encoding rule e., and hence 
that it will be accepted by the receiver as an authentic message, is 
1/2. Similarly, if the opponent waits to observe a legitimate commun­
ication by the transmitter, his uncertainty about the encoding rule 
being used will drop from one out of four equally likely possibilities 
to one out of two. However, his probability of choosing an acceptable 
(to the receiver) substitute message will still be 1/2. For example, 
if the opponent observes m1 he knows that the transmitter and receiver 
are using either encoding rule 1 or l . In the first case m would 
be an acceptable message to the teceivir while mA would be re;ected as 
unauthentic, while in the second case, exactly tfie opposite would be 
true. Hence, the opponent's probability of deceiving the receiver is 
1/2 irrespective of whether he impersonates the transmitter or substi­
tutes (modifies) legitimate messages. 

Clearly since the transmitter and receiver must both know the 
chosen encoding rule -- the transmitter so that he can encode the 
source state into a message the receiver will accept and the receiver 
so that he can decode and authenticate the message, either can do 
anything the other can. In particular the receiver can claim to have 
received a message when none was sent and the transmitter will be 
unable to prove to a third party that he didn't send it, or the trans­
mitter can disavow a message that he did send and the receiver will be 
unable to prove that he received the message through the communica­
tions channel. 

The essence of this paper is illustrated in an extension of this 
simple one-bit source example that in addition to one bit of protec­
tion against each of the two possible outsider (the opponent) decep­
tions, also provides one bit of protection against each of the three 
forms of insider (transmitter or receiver) cheating described earlier. 
The receiver first chooses one of the 16 encoding rules defined by the 
Cartesian product 
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with a uniform probability distribution. For example, the first row 
of the product would be 

H H T T 

which says that a head outcome to the transmitter's coin toss could be 
communicated by the transmitter using either message m1 or m. Simi­
larly, messages m5 or m6 would communicate source state "tai~s", while 
messages m3 , m

4
, mi and m

8 
would be rejected by the receiver as 

unauthentic. The mportant point to note is that in each of the 
encoding rules there are exactly two acceptable (to the receiver) 
messages available for each state of the source. The receiver commun­
icates his choice of an encoding rule to the arbiter in secret (from 
the transmitter and the opponent(s)). The arbiter next chooses one of 
the four vectors defined by the Cartesian product 

(1 - - 1 ') X (1 - - 1) 
- 1 1 - - 1 1 -

again, with a uniform probability distribution, and forms the Schur 
product* of the chosen vector with the encoding rule selected by the 
receiver. The net result is, for the example of e having been the 
encoding rule chosen by the receiver, that one of the four possible 
final encoding rules 

H - - - T -
H - - T 
- H - - T -
- H - - - T - -

will be chosen (with a uniform probability distribution) as a result 
of the concatenated choices of the receiver and arbiter. The arbiter 
communicates, in secret (from the receiver and the opponent(s)), the 
resulting final encoding rule to the transmitter. This rule is then 
the established protocol that the transmitter is supposed to use to 
encode the observed state of the source into the message that is to be 
transmitted to the receiver. Assume, for example, that the arbiter 
chose the vector 

* Given vectors A= (ai) and B = (bi) the Schur product is the vector 
C = (a

1
b

1
). 
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- 1 1 - 1 - - 1 

so that the resulting final encoding rule is 

ml m2 m3 m4 ms m6 m7 ma 
I - H T 

In this example, source state "heads" is to be communicated by the 
transmitter sending message m2 while "tails" is to be communicated by 
sending message ms. 

Using this authentication scheme we now show that the immunity 
provided to each of the five types of cheating described earlier is to 
hold the cheater to a probability of 1/2, i.e., one bit of protection, 
as claimed irrespective of which type of cheating is considered. The 
easiest of the deceptions to analyze is the case of the outsider 
(opponent) who only knows the "system," i.e., he knows what the pro­
cedures are but does not know the receiver's or arbiter's choices. It 
should be clear that if he attempts to impersonate the transmitter and 
send a message when none has been sent, his probability of choosing 
one of the four (out of eight) messages that the receiver has agreed 
to accept (in his choice of an encoding rule) is 1/2 since in each 
case there are four equally likely messages that will be accepted as 
authentic and four that will be rejected as unauthentic. On the other 
hand, if he waits to observe a message, say m, his uncertainty about 
the encoding rule chosen by the receiver drop§ from one out of sixteen 
equally likely candidates to one out of four, however these four leave 
him with four equally likely possibilities for the message that the 
transmitter is to use to communicate the other state of the source, 
and much more importantly, with four equally likely pairings of 
messages that the receiver would accept as communicating the other 
state of the source, with each message occurring in precisely two of 
the pairs. The net result is that the opponent's probability of 
success in substituting a message that the receiver will accept as 
communicating the other state of the source is still 1/2. 

Consider next, the next simplest case to analyze, the transmitter 
disavowing a message that he actually sent. In order to succeed, the 
transmitter must choose a message that the receiver will accept but 
that is not used in the established protocol forwarded by the arbiter. 
In other words he must choose a message that was used in the encoding 
rule that the receiver chose, but not used in the final encoding rule 
generated by the arbiter's choice. Continuing with the example used 
above, the transmitter knows from the final encoding rule that was 
given to him by the arbiter: 

- H - - T - - -

that the arbiter must have chosen vector 

- 1 1 - 1 - - 1 
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and hence can infer that the receiver must have chosen one of the four 
encoding rules. 

ml m2 m3 m4 m5 m6 m7 ma 
H H T T 

H H 

H 

H 

H 

H 

T 

T 

T 

T 

T 

T 

Since messages m3 and m
8 

do not appear in any of these rules, the 
transmitter can De certain that they would be rejected by the receiver 
as unauthentic, and hence he will not send either of these. Each of 
the remaining four messages, m1 , m4 , m6 , and m7 , appear in two of the 
equally likely choices of an eficodlng rule, hence he cannot do better 
than choose one out of these four messages with equi-probability. 
Irrespective of which of the four he chooses, the probability that it 
will be accepted by the receiver is 1/2. If it is accepted, the 
transmitter can disavow having sent it, since he knows that the 
arbiter will not certify it as a message that would have been used 
under the established protocol. 

Finally, we consider the two types of cheating available to the 
receiver. Of the four messages that he has agreed (with the arbiter) 
that he will accept as authentic, since they are used in his choice of 
an encoding rule, two will be certified as being messages that could 
have been used under the established protocol and two will not be 
certified. The receiver will succeed in fraudulently attributing a 
message to the transmitter if he is able to choose one of the pair 
that the arbiter will certify and will fail otherwise. It should be 
clear that his probability of success is 1/2 since the arbiter's 
selection procedure chooses among the acceptable (to the receiver) 
messages with a uniform probability distribution. If he waits until 
he receives a message from the transmitter, say m2 , he can reduce his 
uncertainty about the vector that the arbiter choose from one of four 
equally likely cases to one of two: 

- l l - l - - l 

or 

- 1 l - - l 1 -

in the example. The result however is that either message m5 or m is 
equally likely to be the one that will be certified, and his probaBil­
ity of successfully substituting a message conveying a different state 
of the source than was communicated in the message sent by the trans­
mitter, i.e., of substituting one which will both communicate a dif­
ferent state of the source and will subsequently be certified by the 
arbiter as a message the transmitter could have sent under the estab­
lished authentication protocol is 1/2. 
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This small example illustrates all of the essential features of 
authentication codes that permit arbitration. Three bits of informa­
tion must be communicated to identify one of eight equally likely 
messages. According to the protocol, this communication provides one 
bit of information about the source state, one bit of protection 
against deception by outsiders and one bit of protection against 
cheating by insiders. Although channel bounds have not yet been 
proven for authentication codes that permit arbitration (tight bounds 
have been proven for authentication codes that do not permit arbitra­
tion) it seems reasonable (as mentioned above) to describe the code 
illustrated here, and generalized in the main paper, as perfect. As 
has been pointed out in earlier papers on authentication codes with­
out arbitration, these "perfect" codes are also perfect in the natural 
sense that all of the information transmitted is used either to com­
municate the state of the source or else to confound one of the 
cheating parties. 
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Perfect and essentially perfect authentication systems 

Albrecht Beutelspacher 

Siemens AG 
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In any authentication system [2]with k keys available, the bad guy has at least a 

chance of 1/Vk to deceive the system (Theorem of Gilbert, MacWilliams and 

Sloane [11). A system is called perfect if the bad guy's chance is exactly 1/Vk, it is 

called essentially perfect if his chance is O(1/Vk). 

Using combinatorial properties of finite projective planes, Gilbert, Macwilliams 

and Sloane [1] have constructed perfect authentication systems with k + 1 

messages and k2 keys, whenever k is a power of a prime number. These systems 

have the disadvantage that the number of messages is much smaller than the 

number of keys. 

Using more sophisticated geometric structures, we shall construct essentially 

perfect, and even perfect, authentication systems, in which the number of 

messages exceeds the number of keys. The main ingredients of our constructions 

are projective spaces, partial spreads and geometries having many parallel 

classes. 

Three system should be mentioned here in particular. 

1. The projective space P = PG(3,q) of dimension 3 and order q. P has a set F 

of q2-q mutually skew lines; there are exactly (q + 1)2 points not covered by F. 

For example, one could take an "elliptic congruence" in which the lines of one 

hyperbolic quadric are missing. 
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Take as messages the lines of F, as keys the points not covered by F and as 

authenticators the planes through a line of F. It turns out that this system is 

perfect with {q + 1)2 keys and q2-q messages. 

2. Take again P = PG{3,q) embedded as a hyperplane in P* = PG{4,q). Define 

the messages to be {all) the lines of P, the keys to be the points of P*-P and the 

authenticators to be the planes of P*-P. 

It turns out that this system is in fact essentially perfect with q4 keys and 

{q2 + 1){q2 + q + 1) {> q4) messages. One can generalise this construction to 

arbitrary dimensions. This yields essentially perfect authentication systems, in 

which the factor m/k is unbounded above {m being the number of messages). 

3. Let P = PG{2a-1,q), a ~ 2, and denote by U a subspace of dimension 2a-3 of 

P. then there is a set S of mutually skew lines of P which covers exactly the 

points of P-U. Let us define an authentication system A as follows: 

Messages are the {a-1 )-dimensional subspaces of U, 

keys are the elements of S, 

authenticators are the {a+ 1)-dimensional subspaces which intersect U in a 

subspace of dimension a-1. 

It turns out that this system is perfect. It has the remarkable property that the 

number of keys is q2<a-1), while the number of messages is q(a-2)2/2. 

Reference 

1. N.G. Gilbert, F.J. Macwilliams, N.J.A. Sloane; Codes Which Detect Deception. 

Bell Syst. Tech. J. 53 {1974), 405-424. 

2. D.W. Davies and W.L. Price, Security for Computer Networks. John Wiley & 

Sons, 1984. 
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MESSAGE AUTHENTICATION AND DYNAMIC PASSWORDS 

by Professor H.J. Beker and Mr. G.M. Cole, Racal-Guardata Limited. 

The security of transactions flowing across a communications 
network is of ever increasing importance. In many such 
circumstances it is important not only to protect the messages from 
passive interception but also, and often of greater importance, to 
be able to detect any active attack against messages. An active 
attack may take the form of an interceptor tampering with the 
message: altering it, adding information, removing information and 
so on. While it is almost impossible to prevent an active attack 
there are many mechanisms to ensure, with a high probability, that 
such an attack may be detected and hence rendered harmless. The 
techniques to allow detection and thus audit take many forms of 
which the most common are normally cryptographically based and 
depend upon the generation, before transmission of the message, of 
a check-sum which is then appended to the message. The theory 
underlying this approach works on the basis that if a would-be 
fraudster changes any part of the message in any way then the 
check-sum will no longer be correct and thus the recipient of such 
message can compute, for himself, the expected check-sum, compare 
it with that received in the message and if they disagree will know 
the message has been altered. If on the other hand the expected 
and received check-sums agree then he knows with a high probability 
that the message has not been altered. This probability is 
dependent upon the amount of information within the check-sum (i.e. 
the longer it is) the lower the probability of an undetected 
alteration. 

Many such systems exist. Some of these depend only upon an 
algorithmic check-sum, often called a test-key or authentication 
parameter. In this case the security level is often relatively low 
since someone attacking the system with knowledge of this algorithm 
may be aware of ways in which he can alter the message without 
affecting the check-sum computation. A trivial example of this is 
as follows: suppose the check-sum on a numeric message is computed 
solely as the modulo-10 sum of all digits in the message. An 
attack upon the system which simply involves altering the order of 
the digits in the message would not be detected by the check- sum. 

A normally more secure technique involves the use of a 
cryptographic check-sum, often termed a message authentication 
code. In this case the check-sum is dependent not only upon the 
cryptographic algorithm but also a cryptographic key. An example 
of this, in common usage, is the system described within the 
American National Standards Institute (ANSI) standards X9. 9 and 
X9.19. Within these standards the cryptographic algorithm is the 
Data Encryption Algorithm as described in FIPS 46 and ANSI X3.92. 
The cryptographic key is a 56-bi t DEA key. The check-sum or 
message authentication code (MAC) is a 32-bit value appended to the 
message. It is currently generally accepted that provided the 
cryptographic key is kept secret then any alteration to the message 
will be detected by the recipient with a probability of 
0.9999999998. 

Within some communications systems protection of messages in the 
above manner is considered adequate. However there do also exist 
many systems within which it is important not only to detect any 
alterations to the message, and thus be able to provide alarms and 
an audit system of these, but also to identify the person or group 
of persons from which such a message originated. This is in some 
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sense equivalent to requiring a signature on the message. We shall 
now go on to describe how, by use of another commonly used 
technique of dynamic passwords, such messages can be signed and 
thus far greater protection afforded. We begin by describing the 
technique of dynamic passwords as it is commonly used for access 
control. We shal 1 then go on to show how the technique can be 
combined with a check-sum to provide a 'signature'. As we shall 
see the combination of the two techniques, in the manner described, 
will provide far greater levels of security. 

Computer access control systems often depend upon a static user 
password. These systems are notorious for their insecurity. 
Recently, dynamic password systems have become more popular. There 
are many variations on this particular theme. By way of example we 
describe one such method. 

Having entered his user identity, the user is presented, by the 
system, with a challenge. The user must then provide the correct 
response to this challenge in order to be granted access. The 
theory behind this system is that since the system has control of 
the challenge and the response will be unique, for that user, to 
that challenge, the system is running, essentially, a one-time 
password system. Any unauthorised person will not know how to 
respond to the challenge in the correct way and will thus be denied 
access to the system. Similarly anyone recording the challenge 
a'rl 
response will be unable to directly use this information since 
ideally that challenge will never be used for that user again. 

There are many techniques possible to allow the user to produce the 
correct response. These vary from biometric techniques to user 
tokens. A typical method involves a user token similar to a small 
calculator which can be correctly activated by the user via entry 
of a Personal Identification Number (PIN). Once the device has 
been correctly activated entry of the challenge will result in the 
correct response being generated by the token. This may be 
achieved, for instance, via a one-way function of the challenge and 
a cryptographic key unique to that user and embedded in his token. 
Thus, loss of the token does not enable an unauthorised user to 
enter the system since he requires the PIN to correctly activate 
the system. Indeed, a would-be hacker requires both the PIN and 
token as well as the user ID or the algorithm and cryptographic key 
corresponding to a user ID in order to enter the system. In the 
case of a token being used in this way it may well take the form of 
a 'smart card'. Biometric means may also be used. 

We shall now give an example of how a check-sum can be combined 
with a dynamic password system in order to provide message and user 
authentication within a system. 

For example we shall consider a user, issued with a dynamic 
password token, using a terminal which can provide a cryptographic 
check-sum or message authentication code (MAC). We shall also 
assume that the recipient of the message is in possession of the 
appropriate cryptographic keys to check both the MAC and 
'response'. 

Once the user has compiled his message the terminal will generate 
an appropriate MAC, or some derivative of it which is presented to 
the user as his 'challenge'. Once he has produced the correct 
response to that challenge and appended this response or a function 
of it to the message the message has been 'signed' by the user. On 
receiving the message the recipient can not only check the MAC but 
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may also via the user ID check the response to that 'MAC challenge' 
thus also authenticating the originator of the message. 

Such a system may have considerable benefits within a scenario 
within which a corporation or institution is allowing users to 
enter messages into its computer network. Typically this might be 
a corporate banking network where the institution is a bank and is 
accepting payments, transfers etc. from its customers. This system 
may be set up as follows: 

The institution issues to the user the cryptographic MAC facility 
in a tamper resistant form. This may constitute the entire 
terminal or a part of it. The cryptographic key upon which MAC 
security depends is contained within the tamper resistant 
enclosure. The corresponding cryptographic key may be held by the 
institution itself encrypted under a master key which again is 
contained in a highly tamper resistant enclosure. Similarly, the 
user is also issued with his dynamic password token itself 
containing a cryptographic key in a tamper resistant manner while 
again held by the institution encrypted under a master key. 
Assuming the tamper resistant enclosure containing the master key 
can also carry out the appropriate cryptographic functions then the 
institution can only be compromised while the devices are being set 
up or through a breach of the tamper resistant module containing 
the master key. 

At the user level, the system can only be compromised via an attack 
upon both the user's cryptographic facility and his token. Bearing 
in mind that should he lose his token it will normally be in his 
interests to report this as soon as possible the system provides a 
high level of security. 

Since this procedure is centred around the concept of using the MAC 
(or check-sum) as the 'challenge' to the user let us see what extra 
security benefits are thus achieved. 

1 • Since the response now depends on the MAC it depends upon 
those sensitive parts of the message which the MAC was 
itself protecting and thus is a message dependent response. 
It is in this way that it provides a similar facility to a 
signature. In particular this response cannot be removed 
from this message and appended to another since it will no 
longer be appropriate and will therefore be detected by the 
recipient. 

2. Even if some unauthorised person were able to discover the 
cryptographic key associated with the MAC, by breaking into 
the user's terminal or otherwise, this would not be 
sufficient to penetrate the system since any alteration of 
the MAC in turn would mean the response on the message would 
now be inappropriate and would therefore be detected by the 
recipient. 

3. An implication of the above remark is that theoretically the 
institution could give all its users the same cryptographic 
key for the cryptographic MAC facility and still be assured 
a high level of security through the response confirmation. 

4. Clearly if the user's identity was incorporated into the 
message and the MAC calculation, then only the holder of 
that corresponding dynamic password token (and corresponding 
PIN, if used) could 'sign' the message. 
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We therefore see that the system now has two interrelated security 
mechanisms: the MAC and the response. As we stated above an attack 
by an unauthorised user would need to be directed either at the 
institution's highly tamper resistant facility or at both a user's 
cryptographic facility and that user's token. We believe such an 
attack to be extremely difficult. 
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Abstract 

IC cards in High Security Applications 

Ingrid Schaumliller-Bichl 

VOEST-ALPINE AG 

A-4031 Linz/Austria 

IC cards - plastic cards with imbedded CPU and memory chip - have 

been gaining growing interest during the last years. 

Their wide range of applications comprises access control, data 

protection, electronic money, personal data files and 

operational functions. 

Each application sets security requirements to the card, yet the 

scope of these requirements can be very different for each 

application. 

The paper describes an IC card concept - based on special 

cryptographic functions - that provides a very high level of 

security against a broad range of potential attacks, thus being 

well suited for high security applications. 

Two main ideas form the basis of this new concept: 

1) Block structure: 

The data memory of the card is structured into blocks of 

arbitrary lengths. Each block is assigned to a specific 

application and protected by a specific PIN. Security levels 

of different blocks can be different. 

2) On-card encryption: 

A block cipher algorithm is implemented on the card, serving 

for three main functions: 
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i) Encipherment of data stored on card: 

All (confidential) data on the card is stored in 

enciphered form, the key is a combination of PIN and 

parameters unique to each card 

ii) Communication encryption 

Serves for cryptographic protection of communication 

between card and card reader, if required (depending on 

application) 

iii) Black box cipher system: 

Encryption of external data under a key stored in the 

card. This proves especially valuable for efficient key 

management functions. 

This card concept provides 

- a very high level of security 

both for data stored on the card - even employing an 

electron microscope does not reveal any confidential data -

and the data communicated to the card reader. 

It also prevents unauthorized copying or simulation of the 

card efficiently. 

- high flexibility: 

the fact that each block can be protected by a seperate PIN 

allows to realize different applications in one card without 

prior communication between card issuers ("Multifunctional 

cards") 

- reduced PIN management problems: 

as the PIN is block dependent, user selectable and choosable 

at the time of block creation, generation, storage and 

transmission of PINs (if necessary at all) are much easier 

than in other concepts. 
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Possible applications of this IC card concept cover all known 

applications for IC cards. 

Yet it is specially suited for high security applications in 

the area of data protection and access control. 

There it is made full use of the two main functions of IC 

cards: 

- storage of confidential data 

like cryptographic keys or passwords 

- processing of special security functions 

like encryption under a master key 

Typical fields of applications are key management for 

communication encryption and file encryption, access control, 

user identification, authentication and software protection. 



V-18 



VI 

HASH FUNCTIONS AND SIGNATURES 





1. Introduction. 

VI-1 

COLLISIOH FREE HASH FUKCTIOHS 
AHD PUBLIC KEY SIGNATURE SCHEftES. 

• 1 
lt.1an Bjerre Damgard 

{Extended .Abstract) 

The use of hash functions with digital signature schemes has been 
suggested many times before [1],[4]. The motivation for using a hash 
fuct ion can be to pret.1ent undetected changes in a signed message, or 
to protect against certain types of chosen message attacks[!]. Since 
the output of a hash function is usually shorter than the input, the 
use of a hash function can also improve performance of a signature 
scheme. 

Several attempts have been made to construct hash functions using 
e.g. DES or RS.A as building blocks. However, none of these suggestions 
have been proved to be secure, and several of the proposals using DES 
have been proved to be insecure{(5] and (6]). Other variations of hash 
functions have also been proposed[B]. But the use of these functions, 
like pseudo-random functions(9), require that sender and receiver 
share a secret key. They are therefore suitable for authentication 
purposes, but do not fit into the scenario of a public key signature 
scheme. We would like to hat.Je publicly kno\'m hash functions, that are 
easy for all users to compute. 

2. Constructing collision free hash functions. 
Let E be a finite alfabet and let M be the set of all finite 

words over E • .A hash function is a map h: M ➔ .A, where A is some 
finite set. 

The most basi c demand to a good hash function is that it should 
be computationally infeasible for an adversary to find collisions, ie. 
different messages hashing to the same value . .A hash ruction h is 
said to be collision free if it is easy to compute h on any input, 
but computationally infeasible on inputs h, M and .A to find any 
x,y EM such that h(x) = h{y). {in the full paper, we choose a 
specific computational model to describe what "computationally 
infeasible" means, and we put the definition of collision free 
functions into a complexity theoretic setting by considering families 
of hash ft.mctions indexed by a. security parameter. The same is true 
for the claw free sets of permutations discussed be low). 

If his collision free, then his easily seen to be one-way, 
wh i le the cont.,erse is not necessarily true. 

1
This work was supported by DHSRC. The author is with Mathematical 

Institute, Aarhus University, Denmark. 
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In [2], the notion of claw free pairs of trapdoor permutations is 
introduced. We shall use a generalisation of this idea, without the 
trapdoor property: 

H set of permutations is called claw free, if the 

following is satisfied: 
All permutations in the set have the same domain. 
For any H in the domain, f. {H) is easy to compute. 

l 

It is computationally infeasible to create a claw, i.e . to find 
x,y such that for some i -t j, f. {K) = f . {y). 

l J 

Assuming the existance of clawfree sets of permutations, we can 
construct collision free hash functions. First some notation: 

Let m be a finite word over E. We the let [ m] denote a 
prefiK free encoding of m over E. m. will denote the i'th letter 

l 

in [m]. If {f ,f 1 , •• ,f ,} is a set of permutations, and IE 
o r-.L 

do ma in ( f 
O 

j , 

f[ 1 {I) 
m.1 

where [m] = 

we define 

f (f ( ... f (I) ... )), 
m1 m2 ms 

m2 ••• m, and the elements of 
s 

E are denoted by 

numbers 0, ... ,r-1. A similar construction is used in [2] with r = 2. 
Note that it is possible to choose an encoding such that the length of 
[m] is a linear function of the length of m(see [3]). 

TheoreJD 2.4 
The function h constructed below is a collision free hash 

function. 
Let S= {f

0
, •• ,fr_

1
} be a set of claw-free permutations. We let 

E be the alfabet of cardinality r given by E = {0,1, .. ,r -1}. We 
then define h by: 

h(m) .- f[m](Ij 

proof.(ske t ch) 

for all mE M . 

Assume for contradiction, that h is not collision free. This 
means that we can find m and m' in M such that: m -t m' and 
f[ ](I} = fr ']{I). But the prefiK free property of the encoding now 

m L rn 
implies that we also have a claw for S. 

If we let T denote the time needed to compute the value of one 
of the permutations used in the construction, it is clear, that the 
time needed to compu t e hon a message of length L is O(L·T) 

Note, that with a claw free set with 2 s elements, we can ha sh a 
binary message by processing s bits at a time. 

We now give a cons t ruction of clawfree sets of permutations under 
the assumption that factoring is hard. Suppose we want a set ·with r 
elements. 

Let n = p 1 · p 2 · • •• • p.._ , where all the p's ar-e k bit prime 
C 

number s equivalent to 3 mod 4, and where t is the smallest integer 

2
t-1 

such that > r. 
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For each a prime to n, define 

J (a) = [ [: 1 l ' [: 2 l ' · · · ' [: t-l l · 
QR(n) will be the set of quadratic residues mod 
elements in Z/nZ A= {a

0
, . . . ,ar_

1
} such that 

n. Choose a set of 
J(a . ),;. ±J(a.) for 

l J 
i,;. j. This is clea rly possible by choice of t. A is called an 
injective set of numbers whenever it satisfies this condition. We can 

now define {fin) ,f,n), . . ,f;~I} to be the set of permutations of 

QR{n) given by 

f ~ n) ( x) = (a . x) 2 mod n, 
l l 

for XE QR(n) and i= 0, . . ,r-1. 

It is easy to see that by choice of the a. 's, finding a claw is 
l 

as hard as finding a non trivial factor of n given the injective 
set. A series of technical lemmas then pro1.res that knowlegde of an 
injective set does not help in factoring n, even if the set size is 
allowed to grow po l ynomially wi th the security parameter: even without 
knowing the factors , an inject i 1.re set can al ways be guessed with a 
constant probability greater than 0, which does not depend on the 
number of factors. 

With this construc tion of clawfree sets, the value of a hash 
function can be computed in about the same time as is needed to apply 
RSA to the whole mes s age. I t will often be possible to impro·ve 
performance of our· ha s h functions by using large sets, rather than 
fx. pa i rs. One sho uld be aware , though, that a larger set requires 
more prime factors and hence a longer modulus - note that a modulus 
with many shorter pr i me fac t ors will not be secure because of 
factoring algorithms like Lentras elliptic curve method[?], whoose 
running time depend s mos tl y on the size of the smallest prime factor. 
The gain in speed we can get therefore also depends on how modular 
multiplication is implemented. 

3. Combining a signature scheme and a hash £unction. 
we consider a general model of a public key signature scheme. We 

choose any scheme which fits in this model and call it "the original 
scheme". We then combine 1.•1ith a hash function: to sign a message, 
compute the value of the hash function on the message and sign this 
1.,alue using the original scheme. This is called "the combined scheme". 

Following [2], we call a s i gnature scheme "existentially 
forgeable" if, under soroe attack, an enemy can forge the signature of 
at least one message . The message is not necessarily chosen by the 
enemy. 

An "adaptive c hosen message attack" is an attack, where the enemy 
can choose messages to be signed during the process of forging a 
signature. Hence the cho i ce may depend on the results of earlier 
computations . 

It is of cour s e essen t ial to be able to compare the security of 
the two schemes. A first result in this direction is: 
Theorem 3.1. 

Suppose that the original schenie is not existentially forgeable 
under an adaptive chosen message attack, and that the hash function 
used is collision free. Then the combined schenie is also not 
existentially forgeab l e under an adaptive chosen message attack. 
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We also discuss how a collision free hash function may be able to 
improt.,e the security of a weaker signature scheme. It follows that if 
we use the construction from Section 2, we can implement e.g. RS.A 
combined with a hash function about as efficiently as RSA in its basic 
form, without extra hardware, but with much better security. 

4. Speeding up the Goldvasser-fticali-Rivest scheme. 
In [2], the Goldwasser-Micali-Rivest {GMR) signature scheme is 

introduced, and is proven not to be existentially forgeable, even 
under an adaptive chosen message attack. Thus by Theorem 3.1 above, we 
can obtain a signature scheme with the same let.,e 1 of security by 
combining with a collision free hash function. It is proved that in 
the factoring based implementation of the GMR-scheme, this will speed 
up the signing process by a factor of roughly the length of the moduli 
used, if messages are long compared to the length of a signature. 
Other methods hat.1e been proposed for speeding up the signing process, 
both by Goldreich[12] and in the full version of the 
GMR-paper [ 13]. Both these methods g i t_1e rough! y the same speedup as 
ours, but are fundamentally different: Goldreich's method is based 
entirely on properties of the factoring based construction of claw 
free permutations, while our method is potentially useful in any 
construction. The method in the GMR-paper does not{like ours) allow 
the use of non trapdoor permutations, since this would int.ra 1 ida te the 
proof of security for the GMR-scheme. 
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HASH-FUNCTIONS USING MODULO-N OPERATIONS 

( extended abstract) 

Marc Girault 
Service d'Etudes communes des Pastes et Telecommunications 

Pericentre V - 53, Avenue de la Cote de Nacre 
14040 Caen Cedex, France. 

o. INTRODUCTION 

Today, there is a need for one-way hash-functions, 
essentially for use in digital signatures [1]. Along with many 
experts, we define that H is a one-way hash-function if it 
maps messages of arbitrary length to some small fixed length, 
and if, for any M and value H(M), it is computationally 
infeasible to find another message M' such that H(M') = H(M). 

Until now, much attention has been paid to hash-functions 
based on a conventional encipherment algorithm, generally DES 
[2,3,4,5,6,7). Nevertheless, it is also useful to design hash­
functions using modulo-n operations, particularly if Sis the 
secret function of a public-key system (RSA or a successor). 
In 1984 D. W. DAVIES and W. L. PRICE proposed such a hash­
function [ 8, 9 J • The main objective of this paper is to show 
the weakness of their scheme (referred to below as the DP 
scheme) and of some variations of it. This weakness was 
pointed out (but without details) for the first time by A. 
JUNG [ 10]. 

I. DESCRIPTION OF THE DP SCHEME : 

The basic idea, introduced by R.R. JUENEMAN but used by 
him in a somewhat different way [11], consists in choosing a 
(public) integer n, in dividing the message into k blocks Bi 
smaller than n and in performing: 

H1 = B 2 
1 mod n 

(E) 
H2 = (H1 (+) B2)2 mod n 

Hi+l = (Hi (+) Bi+l) 
2 mod n 

Hk = (Hk-1 (+) Bk)2 mod n 

The final result is H=Hk ( (+) stands for exclusive or) 
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Bl B2 B3 Bk 
I __ I __ I 

I I I I I I I I I I I I 
I I square I ( +) I square I ( +) I square I ... ( +) I square I H -, __ ,- -, __ ,- -, __ ,- -, __ ,-

Of course, if the B • are not required to have some 
redundancy, the security lf this scheme is jeopardized : the 
enemy can choose all the blocks as he likes, then "correct" 
them by properly choosing the last one. 

So, the D.P.scheme is: 

- choose a public 512 bits-long modulus n 

- divide the message M into 448 bits-long blocks 
B1 , B2 , ... Bk; that is equivalent to imposing 64 bi ts of 
redundancy at the head of each Bi , these bi ts being 
equal to O: 

I oo ..... oo 

'--~--64 bits 

XXX. . • . . . . • . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . XXX I 
-------------------------' 448 bits 

- apply the equations (E) 

Unfortunately, this scheme is not very secure, as shown 
below. 

II. THE WEAKNESS OF THE DP SCHEME 

Let us call "valid" a 512 bit block with the 64 m. s. b. 
(most significant bits) equal to zero. A successful attack 
consists in replacing the valid blocks (B1 , .... , Bk) by other 
valid blocks (B 1

1 , ..... ,B'q) leading to the same hash result. 

* Replacement of (B1 ,B2 ) by (B' 1,B' 2) 

Suppose that the enemy would like to replace B1 by B1
1 . 

He should correct the corresponding variation of H1 by 
replacing B2 by B1

2 

H1 = B 2 H' = B' 2 
1 

becomes 
1 1 

H2 = (H1 (+) B2)2 H' = (H'1 ( +) B'2)2 2 

(all these equations modulo n) 
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The blocks B 1
1 and B 1

2 must be chosen such that 

(i) B1
1 is valid 

(ii) B 1
2 = B2 (+) H1 (+) H1

1 
(in order to have H' 2 = H2 , 

(iii)B 1
2 is valid. 

The difficulty is clearly that, if the fake (but valid) 
block B' l is chosen without precautions, and B' 2 as in (ii) , 
then (iii) wilJ-; not be satisfied, with a probability equal a 
priori to 1-2- 4 . In fact, (iii) will be satisfied if and only 
if H1 and H1

1 have the same m.s.b.; so, the conditions (i), 
(ii) and (iii) can be replaced by: 

(i) B 1
1 is valid and is such that H1 (+) H1

1 have the same 
m.s.b. 

We now show that the enemy can find a number of blocks 
B1

1 , satisfying the new condition (i),so that one of these 
blocks may be advantageous for him. The technique uses the 
Extended Euclidean Algorithm (EEA) in a way similar to that 
used (indepedentely) by W.De JONGE and D. CHAUM (12]. 

Let d be such that B' 1 = B1 + d (mod n) (+ is addition 
modulo n). So: 

H1
1 = (B1 + d) 2 = B1

2 + 2dB1 + d 2 = H1 + (2dB1 + d 2 )mod n 

Roughly speaking, "B 1
1 valid" means "d small" and "H, and 

H1
1 have the same m.s.b." means " 4i~B + d 2 ) mod n small11 • 

Here, "x small" means about lxl < 2 tor a little less). 

The second condition is satisfied in particular if: 

d is "very small" (say < 2224 ) 
2dB1 (mod n) is "small". 

The problem is now reduced to finding a very small d such 
that 2dB1 (mod n) is small. The EEA finds, for a given n and a 
given x with O<x<n, some rational integers aj and bj such 
that: a•n + b•x = r, ( ====> b,x = r, (mod n) ) 
where ri fs thJ j-tit partial remainder J of trte Euclidean 
~lgorit~m : ri is a decreasing function of j but bj is an 
increasing one-. 
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As we are going to apply this algorithm to x = 2B1 (mod 
n) (hence b • will play the role of d) , the hope is tfiat we 
find some Y such that "bj very small" and "ri small" are 
simultaneously true. In ract, a result menti6ned in [12) 
transforms this hope into a quasi-certainty. 

In practice, the EEA is so fast that we need not try and 
"guess" the interval (j 0 ,j 1 )in which both conditions will be 
satisfied. Our algorithm, applied to some n and Bi picked up 
at random, allowed us to find 121 pairs (B 1

1 , B 1

2 J. In fact, 
we can find a substantially larger number of pairs (895) by 
slightly modifying the Euclidean Algorithm in the interval 
(j 0 ,j 1 ). Many other trials confirmed this first result. 

* Replacement of (Bi, Bi+l) by (B'i, B'i+l) 

The same technique is also effective if the enemy wants 
to replace any pair (Bi,Bi+i> by (B'i, B'i+l>. 

III. VARIATIONS OF THE DP SCHEME 

Several variations can be considered: 

- increase the redundancy length 
effective with 128 bits (or even 
fails with 176 bits or more; 

the attack remains 
160) of redundancy but 

- put the redundancy bits elsewhere 

* on the right: the attack (slightly adapted) remains 
effective (but less than previously) up to 96 bits 
(or even 128) of redundancy; 

* in the middle 
effective; 

the attack seems to be no more 

* dispersed in the block: idem. 

- change the redundancy bits (e.g. alternatively 11 0000 11 and 
11 1111") : the attacks remains effective. 

By combining these types of A. JUNG designed 
the TTT/OSIS hash-function, proposed for 
standardization in CCITT [13) and 
the full paper, as well as 
particular from SEPT and D. CHAUM). 

variations, 
currently 

ISO. It will be discussed in 
other proposals (in some 

********************** 
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Blinding for Unanticipated Signatures 

DavidChaum 

Centre for Mathematics and Computer Science 
Kruislaan 413 1098 SJ Amsterdam 

Blind signature systems published until now require computation at least proportional to 
the number of types of signatures that can be used, and require that the number of such types be 
fixed in advance. Several applications of blind signatures require a large number of signature 
types, and some require a number of types that cannot in general be fixed initially. Here, a 
totally new blind signature technique is introduced that allows an unlimited number of signature 
types with only a (modest) constant amount of computation. 

Background 

In an RSA public key signature system [Rivest, Shamir & Adleman 78], a party that will 
be called the signer chooses two appropriate large primes p and q, and makes their product n (= 

p·q) public. The signer also makes public/ "public exponents" e 1, ... , e1. Additionally the 
signer computes corresponding "secret exponents" d 1, ... , d1 satisfying di= e;1 

(mod(p-l)·(q-1)), where l~i~l. The signer then forms the ith signature on a number mas m'i = 
m d; (mod n ). Anyone can use the public n and ei to verify the ith signature on m by checking 

that m = (m'i/; (mod n) holds. 

Blind signatures prevent the signer performing a commercial service such as validating 
electronic bank notes, issuing signatures whos types encode credentials, notarizing or time 
stamping electronic documents, etc., from determining the exact content of each message 
signed-even if the signer has infinite computing power. In blind signature systems, a party 
wishing a signature on some message will be called the provider. First the provider blinds the 
message before submitting it to the signer for a signature; when the signed but still blinded mes­
sage is returned by the signer, the provider is able to unblind it and thereby recover the original 
(no blinded) message bearing the signature. 

The previously published blind signature system [Chaum 83] worked as follows: the 

blinding of a message m with a suitably chosen random r produces t = m·re; (mod n); the sign-



VI-14 

ing oft yields t' = md;_r (mod n); and the provider unblinds t' by forming m\ = t'·r-1 (mod n), 

yielding m'i = md;(mod n). 

Notice that it is necessary for the provider to anticipate the particular di to be used by the 
signer. It is possible, though computationally expensive, for the provider to anticipate a few di 

by forming t = m·re 1e2 (mod n) for example, and being able to unblind in case of signature with 
d 1 or d2 by forming m'1 = (m·re 1e2

/
1 

• r-e 2 (mod n) or m'2 = (m·re 1e2
/

2 
• r-ei (mod n), 

depending on whether d 1 or d2 was used to sign, respectively. But such an approach becomes 
prohibitively computation intensive as the number of alternatives increases: in general it 

requires the provider to perform more than one multiplication for each alternative anticipated, 

since each ei should have a unique prime factor-otherwise some signatures can be made from 
others. Such effort required to anticipate all possible signatures may not be practical, and is also 
undesirable because the maximal extent of a system has to be fixed initially and effort required 
for this maximal extent has to be carried out from the beginning. Of course such an approach 
becomes impossible in practice when the number of alternatives is large or when the alternatives 

are not known in advance of blinding. 

Even the simple payment system mentioned in [Chaum 85] has advantage in the bank's 
customers each supplying a large number of blinded items when they open an account, without 

the customer knowing in advance the particular choice of signature, which the bank will used to 
encode the denomination and possibly other data, such as expiration date, when it ultimately 
issues the notes. Credential systems encode each different kind of credential a person has as a 

digital signature of the corresponding type formed on a blinded copy of the persons digital 
"name" [Chaum 85; Chaum & Evertse 86]. There may be a great many different kinds of basic 

and subsidiary detail credentials, and the future requirement for such credentials may be difficult 
to anticipate at any particular instant. Thus there appears to be a substantial need in applications 

for blind signatures that are unblindable even after an unanticipated signature type has been 
applied. 

Blind unanticipated signature protocols 

The new blind signature protocols presented here are based on the use of one or more 

units ( of the ring of residue classes modulo N) called generators. Depending on how these gen­

erators are verified, as will be described in the next subsection, the blind unanticipated signature 

protocol will have one of three different forms. 

In the simplest form of the protocol, the following congruences would hold: 

t = [m]·gk (mod n) 
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I k d-t = [m·g ] '(mod n) 

I k d- -d-k 
m = [(m·g ) ']-g ' (mod n) 

where, as before, mis the message to be blinded, tis the blinded form of the message, t' the sig­

nature computed fort, m' the unblinded signed m, g the generator, n the publicly known 

modulus, ei and di public and private signature exponents respectively, and k the blinding key 

secret of the suplier chosen, say, uniformly from {1, · · ·, n 2}. 

The square brackets show the input to the transformation whose output is shown on the left­

hand-side, and thus they define the function of each of the three transformations in the order 

shown: blinding, signing, and unblinding. It is assumed that g di is made public by the signer, 

which can be done without compromising security and need be done only once for each signa­

ture type i that is used. In the second form of the protocol, the following congruences hold: 

k 
t = [m]-g 1 ·k2 (mod n) 

1 k1 d- -d·k1 
m = [(m·g ·k2) ']·g ' ·k2(mod n), 

where blinding key k 1 is as above and blinding key k 2 is chosen uniformly from {1, n-1}. 

In the most general case, the following congruences would hold: 

ki k2 k,)di] -dik1 -dik,( d ) 
m' = [(m·g1 ·g2 ... gr ·g1 · ... ·gr mo n ' 

where each ki is a secret blinding key chosen independently as k was above. 

Testing a generator knowing the factorization 

Knowing the factorization of p -1 and q -1 allows efficient verification that a particular 

proposed set of generators do in fact generate the whole group of units modulo n. (Notice, how­

ever, that these factorizations trivially allow one to compute p and q themselves.) Suppose, for 
example, that GCD(p-1, q-1 )=2, which is quickly checked by comparing the factors of p and q, 

and that g and -1 are to be verified as generating the whole group. Then it is sufficient to verify 
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that the order of g is maximal modulo one factor of n, say p, and that it generates exactly half 

the elements modulo the other, q. This is readily accomplished: First raise g top 11 -p 1 ·p 2 · .. . -Pk 

and ensure that no l gives the result 1, where the Pi, l~i~k, are the prime divisors of p and 

1~/g_ Then repeat the same procedure for q, but exclude from the product the q1 equal to 2. 

The factors of n need be a secret of the signing party, however, since possessing them is 
sufficient to easily form signatures. 

Hiding the factorization with physical security 

This approach allows anyone to submit to the signer apparatus that conducts the kind of 

test just described. The signer supplies the secret parameters to the submitted apparatus and 

allows the logical result ("verifies" or "does not verify") to be communicated to the supplier of 

the apparatus, without allowing the secret parameters to be leaked by the apparatus to its sup­

plier. One way to allow the signer to be sure that nothing is leaked to the supplier and to still 

provide confidence to the supplier is as follows: the supplier creates a number c' at random, 

applies a publically known and agreed on one-way function f, which is preferably one-to-one, to 

c', yielding c = f(c'); installs c' and n in the apparatus; and gives c to the signer along with the 

apparatus. Then the signer isolates the apparatus from the supplier and provides the apparatus 

the secret parameters (pi and qJ; applies f to the output of the apparatus; and if this equals the 

original c supplied, returns this c' to the supplier. The apparatus is constructed to be tamper 

resistant enough to make it sufficiently difficult for the signer to obtain c' from it in the expected 

time interval, unless the generator tester yields a "verifies" output. 

Linear cut and choose on modulus generator pairs 

In another approach, a prospective signer makes public moduli Ni, l~i~k and correspond­

ing generators Gi for each. Others determine the single modulus n among these that will be 

used, whereupon the signer must make public the factorizations of the p-1 and the q - l, for all 

the moduli except the one selected. Then anyone may use the verification techniques described 

above relying on possession of the secret to verify all the other moduli and corresponding gen­

erators, thereby obtaining the probability 1-k-1 that the selected modulus would also verify. 

One way to select the i would be a public event. Another way to determine i, requires each of 

some set of persons to form a b'j at random and a corresponding bj = f(b'j) using a preferably 

bijective public one-way function f Then each person of the set makes public bj. When all the 

bi are public, the b'i are revealed, checked, and added modulo the number of moduli, yielding 

the index i. 
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Generators not manipulable by the signer 

Yet another way to allow those other than the signer to have confidence in the suitability 

of generators is for the generators to be determined in a way that cannot easily be manipulated 

by at least the signer. Generators could be chosen by a random process, such as those already 

described for selecting a particular modulus. Use of a single such randomly chosen and untested 

generator might not provide a high enough probability of providing adequate "unlinkability" as 

defined later; use of a plurality of randomly chosen generators improves the degree of hiding 

and unlinkability. For example, use of 20 or so generators provides a probability of roughly 

one-millionth that not all blinding factors in the reduced residue system modulo n can be gen­

erated. When additional things are known about the structure of n, such as that it has exactly 

two prime factors that are congruent to 3 modulo 4 [Peralta 86 & v.d. Gaaf 87], that (p-l)(q-1) 

has no small odd di visors, or that GCD(p -1, q-1 )=2, the probabilities improve greatly for the 

same number of generators. A further variation chooses subsets of a set of generators in a key 

dependent way. 

Ensuring that messages blinded are powers of g 

The previously described approach demonstrates that no suitability testing for generators 

is required. A variation under this approach still does not require verification of the generators: 
protection against linking is provided by almost any generator(s). The improvement derives 

from testing whether the thing to be signed, m, is a member of the group generated by the 
generator(s). When them is actually issued by the signer, then the signer can form it as m=gx, 

where xis chosen at random by the signer. Then the signer can participate in a protocol that 
convinces the provider that some x satisfying the congruence is known to the signer. Such pro­

tocols for demonstrating possession of a discrete log are presented in [Chaum, Evertse, v.d. 

Graaf & Peralta 86]. 

Open questions 

A much cleaner, more general, and perhaps even more efficient approach might be found. 

Notice, for example, that if p; 1 
and q; 1 

are primes, then any g with Jacobi symbol -1 

(which can easily be checked only knowing n) together with -1 generates the whole group 

(apart from a few exceptional cases that immediately revea~ the factorization of n). Thus, a pro­
tocol allowing anyone interacting with the signer to check that n is of such a form, without 

revealing its factorization, would allow easy verification of generators of the whole group. Any 

such "open" protocol for establishing a pair of generators (preferably one of which is -1) would 
be very desireable. 
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Unlinkability 

Clearly all blinding factors cannot be equally likely with the techniques presented, since 

otherwise the blinder would have to choose the exponents uniformly from a distribution that is 

an exact multiple of <j>(n ). But it is easy to see, and will be formalized more completely in the 

final paper, that choosing the ks uniformly from { 1, · · ·, nsubp2B) gives a maximum difference 

in the probability of any two that is less than n - l. 
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KEY-MINIMAL, PERFECT, LINEAR AND BILINEAR CIPHERS 
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Swiss Federal Institute of Technology 
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Extended Abstract 

The purposes of this paper are: (1) To give an appropriate 

general definition of a linear cipher, of a bilinear cipher, and 

of perfect secrecy for such ciphers; (2) to demonstrate for every 

blocklength the existence of perfect bilinear block ~iphers that 

require the minimum possible amount of secret key; (3) to give 

some isolated examples of perfect linear stream ciphers with si­

milarly minimum key that disprove an earlier conjecture of Massey 

and Rueppel; and (4) to suggest practical applications for such 

key-minimal perfect linear ciphers. 

Only binary ciphers will be considered, i.e., the plaintext 

~' the ciphertext y and the secret key~ are all binary sequences 

whose components will be considered elements of finite field GF(2). 

In a block cipher:; _ ~' y and~ are finite sequences. The key is 

one-time, i.e., it is used to encipher a single ciphertext. The 

ciphering transformation, which must be invertible for every 

fixed choice of~' will be written y = f(~,~). 

The cipher will be called linear if the enciphering function 

is linear in~ [with respect to the scalar field GF(2)] for every 

fixed choice of the key~' i.e., if 

= 

for all ~l' ~ 2 and~- The cipher will be called bilinear if the 

enciphering function is also linear in z for every fixed choice 

of the plaintext x. 
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Shannon's notion of perfect secrecy (against a ciphertext­

only attack) for a cipher system is that x and y be statistically 

independent. In a linear cipher, x = 0 gives y = O so such a 

cipher cannot be perfect unless Pr(~= Q) = O. Thus, we shall 

hereafter enforce the plaintext restriction~ f 0. Invertibility 

in a bilinear cipher also demands the key restriction~ f O. 

Moreover, we shall say a linear cipher is perfect if, for a 

completely random key (chosen, of course, independently of~), 

~ and y are statistically independent for every choice of a pro­

bability distribution for x such that Pr(~= Q) = O. It is easy 

to see that Shannon's lower bound on the required secret key still 

holds, viz, a perfect linear cipher requires at least one bit of 

secret key per plaintext bit. A linear cipher meeting this lower 

bound with equality will be called key-minimal. 

Consider a non-expanding linear block cipher of blocklength 

n, i.e.,~= (x1 , ... ,xn) and y = (y1 , ... ,yn). If the cipher is 

key-minimal, then z also has length n. It is easy to see that 

the cipher is perfect if and only if, for a completely random 

key~, y is also completely random for every choice of~ f 0. 

The following n = 2 bilinear cipher 

is indeed legitimate because the z-matrix is invertible (i.e., 

nonsingular) for every~ f Q, and is perfect because the x-matrix 

is nonsingular for every x f O. 

Key-minimal perfect bilinear ciphers exist for every block 

length n. Their construction is quite trivial. Let a
1

, ... ,an be 

a basis for GF(2n) with respect to GF(2) and let X = x
1

a
1 

+ ••• 

+ x a. Similarly define Y and Z as the elements of GF(2n) re-
n n 

presented by y and~- Then Y = XZ is the equation of a key-

minimal perfect bilinear cipher. The above example was constructed 
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this way taking a
1 

= 1 and a 2 = a where a 2 +a+ 1 = O in 

GF ( 2 
2

) • 

At EUROCRYPT '84, Massey and Rueppel defined a linear 

additive stream cipher of memory M by the equation 

t. 
y. = x. + f . (x. 1 , .. ,x. M,z) = x. + z'. 

1 1 1 i- i- - 1 1 
( i > 1) 

where f. is linear in (x. 1 , ... ,x. M) for every fixed choice 
1 i- i-

of z. Note that invertibility is always ensured and also that 

such a linear additive cipher can never be bilinear 

since z = 0 does not ensure x = O. The appropriate plaintext 

restriction is (x. 1 , ... ,x. M) + 0 for all i. They showed how 
i- i- -

to construct perfect ciphers of this type with 2 (new) bits 

of secret key per bit of plaintext and conjectured that this 

was the minimum possible. The following two examples (both due 

to the second author), however, use only 1 bit of key per bit 

of plaintext. That they are perfect linear ciphers follows from 

the fact that, for a completely random key, the additive se­

quence z1, z2, ... is completely random for every fixed choice 

of~ satisfying the plaintext restriction. 

M = 2 Stream Cipher: 

z3j+l x3j-l x3j x3j z3j+l 

z3j+2 = x3j x3j+x3j+l 0 z3j+2 

z3j+3 x3j+2 0 x3j+l z3j+3 

M = 3 Stream Cipher: 

z! = x. 1 z.+2 + x. 3 z.+l + (x. 2 + x. 3 )z .• 
1 i- 1 i- 1 1- i- 1 

This M = 3 key-minimal perfect linear additive stream cipher 

can be written more suggestively as 



VII-4 

where X. and Z. are the elements of GF(2 3 ) represented 
l. l. 

by (x. 1 , x. 2 , x._ 3 ) and (z.+2 , z.+l' z.), respectively, 
i- ].- 1 . 1 2 1 1 3 4 

with respect to the basis a
1 

=a, a
2 

= a , a
3 

= a where 

a 3 + a 2 + 1 = 0 in GF(2 3), and where Tr(.) is the trace 
3 . 

operator from GF(2) to GF{2). [No similar perfect "multi-

plying cipher" exists for M = 2.] 

At present, we do not know whether key-minimal perfect 

linear stream ciphers exist for M > 3. 

Massey and Rueppel at Eurocrypt '84 showed the connection 

between perfect linear additive stream ciphers and good en­

sembles of convolutional codes. In theirs and our ciphers, 

the key "randomizes" the plaintext but also the plaintext 

"randomizes" the key. Thus these enciphering functions can be 

used to combine two pseudo-random sequences to produce a 

"better" pseudo-random sequence, a fact that Massey and Rueppel 

also exploited. Our M = 2 and M = 3 combiners should be superior 

to theirs as our "randomization" is better, but larger M's are 

needed for real practical utility. 

Our perfect bilinear block ciphers have an advantage over 

the traditional one-time pad (where y = x + ~) in that an enemy 

who can alter y cannot predict the change in the resulting plain­

text for our ciphers. Thus, an authentication pattern can be 

incorporated in x and used to foil such a substitution attack. 

Our linear ciphers could also be used (without a one-time key) 

to form secret (but insecure) pre-signatures for a plaintext ~ 

that would then be protected by an appropriate one-way function 

to form a cryptographic signature for appending to the plaintext. 

But perhaps most interestingly, the fact that the key and plain­

text mutually randomize one another suggests that these perfect 

bilinear ciphers might well be used at some stages in a product 

cipher (where the other stages would, of course, incorporate 

nonlinear ciphering functions.) 
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A blockcipher is a cipher which maps plaintexts, consisting of a fixed number of bits (zeros or 

ones), onto ciphertexts with the same number of bits under control of a key which also consists 

of a fixed number of bits. A well-known blockcipher is the NBS Data Encryption Standard 

(DES) ([NBS 771). In [CE 85), a special class of linear structures in blockciphers, named "linear 

factors", was introduced. In this extended abstract, we deal with a general class of linear struc­

tures, which includes among others the linear factors and complementation properties like in 

DES. We discuss the crypt-analytic importance of these structures and consider the linear struc­

tures in DES. 

Consider a blockcipher, and let P, Kand C be fixed sets of plaintext bits, key bits and 

ciphertext bits of this blockcipher, respectively. A simultaneous complementation of the bits in P 

of a given plaintext and the bits in K of a given key will cause one of the following two changes 

in the exclusive-or sum of the bits in C of the corresponding ciphertext: either this exclusive-or 

sum is unchanged or it is complemented. In §2 we shall argue that blockciphers may be vulner­

able to known- or chosen plaintext attacks faster than exhaustive key search if they possess linear 

structures, i.e. sets P, Kand C of plaintext bits, key bits and ciphertext bits respectively, with the 

property that a simultaneous complementation of the plaintext bits in P and key bits in K results 

for each plaintext and key in the same change of the exclusive-or sum of the bits in C of the 

corresponding ciphertext. For instance, linear structures can be extracted from: 

• the complementation property of DES (cf. [Hel 761): simultaneous complementation of all 

plaintext bits and key bits results always in the complementation of all ciphertext bits; 

• independencies of ciphertext bits of plaintext bits or key bits: some ciphertext bits can be 

expressed as boolean functions which do not have all plaintext bits and key bits as argu­

ments; it was pointed out in [Me 78] and [CE 85] that truncated versions of DES with less 

This research was supported by the Netherlands Organization for the Advancement of Pure Research 
(Z.W.O.). 
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than five rounds have such independencies; 

• linear factors: structures which will change into independencies of ciphertext bits of plain­

text bits or key bits when the blockcipher is modified by applying certain linear transforma­

tions (with respect to exclusive-or) to the plaintext, key and ciphertext, respectively. 

We are particularly interested in linear structures of product ciphers. These are blockciphers 

composed of "simple" blockciphers ("rounds"). In §3 we explain how linear structures of pro­

duct ciphers can be constructed from linear structures in their rounds; linear structures con­

structed in this way are said to be recursive over the rounds. Recursive linear structures in pro­

duct ciphers are generalisations of the sequences of linear factors introduced in [CE 85]. In many 

situations, the linear structures of the rounds, and consequently the recursive linear structures of 

the product cipher, can be found quite easily; however it is often a hard problem to decide 

whether a product cipher has a linear structure not recursive over its rounds which is of any use 

in crypt-analysis. 

By computing the linear structures in the rounds of DES (which is not too difficult), one 

can show that blockciphers consisting of seven or more consecutive rounds of DES have no 

recursive linear structures other than the complementation property. The precise result has been 

stated in §4. 

In §5 we mention some possible extensions. 

2. CRYPT-ANALYTIC SIGNIFICANCE OF LINEAR STRUCTURES 

Let f 2 = {O, 1} be the finite field of two elements. When using notions from linear algebra such 

as linear spaces, linear mappings, etc., it is assumed that the underlying field of scalars is f 2 . Fi' 
denotes the vector space containing all strings of m bits; we denote addition on ff, i.e. bitwise 

exclusive-or, by +. Elements of Fi' are denoted by a, b, etc.; Om denotes the string of m zeros 

and lm the string of m ones. Vectors in cartesian products f; 1 X · · · xf;' are often denoted as 

(x1, ... ,xr), where x; EF;; for i =I, ... , r. [x] denotes the vector space generated by x. If 

Va(aEA) are subspaces of the same vector space, then EB Va denotes the smallest vector space 
aEA 

containing each Va. For any linear mapping A with domain Fi' we put 

ker(A)={xEfq': Ax=O} and im(A)={Ax: xEff} . 

A blockcipher is a mapping 

F: Ff Xf~➔Ff 

(where Fi' and F~ are the message space and key space, respectively) such that for each kin Ft 
the mapping 

(1) 

is invertible. 
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Definition 1. A linear structure of a blockcipher F: f 2 X f ~ ➔f i is a pair of linear mappings 

(A,B) with domains f 2 X f~ and f 2, respectively, such that for each pair (Po,ko) in ker(A) and 

each pin F2 and kin f~ we have 

BF(p+Po,k+ko)+ BF(p,k) = BF(Po,ko)+ BF(0m,0k). (2) 

Example 1. Complementation properties. Let (A,B) be a linear structure of the blockcipher 
F: fi Xf~➔fi where Bis the identity. Then there is a function "1, defined on ker(A) such that 

F(p+Po,k+ko)+F(p,k)=\f(Po,ko) for each (Po,ko) in ker(A), pin f2 and kin fi. (For 

instance, for DES: ftiXf~6➔Fti one may take for A a linear mapping with ker(A)=[(164,ls6)]; 

then "1(164,ls6)=164)- In [Hel 76], chap. III it was explained how to use the complementation 

property of DES in a chosen plaintext attack which is twice as fast as exhaustive key search. By 

a similar argument one can show that the blockcipher F is vulnerable to a chosen plaintext attack 

N times as fast as exhaustive key search if ker(A) has cardinality ~ N. 

Example 2. Linear factors. A linear factor of the blockcipher F is a triple of linear mappings 
- -

(A 1,A2,B) for which a mapping F can be found with BF(p,k)=F(A 1p,A 2k) for all plaintexts p 

and keys k. In [CE 85], it was explained how such linear factors enable known-plaintext attacks 

faster than exhaustive key search. 

In known or chosen plaintext attacks on blockciphers with linear structures one has to use 

the following fact (stated without proof): 

Lemma 1. Let F: fi Xf~➔fi be a blockcipher and (A,B) a linear structure of F. Then there 

exist a linear mapping C: f 2 X F ~ ➔im(B) and a (not necessarily linear) mapping 

F: im(A )➔im(B), both easily computable from F, A and B, such that 

BF(p,k)=F(A(p,k))+C(p,k) forallp in f 2, kin f~ . 

We now give an example of a known plaintext attack which uses linear structures. Let 

F: fi Xf~➔f2 be a blockcipher and let (A,B) be a linear structure of F. Let C and F be the 

mappings satisfying the conditions of Lemma 1 and define the linear mappings A 1, A 2, C 1 and 

C2 by A(p,k)=A 1P+A2k, C(p,k)=C1p+C2k. Suppose that O<n:=dimension ker(A 2 )~k. 

(Linear structures in which ker(A 2) has dimension O but ker(A) has dimension >0 can be used 

in a chosen plaintext attack, which we hope to describe in a later version of this paper). Suppose 

that a crypt-analist has a plaintext-ciphertext pair (p,c), where c=F(p,k) for some secret key k. 

In order to find k, he proceeds as follows: 

- -
(i) he runs through all values k in im(A 2) and checks for each k, if the system of linear equa-

tions 
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A2k=k } 
in kEIF~ 

C2k=Bc+F(A 1P+k)+C1P (3) 

is soluble (the costs of this are approximately those of a computation of F, if we suppose 

that F is much more "complicated" than a linear mapping); it follows at once from Lemma 

I that the unknown key k must satisfy (3); 

~ 
(ii) for each kin im(A 2 ) for which (3) is soluble, he checks if F(p,k)=c for each solution k of 

(3). 

~ 
Supposing that the crypt-analist finds L values of k in (i), and that the null space of the linear 

mapping ki--.(A 2k,C2k) has dimension n 1 ~n, he will find the key after about 2k-n + L X2n 1 

encryptions. In general, this is smaller than the number of encryptions needed in exhaustive key 

search, 2k. By a heuristic argument like in [CE 85], chap. 2, one can argue that the expected time 

in which the crypt-analist finds the key can be made smaller if he has more plaintext-ciphertext 

pairs. 

3. LINEAR STRUCTURES IN PRODUCT CIPHERS 

Let F 1 , . . . , FR : IF T X IF~ ~IF T be blockciphers. The product F =FR · · · F 1 of F 1 , . . . , FR is 

defined (cf. (1)) by 

(4) 

( composition of mappings) for p E IF T and k E IF~. F 1 , • • . , FR are called the rounds of F. We 

shall describe, in Lemma 2 below, how linear structures of F can be constructed from linear 

structures in F1, ... ,FR. 

For any blockcipher F: IFT XIF~~IFT, and any subspace CV" of IFT XIFt we define the 

spaces 

T(F, 'V)= EB [(F(p+Po,k+ko)+ F(p,k),ko)] , 
(Po,ko)E'V 

m k 
(p,k)EF 2 XF2 

U(F 'V)= EB [F(p+Po,k+ko)+ F(p,k)+ F(Po,ko)+ F(Om,Ok)]. 
' (Po,ko)E'V 

m k 
(p,k)EF 2 XF2 

Thus T(F, 'V) CIFT X IFt U(F, 'V) CIFT, and, by (2), 

(A,B) linear structure of F ~ U(F,ker(A))Cker(B). (5) 

Lemma 2. Let F 1, •.• , FR: IF T X IF~ ~IF T be blockciphers and put F =FR · · · FI· Suppose that 

CV" 0, CV" 1 , . • • , CV" R are subspaces of IF T X IF t and 62lf o, 62lf 1 , • . . , 62lf R are subspaces of IF T, such that 
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'Y; d T(F;,'Y;-d' I 
62tf o = [Om], 

62if;X[0k] d T(F;,621f;-1 X[0k])EBU(F;,'Y;-1)X[0k] for i =I, ... ,R. 

Then U(F, 'Yo)C621f R. 

We shall not give the elementary proof of Lemma 2 in this abstract. 

(5) and Lemma 2 motivate the following: 

Definition 2. Let F 1, ... ,FR: 1Fi' XIF~~Fi' be blockciphers and put F=FR · · · F1. A linear 

structure (A,B) of Fis called recursive over F 1, ... ,FR if there are subspaces 'Yo, ... , 'YR of 
IF i' X f ~ and 62tf O, • • • , 62tf R of IF i' for which ( 6) holds and for which ker(A) ='YO and 

ker(B) = 62if R · 

It is an interesting open problem how to find out whether a product cipher has linear structures 

which are not recursive over its rounds. 

4. LINEAR STRUCTURES IN DES 

For convenience we modify DES a little bit: we do not use the tables IP and PCI in the NBS­

description (cf. [NBS 77]) and combine the tables E and P, in the way described in [Dav 83], 

chap. 3. Plaintexts and ciphertexts of DES are denoted by (p,q), where p,qEIFf. 

DES is composed of the following mappings (cf. [NBS 77], [CE 85]): 
P:IF~2➔1F~2 : bit permutation; 

E:f~2➔1F18 : bit expansion; 

S1 :IF~➔IF1 (1 = 1, ... , 8): S-boxes; 

S:IF18➔Ff: S(x1, ... ,xs)=(S1x1, ... ,Ssxs) for x1, ... ,xs EIF~; 

L;:1Fi6➔1F18 (i = 1, ... , 16): key scheduling; all L; are permuted choices of key bits, defined by 

PC2 and the shifting pattern. 

Let F;: ff XIFf Xfi6➔1F~2 XIFf be the i-th round of DES, defined by 

F;(p,q,k)=(q,p+S(EPq+ L;k)) for i =I, ... , 16 

(6) 

and DES Rs =Fs ···FR. The next theorem states that product ciphers, composed of seven or 

more consecutive rounds of DES, have no "non-trivial" recursive linear structures other than the 

complementation property. 

TIIEOREM. Let R. S be integers with I~R<S~I6 and s;;;::R +6, and let (A,B) be a linear 

structure of DESRs such that ker(A) is not equal to [(064,056)] or [(164 ,156 )] and (A,B) is recursive 

over FR, .. . ,Fs. Then ker(B)=fr. 

Very rough sketch of proof. Express the spaces T(F;, 'V) and U(F;, 'V) in terms of linear struc­

tures of the S-boxes, for each subspace 'Y of Fr XFi6 and each i in {1, ... , 16}, and compute 

the linear structures in the S-boxes. An S-box S1 is said to have a linear structure if there are 
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aEF~ and a linear mapping D: F1~F2 such that DS1(x+a)+DSt(x) assumes the same value (0 

or 1) for each x E F ~. 

5. POSSIBLE EXTENSIONS 

In [Hel 76], chap. 4, Hellman et. al. suggested the following way to break DES: change a few out­

puts of the S-boxes of DES such that the resulting blockcipher DES', with the modified S-boxes, 

is easy to break. Then DES and DES' give the same ciphertexts for a non-negligible fraction of 

pairs of plaintexts and keys. For these plaintexts and keys, the key in DES can be found by 

searching for the key in DES'. 

As mentioned in §4, recursive linear structures in DES can be obtained from linear struc­

tures in the S-boxes, and the same is true for DES'. If each S-box in DES were chosen in such a 

way that for any set of inputbits and any set of outputbits of this box, a simultaneous comple­

mentation of the inputbits in the given set results in about 50% of the cases in a complementation 

of the exclusive-or sum of the outputbits in the given set, then each S-box would get a linear 

structure only after a change of about 16 of its outputs, in other words no S-box would have 

"near" linear structures. 

The S-boxes in DES have not been chosen in this way; for instance S-box 4 has linear 

structures (cf. [Hel 76], chap. 5 and [CE 85], chap. 4, Lemma 4). Not all near linear structures in 

the S-boxes will be of use in crypt-analysis; it is still an open problem whether the S-boxes in 

DES have any useful near linear structures. 
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Fast Data Encipher ■enl Algorith ■ FEAL 

Akihiro Shimizu Shoji Miyaguchi 
NTT Electrical Communications Laboratories, Yokosuka-shi, 238-03 
Japan. 

BACKGROUND 
In data communication and informal ion processing systems, 

cryptography is the most effective way lo secure communications and 
stored data. The most comm-0nly used cryptographic method is DES 
[ll. However. il is generally implemented with hardware, and the 
cost is prohibitive for small scale systems such as personal com­
puter communication. Accordingly, an enciphermenl algorithm lhal 
has safely equal lo DES and is suitable for software as wel I as 
hardware implementation is needed. The FEAL <fast Data .E_ncipher­
menl Afgor i lhm > f i 11 s the need. 

EVALUATION INDICES FOR ALGORITHM STRENGTH 
In the FEAL design, evaluation indices [21 are adopted lo 

evaluate objectively the data randomization ability of the algo­
rithm. The indices express the approximation degree of cipherlexl 
variation distribution for input plainlexl or key variations lo the 
binomial distribution B<n,112>, in which n is the cipherlexl bit 
length. Two indices, Mand M0 are used. 

M is the average approximation degree of the distribution of 
cipherlexl variations according lo the plainlexl or key variations 
from one-bit lo n-bil. Ma is the variance of the approximation 
degree. When M approaches 100 and Ma approaches zero. the algo­
rithm does not leave clues which could be used lo count backward lo 
the input plainlexl or key, in the cipherlexl. M and Ma are 
defined separately so that Mp and Mra are for the plainlexl varia­
tions and MK and MKa are for the key variations. 

To get the indices, many plainlexls or keys have lo be used. 
Nevertheless, the amount of data which can be treated is generally 
sma 11 compared lo the popu I al ion. Thus. i l is i mporlanl lo gel the 
theoretical index values according to the amount of data by means 
of statistical calculation. For example, the theoretical values 
for 4096 pieces of data, which are a combination of 16 plainlexts. 
16 keys and 16 plainlexl or key variations. are M = 96.5 and Ma = 
2.6 <Table l>. When the measured values of the indices are close 
lo the theoretical values, the algorithm is considered effective. 

DESIGN 
FEAL consists of two processing parts <Fig. l>. One is the 

key schedule which generates the 192-hil intermediate key from the 
64-hil secret key. It is designed lo generate different inter-
mediate keys for different secret keys. The other is the data ran­
domizer, which generates 64-bil cipherlexl from 64-bil plainlexl 
under control of the intermediate key. The data randomizer uses 
combination of involutions [31. One program can perform two func-
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lions, enciphering and deciphering, except for the intermediate key 
entry order. Moreover, the selling of 64-bil intermediate keys by 
means of an exclusive OR operation al the entrance and exit make 
attack on the algorithm difficult. 

FEAL's f function (Fig. 2> is especially designed lo overcome 
the problems existing in f of DES. The construction of f is such 
that input bit variations influence al I output data. Experiment 
confirmed that FEAL's f function randomization efficiency is three 
limes that of DES. 

The s function in the f function, a one byte data substitu­
tion, is as effective as DES's S-BOX. The s function is defined 
as: s(x,y,o > = ROL2 ((x+y+o > mod 256>: 

x. y: one byte data: o: constant (0 or l>: 
ROL2: 2-bil circular function lo the left. 

The fK function (Fig. 3> used in the key schedule is same as 
the f function except for the entry position of parameter $ 

STRENGTH AND PERFORMANCE 
FEAL is safe from the al I-key attack because it is control led 

by a 64-bil key, more secure than the 56-bil DES key. There is no 
more effective method than the al I-key attack lo gel the secret key 
from the plainlexl and the cipherlexl. The FEAL structure is con­
sidered strong because the entire secret key can not be got even if 
any part. under 64 bits, of the secret key or intermediate key are 
already known. Regarding cipherlexl randomization. FEAL is con­
sidered safe because the randomization indices are closer lo the 
theoretical values than those of DES. 

Next. FEAL performance other than the randomization indices 
is compared with the DES performance in Table l. When FEAL is 
implemented in assembly language on a i-8086 16-bil microprocessor 
with 8MHz clock, it is confirmed that the program size is under 400 
bytes and the execution speed reaches 150 Kbit/sec .. Compared to 
DES, the program size is one sixth as large, and 75 limes faster. 

CONCLUSION 
FEAL is a safe enciphermenl algorithm suitable for software 

implementation. It can be applied widely lo small scale or other 
existing systems unable lo use DES hardware because of cost. 
Moreover. FEAL is suitable for hardware implementation, loo. 
Implemented as an LSI. it can be used as the cryptographic method 
in al I data communication fields. 
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Ta bl e 1 Perfor mance co mparison of FEAL and DES 

I te rn s of performance 
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MODES OF BLOCKCIPHER ALGORITHMS AND THEIR PROTECTION 

AGAINST ACTIVE EAVESDROPPING 

Cees J.A. Jansen Dick E. Boekee 
Philips USFA B.V. 
Eindhoven, The Netherlands 

Delft University of Technology 
Delft, The Netherlands 

Abstract. 

Blockcipher algorithms are used in a variety of modes 

for message encryption and/or message authentication. 

We present an overview of a number of modes and their 

protection against active eavesdropping. In particular 

we will discuss the consequences of addition, deletion 

and repetition of parts of the ciphertext in the 

different modes. 

Also a possible application of a method introduced at 

Eurocrypt 86 will be shown in detail. This method is 

based on pseudo-randomly selecting one out of a number 

of invertible functions of two characters (blocks). 

In this application simple functions are used, which 

are easy to implement on a microprocessor. 

The method, which may be regarded as a combination of 

the OFB and ECB modes as are known with the Data 

Encryption Standard, offers a good protection against 

the forms of active eavesdropping mentioned here and 

has no error extension over the block boundary. 

Let a blockcipher be given by its encryption and 

decryption operators Ek and Dk, which act on m-bit 

blocks under a key k. 
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Then the following modes are 

possible: 

ECB: C = Ek(Mn) M = Dk(Cn) n n 

CBC: C ... Ek(Mn + cn-1) M = Dk(Cn) + C 1 n n n-

CFB: en = M + Ek(Cn-1) M = C + E (Cn-1) n n n 

OFB: en = M + R M = C + R n n n n n 
R = Ek ( Rn-1) . n 

PBC: C = Ek(Mn) + M n-1 M = Dk(C + M 1 ) n n n n-

PFB: C = M + Ek(M 1 ) M = C + Ek(M 1 ) n n n- n n n-
CBCPD: C .. Ek(Mn + M n-1 + cn-1) M = Dk(Cn) + C n n n-1 

OFBNLF: en = fR(Mn) M = f;l(Cn) n n n 
R = Ek(Rn-1) n 

Here en and Mn denote the nth ciphertext and plaintext 

blocks; R is the nth block of pseudo-random bits and n 
fR~Mn) is the Rnth invertible function acting on 

plaintext block M. n 
The first four modes are well known with the DES. 

The other four modes denote Plaintext Block Chaining, 

Plaintext FeedBack, Cipher Block Chaining of 

Plaintext Difference and Output FeedBack with Non­

Linear Function respectively. 

From the equations one can easily see what happens if 

the nth ciphertext block is deleted, repeated or added 

to some block Sn. 

It turns out that active eavesdropping is not possible 

with the OFBNLF mode, but occasional errors in the 

ciphertext will not give rise to block-error extension 

in the plaintext. 

+ M n-1 
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As an application of a method introduced at eurocrypt 86 

by the first author, consider the following situation. 

Eight bit characters are encrypted by first cyclically 

shifting them N times (0 - 7, so 3 bits needed to indicate 

the shift) and then adding a pseudo-random byte to it 

in one out of eight ways. The eight ways of addition 

could be the following: 

- 8 bits mod 2 

- 4x2 bits mod 4 

- 2x3 bits mod 8 + lx2 bits mod 4 

- 2x4 bits mod 16 

- lxS bits mod 32 + lx3 bits mod 8 

- lx6 bits mod 64 + lx2 bits mod 4 

- lx7 bits mod 128 + 1 bit mod 2 

- lx8 bits mod 256. 

The 8+2x3 = 14 pseudo-random bits can be obtained for 

example from the DES in OFB mode. This also gives the 

possibility of extra key bits and encryption of up to 

four characters in parallel. 
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Security Considerations in the Design and 
Implementation of a new DES chip.* 

I. Verbauwhede1 F. Hoornaert2 J. Vandewalle3 

H. De Man 1•3 R. Govaerts::1 

IMEC v.z.w.1 

Kapeldreef 75 
B-3030 Heverlee 
Belgium 
Tel: 32-(0)16-281211 

1 Introduction. 

10 Jan 1987 

CRYPTECH n.v.2 

Lloyd George Av. 6 
B-1050 Brussel 

ESAT, K.U.leuven3 

K. Mercierlaan 94 
B-3030 Heverlee 

Belgium Belgium 
Tel: 32-(0)2-6425931 Tel: 32-(0)16-220931 

This paper describes the impact of cryptographic requirements on the design of a new powerful DES 
chip implementation . On the one hand security and flexibility are required by cryptographers. On the 
other hand design, implementation and test restrict the feasibility. It is the aim of this contribution to 
show how both can be combined. The result is a sillylc chip implementation of the DES algorithm 
[1) with a number of unique features. 

2 Enhanced security : required by cryptographers. 

Since there are questions around the safety of DES, the first objective is to implement DES m1 well 
a.<1 DES like algorithms. One could ask for other S-boxes or for an increase of the number of rounds. 
One could use another key scheduling scheme or a longer key by using more than one key for one 
DES calculation. 

All MODES' have to be realised ON chip. One has provided all modes as described in [2) in 8 
bytes form (ECB, CBC, CFB, OFB) and in 1 byte form (CFB, OFB). 

/fry safdy requires that, once entered, keys can not leave the chip anymore [3). So one should 
provide at least 4 key registers for 2 master and 2 session keys. Key exoring of incoming keyparts is 
possible and parity is checked on chip. 

Triplf tnc1:wtio11. is executed on a single command. And enough keyregisters must be provided. 
More general, system requirements are that a cryptographic device should be Just and ms.I/ 

to use. The insertion of an encryption device may not slow down the overall performance of a 
system and it must be usable in a large number of environments. One should implement user friendly 

0 Research performed in collaborat.i,,n wit.ht.he company Crypt.ech n.v. 
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and powerful commands. However, a general reset, especially for the keys, must be available when 
someone tries to tamper. 

3 Implementation and test requirements. 

From the design point of view an optimal trade-off has to be made between algorithm, speed and 
chip area, while keeping the chip testable. 

To enhance spad. first the (~ff chip comm.1111.icaf ion should be minimized. This means that all 
tasks are fulfilled on chip. Powerful commands are necessary so the number of commands for one 
execution is limited. Second pi7xli11.i11y raises speed. Hereby one calculates independent things in 
parallel as much as possible. E.g., the previous ciphertext is written out while the actual plaintext 
is being enciphered and the next one is read in. At first sight this seems to be in conflict with the 
feedback modes. But this is not the case, as explained further and extensively in [4]. 

Arca is expensive and should be kept minimal. So the routing must be reduced and a good 
floorplan is essential. E.g., the 16 DES rounds are calculated in sequence on the same hardware part . 

When designing a chip one will always end up with tc.st-iny. The following three tests are 
necessary : 1) functional and timing tests during development, 2) validation tests, 3) maintenance 
tests during lifetime. 

4 Chip Architecture. 

4.1 Floorplan. 

In order to optimize the trade-off between security and chip design requirements the floorplan (fig 1.) 
is divided in four independent parts : 

1. The DES 1x1rf. half of the area, contains hardware for one DES round. 

2. The A"< y part. one quarter of the area, consists of four key registers and the key scheduling 
scheme, included the key permutation PC2. 

3. The Modes and lntcrnal Trcmsport part ensures a fast calculation of the modes on chip. 
This is done while exchanging the newly entered data going from the 10 part to the DES part 
and the enciphered data going the opposite way from the DES part to the 10 part (fig. 2). 
At the encounter they can be exored. On figure 2 this is explained for CBC. This fast internal 
calculation in a very small amount of time is done between every two timesteps of the pipeline 
[4]. 

4. The Tnput Output ( TO) part realises the off chip communication. The Modes and 10 part 
take one quarter of the actual chip. 
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4.2 Modular design : Divide and Conquer. 

3 8 

syeK 

5 6 

7 8 

4 

29 

7 

32 
64 

The four parts of the floorplan are designed independently, work independently and only communicate 
with each other through one common register which is strictly watched. 

Each part has its own local controller. So if one decides to implement a DES like algorithm, one 
has just to plug in another local DES part controller. 

This modularity is also reflected in the floorplan. And the routing between the blocks is minimal. 
A modular design is em1i/y changeable. A change has only local influence. E.g., one can easily 

cut the actual S-boxes and replace these by others. 
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While going on _off chip th r 1xr111 11fufio11..s IP und JI>- ! are realised. The elimination of these 
permutations is based on a technique of shiftregisters and an 8 bit permutation, as explained in [4]. 
Due to an optimal placement on the floorplan, even this 8 bit routing is avoided. 

The same shiftregister technique is applied to real ise key permutation PCl. The irregularity in 
PCl is solved by mirroring the bitnumbers 29 through 56. And this mirroring is included in PC2, 
while this permutation has to be hardware routed anyway. 

5 Testing. 

Tc.s ling du ring dcn lopmrnf means contmllubi lily 11111/ o/,8crFabi lity [5]. When developping one 
must be able to reach every part of the chip (controllability) and must be able to watch the reaction 
of every part (observability) . This is done with special scan 1'f.gi .<1 fcr8 which can isolate parts of 
the chip, activate and watch by scanning out the observed data. This is in conflict with security 
demands. One must be unable to scan out the intermediate ciphertext, initialisation vectors or keys. 
Therefore scanpads are provided only during development and are realised as independent blocks 
instead of combining them with the existing registers. Due to the modularity, one can simply cut 
out these pads for safe commercial implementations. 
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Validation tesf8 check if the implemented algorithm really executes DES ( or the chosen DES like 
algorithm) and if all modes are correctly designed . [6] 

During lifetime, mai11tern111 cc tes ts are necessary to check whether the chip still executes DES 
or not [7] . These tests are based on signatun. DES has a random nature, so no extra hardware is 
necessary to let it act as a signature. The more random the DES nature is, the better the signature 
covers the faults. 

6 Chip photograph 

The design (fig. 3) is implemented in a 3 11 n-well CMOS process, contains 12K transistors and has 
an area of 25 mm2 . The main purpose was to test the functional working of the different parts, 
mainly the DES and the Modes part . The functionality of the chip is tested. One expects a 14 
Mbit/sec datarate for a 10 Mhz clockfrequency on an 8 bytes mode. 

fig.3 : Chap photograph ( mirrorred compared with fig.1) 
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7 Conclusions 

A single chip has been designed and implemented which executes DES with a number of crypto­
graphical advantages : all modes, safety, key management, speed, triple encryption, etc. Due to the 
modularity the main architecture and many building blocks can be reused in a flexible way for DES 
like algorithms. It is a compact design which can be used as a small module in larger digital VLSI 
circuits, but also as a fast stand alone device. In short, it has a number of unique features not found 
in other devices. 
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1. Introduction 

In general , secure communication in a distributed system that spans physically 

insecure networks and hosts must be implemented using cryptography. Software imple­

mentations of cryptographic algorithms such as DES are much slower than typical network 

bandwidths. However, fast hardware implementations of these algorithms are being 

developed [1,6] and are projected to have encryption speeds comparable to network 

bandwidths (i.e., 10-100 megabits per second). 

Current efforts at increasing the performance of hardware encryption are directed 

largely at increasing the speed of encryption within the device itself [2]. Less attention is 

being paid to the efficiency of the interface between the cryptographic hardware and the 

rest of the computer system. 

While implementing a secure network communication system [3,4] using commer­

cially available components , we found that interface to the encryption device, rather than 

the encryption speed of the device, imposed the major limits on performance. Specifically, 

CPU speed was both the bandwidth bottleneck and the major source of delay, and CPU 

overhead was significant. 

Sponaored by MICRO, IBM, Olivetti, MICOM-Interlan, Defense Advanced Research Projects Agency (DoD) 
Arpa Order No. 4871 Monitored by Naval Electronic Systems Command under Contract No . N00039-84-C-0089 . 
Venkat Rangan is also supported by an IBM Fellowship. 



VIII-12 

In this paper we address the problem of designing an interface to encryption hardware 

that removes many of the performance limitations we encountered. With such an interface, 

the performance of secure network communication is determined by memory bandwidth, 

encryption speed, and network performance. We feel that these interface considerations 

should influence future hardware implementations of cryptographic algorithms. 

2. Components of Network Performance 

Three components are of primary interest in evaluating the performance of network 

communication: 

Message latency: the interval from the time a message is generated to the time it is 

received by its destination process . 

Throughput: the average data transfer rate that can be sustained between processes. 

Processor overhead: the fraction of processor time spent in network communication. 

File server access (virtual memory paging and access to user files ) is the dominant 

component of network communication in current distributed systems. Low latency is criti­

cal to the performance of network file access [5], and to applications involving real-time 

control and user interfaces. High bandwidth is required for many applications, such as 

those involving graphic and audio user interfaces. Processor overhead can have a 

significant effect on local processing speed, and also affects the latency and throughput 

components. 

3. A Current Interface and Its Limitations 

Our secure communication system was developed using widely available hardware: 

Sun-3 workstations with a built-in interface for the Zilog 8068 DES encryption processor. 

The operation of this hardware is as follows: the CPU first loads the DES chip with a key. 

Starting from the beginning of the data, the CPU loads an 8-byte block of data into the pro­

cessor, waits for the encryption operation to finish, then removes the encrypted data from 
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the DES chip. The CPU repeats this process until there is no more data left in the input. 

Once the encryption is completed, the message can be transmitted over the network. 

In the above sequence of operations, data transfers in and out of the DES chip are 

done one byte at a time. During the encryption of a long message, the CPU is devoted 

entirely to operating the cryptographic hardware, either copying data or polling the status 

of the cryptographic hardware for completion of an operation. 

Our measurements show that during the encryption of long messages, 90lic of the time 

is spent copying data to and from the chip, and the remaining time is spent polling the chip 

for completion. Maximum throughput of the encryption operation alone is 2.88 megabits 

per second, and maximum network throughput of secure messages (including encryption , 

transmission, and decryption ) is 2.80 megabits per second. Maximum network throughput 

of unencrypted messages is 7.60 megabits per second. 

The way in which the DES chip is interfaced have the following implications for the 

various performance components : 

Message Throughput: 

Because of software copying of data, the maximum encryption throughput of the sys­

tem is limited by processor speed. Even if encryption time were zero, the encryption 

throughput would be only 3.18 megabits per second. 

Message Latency: 

Latency of encrypted packets is the sum of latency without encryption, the time for 

encryption, and the time for software data copying. In our system, the total latency 

for an 1024 byte message is 7 .60 milliseconds, of which 5.60 milliseconds is due to 

encryption. Of this, 5.04 milliseconds is spent in software data copying and would be 

present even if encryption time were zero. 

Processor Overhead: 
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Under a communication workload taken from traces of a real system (a heavily-used 

file server), the CPU overhead due to communication is 47 .0% with encryption and 

20.6% without. Of this, 42.0% is due to software copying and would be present even if 

encryption time were zero. 

Therefore, the limitations on the performance of secure network communication in 

this system are imposed by the way in which the encryption hardware is interfaced, rather 

than by the speed of the encryption hardware. 

4. Proposed Features of Encryption Hardware Interfaces 

We propose the following hardware architectural features for the interface between 

any cryptographic hardware and rest of a computer system. 

4.1. Interface to Main Memory 

Software data copying should be avoided. This can be achieved either by integrating 

the cryptographic hardware with the network interface (discussed in the next section) or by 

providing the cryptographic hardware with direct memory access (DMA) capability. If the 

network interface hardware is fixed , only the latter alternative is possible. Whether or not 

DMA is used, the width of the data interface should be a word (32 or 64 bits) instead of a 

byte. 

A DMA interface would work as follows: the CPU loads the interface with the start 

and end addresses of a data area in memory, and instructs it to begin an encryption, 

decryption, or cryptographic checksumming operation. During the operation, the interface 

fetches data during memory cycles "stolen" from the CPU. The CPU is free to do other 

work during encryption. The interface interrupts the CPU after completing the operation . 

If the memory bandwidth is high enough to support the demands of both the CPU and 

the cryptographic hardware, the CPU and cryptographic hardware can operate at full speed 

in parallel. In this case the CPU overhead is essentially eliminated, and throughput is lim-
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ited by memory bandwidth, encryption speed, and network bandwidth, rather than by CPU 

speed. If memory bandwidth is not this high, CPU operation is slowed by encryption OMA, 

but there will still be improvements in throughput, latency, and CPU overhead relative to 

software copying. The OMA technique is inherently limited by memory speed; if encryp­

tion speed is significantly greater, other approaches are required. 

4.2. Pipelined Operation 

The operation of the cryptographic hardware should be pipelined with that of the net­

work interface, so that the encryption of a long message is overlapped with its transmis­

sion. In a non-pipelined system, the latencies for encryption and decryption are added 

directly to the total latency. In a pipelined system, the latency due to the combination of 

encryption and transmission is the maximum of the two latencies, rather than their sum. 

The same applies for reception and decryption . 

This pipelining can be achieved in several ways. First, if the network interface and 

the cryptographic hardware are independent OMA devices, their operations in sending a 

particular packet can potentially be done in parallel. This solution is effective if the 

memory bandwidth is greater than that required by either operation alone, and is maxi­

mally effective when the memory bandwidth is at least the sum. 

In this DMA pipelining technique, the devices must be synchronized so that (a) at the 

transmitting host the network interface does not transmit data yet to be encrypted, and (b) 

at the receiving host the cryptographic hardware decrypts data only after it has been 

received by the network interface. This synchronization is automatic if the appropriate 

device (the sender's encryption device, and the receiver's network interface) is faster and 

has higher OMA priority. If the second device in the pipeline is slower than the first, syn­

chronization can be ensured by giving it a sufficient head start. A third alternative is to 

use a special-purpose synchronizing DMA controller that can perform multiple operations 

simultaneously, and i~_ add~tion can delaY. the first operation in the pipeline to prevent it 
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from advancing through the data faster than the second. 

The second pipelining approach is to combine cryptographic and network functions in 

a single hardware device, within which the two operations are pipelined and synchronized. 

The unit would require a complex control interface, since different regions within a net­

work packet may need to be encrypted with different keys or not encrypted at all. This 

approach has the significant advantage that no extra memory bandwidth is used for encryp­

tion. 

Both of the above designs can be extended to include other I/0 devices. As was men­

tioned previously, the latency of disk 1/0 is significant in network file access. Ideally, this 

latency could be overlapped with, rather than added to, that of network transmission and 

encryption. This could be done by either 1) having a single interface unit control all three 

devices, or 2) interfacing the disk via a common DMA controller capable of synchronizing 3 

independent operations (disk access, encryption, and network transmission). In the latter 

case, memory bandwidth is again a limiting factor on the effectiveness of the technique. 

4.3. Cryptographic Checksumming 

In situations where authentication rather than secrecy is needed, cryptographic check­

summing (using chained encryption and retaining only the final encrypted block) may be 

used rather than complete encryption. This reduces memory traffic by a factor of two, since 

data needs to be copied into, but not out of, the encryption hardware. This reduction yields 

an improvement in throughput, latency and CPU overhead, particularly in the cases men­

tioned above in which memory bandwidth is a limiting factor. 

To exploit this efficiency, the encryption hardware and its interface must support the 

checksumming operation. This is not the case with the Zilog DES chip, which requires that 

all encrypted data be read from the chip. 
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4.4. Large Key Bank 

The cryptographic hardware should have a large number of write-only registers for 

key storage. Keys can be loaded by software as secure communication channels are esta­

blished. Encryption operations identify their key by an index into the register bank. The 

bank should have as many entries as the largest number of secure channels commonly in 

use (perhaps 256 or so). 

This scheme has the following advantages: 1) it saves time since there is no need to 

load a key before each cryptographic operation ; 2) the write-only property and the fact that 

keys are not kept in main memory ensure that keys are not compromised if an intruder 

gains control of the kernel on the host computer. 
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