
TACAS
Evaluation
Artifact

2020
Accepted

Verifying OpenJDK’s LinkedList using KeY

Hans-Dieter A. Hiep(�)1 , Olaf Maathuis3, Jinting Bian1,
Frank S. de Boer1, Marko van Eekelen2, and Stijn de Gouw2

1 CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
{hdh,j.bian,frb}@cwi.nl

2 Open University, P.O. Box 2960, 6401 DL Heerlen, The Netherlands
{marko.vaneekelen,stijn.degouw}@ou.nl

3 Achmea, P.O. Box 700, 7300 HC Apeldoorn, The Netherlands
olaf.maathuis@achmea.nl

Abstract. As a particular case study of the formal verification of state-
of-the-art, real software, we discuss the specification and verification of
a corrected version of the implementation of a linked list as provided by
the Java Collection framework.

Keywords: Java standard library · deductive verification · KeY · Java
Modeling Language · case study · bug

1 Introduction

Software libraries are the building blocks of millions of programs, and they run
on the devices of billions of users every day. Therefore, their correctness is of the
utmost importance. The importance and potential of formal software verification
as a means of rigorously validating state-of-the-art, real software and improving
it, is convincingly illustrated by its application to TimSort, the default sorting
library in many widely used programming languages, including Java and Python,
and platforms like Android (see [7,9]): a crashing implementation bug was found.

The Java implementation of TimSort belongs to the Java Collection frame-
work which provides implementations of basic data structures and is among the
most widely used libraries. Nonetheless, over the years, 877 bugs in the Collec-
tions Framework have been reported in the official OpenJDK bug tracker.

Due to the intrinsic complexity of modern software, the possibility of inter-
ventions by a human verifier is indispensable for proving correctness. This holds
in particular for the Java Collection library, where programs are expected to be-
have correctly for inputs of arbitrary size. As a particular case study, we discuss
the formal verification of a corrected version of the implementation of a linked
list as specified by the class LinkedList of the Java Collection framework in
Java 8. Apart from the fact that the data structure of a linked list is one of the
basic structures for storing and maintaining unbounded data, this is an inter-
esting case study because it provides further evidence that formal verification of
real software can lead to major improvements and correctness guarantees.

https://orcid.org/0000-0001-9677-6644

2 H.A. Hiep, O. Maathuis, et al.

 Formal
Specification

Verification

 Test-case
Generation

 Code
Revision

Fig. 1: Workflow

We follow the general workflow underlying the Tim-
Sort case as depicted in Fig. 1. The workflow starts
with a formalisation of the informal documentation of
the Java code in the Java Modeling Language [10,16].
This formalisation goes hand in hand with the formal
verification: failed verification attempts can provide in-
formation about further refinements of the specs. A
failed verification attempt may also indicate an error
in the code, and can as such be used for the generation
of test cases to detect the error at run-time.

LinkedList is the only List implementation in the
Collection Framework that allows collections of un-
bounded size. During verification we found out that
the Java linked list implementation does not correctly
take into account the Java integer overflow seman-
tics. It is exactly for large lists (≥ 231 items), that
the implementation breaks. This basic observation gave
rise to a number of test cases which show that Java’s

LinkedList class breaks 22 methods out of a total of 25 methods of the List!4

On the basis of these test cases we propose in Sect. 2 a code revision of the
Java linked list implementation, and formally specify and verify its correctness
in Sect. 3 with respect to the Java integer overflow semantics. Section 4 discusses
the main challenges posed by this case study and related work.

This case study has been carried out using the state-of-the-art KeY theorem
prover [3], because it formalizes the integer overflow semantics of Java and it
allows to directly “load” Java programs. An archive of proof files and the KeY
version used in this study is available on-line in the Zenodo repository [2].

2 LinkedList in OpenJDK

LinkedList was introduced in Java version 1.2 as part of Java’s Collection
Framework in 1998. The LinkedList class is part of the type hierarchy of this
framework: LinkedList implements the List interface, and also supports all
general Collection methods as well as the methods from the Queue and Deque

interfaces. The List interface provides positional access to the elements of the
list, where each element is indexed by Java’s primitive int type.

The structure of the LinkedList class is shown in Listing 1. This class has
three attributes: a size field, which stores the number of elements in the list,
and two fields that store a reference to the first and last node. Internally,
it uses the private static nested Node class to represent the items in the list.
A static nested private class behaves like a top-level class, except that it is not
visible outside the enclosing class (LinkedList, in this case). Nodes are doubly
linked; each node is connected to the preceding (field prev) and succeeding node

4 We filed a bug report to Oracle’s security team. Once the report is made public by
the Java maintainers, we will add the URL as metadata to our repository [2].

Verifying OpenJDK’s LinkedList using KeY 3

public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, ... {

transient int size = 0;
transient Node<E> first;
transient Node<E> last;
private static class Node<E> {

E item;
Node<E> next;
Node<E> prev;
Node(Node<E> p, E i, Node<E> n) ...

}
...

}

public boolean add(E e) {
linkLast(e);
return true;

}
void linkLast(E e) {

final Node<E> l = last;
final Node<E> newNode =

new Node<>(l, e, null);
last = newNode;
if (l == null) first = newNode;
else l.next = newNode;
size++;
modCount++;

}

Listing 1: The LinkedList class defines a doubly-linked list data structure.

public int indexOf(Object o) {
int index = 0;
if (o == null) {

for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)

return index;
index++;

}
} else {

for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))

return index;
index++;

}
}
return -1;

}

Listing 2: The indexOf method searches for an element from the first node on.

(field next). These fields contain null in case no preceding or succeeding node
exists. The data itself is contained in the item field of a node.

LinkedList contains 57 methods. Due to space limitations, we now focus on
three characteristic methods: see Listing 1 and Listing 2. Method add(E) calls
method linkLast(E), which creates a new Node object to store the new item
and adds the new node to the end of the list. Finally the new size is determined
by unconditionally incrementing the value of the size field, which has type
int. Method indexOf(Object) returns the position (of type int) of the first
occurrence of the specified element in the list, or −1 if it’s not present.

Each linked list consists of a sequence of nodes. Sequences are finite, indexing
of sequences starts at zero, and we write σ[i] to mean the ith element of some
sequence σ. A chain is a sequence σ of nodes of length n > 0 such that: the
prev reference of the first node σ[0] is null, the next reference of the last node
σ[n− 1] is null, the prev reference of node σ[i] is node σ[i− 1] for every index
0 < i < n, and the next reference of node σ[i] is node σ[i + 1] for every index
0 ≤ i < n−1. The first and last references of a linked list are either both null

to represent the empty linked list, or there is some chain σ between the first

and last node, viz. σ[0] = first and σ[n− 1] = last. Figure 2 shows example
instances. Also see standard literature such as Knuth’s [15, Section 2.2.5].

4 H.A. Hiep, O. Maathuis, et al.

LinkedList LinkedList

null null

Node

LinkedList

null

Node

null

Node

first last

prev item next prev item next prev item next

null null

size

0

first lastsize

1

first lastsize

2

Fig. 2: Three example linked lists: empty, with a chain of one node, and with a
chain of two nodes. Items themselves are not shown.

We make a distinction between the actual size of a linked list and its cached
size. In principle, the size of a linked list can be computed by walking through
the chain from the first to the last node, following the next reference, and
counting the number of nodes. For performance reasons, the Java implementation
also maintains a cached size. The cached size is stored in the linked list instance.

Two basic properties of doubly-linked lists are acyclicity and unique first and
last nodes. Acyclicity is the statement that for any indices 0 ≤ i < j < n the
nodes σ[i] and σ[j] are different. First and last nodes are unique: for any index
i such that σ[i] is a node, the next of σ[i] is null if and only if i = n − 1, and
prev of σ[i] is null if and only if i = 0. Each item is stored in a separate node,
and the same item may be stored in different nodes when duplicate items are
present in the list.

2.1 Integer overflow bug

The size of a linked list is encoded by a signed 32-bit integer (Java’s primitive
int type) that has a two’s complement binary representation where the most
significant bit is a sign bit. The values of int are bounded and between −231

(Integer.MIN VALUE) and 231 − 1 (Integer.MAX VALUE), inclusive. Adding one
to the maximum value, 231 − 1, results in the minimum value, −231: the carry
of addition is stored in the sign bit, thereby changing the sign.

Since the linked list implementation maintains one node for each element, its
size is implicitly bounded by the number of node instances that can be created.
Until 2002, the JVM was limited to a 32-bit address space, imposing a limit of
4 gigabytes (GiB) of memory. In practice this is insufficient to create 231 node
instances. Since 2002, a 64-bit JVM is available allowing much larger amounts
of addressable memory. Depending on the available memory, in principle it is
now possible to create 231 or more node instances. In practice such lists can be
constructed today on systems with 64 gigabytes of memory, e.g., by repeatedly
adding elements. However, for such large lists, at least 20 methods break, caused
by signed integer overflow. For example, several methods crash with a run-time
exception or exhibit unexpected behavior!

Integer overflow bugs are a common attack vector for security vulnerabilities:
even if the overflow bug may seem benign, its presence may serve as a small step
in a larger attack. Integer overflow bugs can be exploited more easily on large

Verifying OpenJDK’s LinkedList using KeY 5

memory machines used for ‘big data’ applications. Already, real-world attacks
involve Java arrays with approximately 232/5 elements [11, Section 3.2].

The Collection interface allows for collections with over Integer.MAX -

VALUE elements. For example, its documentation (Javadoc) explicitly states the
behavior of the size() method: ‘Returns the number of elements in this collec-
tion. If this collection contains more than Integer.MAX VALUE elements, returns
Integer.MAX VALUE’. The special case (‘more than . . . ’) for large collections is
necessary because size() returns a value of type int.

When add(E) is called and unconditionally increments the size field, an
overflow happens after adding 231 elements, resulting in a negative size value.
In fact, as the Javadoc of the List interface describes, this interface is based on
integer indices of elements: ‘The user can access elements by their integer index
(position in the list), . . . ’. For elements beyond Integer.MAX VALUE, it is very
unclear what integer index should be used. Since there are only 232 different
integer values, at most 232 node instances can be associated with an unique
index. For larger lists, elements cannot be uniquely addressed anymore using
an integer index. In essence, as we shall see in more detail below, the bounded
nature of the 32-bit integer indices implies that the design of the List interfaces
breaks down for large lists on 64-bit architectures. The above observations have
many ramifications: it can be shown that 22 of 25 methods in the List interface
are broken. Remarkably, the actual size of the linked list remains correct as the
chain is still in place: most methods of the Queue interface still work.

2.2 Reproduction

We have run a number of test cases to show the presence of bugs caused by the
integer overflow. The running Java version was Oracle’s JDK8 (build 1.8.0 201-
b09) that has the same LinkedList implementation as in OpenJDK8. Before
running a test case, we set up an empty linked list instance. Below, we give an
high-level overview of the test cases. Each test case uses letSizeOverflow() or
addElementsUntilSizeIs0(): these repeatedly call the method add() to fill the
linked list with null elements, and the latter method also adds a last element
("this is the last element") causing size to be 0 again.

1. Directly after size overflows, the size() methods returns a negative value,
violating what the corresponding Javadoc stipulates: its value should remain
Integer.MAX VALUE = 231 − 1.
letSizeOverflow();
System.out.println("linkedList.size() = " + linkedList.size() + ", actual: " + count);
// linkedList.size() = -2147483648, actual: 2147483648

Clearly this behavior is in contradiction with the documentation. The actual
number of elements is determined by having a field count (of type long) that
is incremented each time the method add() is called.

2. The query method get(int) returns the element at the specified position in
the list. It throws an IndexOutOfBoundsException exception when size is
negative. From the informal specification, it is unclear what indices should
be associated with elements beyond Integer.MAX VALUE.

6 H.A. Hiep, O. Maathuis, et al.

letSizeOverflow();
System.out.println(linkedList.get(0));
// Exception in thread "main" IndexOutOfBoundsException: Index: 0, Size: -2147483648
// at java.util.LinkedList.checkElementIndex(LinkedList.java:555) ...

3. The method toArray() returns an array containing all of the elements in
this list in proper sequence (from first to last element). When size is neg-
ative, this method throws a NegativeArraySizeException exception. Fur-
thermore, since the array size is bounded by 231 − 1 elements5, the contract
of toArray() is unsatisfiable for lists larger than this. The method Collec-

tions.sort(List<T>) sorts the specified list into ascending order, according
to the natural ordering of its elements. This method calls toArray(), and
therefore also throws a NegativeArraySizeException.
letSizeOverflow();
Collections.sort(linkedList);
// Exception in thread "main" NegativeArraySizeException
// at java.util.LinkedList.toArray(LinkedList.java:1050)...

4. Method indexOf(Object o) returns the index of the first occurrence of the
specified element in this list, or −1 if this list does not contain the element.
However due to the overflow, it is possible to have an element in the list
associated to index −1, which breaks the contract of this method.
addElementsUntilSizeIs0();
String last;
System.out.println("linkedList.getLast() = " + (last = linkedList.getLast()));
// linkedList.getLast() = This is the last element
System.out.println("linkedList.indexOf(" + last + ") = " + linkedList.indexOf(last));
// linkedList.indexOf(This is the last element) = -1

5. Method contains(Object o) returns true if this list contains the specified
element. If an element is associated with index −1, it will indicate wrongly
that this particular element is not present in the list.
addElementsUntilSizeIs0();
String last;
System.out.println("linkedList.getLast() = " + (last = linkedList.getLast()));
// linkedList.getLast() = This is the last element
System.out.println("linkedList.contains(" + last + ") = " linkedList.contains(last));
// linkedList.contains(This is the last element) = false

Specifically, method letSizeOverflow() adds 231 elements that causes the
overflow of size. Method addElementsUntilSizeIs0() first adds 232 − 1 ele-
ments: the value of size is then −1. Then, it adds the last element, and size

is 0 again. All elements added are null, except for the last element. For test
cases 4 and 5, we deliberately misuse the overflow bug to associate an element
with index −1. This means that method indexOf(Object) for this element re-
turns −1, which according to the documentation means that the element is not
present. For test cases 1, 2 and 3 we needed 65 gigabytes of memory for the JRE
on a VM with 67 gigabytes of memory. For test cases 4 and 5 we needed 167
gigabytes of memory for the JRE on a VM with 172 gigabytes of memory. All
test cases were carried out on a machine in a private cloud (SURFsara), which
provides instances that satisfy these system requirements.

5 In practice, the maximum array length turns out to be 231 − 5, as some bytes are
reserved for object headers, but this may vary between Java versions [11,14].

Verifying OpenJDK’s LinkedList using KeY 7

2.3 Mitigation

There are multiple directions for mitigating the overflow bug: do not fix, fail fast,
long size field and long or BigInteger indices. Due to lack of space, we describe
only the fail fast solution. This solution stays reasonably close to the original
implementation of LinkedList and does not leave any behavior unspecified.

In the fail fast solution, we ensure that the overflow of size may never occur.
Whenever elements would be added that cause the size field to overflow, the
operation throws an exception and leaves the list unchanged. As the exception
is triggered right before the overflow would otherwise occur, the value of size is
guaranteed to be bounded by Integer.MAX VALUE, i.e. it never becomes negative.

This solution requires a slight adaptation of the implementation: for meth-
ods that increase the size field, only one additional check has to be performed
before a LinkedList instance is modified. This checks whether the result of
the method causes an overflow of the size field. Under this condition, an Il-

legalStateException is thrown. Thus, only in states where size is less than
Integer.MAX VALUE, it is acceptable to add a single element to the list.

We shall work in a separate class called BoundedLinkedList: this is the im-
proved version that does not allow more than 231−1 elements. Compared to the
original LinkedList, two methods are added, isMaxSize() and checkSize():

private boolean isMaxSize() {
return size == Integer.MAX_VALUE;

}
private void checkSize() {

if (isMaxSize())
throw new IllegalStateException("Not enough space");

}

These methods implement an overflow check. The latter method is called be-
fore any modification occurs that increases the size by one: this ensures that
size never overflows. Some methods now differ when compared to the original
LinkedList, as they involve an invocation of the checkSize() method.

3 Specification and verification of BoundedLinkedList

The aim of our specification and verification effort is to verify formalizations of
the given Javadoc specifications (stated in natural language) of the LinkedList.
This includes establishing absence of overflow errors. Moreover, we restrict our
attention only to the revised BoundedLinkedList and not to the rest of the
Collection Framework or Java classes: methods that involve parameters with
interface types, Java serialization or Java reflection are considered out of scope.

(Bounded)LinkedList inherits from AbstractSequentialList, but we con-
sider its inherited methods out of scope. These methods operate on other collec-
tions such as removeAll or containsAll, and methods that have other classes as
return type such as iterator. However, these methods call methods overridden
by (Bounded)LinkedList, and can not cause an overflow by themselves.

We have made use of KeY’s stub generator to generate dummy contracts
for other classes that BoundedLinkedList depends on, such as for the inherited

8 H.A. Hiep, O. Maathuis, et al.

interfaces and abstract super classes: these contracts conservatively specify that
every method may arbitrarily change the heap. The stub generator moreover
deals with generics by erasing the generic type parameters. For exceptions we
modify their stub contract to assume that their constructors are pure, viz. leav-
ing existing objects on the heap unchanged. An important stub contract is the
equality method of the absolute super class Object, which we have adapted: we
assume every object has a side-effect free, terminating and deterministic imple-
mentation of its equality method6:

public class Object {
/*@ public normal_behavior

@ requires true;
@ ensures \result == self.equals(param0);
@*/

public /*@ helper strictly_pure @*/ boolean
equals(/*@ nullable */ Object param0);

...
}

3.1 Specification

Following our workflow, we have iterated a number of times before the specifica-
tions we present here were obtained. This is a costly procedure, as revising some
specifications requires redoing most verification effort. Until sufficient informa-
tion is present in the specification, proving for example termination of a method
is difficult or even impossible: from stuck verification attempts, and an intuitive
idea of why a proof is stuck, the specification is revised.

Ghost fields. We use JML’s ghost fields: these are logical fields that for each
object gets a value assigned in a heap. The value of these fields are conceptual,
i.e. only used for specification and verification purposes. During run-time, this
field is not present and cannot affect the course of execution. Our improved class
is annotated with two ghost fields: nodeList and nodeIndex.

The type of the nodeList ghost field is an abstract data type of sequences,
a KeY built-in. This type has standard constructors and operations that can be
used in contracts and in JML set annotations. A sequence has a length, which
is finite but unbounded. The type of a sequence’s length is \bigint. In KeY a
sequence is unityped: all its elements are of the any sort, which can be any Java
object reference or primitive, or built-in abstract data type. One needs to apply
appropriate casts and track type information for a sequence of elements in order
to cast elements of the any sort to any of its subsorts.

The nodeIndex ghost field is used as a ghost parameter with unbounded
but finite integers as type. This ghost parameter is only used for specifying
the behavior of the methods unlink(Node) and linkBefore(Object, Node).
The ghost parameter tracks at which index the Node argument is present in the
nodeList. This information is implicit and not needed at run-time.

6 In reality, there are Java classes for which equality is not terminating. A nice example
is LinkedList itself, where adding a list to itself leads to a StackOverflowError when
testing equality with a similar instance. We consider the issue out of scope of this
study as this behavior is explicitly described by the Javadoc.

Verifying OpenJDK’s LinkedList using KeY 9

Class invariant. The ghost field nodeList is used in the class invariant of
our improved implementation, see below. We relate the fields first and last

that hold a reference to a Node instance, and the chain between first and last,
to the contents of the sequence in the ghost field nodeList. This allows us to
express properties in terms of nodeList, where they reflect properties about
the chain on the heap. One may compare this invariant with the description of
chains as given in Sect. 2.

1 //@ private ghost \seq nodeList;
2 //@ private ghost \bigint nodeIndex;
3 /*@ invariant
4 @ nodeList.length == size &&
5 @ nodeList.length <= Integer.MAX_VALUE &&
6 @ (\forall \bigint i; 0 <= i < nodeList.length;
7 @ nodeList[i] instanceof Node) &&
8 @ ((nodeList == \seq_empty && first == null && last == null)
9 @ || (nodeList != \seq_empty && first != null &&

10 @ first.prev == null && last != null &&
11 @ last.next == null && first == (Node)nodeList[0] &&
12 @ last == (Node)nodeList[nodeList.length-1])) &&
13 @ (\forall \bigint i; 0 < i < nodeList.length;
14 @ ((Node)nodeList[i]).prev == (Node)nodeList[i-1]) &&
15 @ (\forall \bigint i; 0 <= i < nodeList.length-1;
16 @ ((Node)nodeList[i]).next == (Node)nodeList[i+1]);
17 @*/

The actual size of a linked list is the length of the ghost field nodeList,
whereas the cached size is stored in a 32-bit signed integer field size. On line 4,
the invariant expresses that these two must be equal. Since the length of a
sequence (and thus nodeList) is never negative, this implies that the size field
never overflows. On line 5, this is made explicit: the real size of a linked list is
bounded by Integer.MAX VALUE. Line 5 is redundant as it follows from line 4,
since a 32-bit integer never has a value larger than this maximum value. The
condition on lines 6–7 requires that every node in nodeList is an instance of
Node which implies it is non-null.

A linked list is either empty or non-empty. On line 8, if the linked list is
empty, it is specified that first and last must be null references. On lines
9–12, if the linked list is non-empty, it is specified that first and last are non-
null and moreover that the prev field of the first Node and the next field of the
last Node are null. The nodeList must have as first element the node pointed
to by first, and last as last element. In any case, but vacuously true if the
linked list is empty, the nodeList forms a chain of nodes: lines 13–16 describe
that, for every node at index 0 < i < size, the prev field must point to its
predecessor, and similar for successor nodes.

We note three interesting properties that are implied by the above invariant:
acyclicity, unique first and unique last node. These properties can be expressed
as JML formulas as follows:

(\forall \bigint i; 0 <= i < nodeList.length - 1;
(\forall \bigint j; i < j < nodeList.length;

nodeList[i] != nodeList[j])) &&
(\forall \bigint i; 0 <= i < nodeList.length;

nodeList[i].next == null <==> i = nodeList.length - 1) &&
(\forall \bigint i; 0 <= i < nodeList.length;

nodeList[i].prev == null <==> i = 0)

10 H.A. Hiep, O. Maathuis, et al.

These properties are not literally part of our invariant, but their validity is proven
interactively in KeY as a consequence of the invariant. Otherwise, we would need
to reestablish also these properties each time we show the invariant holds.

Methods. All methods within scope are given a JML contract that specify its
normal behavior and its exceptional behavior. As an example contract, consider
the lastIndexOf(Object) method in Listing 3: it searches through the chain of
nodes until it finds a node with an item equal to the argument. This method is in-
teresting due to a potential overflow of the resulting index. BoundedLinkedList
together with all method specifications are available on-line [2].

3.2 Verification

We start by giving a general strategy we apply to verify proof obligations.
We also describe in more detail how to produce a single proof, in this case
lastIndexOf(Object). This gives a general feel how proving in KeY works.
This method is neither trivial, nor very complicated to verify. In this manner,
we have produced proofs for each method contract that we have specified.

Overview of verification steps. When verifying a method, we first instruct
KeY to perform symbolic execution. Symbolic execution is implemented by a
number of proof rules that transform modal operators on program fragments in
JavaDL. During symbolic execution, the goal sequent is automatically simplified,
potentially leading to branches. Since our class invariant contains a disjunction
(either the list is empty or not), we do not want these cases to be split early
in the symbolic execution. Thus we instruct KeY to delay unfolding the class
invariant. When symbolic execution is finished, goals may still contain updated
heap expressions that must be simplified further. After this has been done, one
can compare the open goals to the method body and its annotations, and see
whether the open goals in KeY look familiar and check whether they are true.

In the remaining part of the proof the user must find an appropriate mix
between interactive and automatic steps. If a sequent is provable, there may be
multiple ways to construct a closed proof tree. At (almost) every step the user
has a choice between applying steps manually or automatically. It requires some
experience in choosing which rules to apply manually: clever rule application
decreases the size of the proof tree. Certain rules are never applied automatically,
such as the cut rule. The cut rule splits a proof tree into two parts by introducing
a detour, but significantly reduces the size of a proof and thus the effort required
to produce it. For example, the acylicity property can be introduced using cut.

Verification example. The method lastIndexOf has two contracts: one in-
volves a null argument, and another involves a non-null argument. Both proofs
are similar. Moreover, the proof for indexOf(...) is similar but involves the
next reference instead of the prev reference. This contract is interesting, since
proving its correctness shows the absence of the overflow of the index variable.

Proposition. lastIndexOf(Object) as specified in Listing 3 is correct.

Proof. Set strategy to default strategy, and set max. rules to 5,000, class axiom
delayed. Finish symbolic execution on the main goal. Set strategy to 1,000 rules

Verifying OpenJDK’s LinkedList using KeY 11

/*@
@ also
@ ...
@ public normal_behavior
@ requires
@ o != null;
@ ensures
@ \result >= -1 && \result < nodeList.length;
@ ensures
@ \result == -1 ==>
@ (\forall \bigint i; 0 <= i < nodeList.length;
@ !o.equals(((Node)nodeList[i]).item));
@ ensures
@ \result >= 0 ==>
@ (\forall \bigint i; \result < i < nodeList.length;
@ !o.equals(((Node)nodeList[i]).item)) &&
@ o.equals(((Node)nodeList[\result]).item);
@*/

public /*@ strictly_pure @*/ int
lastIndexOf(/*@ nullable @*/ Object o) {

int index = size;
if (o == null) {

...
} else {

/*@
@ maintaining
@ (\forall \bigint i; index <= i < nodeList.length;
@ !o.equals(((Node)nodeList[i]).item));
@ maintaining
@ 0 <= index && index <= nodeList.length;
@ maintaining
@ 0 < index && index <= nodeList.length ==>
@ x == (Node)nodeList[index - 1];
@ maintaining
@ index == 0 <==> x == null;
@ decreasing
@ index;
@ assignable
@ \strictly_nothing;
@*/

for (Node x = last; x != null; x = x.prev) {
index--;
if (o.equals(x.item))

return index;
}

}
return -1;

}

Listing 3: Method lastIndexOf(Object) annotated with JML. Searches the list
from last to first for an element. Returns −1 if this element is not present in the
list; otherwise returns the index of the node that was equal to the argument.
Only the contract and branch in which the argument is non-null is shown due
to space restrictions. Methods such as indexOf, removeFirstOccurrence and
removeLastOccurrence are very similar.

12 H.A. Hiep, O. Maathuis, et al.

and select DefOps arithmetical rules. Close all provable goals under the root.
One goal remains. Perform update simplification macro on the whole sequent,
perform propositional with split macro on the sequent, and close provable goals
on the root of the proof tree. There is a remaining case:

– Case index − 1 = 0 ↔ x.prev = null: split the equivalence. First case,
suppose index − 1 = 0, then x = self .nodeList[0] = self .first and
self .first.prev = null: solvable through unfolding the invariant and equa-
tional rewriting. Now, second case, suppose x.prev = null. Then, either
index = 1 or index > 1 (from splitting index ≥ 1). The first of which
is trivial (close provable goal), and the second one requires instantiating
quantified statements from the invariant, leading to a contradiction. Since
we have supposed x.prev = null, but x = self .nodeList[index − 1] and
self .nodeList[index − 1].prev = self .nodeList[index − 2] and
self .nodeList[index − 2] 6= null.

Interesting verification conditions. The acyclicity property is used to close
verification conditions that arise as a result of potential aliasing of node in-
stances: it is used as a separation lemma. For example, after a method that
changed the next field of an existing node, we want to reestablish that all nodes
remain reachable from the first through next fields (i.e., “connectedness”):
one proves that the update of next only affects a single node, and does not
introduce a cycle. We prove this by using the fact that two nodes instances are
different if they have a different index in nodeList, which follows from acyclic-
ity. Below, we sketch an argument why the acyclicity property follows from the
invariant. We have a video in which we show how the argument in KeY goes,
see [1, 0:55–11:30].

Proposition. Acyclicity follows from the linked list invariant.

Proof. By contradiction: suppose a linked list of size n > 1 is not acyclic. Then
there are two indices, 0 ≤ i < j < n, such that the nodes at index i and j are
equal. Then it must hold that for all j ≤ k < n, the node at k is equal to the
node at k− (j− i). This follows from induction. Base case: if k = j, then node j
and node j − (j − i) = i are equal by assumption. Induction step: suppose node
at k is equal to node at k − (j − i), then if k + 1 < n it also holds that node
k+ 1 equals node k+ 1− (j − i): this follows from the fact that node k+ 1 and
k + 1− (j − i) are both the next of node k < n− 1 and node k − (j − i). Since
the latter are equal, the former must be equal too. Now, for all j ≤ k < n, node
k equals node k − (j − i) in particular holds when k = n − 1. However, by the
property that only the last node has a null value for next, and a non-last node
has a non-null value for its next field, we derive a contradiction: if nodes k and
k − (j − i) are equal then all their fields must also have equal values, but node
k has a null and node k − (j − i) has a non-null next field!

Verifying OpenJDK’s LinkedList using KeY 13

Summary of verification effort. The total effort of our case study was about
7 man months. The largest part of this effort is finding the right specification.
KeY supports various ways to specify Java code: model fields/methods, pure
methods, and ghost variables. For example, using pure methods, contracts are
specified by expressing the content of the list before/after the method using
the pure method get(i), which returns the item at index i. This led to rather
complex proofs: essentially it led to reasoning in terms of relational properties
on programs (i.e. get(i) before vs get(i) after the method under consideration).
After 2.5 man months of writing partial specifications and partial proofs in these
different formalisms, we decided to go with ghost variables as this was the only
formalism in which we succeeded to prove non-trivial methods.

It then took ≈ 4 man months of iterating in our workflow through (failed)
partial proof attempts and refining the specs until they were sufficiently com-
plete. In particular, changes to the class invariant were “costly”, as this typically
caused proofs of all the methods to break (one must prove that all methods pre-
serve the class invariant). The possibility to interact with the prover was crucial
to pinpoint the cause of a failed verification attempt, and we used this feature
of KeY extensively to find the right changes/additions to the specifications.

After the introduction of the field nodeList, several methods could be proved
very easily, with a very low number of interactive steps or even automatically.
Methods unlink(Node) and linkBefore(Object, Node) could not be proven
without knowing the position of the node argument. We introduced a new ghost
field, nodeIndex, that acts like a ghost parameter. Luckily, this did not affect
the class invariant, and existing proofs that did not make use of the new ghost
field were unaffected.

Once the specifications are (sufficiently) complete, we estimate that it only
took approximately 1 or 1.5 man weeks to prove all methods. This can be reduced
further if informal proof descriptions are given. Moreover, we have recorded a
video of a 30 minute proof session where the method unlinkLast is proven
correct with respect to its contract [1].

Proof statistics. The below table summarizes the main proof statistics for all
methods. The last two columns are not metrics of the proof, but they indicate
the total lines of code (LoC) and the total lines of specifications (LoSpec).

Rules Branches Interactive steps Quant.ins Contract LoopInv LoC LoSpec
375,839 2,477 9,609 2,322 79 12 440 756

We found the most difficult proofs were for the method contracts of: clear(),
linkBefore(Object,Node), unlink(Node), node(int) and remove(Object).
The number of interactive steps seem a rough measure for effort required. But,
we note that it is not a reliable representation of the difficulty of a proof: an
experienced user can produce a proof with very few interactive steps, while an
inexperienced user may take many more steps. The proofs we have produced are
by no means minimal.

14 H.A. Hiep, O. Maathuis, et al.

4 Discussion

In this section we discuss some of the main challenges of verifying the real-world
Java implementation of a LinkedList, as opposed to the analysis of an idealized
mathematical linked list.

Extensive use of Java language constructs. The LinkedList class uses a wide
range of Java language features. This includes nested classes (both static and
non-static), inheritance, polymorphism, generics, exception handling, object cre-
ation and foreach loops. To load and reason about the real-world LinkedList

source code requires an analysis tool with high coverage of the Java language,
including support for the aforementioned language features.

Support for intricate Java semantics. The Java List interface is position
based, and associates with each item in the list an index of Java’s int type. The
bugs described in Section 2.1 were triggered on large lists, in which integer over-
flows occurred. Thus, while an idealized mathematical integer semantics is much
simpler for reasoning, it could not be used to analyze the bugs we encountered!
It is therefore critical that the analysis tool faithfully supports Java’s semantics,
including Java’s integer (overflow) behavior.

Collections have a huge state space. A Java collection is an object that con-
tains other objects (of a reference type). Collections can typically grow to an
arbitrary (but in practice, bounded) size. By their very nature, collections thus
intrinsically have a large state. To make this more concrete: triggering the bugs
in LinkedList requires at least 231 elements (and 64 GiB of memory), and each
element, since it is of a reference type, has at least 232 values. This poses serious
problems to fully automated analysis methods that explore the state space.

Interface specifications. Several of the LinkedList methods contain an inter-
face type as parameter. For example, the addAll method takes two arguments,
the second one is of the Collection type:

public boolean addAll(int index, Collection c) {
...
Object[] a = c.toArray();
...

}

As KeY follows the design by contract paradigm, verification of LinkedList’s
addAll method requires a contract for each of the other methods called, includ-
ing the toArray method in the Collection interface. How can we specify in-
terface methods, such as Collection.toArray? The stub generator generates a
conservative contract: it may arbitrarily modify the heap and return any array.
Simple conditions on parameters or the return value are easily expressed, but
meaningful contracts that relates the behavior of the method to the contents of
the collection require some notion of state to capture all mutations of the collec-
tion, so that previous calls to methods in the interface that contributed to the
current contents of the collection are taken into account. Model fields/methods
[3, Section 9.2] are a widely used mechanism for abstract specification. A model
field or method is represented in a concrete class in terms of the concrete state
given by its fields. In this case, as only the interface type Collection is known

Verifying OpenJDK’s LinkedList using KeY 15

rather than a concrete class, such a representation cannot be defined. Thus the
behavior of the interface cannot be fully captured by specifications in terms
of model fields/variables, including for methods such as Collection.toArray.
Ghost variables cannot be used either, since ghost variables are updated by
adding set statements in method bodies, and interfaces do not contain method
bodies. This raises the question: how to specify behavior of interface methods?7

Verifiable code revisions. We fixed the LinkedList class by explicitly bound-
ing its maximum size to Integer.MAX VALUE elements, but other solutions are
possible. Rather than using integers indices for elements, one could change to
an index of type long or BigInteger. Such a code revision is however incompati-
ble with the general Collection and List interfaces (whose method signatures
mandate the use of integer indices), thereby breaking all existing client code that
uses LinkedList. Clearly this is not an option in a widely used language like
Java, or any language that aims to be backwards compatible.

It raises the challenge: can we find code revisions that are compatible with
existing interfaces and client classes? We can take this challenge even further:
can we use our workflow to find such compatible code revisions, and are also
amenable to formal verification? The existing code in general is not designed
for verification. For example, the LinkedList class exposes several implementa-
tion details to classes in the java.util package: i.e., all fields, including size, are
package private (not private!), which means they can be assigned a new value
directly (without calling any methods) by other classes in that package. This
includes setting size to negative values. As we have seen, the class malfunctions
for negative size values. In short, this means that the LinkedList itself cannot
enforce its own invariants anymore: its correctness now depends on the correct-
ness of other classes in the package. The possibility to avoid calling methods
to access the lists field may yield a small performance gain, but it precludes a
modular analysis: to assess the correctness of LinkedList one must now ana-
lyze all classes in the same package (!) to determine whether they make benign
changes (if any) to the fields of the list. Hence, we recommend to encapsulate
such implementation details, including making at least all fields private.

Proof reuse. Section 3.2 discussed the proof effort (in person months). It
revealed that while the total effort was 6-7 person months, once the specifications
are in place after many iterations of the workflow, producing the actual final
proofs took only 1-2 weeks! But minor specification changes often require to redo
nearly the whole proof, which causes much delay in finding the right specification.
Other program verification case studies [3,4,8,9] show similarly that the main
bottleneck today is specification, not verification. This calls for techniques to
optimize proof reuse when the specification is slightly modified, allowing for a
more rapid development of specifications.

7 Since the representation of classes that implement the interface is unknown in the
interface itself, a particularly challenging aspect here is: how to specify the footprint
of an interface method, i.e.: what part of the heap can be modified by the method
in the implementing class?

16 H.A. Hiep, O. Maathuis, et al.

Status of the challenges. Most of these challenges are still open. The challenge
concerning “Interface specifications” could perhaps be addressed by defining an
abstract state of an interface by using/developing some form of a trace specifi-
cation that map a sequence of calls to the interface methods to a value, together
with a logic to reason about such trace specifications.

The challenges related to code revisions and proof reuse are compounded
for analysis tools that use very fine-grained proof representations. For exam-
ple, proofs in KeY consist of actual rule applications (rather than higher level
macro/strategy applications), and proof rule applications explicitly refer to the
indices of the (sub) formulas the rule is applied to. This results in a fragile proof
format, where small changes to the specifications or source code (such as a code
refactoring) break the proof.

The KeY system covered the Java language features sufficiently to load and
statically verify the LinkedList source code. KeY also supports various integer
semantics, allowing us to analyze LinkedList with the actual Java integer over-
flow semantics. As KeY is a theorem prover (based on deductive verification),
it does not explore the state space of the class under consideration, thus solving
the problem of the huge state space of Java collections. We could not find any
other tools that solved these challenges, so we decided at that point to use KeY.

However, other state-of-the-art systems such as Coq, Isabelle and PVS sup-
port proof scripts. Those proofs are described at a typically much more coarse-
grained level when compared to KeY. It would be interesting to see to what
extent Java language features and semantics can be handled in (extensions of)
such higher level proof script languages.

4.1 Related work

Knüppel et al. [14] provide a report on the specification and verification of some
methods of the classes ArrayList, Arrays, and Math of the OpenJDK Collec-
tions framework using KeY. Their report is mainly meant as a “stepping stone
towards a case study for future research.” To the best of our knowledge, no for-
mal specification and verification of the actual Java implementation of a linked
list has been investigated. In general, the data structure of a linked list has been
studied mainly in terms of pseudo code of an idealized mathematical abstraction
(see [18] for an Eiffel version and [12] for a Dafny version).

This paper (and [14]) has shown that the specification and verification of ac-
tual library software poses a number of serious challenges to formal verification.
In our case study, we used KeY to verify Java’s linked list. Other formalizations
of Java also exists, such as Bali [17] and Jinja [13] (using the general-purpose
theorem prover Isabelle/HOL), OpenJML [6] (a prover dedicated to Java pro-
grams), and VerCors [5] (focusing on concurrent Java programs, translated into
Viper/Z3). However, these formalizations do not have a complete enough Java
semantics to be able to analyze the bugs presented in this paper. In particu-
lar, these formalizations seem to have no built-in support for integer overflow
arithmetic, although it can be added manually.

Verifying OpenJDK’s LinkedList using KeY 17

Self-references

1. Bian, J., Hiep, H.A.: Verifying OpenJDK’s LinkedList using KeY: Video (2019).
https://doi.org/10.6084/m9.figshare.10033094.v2

2. Hiep, H.A., Maathuis, O., Bian, J., de Boer, F.S., van Eekelen, M.,
de Gouw, S.: Verifying OpenJDK’s LinkedList using KeY: Proof Files (2019).
https://doi.org/10.5281/zenodo.3517081

References

3. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M.
(eds.): Deductive Software Verification: The KeY Book, LNCS, vol. 10001. Springer
(2016). https://doi.org/10.1007/978-3-319-49812-6

4. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Lessons learned from
microkernel verification—specification is the new bottleneck. In: SSV 2012:
Systems Software Verification. EPTCS, vol. 102, pp. 18–32. OPA (2012).
https://doi.org/10.4204/EPTCS.102.4

5. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: Verification
of parallel and concurrent software. In: iFM 2017: Integrated Formal Methods.
LNCS, vol. 10510, pp. 102–110. Springer (2017). https://doi.org/10.1007/978-3-
319-66845-1 7

6. Cok, D.R.: OpenJML: Software verification for Java 7 using JML, Open-
JDK, and Eclipse. In: F-IDE 2014: Workshop on Formal Integrated
Development Environment. EPTCS, vol. 149, pp. 79–92. OPA (2014).
https://doi.org/10.4204/EPTCS.149.8

7. de Gouw, S., de Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verifying
OpenJDK’s sort method for generic collections. J. Autom. Reasoning 62(1), 93–126
(2019). https://doi.org/10.1007/s10817-017-9426-4

8. de Gouw, S., de Boer, F.S., Rot, J.: Proof Pearl: The KeY to correct and stable sort-
ing. J. Autom. Reasoning 53(2), 129–139 (2014). https://doi.org/10.1007/s10817-
013-9300-y

9. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
java.utils.Collection.sort() is broken: The good, the bad and the worst case. In:
CAV 2015: Computer Aided Verification. LNCS, vol. 9206, pp. 273–289. Springer
(2015). https://doi.org/10.1007/978-3-319-21690-4 16

10. Huisman, M., Ahrendt, W., Bruns, D., Hentschel, M.: Formal specification
with JML. Tech. rep., Karlsruher Institut für Technologie (KIT) (2014).
https://doi.org/10.5445/IR/1000041881

11. Ieu Eauvidoum, disk noise: Twenty years of escaping the Java sandbox. Phrack
Magazine (September 2018), http://www.phrack.org/papers/escaping the java
sandbox.html

12. Klebanov, V., Müller, P., et al.: The 1st verified software competition: Experience
report. In: FM 2011: Formal Methods. LNCS, vol. 6664, pp. 154–168. Springer
(2011). https://doi.org/10.1007/978-3-642-21437-0 14

13. Klein, G., Nipkow, T.: A machine-checked model for a Java-like lan-
guage, virtual machine, and compiler. ACM TOPLAS 28(4), 619–695 (2006).
https://doi.org/10.1145/1146809.1146811

https://doi.org/10.6084/m9.figshare.10033094.v2
https://doi.org/10.5281/zenodo.3517081
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.4204/EPTCS.102.4
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.4204/EPTCS.149.8
https://doi.org/10.1007/s10817-017-9426-4
https://doi.org/10.1007/s10817-013-9300-y
https://doi.org/10.1007/s10817-013-9300-y
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.5445/IR/1000041881
http://www.phrack.org/papers/escaping_the_java_sandbox.html
http://www.phrack.org/papers/escaping_the_java_sandbox.html
https://doi.org/10.1007/978-3-642-21437-0_14
https://doi.org/10.1145/1146809.1146811

18 H.A. Hiep, O. Maathuis, et al.

14. Knüppel, A., Thüm, T., Pardylla, C., Schaefer, I.: Experience report on for-
mally verifying parts of OpenJDK’s API with KeY. In: F-IDE 2018: Formal In-
tegrated Development Environment. EPTCS, vol. 284, pp. 53–70. OPA (2018).
https://doi.org/10.4204/EPTCS.284.5

15. Knuth, D.E.: The art of computer programming, vol. 1. Addison-Wesley, 3rd edn.
(1997) ISBN: 978-0-201-89683-4

16. Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In:
Behavioral Specifications of Businesses and Systems, SECS, vol. 523, pp. 175–188.
Springer (1999). https://doi.org/10.1007/978-1-4615-5229-1 12

17. Nipkow, T., von Oheimb, D.: Javalight is type-safe—definitely. In: POPL
1998: Principles of Programming Languages. pp. 161–170. ACM (1998).
https://doi.org/10.1145/268946.268960

18. Polikarpova, N., Tschannen, J., Furia, C.A.: A fully verified container library.
In: FM 2015: Formal Methods. LNCS, vol. 9109, pp. 414–434. Springer (2015).
https://doi.org/10.1007/978-3-319-19249-9 26

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original authors and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.4204/EPTCS.284.5
https://doi.org/10.1007/978-1-4615-5229-1_12
https://doi.org/10.1145/268946.268960
https://doi.org/10.1007/978-3-319-19249-9_26
http://creativecommons.org/licenses/by/4.0/

	Verifying OpenJDK's LinkedList using KeY

