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Abstract
The PLanCompS project proposes a component-based ap-
proach to programming-language development in which fun-
damental constructs (funcons) are reused across language
definitions. Homogeneous Generative Meta-Programming
(HGMP) enables writing programs that generate code as data,
at run-time or compile-time, for manipulation and staged
evaluation. Building on existing formalisations of HGMP,
this paper introduces funcons for HGMP and demonstrates
their usage in component-based semantics.
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1 Introduction
The PLanCompS project1 proposes a formal, component-
based approach to programming language development. The
aim is to reduce the initial effort of writing formal specifi-
cations and of maintaining the specifications as languages
grow by reusing components across specifications.

Funcons Central to the approach is a library of highly
reusable ‘fundamental constructs’ called funcons. Funcons
are not altered after their release, thereby fixing language
specifications that depend on them. The beta version of the
funcon library is available online for review [18].

Funcons have been identified for many aspects of program-
ming: functions and procedures, references and mutable stor-
age, scoping and binding, patterns and pattern-matching, as

1http://plancomps.org
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well as exceptions, delimited continuations and other forms
of abnormal control-flow [9, 20].

Funcons are formal and executable: each funcon has oper-
ational semantics and interpreters are generated from their
definitions [5]. A language is defined formally by a transla-
tion of programs to ‘funcon terms’. A language definition is
tested by translating programs to funcon terms, executing
the funcon terms, and comparing the observed behaviour
with the desired behaviour. This paper assumes some famil-
iarity with the funcon approach, of which an overview is
given in [9].

Funcons for HGMP A language with constructs for Ho-
mogeneous Generative Meta-Programming (HGMP) enables
writing code that generates code. As data, the generated code
can be propagated and manipulated freely, before being in-
serted and evaluated in the overarching program. Template
Haskell [21] supports HGMP at compile-time, MetaML [22]
at run-time, while Converge [23] supports both. An overview
of the features of several HGMP languages is found in [7].

In this paper, we define funcons for HGMP, raising several
research questions. Can we use the funcons for HGMP in
component-based semantics? What is their coverage? Are
they sufficient to give semantics to many real-world and aca-
demic languages? Can we implement them such that trans-
lations and funcon terms that use them are executable? This
paper answers the first question by demonstrating the usage
of the funcons for HGMP in component-based semantics.
Section 2 introduces a standard λ-calculus as the run-

ning example. Section 3 defines the funcons for HGMP. Sec-
tion 4 adds HGMP constructs to the λ-calculus and gives a
component-based semantics based on the funcons for HGMP.
Section 5 shows that the funcons for HGMP enable a straight-
forward semantics for call-by-need (lazy) evaluation.

2 Component-Based Semantics – Example
This section introduces the running example of this paper,
a component-based semantics for a call-by-value lambda-
calculus λv. We have chosen a lambda-calculus with standard
and well-known call-by-value semantics. This allows us to
focus on the method for specifying the semantics, rather
than the semantics itself. We use the funcons of the beta
release to specify the semantics. For an intuitive understand-
ing of their behaviour, we refer the reader to the online

https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://plancomps.org
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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x ∈ vars ::= . . .
b ∈ bools ::= . . .
i ∈ ints ::= . . .
e ∈ exprs ::= x var

| b bool
| i int
| λx .e lam
| e1 e2 app
| let x = e1 in e2 let
| ite e1 e2 e3 ite
| this this
| e1 + e2 plus
| e1 ⩽ e2 leq

Figure 1. The syntax of λv.

documentation [18]. In Sections 4 and 5, λv is extended with
HGMP constructs, for which we use the funcons developed
in Section 3.

Homomorphic translations The following definitions are
derived from [14]. Given a set S of sorts, an S-sorted signa-
ture Σ is a set of operations f : (s1, . . . ,sn ) → s0 with si ∈ S ,
for all 1 ⩽ i ⩽ n. Given an S-sorted signature Σ, a Σ-algebraA
assigns a (carrier) setAs to each sort s ∈ S and a function fA :
(As1 , . . . ,Asn ) → As0 to each operation f : (s1, . . . ,sn ) → s0
in Σ. A Σ-homomorphism h : A → B (where A and B are
Σ-algebras) assigns a total function hs : As → Bs to s ∈ S
such that for each operation f : (s1, . . . ,sn ) → s0 in Σ it
holds that:

hs0 ( fA (a1, . . . ,an )) = fB (hs1 (a1), . . . ,hsn (an )) (1)

A Σ-algebra I is initial in a class of Σ-algebras if there is
a unique Σ-homomorphism from I to each algebra in the
class [14]. An initial algebra in a class of algebras represents
syntax; the other algebras in the class are possible semantics.
An initial algebra can be constructed for each signature [10].

Abstract syntax Figure 1 defines a signature Σλ over the
sorts vars, bools, ints, and exprs. We assume operations
(constants) for ints, bools— the literals of λv — and vars. The
operations for exprs are specified together with concrete
syntax forms. For example, expressions of the form λx .e are
represented by the operation lam : (vars,exprs) → exprs.
Formally, the abstract syntax of λv is the union of the carrier
sets of some initial Σλ-algebra 𝒜 .

Semantics Figure 2 defines a Σλ-algebra ℱ by assigning
functions to the operations of exprs, taking the set of all
funcon terms as the carrier set for each of the sorts. The
beta release of funcons has a rich universe of values, in-
cluding identifiers, integers, and booleans. We omit func-
tions assigning identifiers, integers and booleans to the
operations of vars, ints, and bools respectively. Auxiliary

thisℱ = bound("this")
varℱ (x ) = current-value(bound(x ))
boolℱ (b) = b

intℱ (i ) = i

lamℱ (x ,e ) =

function(closure(letℱ (x ,given1, let ("this",given2,e ))))

appℱ (e1,e2) = give(e1,apply(given, tuple(e2,given)))
letℱ (x ,e1,e2) = let (x ,alloc-init(values,e1),e2)
iteℱ (e1,e2,e3) = if-true-else(e1,e2,e3)
plusℱ (e1,e2) = integer-add(e1,e2)
leqℱ (e1,e2) = integer-is-less-or-equal(e1,e2)
let (x ,e1,e2) = scope(bind(x ,e1),e2)
given1 = first(tuple-elements(given))
given2 = second(tuple-elements(given))

Figure 2. The semantics of λv, given as translation functions.

functions let, given1 and given2 are added for convenience.
The homomorphism fct : 𝒜 → ℱ translates λv programs
into funcon terms. We obtain fct indirectly by defining ℱ
— rather than defining fct directly — which becomes useful
when we reuse the functions of ℱ in Section 4.

Variables in λv are bound to a value or to a reference
holding a value. The references are initially redundant as λv
does not have mutable variables. In Section 5, however, we
extend the language and use the references to achieve shar-
ing. Funcon current-value dereferences when its argument
evaluates to a reference, otherwise the value of the argument
is returned itself.

The first argument of app evaluates to a function2, which
is subsequently applied to a tuple. The first tuple element is e2.
The second tuple element is the function itself, thus enabling
recursion. The combination of give and given specifies that
e1 evaluates once. The give funcon evaluates its first argu-
ment to a value which replaces occurrences of given within
the second argument, unless these appear within the second
argument of another occurrence of give. For example, the
following funcon term evaluates to 5:

give(2, integer-add(given,give(integer-add(1,given)
,given)))

Funcon apply evaluates its first argument to a function,
its second argument to an arbitrary value v , and then gives
v to the body of the function, i.e. for all terms b and val-
ues v , apply(function(abstraction(b)),v ) is equivalent to
give(v,b).
The function returned by a lambda-expression λx .e is

statically scoped by computing a closure (rather than using
2We assume programs are well-typed.
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substitution). The funcon closure computes an abstraction
which restores the bindings that were active at the time it is
computed. When the function is applied, the identifier x is
bound to a reference holding the first element of the given
tuple and binds identifier "this" to the second element
of the given tuple. Thus, this can be used by programmers
to make recursive calls, refering to the ‘nearest’ enclosing
lambda (see appℱ ).

3 Funcons for HGMP
In this section we identify funcons for HGMP based on for-
malisations of HGMP by Berger and Tratt [7, 8]. In [7], Berger,
Tratt and Urban present a calculus for reasoning about sev-
eral aspects of HGMP. Their calculus is the result of apply-
ing a semi-mechanical ‘HGMPification recipe’ to a standard
untyped λ-calculus, similar to λv. The recipe extends lan-
guages with abstract syntax trees (ASTs) — to serve as meta-
representations of program fragments — and several HGMP
constructs. Here, we define funcons for building ASTs and a
funcon for most of the constructs added by the recipe.
We apply the HGMP recipe to an unspecified set of fun-

cons C , making several assumptions about C . We assume a
distinction between values and computations, where a term
f (t1, . . . ,tn ) is a value if and only f is in some subset CV of
C . A constructor in CV is referred to as a value constructor,
a constructor in CF = C \CV as a computation constructor,
and a non-value term as a computation. This distinction is
important as values are assumed to be fixed: they have no
computational behaviour and they have the same meaning
wherever they appear. Similarly, we assume that some values
are types, i.e. a value f (t1, . . . ,tn ) is a type if f is in some
subset CT of CV . A binary relation _ : _ between values and
types expresses that a value v is of type t when v : t . We fur-
ther assume a function ty : CV → CT that assigns a type to
value v such that v : ty (v ). We make no assumptions about
subtyping, i.e, v :τ ≠⇒ τ = ty (v ).

Following [9, 18], we express the semantics of the funcons
for HGMP using I-MSOS rules [16], a variation on Modular
Structural Operational Semantics (MSOS) rules [15] in which
so-called ‘auxiliary semantic entities’3 are implicitly prop-
agated. The I-MSOS rules for funcons that do not interact
with semantic entities are indistinguishable from conven-
tional Structural Operational Semantics rules [19], and only
themeta-let funcon for compile-time meta-programming
actually interacts with a semantic entity.
We assume that all computation constructors are asso-

ciated with small-step I-MSOS rules defining the relation
_→ _. Finite evaluations are captured by the ‘iterative clo-
sure’ _ d _ of _→ _, expressing that c evaluates to value v
when c d v . The iterative closure is defined as:

3Examples of semantic entities are stores (heaps) and environments, for
modelling imperative storage and variable bindings respectively.

f ∈ CV

f (t1, . . . ,tn ) d f (t1, . . . ,tn )
(2)

c1 → c2 c2 d v1
c1 d v1

(3)

Abstract syntax trees We add the type asts and the value
constructor astv, for constructing ASTs representing funcon
terms. There are two types of AST nodes. Firstly, anAST node
can be labelled with a value v and a type τ , in which case it
has no children. Secondly, an AST node can be labelled with
a funcon f and have zero or more children. Funcons them-
selves are not funcon terms, only applications of funcons are.
To represent funcons, we add a (nullary) value constructor —
referred to as a tag — for each computation constructor f , de-
noted by tag⟨f ⟩. ASTs are formalised by the following rules.

v :τ
astv(τ ,v ) : asts

(4) a1 : asts . . . an : asts
astv(tag⟨f ⟩,a1, . . . ,an ) : asts

(5)

Tags are necessary not only for the funcons in C , but also
for the funcons for HGMP. We therefore introduce all fun-
cons for HGMP simultaneously, deferring the explanation
of their usage and semantics. The additional computation
constructors are ast, code, eval, type-of,meta-up,meta-
down, andmeta-let. The additional types are asts and tags.
The additional value constructors are astv and tag⟨f ⟩, with
tag⟨f ⟩ : tags, for each computation constructor f . LetC ′,C ′F ,
C ′V , and C

′
T be the extensions of C , CF , CV , and CT respec-

tively, and let C ′V replaces CV in Rule (2).

Meta-representation An AST is the meta-representation
of a particular funcon term. The relation a ⇓ t , introduced
in [7] as ⇓dl , captures the conversion of ameta-representation
a into the term t it represents. Relation _ ⇓ _ is defined for
computations by the following rule:

a1 ⇓ t1 . . . an ⇓ tn
astv(tag⟨f ⟩,a1, . . . ,an ) ⇓ f (t1, . . . ,tn )

(6)

Variable f in Rule (6) ranges over computation constructors
C ′F , which contains the unspecified setCF . For any particular
CF , Rule (6) can be replaced by a collection of rules, one for
each possible instantiation of f .

The following rule defines _ ⇓ _ for values:

v ′ = coerce(v,τ )
astv(τ ,v ) ⇓ v ′

(7)

Coercingv to a value of type τ may be necessary in a context
in which values are paired with types at run-time. Otherwise,
let v = coerce(v,τ ) for all v and τ .
The funcon ast constructs partially evaluated ASTs, e.g.

give(true,ast(booleans,given)) requires evaluation to yield
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astv(booleans, true). The dynamic semantics of ast is de-
fined by the following rules:

v :τ
ast(τ ,v ) → astv(τ ,v )

(8)

a1 : asts . . . an : asts
ast(tag⟨f ⟩,a1, . . . ,an ) → astv(tag⟨f ⟩,a1, . . . ,an )

(9)

tk → t ′k
ast(t1, . . . ,tk , . . . ,tn ) → ast(t1, . . . ,t ′k , . . . ,tn )

(10)

Rule (10) is a congruence rule, performing a (small-)step on
one of the arguments of ast. This rule can be repeatedly
applied until all arguments are evaluated (and no further,
because f → f ′ implies that f is a computation). Rules (8)
and (9) are applicable if all arguments are values, which
follows from the conditions involving the typing relation.
We define the relation _ ⇑ _, introduced in [7] as ⇓ul ,

which captures the conversion of terms into their AST rep-
resentation.

f < {meta-down,meta-up} t1 ⇑ t
′
1 . . . tn ⇑ t

′
n

f (t1, . . . ,tn ) ⇑ ast(tag⟨f ⟩,t ′1, . . . ,t
′
n )

(11)

τ = ty (v )
v ⇑ astv(τ ,v )

(12)

We give the cases f = meta-down and f = meta-up later,
where we also show that the right-hand side of _ ⇑ _ may
be a partially evaluated AST.

Run-timeHGMP The funcon code takes an arbitrary term
t as argument and is dynamically replaced by the AST rep-
resentation of t :

t ⇑ a

code(t ) → a
(13)

The funcon eval evaluates its argument to an AST a and is
replaced by the term represented by a.

a ⇓ t

eval(a) → t
(14) t → t ′

eval(t ) → eval(t ′)
(15)

As an example, consider the evaluation4 in Figure 3.
The funcon type-of evaluates its argument to a value v

and is replaced by the type ty (v ).

ty (v ) = τ
type-of (v ) → τ

(16)
t → t ′

type-of (t ) → type-of (t ′)
(17)

The HGMP recipe adds a construct for lifting values to
their meta-representation. We decided to add type-of in-
stead, which has applications outside of meta-programming,
and show that lifting can be defined with type-of in Sec-
tion 4.

4The rewrites of [18] have been omitted.

Compile-time HGMP The beta-release of funcons [18]
does not include compile-time semantics. We proceed with
the approach taken by Berger, Tratt and Urban [7] and define
a relation _ ⇒ _, introduced as ⇓ct by the authors, which
models a compilation phase. For funcons that do not involve
compile-time meta-programming, the relation is defined as
follows:

f ∈ C ′V
f (t1, . . . ,tn ) ⇒ f (t1, . . . ,tn )

(18)

t1 ⇒ t ′1 . . . tn ⇒ t ′n
f < {meta-down,meta-up,meta-let} f < C ′V

f (t1, . . . ,tn ) ⇒ f (t ′1, . . . ,t
′
n )

(19)

Rule (19) expresses that if f is not a funcon for compile-
time meta-programming, nor a value constructor, then its
subterms are compiled and possibly replaced. Rule (18) de-
termines that values are not changed by compilation, even
if it has computations as subterms.
The funcons meta-up and meta-down correspond to

upML and downML [7], and are the compile-time version of
code and eval.

t ⇑ a

meta-up(t ) ⇒ a
(20)

t0 ⇑ t1 t1 ⇑ t2
meta-up(t0) ⇑ t2

(21)

The funcon meta-down triggers run-time evaluation at
compile-time. At compile-time, meta-down(t0) is replaced
by t2 if t compiles and evaluates to an AST a with a ⇓ t2.

t0 ⇒ t1 t1 d a a ⇓ t2
meta-down(t0) ⇒ t2

(22)
t ⇒ t ′

meta-down(t ) ⇑ t ′
(23)

Rule (23) shows that an occurrence ofmeta-downwithin an
occurrence of meta-up is ‘cancelled out’, resulting in a par-
tially evaluated AST. For example, consider the computation
meta-up(give(3,meta-down(bound("x")))), which com-
piles to t = ast(tag⟨give⟩,astv(naturals,3),bound("x")).
If t occurs in a context in which "x" is bound to an AST,
then t evaluates to an AST. In this example, the computation
eval(scope(bind("x",code(given)),t )) evaluates to 3.

In this example, "x" is bound at run-time. To bind identi-
fiers at compile-time, we introducemeta-let, corresponding
to letdownML [7]. It makes (non-local) bindings available, at
compile-time, to occurrences of meta-down:

env(ρ) ⊢ t1 ⇒ t ′1 env(ρ) ⊢ t ′1 d i
env(ρ) ⊢ t2 ⇒ t ′2 env(ρ) ⊢ t ′2 d v

env(ρ[i 7→ v]) ⊢ t3 ⇒ t ′3

env(ρ) ⊢ meta-let(t1,t2,t3) ⇒ t ′3
(24)

The first argument is compiled and evaluated to an identifier
i . The second argument is compiled and evaluated to a value
v . The binding i 7→ v is active in the compilation of the
third argument t3 to t ′3, which replaces meta-let(t1,t2,t3)
at compile-time. In Rule (24), we assume that bindings are
propagated using the semantic entity env (environment),
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give(code(bound("x")),scope(bind("x",7),eval(given)))
→ give(ast(tag⟨bound⟩,astv(identifiers,"x")),scope(bind("x",7),eval(given)))
→ give(astv(tag⟨bound⟩,astv(identifiers,"x")),scope(bind("x",7),eval(given)))
→ give(astv(tag⟨bound⟩,astv(identifiers,"x")),scope(bind("x",7),eval(astv(tag⟨bound⟩,astv(identifiers,"x")))))
→ give(astv(tag⟨bound⟩,astv(identifiers,"x")),scope(bind("x",7),bound("x")))
→ 7

Figure 3. An example of run-time evaluation of a funcon term with meta-programming.

e ∈ exprs ::= . . .
| eval e eval
| lift e lift
| let↓ x = e1 in e2 letd
| ↓{e} downML
| ↑{e} upML
| promote e promote
| astvar (x ) ast-var
| astplus (e1,e2) ast-plus

Figure 4. The extended abstract syntax of λv expressions.

holding mappings between identifiers and values (as in [18]).
We refer the reader to [9, 16] for the precise details of using
environments in I-MSOS rules.
The funconsmeta-down,meta-up, andmeta-let have

no run-time semantics; they are removed at compile-time.

4 Translating AST Constructors
In the previous section we have defined a funcon for most of
the HGMP constructs of Berger, Tratt and Urban [7]. In this
section we show that the funcons for HGMP are sufficiently
powerful to apply the HGMP recipe to λv.
The main challenge of extending λv is specifying the se-

mantics of AST constructors. As the HGMP recipe reflects,
HGMP languages often have an AST constructor for each
construct of the language. This potentially causes a large
amount of duplication in a formal definition of the semantics
of the language (as well as in the syntax). We demonstrate
that we can avoid this duplication in a component-based
semantics given by (translation) functions in an algebra.
Figures 4 and 5 extend Figures 1 and 2 respectively. As

examples of AST constructors, we have added astvar and
astplus . Possible definitions of ast-varℱ and ast-plusℱ are:
ast-varℱ (x ) = ast(tag⟨current-value⟩,

ast(tag⟨bound⟩,astv(identifiers,x )))
ast-plusℱ (e1,e2) = ast(tag⟨integer-add⟩,e1,e2)

(Note that the constructed AST representations are of fun-
con terms, not λv expressions.) These definitions mirror the
semantics of var and plus given in Figure 2, and a change

evalℱ (e ) = eval(e )
liftℱ (e ) = give(e, lift (given))
letdℱ (x ,e1,e2) = meta-let(x ,e1,e2)
downMLℱ (e ) = meta-down(e )
upMLℱ (e ) = meta-up(e )
promoteℱ (e ) = ast(asts,e )
ast-varℱ (x ) = meta-up(varℱ (x ))

ast-plusℱ (e1,e2) =

meta-up(plusℱ (meta-down(e1),meta-down(e2)))
lift (e ) = ast(type-of (e ),e )

Figure 5. Translation functions for the extended exprs.

in the semantics of var would require a similar change to
the semantics of ast-var. To avoid this, we reuse functions
varℱ and plusℱ in the definitions of ast-varℱ and ast-plusℱ
respectively, as shown in Figure 5. By reusing ast-varℱ and
ast-plusℱ , we take advantage of the operational equivalence
between λv expressions and the funcon terms they translate
to (the equivalence follows by definition).
The AST constructors astvar and astplus construct AST

representations at compile-time, as we have used meta-up
and meta-down in their translation. If AST constructors
construct AST representations at run-time, their translation
should use code and eval instead.

Figure 5 gives semantics to two HGMP constructs with no
direct funcon equivalent: lift and promote — for lifting values
to ASTs and higher-order meta-programming5 respectively.
Their semantics are expressed in terms of existing funcons
and the funcons for other HGMP constructs.

5 Computational Abstractions as ASTs
In this section we further demonstrate the advantages of AST
representations and funcons for HGMP. Firstly, we give se-
mantics to call-by-name evaluation in λv. Secondly, we give

5We have focused on two levels: the level of programs and the meta-level
of meta-representations. However, the funcons for HGMP support higher-
order meta-programming in which infinitely many meta-levels are possible.
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e ∈ exprs ::= . . . | !x share

shareℱ (x ) = give(eval(current-value(bound(x ))),
seq(assign(bound(x ), lift (given)),given))

Figure 6. A sharing construct based on funcons for HGMP.

semantics for call-by-need (lazy) evaluation as well, combin-
ing funcons for mutable references and HGMP, following the
principle that ‘call-by-need is call-by-name with sharing’ [2].
Specifically, we show how meta-programming constructs
make it possible for programmers to determine the evalu-
ation strategy of each parameter. Funcons have not earlier
been used to give semantics to call-by-need evaluation.

Call-by-name semantics Consider the definition of fib in
the following λv fragment:

let fib = λn.ite (n ⩽ 2) 1 (this(n + (−2)) + this(n + (−1)))

The expressions double (fib 7) computes the seventh Fi-
bonacci number, regardless of the definition of double. This
may be inefficient, if double does not ‘use’ its parameter. In
general, in call-by-value semantics, every argument is evalu-
ated exactly once.
With the meta-programming constructs of λv, the pro-

grammer can decide, however, to delay the evaluation of
arguments. For example, a programmer can write double (↑
{fib 7}). This is the first step towards transforming the param-
eter of double into a call-by-name parameter. To complete
the transformation, occurrences of the parameter within
the body of double are wrapped with eval, forcing the eval-
uation of the argument where it is used. In general, the
arguments provided for such call-by-name parameters are
evaluated zero or more times. For example, if double is de-
fined as let double = λn.eval n + eval n, then the expression
fib 7 is evaluated twice when double (↑{fib 7}) is compiled
and evaluated.

Call-by-need semantics We introduce a new language
construct for transforming n into a lazy parameter. As dis-
cussed in Section 2, arguments are assigned to newly allo-
cated references. Here we take advantage. We introduce !x
as an alternative to eval x . The semantics of !x is to find the
AST held by the reference r bound to x and evaluating the
expression represented by the AST (equivalent to eval x ). As
a side-effect, the AST representation of the evaluation result
replaces the AST held by r . The syntax and semantics of this
construct are specified in Figure 6. In our example, if double
is defined as let double = λn.!n + !n, then the evaluation of
fib 7 is shared between the occurrences of n.
The funcons for HGMP can also be used to specify call-

by-need evaluation in the semantics underlying λv. This is
achieved by replacing e2 in appℱ of Figure 2 bymeta-up(e2)
(or code(e2)), similarly replacing e1 in letℱ bymeta-up(e1)

(or code(e1)), and defining varℱ as varℱ (x ) = shareℱ (x )
(with shareℱ defined in Figure 6). We expect that it is also
possible to use the funcons for HGMP to specify the se-
mantics of lazy parameters in Scala [17] and of strictness
annotations in Haskell datatype declarations [13].

6 Conclusions and future work
In this paper we have developed funcons for building ASTs
representing funcon terms and funcons for HGMP that act
on these meta-representations. We demonstrated the power
of the funcons for HGMP by giving semantics to call-by-
need evaluation by transforming computations into AST
representations to delay evaluation. The AST representation
of funcon terms can also be used as the meta-representation
of program fragments in the component-based semantics
of languages, if the semantics has a reusable translation
function for each language construct.

Future work We have implemented the relations ⇑, ⇓, and
⇒ as part of a funcon term interpreter [4]. On top of the
funcon term interpreter, we have developed an interpreter
for λv with all extensions, available online [6]. Translations
functions such as varℱ and plusℱ are implemented directly
in Haskell and are easily reused to implement ast-varℱ and
ast-plusℱ . A future direction is to enable reusing translation
functions in a specification language such as CBS, the speci-
fication language developed by the PLanCompS project [5].
With these tools, we can study the coverage of the fun-

cons for HGMP by defining component-based semantics for
real-world programming languages as well as academic lan-
guages. Interesting targets in this investigation are MetaO-
Caml [12] and the reflective languages Black and Pink [1, 3].
MetaOCaml’s meta-programming constructs are similar to
the constructs discussed in this paper and have been used
in various applications [3, 11, 24, 25]. A reflective language
has an underlying interpreter that gives semantics to the lan-
guage, and programs can modify the underlying interpreter,
thus changing the behaviour of programs as they are eval-
uated. Reflective languages therefore provide a significant
stress-test to the component-based approach of program-
ming language development with meta-programming.
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