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ABSTRACT
Active objects interact via asynchronous messages which specify

method invocations. In contrast to the run to completion mode

of method execution, mechanisms for suspending the execution

of a method allow an active object to schedule cooperatively its

methods in a co-routine manner. In this paper, we show how co-

operative scheduling can be reduced to a run to completion mode

of execution. We do so by a formal translation using a guarded

command language for describing the execution of method bodies.
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1 INTRODUCTION
Active objects provide a powerful conceptual model of distributed

systems (see [1] for a survey of active object languages). Active

objects support a “programming to interfaces” discipline by a strict

encapsulation of their local state and communication via asynchro-

nous method calls. Asynchronous method calls generate messages

which are stored in the (usually FIFO) buffer of the callee. In the

basic, pure asynchronous model of active objects (as described for

example by the Rebeca active object language [10]) methods are

executed in a run to completion mode.

Various extensions of this basic model exist which support addi-

tional synchronization mechanisms (again, see [1]). For example,

the Abstract Behavioral Specification (ABS, for short) language

([7]), supports a mechanism for synchronizing on return values by

so-called futures, and a mechanism for cooperative scheduling of

method invocations by a single active object.

A future is dynamically generated by an asynchronous call of a

method which defines a return type, and is used as a reference to

the return value which can be read by the so-called get operation.
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Such an operation blocks the execution in case the return value has

not yet been produced.

Cooperative scheduling of method invocations by a single active

object is enabled in ABS by so-called await statements. A Boolean

await statement suspends the execution of the current method in-

vocation, and allows the active object to schedule other, enabled

method invocations stored in its process queue. Await statements

which involve a future suspend the execution of the method invo-

cation until the corresponding return value has been produced.

Cooperative scheduling in ABS bymeans of await statements pro-

vides a powerful abstraction which supports a controlled co-routine

manner of execution of the method invocations by an active object.

A key feature of the execution of methods in ABS is that it does not
provide an explicit statement for resuming a suspended method.

Methods are only rescheduled for execution by the underlying

scheduler. This implicit behaviour by the underlying scheduler [12]

allows for an important improvement of the program quality and

avoids the error-prone usage of explicit resumption, e.g., resuming

a routine twice in Scala [11] raises an exception.

In this paper we investigate the expressive power of coopera-

tive scheduling in ABS. We show that the powerful abstraction of

cooperative scheduling in ABS can in fact be modeled by a run to

completion model GAC (Guarded ACtor) of active objects which

features a guarded-command language ([4]) for the description of

the method bodies. The formal translation of ABS into GAC is given

by an intermediate language ABS-SPAWN which uses an explicit

spawn operation to model the execution of await statements. In

the GAC language the operation of spawning local processes can

be modeled directly by asynchronous self-calls.

Plan of the paper. In the next sectionwe first introduce informally

the ABS language, and illustrate the use of cooperative scheduling

by an example. In Section 3 we then discuss a new operational

semantics of the ABS language, which is particularly suited for

proving correctness of the translation. The semantics of the oper-

ation of spawning local processes is described in Section 4, and a

formal translation is given of ABS which shows how to model co-

operative scheduling by spawning local processes. In Section 5 we

finally introduce the guarded command language for active objects

which allows to model the spawning of local processes directly by

asynchronous self calls.

2 ABSTRACT BEHAVIOURAL
SPECIFICATION LANGUAGE (ABS)

This section describes the main features of the ABS language: asyn-

chronous communication together with fine-grained suspension

and resumption of the control flow in a method.
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We first introduce these main features by an example. Listing 1

models a worker pool which allows the parallel execution of asyn-

chronous tasks. A WorkerPool actor contains a set of Worker ref-
erences (line 3) that is used to call methods asynchronously as

defined in the latter class. The method sendWork is defined with

an immediate suspension point based on a Boolean condition that

the set of workers is not empty (line 6). The suspension mechanism

underlying the await statement allows to schedule any update of

the set of worker actors by a call of the method finished. Such an

update will then allow the scheduling of the execution of the rest

of the block in sendWork.

Listing 1: The Worker Pool Actor/Class
1 class WorkerPool(){

2 // initialization omitted for brevity
3 Set<Worker> workers;

4

5 Result sendWork() {

6 await !(emptySet(workers));

7 Worker w = take(workers);

8 workers = remove(workers, w);

9 Fut<Result> f = w ! doWork();

10 await f?;
11 Result result = f.get;
12 return result;

13 }

14

15 Unit finished(Worker w) {

16 workers = insertElement(workers, w);

17 }

18 }

As such, an asynchronous invocation of the method sendWork
would suspend if the Boolean condition is not met, and would

implicitly resume once the state of the worker set is satisfied. This

implicit behaviour is defined in the operational semantics of ABS

(detailed in Section 3). Furthermore it would execute in the same

context (thread) as it initially started, adhering to the actor seman-

tics. Upon resumption, the rest of the control flow is followed where

a reference of type Worker is selected from the set and is used to

asynchronously call the doWork method (line 9). A unique future

is assigned to this call and stores the completion status and re-

sult value of this call. To control the state of the worker set, the

WorkerPool actor defines a method finished that adds an avail-

able Worker w, passed as an argument, back into the set (lines 15

and 16). Note that due to the imposed actor semantics, the access

to the worker set is thread-safe, as the field may not be accessed

outside the WorkerPool. Inside the actor there may only be at most

one method running on its associated thread.

Listing 2: The Worker Actor/Class
1 class Worker(WorkerPool p) implements Worker{

2

3 Result doWork(){

4 Result r;

5 // computation

6 p ! finished(this);

7 return r;

8 }

9 }

Listing 2 contains the Worker class. The Worker actor is defined

with an instance variable that references its associated worker pool

p (line 1). The method doWork sketches a method that performs

a certain computation and returns its result (line 7). The return

instruction is preceded by an asynchronous call to the method

finished of p (line 6).
Getting back to WorkerPool class in Listing 1, it first uses a state-

ment which awaits on a Boolean condition. The await statement

also has a second form, await f? (line 10) which suspends the exe-

cuting method invocation and resumes it based on the completion

status of the future f. The method can then be rescheduled when

the control flow corresponding to f has computed the return value.

In contrast to that, futures in ABS can also part of an expression

f.get (line 12 in Listing 1) that blocks all the method invocations

of an actor until the return value has been computed. In particular,

the statement on line 12 can never be blocking as the preceding

await always ensures f is complete.

The await construct for futures can also be used in a high-level

abbreviation as on line 1 of Listing 3. This "one-line" construct

suspends execution of an asynchronous invocation and assigns

its result once the generated future has completed and computed

return value. It is a sugar syntax for lines 5-7.

Listing 3: ABS Await sugared syntax
1 Result result = await w ! doWork();

2

3 //can be expanded to
4

5 Fut<Result> f = w ! doWork();

6 await f?;
7 Result result = f.get;

For technical convenience, in this paper we assume that all com-

munication between actors is done asynchronously. Only synchro-

nous self calls are allowed. For example, the functionality of ob-

taining a worker can be isolated in a separate method getWorker
defined in the same class like in Listing 4. The actor can then make

a synchronous self call to this method like in line 7. This type of

control flowwhere a synchronous self call is suspended gives rise to

suspension of an entire call stack. In our example, suspension that

results from the await statement in line 2 creates a call stack which

consists of a top frame that holds the suspended synchronous self

call followed by the bottom frame which is the continuation of the

asynchronous method invocation of sendWork(the block of code

that starts on line 8 after the self call returns).

Listing 4: Synchronous Call in ABS
1 Worker getWorker(){

2 await !(emptySet(workers));

3 Worker w = take(workers);

4 }

5
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6 Result sendWork() {

7 Worker w = this.getWorker();

8 workers = remove(workers, w);

9 Fut<Result> f = w ! doWork();

10 await f?;
11 Result result = f.get;
12 return f;

13 }

In contrast to multi-threading in Java, ABS imposes that such

call stacks are not interleaved and executed in any random order.

Within an actor only one call stack can execute and it runs until it

is either completed or suspended by an await instruction.

An ABS program consists of a set of classes, and each class

consists of a set ofmethod definitions. Eachmethod body is assumed

to end with a return statement even if the result type is void. In

this paper we abstract from the nominal type system of ABS and

its functional layer, and focus on the control flow of ABS programs.

Figure 1 presents the formal syntax of ABS statements which are

used to describe the method bodies. The expression e denotes a

local side-effect free expression (that is, its evaluation only depends

on the local state of the actor and does not affect this local state). For

the purpose of this paper we can abstract from its syntax (which

in general involves the functional layer of ABS). For notational

convenience we assume that every method call (asynchronous or

synchronous self call) returns a value. We assume these values

typed according to the type system of ABS.

Further we restrict a guard g of an await statement by either a

local side-effect free Boolean conditionb or a single a future variable.
It is not difficult to see that this restriction does not restrict the

expressive power since any await statement on a guard which

consists of a Boolean condition and a set {y1, . . . ,yn } of futures
can be implemented by a sequential composition:

1 await y1?; ...; await yn?; await b;

because a future is single-write shared data (note that the await on

the Boolean condition should indeed be executed last).

S ::= ϵ empty statement

| x = e basic assignment

| y = x !m(ē) asynchronous method call

| y = m(ē) synchronous method call

| x = new C(ē) object creation

| await д await statement

| x = y.get get statement

| if b {S} else {S} conditional statement

| S ; S sequential composition

| return e return statement

Figure 1: Syntax for ABS statements.

For technical convenience, we also abstract from the so-called

Concurrent Object Groups (COG) as provided by the ABS language.

However, it is not difficult to generalize the main result of this paper

to the language including COG’s. More importantly, it should be

noted that the syntax does not include the usualwhile statement. A

detailed discussion of the challenges of translating await statements

occurring in the body of a while statement will be presented in

section 4. Note however that the while statement can be modeled

by tail recursion, using synchronous self calls.

3 ABS OPERATIONAL SEMANTICS
This section presents a different approach to the semantics of the

ABS language using variable renaming of local variables instead of

local environments. This allows for a simple definition of a process

as the statement to be executed, which in turn allows for a transpar-

ent way of modeling cooperative scheduling. In the ABS language

values include values of the primitive built-in types, references to

object identities and identities of futures.

We assume given an ABS program P where object configurations

are of the form (σ , S,Q):

• σ assigns values to the instance variables (fields) of the class

(we treat the keyword this as a distinguished instance vari-

able identifying the object) and all the fresh variables gener-

ated for the local variables of the different method invoca-

tions. For any side-effect free expression e (including Boolean
conditions b) we denote by σ (e) the value of e in σ .

• S represents the current statement of the active process that

is run by the actor denoted by σ (this).
• Q is a set of statements which represent suspended processes.

We define a global configuration G as a pair (F ,O) where F is

a partial function which assigns to each future identity f in its

domain a value F (f ) and O is a set of configurations (as defined

above). By F (f ) =⊥ we denote that the future f has not been

completed yet. For handling the completion of futures by return

statements, we introduce an implicit formal parameter dest which
holds the value returned by the method invocation. In the rules

below we assume some mechanism for generating fresh variables.

Generating fresh variables is needed to distinguish between the

dest variable of each method and also to avoid name clashes when

renaming local variables. To make the use of the dest variable
explicit, we replace every return statement in a method body with

the auxiliary statement return e to dest.
The following rule describes the operation semantics of an as-

signment.

Assignment Rule.

(F , {(σ ,x = e; S,Q)} ∪O) → (F , {(σ [x = σ (e)], S,Q)} ∪O)

Here and in the sequel we denote by σ [x = v] the update of σ
which assigns the value v to the variable x .

Asynchronous Invocation Rule. The following rule describes the

semantics of an asynchronous method call.

(F , {(σ ,y = x !m(ē); S,Q), (σ ′, S ′,Q ′)} ∪O)
→

(F [f =⊥], {(σ [y = f ], S,Q), (σ ′′, S ′,Q ′′)} ∪O)

where:

• f is a new future which does not exist in the domain of F
(and thus F [f =⊥] denotes the function which results from

extending the domain of F by assigning ⊥ to f )
• σ (x) = σ ′(this).
• S ′ is the current statement of the active process run by the

target object x (the callee in x !m(ē))
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• Q ′′
extendsQ ′

with the body of methodm where all the for-

mal parameters (including the distinguished variable dest)
are replaced by fresh (that is, not in use in (σ ′, S ′,Q ′)) vari-

ables.

• σ ′′
results from assigning the values of the actual parameters

σ (ē) to the corresponding fresh local variables. Additionally

σ ′′(dest′) = f where dest′ is the fresh local variable corre-

sponding to the destiny variable dest.

Synchronous Self Call Rule.

(F , {(σ ,x =m(ē); S,Q)} ∪O) →

(F [f =⊥], {(σ ′, S ′;x = f .get; S,Q)} ∪O)

where:

• f is a new future which does not exist in the domain of F
(and thus F [f =⊥] denotes the function which results from

extending the domain of F by assigning ⊥ to f ).
• f is the future that will hold the result of the asynchronous

method invocationm.

• S ′ is obtained by renaming the local variables in the body

of method m (as above, including the variable dest) by fresh

variables and σ ′
assigns to these fresh variables the values

of the actual parameters σ (ē). Additionally σ ′(dest′) = f
where dest′ is the fresh local variable corresponding to

the destiny variable dest. This translation of the body re-

places the return statement with an auxiliary statement

return e to dest. Freshness is defined as a variable not in

use by any statement in S ′ and Q ′
.

Note that we thus use simple inlining which works because we

introduce fresh variables for the formal parameters of methods. We

use a future in order to get a uniform semantics for returning a

value for both synchronous calls and asynchronous calls. The get

operation will always be enabled (because of the assumption that

any method body will end with a return statement), but it is used

here instead of an await because we want the process to proceed,

as otherwise we would have a release point which breaks the call

stack.

In the case of a method which is declared void then the syntax

would be return null to dest. By means of this convention, every

suspended statement is uniquely identified by its destiny variable,so

that we can model Q as a set..

Object Instantiation Rule.

(F , {(σ ,x = new C(ē); S,Q)} ∪O) →

(F , {(σ [x = o], S,Q), (σ ′, S ′, ∅)} ∪O)

where:

• o is a fresh object identity (not appearing as value of a vari-

able in the initial configuration).

• S ′ is the constructor method body.

• σ ′(this) = o and σ ′
assigns to the formal parameters of the

constructor method the values σ (ē).

Note that each object configuration assigns a new object identity

to the instance variable this . This explains the usage of union in

object configurations.

Conditional Statement Rule. The conditional statement has the

following two rules.

(F , {(σ , if b then S1 else S2; S,Q)} ∪O) →

(F , {(σ , S1; S,Q)} ∪O)

where σ (b) = true .

(F , {(σ , if b then S1 else S2; S,Q)} ∪O) →

(F , {(σ , S2; S,Q)} ∪O)

where σ (b) = f alse .

Return Rule.

(F , {σ , return e to dest′,Q)} ∪O) → (F [f = σ (e)], {(σ , ϵ,Q)} ∪O)

where f = σ (dest′)

Get Rule.

(F , {(σ ,x = y.get; S,Q)} ∪O) → (F , {(σ [x = F (σ (y))], S,Q)} ∪O)

where F (σ (y)) ,⊥.

Await Rule.

(F , {(σ , await д; S,Q)} ∪O) → (F , {(σ , ϵ, {await д; S} ∪Q)} ∪O)

where ϵ represents the empty statement, denoting that the current

executing statement has ended. This rule "blindly" suspends the

current statement without evaluating the guard. The evaluation of

the guards will be performed in the context of the scheduling rule

below.

Scheduling Rule. The following rules schedule enabled await
statements of a Boolean and a future variables respectively. For sus-

pended statements that start with an await we have the following
two rules.

(F , {(σ , ϵ, {await b; S} ∪Q)} ∪O) → (F , {(σ , S,Q)} ∪O)

where σ (b) = true

(F , {(σ , ϵ, {await y; S} ∪Q)} ∪O) → (F , {(σ , S,Q)} ∪O)

where y is a future variable such that F (σ (y)) ,⊥.
For any other suspended statement that is inQ , e.g., that resulted

from an asynchronous call, we have the following rule:

(F , {(σ , ϵ, {S} ∪Q)} ∪O) → (F , {(σ , S,Q)} ∪O)

4 ABS-SPAWN
In this section we introduce the ABS-SPAWN language which is

obtained from the ABS language discussed above by replacing the

await statement with a statement spawn(д, S), the so-called spawn
statement, for spawning a new local process that executes the

statement S . In ABS-SPAWN method invocations are thus executed

in a run-to-completion mode.

For the operational semantics of the ABS-SPAWN language we

introduce the run-time syntax construct (д → S) that represents a
suspended statement (S) that is guarded by an enabling condition

(д). We thus make a distinction between the statement that spawns

a process and resulting generated suspended process. The guard in

(д → S) is the enabling condition for scheduling the correspond-

ing statement S for execution. For its semantics we used the same
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notions for a global configuration and object configuration, as in-

troduced for the semantics of the ABS language, The semantics of

the ABS-SPAWN language results from the semantics of ABS by

replacing the Await Rule with the rule Spawning Subtasks and
changing the Scheduling Rule, as described above.

Spawning Subtasks. Spawning a sub-task simply consists of adding

a corresponding statement with an enabling condition to the set Q
of suspended processes:

(F , {(σ , spawn(д, S); S ′,Q)}∪O) → (F , {(σ , S ′, {(д → S)}∪Q)}∪O)

Scheduling Rule. The following rules describe the scheduling of

an enabled suspended task. The first two rules are for statement

suspended by await.

(F , {(σ , ϵ, {(b → S)} ∪Q)} ∪O) → (F , {(σ , S,Q)} ∪O)

where σ (b) = true .

(F , {(σ , ϵ, {(y → S)} ∪Q)} ∪O) → (F , {(σ , S,Q)} ∪O)

where y is a future variable and F (σ (y)) ,⊥.
The last rule is for statements that are suspended as a result of an

asynchronous invocation and is the same as in the ABS operational

semantics:

(F , {(σ , ϵ, {S} ∪Q)} ∪O) → (F , {(σ , S,Q)} ∪O)

Translating ABS into ABS-SPAWN. We next introduce a formal

translation from ABS programs into ABS-SPAWN programs. This

translation is applied to every class in the ABS program. For each

class, every method body is viewed as a sequential composition of

the first instruction followed by its (sequential) continuation and

translated accordingly.

T (ϵ) := ϵ

T (x = e; S) := x = e;T (S)

T (await д; S) := spawn(д, T (S) )

T (if b {S1} else {S2}; S) := if b {T (S1; S)} else {T (S2; S)}

T (y = x !m(ē); S) := y = x !m(ē); T (S)

T (y = m(ē); S) := y = m(ē); T (S)

T (x = new C(ē); S) := x = new C(ē); T (S)

T (x = y.get; S) := x = y.get; T (S)

T (return e; S) := return e; T (S)

Figure 2: Translation of ABS into ABS-SPAWN

The scheme is applied using a bottom-up approach starting at

the level of statements using Figure 2. The scheme is then lifted to

the level of method bodies. Finally a translation of a class simply

consists of the translation of its method definitions.

In Figure 2 the empty statement is denoted by ϵ (we assume

here the syntactical equivalence S ; ϵ ≡ S). The translation of an

await construct with guard д followed by a (sequential) continua-

tion S results simply in a spawn statement with two parameters:

the guard д and the task representing the translation applied to

the continuation (T (S)). A conditional statement is translated by

“absorbing” the sequential continuation that follows into the two

branches of the statement. This general pattern also would apply to,

for example, the translation of the ABS case statement (or pattern

matching statement) where the continuation has to capture for each

possible pattern (Pi ) both the block to be executed on that pattern

branch (Si ) as well as the rest of the control flow that follows the

statement (S). The translation thus captures the whole syntactic

continuation that follows an await statement as the new task to

be spawned. Therefore the translation of the method containing

the await statement will terminate directly after having spawned

the corresponding subtask, thus emulating an implicit suspension

point.

The While Statement. We describe next the problem of translat-

ing a repetitive loop or the while statement. Intuitively, to capture

the syntactic continuation that follows an await statement occur-

ring in the body of the while statement, the translation could simply

“unfold" the loop. However this would result in a recursive trans-

lation. Instead, we can model while statements by means of a tail

recursive method. Note that such a method should capture in its for-

mal parameters the execution context (that is, all the local variables

used in the loop body).

Listing 5: While Loop in ABS
1 { List<Fut<Int>> futuresList = Nil;

2

3 //ABS code that fills the futuresList with
4 //futures resulting from asynchronous calls
5

6 this.sum=0;

7 while( !emptyList( futuresList ) ){

8 Fut<Int> f = head( futuresList );

9 await f?;
10 Int x = f.get;
11 this.sum = this.sum + x;

12 futuresList = tail( futuresList );

13 }

14 if( this.sum > 0 ){

15 //do work
16 }

17 }

To describe this in more detail, we look at an example in Listing 5

that computes the sum of numbers generated by asynchronous

calls whose results are captured in a list of futures. In ABS, lists

are part of the functional layer and all functions applied on them

(head, tail, emptyList) are side-effect free. We note that in this

particular program the variables x, f are local variables declared
inside the repetitive loop, futuresList is a local variable defined
in the method’s body prior to the loop scope and sum is a class

member variable.

Listing 6: Re-writtenWhile Loop in ABS using tail recursion
1 //new method
2 Unit m(List<Fut<Int>> futuresList){
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3 if(!emptyList(futuresList)){

4 Fut<Int> f = head(futuresList);

5 await f?;
6 Int x = f.get;
7 this.sum = this.sum + x;

8 futuresList = tail(futuresList);

9 m(futuresList);

10 }

11 }

12

13 { //original method scope
14 this.sum=0;

15 m(futuresList);

16 if(this.sum > 0){

17 //do work
18 }

19 }

This repetitive loop can naturally be “unfolded" by defining a

new method m with a formal parameter of type List< Fut<Int>>,
as we observe it is the only local variable declared prior to the loop.

This is shown in Listing 6. We can see that this way of “unfolding""

the loop works because the state of execution (in this case, the

continuously processed list) is passed to the next call as formal

parameters. Listing 7 then shows the translation of tail-recursive

method modeling the while statement. Note that the syntactic con-

tinuation of the await statement is captured in this translation by

the recursive call.

Listing 7: Translation Tail Recursion
1 Unit m(List<Fut<Int>> futuresList){

2 if(!emptyList(futuresList)){

3 Fut<Int> f = head(futuresList);

4 spawn( f?, {
5 Int x = f.get;
6 this.sum = this.sum + x;

7 futuresList = tail(futuresList);

8 m(futuresList)

9 } );

10 }

11 }

To conclude the presentation of ABS-SPAWN, we apply the trans-

lation scheme to the WorkerPool class written in ABS in Listing 1.

The resulting code in ABS-SPAWN is illustrated in Listing 8.

Listing 8: The Worker Pool Class in ABS-SPAWN
1 class WorkerPool(){

2 Set<Worker> workers;

3

4 Result sendWork() {

5 spawn ( !( emptySet(workers) ) , {

6 Worker w = take(workers);

7 workers = remove(workers, w);

8 Fut<Result> f = w ! doWork();

9 spawn (f?, {

10 Result result = f.get;
11 return result;

12 } ) ;

13 } );

14 }

15

16 Unit finished(Worker w) {

17 workers = insertElement(workers, w);

18 }

19 }

Correctness of the ABS Translation. In order to show the correct-

ness of the above translation of ABS programs into ABS-SPAWN

programs, we use G to denote a global ABS configuration as well

as ABS-SPAWN configurations. We introduce the notation:

G →
abs

G ′

to differentiate between transitions in pure ABS and transitions in

ABS-SPAWN which are denoted as:

G →
abs-spawn

G ′

Let T (G), for any global ABS configuration G, denote the result of
applying the translation to all the executing ABS statements in G
and translating any suspended await statement await д; S in G by

д → T (S). We now can state the following theorem which states

the correctness of the translation of await statements in ABS, the

proof of which proceeds by a straightforward case analysis of the

first instruction of an executing statement.

Theorem 4.1. For any configuration G of an ABS program we
have:

G →abs G
′ iff T (G) →abs−spawn T (G ′)

Proof. The proof proceeds by a case analysis of the transition

rules. We treat the following main cases. We only need consider

those statements that are affected by the translation, because for

statements like the assignment and empty statement, the semantics

of ABS coincides with that of ABS-SPAWN. We only consider the

main case of translating the await statement, because the trans-

lation of the conditional statement is correct because of standard

programming equivalences.

The proof is divided into two parts. The first part is presented

by the diagram in Figure 3 and treats the translation of the await
statement that appears as an instruction in a context Σ, that is,
Σ[(σ , S,Q)] describes a global configuration (F ,O),
with (σ , S,Q) ∈ O . The upper transition corresponds to the ap-

plication of the Await Rule, the result of which, namely that the

process await д; S is added to the suspended processes Q (of the

executing active object), is denoted by the corresponding global

configuration.

Σ[(σ , ϵ, {await д; S} ⊎Q)]

The lower transition results from the definition of the translation

scheme to global configurations, and a corresponding application

of the Spawning Tasks rule in ABS-SPAWN.

Conversely, the second part is presented by the diagram in Fig-

ure 4 and shows the correctness of translating the await statement

1327



Figure 3: Execution of an Await Statement

Σ[(σ , await д; S,Q)] Σ[(σ , ϵ, {await д; S} ⊎Q)]

T (Σ)[(σ , spawn( д; T (S)),T (Q))] T (Σ)[(σ , {д → T (S)} ⊎T (Q))]

T

abs

abs-spawn

T

Figure 4: Scheduling a Suspended Statement

Σ[(σ , ϵ, {await д; S} ⊎Q)] Σ[(σ , S,Q)]

T (Σ)[(σ , ϵ, {д → T (S)} ⊎T (Q))] T (Σ)[(σ ,T (S),T (Q))]

T

abs

abs-spawn

T

as part of a suspended process which conforms to the semantics of

the Scheduling Rules in ABS and ABS-SPAWN, respectively.

5 THE GAC LANGUAGE
It is worthwhile to note that by the above translation schemewe can

actually embed ABS in a language without any await statements

(that allow for cooperative scheduling) by encoding spawn(д, S)
itself as an asynchronous self call of the form this!m(), wherem()

is an unique method name with defining body д → S .
In Figure 5 we introduce so-called guarded command state-

ments (following [4]) as statements for describing the method bod-

ies in ABS.

S ::= ϵ empty statement

| x = e basic assignment

| y = x !m(ē) asynchronous method call

| y = m(ē) synchronous method call

| x = new C(ē) object creation

| x = y.get get statement

| (∗)□n
i=1

дi → {Si } guarded command

| case e ¯{e ⇒ S} case statement

| S ; S sequential composition

| return e return statement

Figure 5: ABS guarded command statements.

The semantics of the statement □n
i=1

дi → Si consists of a

non-deterministic selection of one of the statements Si for which
the associated guard дi is enabled. It blocks the execution of the

active object if none of the guards are enabled. A guard itself in

the GAC language consists of a Boolean condition and a set of

futures. Such a guard is enabled if the Boolean condition holds and

all its futures are completed (that is, for all of them the return value

has been produced). Its iterated version (indicated by the asterisk)

consists of repeatedly executing the marked guarded choice as long

as one of its guards is enabled. It terminates as soon as none of the

guards is enabled. Formally, the semantics of the guarded command

statements is described by the following rules (the semantics of the

other statements are described as in the ABS semantics).

Guarded Choice Rule.

(F , {(σ ,□n
i=1

дi → {Si }; S,Q)} ∪O) → (F , {(σ , Sj ; S,Q)} ∪O)

provided дj is enabled in σ and F .

For its iterated version we have the following two transitions.

Iterated guarded Choice Rule.

(F , {(σ , ∗□n
i=1

дi → {Si }; S,Q)} ∪O) →

(F , {(σ , Sj ; ∗□
n
i=1

дi → {Si }; S,Q)} ∪O)

provided дj is enabled in σ .

(F , {(σ , ∗□n
i=1

дi → {Si }; S,Q)} ∪O) → (F , {(σ , S,Q)} ∪O)

provided none of the дj is enabled in σ and F .

Further, we have the following scheduling rules.

Scheduling Rules.

(F , {(σ , ϵ, {□n
i=1

дi → {Si }; S}∪Q)}∪O) → (F , {(σ , Sj ; S,Q)}∪O)

provided дj is enabled in σ and F .

(F , {(σ , ϵ, {∗□n
i=1

дi → {Si }; S} ∪Q)} ∪O) →

(F , {(σ , Sj ; ∗□
n
i=1

дi → {Si }; S,Q)} ∪O)

provided дj is enabled in σ and F .
The resulting GAC language thus follows a strict run to comple-

tion mode of execution of the methods by active objects, like the

Rebeca language )[10]). Differently from the Rebeca language, it

features guarded command statements which allow to associate an

enabling condition with a suspended process. Note that such a sus-

pension mechanism avoids modeling a suspended process д → S
by a recursive method definition

m(){if д {S} else {this!m()}}

which involves busy waiting (and which assumes testing a future

as a Boolean condition).
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As an overall conclusion we illustrate in Figure 9 the translation

of the WorkerPool into GAC. Note the need to wrap the statements

of the guarded commands into separate methods. Thus these meth-

ods can be called asynchronously and stored as suspendedmessages

into the queue of the WorkerPool until their guards are enabled. As
such, execution of other enabled statements can continue without

blocking the actor.

Listing 9: The Worker Pool Class in GAC
1 class WorkerPool(){

2 Set<Worker> workers;

3

4 Result sendWork() {

5 ! emptySet(workers) → this ! m1( workers );

6 }

7

8 Result m1(Set<Worker> workers){

9 Worker w = take(workers);

10 workers = remove(workers, w);

11 Fut<Result> f = w ! doWork();

12 f → this ! m2( f );

13 }

14

15 Result m2(Fut<Result> f){

16 Result result = f.get;
17 return result;

18 }

19

20 Unit finished(Worker w) {

21 workers = insertElement(workers, w);

22 }

23 }

6 CONCLUSION
This work arose out of the work [9] that involves implementing

the ABS language in Java and Scala. In fact, the main Theorem 4.1

of this paper, which states the correctness of the translation of ABS

into the ABS-SPAWN language, provides a main step in the proof

of the correctness of the compiler that translates ABS into Java.

Quoting Felleisen in [5], there exists an abundance of informal

claims on the relative expressive power of programming languages.

In this paper however, we investigated in a formal way, that is,

based on a formal operational semantics, the expressive power of

cooperative scheduling as supported by the await statement of the

ABS language.

The proposal of ABS-Spawn is used in the Java and Scala imple-

mentation and provides a workaround to suspending threads. The

entire Java implementation [8] is based on replacing synchronous

calls with asynchronous calls followed by an await (suspension)

on the created implicit future. The implementation also includes

an underlying scheduler which differentiates priorities between

explicit futures created by the program and implicit futures [6]

created by the replacement mechanism of synchronous calls.

We introduced the ABS-SPAWN language and its formal seman-

tics which, instead of the await statement, features a statement for

spawning local processes while maintaining a run to completion

mode of execution of the methods, and provided a formal transla-

tion T which translates every ABS program P into an ABS-SPAWN

program T (P) such that T (P) simulates P , and vice versa.

We further introduced the GAC language which features guarded

command statements [4] as statements for describing the method

bodies in ABS. The standard semantics of guarded statements is

extended in ABS to their semantics as suspended processes. This

allows to model the spawn statement of the ABS-SPAWN language

itself directly by an asynchronous self-call, wrapping the corre-

sponding guarded command in a method.

In [3], the expressive power of general Actor-based systems

has been studied. Of interest is to extend that research into an

investigation of the expressive power of the other main feature of

the execution model underlying the ABS language, namely futures.

Of particular interest is to investigate the expressive power of the

non-blocking test operation on futures in the guards of the GAC

language, along the lines of the seminal work of [2], which provides

an in-depth study the expressive power of the the coordination

primitives of the Linda language (asynchronous communication

via a shared data space, read operation, non-blocking test operators

on the shared space).
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