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Chapter 1

Introduction

Heavy-tailed distributions play an important role, especially in many human-
made stochastic systems. For example, they accurately model inputs to computer
and communication networks (see e.g. [60]), and they are an essential component
of the description of many financial risk processes (see e.g. [54]). Much empirical
evidence shows that the populations of cities, the intensities of earthquakes, and
the sizes of power outages (see [33] and the references therein) follow power-law
distributions. Intuitively, heavy tails occur in systems whose behavior mainly is
determined by large values that occasionally shock the system.

Large deviations theory provides a rigorous mathematical foundation to
analyze rare events such as those described in the previous paragraph. While
classical large deviations theory has been successful in explaining rare events
in light-tailed systems, the corresponding theory for heavy tails is much less
developed. A well-known result is the so-called principle of a single big jump,
which states that the asymptotic behavior of the sum of random variables is
determined by a single large summand. Unfortunately, the principle of a single big
jump cannot deal with all the essential applications, see e.g. Sections 2.4–2.6. To
remedy this, Rhee, Blanchet, and Zwart present in [105] large deviations results
for processes with independent increments, which go beyond the framework of
the principle of a single big jump. As one of the main focus points of this thesis,
we extend their theory to processes whose increments are dependent.

Another way to understand extreme behaviors in a heavy-tailed system is
to perform numerical simulations. Many methods for performing simulations
exist, each with their advantages and disadvantages. The most popular method
is crude Monte Carlo sampling, thanks to its simplicity. However, as will be
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1.1. HEAVY TAILS

demonstrated below, it is not well suited to estimate events that have a small
probability, due to the high number of runs that are required. A sampling
method that tries to address this is importance sampling. Roughly speaking,
importance sampling is a method that simulates the model under a different
probability measure. The most technical issue is to find a new measure that
performs well, in some yet to be defined sense. Often, large deviations theory
can provide a basis for finding such a new measure. As the second goal of this
thesis, we aim to provide simulation algorithms for rare events in heavy-tailed
systems, based on importance sampling.

As mentioned above, heavy tails occur in applications that have a significant
impact on society. Hence, as the last theme of this thesis, we apply the developed
methods to specific problems that arise in finance, actuarial science, queueing
theory, etc.

As the reader of this thesis might not be familiar with the mathematical
results on which this thesis is based, we give an introduction to the required
knowledge below. More specifically, we can roughly divide the required base
knowledge into four topics: heavy tails, large deviations theory, rare-event
simulation, and applications. References to more in-depth literature will be
provided as well. We conclude this chapter with an overview of the contributions
made in this thesis.

1.1 Heavy tails

In this section, we introduce the basic definition of heavy-tailed distributions.
Moreover, we consider two common subclasses that often appear in stochastic
modeling with heavy tails. Let X, Xi, i ≥ 1, be independent non-negative
random variables with common distribution function F . Let F̄ denote the tail
distribution of X, i.e., F̄ (x) = P(X > x).

Definition 1.1.1 (Definition 2.1.1 of [119]). F is heavy-tailed if, for all ε > 0,

E[eεX ] =∞,

or equivalently, if for all ε > 0, eεxP(X > x)→∞, as x→∞.

Basically, F is heavy-tailed if its tail decreases more slowly than exponentially.
Otherwise, F is said to be light-tailed. Examples of heavy-tailed distributions
are Pareto distributions, Cauchy distributions, lognormal distributions, Weibull
distributions, etc. Next, we consider two important subclasses of heavy-tailed
distributions. The following definition of subexponentiality can be found in [52].

2



CHAPTER 1. INTRODUCTION

Definition 1.1.2. F is subexponential if for some n ≥ 2,

P(X1 + · · ·+Xn > x) ∼ nP(X1 > x), as x→∞.

It turns out that (see e.g. [60]) if F is subexponential then this relation holds
for every n ≥ 2. Another characterization of subexponential distributions (see
e.g. [54]) is the following: F is subexponential if for every n ≥ 2,

P(X1 + · · ·+Xn > x) ∼ P(max(X1, . . . , Xn) > x), as x→∞.

The interpretation of this characterization is that the only significant way in
which the sum X1 + · · ·+Xn can exceed some large value x is that one of the
individual random variables X1, . . . , Xn also exceeds x. This is the principle of a
single big jump which describes the most likely behaviour of sums of independent
and identically distributed (i.i.d.) subexponential random variables, see e.g. page
44 of [60].

Subexponential distributions were introduced independently by [31] and [32].
In these references, the framework of subexponential distributions was used to
derive asymptotic properties of branching processes, see also the textbook [11].
One of the first papers that recognized the usefulness of the class of subexponential
distributions is [112]. In Chapter 5, we consider a rare-event simulation problem
where the logarithm of the probability of interest is subexponential.

Another interesting subclass of heavy-tailed distributions is the class of
regularly varying distributions, which can be considered as a generalization of
the Pareto distribution.

Definition 1.1.3. A non-negative random varaible X is said to be regularly
varying of index −α ≤ 0, if

P(X > x) = x−αL(x),

with L being a slowly varying function, that is, for all t > 0, L(tx)/L(x)→ 1, as
x→∞. Equivalently, we write F̄ ∈ R−α.

Note that regularly varying distributions are all subexponential, see e.g.
[56]. On the other hand, the reverse is not true since lognormal and Weibull
distributions are subexponential but not regularly varying. We now list some
useful properties of regularly varying distributions.

Lemma 1.1.1. Let X be a regularly varying random varaible of index −α, i.e.,
F̄ (x) = L(x)x−α for some slowly varying function L. The following holds.

3



1.2. LARGE DEVIATIONS THEORY

1. Let L be locally bounded in [x0,∞) for some x0 ≥ 0. Then

(a) for α < 1, ∫ x

x0

t−αL(t)dt ∼ (1− α)−1x1−αL(x), x→∞,

(b) for α > 1,∫ ∞
x

t−αL(t)dt ∼ (α− 1)−1x1−αL(x), x→∞.

2. E[Xr] <∞ if r < α, E[Xr] =∞ if r > α.

3. If Y is non-negative and independent of X such that P(Y > y) = L1(y)y−β

for some slowly varying function L1, then X + Y is regularly varying of
index −min{α, β} and

P(X + Y > x) ∼ P(X > x) + P(Y > x), as x→∞.

4. If Y is non-negative and independent of X such that E[Y α+ε] < ∞ for
some ε > 0, then XY is regularly varying of index −α and

P(XY > x) ∼ E[Y α]P(X > x), as x→∞.

Proof. The first statement is the so-called Karamata theorem, which can be
found, for example, on page 567 of [54]. For the proof for the other statements,
we refer to Lemma 2.1.8 of [119].

The concept of regular variation was introduced in [80]. In the scope of
probability theory, the great potential of regular variation was first realized in
[40] and [56]. Other key references are [15], [102, 103, 104], [54] and [119].

1.2 Large deviations theory

In this section, we give a short introduction to large deviations theory. Large
deviations theory is the collection of mathematical theories and tools that aim to
quantify and analyze rare events such as those mentioned in the very beginning of
the chapter. As an illustration, consider first a sequence of i.i.d. random variables
Xi, i ≥ 1, having a normal distribution with zero mean and unit variance. Note

4



CHAPTER 1. INTRODUCTION

that the sample mean Ŝn = 1/n
∑n
i=1Xi is again normally distributed with zero

mean and variance 1/n. Thus, for any δ > 0,

lim
n→∞

P(|Ŝn| ≥ δ) = 0, (1.2.1)

and for any interval A,

lim
n→∞

P(
√
nŜn ∈ A) =

1√
2π

∫
A

e−x
2/2dx. (1.2.2)

Moreover, we have that

P(|Ŝn| ≥ δ) =
2√
2π

∫ ∞
δ
√
n

e−x
2/2dx.

From this expression it can be shown that

lim
n→∞

1

n
log P(|Ŝn| ≥ δ) = −δ

2

2
. (1.2.3)

By the weak law of large numbers and the central limit theorem, equations
(1.2.1) and (1.2.2) hold for any i.i.d. sequence with finite second moment. On
the other hand, equation (1.2.3) is an example of a large deviations statement:

with probability of the order e−δ
2n/2, the sample mean Ŝn deviates at least δ

away from its “typical” value. One could ask whether equation (1.2.3) also holds
more generally.

The answer to this question is given in Cramér’s theorem, which was first
derived in [39] for distributions possessing densities and then extended to general
distributions in [30]. Cramér’s theorem states that there exists a function I such
that

− inf
x∈A◦

I(x) ≤ lim
n→∞

log P(Ŝn ∈ A)

n
≤ lim
n→∞

log P(Ŝn ∈ A)

n
≤ − inf

x∈A−
I(x),

(1.2.4)
for all measurable A, where in the infima, the interior A◦ and the closure A− of
A are meant respectively. We say a sequence of probability measures νn satisfies
a large deviations principle (LDP) with linear speed (cf. Chapter 1.2 of [42]), if
(1.2.4) holds by replacing νn with P(Ŝn ∈ ·). Roughly speaking, if P(Ŝn ∈ · ),
n ≥ 1, satisfies a LDP with rate function I, then we have that

P(Ŝn ∈ A) ≈ exp

{
−n inf

x∈A
I(x)

}
,

5



1.2. LARGE DEVIATIONS THEORY

that is, the probability of interest decays exponentially in n with decay rate
infx∈A I(x). Note that the approximation sign in the previous equation is only
an informal expression, for its precise meaning we refer to (1.2.4).

As a natural extension of Cramér’s theorem, a multivariate version exists, i.e.,
in the case where Xi, i ≥ 1, is a sequence of i.i.d. random vectors in Rd. Another
generalization is the Gärtner-Ellis theorem (see [62] and [51]), where a LDP
is derived for dependent sequences. Note that all large deviations results that
have been discussed so far in this chapter are stated in terms of the empirical
mean of a sequence of random variables. However, sometimes one is interested in
obtaining information about the sample path of such a sequence. For example,
the supremum of the random walk can be of interest, or one might want to know
the probability of the (one-dimensional) random walk staying between two curves.
These types of problems were studied by Mogulskii in [94]. Below we give a
simpler version of Mogulskii’s theorem. To begin with, let S̄n = {S̄n(t), t ∈ [0, 1]}
be such that

S̄n(t) =
1

n

bntc∑
i=1

Xi, 0 ≤ t ≤ 1, (1.2.5)

let L∞([0, 1]) be the space of measurable functions on [0, 1] equiped with the
essential supremum norm, and let

Λ∗(x) = sup
λ∈R
{λx− log E[eλX1 ]}. (1.2.6)

Theorem 1.2.1 (Mogulskii). Assume log E[eλX1 ] < ∞ for all λ ∈ R. The
sequence of probability measures P(S̄n ∈ · ) satisfies in L∞([0, 1]) a LDP with
rate function

I(φ) =

{∫ 1

0
Λ∗(φ′(t))dt, if φ ∈ AC, φ(0) = 0,

∞, otherwise,
(1.2.7)

where AC is the set of absolutely continuous functions.

Next we consider an example where Theorem 1.2.1 is applicable.

Example 1.2.1. Let S̄n be as in (1.2.5). Assume log E[eλX1 ] <∞ for all λ ∈ R.
We are interested in the rare event probability of the sample path of a random
walk ever crossing some level. To be precise, we are interested in P(S̄n ∈ A),
where

A = {ξ ∈ D : supt∈[0,1] ξ(t) ≥ a}.

6



CHAPTER 1. INTRODUCTION

Using Jensen’s inequality, it is not difficult to show that φ with φ(t) = at for
t ∈ [0, 1] minimizes the rate function I as in (1.2.7) over all sample paths in A.
Hence,

lim
n→∞

n−1 log P(S̄n ∈ A) = Λ∗(a),

where Λ∗ is as in (1.2.6). Basically, the “most likely” sample path in the light-
tailed setting is given by the linear function with drift a, since it solves the
variational problem given by

inf
φ∈A

∫ 1

0

Λ∗(φ′(t))dt subject to φ ∈ AC, φ(0) = 0.

In other words, conditional on the rare event, the limit of the scaled sample path
is the same one that would be obtained if someone made a systematic change
to the random walk. Thus, this phenomenon is referred to as the “conspiracy
theory”.

So far, all large deviations results that have been discussed in this chapter
are stated in the light-tailed setting. Next we give a brief introduction to the
heavy-tailed counterpart, which is also the focus of Chapter 4. To begin with,
we consider the tail estimates P(Ŝn > x) with Ŝn being the sample mean of
i.i.d. heavy-tailed, but not necessarily regularly varying, random variables. The
investigation of P(Ŝn > x) was initiated in [95, 96], where the author studied
the sequences xn for which

P(Ŝn > xn) = nP(X1 > xn)(1 + o(1)), as n→∞, (1.2.8)

holds. For a detailed description of the large deviations regime we refer to e.g.
[24, 43, 60]. If (1.2.8) is valid, the so-called principle of a single big jump is said
to hold.

As mentioned above, the principle of a single big jump holds for a general
class of heavy-tailed distributions. For simplicity, we focus here on the case
where Xi, i ≥ 1, is a sequence of i.i.d. random variables such that X1 ∈ R−α is
non-negative, and α > 1. One could ask whether it is possible to derive a similar
principle as in (1.2.4) in the regularly varying setup. The answer is yes. Indeed,
using the result in [43], it is not difficult to show that P(Ŝn ∈ · ) satisfies an
LDP, however, with a sublinear speed. To be precise, for all measurable A, we
have that

− inf
x∈A◦

I(x) ≤ lim
n→∞

log P(Ŝn ∈ A)

log n
≤ lim
n→∞

log P(Ŝn ∈ A)

log n
≤ − inf

x∈A−
I(x),

(1.2.9)

7



1.2. LARGE DEVIATIONS THEORY

where I(x) equals (α − 1)1{x>E[X1]} if x ≥ E[X1] and infinity (by the law of
large numbers) otherwise.

Similar to the light-tailed setting, one could consider the functional version
of (1.2.8). In fact, [75] establishes large deviations results for the sample path
of heavy-tailed multi-dimensional random walks, which deal with rare events
caused by a single big jump. However, the principle of a single big jump is not
enough in the sense that many rare events—for concrete examples we refer to
Chapters 2 and 3—cannot be caused by a single big jump. Instead, they are
caused by multiple big jumps. Such an issue has been addressed in [105]. Let
S̄n be as in (1.2.5) such that X1 ∈ R−α and α > 1. Rhee, Blanchet, and Zwart
develop in [105] asymptotic estimates of P(S̄n ∈ A) for a general set A in the
sample path space, so that it is possible to study continuous functionals of S̄n in
a systematic manner. Note that the theory can especially deal with rare events
that are caused by multiple big jumps.

We conclude this section with a comparison between the LDP under the
light-tailed and the heavy-tailed settings. For this purpose, we introduce a
simpler version of Theorem 4.1 of [105]. Let D = D([0, 1],R) denote the space of
real-valued càdlàg functions on [0, 1], and let dJ1 denote the usual Skorokhod J1

metric, where the precise definition can be found in Chapter 2 below. Finally,
for b ∈ R, define

Dbj =

{
ξ ∈ D : ξ(t) = bt+

j∑
i=1

xi1[ui,1](t), for xi > 0, 0 < u1 < · · · < uj < 1

}

and Db<j =
⋃j−1
i=0 Dbi .

Theorem 1.2.2 (Rhee, Blanchet, and Zwart [105]). Let X1 be a non-negative
random variable such that P(X1 > x) = x−αL(x) for some slowly varying L.
Let µ = E[X1]. If

min{j ∈ N : Dµj ∩A 6= ∅} = j∗ (1.2.10)

and dJ1(A,Dµ<j∗) > 0, then there exists a measure C on D such that (Dµj∗)c is a
C-null set and

C(A◦) ≤ lim
n→∞

P(Ŝn ∈ A)

(nP(X1 ≥ n))j∗
≤ lim
n→∞

P(Ŝn ∈ A)

(nP(X1 ≥ n))j∗
≤ C(A−).

For the exact definition of C we refer to Chapter 2 below. Note that, in case
the solution to the optimization problem in (1.2.10) equals 1, Theorem 1.2.2
gives us the principle of a single big jump. Moreover, analogs of Theorem 1.2.2

8



CHAPTER 1. INTRODUCTION

exist for heavy-tailed Lévy processes, see results in Section 3 of [105]. Next we
revisit Example 1.2.1 under the heavy-tailed setup.

Example 1.2.1 (continued). Recall we are interested in P(S̄n ∈ A) with

A = {ξ ∈ D : supt∈[0,1] ξ(t) ≥ a}.

Let X1 ∈ R−α for some α > 1. W.l.o.g. we assume a > E[X1] > 0. Using
the fact that any ξ = µt+ x11[u1,1] with x1 ≥ a−E[X1] is contained in A, we
conclude that j∗ in (1.2.10) equals 1. Moreover, A is a C-continuous set, and
hence

lim
n→∞

nα−1P(Ŝn ∈ A) = C(A),

where it has been shown, for example, in [53] that C(A) = (a−EX1)−α. In fact
(see Corollary 4.1), given the rare event takes place, the scaled random walk
behaves like a piecewise linear function with drift µ and one jump of size larger
than a−E[X1] almost surely since it leads to the rare event with a minimum
number of jumps.

In Chapter 4, we go beyond the setting of [105] by considering stochastic
processes whose increments are driven by some general Markov chain. To relate
our problem with the existing theory of sample-path large deviations for stochastic
processes, we first identify a sequence of regeneration times {rn}n≥1 (see [12])
and split the Markov chain into i.i.d. cycles. By aggregating the trajectory of
X̄n over regeneration cycles, we obtain a regenerative process with i.i.d. jump
distributions and {rn}n≥1 as renewals. Under a set of classical assumptions
originating from the works of [81] and [66], we adapt a large deviation change of
measure argument and further establish a sample path large deviations result for
the aggregated process. However, showing that the residual process is negligible
is not straightforward, especially when the increments of X̄n are in general
dependent.

1.3 rare-event simulation

Not every mathematical model can be analyzed exactly. This is where numerical
simulation is needed. Thanks to techniques such as parallel computing, GPU
computing etc., simulation becomes an efficient way to obtain good approxima-
tions.

First let us introduce some basic concepts in rare-event simulation. Let An
be a sequence of events on some probability space. In order to be rare, we

9



1.3. RARE-EVENT SIMULATION

should have limn→∞P(An) = 0 as n→∞. To obtain an unbiased estimator of
P(An), one of the most intuitive methods is the so-called crude Monte Carlo
simulation. That is, one samples N instances of the model. For each instance,
one observes whether the event An occurs. Suppose we observe Ns occurrences,
or, successes, then an unbiased estimator is given by Ns/N . Although the Monte
Carlo method is very handy to execute, there is an issue with it in rare-event
simulation. We consider the setup of [107]. For α ∈ (0, 1), let zα be such that
P(−zα ≤ N ≤ zα) = α, where N has a standard normal distribution. It can be
shown that the sample variance is equal to P(An)(1−P(An))/

√
N , and hence,

the radius of the asymptotic α%-confidence interval is given by

zα

√
P(An)(1−P(An))

N
,

by the central limit theorem. Moreover, the relative error of the estimator—
which is defined as the ratio between the radius of the α%-confidence interval
and the estimated probability—satisfies

zα

√
1−P(An)

P(An)N
∼ zα√

P(An)N
, as n→∞. (1.3.1)

In practice, we often require that the relative error is smaller than some threshold,
e.g., 5%. Thus, equation (1.3.1) implies that the number of simulation runs that
are required to achieve a given accuracy is inversely proportional to P(An), and
hence, increases drastically as the event of interest becomes rare.

One of many methods that try to address this issue is importance sampling.
We explain this technique by generalizing the setting. Suppose that we are
interested in computing y = E[ψ(Y )] for some P-measurable function ψ. Impor-
tance sampling is basically generating Y from a modified probability measure
P̃ so that most of the samples are drawn from the part of the state space that
contributes the most to y; this procedure is called change of measure. Especially,
if we choose P̃ such that P is absolutely continuous with respect to (w.r.t.) P̃,
then there exists a function L such that

y = E[ψ(Y )] = Ẽ[ψ(Y )L(Y )],

where Ẽ denotes the expectation operator w.r.t. P̃. The output analysis is
performed similarly to the crude Monte Carlo method, i.e., we generate N i.i.d.
replicates of Y from P̃ and we estimate y as the arithmetic mean of the replicates.

To describe the efficiency of a rare-event simulation algorithm, we adopt a
widely applied criterion, which requires that the relative mean squared error of

10



CHAPTER 1. INTRODUCTION

the associated estimator is appropriately controlled. To be more precise, suppose
that we are interested in a sequence of rare events An, which becomes rare as n
goes to infinity. For each n ≥ 1, let Ln be an unbiased estimator of the rare-event
probability P(An). Ln is said to be strongly efficient if

lim
n→∞

P(An)−2EL2
n <∞. (1.3.2)

In particular, strong efficiency implies that the number of simulation runs required
to estimate the target probability to a given relative accuracy is bounded w.r.t.
n. For a more in-depth discussion on rare-event simulation, see [5].

In Chapter 2 we develop an efficient simulation algorithm for computing
rare-event probabilities involving path functionals of heavy-tailed random walks
and compound Poisson processes with regularly varying increments in a general
large deviations regime. Our simulation estimator is based on an importance
sampling strategy that hinges on the heavy-tailed sample path large deviations
result in [105]. Next we provide a review of the theory and methods which
are standard in rare-event simulation settings similar to those studied in this
dissertation.

In the light-tailed context, large deviations theory can be used to design an
importance sampling scheme. In fact, it is well known that an exponential change
of measure—which is extracted from the proof of the asymptotic lower bound in
large deviations analysis—can sometimes be efficient (for counterexamples see
e.g. [63] and [64]). By connecting the design of efficient importance sampling
estimators with a game theoretic formulation, [46], [47] and [48] provide the
foundations for the use of large deviations theory in the construction and analysis
of provably efficient rare-event simulation estimators. Moreover, a weakly efficient
“universal” sampler has been proposed in [49] for a general class of hitting sets
in arbitrary Jackson network topologies. Examples of additional recent papers
are [25] and [114].

The setting of stochastic processes with heavy-tailed increments raises up
additional challenges compared to its light-tailed counterpart discussed in the
previous paragraph. These challenges were exposed in [9]. First of all, typically,
the asymptotic conditional distribution of any particular increment given the rare
event of interest converges to the underlying nominal distribution. Intuitively,
if a rare event is caused by a large jump that may occur in a single “unlucky”
increment out of many possible alternatives, then the chance that any specific
increment is precisely the unlucky one is naturally small. So, any particular
increment is likely to behave “normally”. Therefore, in contrast to the light-tailed
setting, there is no direct way in which one might attempt to bias a particular
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1.3. RARE-EVENT SIMULATION

increment in order to stem the process towards the rare event of interest.
Moreover, as pointed out in [9], the asymptotic description of the most likely

way in which a rare event may occur, for example due to the presence of a single
big jump, does not lead to a valid change of measure for importance sampling
because it is possible that several large jumps (or no large jump at all) might
actually produce the event of interest under the nominal dynamics of the system.
In other words, the natural biasing mechanism induced by directly approximating
the zero-variance importance sampling distribution in the heavy-tailed setting
assigns zero probability to events which are possible under the nominal dynamics
leading to an ill-defined likelihood ratio.

The use of state-dependent importance sampling provides a way to deal
with these difficulties. In [16], the authors explain how approximating Doob’s
h-transform can lead to a feasible change of measure which produces a strongly
efficient importance sampling estimator in the setting of first passage time proba-
bilities for one-dimensional random walks. A Lyapunov technique was introduced
for the analysis of state-dependent importance sampling estimators. But the
direct approximation of Doob’s h-transform might be difficult to implement in
higher dimensions both because of sampling implementation challenges and the
evaluation of normalizing constants.

In the setting of one-dimensional compound sums of i.i.d. regularly varying
random variables, [45] produced a state-dependent change of measure whose
normalizing constant is straightforward to implement. Their idea can be described
as follows: each increment is sampled by either the original measure or—with
small probability, which is a design parameter—a different measure, which is
essentially the original measure conditional on exhibiting a large jump. The
advantage of the mixture samplers is that implementation challenges and the
evaluation of normalizing constants can often be addressed by choosing a suitable
set of parameters.

Under the setting where the time horizon is growing in large and moderate de-
viation schemes, Blanchet and Liu show in [21] how to use Lyapunov inequalities
to address the parameter selection while enforcing a bounded relative error. A
key step in the methodology is the construction of a suitable Lyapunov function
(for an example of the technique in multidimensional settings, see [22]). Blanchet
and Liu suggest using the type of fluid analysis which is prevalent in the large
deviations literature of heavy-tailed stochastic processes (see e.g. [58] and [59]).
However, the construction of the Lyapunov function and the verification of the
Lyapunov inequality becomes highly non-trivial in settings involving multiple
jumps and the presence of boundaries which are common in queueing systems,
for an example of the types of complications which arise in queueing settings,
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see [17].
The idea of using mixtures suggested in [45] is also used in this thesis. For

literature on simulation of heavy-tailed random walks from other perspectives,
such as Markov chain Monte Carlo (MCMC) and cross-entropy, see e.g. [70], [76]
and the references therein. While [45] treats a particular one-dimensional setting
involving a rare event that is caused by a single big jump during a bounded
time horizon, our setting is more general. Using the algorithm delevoped in
Chapter 2, a wide range of rare events can be dealt with, which might be caused
by multiple jumps during a growing time horizon in a large deviations scaling.

By considering the Markov chain defined by an i.i.d. sequence of iterated
random functions, in Chapter 5 we develop an efficient simulation algorithm for
the tail probability of the stationary distribution based on a state-dependent
importance sampling scheme. While the results in Chapter 4 have regularly
varying components, we investigate in Chapter 5 the case where the probability
of interest is super heavy-tailed.

1.4 Applications

In this thesis we focus on rare events that appear in finance, actuarial science, and
queueing systems. The first three applications will be considered in Chapters 2
and 3, and the algorithm developed in Chapter 2 serves as an efficient simulation
method to quantify the probability of interest under the heavy-tailed setting. The
last application, which can be found in Chapter 5, is to illustrate the case where
there is a dependence structure in the increments of the underlying process.

1.4.1 Barrier option

In Chapter 2, we consider an application that arises in the context of financial
mathematics; in particular we consider a down-in barrier option (see e.g. [111]).
Simply put, the payoff of a barrier option depends on whether the price of the
underlying asset crosses a predetermined barrier before maturity. The simplest
barrier options are “knock-in” options, which are activated when the price of
the underlying asset touches the barrier, and “knock-out” options, which are
deactivated in that case. A down-in call has the same payoff as a European call
if the price of the underlying asset remains above the barrier over the life of the
option, but becomes worthless as soon as the price of the underlying asset falls
below the barrier.
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While the pricing of barrier options is analytically tractable under the classcial
Black-Scholes model (see e.g. [108]), the calculation under a general Lévy market
model becomes quite involved, for more details we refer to [97] and [38]. In this
thesis, we focus on estimating the probability of exercising the barrier options
under a large deviations regime, where the log-return of the underlying asset is
regularly varying.

To be precise, let Sn, n ≥ 0, denote the spot price of some underlying asset
observed, say, at a daily basis. For a > 0 and b > 0, the probability of the event

An = {Sn ≥ bn, min0≤k≤n Sk ≤ −an},

can be interpreted as the chance of exercising a down-in barrier option. Intuitively,
we need one upward jump and one downward jump in order to make the rare
event happen. In Chapter 2, we derive the asymptotics of P(An) as n→∞.

1.4.2 Ruin probability under reinsurance policies

Another application that is used to test our algorithm is the finite-time ruin
probability of an insurance company under three different types of reinsurance
contracts. We first provide the probablistic framework. Let the total claim
amount process of an insurance company be modelled by a compound Poisson
process, denoted by X(t), t ∈ [0,∞). Assume that P(X(1) > x) is regularly
varying. Note that the tail asymptotics for the infinite-time ruin probability,
which is given by

P(u+ ct−X(t) < 0 for some t ∈ [0,∞)), as u→∞,

can be found in [55]. In this dissertation, we focus on the case of a finite horizon.
To be precise, we want to estimate

P(supt∈[0,1]X(nt)− cnt−R(nt) > an),

for large values of n, where R(t) denotes the reinsured amount at time t. We
consider the following reinsurance forms. For a detailed description of each
reinsurance form, we refer to [1].

Let Yn, n ≥ 1, be the claim size. We have

X(t) =

N(t)∑
i=1

Yi.
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The first example is the so-called (per risk) excess of loss reinsurance, which
belongs to the category of non-proportional reinsurance forms. In this case, R(t)
is defined by

R(t) =

N(t)∑
i=1

(Yi − b)+,

for some pre-defined retention b. Basically, the reinsurer agrees to pay for each
claim the excess over the retention. This reinsurance form is very popular in
casualty and fire insurance, as it reduces the exposure of the ceding company in
an effective way and has an intuitive and simple form. It is obvious that, for
a > b, a single big jump is not enough to cause the rare event, and hence, one
should expect that the principle of multiple big jumps takes place. Estimates
for the infinite horizon case can be found in [8].

Another example is the large claim reinsurance. Consider the ordering of the
claims {Yi}1≤i≤N(t)

Y1,N(t) ≥ Y2,N(t) ≥ · · · ≥ YN(t),N(t).

In a large claim reinsurance contract the reinsurer agrees to cover the largest r
claims, where r ≥ 1 is a fixed number. To be precise,

R(t) =

r∑
i=1

Yi,N(t),

where we make the convention that Yi,N(t) = 0 for i = N(t) + 1, . . . , r, in case
N(t) < r.

Finally, we investigate a further variant of large claim reinsurance, which is
called ECOMOR (Excédent du Coût Moyen Relatif). In an ECOMOR contract,

R(t) =

r∑
i=1

(Yi,N(t) − Yr+1,N(t))+.

In particular, an ECOMOR contract constitutes an excess-of-loss treaty with a
random retention, and the latter equals the (r + 1)st-largest claim. One should
realize it can happen that the reinsured amount decreases, although the overall
burden for the insurer has increased by the arrival of this additional claim. Such
a feature can be undesirable sometimes in practice.

In Chapter 3, we will see that the last two reinsurance treaties fall under the
framework of the principle of multiple big jumps. In fact, r + 1 big jumps are
“required” to cause the ruin.
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1.4.3 Stochastic fluid network

An application that arises in queueing theory is the single-class open stochastic
fluid network with d nodes, each with a buffer of infinite capacity. Roughly
speaking, the model assumes an exogenous fluid input arriving at each of the d
nodes. At each node, the fluid is processed at a deterministic rate. After that, a
proportion of the processed fluid is routed from each node to either one of the
other nodes or out of the network. The object of interest is the d-dimensional
buffer-content process. Now, let us give the mathematical formulation of the
model. For a detailed introduction on the model, we refer to Section 14 of [117]
and the references therein.

Let J = (J (1), . . . , J (d)) be the vector of exogenous input stochastic processes
at the d nodes such that, in each coordinate, J (i) is a real-valued, non-decreasing
and non-negative càdlàg function on [0,∞). Let r = (r(1), . . . , r(d)) be the vector
of deterministic output rates at the d nodes, and let Q be the d × d routing
matrix, that is, a proportion Qij ≥ 0 of the fluid processed by the i-th node is

immediately routed to the j-th node, while a proportion 1−
∑d
j=1Qij is routed

out of the network. We assume limn→∞Qn = 0, so that all input eventually
leaves the network. The dynamics of the model are expressed formally by the
so-called Skorokhod map (for details see e.g. [109], [110], [71]), that is defined in
terms of a pair of processes (Z, Y ) satisfying a stochastic differential equation
that we shall describe now. Let X(t) = J(t)− (I −Q)T rt, and let Z(i)(t) denote
the workload of the i-th station at time t. For given Z(i)(0), we have that

dZ(t) = dX(t) + (I −Q)T dY (t),

where Y (·) is the potential buffer-content process that encodes the minimum
amount of pushing required to keep Z(·) non-negative. In Chapter 2, we assume
that J is a superposition of d independent compound Poisson processes with
non-negative regularly varying jump size distributions. Moreover, the probability
of the amount of fluids in a subset of the system crossing a high level is estimated.
Although some particular cases exist that allow for an explicit analysis (see e.g.
Section 13 in [41]), it is hard to come up with exact results for the distribution
of the workload process in general. Hence, implementing our algorithm in such
a context is particularly interesting.

1.4.4 Stochastic perpetuities

Consider the R-valued Markov chain defined by the recursion

Zn+1 = Rn+1Zn +Mn+1, (1.4.1)
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where (Rn,Mn), n ≥ 1, is sequence of i.i.d. R2-valued random vectors, indepen-
dent of the initial random variable Z0. It is well known (see e.g. Chapter 2 of
[26]) that, under some regularity condition, the Markov chain given by (1.4.1)
has a unique stationary distribution, which is the same distribution of

Z =

∞∑
j=0

Mj+1

j∏
k=1

Rk.

If one interprets − logRn as the interest rate at time n, then Z is the present
value of a bond that generates Mn unit of money at each time point n. Thus, Z
is called stochastic perpetuity. In Chapter 5, we estimate the tail probability of
Z under a super heavy-tailed setting.

1.5 Contributions

This section highlights the contributions that are made in this thesis.
In Chapter 2, we propose a class of strongly efficient rare-event simulation

estimators for random walks and compound Poisson processes with regularly
varying increments in a general large deviations regime. The proposed estimators
are straightforward to implement and can be used to systematically evaluate the
probability of a wide range of rare events with bounded relative error. They
are “universal” in the sense that a single importance sampling scheme applies
to a very general class of rare events that arise in heavy-tailed systems. In
particular, our estimators can deal with rare events that are caused by multiple
big jumps (therefore, beyond the usual principle of a single big jump) as well
as multidimensional processes such as the buffer content process of a queueing
network. We illustrate the versatility of our approach with several applications
that arise in the context of mathematical finance, actuarial science, and queueing
theory.

In Chapter 3, we investigate the probability that an insurance portfolio
gets ruined within a finite time period under the assumption that the r largest
claims are (partly) reinsured. We show that for regularly varying claim sizes
the probability of ruin after reinsurance is also regularly varying in terms of
the initial capital, and derive an explicit asymptotic expression for the latter.
We establish this result by leveraging the findings in [105]. Our results allow,
on the asymptotic level, for an explicit comparison between two well-known
large-claim reinsurance contracts, namely LCR and ECOMOR. We finally assess
the accuracy of the resulting approximations using state-of-the-art rare-event
simulation techniques.
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In Chapter 4, we extend Theorem 1.2.2 from random walks to a class of
Markov additive processes. We present sample path large deviations results

for X̄n = {1/n
∑bntc−1
i=0 Xn, t ∈ [0, 1]}. We show that under a set of classical

assumptions as in [81] and [66], P(X̄n ∈ A) is regularly varying as n→∞, when
A satisfies certain topological properties that can be verified easily. We illustrate
the usefulness of our results in an application in barrier option pricing.

In Chapter 5, we consider the stationary solution Z of the Markov chain
that is defined by an i.i.d. sequence of iterated random functions fn. We are
interested in estimating the probability of the event {Z > x} when x is large,
and develop a state-dependent importance sampling estimator under a set of
assumptions on fn that, for large x, make the event {Z > x} take place by
a single big jump. Under natural conditions, we show that our estimator is
strongly efficient. Special attention will be given to a class of perpetuities with
heavy tails.
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Chapter 2

Rare-Event Simulation for
Multiple Jump Events

2.1 Introduction

In this chapter, we develop a strongly efficient importance sampling scheme for
computing rare-event probabilities involving path functionals of heavy-tailed
random walks and compound Poisson processes in a general large deviations
regime.

We focus on stochastic processes with regularly varying increments. Our
simulation algorithm is straightforward to implement and can be used to estimate
the likelihood of a wide range of rare events with bounded relative error. In
particular, such a single sampling scheme applies to a very general class of rare
events whose occurrence is caused by one or several components in the system
which exhibit extreme behavior, while the rest of the system is operating in
“normal”circumstances (therefore, beyond the usual principle of a single big
jump). In particular, our results apply to a large class of continuous functionals
of multiple random walks and compound Poisson processes.

Our estimators are based on importance sampling, a Monte Carlo technique
which consists in biasing the nominal distribution of the underlying process in
order to induce the rare event of interest. Our goal is to find biasing techniques
leading to estimators which have bounded coefficient of variation (see equation
(1.3.2) above) uniformly as the probability of the event of interest tends to zero
in a suitable large deviations regime.

19



2.1. INTRODUCTION

The construction of our sampling scheme is driven by recently developed
large deviations results in [105] for regularly varying Lévy processes. Specifically,
let X(t), t ≥ 0 be a one-dimensional compensated compound Poisson process
with unit arrival rate and a positive jump W that is regularly varying at infinity
(see Definition 2.2.1 below). Define X̄n = {X̄n(t)}t∈[0,1], with X̄n(t) = X(nt)/n.
For a measurable set A ⊆ D satisfying a specific topological property, the large
deviations results derived in [105] establish that P(X̄n ∈ A) = Θ(

(
nP(W ≥

n)
)l∗

), where precise details can be found in Section 2.2 below. In practice, exact
estimates are often demanded. Hence, we design a sampling scheme for rare
events that take the form P(X̄n ∈ A). We illustrate our approach with several
applications that arise in mathematical finance, actuarial science, and queueing
theory.

Recall that we are interested in estimating P(X̄n ∈ A). The concept behind
our sampling scheme can be described as follows. Based on the large deviations
results derived in [105], we construct first an auxiliary set Bγ that is closely
related to the optimization problem given by (2.2.2) below. Then, given a
fixed mixture probability parameter w ∈ (0, 1), we generate the sample path
of X̄n under the nominal measure. And, with probability 1 − w we generate
the sample path of X̄n under the measure Qγ( · ) , P( · |X̄n ∈ Bγ). Finally,
as a consequence of applying the importance sampling technique, we scale our
samplers with a suitable likelihood ratio given as in (2.3.3) below. It should
be noted that the set A can be as general as in the setting of [105]. Therefore,
our methodological contribution in this chapter addresses precisely those types
of challenges mentioned in Section 1.3, such as multiple jumps, time scales of
order O(n), avoiding the evaluation of normalizing constants, and by-passing the
verification of Lyapunov inequalities. The advantages of our sampling scheme are
that the new estimators are strongly efficient and straightforward to implement.
Moreover, they are “universal” in the sense that a single importance sampling
scheme applies to a very general class of rare events involving multiple jumps
that arise in heavy-tailed systems. As a final remark, it should be mentioned that
constructing the auxiliary set Bγ requires choosing a set of suitable parameters
γ whose existence is guaranteed by the topological property we impose on A.
Hence, one of the main challenges is to select the set of parameters specifically
for each application.

Our mathematical contributions in this chapter can be summarized as follows.

• We propose a simulation algorithm for estimating the rare-event probability
of X̄n ∈ A, together with a sampling scheme for X̄n ∈ · given X̄n ∈ Bγ ,
which is based on a rejection sampling with an unconditional acceptance
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probability bounded away from zero as n→∞.

• By showing the existence of the parameter γ, we prove the strong efficiency
of our sampling scheme under a very general setting (see Assumption 2.3.2
below).

• We showcase the versatility of the algorithm by illustrating the implemen-
tation of the proposed sampling scheme to the rare-events that arise in
finance, actuarial science, and queueing theory.

• Especially in the application to queueing networks (see Section 2.6 below),
we show that the tail index of the rare-event probability—which usually
exhibits a complex boundary behavior due to the nonlinear nature of the
associated Skorokhod mapping—can be determined by solving s knapsack
problem with nonlinear constraints.

The rest of the chapter is organized as follows. Section 2.2 deals with
basic background and notations required to state our contributions. Section
2.3 introduces our estimators and describes the main result. Applications and
numerical implementations are discussed in Sections 2.4–2.6. All the proofs of
results presented in this chapter are given in Section 2.7.

2.2 Notations and preliminaries

This section is split into two parts. The first discusses general notions that will
be employed in this chapter. The second reviews recently developed results
involving large deviations for regularly varying Lévy processes and random walks.

2.2.1 Notations

We start with a summary of notations that will be employed in this chapter. Let
Z+ denote the set of non-negative integers, and let R+ denote the set of non-
negative real numbers. Let A◦ and A− denote the interior and the closure of A,
respectively. Let (D[0,1],R, d) be the metric space of real-valued càdlàg functions
on [0, 1], denoted by D = D[0,1],R, equipped with the Skorokhod J1 metric on
D that is defined by d(x, y) = infλ∈Λ ||λ − id||∞ ∨ ||x ◦ λ − y||∞, x, y ∈ D,
where id denotes the identity mapping, || · ||∞ denotes the uniform metric,
i.e., ‖x‖∞ , supt∈[0,1] |x(t)|, and Λ denotes the set of all strictly increasing,

continuous bijections from [0, 1] to itself. Let Dk denote the k-fold product
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space of D. Let Dk↑ denote the subset of functions in Dk that are non-negative
and nondecreasing in each coordinate. When it comes to the tail indices of a
regularly varying distribution, we use β (or βi in the multidimensional case) for
the right tail and α for the left tail. Let Dl denote the subspace of D consisting of
non-decreasing step functions vanishing at time zero with l jumps, and let D<l∗
denote the subspace of D consisting of non-decreasing step functions vanishing
at 0 with at most l − 1 jumps, i.e. D<l∗ =

⋃
l≤l∗−1Dl. Define

D<(l∗1 ,...,l
∗
d) ,

⋃
(l1,...,ld)∈I<(l∗1 ,...,l

∗
d
)

d∏
i=1

Dli ,

where

I<(l∗1 ,...,l
∗
d) ,

{
(l1, . . . , ld) ∈ Zd+ \ {(l∗1, . . . , l∗d)} : I(l1, . . . , ld) ≤ I(l∗1, . . . , l

∗
d)
}
,

and I(l1, . . . , ld) , (β1 − 1)l1 + . . .+ (βd − 1)ld. Define a partial order ≺ on Zd+
such that

(l1, . . . , ld) ≺ (m1, . . . ,md) iff C(l1,...,ld)  C(m1,...,md),

where C(l1,...,ld) ,
⋃d
i=1 Di−1 × D<li × Dd−i. Define

J(j1,...,jd) , {(l1, . . . , ld) ∈ Zd+ \ I<(j1,...,jd) : (m1, . . . ,md) ≺ (l1, . . . , ld) implies

(m1, . . . ,md) ∈ I<(j1,...,jd)}.

To get familiar with the notation, an illustration of I<(l1∗,...,ld∗), J(l1∗,...,ld∗), and
the partial order ≺ is given in Figure 2.1. Let Dl−;l+ denote the subspace of the
Skorokhod space consisting of step functions vanishing at the origin with exactly
l− downward jumps and l+ upward jumps, and define

D<l∗−;l∗+
,

⋃
(l−,l+)∈I<l∗−;l∗

+

Dl−;l+ ,

where

I<l∗−;l∗+
, {(l−, l+) ∈ Z2

+ \ {(l∗−, l∗+)} :

(α− 1)l− + (β − 1)l+ ≤ (α− 1)l∗− + (β − 1)l∗+}. (2.2.1)

Given non-negative sequences of real numbers xn and yn, we write xn =
O(yn), xn = o(yn) and xn = Θ(yn), if lim supn→∞ xn/yn <∞, limn→∞ xn/yn =
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l∗1

l∗2

0 2 4 6 8

2

4

l∗ = (2, 2)

Figure 2.1: An example of important notations introduced in Section 2.2.1. For (β1 − 1)/(β2 −
1) = 2 and (l∗1 , l

∗
2) = (2, 2), we mark the elements in I<(l1∗,l2∗) and J(l∗1 ,l

∗
2) with squares and

circles, respectively. Moreover, the shaded area contains all those points (l1, l2) such that
(l∗1 , l

∗
2) ≺ (l1, l2).

0 and 0 < lim infn→∞ xn/yn ≤ lim supn→∞ xn/yn <∞, respectively. Given two
R-valued functions f and g, we write f ∝ g, if there exists c ∈ R such that
f = cg. For x = (x1, . . . , xk), y = (y1, . . . , yk) ∈ Rk, we write x ≤ y, if xi ≤ yi,
for all i ∈ {1, . . . , k}. Let the cardinality of S be denoted by |S| or #S. Finally,
let C(S, k) and P(S, k) denote the set of all k-combinations and k-permutations

of a set S, respectively. Note that |C(S, k)| =
(|S|
k

)
and |P(S, k)| = k!|C(S, k)|.

2.2.2 Preliminaries

As we will see, the simulation algorithm that we propose in this chapter is
constructed based on the asymptotic behavior of rare-event probabilities, there-
fore we review some recently developed large deviations results for scaled Lévy
processes with heavy-tailed Lévy measures, introduced in [105]. To begin with,
we give the definition of regular variation for general random variables.

Definition 2.2.1. A random variable X is said to be regularly varying at infinity
and minus infinity with index β, if P(X ≥ x) and P(X ≤ −x) are regularly
varying with index β, respectively.

Now, let X be a Lévy process with Lévy measure ν, where ν is spec-
trally positive and regularly varying (at infinity) with index −β < −1. Let
X̄n , {X(nt)/n}t∈[0,1] denote the associated scaled process. Let νlβ denote the

restriction of the l-fold product measures of νβ to {x ∈ Rl+ : x1 ≥ x2 ≥ . . . ≥ xl},
where νβ(x,∞) , x−β . For l ≥ 1, define a (Borel) measure Cl( · ) , E[νlβ{y ∈
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(0,∞)l :
∑l
i=1 yi1[Ui,1] ∈ · }], where Ui, i ≥ 1 are i.i.d. uniformly distributed on

[0, 1]. Note that Cl is concentrated on Dl, i.e., Cl(Dl) = 1. Moreover, we make
the convention that C0 is the Dirac measure concentrated on the zero function.
The following result is useful in designing an efficient algorithm for rare events
involving one-dimensional scaled processes. Throughout the rest of this chapter,
all measurable sets are understood to be Borel measurable.

Result 2.2.1 (Theorem 3.1 of [105]). Suppose that A is a measurable set. If A
is bounded away from D<l∗ , i.e., d(A,D<l∗) > 0, where

l∗ , min {l ∈ Z+ : Dl ∩A 6= ∅} <∞,

then we have that

Cl∗(A
◦) ≤ lim inf

n→∞

P(X̄n ∈ A)

(nν[n,∞))l∗
≤ lim sup

n→∞

P(X̄n ∈ A)

(nν[n,∞))l∗
≤ Cl∗(A−).

As one can see in Section 2.6 below, some applications can be interpreted
as sample-path rare events in a multidimensional setting. Therefore, it is
particularly interesting to consider large deviations results for multidimensional
processes. Let X(1), . . . , X(d) be independent centered one-dimensional Lévy
processes with spectrally positive Lévy measures ν1(·), . . . , νd(·), respectively,
where each νi is regularly varying with index −βi < −1 at infinity. Moreover,
for the finite product of metric spaces, we use the maximum metric; i.e., we
use dS1×···×Sd((x1, . . . , xd), (y1, . . . , yd)) , maxi=1,...,d dSi(xi, yi) for the product
S1 × · · · × Sd of metric spaces (Si, dSi). Finally, for (l1, . . . , ld) ∈ Zd+, we define

Cl1 × · · · ×Cld(·) (which is concentrated on
∏d
i=1Dli) as the product measure of

Cli( · ) , E

νliβi{y ∈ (0,∞)li :

li∑
j=1

yj1[Uj ,1] ∈ · }

 .
Result 2.2.2 states a large deviations result for d-dimensional process X̄n(t) ,
(X(1)(nt)/n, . . . ,X(d)(nt)/n) for t ∈ [0, 1].

Result 2.2.2 (Theorem 3.6 of [105]). Suppose that A is measurable. If A is
bounded away from D<(l∗1 ,...,l

∗
d), where

(l∗1, . . . , l
∗
d) = arg min

(l1,...,ld)∈Zd+,
∏d
i=1 Dli∩A6=∅

I(l1, . . . , ld), (2.2.2)
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and I(l1, . . . , ld) = (β1 − 1)l1 + . . .+ (βd − 1)ld, then we have that

Cl∗1 × · · · × Cl∗d(A◦) ≤ lim inf
n→∞

P(X̄n ∈ A)∏d
i=1

(
nνi[n,∞)

)l∗i
≤ lim sup

n→∞

P(X̄n ∈ A)∏d
i=1

(
nνi[n,∞)

)l∗i ≤ Cl∗1 × · · · × Cl∗d(A−).

Note that the assumption that A is bounded away from D<(l∗1 ,...,l
∗
d) guarantees

the uniqueness of (l∗1, . . . , l
∗
d). Finally, we conclude this section with an extension

of Result 2.2.2, which will be useful in constructing an efficient simulation
algorithm for heavy-tailed random walks. Let Sk, k ≥ 0, be a random walk,
set S̄n(t) = Sbntc/n, t ≥ 0, and define S̄n = {S̄n(t), t ∈ [0, 1]}. Let νlβ be
as defined above. Similarly, let νmα denote the restriction of m-fold product
measures of να to {x ∈ Rm+ : x1 ≥ x2 ≥ . . . ≥ xm}, where να(x,∞) , x−α.

Let C0,0(·) , δ0(·) be the Dirac measure concentrated on the zero function.
For each (l−, l+) ∈ Z2

+ \ {(0, 0)}, define a measure (which is concentrated on

Dl−;l+) Cl−;l+(·) , E[ν
l−
α × νl+β {(x, y) ∈ (0,∞)l− × (0,∞)l+ :

∑l+
i=1 yi1[Vi,1] −∑l−

i=1 xi1[Ui,1] ∈ ·}], where Ui’s and Vi’s are i.i.d. uniform on [0, 1].

Result 2.2.3. Suppose that P(S1 ≤ −x) is regularly varying with index −α
and P(S1 ≥ x) is regularly varying with index −β. Let A be a measurable set
bounded away from D<l∗−;l∗+

, where

(l∗−, l
∗
+) = arg min

(l−,l+)∈Z2
+,Dl−;l+

∩A 6=∅
(α− 1)l− + (β − 1)l+. (2.2.3)

Then

Cl∗−;l∗+
(A◦) ≤ lim inf

n→∞

P(S̄n ∈ A)

(nP(S1 ≤ −n))l
∗
−(nP(S1 ≥ n)))l

∗
+

≤ lim sup
n→∞

P(S̄n ∈ A)

(nP(S1 ≤ −n))l
∗
−(nP(S1 ≥ n)))l

∗
+
≤ Cl∗−;l∗+

(A−).

2.3 Main results

In this section we present our main results. Although the large deviations
results reviewed in Section 2.2 are stated for Lévy processes, we focus on
compensated compound Poisson processes for simulation purposes. Let X denote
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a d-dimensional compensated compound Poisson process, and recall that X̄n is
the scaled process with X̄n(t) = X(nt)/n, t ∈ [0, 1]. For a measurable set A ∈ Dd,
we are interested in estimating the probability of the event An , {X̄n ∈ A},
when n is large. Note that, in view of the law of large numbers, one can expect
that P(X̄n ∈ A) → 0 for A’s that are bounded away from the zero function,
and hence, An’s are rare events for large n’s. In Section 2.3.1, we first illustrate
the idea of our algorithm in the special case for d = 1, where the notations are
simpler. In Section 2.3.2 we extend this result to general d.

2.3.1 The one-dimensional case

Let {X(t)}t≥0 be a one-dimensional compensated compound Poisson process

with i.i.d. jump sizes {W (k)}k≥1. That is, X(t) =
∑N(t)
k=1 W (k) − λtEW (1),

where {N(t)}t≥0 is a Poisson process with arrival rate λ, and let

X̄n , {X(nt)/n, t ∈ [0, 1]}

denote the associated scaled process. Moreover, let P(W (1) > x) be regularly
varying of index −β < −1. The following assumption is essential for analyzing
the asymptotic behavior of the rare-event probability, and hence, deriving the
strong efficiency of our estimator.

Assumption 2.3.1. Let A be a measurable set in D. We assume that A is
bounded away from D<l∗ , where l∗ = min {l ∈ Z+ : Dl ∩A 6= ∅} denotes the
minimal number of upward jumps of a step function in A. Moreover, assume
that Cl∗(A

◦) > 0.

Remark 2.1. As one can see in Sections 2.4, 2.5, and 2.6, one of the typical
settings that arises in applications is that the set A can be written as a fi-
nite combination of unions and intersections of F−1

1 (A1), . . . , F−1
m (Am), where

each Fi : D → Si is a continuous function, and all sets Ai are subsets of a
general topological space Si. If we denote this operation of taking unions and
intersections by Ψ (i.e., A = Ψ(F−1

1 (A1), . . . , F−1
m (Am))), then it holds that

Ψ
(
F−1

1 (A◦1), . . . , F−1
m (A◦m)

)
⊆ A◦ ⊆ A ⊆ A− ⊆ Ψ

(
F−1

1 (A−1 ), . . . , F−1
m (A−m)

)
.

Hence, Cl∗(A
◦) > 0 holds if T̂−1

l∗

(
Ψ
(
F−1

1 (A◦1), . . . , F−1
m (A◦m)

))
has positive

Lebesgue measure, where T̂j : Ŝj → Dj is defined by T̂j(x, u) ,
∑j
i=1 xi1[ui,1]

for j ∈ Z+, and

Ŝj ,
{

(x, u) ∈ Rj+ × [0, 1]j : x1 ≥ · · · ≥ xj , 0, 1, u1, . . . , uj are distinct
}
.
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Analogously, one can derive a sufficient condition for Cl∗1 × · · · × Cl∗d(A◦) > 0
(see Assumption 2.3.2 below).

Remark 2.2. There are several examples that satisfy Assumption 2.3.1. For
instance, considering A = {ξ ∈ D[0,1] : ξ(1) ≥ a} corresponds to estimating the
rare-event probability P(X(n) ≥ an). Another application that fits into this
framework is the ruin probability of an insurance company, where the reinsurance
policy is taken into account. For details of this application we refer to Section 2.4.
Finally, for one of many examples of A in the multidimensional setting we refer
to Section 2.6, where the workload in a queueing network is considered.

We design a simulation algorithm that estimates the probability of An ,
{X̄n ∈ A} efficiently, based on an importance sampling strategy. To construct an
importance distribution, we introduce a constant γ > 0 and define Bγn , {X̄n ∈
Bγ}, where Bγ , {ξ : #{t

∣∣ ξ(t)− ξ(t−) > γ} ≥ l∗}. In the construction of our
rare-event simulation algorithm, we will take advantage of the fact that one can
always choose γ so that Bγn is sufficiently “close” to An. The specific choice of γ
will be further discussed later in Section 2.4, 2.5, and 2.6 for concrete examples.
Let Qγ( · ) , P( · |Bγn) denote the conditional distribution given X̄n ∈ Bγ . One
should notice that dQγ/dP = P(Bγn)−1

1Bγn . Moreover, by the Fubini-Tonelli
theorem, a closed-form expression for P(Bγn) is given by

P (Bγn) = 1− exp

{
− λnP(W (1) > nγ)

} l∗−1∑
j=0

(λn)j

j!
P(W (1) > nγ)j . (2.3.1)

From (2.3.1) one should recognize that Bγn can be interpreted as the event of
a Poisson distributed random variable with rate λnP(W (1) > γn) crossing the
level l∗. Now, let w ∈ (0, 1) be arbitrary but fixed. We propose an importance
distribution Qγ,w that is absolutely continuous w.r.t. P and is given by

Qγ,w( · ) , wP( · ) + (1− w)Qγ( · ). (2.3.2)

We give here an algorithm for generating the sample path of X̄n under the
probability measure Qγ( · ). Since {X̄n ∈ Bγ} ⊆ {N(n) ≥ l∗}, we observe that
Qγ(X̄n ∈ · ) = P(Bγn)−1P(X̄n ∈ · , Bγn) =

∑∞
m=l∗ hm P(X̄n ∈ · |Bγn, N(n) =

m), where hm = hm(n) , P(Bγn, N(n) = m)/P(Bγn) satisfies
∑
m≥l∗ hm = 1.

Hence, it remains to discuss sampling from P(X̄n ∈ · |Bγn, N(n) = m). It
turns out that we can use the acceptance-rejection method, where drawing
from the proposal distribution can be achieved as follows: first sample {bk}k≤l∗
uniformly from C ({1, . . . ,m} , l∗); then sample each W (bk), k ≤ l∗, conditional
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on W (bk) > nγ; finally sample W (m′), m′ ≤ m, m′ /∈ {bk}k≤l∗ , under the
nominal measure. Note that the target density ftarget;m, defined by

ftarget;m (w1, . . . , wm) dw1 · · · dwm
, P (W (1) ∈ w1 + dw1, . . . ,W (m) ∈ wm + dwm |Bγn, N(n) = m) ,

can be bounded by Mmfproposal;m (w1, . . . , wm), where

ftarget;m (w1, . . . , wm)

∝ 1

P(Bγn|N(n) = m)

m∏
j=1

d

dwj
P (W (j) ≤ wj)1Bγn(w1, . . . , wm),

fproposal;m (w1, . . . , wm)

=
1(

m
l∗

)
P(W (1) > nγ)l∗

m∏
j=1

d

dwj
P(W (j) ≤ wj)

∑
(b1,...,bl∗ )∈
C({1,...,m},l∗)

1{W (bk)>nγ,∀k≤l∗},

and hence, Mm = Mm(n) ,
(
m
l∗

)
P(W (1) > nγ)l

∗
P(Bγn|N(n) = m)−1. Now, it

is natural to accept (W (1), . . . ,W (m)) with probability

a(W (1), . . . ,W (m)) =

(
# {i ∈ {1, . . . ,m} : W (i) > nγ}

l∗

)−1

.

Finally, we are able to formulate the pseudocode for generating X̄n under Qγ in
Algorithm 1. Moreover, we show in Proposition 2.3.1 that the expected running
time of Algorithm 1 is uniformly bounded from above w.r.t. n.

Proposition 2.3.1. Let Talg1(n) denote the expected running time of Algorithm
1. Under the condition that W (1) is regularly varying of index −β < −1, we
have that Talg1(n) =

∑
m≥l∗ hm(n)Mm(n) is uniformly bounded from above w.r.t.

n, i.e. maxn≥0 Talg1(n) <∞.

In view of the observations we made so far, we propose an estimator Zn for
P(An) that is given by

Zn = 1An

dP

dQγ,w
=

1An

w + (1− w)(P(Bγn))−11Bγn

. (2.3.3)

Intuitively, an importance sampling technique is used to get more samples from
the interesting region, by sampling from a distribution that overweighs the
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Algorithm 1 Generating the sample path of X̄n under Qγ

1: sample m ∼ hm . m = m′ with probability hm′ = P(N(n) = m′ |Bγn)
2: R← true
3: while R = true do
4: sample {bk}k≤l∗ ∼ unif (C ({1, . . . ,m} , k)) . uniform distribution on
C ({1, . . . ,m} , k)

5: for i ∈ {bk}k≤l∗ do
6: sample W (i) ∼W (1)

∣∣W (1) > nγ

7: for i /∈ {bk}k≤l∗ do
8: sample W (i) ∼W (1)

9: c ← # {j ∈ {1, . . . ,m} : W (j) > nγ}; a ←
(
c
l∗

)−1
; sample u ∼ uniform[0, 1];

R← true
10: if u < a then
11: R← false

return X̄n

important region. Based on this, the choice of Bγn can be “justified”, since Bγn
is mimicking the asymptotic behavior of the probability of interest. However,
as one can see in the proof of strong efficiency (see Theorem 2.3.2 below), we
should analyze the second moment of our estimator to avoid “backfire”, yielding
an estimator with larger or even infinite variance. It turns out that this intuition
can be made rigorous by applying Result 2.2.1. We end this section with a
theorem regarding the strong efficiency of our estimator.

Theorem 2.3.1. Under Assumption 2.3.1, there exists a γ > 0 such that the
estimator constructed in (2.3.3) is strongly efficient for estimating P(An).

Remark 2.3. Note that, under Assumption 1, there exists r > 0 such that
d(A,D<l∗) > r. One sufficient way to make Zn in (2.3.3) strongly efficient is to
choose γ such that Z 63 dr/γe ≥ l∗ + 1. Sometimes, finding r can be application
specific, though generally r is the smallest size a big jump needs to take to
make the rare event happen, and physical intuition—which can be obtained
from solving the large-deviations problem—is helpful in making an educated
guess on r. For more details about finding r as well as choosing γ we refer to
Sections 2.4–2.6.

2.3.2 Extension to general d

In this section we extend the results in Section 2.3.1 to the case with general
d. To be precise, let X ,

(
X(1), . . . , X(d)

)
be a superposition of d independent
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compensated compound Poisson processes with upward jumps, where {N (i)(t)}
is a Poisson process with arrival rate λi, and X(i)(t) =

∑N(i)(t)
k=1 W (i)(k) −

λitEW
(i)(1). Moreover, let P(X(i)(1) > x) be regularly varying of index −βi <

−1 at infinity. Finally, let X̄n denote the corresponding scaled process. As we
can see in Result 2.2.2, the large deviations results for oP(X̄n ∈ A) depend
heavily on the value of I(l∗1, . . . , l

∗
d), where (l∗1, . . . , l

∗
d) is as defined in (2.2.2).

However, for c ∈ R, the grid (l1, . . . , ld) ∈ Zd+ satisfying I(l1, . . . , ld) = c is not

unique in general. Therefore assuming A being bounded away from
∏d
i=1D<li

is not sufficient for our purposes. The following assumption, which is slightly
different from Assumption 2.3.1 corresponds to the extension of Result 2.2.1 to
Result 2.2.2.

Assumption 2.3.2. Let A be a measurable set. Assume that A is bounded away
from D<(l∗1 ,...,l

∗
d), where (l∗1, . . . , l

∗
d) is the unique solution of the minimization

problem given by (2.2.2). Moreover, assume that Cl∗1 × · · · × Cl∗d(A◦) > 0.

If the solution to (2.2.2) is not unique, we may partition A. As in Section
2.3.1, we focus now on constructing the auxiliary set Bγ for the importance
distribution. Define An ,

{
X̄n ∈ A

}
and Bγn , {X̄n ∈ Bγ}. As one can see in

the proof of Theorem 2.3.2, controlling the probability of An ∩ (Bγn)c should
be taken into account in choosing the auxiliary set Bγ . In the one-dimensional
case, letting Bγ mimic the optimal path leading to the rare event makes us
capable of controlling the relative error of our estimator. By “mimicking the
optimal path” we mean that the minimal number of jumps l∗ that are needed
for Dl∗ ∩ A 6= ∅ is used as parameter in the construction of Bγ . However, the
same strategy would fail in the multidimensional case, since the rare event can
be reached through other feasible but not necessarily optimal paths. Thus, we
require a more complicated construction of Bγ .

Definition 2.3.1. Let A be a measurable set in Dd, and let (l∗1, . . . , l
∗
d) denote

the unique solution to (2.2.2). Let γ ∈ Rd with γi > 0 for all i ∈ {1, . . . , d}, and
define

Bγ ,
⋃

(l1,...,ld)∈J(l∗1 ,...,l∗d)

Bγ;l, (2.3.4)

where Bγ;l is the set of càdlàg functions on Rd that have at least li jumps
with size larger than γi in its i-th coordinate, i.e., Bγ;l , {(ξ(1), . . . , ξ(d)) ∈
Dd : #{t : ξ(i)(t)− ξ(i)(t−) > γi} ≥ li, ∀i ∈ {1, . . . , d}}.

Remark 2.4. Note that the cardinality of J(l∗1 ,...,l
∗
d) is finite. To design a strongly

efficient simulation algorithm for estimating P(An), we will take advantage of
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an important property of J(l∗1 ,...,l
∗
d). That is, for all ξ ∈ A with A being bounded

away from D<(l∗1 ,...,l
∗
d), there exists (l1, . . . , ld) ∈ J(l∗1 ,...,l

∗
d), such that the path of

ξ in its i-th coordinate is bounded away from D<l∗i , for every i ∈ {1, . . . , d}.
Let Qγ( · ) , P( · |Bγn) and let Qγ,w be as defined in (2.3.2), following the

same strategy as in Section 2.3.1 we propose an estimator that takes the same
form as in (2.3.3). Before turning to the efficiency analysis of our estimator, we
summarize the findings above in Algorithm 2.

Algorithm 2 Efficient sampling of P
(
X̄n ∈ A

)
1: sample u ∼ uniform[0, 1] . uniform distribution on [0, 1]
2: sample X̄n ∼ P

(
X̄n ∈ · | X̄n ∈ Bγ

)
3: if u < w then
4: sample X̄n ∼ P

(
X̄n ∈ ·

)
5: if X̄n ∈ A then
6: L←

[
w + (1− w)1Bγn/P(Bγn)

]−1

7: else
8: L← 0

return L

In order to complete our algorithm, we need to discuss the computation of
P(Bγn), as well as the strategy of sampling from the conditional distribution
Qγ( · ). Since Bγ constructed in Definition 2.3.1 is the union of Bγ;l with
l = (l1, . . . , ld) ∈ J(l∗1 ,...,l

∗
d), by the inclusion-exclusion principle, it is sufficient to

discuss computing the probability of sets of the form
⋂

(l1,...,ld)∈I B
γ;l, where I

is a finite collection of elements in Zd+. It turns out that the probability of such
a set can be computed similarly as in Section 2.3.1. Based on this observation,
we give the following proposition.

Proposition 2.3.2. The probability of Bγn is equal to
∑|J(l∗1 ,...,l∗d)|
k=1 (−1)k−1ck,

where

ck =
∑
|I|=k

I⊆J(l∗1 ,...,l∗d)

d∏
i=1

1− exp{−λinP(W (i)(1) > nγi)}
l̂i;I−1∑
j=0

(λin)j

j!
P(W (i)(1) > nγi)

j

 ,

and l̂i;I , max(l1,...,ld)∈I li.
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Remark 2.5. It should be mentioned that the complexity of computing P(Bγn)
can be reduced significantly in the case, where, for example, one is able to take
a smaller (in the sense of cardinality) set than J(l∗1 ,...,l

∗
d) (see e.g. Corollary 2.3.1,

Sections 2.5 and 2.6 below).

As in Section 2.3.1, we now discuss generating the sample path of X̄n under
Qγ in the next step. To begin with, we need the following lemma, which shows
that Bγ can be decomposed into finitely many disjoint sets.

Lemma 2.3.1. Let

Bγ;l(i, j) ,
{
ξ ∈ Dd : #

{
t
∣∣ ξ(i)(t)− ξ(i)(t−) > γi

}
≥ (l(j))i

}
.

Let the elements in J(l∗1 ,...,l
∗
d), denoted by l(1), . . . , l(|J(l∗1 ,...,l

∗
d)|), be ordered such

that (l(1))d ≤ · · · ≤ (l(|J(l∗1 ,...,l
∗
d)|))d. Define

∆Bγ;l(i, j) , Bγ;l(i, j) \

(
j−1⋃
m=1

Bγ;l(i,m)

)
, i ∈ {1, . . . , d− 1}. (2.3.5)

Then, we have that

Bγ =

|J(l∗1 ,...,l∗d)|⋃
m1=1

m1⋃
m2=1

· · ·
md−2⋃
md−1=1

((
d−1⋂
i=1

∆Bγ;l(i,mi)

)
∩Bγ;l(d, 1)

)
.

Lemma 2.3.1 shows that Bγ can be decomposed into finitely many disjoint
sets. This implies that

Qγ(X̄n ∈ · ) =

|J(l∗1 ,...,l∗d)|∑
m1=1

m1∑
m2=1

· · ·
md−2∑
md−1=1

h1;m1,...,md−1

P(X̄n ∈ · | X̄n ∈ Bγ(m1, . . . ,md−1)),

where

Bγ(m1, . . . ,md−1) ,

(
d−1⋂
i=1

∆Bγ;l(i,mi)

)
∩Bγ;l(d, 1),

and h1;m1,...,md−1
, P(X̄n ∈ Bγ(m1, . . . ,md−1))P(X̄n ∈ Bγ)−1 satisfying

|J(l∗1 ,...,l∗d)|∑
m1=1

m1=1∑
m2=1

· · ·
md−2∑
md−1

h1;m1,...,md−1
= 1.
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Hence, it remains to design a sampling scheme for generating the sample
path of X̄n under P( · | X̄n ∈ Bγ(m1, . . . ,md−1)) (for details about generat-
ing multi-dimensional discrete random numbers, see e.g. [73]). Due to the

special structure of Bγ(m1, . . . ,md−1), we are able to generate X̄
(1)
n , . . . , X̄

(d)
n

independently under P( · | X̄n ∈ Bγ(m1, . . . ,md−1)). To see this, first note

that sampling X̄
(d)
n is trivial due to the discussion in Section 2.3.1. Define

ľ(mi; i) , minξ∈∆Bγ;l(i,mi) #{t : ξ(t)− ξ(t−) > γi}, and

l̂(mi; i) , max
ξ∈∆Bγ;l(i,mi)

#{t : ξ(t)− ξ(t−) > γi},

for i ∈ {1, . . . , d− 1}. By (2.3.5), we have that

P(X̄(i)
n ∈ · | X̄n ∈ Bγ(m1, . . . ,md−1))

=

∞∑
qi=ľ(mi;i)

h2;qi P(X̄(i)
n ∈ · |∆Bγ;l(i,mi), N

(i)(n) = qi),

where
h2;qi , P(∆Bγ;l(i,mi), N

(i)(n) = qi)/P(∆Bγ;l(i,mi))

satisfies
∑
qi≥ľ(mi;i) h2;qi = 1. Note that

P(∆Bγ;l(i,mi), N
(i)(n) = qi)

=
(λn)qi

eλinqi!

l̂(mi;i)∧qi∑
i=ľ(mi;i)

(
qi
i

)
P(W (i)(1) > nγ)iP(W (i)(1) ≤ nγ)qi−i

 .

Therefore, it suffices to consider sampling X̄
(i)
n under

P( · |∆Bγ;l(i,mi), N
(i)(n) = qi).

Again, we can proceed using a similar approach as in Section 2.3.1: sample
{bk}k≤l uniformly from C

(
{1, . . . , qi} , ľ(mi; i)

)
; sample each W (i)(bk), k ≤ qi,

conditional on W (i)(bk) > nγi; sample W (i)(q′i), q
′
i ≤ qi, q

′
i /∈ {bk}k≤l∗ , under

the nominal measure; accept (W (i)(1), . . . ,W (i)(qi)) with probability

a(W (i)(1), . . . ,W (i)(qi))

=

(
#
{
j ∈ {1, . . . , qi} : W (i)(j) > nγi

}
ľ(mi; i)

)−1

1{#{j∈{1,...,qi} : W (i)(j)>nγi}≤l̂(mi;i)}.
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Finally, we are able to give the pseudocode of this sampling scheme in
Algorithm 3 below. For its expected running time, an analogous result to
Proposition 2.3.1 is formulated in Proposition 2.3.3.

Algorithm 3 Generating the sample path of X̄
(1)
n , . . . , X̄

(d)
n under Qγ

1: sample (m1, . . . ,md−1) ∼ h1;m1,...,md−1

2: for i = 1 to d do
3: sample qi ∼ h2;qi ; R← true
4: while R = true do
5: sample {bk}k≤ľ(mi;i) ∼ unif

(
C
(
{1, . . . , qi} , ľ(mi; i)

))
6: for j ∈ {bk}k≤ľ(mi;i) do

7: sample W (i)(j) ∼W (i)(1)
∣∣W (i)(1) > nγi

8: for j /∈ {bk}k≤ľ(mi;i) do

9: sample W (i)(j) ∼W (i)(1)

10: c← #
{
j ∈ {1, . . . , qi} : W (i)(j) > nγi

}
; a← 0

11: if c < l̂(mi; i) then

12: a←
(

c
ľ(mi;i)

)−1

13: sample u ∼ uniform[0, 1]; R← true
14: if u < a then
15: R← false

return X̄
(1)
n , . . . , X̄

(d)
n

Proposition 2.3.3. Let Talg3(n) denote the expected running time of Algorithm
3. Under the assumption that W (i)(1) is regularly varying of index −βi < −1,
for all i ∈ {1, . . . , d}, we have that Talg3(n) is uniformly bounded from above
w.r.t. n, i.e. maxn≥0 Talg3(n) <∞.

The discussion above shows that sampling from the conditional distribution
Qγ( · ) is tractable. As we mentioned in the introduction, our estimator is
straightforward to implement. Moreover, its strong efficiency, which is formulated
in Theorem 2.3.2, can be proved based on Lemma 2.7.1. Moreover, we state in
Theorem 2.3.2 that our estimator is strongly efficient. Without introducing any
new notations, we formulate a corollary to address a special case, where it is
sufficient to consider a smaller (in the sense of cardinality) set than J(l∗1 ,...,l

∗
d) as

in Definition 2.3.1. Note that Corollary 2.3.1 can be shown by following similar
arguments as in the proofs of Lemma 2.7.1 and Theorem 2.3.2, thus the proof is
omitted.
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Theorem 2.3.2. Let Bγn , {X̄n ∈ Bγ}, where Bγ is as defined in (2.3.4).
Under Assumption 2.3.2, there exists γ such that the estimator given by (2.3.3)
is strongly efficient for estimating P(An).

Corollary 2.3.1. Along with Assumption 2.3.2, we assume additionally that
there exists an index set I ⊆ J(l∗1 ,...,l

∗
d) and r > 0 such that, for every ξ ∈ A,

there exists (l1, . . . , ld) ∈ I satisfying d
(
ξ,C(l1,...,ld)

)
≥ r. Set J̃(l∗1 ,...,l

∗
d) = I \∆I,

where (l1, . . . , ld) ∈ ∆I if and only if

• (l1, . . . , ld) ∈ I satisfies that I(l1, . . . , ld) > 2I(l∗1, . . . , l
∗
d); and

• for every (l′1, . . . , l
′
d) ∈ I \ {(l1, . . . , ld)}, we have that I(l1, . . . , ld) 6=

I(l′1, . . . , l
′
d).

Setting Bγn = {X̄n ∈ Bγ} with Bγ ,
⋃

(l1,...,ld)∈J̃(l∗1 ,...,l∗d)
Bγ;l, there exists γ such

that the estimator given by (2.3.3) is strongly efficient for estimating P(An).

Remark 2.6. Even though our simulation algorithm is constructed in the context
of Poisson processes with positive jump distributions, it can be easily generalized
to the case, where the jump distributions are regularly varying at both −∞ and
∞ (for details see the proof of Theorem 3.5 in [105] and the references therein).

Remark 2.7. We end this section with a final remark to point out the connection
between the one-dimensional case and the multidimensional case. That is, if
we set d = 1 then Assumption 2.3.2 coincides with Assumption 2.3.1 and no
additional conditions are imposed on the set A. Moreover, the auxiliary sets Bγ

in both cases are essentially the same. Thus, Theorem 2.3.2 can be considered
as a special case of Theorem 2.3.1.

2.3.3 Extension to random walks

Let Sk, k ≥ 0, be a centered random walk with increments {Yk}k≥1. Let
P(Y1 ≤ −x) be regularly varying with index −α and let P(Y1 ≥ x) be regularly
varying with index −β. Define S̄n(t) , Sbntc/n, t ≥ 0. In this subsection, we
want to design an efficient simulation algorithm for estimating the probability of
S̄n ∈ A. As in Sections 2.3.1 and 2.3.2, we make the following assumption for
the set A.

Assumption 2.3.3. Assume that A is a measurable set bounded away from
D<l∗−;l∗+

, where (l∗−, l
∗
+) is the unique solution of (2.2.3). Moreover, assume that

Cl∗−,l∗+(A◦) > 0.
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Then, we construct the auxiliary set Bγ as follows.

Definition 2.3.2. Let (l∗−, l
∗
+) denote the unique solution to (2.2.3), and let

Jl∗−;l∗+
, {(l−, l+) ∈ Z2

+ \ I<l∗−;l∗+
:

(m−,m+) ≺ (l−, l+) implies (m−,m+) ∈ I<l∗−;l∗+
},

where I<l∗−;l∗+
is as in (2.2.1). For γ− > 0 and γ+ > 0, define

Bγ ,
⋃

(l−,l+)∈Jl∗−;l∗
+

Bγ;l∗−;l∗+ , (2.3.6)

where Bγ;l∗−;l∗+ , {ξ ∈ D : #{t | ξ(t−) − ξ(t) > γ−} ≥ l∗−, #{t
∣∣ ξ(t) − ξ(t−) >

γ+} ≥ l∗+}.

Defining An , {S̄n ∈ A} and Bγn , {S̄n ∈ Bγ}, we propose an estimator
for P(S̄n ∈ A) that is given by (2.3.3). Note that, computing P(S̄n ∈ Bγ), as
well as generating the sample path S̄n under Qγ can be achieved by following
similar strategies as in Sections 2.3.1 and 2.3.2. Hence, the details are omitted
(for examples, see Sections 2.4 and 2.5 below). We state the strong efficiency
of our estimator in the following theorem without giving the proof, since it is
analogous to the proof of Theorem 2.3.2.

Theorem 2.3.3. Let Bγn , {X̄n ∈ Bγ}, where Bγ is as defined in (2.3.6).
Under Assumption 2.3.3, there exist γ− and γ+ such that the estimator given by
(2.3.3) is strongly efficient for estimating P(An).

With the results presented in this section at hand, we are able to apply
our general simulation algorithm to three examples in the next sections. These
examples can be found in the applications of mathematical finance, actuarial
science and queueing networks.

2.4 An application to finite-time ruin probabili-
ties

2.4.1 Problem setting

Let Sk, k ≥ 0, be a centered random walk with increments {Yk}k≥1. Moreover,
let P(Y1 > x) be regularly varying at infinity with index −β. For c ≥ 0, define

36



CHAPTER 2. RARE-EVENT SIMULATION FOR MULTIPLE JUMP EVENTS

An , {max0≤k≤n Yk ≤ nb, max0≤k≤n Sk − ck ≥ na}. Additionally, we make a
technical assumption that a/b /∈ Z. We are interested in computing P(An).
This probability is particularly interesting, since it is related to, for example,
insurance, where huge claims may be reinsured and therefore are irrelevant in
the sense of estimating the finite-time ruin probability of an insurance company.

2.4.2 Large deviations results

The rare-event probability can be estimated efficiently using the technique
introduced in Section 2.3. To see this, define A , {ξ ∈ D : supt∈[0,1][ξ(t)− ct] ≥
a; supt∈[0,1][ξ(t) − ξ(t−)] ≤ b} and S̄n , {S̄n(t)}t∈[0,1], where S̄n(t) = Sbntc/n

for t ≥ 0. Note that P(An) = P
(
S̄n ∈ A

)
. Set l∗ = da/be. Intuitively, l∗

should be the key parameter, as it takes at least l∗ jumps of size b to cross
level a. This intuition has been made rigorous by Rhee et al. in [105, Section
5.1], where the authors show that A is bounded away from D<l∗ , and hence,
P(An) = Θ

(
nl
∗
P(S1 ≥ n)l

∗)
.

2.4.3 Construction of Bγ

We set Bγ = {ξ ∈ D : #
{
t
∣∣ ξ(t) − ξ(t−) > γ

}
≥ l∗} and Bγn =

{
S̄n ∈ Bγ

}
=

{# {k ∈ {1, . . . , n} : Yk > nγ} ≥ l∗}, where γ is the parameter that needs to be
tuned. For the completeness of our algorithm, we give a closed-form expression
for P(Bγn). Let p denote the probability of P(Y1 > γn), then we have that

P(Bγn) =

n∑
i=l∗

(
n

i

)
pi (1− p)n−i = 1−

l∗−1∑
i=0

(
n

i

)
pi (1− p)n−i , (2.4.1)

where the latter representation in (2.4.1) is for numerical purposes.

2.4.4 Choice of γ

As we mentioned in Remark 2.3, a strategy of choosing the parameters γ needs
to be discussed in the next step. From the proof of Theorem 2.3.2, it is sufficient
to select γ such that P (An ∩ (Bγn)c) = o

(
P(An)2

)
. We propose to select γ such

that (a− (l∗ − 1)b) /γ /∈ Z+, and that⌈
a− (l∗ − 1)b

γ

⌉
> l∗ + 1. (2.4.2)
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In view of Theorem 2.3.3, it is sufficient to show that A∩ (Bγ)c is bounded away
from D<2l∗+1 with γ satisfying (2.4.2). To see this, choose θ with d (θ,D<2l∗+1) <
r. This implies that there exists ξ ∈ D<2l∗+1 satisfying d(θ, ξ) < r and ξ(t) =∑2l∗

j=1 xj1[uj ,1](t). In particular, there exists a homeomorphism λ : [0, 1]→ [0, 1]
satisfying ||λ− id ||∞ ∨ || ξ ◦ λ− θ ||∞ < r. Hence, for θ ∈ A, using the identity
ξ ◦ λ = θ + (ξ ◦ λ− θ), we conclude that the following holds:

1. xj < b+ 2r, for every j ∈ {1, . . . , 2l∗}; and

2. there exists t′ such that
∑
uj≤1 xj ≥

∑
uj≤λ(t′) xj > a− 2r.

To see this, note that ξ ◦ λ(t) =
∑2l∗

j=1 xj1[uj ,1](λ(t)) = θ + (ξ ◦ λ − θ) and

‖ξ ◦ λ − θ‖∞ < r. By the fact that supt∈[0,1][θ(t) − θ(t−)] ≤ b, conclusion (1)
follows. Moreover, by the fact that supt∈[0,1][θ(t)− ct] ≥ a, there exists t′ such
that ξ ◦ λ(t′) =

∑
uj≤λ(t′) xj > a − 2r, and hence, conclusion (2) is obtained.

This implies that
∑
j≥l∗ xj > a− 2r − (l∗ − 1)(b+ 2r). Moreover, for θ ∈ (Bγ)c,

every jump of ξ should be bounded by γ + 2r after having l∗− 1 jumps with size
bigger than b. Due to the fact that γ satisfies (2.4.2) and a is not a multiple of
b, we obtain the result by choosing r small.

2.4.5 Sampling from Qγ

Summarizing the discussion in the previous paragraphs, we are able to propose
a strongly efficient estimator for P(An) that is given by (2.3.3). As the last
ingredient of our simulation algorithm, a strategy of sampling from Qγ( · )
(= P( · |Bγn)) needs to be discussed. We use a similar strategy as in Algorithm 3
and formulate the pseudocode in Algorithm 4.

2.4.6 Numerical results

Finally, we investigate our algorithm numerically based on a concrete example.
Let Y1 = Y ′1 −EY ′1 , where P(Y ′1 > t) = (1/t)β . In Table 2.1 we select c = 0.05,
w = 0.05 (for a heuristic of the choice of w and its impact on the empirical
performance see Section 2.5 below) and summarize the estimated probability and
the level of precision (ratio between the radius of the 95% confidence interval
and the estimated value) for different combinations of n, β, a, b, and c (based on
106 samples). We observe that, for different values of β, a and b, the precision
stays roughly constant as n grows. This confirms our theoretical results.
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Algorithm 4

1: R← true
2: while R = true do
3: sample (i1, . . . , il∗) uniformly from C({1, . . . , n}, l∗)
4: for j ∈ {i1, . . . , il∗} do
5: sample Yj ∼ Y1 : γn < Y1 ≤ bn
6: for j /∈ {i1, . . . , il∗} do
7: sample Yj ∼ Y1

8: sample u ∼ uniform[0, 1]; c ← # {m ∈ {1, . . . , n} : γn < Y1 ≤ bn}; a ←
(
c
l∗

)
;

R← true
9: if u < a−1 then

10: R← false
return (Y1, . . . , Yn)

Est n = 80 n = 100 n = 200
Pr β = 1.5 β = 2.0 β = 1.5 β = 2.0 β = 1.5 β = 2.0

a = 2, b = 1.2
(l∗ = 2)

1.171× 10−3

2.053× 10−2
3.904× 10−5

3.133× 10−2
1.043× 10−3

2.057× 10−2
2.361× 10−5

3.376× 10−2
6.316× 10−4

2.130× 10−2
5.167× 10−6

3.975× 10−2

a = 4, b = 1.2
(l∗ = 4)

5.099× 10−7

1.799× 10−2
3.778× 10−10

2.278× 10−2
3.860× 10−7

1.761× 10−2
1.592× 10−10

2.366× 10−2
1.326× 10−7

1.717× 10−2
8.911× 10−12

2.780× 10−2

a = 2, b = 0.3
(l∗ = 7)

1.635× 10−10

6.441× 10−2
1.147× 10−12

1.662× 10−2
1.795× 10−10

5.456× 10−2
3.983× 10−13

1.635× 10−2
1.202× 10−10

3.535× 10−2
6.775× 10−15

1.826× 10−2

Table 2.1: Estimated rare-event probability and level of precision for the application as
described in Section 2.4.

2.5 An application in barrier option pricing

In this section we consider an application that arises in the context of financial
mathematics; in particular we consider a down-in barrier option (see Section
11.3 in [111]).

2.5.1 Problem setting

Let Sk, k ≥ 0, be a centered random walk with increments {Yk}k≥1. Let
P(Y1 ≤ −x) be regularly varying with index −α and let P(Y1 ≥ x) be regularly
varying with index −β. Let a, b and c be positive real numbers. We provide a
strongly efficient estimator for the probability of

An ,

{
Sn ≥ bn, min

0≤k≤n
Sk + ck ≤ −an

}
,
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which can be interpreted as the chance of exercising a down-in barrier option.
This application is interesting, since, as we will see, the large deviations behavior
of P(An) is caused by two large jumps.

2.5.2 Large deviations results

Define A , {ξ ∈ D : ξ(1) ≥ b, inf0≤t≤1 ξ(t) + ct ≤ −a}. Obviously, we have that
(l∗−, l

∗
+) = (1, 1), where (l∗−, l

∗
+) denotes the solution to (2.2.3). To verify the

topological property of A, we define m,π1 : D→ R by m(ξ) = inf0≤t≤1{ξ(t)+ct},
and π1(ξ) = ξ(1). Note that F , π1 and m are continuous, therefore F−1(A) =
m−1(−∞,−a] ∩ π−1

1 [b,∞) is a closed set. By adapting the results in [105,
Section 5.2], it can be shown that, for any arbitrary i ≥ 0, Di;0 and D0;i are
bounded away from m−1(−∞,−a] and π−1

1 [b,∞), respectively. Hence, A is
bounded away from D<1;1. Applying Result 2.2.3, we obtain that P(X̄n ∈ A) =
Θ
(
n2P(S1 ≥ n)P(S1 ≤ −n)

)
.

2.5.3 Construction of Bγ

Now we are in the framework of Theorem 2.3.3. Note that by Definition 2.3.2 we
have J1;1 = {(1, 1), (l, 0), (0,m)}, where l = min{l′ ∈ Z+ : (l′−1)(β−1) > (α−1)}
and m = min{m′ ∈ Z+ : (m′ − 1)(α − 1) > (β − 1)}. However, adapting the
idea behind Corollary 2.3.1 together with the fact that A is bounded away from
both Di;0 and D0;i, it is sufficient to consider J̃1;1 = {(1, 1)}. Hence, we can set
Bγ =

{
ξ ∈ D : #

{
t
∣∣ ξ(t−)− ξ(t) > γ−

}
≥ 1, #

{
t
∣∣ ξ(t)− ξ(t−) > γ+

}
≥ 1
}

. As
we mentioned in the introduction, it is possible that estimators may be crafted
specifically for the events of interest, in order to obtain (up to constant factors)
better performance. Due to the fact that at least one downward jump should
happen before upward jumps, without introducing new notations, we can modify
Bγ such that Bγ =

{
ξ ∈ D : ∃ t1 < t2 : ξ(t−1 )− ξ(t1) > γ−, ξ(t2)− ξ(t−2 ) > γ+

}
.

This implies that Bγn =
{
∃ i < j : Yi < −γ−n, Yj > γ+n

}
. By a straightforward

computation, we obtain that P (Bγn) = 1 − p2
p2−p1 (1 − p1)n + p1

p2−p1 (1 − p2)n,

where p1 , P(Y1 > γ+n) and p2 , P(Y1 < −γ−n).

2.5.4 Choice of γ− and γ+

We discuss here the strategy of choosing the parameters γ− and γ+. From the
proof of Theorem 2.3.2, it is sufficient to select γ−, γ+ such that P (An ∩ (Bγn)c) =
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o
(
P(An)2

)
. Hence, we propose to choose γ− and γ+ such that

((a+ b)/γ+, a/γ−) /∈ Z2
+,

and that

min

{
(α− 1) +

⌈
a+ b

γ+

⌉
(β − 1),

⌈
a

γ−

⌉
(α− 1) + (β − 1)

}
> 2(α+ β − 2).

(2.5.1)
W.l.o.g. we assume that da/γ−e(α−1)+(β−1) is the unique minimum of (2.5.1).
It suffices to prove that A∩(Bγ)c is bounded away from D<da/γ2e;1. To show that⋃

(l−,l+) D<l−;l+ with l− ≤ da/γ2e− 1 is bounded away from A∩ (Bγ)c, choose θ

with d(θ,
⋃

(l−,l+) D<l−;l+) < r. This implies that there exists ξ ∈
⋃

(l−,l+) D<l−;l+

satisfying d(θ, ξ) < r, where ξ =
∑l+
k=1 xk1[uk,1](t) −

∑l−
k=1 yk1[vk,1](t). In

particular, there exists a homeomorphism λ : [0, 1]→ [0, 1] satisfying

||λ− id ||∞ ∨ || ξ ◦ λ− θ ||∞ < r. (2.5.2)

Using (2.5.2) and the identity ξ ◦ λ = θ + (ξ ◦ λ− θ), we conclude that, for
θ ∈ (Bγ)c and t ∈ [0, 1], at least one of the following holds:

• xk ≤ γ+ + 2r, for every uk ≥ t; or

• yk ≤ γ− + 2r, for every vk < t.

For θ ∈ m−1(−∞,−a], by (2.5.2) there exists t′ such that∑
uj≤λ(t′)

xj −
∑

vj≤λ(t′)

yj < −a+ 3r. (2.5.3)

Moreover, we can assume that yj ≤ γ−+2r for j satisfying vj ≤ λ(t′). Otherwise
xj is bounded by γ+ + 2r for j satisfying vj > λ(t′). By choosing r sufficiently
small, it contradicts the fact that θ ∈ π−1

1 [b,∞) and da/γ−e(α−1)+(β−1) is the
minimum of (2.5.1). Hence, (2.5.3) implies that (da/γ−e − 1) (γ−+ 2r) > a− 3r.
Since (da/γ−e − 1) γ− < a, choosing r sufficiently small we obtain the result.
Similarly, it can be shown that A∩ (Bγ)c is bounded away from

⋃
(l−,l+) D<l−;l+

for l+ ≤ d(a+ b)/γ+e − 1.

2.5.5 Sampling from Qγ

As in Section 2.4, a strategy of sampling from Qγ( · ) needs to be discussed. Even
though Bγ is modified to obtain smaller relative error, a similar strategy as in
Algorithm 3 can be used here. Hence we omit the details.
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2.5.6 Numerical results

We end this section with some numerical investigations. First let Y1 = Y ′1 −
EY ′1 , where Y ′1 is a random variable with density function fY that is given

by fY (y) = 1
3

(
β−1
y

)β
1(1,∞)(y) + 1

3

(
−α−1

y

)α
1(−∞,−1)(y) + 1

61[−1,1](y). We

apply our algorithm to estimate P(Sn ≥ bn,min0≤k≤n Sk ≤ −an) with a = 2
and b = 1.5. In Figure 2.2 we plot the precision of the estimated probability
against the parameter w for different values of n. We observe that the estimated
probabilities become more precise as w decreases. This heuristic suggests the
upper bound we derive in (2.7.7), where the latter term in (2.7.7) is of the order
o(P(An)2), as long as w is strictly positive. Based on this observation, we choose
w = 0.05 for all numerical investigations presented in this chapter. In Table 2.2
we compare the estimated rare-event probability and precision w.r.t. different
values of n, α and β. We observe that the precision stays roughly constant as
n increases for different combinations of α and β, which suggests the strong
efficiency of our estimator.

Next, we make a comparison between the algorithms developed in this chapter
and in [70], where a simulation algorithm is designed for estimating P(Sn ≥ bn)
from an MCMC perspective. First note that, instead of unbiased estimators,
MCMC algorithms give us only consistent estimators. Furthermore, note that
the event {Sn ≥ bn} is a special case of the event studied in this section with
a = 0. Here we consider Y1 with density function fY (y) = 2(y + 1)−3 for y ≥ 0.
In Table 2.3 we present the estimated rare-event probability, the level of precision,
the computational time (in seconds), and the normalized workload—i.e. the
(estimated) standard deviation multiplied by the computational time divided
by the sample mean—produced by the two algorithms, based on 106 samples.
Note that our algorithm typically outperforms the MCMC algorithm in terms of
computational time—especially as n increases—while producing a slightly larger
coefficient of variation compared to the MCMC algorithm. Overall, our algorithm
seems to be more efficient for larger values of n, while MCMC seems to be more
efficient for small values of n in terms of normalized workload. This can be
explained by the fact that our estimator is state-independent, i.e., the increments
of the random walk Sn can be updated simultaneously. On the other hand, in
the MCMC case, the algorithm needs a burn-in period to converge, and the
increments have to be simulated following a specific order. Moreover, updating
the value of, say, Yk relies on the values of Y1, . . . , Yk−1, Yk+1, . . . , Yn to run the
MCMC algorithm. It may be noted that the range of probabilities examined in
Table 2.3 is smaller than the typical range of practical interest in applications.
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w

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.042

0.044

0.046

0.048

0.05

0.052

0.054

0.056

0.058

0.06
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Figure 2.2: A plot of the precision of the estimators discussed in Section 2.5 w.r.t. w for
different values of n.

For example, insurance companies (according to Solvency II) are suggested to
have a capital reserve corresponding to bankruptcy events in the order of a
0.5% likelihood (on an annual basis). Nevertheless, when model uncertainty
is taken into account, considering a bankruptcy probability of the putative
(assumed) parametric model in the range of likelihood that is considerably smaller
than nominal values suggested by regulation may be necessary. For example,
calibrating any distribution of claims with a degree of precision corresponding to a
bankruptcy probability of 0.5% in a non-parametric way is practically impossible
since one would need (due to the central limit theorem) millions of observations
on an annual basis. In such a case, an additional safety margin should be added
to the capital requirement to account for model error as discussed in [19] (see
Section 9.2.1). That is, one may have to consider the range of likelihood in the
order of 10−4 to 10−5 for the putative parametric model to ensure the 0.5%
likelihood for the true claims. Note that our importance sampling algorithm
seems to be comparable or preferable to the MCMC algorithm in this range.

2.6 An application to queueing networks

In this section, an application to queueing networks is considered. More specif-
ically, the probability of the number of customers in a subset of the system
crossing a high level is estimated. Although some particular cases exist that
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Est
Pr

n = 250 n = 500 n = 750 n = 1000 n = 1250 n = 1500

α = 2, β = 1.5
3.913× 10−7

0.043
1.370× 10−7

0.043
6.992× 10−8

0.044
4.539× 10−8

0.044
3.305× 10−8

0.044
2.471× 10−8

0.044

α = 1.8, β = 1.7
3.322× 10−7

0.037
1.154× 10−7

0.037
6.040× 10−8

0.038
3.840× 10−8

0.038
2.870× 10−8

0.038
2.225× 10−8

0.037

α = 2.3, β = 2
1.923× 10−9

0.053
4.004× 10−10

0.053
1.491× 10−10

0.054
7.601× 10−11

0.054
4.632× 10−11

0.054
3.072× 10−11

0.054

α = 2.7, β = 1.8
6.838× 10−10

0.068
1.121× 10−10

0.070
4.092× 10−11

0.070
2.079× 10−11

0.069
1.105× 10−11

0.071
6.896× 10−12

0.071

Table 2.2: Estimated rare-event probability and level of precision for the application as
described in Section 2.5.

Est
Pr

n = 5 n = 20 n = 200 n = 1000

Time (s)
NW

MCMC IS MCMC IS MCMC IS MCMC IS

b = 20

5.340× 10−4

0.587× 10−3

25.5
7.633

5.286× 10−4

1.020× 10−3

19.6
10.196

1.375× 10−4

0.636× 10−3

67.9
22.046

1.369× 10−4

1.060× 10−3

21.5
11.624

1.384× 10−5

0.645× 10−3

561.0
184.488

1.384× 10−5

1.071× 10−3

44.4
24.267

2.770× 10−6

0.644× 10−3

3686.8
1211.854

2.769× 10−6

1.073× 10−3

145.0
79.370

b = 150

8.962× 10−6

2.052× 10−4

24.8
2.594

8.958× 10−6

8.287× 10−4

17.1
7.227

2.250× 10−6

2.239× 10−4

63.1
7.204

2.250× 10−6

8.331× 10−4

19.9
8.468

2.252× 10−7

2.289× 10−4

545.7
63.712

2.252× 10−7

8.353× 10−4

43.7
18.633

4.505× 10−8

2.289× 10−4

3687.0
430.399

4.503× 10−8

8.370× 10−4

146.4
62.543

b = 1000

2.002× 10−7

0.796× 10−5

27.8
1.130

2.001× 10−7

8.051× 10−4

17.5
7.206

5.008× 10−8

0.848× 10−5

65.9
2.854

5.005× 10−8

8.068× 10−4

20.4
8.384

5.009× 10−9

0.851× 10−5

577.4
25.070

5.011× 10−9

8.042× 10−4

45.5
18.684

1.002× 10−9

0.881× 10−5

4011.9
180.317

1.002× 10−9

8.052× 10−4

149.7
61.482

Table 2.3: Estimated rare-event probability, level of precision, and computational time for
estimating P(Sn ≥ bn) using the algorithms introduced in this chapter and in [70].
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allow for an explicit analysis (see e.g. Section 13 in [41]), it is hard to come up
with exact results for the distribution of the workload process in general. Hence,
implementing our algorithm in such a context is particularly interesting.

2.6.1 Model description and preliminaries

To be specific, we consider a d-dimensional stochastic fluid model. Suppose that
jobs arrive to the i-th station in the network according to a Poisson process with
unit rate, which is denoted by {N (i)(t)}t≥0 and independent of {N (j)(t)}t≥0 for
j 6= i. Moreover, the k-th arrival of the i-th station brings a job of size W (i)(k).
We are assuming that {W (k) , (W (1)(k), . . . ,W (d)(k))T }k≥1 is a sequence of
i.i.d. positive random vectors and that {W (k)}k≥1 is independent of {N(t)}t≥0.
Therefore, the total amount of external work that arrives to the i-th station up

to time t is given by J (i)(t) =
∑N(i)(t)
k=1 W (i)(k). Now, assume that the workload

at the i-th station is processed as a fluid by the server at a rate ri and that a
proportion Qij ≥ 0 of the fluid processed by the i-th station is routed to the
j-th server. Moreover, we assume that Q is a substochastic matrix with Qii = 0
and that Qn → 0 as n→∞. The dynamics of the model are expressed formally
by the so-called Skorokhod map (for details see e.g. [109], [110], [71]), that is
defined in terms of a pair of processes (Z, Y ) satisfying a stochastic differential
equation that we shall describe now. Let R = (I − Q)T , r = (r1, . . . , rd)

T ,
X(t) , J(t)−Rrt and Z(i)(t) denote the workload of the i-th station at time t.
Then, for given Z(i)(0), we have that

dZ(t) = dX(t) +RdY (t), (2.6.1)

where Y (·) encodes the minimal amount of pushing required to keep Z(·) non-
negative. In order to describe how to characterize the solution (Z, Y ) to (2.6.1),
we need to introduce some notations. Let ψ : Dd → Dd↑ be such that

ψ(x) , inf
{
w ∈ Dd↑ : x+Rw ≥ 0

}
,

i.e., ψ(i)(x)(t) , inf{w(i)(t) ∈ R : w ∈ Dd↑, x + Rw ≥ 0}, for all i and t, and

φ : Dd → Dd with φ(x) , x + Rψ(x). The following results summarize useful
properties and characterizations of the Skorokhod mappings ψ, φ, as well as the
workload process Z(t):

Result 2.6.1 (Theorem 14.2.1, 14.2.5, and 14.2.7 of [117]). The mappings ψ and
φ are well-defined for all x ∈ Dd. Moreover, ψ and φ are Lipschitz continuous
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w.r.t. both the uniform metric and the Skorokhod J1 metric. If Y (t) , ψ(X)(t)
and Z(t) , φ(X)(t), then (Y (t), Z(t)) solve the Skorokhod problem given by
(2.6.1).

Result 2.6.2 (Lemma 14.3.3, Corollary 14.3.4 and Corollary 14.3.5 of [117]).
Let x ∈ Dd. For the discontinuity points of ψ(x) (denoted by Disc(ψ(x))) and
φ(x), we have that Disc(ψ(x)) ∪Disc(φ(x)) = Disc(x). Moreover, if x has only
positive jumps, then ψ(x) is continuous and φ(x)(t)− φ(x)(t−) = x(t)− x(t−).

Result 2.6.3 (Theorem 14.2.2 of [117]). The regulator map y = ψ(x) can be
characterized as the unique fixed point of the map πx,Q : Dd↑ → Dd↑, where

πx,Q(w)(t) , max{0, sups∈[0,t](Q
Tw(s)− x(s))}.

Result 2.6.4 (Consequence of Theorem 4.1 of [101]). Let ∆ ∈ Dd be a non-
decreasing function such that ∆(0) ≥ 0. Then, for x ∈ Dd, we have that ψ(x) ≥
ψ(x+∆), φ(x) ≤ φ(x+∆), and φ(x)(t2)−φ(x)(t1) ≤ φ(x+∆)(t1)−φ(x+∆)(t2),
for any 0 ≤ t1 ≤ t2 ≤ 1.

Finally, we assume that the right tail of W (i)(1) is regularly varying with
index −βi and that the stability condition holds, i.e. R−1ρ < r, where ρ , EJ(1).
Let Z̄n(t) , Z(nt)/n and X̄n(t) , X(nt)/n. Let c ∈ {0, 1}d be a binary vector,
and let Jc denote the index set encoded by c, i.e., j ∈ Jc if cj = 1. Set

Z̄n(t) , Z(nt)/n and X̄n(t) , X(nt)/n. Define lc : Rd → R by lc(x) = cTx and
π1 : Dd → Rd by π1(ξ) = ξ(1). We are interested in estimating the probability
of the subset, encoded by c, of the scaled workload Z̄n exceeds level a at time
1, that is, P

(
cT Z̄n(1) ≥ a

)
. By Theorem 14.2.6 (iii) of [117], we have that

Z̄n = φ(X̄n), and hence it holds that, for a > 0,

P
(
cT Z̄n(1) ≥ a

)
= P

(
F (X̄n) ≥ a

)
= P(X̄n ∈ A), (2.6.2)

where F , lc ◦ π1 ◦ φ and A , {ξ ∈ D : F (ξ) ≥ a}.

2.6.2 Large deviations results

To obtain the large deviations asymptotics for the rare-event probability as in
(2.6.2), we proceed in the manner, as follows.

• To determine the tail index of the rare-event probability, we first study the
optimization problem given by (2.2.2) and transform it into a (nonstandard)
knapsack problem with nonlinear constraints (see (2.6.8) and Proposition
2.6.1 below).
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• Under a certain assumption (see Assumption 2.6.1 below), we show that
A, as defined in (2.6.2), is bounded away from D<(l∗1 ,...,l

∗
d), where l∗1, . . . , l

∗
d

is the optimal solution to the knapsack problem derived in the first step.

• Finally, we derive a large deviations result for P(X̄n ∈ A) by applying
Result 2.2.2.

We start with the optimization problem given by (2.2.2). Due to the fact
that X(t) is in general not a compensated compound Poisson process but one
with a certain drift, it is convenient to consider a slightly different problem,
which is given by

arg min
(l1,...,ld)∈Zd+,

∏d
i=1 Lli (µi)∩A6=∅

I(l1, . . . , ld), (2.6.3)

where µ , EX(1) = ρ− Rr, r′ = r − R−1ρ > 0 due to the stability condition,
and Lli(µi) , {ξ : ∃ξ′ ∈ Dli : ξ(t) = ξ′(t) + µit = ξ′(t)− (Rr′)it}. Define E0 ,{

(l1, . . . , ld) ∈ Zd+ : li = 0, ∀i ∈ Jc
}

and E1 , {ei : i ∈ Jc}, where ei denotes the
unit vector with entries 0 except for the i-th coordinate. By Result 2.6.2, instead
of (2.6.3) we can solve two separate problems that are given by

arg min
(l1,...,ld)∈E0,

∏d
i=1 Lli (µi)∩A6=∅

I(l1, . . . , ld),

and arg min
(l1,...,ld)∈E1,

∏d
i=1 Lli (µi)∩A6=∅

I(l1, . . . , ld). (2.6.4)

Note that the latter problem in (2.6.4) can be solved easily by considering
mini∈Jc βi − 1, therefore we focus on the first problem in (2.6.4). Let J be a
subset of (Jc)c. Moreover, let θ ∈ D1 and let ξ ∈ Dd be such that

ξ(i)(t) =

−(Rr′)it, t ∈ [0, 1], for i /∈ J ,

θ(i) − (Rr′)it, t ∈ [0, 1], for i ∈ J .
(2.6.5)

A necessary and sufficient condition for the existence of ξ ∈ A is given in the
following proposition.

Proposition 2.6.1. Let J ⊆ (Jc)c. Moreover, let {r∗i }i/∈J be such that

r∗i = max

r′i −
∑
j 6=i

Qjir
′
j +

∑
j 6=i
j /∈J

Qjir
∗
j , 0

 , for i /∈ J . (2.6.6)
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Define

∂z(J ) ,
∑
i∈Jc

r∗i − r′i +
∑
j 6=i

Qjir
′
j −

∑
j 6=i
j /∈J

Qjir
∗
j

 . (2.6.7)

If ∂z(J ) 6= a, then there exists ξ satisfying (2.6.5) and cTφ(ξ)(1) ≥ a, if
and only if ∂z(J ) > a. Additionally, if J1 ⊆ J2 ⊆ (Jc)c, then we have that
∂z(J1) ≤ ∂z(J2).

We give a sketch of the proof and refer to Section 2.7 for details. Note that
∂z(J ) given by (2.6.7) is the increasing rate of the subset Ic of the workload
process, whose associated input process does not have any jumps but starts with
a sufficiently large initial value. Based on this observation, a ξ can be constructed
for the “if”-part of the first statement. For the “only if”-part, suppose that there
is a ξ satisfying cTφ(ξ)(1) ≥ a. By Result 2.6.4, enlarging the size of jumps in ξ
will preserve the fact that cTφ(ξ)(1) ≥ a. Hence, we can construct a new ξ, such
that

• the associated workload process φ(ξ) is piecewise linear between two
neighboring discontinuity points; and

• the increasing rate of cTφ(ξ) is always smaller or equal than ∂z(J ) given
by (2.6.7).

Remark 2.8. Note that (2.6.6) can be written in a matrix notation that is given
by r∗ = max{((I−QT )r′)/∈J +(Q/∈J )T r∗, 0} = max{(Rr−ρ)/∈J +(Q/∈J )T r∗, 0},
where (Rr − ρ)/∈J and Q/∈J denote the vector and matrix respectively with
its i-th row and column being removed for all i ∈ J . Using the Banach fixed-
point theorem, we obtain that r∗ = limn→∞ πn(0), where πn , π ◦ πn−1 and
π(x) , max{(Rr − ρ)/∈J + (Q/∈J )Tx, 0}.

Define EJ , {(l1, . . . , ld) ∈ E′0 : ∂z
(
J(l1,...,ld)

)
> a}, where E′0 , E0 ∩

{(l1, . . . , ld) ∈ Zd+ : li ∈ {0, 1}, ∀i /∈ Jc} and ∂z
(
J(l1,...,ld)

)
is as defined in

(2.6.7) with J(l1,...,ld) denoting the index set encoded by (l1, . . . , ld) ∈ E′0. By
Proposition 2.6.1, we conclude that the first problem in (2.6.4) is equivalent to

arg min
(l1,...,ld)∈EJ

I(l1, . . . , ld). (2.6.8)

Thanks to the last statement of Proposition 2.6.1, it is unnecessary to check
every (l1, . . . , ld) ∈ EJ for solving (2.6.8). In the following example, we consider

48



CHAPTER 2. RARE-EVENT SIMULATION FOR MULTIPLE JUMP EVENTS
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Figure 2.3: An illustration of two different sample paths of workload processes (in the setting
of Example 2.6.1), whose associated input processes have the form as in (2.6.5).

a specific fluid network and illustrate how to solve (2.6.8) using Proposition
2.6.1.

Example 2.6.1. Consider the fluid network given by ρ = (0.8 0.8 1)T , r =
(1 1 2.5)T and

Q =

 0 0.1 0.8
0.1 0 0.8
0 0 0

 .
We are interested in the probability of the rare event that the third station
crosses the level na at time n for large n, i.e. Jc = {3}. It is easy to check
that the stability condition holds. By an easy computation, we obtain that
∂z({1, 2}) = 0.1 and ∂z({1}) = ∂z({2}) = 0.02. For a = 0.05, the optimal
solution to (2.6.8) is given by (1, 1, 0).

Suppose that we have solved (2.6.8). To obtain the large deviations results,
the following technical assumption needs to be made.
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Assumption 2.6.1. Assume that (2.6.8) satisfies the following conditions.

a) The optimization problem given by (2.6.8) has a unique solution.

b) For every J ⊆ (Jc)c, it holds that ∂z(J ) 6= a.

c) Let (l∗1, . . . , l
∗
d) denote the optimal solution to (2.6.8). We assume that

I(l∗1, . . . , l
∗
d) < mini∈Jc βi − 1.

By Result 2.2.2, Assumption 2.6.1 c) implies that the objective value of the
first problem in (2.6.4) is strictly less than the objective value of the latter one in
(2.6.4), and hence the optimal solution (l∗1, . . . , l

∗
d) to (2.6.8) solves (2.6.3). In view

of this observation, the rare event is caused by multiple large jumps. Throughout
the rest of this section, we assume that Assumption 2.6.1 holds. We end this
subsection with a large deviations result for P(X̄n ∈ A) = P

(
cT Z̄n(1) ≥ a

)
,

which is formulated in the following proposition:

Proposition 2.6.2. Suppose that Assumption 2.6.1 holds. Let F be as defined
in (2.6.2). Then A = F−1[a,∞) is bounded away from

⋃
(l1,...,ld)∈I<(l∗1 ,...,l

∗
d
)

d∏
i=1

Lli(µi),

where (l∗1, . . . , l
∗
d) denotes the unique optimal solution of (2.6.8). Moreover,

Cl∗1 × · · · × Cl∗d
(
(F−1[a,∞))◦

)
≤ lim inf

n→∞

P
(
X̄n ∈ A

)∏d
i=1

(
nνi[n,∞)

)l∗i ≤ lim sup
n→∞

P
(
X̄n ∈ A

)∏d
i=1

(
nνi[n,∞)

)l∗i
≤ Cl∗1 × · · · × Cl∗d

(
F−1[a,∞)

)
.

2.6.3 Simulation

Again, we are in the setting of Theorem 2.3.2. To be able to discuss the choice
of J(l∗1 ,...,l

∗
d) and the parameter γ in a more precise context, let us consider the

stochastic fluid network introduced in Example 2.6.1.

Example 2.6.1 (continued). Recall that, for a = 0.05, the optimal solution of
(2.6.3) is given by β1 + β2− 2, if we assume that β1 + β2− 2 < β3− 1. Moreover,
it can be easily shown that A is bounded away from both D<i × D0 × D0 and
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D0 ×D<j ×D0. Combining this with I(1, 1, 1) > 2I(1, 1, 0), as well as Corollary

2.3.1, it is sufficient to take J̃(l∗1 ,...,l
∗
d) = {(1, 1, 0), (0, 0, 1)}. This implies that

Bγn =
{

#
{
k
∣∣W (i)(k) > nγi, k ≤ N (i)(n)

}
≥ 1, i ∈ {1, 2}

}
∪
{

#
{
k
∣∣W (3)(k) > nγ3, k ≤ N (3)(n)

}
≥ 1
}
,

and hence, (Bγn)c = {∃i ∈ {1, 2} : W (i)(k) ≤ nγi, ∀k ≤ N (i)(n)} ∩ {W (3)(k) ≤
nγ3, ∀k ≤ N (3)(n)}.

We choose γ such that P(An ∩ (Bγn)c) = o(P(An)2). To begin with, we
assume w.l.o.g. that β3 − 1 ≤ 2(β1 + β2 − 2), otherwise we can simply set
J(l∗1 ,...,l

∗
d) = {(1, 1, 0)}, since I(0, 0, 1) > 2I(1, 1, 0). Now the parameter γ3 can be

chosen such that d 1
20/γ3e(β3−1) > 2(β1+β2−2). For the choice of γ1, we observe

that the job arriving at the second station can have an arbitrarily large size.
Hence, it is sufficient to consider the inequality ∂z({1, 2})t′+ ∂z({2})(1− t′) > a,
where ∂z({1, 2}) = 0.1 and ∂z({2}) = 0.02. Solving the inequality we obtain that
t′ < 3/8. This simply means that the workload of the third station cannot exceed
the level a at time 1 if we keep both of the first and the second stations overloaded
less than 3/8 of the time. Since the workload process of the first station decays at
rate 1/10, one can choose γ1 such that d 3

80/γ1e(β1−1)+(β2−1) > 2(β1 +β2−2).
Analogously, it is sufficient to set γ2 such that (β1 − 1) + d 3

80/γ2e(β2 − 1) >
2(β1 + β2 − 2).

We give a closed-form expression for P(Bγn). By assumption {W (i)(k)}1≤i≤d
are mutually independent. Therefore

P((Bγn)c) = P
(
∃i ∈ {1, 2} : W (i)(k) ≤ nγi, ∀k ≤ N (i)(n)

)
×P

(
W (3)(k) ≤ nγ3, ∀k ≤ N (3)(n)

)
=

[
1−

2∏
i=1

(
1−P

(
W (i)(k) ≤ nγi, ∀k ≤ N (i)(n)

))]
×P

(
W (3)(k) ≤ nγ3, ∀k ≤ N (3)(n)

)
.

Conditionally on N (i)(n), we obtain

P(W (i)(k) ≤ nγi, ∀k ≤ N (i)(n)) = exp {−n(1−P(W (i)(1) ≤ nγi))},

since N (i)(n) is Poisson distributed. Summarizing the above findings, we
are able to propose a strongly efficient estimator for P(An) that is given by
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Est
Pr

n = 1200 n = 1600 n = 2000 n = 2400

β1 = 1.5, β2 = 1.5, β3 = 2.2
7.719× 10−2

0.045
6.228× 10−2

0.058
4.541× 10−2

0.057
3.973× 10−2

0.057

Est
Pr

n = 800 n = 1200 n = 1600 n = 2000

β1 = 2.5, β2 = 2.3, β3 = 4
2.894× 10−2

0.325
1.686× 10−2

0.404
6.153× 10−3

0.445
2.023× 10−3

0.448

Est
Pr

n = 600 n = 1000 n = 1400 n = 1800

β1 = 2.2, β2 = 2.9, β3 = 4.5
5.139× 10−2

0.249
1.858× 10−2

0.347
9.987× 10−3

0.351
1.028× 10−3

0.377

Table 2.4: Estimated rare-event probability and level of precision for the application as
described in Section 2.6.3.

(2.3.3). Moreover, Algorithm 3 can be used to sample from Qγ . To see this,
we decompose Bγn into two disjoint sets Bγn(1) and Bγn(2) that are given by
Bγn(1) ,

{
#
{
k
∣∣W (3)(k) > nγ3, k ≤ N (3)(n)

}
≥ 1
}

, and

Bγn(2) ,
{

#
{
W (i)(k) > nγi, k ≤ N (i)(n)

}
≥ 1,∀i ∈ {1, 2}

}
∩ {W (3)(k) ≤ nγ3, ∀1 ≤ k ≤ N (3)(n)},

respectively. Using Algorithm 3, the sample paths of X̄
(1)
n , X̄

(2)
n , X̄

(3)
n can be

simulated independently on both Bγn(1) and Bγn(2). We present the numerical
results based on 20000 samples in Table 2.4. We choose W (i)(1) such that
P(W (i)(1) > t) = (tr,i/t)

βi and tr,i = ρi(βi − 1)/βi, for i ∈ {1, 2, 3}. As one
can see, the numerical results show that the level of precision stay stable as n
increases, and hence, confirm again what our theory predicts.

2.7 Proofs

In this section we provide proofs of the results presented in this chapter.

Proof of Proposition 2.3.1. Recall that the expected running time of the rejec-
tion sampling (see Algorithm 1 above), which is used to generate the jumps of
X̄n, is given by Ml =

(
l
l∗

)
P(W (1) > nγ)l

∗
P(Bγn|N(n) = l)−1. Hence, for the
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expected running time of Algorithm 1, denoted by Talg1(n), we have that

Talg1(n) =
∑
l≥l∗

hlMl = P(Bγn)−1
∑
l≥l∗

P(Bγn|N(n) = l)P(N(n) = l)Ml

= P(Bγn)−1
∑
l≥l∗

P(N(n) = l)

(
l

l∗

)
P(W (1) > nγ)l

∗

=
nl
∗
(λP(W (1) > nγ))l

∗

P(Bγn)
e−λn

∑
l≥l∗

(λn)l−l
∗

(l − l∗)!
=
nl
∗
(λP(W (1) > nγ))l

∗

P(Bγn)
.

Recall that Bγn ,
{
X̄n ∈ Bγ

}
, where Bγ ,

{
ξ : #

{
t
∣∣ ξ(t)− ξ(t−) > γ

}
≥ l∗

}
.

Noting that Bγn is bounded away from D<l∗ and l∗ = min{l ∈ Z+ : Dl ∩Bγn}, by
Result 2.2.1 we obtain that

lim sup
n→∞

Talg1(n) ≤ nl
∗
(λP(W (1) > nγ))l

∗
P(Bγn)−1 ≤ Cl∗((Bγ)◦)−1 <∞.

Proof of Proposition 2.3.2. Recall

Bγ ,
⋃

(l1,...,ld)∈J(l∗1 ,...,l∗d)

Bγ;l

was defined in (2.3.4). Let I ⊆ J(l∗1 ,...,l
∗
d). Define Bγ;l

I ,
⋂

(l1,...,ld)∈I B
γ;l. By

the inclusion-exclusion principle, we have that

P(X̄n ∈ Bγ) =

|J(l∗1 ,...,l∗d)|∑
k=1

(−1)k−1
∑

|I|=k, I⊆J(l∗1 ,...,l∗d)

P
(
X̄n ∈ Bγ;l

I

)
. (2.7.1)

Moreover, for any finite collection I of elements in Zd+ with I ⊆ J(l∗1 ,...,l
∗
d), we

have that

Bγ;l
I =

d⋂
i=1

⋂
(l1,...,ld)∈I

{(
ξ(1), . . . , ξ(d)

)
: #
{
t
∣∣ ξ(i)(t)− ξ(i)(t−) > γi

}
≥ li

}

=

d⋂
i=1

{(
ξ(1), . . . , ξ(d)

)
: #
{
t
∣∣ ξ(i)(t)− ξ(i)(t−) > γi

}
≥ l̂i;I

}
, (2.7.2)
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where l̂i;I , max(l1,...,ld)∈I li. Since X̄
(1)
n , . . . , X̄

(d)
n are independent processes,

we obtain that

P(Bγ;l
I )

=

d∏
i=1

1− exp{−λinP(W (i)(1) > nγi)}
l̂i;I−1∑
j=0

(λin)j

j!
P(W (i)(1) > nγi)

j

 .

Proof of Lemma 2.3.1. Recall thatBγ;l(i, j) , {ξ ∈ Dd : #{t
∣∣ ξ(i)(t)−ξ(i)(t−) >

γi} ≥ (l(j))i}. Hence, we have that

Bγ =

|J(l∗1 ,...,l∗d)|⋃
j=1

d⋂
i=1

Bγ;l(i, j) =

|J(l∗1 ,...,l∗d)|⋃
j=1

(
Bγ;l(1, j) ∩

d⋂
i=2

Bγ;l(i, j)

)
. (2.7.3)

By definition ∆Bγ;l(i, j) , Bγ;l(i, j) \
(⋃j−1

m=1B
γ;l(i,m)

)
. Therefore, we have

that

Bγ;l(i, j) =

j⋃
mi=1

∆Bγ;l(i, j). (2.7.4)

Plugging (2.7.4) into (2.7.3), we obtain that

Bγ =

|J(l∗1 ,...,l∗d)|⋃
j=1

((
j⋃

m1=1

∆Bγ;l(1,m1)

)
∩

d⋂
i=2

Bγ;l(i, j)

)

=

|J(l∗1 ,...,l∗d)|⋃
m1=1

 |J(l∗1 ,...,l∗d)|⋃
j=m1

(
∆Bγ;l(1,m1) ∩

d⋂
i=2

Bγ;l(i, j)

)
=

|J(l∗1 ,...,l∗d)|⋃
m1=1

∆Bγ;l(1,m1) ∩

m1⋃
j=1

d⋂
i=2

Bγ;l(i, j)

 .

Applying the same procedure to
⋃m1

j=1

⋂d
i=2B

γ;l(i, j), we obtain that

Bγ =

|J(l∗1 ,...,l∗d)|⋃
m1=1

m1⋃
m2=1

∆Bγ;l(1,m1) ∩∆Bγ;l(2,m2) ∩

m2⋃
j=1

d⋂
i=3

Bγ;l(i, j)

 .
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Iterating the same procedure d− 1 times, we obtain that

Bγ =

|J(l∗1 ,...,l∗d)|⋃
m1=1

m1⋃
m2=1

· · ·
md−2⋃
md−1=1

( d−1⋂
i=1

∆Bγ;l(i,mi)

)
∩

md−1⋃
j=1

Bγ;l(d, j)

 .

(2.7.5)

Since l(1), . . . , l(|J(l∗1 ,...,l
∗
d)|) are ordered such that (l(1))d ≤ · · · ≤ (l(|J(l∗1 ,...,l

∗
d)|))d,

we obtain that
md−1⋃
j=1

Bγ;l(d, j) = Bγ;l(d, 1). (2.7.6)

Plugging (2.7.6) into (2.7.5), we obtain that

Bγ =

|J(l∗1 ,...,l∗d)|⋃
m1=1

m1⋃
m2=1

· · ·
md−2⋃
md−1=1

((
d−1⋂
i=1

∆Bγ;l(i,mi)

)
∩Bγ;l(d, 1)

)
.

Proof of Theorem 2.3.2. For the second moment of Z (under the change of
measure) we have that

EQγ,w [Z2
n] = E[Zn] = E

[
Zn1Bγn

]
+ E

[
Zn1(Bγn)c

]
≤ 1

1− w
P(An ∩Bγn)P(Bγn) +

1

w
P(An ∩ (Bγn)c)

≤ 1

1− w
P(An)P(Bγn) +

1

w
P(An ∩ (Bγn)c). (2.7.7)

Combining this with Lemma 2.7.1 below we obtain the strong efficiency of our
estimator.

Lemma 2.7.1. Let Bγ be as defined in (2.3.4). Under Assumption 2.3.2, we
have that P

(
X̄n ∈ Bγ

)
= O

(
P(X̄n ∈ A)

)
. Moreover, there exists a γ, such that

P
(
X̄n ∈ A ∩ (Bγ)c

)
= o
(
P(X̄n ∈ A)2

)
.

Proof of Lemma 2.7.1. First, note that P
(
X̄n ∈ Bγ

)
= O

(
P(X̄n ∈ A)

)
follows

immediately from Result 2.2.2. It remains to show the existence of γ such that
P
(
X̄n ∈ A∩(Bγ)c

)
= o(P(X̄n ∈ A)2). Since A is bounded away from D<(l∗1 ,...,l

∗
d)
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by assumption, there exists an r such that d
(
A,D<(l∗1 ,...,l

∗
d)

)
≥ r. On the one

hand, from [105] we have that

A ⊆

{
(ξ(1), . . . , ξ(d)) :

∃(l1, . . . , ld) ∈ J(l∗1 ,...,l
∗
d) : d

(
ξ(i),D<li

)
≥ r, ∀i ∈ {1, . . . , d}

}
. (2.7.8)

On the other hand, we have that

(Bγ)c =

{
(ξ(1), . . . , ξ(d)) :

∀(l1, . . . , ld) ∈ J(l∗1 ,...,l
∗
d) : ∃i : #

{
t
∣∣ ξ(i)(t)− ξ(i)(t−) > γi

}
≤ li − 1

}
.

(2.7.9)

Let ξ =
(
ξ(1), . . . , ξ(d)

)
∈ A ∩ (Bγ)c be a step function in the set

∏d
i=1Dl′i . By

(2.7.8), there exists (l1, . . . , ld) ∈ J(l∗1 ,...,l
∗
d), such that ξ(i) =

∑li+mi
j=1 c

(i)
j 1

[t
(i)
j ,1]

,

mi ∈ Z+ and d
(
ξ(i),D<li

)
≥ r for all i ∈ {1, . . . , d} with li 6= 0. Combining

d
(
ξ(i),D<l′i

)
≥ r with the fact that ξ(i) =

∑li−1
j=1 c

(i)
j 1

[t
(i)
j ,1]

∈ D<li , we conclude

that
li+mi∑
j=li

c
(i)
j ≥ d

li+mi∑
j=1

c
(k)
j 1

[t
(i)
j ,1]

,

li−1∑
j=1

c
(i)
j 1

[t
(i)
j ,1]

 ≥ r, (2.7.10)

or in other words, the sum of the mi + 1 smallest jumps is bounded from
below by r for each ξ(i) of {ξ(i)}i∈{1,...,d} satisfying li 6= 0. Combining (2.7.9)
with (2.7.10), as well as choosing γk sufficiently small, there exists at least one
k ∈ {1, . . . , d} such that the smallest jump of ξ(k) is bounded from below by
r′ > 0 for arbitrary but fixed mk. Repeating the same procedure as described
above, for each (l1, . . . , ld) ∈ J(l∗1 ,...,l

∗
d), we can construct (m1, . . . ,md), such that

the optimization problem given by

arg min
(l1,...,ld)∈Zd+,

∏d
i=1 Dli∩A∩(Bγ)c 6=∅

I(l1, . . . , ld), (2.7.11)

has a unique solution (l∗∗1 , . . . , l∗∗d ) satisfying I(l∗∗1 , . . . , l∗∗d ) > 2I(l∗1, . . . , l
∗
d). We

denote this specific choice of (m1, . . . ,md) for every (l1, . . . , ld) ∈ J(l∗1 ,...,l
∗
d) by
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{
m(l1,...,ld)

}
(l1,...,ld)∈J(l∗1 ,...,l∗d)

. It should be noted that the existence and the

uniqueness of (l∗∗1 , . . . , l∗∗d ) can be guaranteed by enlarging the set A (since
we are looking for an upper bound for P(X̄n ∈ A ∩ (Bγ)c)), together with
choosing the corresponding γi sufficiently small. By Result 2.2.2, it remains to
be shown that, under the chosen γ, the set A ∩ (Bγ)c is bounded away from

D<(l∗∗1 ,...,l∗∗d ). Select ξ satisfying d
(
ξ,D<(l∗∗1 ,...,l∗∗d )

)
< δ, and hence, there exists

θ ∈ D<(l∗∗1 ,...,l∗∗d ) such that d(ξ, θ) < δ. On the one hand, combining d(ξ, θ) < δ

with (2.7.8), there exists (l1, . . . , ld) ∈ J(l∗1 ,...,l
∗
d) such that d

(
θ(i),D<li

)
> r − δ,

for all i ∈ {1, . . . , d}. Hence, we have that θ(i) =
∑li+mi
j=1 e

(i)
j 1

[t
(i)
j ,1]

, mi ∈ Z+,

satisfying

li+mi∑
j=li

e
(i)
j ≥ d

li+mi∑
j=1

e
(k)
j 1

[t
(i)
j ,1]

,

li−1∑
j=1

e
(i)
j 1

[t
(i)
j ,1]

 ≥ r − δ, (2.7.12)

for all i ∈ {1, . . . , d} with li 6= 0. On the other hand, there exist homeomorphisms
{λi}i∈{1,...,d} such that

||λi − id ||∞ ∨ || θ(i) ◦ λi − ξ(i) ||∞ < δ, for all i ∈ {1, . . . , d}. (2.7.13)

Combining (2.7.13) with (2.7.9), we conclude the existence of at least one
i ∈ {1, . . . , d} such that

#
{
t
∣∣ θ(i)(t)− θ(i)(t−) > γi − δ

}
≤ li − 1. (2.7.14)

Since θ ∈ D<(l∗∗1 ,...,l∗∗d ), we have that

mi ≤ (m(l1,...,ld))i − 1, (2.7.15)

for some i ∈ {1, . . . , d} with li 6= 0. On the one hand, (2.7.12) says that the sum
of the mi+1 smallest jumps is bounded from below by r−δ for all i ∈ {1, . . . , d}.
On the other hand, (2.7.14) says that each one of the mi + 1 smallest jumps is
bounded by γi − δ for all i ∈ {1, . . . , d}. Hence, by choosing δ sufficiently small,
mi + 1 has to be so large that (2.7.15) gets violated.

Proof of Proposition 2.6.1. We derive a necessary and sufficient condition for
cTφ(ξ)(1) ≥ a with ξ as in (2.6.5).
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For the “only if”-part, suppose that ∂z(J ) > a. Let (v1, . . . , vd) ∈ Rd+,
δ ∈ (0, 1) and ξ be such that

ξ(i)(t) =

−(Rr′)it, t ∈ [0, 1], for i /∈ J ,

vi1[δ,1](t)− (Rr′)it, t ∈ [0, 1], for i ∈ J .

Obviously ξ satisfies (2.6.5). For t ∈ [0, δ), by Result 2.6.3, the regulator
process yξ , ψ(ξ) should satisfy the fixed point equation that is given by

y
(i)
ξ (t) = max

{
0, sups∈[0,t]

∑
j 6=iQjiy

(j)
ξ (s) + (Rr′)is

}
, for all i ∈ {1, . . . , d}.

Using the fact that r′ > 0, we obtain that yξ(t) = r′t, for t ∈ [0, δ). For t ∈ [δ, 1],
again by Result 2.6.3, it holds that

y
(i)
ξ (t) = max

0,−vi + sup
s∈[0,t]

r′is+
∑
j 6=i

Qji(y
(j)
ξ (s)− r′js)

 , for all i ∈ J ,

(2.7.16)
and

y
(i)
ξ (t) = max

0, sup
s∈[0,t]

r′is+
∑
j∈J

Qji(y
(j)
ξ (s)− r′js) +

∑
j 6=i
j /∈J

Qji(y
(j)
ξ (s)− r′js)

 ,

(2.7.17)
for all i /∈ J . Since {vi}i∈J are non-negative, by Result 2.6.2 we conclude

that yξ(s) and r′is+
∑
j 6=iQji(y

(j)
ξ (s)− r′js) are continuous in s on [0, 1]. Using

the Bolzano-Weierstrass theorem, there exists a set of sufficiently large {vi}i∈J
(depending on yξ), such that y

(i)
ξ (t) = y

(i)
ξ (δ) = r′iδ for i ∈ J . Plugging this into

(2.7.17) along with setting y
(i)
ξ (t) = r′iδ+ r∗i (t− δ) for i /∈ J , t ∈ [δ, 1], we obtain

that

r′iδ + r∗i (t− δ)

= max

0, sup
s∈[0,t]

r′is+
∑
j∈J

Qji(y
(j)
ξ (s)− r′js) +

∑
j 6=i
j /∈J

Qji(y
(j)
ξ (s)− r′js)
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= max

r′iδ, r′iδ + max
s∈[δ,t]

r′i(s− δ)−
∑
j 6=i

Qjir
′
j(s− δ) +

∑
j 6=i
j /∈J

Qjir
∗
j (s− δ)

 ,

(2.7.18)

for i ∈ J . Note that (2.7.18) is solved by r∗i satisfying (2.6.6). Moreover, by a
straightforward computation, for the workload process zξ , φ(ξ), we obtain that
cT zξ(1) = ∂z(J )(1− δ). Since by assumption ∂z(J ) > a, we can choose δ such
that cT zξ(1) ≥ a.

For the other direction of the proof, suppose that cTφ(ξ)(1) ≥ a for some
ξ satisfying (2.6.5). Let the jump sizes and the associated jump times of ξ be
denoted by {ui}i∈J and {ti}i∈J , respectively. First we should mention that,
by Result 2.6.4, enlarging {ui}i∈J will preserve the fact that cTφ(ξ)(1) ≥ a.
Moreover, let d1 < · · · < dm denote the discontinuity points of ξ with m ≤ |J |
and define Ji , {k : tk ≤ di}, for every i ∈ {1, . . . ,m}. Now observe that
yξ(t) = r′t, t ∈ [0, d1). Hence, we have that z′ξ(t) = 0 ≤ ∂z(J ), for t ∈ [0, d1).
For yξ(t), t ∈ [d1, d2), we can easily check that

y
(i)
ξ (t) =

r
′
id1, for all i ∈ J1,

r′id1 + r∗,1i (t− d1), for all i /∈ J1,

by taking sufficiently large {ui}i∈J1
, where r∗,1i = max{r′i −

∑
j 6=iQjir

′
j +∑

j 6=i
j /∈J1

Qjir
∗,1
j , 0}, for i /∈ J1. Since J1 ⊆ J , by Result 2.6.4 and (2.6.6), we

conclude that z′ξ(t) ≤ ∂z(J ), for t ∈ [d1, d2). Defining J ′1 , J1 ∪ {k : r∗,1k = 0},
we consider yξ(t) for t ∈ [d2, d3). Following a similar argument as above, we
claim that

y
(i)
ξ (t) =


r′id1, for all i ∈ J ′1,

r′id1 + r∗,1i (d2 − d1), for all i ∈ J2 \ J ′1,

r′id1 + r∗,1i (d2 − d1) + r∗,2i (t− d2), for all i /∈ J ′1 ∪ J2,

for sufficiently large {ui}i∈J1∪J2
, where

r∗,2i = max

r′i −∑
j 6=i

Qjir
′
j +

∑
j 6=i, j /∈J ′1∪J2

Qjir
∗,2
j , 0

 ,
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for i /∈ J ′1 ∪ J2. Consider the fixed point equation that is given by

r̃∗,2i = max

r′i −
∑
j 6=i

Qjir
′
j +

∑
j 6=i

j /∈J1∪J2

Qjir̃
∗,2
j , 0

 , for i /∈ J1 ∪ J2. (2.7.19)

Since J1 ⊆ J1∪J2, by Result 2.6.4, we obtain that r̃∗,2k = 0, for every k ∈ J ′1\J1.

By making the convention that r∗,2k = 0 for k ∈ J ′1 \J1, we claim that r∗,2i = r̃∗,2i ,
for i /∈ J1 ∪ J2. Since J1 ∪ J2 ⊆ J , by Result 2.6.4, (2.7.19) and (2.6.6), we
conclude that z′ξ(t) ≤ ∂z(J ), for t ∈ [d2, d3). Iterating the same procedure m
more times, we can construct a ξ (by taking {ui}i∈J sufficiently large) such
that zξ is piecewise linear between neighboring discontinuity points. Moreover,
the increasing rate of zξ is less than ∂z(J ), i.e. z′ξ(t) ≤ ∂z(J ), for t ∈ [0, 1].
Therefore, we obtain that ∂z(J ) > a.

The last statement of Proposition 2.6.1 is a consequence of Result 2.6.4.

Proof of Proposition 2.6.2. Let the unique optimal solution of (2.6.8) be denoted
by (l∗1, . . . , l

∗
d). To prove that A is bounded away from

⋃
(l1,...,ld)∈I<l∗1 ,...,l∗d

d∏
i=1

Lli(µi),

it is sufficient to show that A = F−1[a,∞) is bounded away from
∏d
i=1 Lli(µi)

for all (l1, . . . , ld) ∈ I<l∗1 ,...,l∗d . To begin with, let (l1, . . . , ld) ∈ I<l∗1 ,...,l∗d . Under
Assumption 2.6.1 we have that ∂z(I) < a, where j ∈ I if and only if lj 6= 0.
Applying a similar approach as in the proof of Proposition 2.6.1, it can be shown

that F
(∏d

i=1 Lli(µi)
)
⊆ (−∞, ∂z(I)]. This implies that there exists δ > 0

satisfying

d

(
F

(
d∏
i=1

Lli(µi)

)
, [a,∞)

)
> δ. (2.7.20)

Moreover, by Result 2.6.1 we conclude that the mapping F as composition of
Lipschitz continuous mappings (for continuity of π1 see e.g. Theorem 12.5 in
[14]) is again Lipschitz continuous. Let KF denote the Lipschitz constant of F .

Combining this with (2.7.20) we conclude that d
(∏d

i=1 Lli(µi), F−1([a,∞))
)
>

δ/KF , hence the second statement is obtained by applying Result 2.2.2.
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Chapter 3

Ruin probabilities under
reinsurance treaties

3.1 Introduction

We consider the following ruin problem of the classical Cramér-Lundberg model
in risk theory; see e.g. [4]. Let {X1, X2, . . . } be a sequence of i.i.d. positive
random variables representing successive claim sizes that arrive according to a
homogeneous Poisson process N(t), t ≥ 0, with rate λ. Premiums are received
continuously at a constant rate p > λEX. We assume that there is also a
reinsurance agreement in place, where R(t) is the reinsured amount at time

t. More precisely, if S(t) =
∑N(t)
i=1 Xi is the aggregate claim amount at time

t and pD is the remaining premium for the insurer after reinsurance has been
purchased, then the aggregate loss minus premiums at time t for the insurer is
equal to S(t)− pDt−R(t). If u ≥ 0 is the initial capital, then the probability of
ruin before time T is defined as

ψ(u, T ) = P

(
sup

0≤t≤T
{S(t)− pDt−R(t)} > u

)
. (3.1.1)

We will restrict our attention to two forms of large claims reinsurance, namely
LCR and ECOMOR. In an LCR (largest claim reinsurance) contract (see e.g.
[3] for an early reference), the reinsurer agrees to cover the largest r claims,
where r ≥ 1 is a fixed number, while in an ECOMOR (excédent du coût moyen
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relatif) contract [113], the reinsurer covers the excess of the r largest claims over
the (r + 1)st largest claim; see [1] for more details on this type of reinsurance
contracts.

We assume that the distribution of the claim sizes belongs to a class of
distributions with a regularly varying tail, which is valid for many applications
[54]. It is well known that the principle of one big jump holds in the heavy-tailed
claim setting, i.e. ruin is typically caused by a single large claim. However, under
the presence of large claim reinsurance contracts, ruin probabilities are typically
harder to analyse because the largest claims are covered by the reinsurer and
thus multiple claims may be responsible for the event of ruin.

Several papers have studied properties of large claim reinsurance contracts.
For example, when claim sizes are light-tailed, the asymptotic tail behavior of
the reinsured amounts is considered in [72, 78] and their joint tail behavior in
[100]. For asymptotic properties of the reinsured amounts when the claim size
distribution is heavy-tailed, see [2, 85]. For dependence between claim sizes and
interarrival times in this context, see [86]. An interesting recent link between
large claim treaties and risk measures is given in [28]. However, none of these
contributions deal with the ruin probability, which is considered here.

In this chapter, we suggest to leverage recent new tools developed in the
context of sample-path large deviations for heavy-tailed stochastic processes
for the study of ruin problems under LCR and ECOMOR treaties. Concretely,
for a centered Lévy process Y (t), t ≥ 0, with regularly varying Lévy measure
ν, sample-path large deviations were developed in [105]. Consider the process
Ȳn = {Ȳn(t), t ∈ [0, 1]}, where Ȳn(t) = Y (nt)/n, t ≥ 0. Then, asymptotic
estimates of P(Ȳn ∈ A) for a large collection of sets A were derived. For Lévy
processes with only positive jumps that are regularly varying with index −α,
α > 1, these results take the form

CJ (A)(A
◦) ≤ lim inf

n→∞

P(Ȳn ∈ A)(
n · ν[n,∞)

)J (A)

≤ lim sup
n→∞

P(Ȳn ∈ A)(
n · ν[n,∞)

)J (A)
≤ CJ (A)(A

−), (3.1.2)

where A◦ and A− are the interior and closure of A, J (A) is interpreted as the
minimum number of jumps in the Lévy process that are needed to cause the
event A, and Cj is a measure. We will show how the reinsurance problem fits
in the above framework. For this, we resolve several technical challenges such
as showing how ruin probabilities in the reinsurance setting can be written as
continuous maps of the input process in a suitable Skorokhod space.
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Apart from the fact that reinsurance contracts are an interesting object of
study in their own right, the present application seems to be the first example
for which it is possible to compute the pre-factors in the asymptotics (3.1.2)
explicitly. More precisely, we show for both the LCR and ECOMOR treaty that
CJ (A)(A

◦) = CJ (A)(A
−) and we provide an explicit expression for this value.

The rest of the chapter is organised as follows. In Section 3.2, we provide some
preliminary results and introduce the necessary notation. Section 3.3 develops
the main result, i.e. the tail asymptotics for finite-time ruin probabilities. For
this, we are required to write (3.1.1) in terms of (3.1.2). This leads to the need
to show continuity of certain mappings, as well as several additional technical
requirements. In Section 3.4, we validate our asymptotic results with numerical
experiments.

3.2 Model description and preliminaries

Following the notation and terminology used in Section 3.1, let F denote the
distribution function of the claim sizes and EX be their expectation. We
assume that F is regularly varying with index −α, i.e. there exists a slowly
varying function L(x) such that F̄ (x) := 1 − F (x) = L(x)x−α, with α > 1.
Let further X?

1,N(t) ≥ X?
2,N(t) ≥ · · · ≥ X?

N(t),N(t) denote the order statistics of
X1, X2, . . . XN(t).

In an LCR treaty, the reinsured amount R(t) is equal to

Lr(t) :=

r∑
i=1

X?
i,N(t), (3.2.1)

i.e. the r largest claims are paid by the reinsurer. On the other hand, the
reinsured amount R(t) in an ECOMOR treaty takes the form

Er(t) :=

r∑
i=1

X?
i,N(t) − rX

?
r+1,N(t) =

N(t)∑
i=1

(
Xi −X?

r+1,N(t)

)
+
. (3.2.2)

That is, the ECOMOR constitutes an excess-of-loss treaty with a random
retention, and the latter is the (r + 1)st-largest claim. For more details and
background on such reinsurance contracts, see [1]. In either treaty, the number
of reinsured claims is equal to r.

Assumption 3.2.1. If N(t) ≤ r, we set X?
i,N(t) = 0, for i = N(t) + 1, . . . , r+ 1.

This means that in case there are less than r + 1 claims, the reinsurer pays all
the claims in the ECOMOR treaty.
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Another modeling assumption is concerned with the way the reinsurance is
affecting the capital position of the insurance company under consideration.

Assumption 3.2.2. We assume that at each time t, the currently applicable
reinsured amount R(t) is considered in the determination of the available surplus.
In particular, this means that before the arrival of the (r+1)-st claim, the random
retention in the ECOMOR treaty is considered to be zero. As a consequence in
the ECOMOR treaty, the arrival of a new claim can lead to a modification of
R(t) of either sign, as the excess over the (r + 1)-st claim may also decrease.

Note also that the setup we study here is that the duration of the reinsurance
contract is T , and the implied premium for the reinsurance contract over the
period [0, T ] is uniformly spread over this time interval. We will study the
asymptotic behavior of the finite-time ruin probabilities (3.1.1) utilizing (3.1.2).
Therefore, we formulate in the next section the large deviations problem that
arises in our reinsurance context.

3.2.1 Large deviations in reinsurance

In [105], the large deviations results in (3.1.2) were derived in the Skorokhod J1

topology. Correspondingly, we let D = D([0, 1],R) be a Skorokhod space, i.e. a
space of real-valued càdlàg (right continuous with left limits) functions on [0, 1],
equipped with the J1-metric defined by

d(ξ, ζ) = inf
h∈Λ
{‖h− id‖ ∨ ‖ξ − ζ ◦ h‖}, (ξ, ζ) ∈ D2, (3.2.3)

where Λ denotes the set of all strictly increasing continuous bijections from [0, 1]
to itself, id denotes the identity mapping, and ‖ · ‖ denotes the uniform (sup)
norm on [0, 1]. Thus, A and Cj in (3.1.2) are a measurable set and a measure
on D, respectively. Furthermore, if φ : D → R is a continuous functional on D
and B ∈ B(R) is a Borel set such that A = φ−1(B), where φ−1 stands for the
inverse of φ, it holds that

P
(
φ(Ȳn) ∈ B

)
= P

(
Ȳn ∈ φ−1(B)

)
= P(Ȳn ∈ A). (3.2.4)

The above relation portrays how it is possible to use the result (3.1.2) to
study continuous functionals of Ȳn. To connect this to our ruin problem, we
define S̄n := {S̄n(t), t ∈ [0, 1]} as the centred and scaled process

S̄n(t) =
1

n
S(nt)− λEXt =

1

n

N(nt)∑
i=1

Xi − λEXt, t ≥ 0. (3.2.5)
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CHAPTER 3. RUIN PROBABILITIES UNDER REINSURANCE TREATIES

Moreover, we assume that the capital u increases linearly in n, i.e. there exists
an a > 0 such that u = na. We now formulate the large deviations problem to
estimate the probabilities

P

(
sup
t∈[0,1]

{S(nt)− pDnt−R(nt)} ≥ na

)

= P

(
sup
t∈[0,1]

{S(nt)− λEXnt− (pD − λEX)nt−R(nt)} ≥ na

)

= P

(
sup
t∈[0,1]

{nS̄n(t)− cnt−R(nt)} ≥ na

)

= P

(
sup
t∈[0,1]

{S̄n(t)− ct− 1

n
R(nt)} ≥ a

)
, (3.2.6)

where c = pD − λEX. As a next step, we must identify a continuous functional
φ such that

sup
t∈[0,1]

{S̄n(t)− ct− 1

n
R(nt)} = φ(S̄n), (3.2.7)

so that we can write

P

(
sup
t∈[0,1]

{S̄n(t)−ct− 1

n
R(nt)} ≥ a

)
= P

(
φ(S̄n) ≥ a

)
= P

(
S̄n ∈ φ−1

(
[a,∞)

))
.

(3.2.8)
However, it is not immediately obvious from (3.2.7) what the functional φ

looks like because R(nt) is not expressed in terms of S̄n. We focus first on the
LCR treaty and observe that

1

n
R(nt) =

1

n
Lr(nt) =

1

n

r∑
i=1

X?
i,N(nt)

= max
(s1,...,sr)∈[0,t]r

si 6=sj ,∀i 6=j

r∑
i=1

(
S̄n(si)− S̄n(s−i )

)
, t ∈ [0, 1],

i.e. Lr(nt)/n can be expressed as the sum of the r biggest jumps of the process
S̄n(t). For every ξ ∈ D and m ∈ N, we define

Jmξ (t) = sup
(s1,...,sm)∈[0,t]m

si 6=sj ,∀i 6=j

m∑
i=1

(
ξ(si)− ξ(s−i )

)
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= max
(s1,...,sm)∈[0,t]m

si 6=sj ,∀i 6=j

m∑
i=1

(
ξ(si)− ξ(s−i )

)
, for t ∈ (0, 1], (3.2.9)

as the supremum of the sum of the m largest jumps of the function ξ. Naturally,
Jmξ (0) = 0. Consequently, the functional φ we are looking for is a mapping
φr : D → R defined for every ξ ∈ D as

φr(ξ) = sup
t∈[0,1]

{
ξ(t)− ct− Jrξ(t)

}
. (3.2.10)

Moreover, we denote the pre-image of [a,∞) under φr as Arc,a = φ−1
r

(
[a,∞)

)
where

Arc,a =

{
ξ ∈ D : sup

t∈[0,1]

{
ξ(t)− ct− Jrξ(t)

}
≥ a

}
. (3.2.11)

We next discuss the extension to ECOMOR treaties. By comparing (3.2.1)
and (3.2.2), we observe that the relation between the reinsured amounts of the
two treaties is

Er(t) = Lr(t)− rX?
r+1,N(t) = (r + 1)Lr(t)− r

(
Lr(t) +X?

r+1,N(t)

)
= (r + 1)Lr(t)− rLr+1(t).

Thus, in the ECOMOR treaty, the functional φ in (3.2.8) is the mapping
ϕr : D → R defined for every ξ ∈ D as

ϕr(ξ) = sup
t∈[0,1]

{
ξ(t)− ct− (r + 1)Jrξ(t) + rJr+1

ξ (t)
}
, (3.2.12)

while the pre-image of [a,∞) under ϕr, i.e. Arc,a = ϕ−1
r

(
[a,∞)

)
, is defined as

Arc,a =

{
ξ ∈ D : sup

t∈[0,1]

{
ξ(t)− ct− (r + 1)Jrξ(t) + rJr+1

ξ (t)
}
≥ a

}
. (3.2.13)

3.2.2 Preliminaries on the Skorokhod topology and nota-
tion

Consider the complete metric space
(
D, d(, )

)
. The functional Jmξ (t) defined

in (3.2.9) will play a significant role in the forthcoming analysis. Thus, it is
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important to confirm that it is well-defined. For this reason, let D(ξ) be the set
of discontinuities of ξ ∈ D, i.e.

D(ξ) = {t ∈ [0, 1] : ξ(t−) 6= ξ(t)}, (3.2.14)

and let D(ξ, ε) be the set of discontinuities of magnitude at least ε, i.e.

D(ξ, ε) = {t ∈ [0, 1] :
∣∣ξ(t−)− ξ(t)

∣∣ ≥ ε}. (3.2.15)

The following result is standard.

Lemma 3.2.1 (Theorem 12.2.1 and Corollary 12.2.1 of [117]). For any ξ ∈ D
and ε > 0, D(ξ, ε) is a finite subset of [0, 1]. In particular, D(ξ) is either finite
or countably infinite.

Consequently, the supremum in (3.2.9) is attained because only finitely many
jumps can exceed a given positive number. As a result, Jmξ (t) is well-defined.

Some important subspaces of D for our analysis are those restricted to
step functions. We let D↑S be the set of all non-decreasing step functions
vanishing at the origin. Furthermore, Dj is the subspace of D consisting of
non-decreasing step functions, vanishing at the origin, with exactly j steps, and
similarly, D6j =

⋃
0≤i≤j Di consists of non-decreasing step functions, vanishing

at the origin, with at most j steps. Finally, if D+(ξ) denotes the number of
discontinuities of ξ ∈ D, we can then formally define the integer-valued set
function J (A) appearing in (3.1.2) by

J (A) = inf
ξ∈A∩D↑S

D+(ξ), (3.2.16)

which we call the rate function. Observe that every ξ ∈ Dj is determined

by the pair of jump sizes and jump times (x,u) ∈ Rj+ × [0, 1]j , i.e. ξ(t) =∑j
i=1 xi1{ui,1}(t), where 1B is the indicator function on the set B. For x =

(x1, . . . , xj) and u = (u1, . . . , uj), we define the sets

R
j↓
+ = {x ∈ Rj+ : x1 ≥ x2 ≥ · · · ≥ xj > 0}, (3.2.17)

and

Sj = {(x,u) ∈ Rj↓+ × (0, 1)j : u1, . . . , uj are all distinct}, (3.2.18)

where the uj ’s are not following the ordering of the xj ’s, i.e. xk ≥ xl 6⇒ uk ≥
ul. Thus, we can formally define the mapping Tj : Sj → Dj by Tj(x,u) =∑j
i=1 xi1{ui,1}.
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Furthermore, let να(x,∞) = x−α (i.e. the pure power decay part of the

regularly varying claim sizes), and let νjα denote the restriction to Rj↓+ of the j-
fold product measure of να. We define for each j ≥ 1 the measure Cj concentrated
on Dj as

Cj(•) = E
[
νjα{y ∈ R

j
+ :

j∑
i=1

yi1{Ui,1} ∈ •}
]
, (3.2.19)

where the random variables Ui, i = 1, . . . , j, are i.i.d. uniform on [0, 1].
Finally, we say that a set A ⊆ D is bounded away from another set B ⊆ D if

infx∈A,y∈B d(x, y) > 0. Additionally, we let δA = {ξ ∈ D : d(ξ, A) ≤ δ} for any
δ > 0.

3.3 Main result

Note that the parameter c = pD − λEX introduced in (3.2.1) can be either
positive or negative. However, for a ≤ −c, the rare event probability in (3.2.8)
converges to one by the functional law of large numbers. For this reason, we
focus only on the case c+ a > 0. Letting

2F 1(b, e; d; z) =

+∞∑
k=0

(b)k(e)k
(d)k

zk

k!

be the hypergeometric function, with (b)k = b(b+ 1) . . . (b+ k − 1) denoting the
Pochhammer symbol, we have the following theorem.

Theorem 3.3.1. For a > 0, c+ a > 0, and r ∈ N, it holds that

ψ(na, n) ∼ Cr+1

(
λL(n)

)r+1
n−(r+1)(α−1), n→∞, (3.3.1)

where

Cr+1 =

[
a−(r+1)α

2F 1[r + 1, (r + 1)α; r + 2;−c/a] · 1{c>0}

+(a+ c)−(r+1)α · 1{c<0}

]
× 1

(r + 1)!

×

{
1, if R(t) = Lr(t) (LCR),

(r + 1)(r+1)α, if R(t) = Er(t) (ECOMOR).
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The proof of (3.3.1) is based on sample-path large-deviations results developed
in [105]. Specifically, Theorems 3.1–3.2 in [105] provide the conditions under
which the result (3.1.2) holds, and in addition the lim inf and lim sup are equal.
Thus, to achieve our goal, we must verify that these conditions are satisfied for
Ȳn = S̄n and A = Arc,a (LCR) or A = Arc,a (ECOMOR) defined in (3.2.11) and
(3.2.13), respectively. However, their verification is rather involved. Hence, to
make the proof of (3.3.1) more accessible, we split it in various steps after the
aforementioned conditions and we provide additional explanations for each step.

Note that all of the forthcoming results are similar in the two treaties with
possible deviations in small details. Therefore, we will first prove them for the
LCR treaty and then show briefly how they can be extended to the ECOMOR
treaty.

3.3.1 Proof of Theorem 3.3.1

The first step is to show that both mappings φr, ϕr : D → R from Equa-
tions (3.2.10) and (3.2.12), respectively, are Lipschitz continuous. Due to their
continuity, Equation (3.2.8) will hold and, consequently, we will be able to write
P
(
φr(S̄n) ≥ a

)
= P(S̄n ∈ Arc,a) and P

(
ϕr(S̄n) ≥ a

)
= P(S̄n ∈ Arc,a). For this,

we need the following intermediate result.

Lemma 3.3.1. For every (ξ, ζ) ∈ D2, m ∈ N, and h ∈ Λ, it holds that∣∣Jmζ◦h(t)− Jmξ (t)
∣∣ ≤ 2m‖ξ − ζ ◦ h‖, ∀t ∈ [0, 1]. (3.3.2)

Proof. By the definition of Jmζ◦h(t), there exists (σ1, . . . , σm) ∈ [0, t]m with
σi 6= σj for all i 6= j, such that

Jmζ◦h(t) =

m∑
i=1

(
ζ ◦ h(σi)− ζ ◦ h(σ−i )

)
. (3.3.3)

In addition, we have that

Jmξ (t) = max
(s1,...,sm)∈[0,t]m

si 6=sj ,∀i6=j

m∑
i=1

(
ξ(si)− ξ(s−i )

)
≥

m∑
i=1

(
ξ(σi)− ξ(σ−i )

)
. (3.3.4)

Subtracting now Equations (3.3.3) and (3.3.4), we obtain

Jmζ◦h(t)− Jmξ (t) ≤
m∑
i=1

(
ζ ◦ h(σi)− ζ ◦ h(σ−i )− ξ(σi) + ξ(σ−i )

)
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≤
m∑
i=1

(
|ζ ◦ h(σi)− ξ(σi)|+

∣∣ζ ◦ h(σ−i )− ξ(σ−i )
∣∣ )

≤ 2m‖ξ − ζ ◦ h‖.

Following similar arguments, we can also show that Jmξ (t)− Jmζ◦h(t) ≤ 2m‖ξ −
ζ ◦ h‖, which completes the proof.

We are now ready to establish the desired continuity.

Lemma 3.3.2 (Lipschitz continuity of the mapping). The mappings φr, ϕr :
D → R defined by (3.2.10) and (3.2.12), respectively, are Lipschitz continuous
w.r.t. J1. More precisely, there exist K ∈ [0, |c|+ 2r + 1] and L ∈ [0, |c|+ 4r2 +
4r + 1] such that |φr(ξ)− φr(ζ)| ≤ Kd(ξ, ζ) and |ϕr(ξ)− ϕr(ζ)| ≤ Ld(ξ, ζ), for
all (ξ, ζ) ∈ D2.

Proof. W.l.o.g. we assume that φr(ξ) ≥ φr(ζ), otherwise we switch the roles of
ξ and ζ. For every ε > 0, there exists t∗ ∈ [0, 1] such that

ξ(t∗)− ct∗ − Jrξ(t∗) > φr(ξ)− ε. (3.3.5)

On the other hand, by the definition of J1, there exists h = h(ξ, ζ, ε) ∈ Λ so that

d(ξ, ζ) + ε = ‖h− id‖ ∨ ‖ξ − ζ ◦ h‖ ≥
(
h(t∗)− t∗

)
∨
(
ξ(t∗)− ζ ◦ h(t∗)

)
. (3.3.6)

Furthermore, using the fact that h is a homeomorphism on [0, 1], we obtain

ζ ◦ h(t∗)− ch(t∗)− Jrζ◦h(t∗)

= ζ ◦ h(t∗)− ch(t∗)− max
(s1,...,sr)∈[0,t∗]

r

si 6=sj ,∀i 6=j

r∑
i=1

(
ζ ◦ h(si)− ζ ◦ h(s−i )

)
= ζ
(
h(t∗)

)
− ch(t∗)− max

(s1,...,sr)∈[0,h(t∗)]
r

si 6=sj ,∀i 6=j

r∑
i=1

(
ζ(si)− ζ(s−i )

)
= ζ
(
h(t∗)

)
− ch(t∗)− Jrζ(h(t∗)) ≤ φr(ζ). (3.3.7)

Subtracting (3.3.7) from (3.3.5) yields

φr(ξ)− φr(ζ) < ε+
(
ξ(t∗)− ζ ◦ h(t∗)

)
+ c
(
h(t∗)− t∗

)
+
(
Jrζ◦h(t∗)− Jrξ(t∗)

)
< ε+

(
d(ξ, ζ) + ε

)
+ |c|

(
d(ξ, ζ) + ε

)
+ 2r

(
d(ξ, ζ) + ε

)
= (2 + |c|+ 2r)ε+ (1 + |c|+ 2r)d(ξ, ζ),
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where we have also used (3.3.6) and Jrζ◦h(t∗) − Jrξ(t∗) ≤ 2r‖ξ − ζ ◦ h‖ by
applying Lemma 3.3.1 with t = t∗ and m = r. Letting ε → 0, we conclude
that φr(ξ) − φr(ζ) ≤ (1 + |c|+ 2r)d(ξ, ζ), i.e. φr is Lipschitz continuous. The
Lipschitz continuity for the ϕr mapping can be shown in an analogous manner.
More precisely, for every ε > 0, there exists t∗ ∈ [0, 1] such that

ξ(t∗)− ct∗ − (r + 1)Jrξ(t∗) + rJr+1
ξ (t∗) > ϕr(ξ)− ε. (3.3.8)

For a homeomorphism h on [0, 1] satisfying (3.3.6), we have

ζ ◦ h(t∗)− ch(t∗)− (r + 1)Jrζ◦h(t∗) + rJr+1
ζ◦h (t∗)

= ζ
(
h(t∗)

)
− ch(t∗)− (r + 1)Jrζ(h(t∗)) + rJr+1

ζ (h(t∗)) ≤ ϕr(ζ). (3.3.9)

We assume now w.l.o.g. that ϕr(ξ) ≥ ϕr(ζ) and we subtract (3.3.9) from (3.3.8)
to obtain

ϕr(ξ)− ϕr(ζ) < ε+
(
ξ(t∗)− ζ ◦ h(t∗)

)
+ c
(
h(t∗)− t∗

)
+ (r + 1)

(
Jrζ◦h(t∗)− Jrξ(t∗)

)
+ r
(
Jr+1
ξ (t∗)− Jr+1

ζ◦h (t∗)
)

<
(
2 + |c|+ 4r(r + 1)

)
ε+

(
1 + |c|+ 4r(r + 1)

)
d(ξ, ζ),

where we have also used (3.3.6) and Lemma 3.3.1 twice with m = r, r + 1 and
t = t∗. Letting ε→ 0, the result is immediate.

As a next step, we calculate the rate functions J (Arc,a) and J (Arc,a) that
appear in (3.1.2) and are formally defined in (3.2.16). We set for simplicity
c+ = max{0, c} and c− = max{0,−c}.

Lemma 3.3.3 (Evaluation of the rate function). The rate function defined by
(3.2.16) is equal to r + 1 in both treaties, i.e.

J (Arc,a) = J (Arc,a) = r + 1.

Proof. We need to show first that J (Arc,a) cannot take any value smaller than

or equal to r. Let us assume on the contrary that ξ ∈ Arc,a ∩ D
↑
S such that

D+(ξ) = k ≤ r. This means that ξ =
∑
i≤k xi1{ui,1}, with x1 ≥ x2 ≥ . . . xk > 0

and {0, u1, u2, . . . , uk, 1} all distinct. By taking into account Assumptions 3.2.1,
3.2.2, we calculate

φr(ξ) = sup
t∈[0,1]

{
ξ(t)− ct− Jrξ(t)

}
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= sup
t∈[0,1]

{ k∑
i=1

xi1{ui,1}(t)− ct−
k∑
i=1

xi1{ui,1}(t)
}

= c−,

which states that ξ 6∈ Arc,a because φr(ξ) = c− 6≥ a. As a result, J (Arc,a) 6= k,
for all k ≤ r.

Let us assume now that ξ ∈ Arc,a ∩ D
↑
S such that D+(ξ) = r + 1, i.e. ξ =∑r+1

i=1 xi1{ui,1}, with x1 ≥ x2 ≥ . . . xr+1 > 0 and {0, u1, u2, . . . , ur+1, 1} all
distinct. To calculate φr(ξ), observe first that

ξ(t)− Jrξ(t) =

r+1∑
i=1

xi1{ui,1}(t)− Jrξ(t) =

{
0, t < max{u1, . . . , ur+1}
xr+1, t ≥ max{u1, . . . , ur+1}

,

(3.3.10)
because all the claims are “absorbed” according to Assumption 3.2.2 before the
arrival of the (r + 1)st claim, which happens at time t∗ = max{u1, . . . , ur+1}.
Thus, we can write

φr(ξ) = sup
t∈[0,1]

{
ξ(t)− ct− Jrξ(t)

}
= sup
t∈[0,1]

{
xr+1

r+1∏
i=1

1{ui,1}(t)− ct
}

= xr+1 − c+ max{u1, . . . , ur+1}+ c−,

since xr+1

∏r+1
i=1 1{ui,1}(t) remains fixed at the value xr+1 from

t∗ = max{u1, . . . , ur+1}

onwards, while −ct decreases or increases depending on the value of c. Due to
the fact that ξ ∈ Arc,a, we get

φr(ξ) ≥ a⇒ xr+1 ≥ a+ c+ max{u1, . . . , ur+1} − c− ≥ a− c− > 0,

i.e. Arc,a ∩D
↑
S 6= ∅ but contains all step functions with r + 1 steps such that the

(r + 1)st largest step satisfies: xr+1 ≥ a + c+ max{u1, . . . , ur+1} − c−. Thus,
J (Arc,a) = r + 1.

The proof for J (Arc,a) = r + 1 in the ECOMOR treaty is similar. More

precisely, it can easily be shown that there does not exist ξ ∈ Arc,a ∩D
↑
S with

D+(ξ) = k ≤ r. Consequently, J (Arc,a) 6= k, k ≤ r. Let us assume next

that ξ ∈ Arc,a ∩ D
↑
S such that D+(ξ) = r + 1, i.e. ξ =

∑r+1
i=1 xi1{ui,1}, with

x1 ≥ x2 ≥ . . . xr+1 > 0 and {0, u1, u2, . . . , ur+1, 1} all distinct. It holds that

rJr+1
ξ (t)− (r+ 1)Jrξ(t) = −Jrξ(t) +

{
0, t < max{u1, . . . , ur+1}
rxr+1, t ≥ max{u1, . . . , ur+1}

, (3.3.11)
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due to Assumption 3.2.1. By combining (3.3.10) and (3.3.11), we calculate

ϕr(ξ) = sup
t∈[0,1]

{
ξ(t)− ct− (r + 1)Jrξ(t) + rJr+1

ξ (t)
}

= sup
t∈[0,1]

{
(r + 1)xr+1

r+1∏
i=1

1{ui,1}(t)− ct
}

= (r + 1)xr+1 − c+ max{u1, . . . , ur+1}+ c−.

Since ξ ∈ Arc,a, we get ϕr(ξ) ≥ a⇒ (r+1)xr+1 ≥ a+c+ max{u1, . . . , ur+1}−c−,

i.e. Arc,a ∩D
↑
S 6= ∅ but contains all step functions with r + 1 steps such that the

(r + 1)st largest step satisfies

xr+1 ≥
(
a+ c+ max{u1, . . . , ur+1} − c−

)
/(r + 1).

Thus, J (Arc,a) = r + 1, and the proof is complete.

Remark 3.1. The above lemma not only gives the value of the rate function, but
it also provides the form of the minimal ξ that belongs to the sets Arc,a and Arc,a,
i.e. all step functions with r + 1 steps such that their (r + 1)st greatest step is
greater than or equal to the value a + c+ max{u1, . . . , ur+1} − c− in the LCR
treaty and the value (a+ c+ max{u1, . . . , ur+1} − c−)/(r + 1) in the ECOMOR
treaty.

An essential condition of Theorem 3.2 in [105] is that the sets
δ
Arc,a∩D6J (Arc,a)

and
δ
Arc,a ∩ D6J (Arc,a) are bounded away from D6J (Arc,a)−1 and D6J (Arc,a)−1,

respectively. Verifying this condition allows us then to derive the result (3.1.2)
for both treaties. We can directly use the value of the rate function in the
following result due to Lemma 3.3.3.

Lemma 3.3.4 (Bounded away property). The sets
δ
Arc,a ∩D6r+1 and

δ
Arc,a ∩

D6r+1 are bounded away from D6r for some δ > 0.

Proof. To simplify the notation in the proof, we write A instead of Arc,a and A
instead of Arc,a, while the notation δA, δA follows naturally.

We start by showing that δA ∩D6r+1 is bounded away from D6r for some
δ > 0. Thanks to Lemma 3.3.1, we have that δA ⊂ A(δ), where A(δ) =
φ−1
r

(
[a − (|c|+ 2r + 1)δ,∞)

)
. Hence, it suffices to show that A(δ) ∩D6r+1 is

bounded away from D6r. Let ξ ∈ A(δ)∩D6r+1. Since ξ ∈ D6r+1, we can write

ξ =
∑r+1
i=1 xi1{ui,1} with x1 ≥ x2 ≥ · · · ≥ xr+1 ≥ 0, for which it holds that
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φr(ξ) ≤ xr+1− c+ max{u1, . . . , ur+1}+ c− ≤ xr+1 + c− according to the proof of
Lemma 3.3.3. Furthermore, ξ ∈ A(δ)⇔ φr(ξ) ≥ a− (|c|+ 2r + 1)δ. Combining
the two inequalities, we obtain that xr+1 ≥ (a−c−)−(|c|+2r+1)δ ≥ (a−c−)/2,
for δ ≤ (a− c−)/2(|c|+ 2r+ 1). In other words, for δ ≤ (a− c−)/2(|c|+ 2r+ 1),
ξ ∈ A(δ) ∩ Dr+1 ⊂ A(δ) ∩ D6r+1 with jump sizes bounded from below by
(a− c−)/2, which implies that A(δ) ∩D6r+1 is bounded away from D6r .

In a similar manner, it suffices to show that A(δ) ∩D6r+1 is bounded away

from D6r, where A(δ) = ϕ−1
r

(
[a−(|c|+4r2+4r+1)δ,∞)

)
. Let ξ ∈ A(δ)∩D6r+1.

Since ξ ∈ D6r+1, we can write ξ =
∑r+1
i=1 xi1{ui,1} with x1 ≥ x2 ≥ · · · ≥ xr+1 ≥

0, for which it holds that ϕr(ξ) ≤ (r + 1)xr+1 − c+ max{u1, . . . , ur+1}+ c− ≤
(r + 1)xr+1 + c−. Furthermore, ξ ∈ A(δ) ⇔ ϕr(ξ) ≥ a − (|c|+ 4r2 + 4r + 1)δ.
Combining the two inequalities, we obtain that (r+1)xr+1 ≥ (a−c−)−(|c|+4r2+
4r+ 1)δ ≥ (a− c−)/2, for δ ≤ (a− c−)/2(|c|+ 4r2 + 4r+ 1). In other words, the
jump sizes of ξ are bounded from below by (a− c−)/2(r+ 1), which implies that
A(δ) ∩D6r+1 is bounded away from D6r for δ ≤ (a− c−)/2(|c|+ 4r2 + 4r + 1),
and the proof is complete.

Let CLr+1:= Cr+1(Arc,a) and CEr+1:= Cr+1(Arc,a). According to Section 3.1 in
[105], the lim inf and lim sup in (3.1.2) yield the same result when

CJ (A)(A
◦) = CJ (A)(A) = CJ (A)(A

−).

However, the above equality holds when the set A is CJ (A)-continuous, i.e.
CJ (A)(∂A) = 0, where the boundary ∂A = A− \A◦ of a set A is the closure of
A without its interior. We prove in the next lemma that the sets Arc,a and Arc,a
are both Cr+1-continuous.

Lemma 3.3.5 (Equality of the limits). The sets Arc,a and Arc,a are Cr+1-
continuous, i.e. Cr+1(∂Arc,a) = Cr+1(∂Arc,a) = 0.

Proof. To simplify the notation in the proof, we write again A instead of Arc,a
and A instead of Arc,a, while the notation A◦, A◦, A−, A− follows naturally.

We start by showing the Cr+1-continuity of A. In line with the notation
introduced in Section 3.2.2, we consider the function T−1

r+1 : Dr+1 → Sr+1 such
that

T−1
r+1 (A◦) = T−1

r+1

(
φ−1
r

(
(a,∞)

))
=
{

(x,u) ∈ Sr+1 : xr+1 > a+ c+ max{u1, . . . , ur+1} − c−
}
,

T−1
r+1

(
A−
)

= T−1
r+1

(
φ−1
r

(
[a,∞)

))
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=
{

(x,u) ∈ Sr+1 : xr+1 ≥ a+ c+ max{u1, . . . , ur+1} − c−
}
.

Obviously, the set T−1
r+1 (A−) \T−1

r+1 (A◦) has zero Lebesgue measure. Combining
this with A◦ ⊆ A ⊆ A− and φr being a continuous function, we conclude that
Cr+1(∂A) = 0, i.e. A is Cr+1-continuous. To prove the Cr+1-continuity of A, it
suffices to observe that the set T−1

r+1 (A−)\T−1
r+1 (A◦) has zero Lebesgue measure,

where

T−1
r+1 (A◦)

=
{

(x,u) ∈ Sr+1 : xr+1 >
(
a+ c+ max{u1, . . . , ur+1} − c−

)
/(r + 1)

}
,

T−1
r+1

(
A−
)

=
{

(x,u) ∈ Sr+1 : xr+1 ≥
(
a+ c+ max{u1, . . . , ur+1} − c−

)
/(r + 1)

}
,

which follows by the same reasoning.

We calculate now the pre-constants CJ (Arc,a)(A
r
c,a) and CJ (Arc,a)(Arc,a).

Lemma 3.3.6 (Calculation of the pre-constant). The constants CLr+1 and CEr+1

are given by

CLr+1 =
1

(r + 1)!
×

{
a−(r+1)α · 2F 1[r + 1, (r + 1)α; r + 2;−c/a], c > 0,

(a+ c)−(r+1)α, c < 0.

CEr+1 =
(r + 1)(r+1)α

(r + 1)!
×

{
a−(r+1)α · 2F 1[r + 1, (r + 1)α; r + 2;−c/a], c > 0,

(a+ c)−(r+1)α, c < 0.

Proof. Recall that CLr+1:= Cr+1(Arc,a) and CEr+1:= Cr+1(Arc,a). To calculate these
constants, we use the definition of the measure Cr+1(•) in (3.2.19). We start
with CLr+1. It is known that for U1, . . . , Ur+1 ∼ U(0, 1), the distribution of the r.v.
max{U1, . . . , Ur+1} is given by the formula P(max{U1, . . . , Ur+1 ≤ t) = tr+1.

Furthermore, by using that
∫ +∞
b

αy−nα−1dy = b−nα/n with b > 0, we recursively
calculate the following multiple integrals for n ∈ N and positive yi’s

In =

∫
y1≥···≥yn+1

n∏
i=1

αy−α−1
i dy1 . . . dyn
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=

+∞∫
yn=yn+1

+∞∫
yn−1=yn

· · ·
+∞∫

y2=y3

n∏
i=2

αy−α−1
i

( +∞∫
y1=y2

αy−α−1
1 dy1

)
︸ ︷︷ ︸

=y−α2

dy2 . . . dyn

=

+∞∫
yn=yn+1

· · ·
+∞∫

y3=y4

n∏
i=3

αy−α−1
i

( +∞∫
y2=y3

αy−2α−1
2 dy2

)
︸ ︷︷ ︸

=y−2α
3 /2

dy3 . . . dyn

= · · · = 1

n!
(yn+1)−nα.

Consequently, in case c > 0, we obtain by virtue of Remark 3.1

CLr+1 = E
[
νr+1
α {y ∈ Rr+1

+ :

r+1∑
i=1

yi1{Ui,1} ∈ A
r
c,a}
]

= E

 ∫
y1≥···≥yr+1>0

r+1∏
i=1

αy−α−1
i 1{yr+1≥a+cmax{U1,...,Ur+1}}dy1 . . . dyr+1


=

∫
t∈[0,1]

∫
y1≥···≥yr+1>0

r+1∏
i=1

αy−α−1
i 1{yr+1≥a+ct}(r + 1)trdy1 . . . dyr+1dt

=

∫
t∈[0,1]

∫
yr+1>0

Irαy−α−1
r+1 1{yr+1≥a+ct}(r + 1)trdyr+1dt

=

∫
t∈[0,1]

+∞∫
yr+1=a+ct

1

r!
(yr+1)−rααy−α−1

r+1 (r + 1)trdyr+1dt

=
r + 1

r!

1∫
0

tr

( +∞∫
a+ct

α(yr+1)−(r+1)α−1dyr+1

)
dt =

1

r!

1∫
0

tr(a+ ct)−(r+1)αdt

=
a−(r+1)α

(r + 1)!
· 2F 1[r + 1, (r + 1)α; r + 2;−c/a].
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Analogously, we find

CEr+1 = E
[
νr+1
α {y ∈ Rr+1

+ :

r+1∑
i=1

yi1{Ui,1} ∈ A
r
c,a}
]

=

∫
y1≥···≥yr+1>0

r+1∏
i=1

αy−α−1
i 1{yr+1≥(a+cmax{U1,...,Ur+1})/(r+1)}dy1 . . . dyr+1

=

∫
t∈[0,1]

∫
yr+1>0

Irαy−α−1
r+1 1{yr+1≥(a+ct)/(r+1)}(r + 1)trdyr+1dt

=
1

r!

1∫
0

tr
(
a+ ct

r + 1

)−(r+1)α

dt = (r + 1)(r+1)α 1

r!

1∫
0

tr(a+ ct)−(r+1)αdt

= (r + 1)(r+1)α a
−(r+1)α

(r + 1)!
· 2F 1[r + 1, (r + 1)α; r + 2;−c/a].

In case c < 0, the coefficients simplify to

CLr+1 = E

 ∫
y1≥···≥yr+1>0

r+1∏
i=1

αy−α−1
i 1{yr+1≥a+c}dy1 . . . dyr+1


=

+∞∫
a+c

Irαy−α−1
r+1 dyr+1 = . . . =

1

(r + 1)!
(a+ c)−(r+1)α, and

CEr+1 = (r + 1)(r+1)α 1

(r + 1)!
(a+ c)−(r+1)α.

Remark 3.2. When c > 0, the coefficients CLr+1 and CEr+1 can be equivalently
expressed in terms of finite sums involving the Gamma function. More precisely,
by applying r times integration by parts, we calculate for k > r + 1 that

1

r!

∫
tr(a+ ct)−kdt =

r+1∑
m=1

(−1)m+1tr+1−m

(r + 1−m)!

(a+ ct)m−k

cm
∏m
j=1(j − k)

=

r+1∑
m=1

(−1)m+1tr+1−m

(r + 1−m)!

(a+ ct)m−k

cm(1− k)m
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=−
r+1∑
m=1

tr+1−m

(r + 1−m)!

(a+ ct)m−k

cm(k −m)m
,

and hence,

1

r!

1∫
0

tr(a+ ct)−kdt =
ar+1−k

cr+1(k − r − 1)r+1
−

r+1∑
m=1

(a+ c)m−k

(r + 1−m)!cm(k −m)m
,

where (b)k = Γ(b+ k)/Γ(b) is again the Pochhammer symbol. Thus,

CLr+1 =
a−(r+1)(α−1)Γ

(
(r + 1)α

)
cr+1Γ

(
(r + 1)(α− 1)

) − r+1∑
m=1

(a+ c)m−(r+1)αΓ
(
(r + 1)α

)
(r + 1−m)!cmΓ

(
(r + 1)α−m

) ,
CEr+1 = (r + 1)(r+1)α

(
a−(r+1)(α−1)Γ

(
(r + 1)α

)
cr+1Γ

(
(r + 1)(α− 1)

)
−

r+1∑
m=1

(a+ c)m−(r+1)αΓ
(
(r + 1)α

)
(r + 1−m)!cmΓ

(
(r + 1)α−m

)).
Remark 3.3. In the absence of reinsurance (r = 0), the pre-constant simplifies to

a−α+1 − (a+ c)−α+1

c(α− 1)
,

which can also be derived from existing results, see e.g. [6, 53].

Finally, we know from [84] that the compound Poisson aggregate claim process

S(t) =
∑N(t)
i=1 Xi is a special Lévy process with Lévy measure ν(dx) = λF (dx),

which means that n · ν[n,∞) = λnF̄ (n) = λL(n)n−α+1, n ∈ N. We conclude
the proof of Theorem 3.3.1 by combining this result with Lemma 3.3.6 to obtain
the expression (3.3.1).

3.4 Numerical implementations

Our primary goal in this section is to verify our asymptotic approximations
in Theorem 3.3.1 via numerical illustration. For this purpose, we employ the
importance sampling scheme developed in Chapter 2 that is proved to be strongly
efficient in the current setting.
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We use a shifted Pareto distribution for the claim sizes, i.e. F̄ (x) = (x+ 1)−α,
x ≥ 0, and EX = 1/(α − 1). In addition, we calculate the net premiums
pLD = p − pLR and pED = p − pER of the insurer after purchasing an LCR or
ECOMOR reinsurance for a premium pLR and pER, respectively.

We assume here that the reinsurance premiums are determined according to
an expected value principle, see e.g. [1]. Hence, we need to determine ER(t). As
the Pareto claims arrive according to a Poisson process with rate λ, we follow
[13] to obtain

ELr(t) = (λt)1/α
r∑
i=1

γ(i− 1/α, λt)

Γ(i)
−

r∑
i=1

γ(i, λt)

Γ(i)
,

EEr(t) = (λt)1/α

(
r∑
i=1

γ(i− 1/α, λt)

Γ(i)
− r γ(r + 1− 1/α, λt)

Γ(r + 1)

)

−

(
r∑
i=1

γ(i, λt)

Γ(i)
− r γ(r + 1, λt)

Γ(r + 1)

)
,

where γ(k, s) =

∫ s

0

e−uuk−1du is the lower incomplete gamma function. Thus,

if θ, η > 0 are the relative safety loadings imposed by the insurer and reinsurer,
respectively, we calculate the annual retained premium pD over a period of n
years via the formula pD = (1 + θ)ES(1)− (1 + η)ER(n)/n. Correspondingly,

pLD =
λ(1 + θ)

α− 1
− 1 + η

n

(
(λn)1/α

r∑
i=1

γ(i− 1/α, λn)

Γ(i)
−

r∑
i=1

γ(i, λn)

Γ(i)

)
,

pED =
(1 + θ)λ

α− 1
− (1 + η)(λn)1/α

n

(
r∑
i=1

γ(i− 1/α, λn)

Γ(i)
− r γ(r + 1− 1/α, λn)

Γ(r + 1)

)

+
1 + η

n

(
r∑
i=1

γ(i, λn)

Γ(i)
− r γ(r + 1, λn)

Γ(r + 1)

)
.

We fix now n = 20, α = 1.5, λ = 10, θ = 0.2, η = 0.3 (safety loadings for
reinsurance are typically larger than for primary insurance, see [1]) to obtain
the following figures:

Finally, we choose the values of a such that the asymptotic approximations for
LCR and ECOMOR are simultaneously defined. In other words, it should hold
that a > max{−cL,−cE , 0}, where ci = piD − λ/(α− 1), i ∈ {L,E}. It is clear
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r pLR pER pLD pED cL cE
0 0 0 24 24 4 4
1 4.5309 3.0539 18.1098 20.0299 -1.8902 0.0298
2 6.0078 4.0719 16.1897 18.7065 -3.8102 -1.2935
3 6.9758 4.7505 14.9314 17.8242 -5.0686 -2.1757

Table 3.1: Premiums for LCR and ECOMOR treaties for varying r for n = 20, λ = 10, α = 1.5,
θ = 0.2, and η = 0.3.

from Table 3.1 that cL < cE . Therefore, both approximations are simultaneously
valid for a > max{−cL, 0}.

The results under both LCR and ECOMOR treaties for different combinations
of r and a are presented in Figures 3.1–3.3. We plot the simulation estimates
(circles) together with the large deviation approximation (line) of the rare event
probabilities as a function of n. Note that the results for r = 0 can be considered
as a sanity check for our simulation study.

We observe that the large deviation results become accurate as n grows, in
line with Theorem 3.3.1. It is quite remarkable that in most cases the resulting
approximation is already excellent for n = 20. This corresponds to a time horizon
of 20 years for the present insurance application. For fixed n, the quality of the
asymptotic approximation improves as a increases. Finally, we recognize that
LCR always leads to lower ruin probabilities than ECOMOR, which is intuitively
expected. However, the explicit expression given in Theorem 3.3.1, allows for
the first time to quantitatively assess the effects of the model parameters on the
resulting ruin probabilities.
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Figure 3.1: Numerical results for both LCR and ECOMOR treaties, for a = 20.
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Figure 3.2: Numerical results for both LCR and ECOMOR treaties, for a = 80.
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Figure 3.3: Numerical results for both LCR and ECOMOR treaties, for a = 300.
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Chapter 4

Large deviations for
Markov additive processes

4.1 Introduction

In this chapter, we develop sample-path large deviations for random walks with
increments that are driven by an i.i.d. sequence of iterated random functions.
To be precise, let Xn, n ≥ 0, be such that Xn+1 = fn+1(Xn), where fn, n ≥ 1,
is sequence of i.i.d. random functions satisfying certain regularity conditions (see
Assumption 4.3.1 below). Define X̄n = {X̄n(t), t ∈ [0, 1]}, with

X̄n(t) =

bntc−1∑
i=0

Xi/n. (4.1.1)

We are interested in large deviations of X̄n.
The starting point for our analysis is to consider the random difference

equations, where
fn(z) = Anz +Bn (4.1.2)

for a sequence of i.i.d. R2-valued random vectors (An, Bn). Such equations can
be found, for example, in the context of ruin problems with investments, in the
study of extremes of financial time series such as ARCH-type processes (see
e.g. Section 8.4 of [54]), in tail asymptotics for exponential functionals of Lévy
processes (see e.g. [88]), etc.
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4.1. INTRODUCTION

Here we consider a set of classical assumptions (see Assumption 4.2.1 below),
which can be found in the Kesten-Goldie theorem (see [81] and [66]). Note that,
under these assumptions, the Markov chain Xn, n ≥ 0—regardless of its initial
state X0—has a unique stationary distribution π, for which we have

π(x,∞) ∼ c+x−α and π(−∞,−x) ∼ c−x−α, as x→∞, (4.1.3)

for some c−, c+ satisfying c−+ c+ > 0. We aim to develop asymptotic estimates
of P(X̄n ∈ E) for a sufficiently general collection of sets E. In view of (4.1.3), it
is natural to expect that our sample-path large deviations results should possess
some heavy-tailed components. This conjecture turns out to be true. Next, we
briefly describe our main results, as well as the methodologies that are used to
derive the results.

To relate our problem with the existing theory of sample-path large deviations
for stochastic processes, we first identify a sequence of regeneration times rn,
n ≥ 1 (see [12]), and split the Markov chain into i.i.d. cycles. By aggregating the
trajectory of X̄n over regeneration cycles, we obtain a regenerative process with
i.i.d. jump distributions and rn, n ≥ 1 as renewals. Under a set of assumptions
originating from [81] and [66], we adopt a large deviation change of measure
argument and further establish that the “area” under a typical regeneration
cycle, denoted by R (see (4.3.2) below), has an asymptotic power law. To be
precise, we have

P(R > x) ∼ C+x
−α and P(R < −x) ∼ C−x−α, as x→∞, (4.1.4)

for some C−, C+ satisfying C−C+ > 0.
This approach brings us close to the framework studied in [105]. By analyzing

the associated renewal process, we are able to utilize the idea from [105] and
derive a sample-path large deviations result for the aggregated process under the
Skorokhod J1 metric. However, showing that the residual process is negligible
in the sense of contributing to P(X̄n ∈ E) is not straightforward, especially
when the increments of X̄n are dependent in the current setting. To overcome
this, we switch to a slightly weaker topology, the Skorokhod M ′1-topology (see
Section 4.3.2 below), and derive asymptotic estimates of events involved with
the “area” under the last ongoing cycle.

This paves the way for our main sample-path large deviations results, which
are presented in Section 4.3. For the case where Bn as in (4.1.2) is nonnegative,
our result establishes that

CJ ∗(E
◦) ≤ lim

n→∞

P(X̄n ∈ E)

(nP(R > n))J ∗
≤ lim
n→∞

P(X̄n ∈ E)

(nP(R > n))J ∗
≤ CJ ∗(E−).

(4.1.5)
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Precise details can be found in Section 4.3.2 below. At this moment, we just
mention that Cj is a measure on the Skorokhod space, and J ∗ denotes the
minimum number of jumps that are required for a nondecreasing, piecewise linear
function with drfit EB1/(1−EA1) to be in the set E. In Sections 4.3.3 and 4.3.4,
we consider two generalizations of the result presented in (4.1.5).

In order to contextualize our contribution, we provide a literature review. The
investigation of tail estimates of one-dimensional random walks with heavy-tailed
step size was initiated in [95], [96], where the author studied the sequence xn for
which

P(Ŝn/n > xn) = nP(Ŝ1 > xn)(1 + o(1)), as n→∞, (4.1.6)

holds, where Ŝn is a random walk with i.i.d. heavy-tailed, not necessarily regularly
varying, increments. For a detailed description of the large deviations regime
we refer to e.g. [24], [43], and [60]. When (4.1.6) is valid, the so-called principle
of a single big jump is said to hold. As a generalization of (4.1.6), a functional
form has been derived in [75], where random walks with i.i.d. multi-dimensional
regularly varying (cf. Definition 1.1 of [75]) step sizes are considered.

On the other hand, a significant number of studies try to answer the question
of if and how the principle of a single big jump can be extended to the case
where there is a certain dependence structure in the increments. Key references
are [57], [74], [91, 92], [90], where stable processes, modulated processes, and
stochastic differential equations are considered. As mentioned above, deriving
large deviations results for autoregressive processes (cf. (4.1.2)) is one of the
focus points of this chapter. Existing literature on this topic can be distinguished
by the assumptions that need to be made. As a well-known insight, the regular
variation in large deviations of autoregressive processes comes mainly from two
types of sources. The first is by assuming that Bn is regularly varying, and
An is sufficiently light-tailed. Regular variation occurs in this case due to the
insight that the sum of independent regularly varying random variables is again
regularly varying (cf. [83]). On the other hand, under assumptions as in [81, 66],
a large value of the sample mean is not due to a single large value of the An or
Bn but to large values of the products A1 · · ·An (cf. [35], [27]).

So far, all results are stated within the framework of the principle of a single
big jump. However, not all rare events are caused by a single jump (for examples,
see [29]). Various studies investigate rare events that are caused by multiple
jumps using ad-hoc approaches, see [59], [120]. As mentioned in Chapter 1, [105]
provides sample-path large deviations results for Lévy processes/random walks
with regularly varying increments, which deal with a general class of rare events
that can especially be caused by multiple jumps.
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In view of the literature review above, our mathematical contribution can be
described as follows. We start considering the case where Xn+1 = An+1Xn +
Bn+1. In Section 4.2, we first derive tail estimates on the “areas” under both the
first return time and the regeneration cycle. The technique of splitting Markov
chains into regeneration cycles can be found in many existing works, see e.g.
[99], [18]. The one that comes closest to our analysis is [35], where the authors
consider the AR(1) process as the underlying process and derive estimates on
the right tail of the “area” under a regeneration cycle. In this chapter, we use a
more delicate proof technique and provide estimates on both tails. Using the
tail estimates in Theorem 4.3.1, we present in Sections 4.3.2 and 4.3.3 large
deviations results for X̄n as in (4.1.1). These results complement the approaches
in [83], where the authors study the case of Bn being regularly varying, and hence,
regular variation occurs due to large values in Bn. To establish Theorems 4.3.2
and 4.3.3, we introduce a notion of equivalence (see Lemma 4.2.3 below), which
is proved to be very useful in connecting our problem with [105]. In Section 4.3.4,
we extend our results to the case where Xn = fn(Xn−1) for general fn.

This chapter is organized as follows. In Section 4.2, we introduce some
useful tools for future purposes. We present our main results in Section 4.3.
In Section 4.4, we consider an example where our large deviations result is
applicable. Sections 4.5–4.8 are devoted to additional proofs.

4.2 Preliminaries

In this chapter, we study the sample-path large deviations behavior of

X̄n =

 1

n

bntc−1∑
i=0

Xi, t ∈ [0, 1]

 , (4.2.1)

where the underlying stochastic process {Xn}n≥0 is defined by

Xn+1 = An+1Xn +Bn+1, n ≥ 0, (4.2.2)

and (An, Bn), n ≥ 1, is a sequence of i.i.d. R2-valued random vectors, independent
of X0. Note that {Xn}n≥0 is called a first-order autoregressive (AR(1)) process.
We start with introducing a regularity condition.

Assumption 4.2.1. Assume that the following conditions hold.

1. A1 ≥ 0 a.s. and the law of logA1 conditioned on {A1 > 0} is nonarithmetic.
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2. There exists an α ∈ (1,∞) such that EAα1 = 1, E|B1|α < ∞, and
EAα1 log+A1 <∞, where log+ x = max{log x, 0}.

3. P(A1x+B1 = x) < 1 for every x ∈ R.

Remark 4.1. The first two conditions in Assumption 4.2.1 imply that E logA1 < 0
and E log+ |B1| <∞, and hence (see e.g. Theorem 2.1.3 of [26]), the Markov chain
has a unique stationary distribution, denoted by π. By assuming additionally
the third condition, it was shown (see e.g. [81] and [66]) that

π(x,∞) ∼ c+x−α and π(−∞,−x) ∼ c−x−α, as x→∞,

for some c+, c− satisfying c+ + c− > 0.

4.2.1 Background from Markov chain theory

In this section we review some preliminaries from Markov chain theory. We
begin by introducing two conditions on general Markov chains.

We say that a Markov chain on some general state space (S,S) with transition
kernel P satisfies a drift condition (D) if∫

S
h(y)P (x, dy) ≤ γh(x) + ρ1C(x), for some γ ∈ (0, 1), (D)

where h is a function taking values in [1,∞), ρ is a positive constant, and C is a
Borel subset of R. Moreover, we say that a ϕ-irreducible Markov chain on (S,S)
with transition kernel P satisfies a minorization condition (M) if

θ1C0(x)φ(E ∩ E0) ≤ P (x,E), x ∈ S, E ∈ S, (M)

for some set E0 ⊆ S, some set C0 with ϕ(C0) > 0, some constant θ > 0, and some
probability measure φ on (S,S).

Remark 4.2. If the minorization condition (M) holds for some general Markov
chain {Xn}n≥0 with transition kernel P , then (see e.g. [12]) there exists a
sequence of strictly increasing random times rn, n ≥ 1, such that {Xn}n≥0

regenerates at each rn, i.e.,

• r1, r2 − r1, r3 − r2, . . . are finite a.s. and mutually independent;

• the sequence {ri+1 − ri}i≥0 is i.i.d.;

• the random blocks {Xri−1
, Xri−1+1, . . . , Xri−1}i≥1 are independent, where

we make the convention that r0 = 0; and
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4.2. PRELIMINARIES

• P(Xri ∈ E) = φ(E ∩ E0).

To be precise, consider the augmented chain {(Xn, ηn)}n≥0 with the transition
kernel P ′ that is defined by

P ′((x, 0), E × {η})

=

[θη + (1− θ)(1− η)]P (x,E), for x /∈ C0,

[θη + (1− θ)(1− η)](P (x,E)− θφ(E ∩ E0))/(1− θ), for x ∈ C0,

P ′((x, 1), E × {η})

=

[θη + (1− θ)(1− η)]P (x,E), for x /∈ C0,

[θη + (1− θ)(1− η)]φ(E ∩ E0), for x ∈ C0,

where η ∈ {0, 1}, and θ is w.l.o.g. assumed to be in (0, 1]. Note that

• {ηn}n≥0 is a sequence of i.i.d. Bernoulli random variables with P(ηn =
1) = θ;

• {Xn}n≥0 is a Markov chain with transition kernel P ; and

• {Xn}n≥0 and {ηn}n≥0 are independent.

Moreover, ri − 1 is identified as the i-th return time of the Markov chain
{(Xn, ηn)}n≥0 to the set C0 × {1}, and hence, is a stopping time w.r.t. (Xn, ηn).

Consider
Xn+1 = An+1Xn +Bn+1, n ≥ 0,

which was defined in (4.2.2). We need the following result that describes path
properties of Xn. Let π denote the stationary distribution of the AR(1) process
{Xn}n≥0 as in (4.2.2). Define Br(x) = {x′ : |x− x′| < r} for x ∈ R and r > 0.

Result 4.2.1 (Lemma 2.2.3 and Proposition 2.2.4 of [26]). Let {Xn}n≥0 be such
that Xn+1 = An+1Xn +Bn+1. Supposing that Assumption 4.2.1 holds, we have
that:

1. {Xn}n≥0 satisfies the drift condition (D) with C = [−M,M ] for some
constant M ≥ 0.

2. {Xn}n≥0 is π-irreducible.

3. {Xn}n≥0 is geometrically ergodic.
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As we will see in Section 4.3, the regeneration scheme described in Remark 4.2
plays an important role in our analysis. Hence, we need Assumption 4.2.2 below,
which guarantees the existence of the regeneration times. In Proposition 4.2.1, we
give sufficient conditions for Assumption 4.2.2. Note that the first two conditions
(up to a slight modification) can also be found in Lemma 2.2.3 of [26].

Assumption 4.2.2. The minorization condition (M) is satisfied with C0 =
[−d, d] for some d > 0.

Proposition 4.2.1. Assume that at least one of the following conditions hold.

1. Let B1 ≥ b a.s. for some b > 0. Moreover, there exist intervals I1 = (a1, a2),
I2 = (b0 − δ, b0 + δ) for some a1 < a2, b0, δ > 0, a σ-finite measure ν0

with b0 in the support of ν0, a measure φ and a constant c0 > 0 such that
for any Borel sets D1, D2 ⊆ R,

P((A1, B1) ∈ (D1 ×D2)) ≥ c0|D1 ∩ I1|ν0(D2 ∩ I2),

where | · | denotes the Lebesgue measure on R.

2. There exist intervals I1 = (a0−δ, a0 +δ), I2 = (b1, b2) for some a0, b1 < b2,
δ > 0, a σ-finite measure ν0 with a0 in the support of ν0, a measure φ and
a constant c0 > 0 such that for any Borel sets D1, D2 ⊆ R,

P((A1, B1) ∈ (D1 ×D2)) ≥ c0ν0(D1 ∩ I1)|D2 ∩ I2|. (4.2.3)

3. Let A1 = cB1 for some c. A1 has a density which is bounded from below
by some c0 > 0 on some interval I1 = (a0 − δ, a0 + δ).

Then, for any x0 ∈ R, there exists ε = ε(x0), θ > 0 such that

θ|E ∩ E0| ≤ P (x,E), x ∈ Bε(x0), E ∈ B(R). (4.2.4)

Let {rn}n≥0 be the sequence of regeneration times of {Xn}n≥0, cf. Remark 4.2
above. Next we state the existence of the moment generating function of r1 in a
neighborhood of the origin, which particularly implies the geometric decay of
P(r1 > k) as k →∞.

Lemma 4.2.1. Let {Xn}n≥0 be such that Xn+1 = An+1Xn + Bn+1. Suppose
that Assumption 4.2.1 and 4.2.2 hold. Let {rn}n≥0 be the sequence of regeneration
times associated with C0. Let E1 be a bounded set. There exists t > 1 such that

sup
x∈E1

E[tr1 |X0 = x] <∞.

89



4.2. PRELIMINARIES

4.2.2 A useful change of measure

Another helpful tool in our context is the so-called α-shifted change of measure
(see e.g. [37, 36]). To begin with, let ν denote the distribution of (logAn, Bn)
with (An, Bn) being as in (4.2.2), and let να denote the α-shifted distribution
w.r.t. logAn, i.e,

να(E) =

∫
E

eαxdν(x, y), E ∈ B(R2).

Let L(logAn, Bn) denote the probability law of (logAn, Bn). Let D be the dual
change of measure such that, under D ,

L(logAn, Bn) =

ν
α, for n ≤ T (uβ),

ν, for n > T (uβ).
(4.2.5)

Let Eα and ED denote taking expectation w.r.t. the α-shifted measure and the
dual change of measure D , respectively. Defining

Sn =

n∑
i=1

logAi, (4.2.6)

we have the following result.

Result 4.2.2 (Lemma 5.3 of [37]). Let τ be a stopping time w.r.t. {Xn}n≥0, let
g : R∞ → [0,∞] be a deterministic function, and let gn denote its projection onto
the first n+ 1 coordinates, i.e., gn(x0, . . . , xn) = g(x0, . . . , xn, 0, 0, . . .). Then

E[gτ−1(X0, . . . , Xτ−1)] = ED
[
gτ−1(X0, . . . , Xτ−1)e−αST (uβ)1{T (uβ)<τ}

]
+ ED

[
gτ−1(X0, . . . , Xτ−1)e−αSτ1{T (uβ)≥τ}

]
.

Our analysis relies on the fact that the Markov chain Xn is closely related to
a multiplicative random walk, that is,

Xn+1 ≈ An+1Xn, for large n.

Roughly speaking, the process Xn resembles a perturbation of a multiplicative
random walk, in an asymptotic sense (for details see [37, 36]). Hence, it is
natural to consider the “discrepancy” process between Xn and

∏n
i=1Ai, which

is defined as

Zn = Xne
−Sn = X0 +

n∑
k=1

Bke
−Sk , n ≥ 0, (4.2.7)
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where Sn is as in (4.2.6). On the other hand, under the α-shifted measure, we
have Eα logA1 = EAα1 logA1 > 0 by Assumption 4.2.1 and the convexity of the
moment generating function of logA1. As a consequence, we have the following
result.

Lemma 4.2.2. Suppose that Assumption 4.2.1 holds. Under the α-shifted
measure, the following holds.

1. |Xn| ↑ ∞ a.s. as n→∞.

2. Zn
a.s.−−→ Z as n→∞, where Z = X0 +

∑∞
k=1Bke

−Sk .

4.2.3 M-convergence

In this section we briefly review the notion of M-convergence, which was intro-
duced in [87, Section 2] and turns out to be very useful in deriving our large
deviations results. The rest of the section is based on [105, Section 2].

Let (S, d) be a complete separable metric space, and S be the Borel σ-
algebra on S. Given a closed subset C of S, let S \ C be equipped with the
relative topology as a subspace of S, and consider the associated sub σ-algebra
SS\C = {E : E ⊆ S \ C, A ∈ S } on it. Define Cr = {x ∈ S : d(x,C) < r}
for r > 0, and let M(S \ C) be the class of measures defined on SS\C whose
restrictions to S \ Cr are finite for all r > 0. Topologize M(S \ C) with a sub-
basis {{ν ∈ M(S \ C) : ν(f) ∈ G} : f ∈ CS\C, G open in R+}, where CS\C is the
set of real-valued, non-negative, bounded, continuous functions whose support
is bounded away from C (i.e., f(Cr) = {0} for some r > 0). A sequence of
measures νn ∈ M(S \ C) converges to ν ∈ M(S \ C) if νn(f) → ν(f) for each
f ∈ CS\C. We say that a set E1 ⊆ S is bounded away from another set E2 ⊆ S if
infx∈E1,y∈E2 d(x, y) > 0. The following characterization of M-convergence can
be considered as a generalization of the classical notion of weak convergence of
measures, see e.g. [14].

Result 4.2.3 (Theorem 2.1 of [87]). Let ν, νn ∈M(S \C). We have νn → ν in
M(S \ C) as n→∞ if and only if

lim
n→∞

νn(F ) ≤ ν(F )

for all closed F ∈ SS\C bounded away from C and

lim
n→∞

νn(G) ≥ ν(G)

for all open G ∈ SS\C bounded away from C.

91



4.3. MAIN RESULTS

We now introduce a new notion of equivalence between two families of random
objects, which will prove to be useful in Section 4.7. Let Fδ = {x ∈ S : d(x, F ) ≤
δ} and G−δ = ((Gc)δ)

c.

Definition 4.2.1. Suppose that Xn and Yn are random elements taking values
in a complete separable metric space (S, d). Yn is said to be asymptotically
equivalent to Xn with respect to εn and C, if, for each δ > 0 and γ > 0,

lim
n→∞

ε−1
n P(Xn ∈ (S \ C)−γ , d(Xn, Yn) ≥ δ)

= lim
n→∞

ε−1
n P(Yn ∈ (S \ C)−γ , d(Xn, Yn) ≥ δ) = 0.

Remark 4.3. Note that the asymptotic equivalence w.r.t. C implies the asymp-
totic equivalence w.r.t. C′ if C ⊆ C′. In view of this, the strongest notion of
asymptotic equivalence w.r.t. a given sequence εn is the one w.r.t. an empty set.
In this case, the conditions for the asymptotic equivalence reduce to a simple
condition: P(d(Xn, Yn) ≥ δ) = o(εn) for any δ > 0. In our context, this simple
condition suffices for the case of B1 ≥ 0 in Section 4.3.2; however, we have to
work with the case that C is not an empty set when we deal with general B1 in
Section 4.3.3.

The usefulness of this notion of equivalence comes from the following result.

Lemma 4.2.3. Suppose that ε−1
n P(Xn ∈ ·) → ν(·) in M(S \ C) for some

sequence εn and a closed set C. If Yn is asymptotically equivalent to Xn with
respect to εn and C, then the law of Yn has the same normalized limit, i.e.,
ε−1
n P(Yn ∈ ·)→ ν(·) in M(S \ C).

4.3 Main results

In this section, we state the main results of the chapter. In Section 4.2, we analyze
the tail estimates of the area under the first return time/regeneration cycle (see
(4.3.2) below), which are proved to be useful in deriving the sample-path large
deviations of X̄n. While Section 4.3.2 deals with the case where B1 ≥ 0 almost
surely, we consider in Section 4.3.3 the case where B1 is a general R-valued
random variable. In Section 4.3.4, we extend the results in Sections 4.2–4.3.3 to
the case where Xn is driven by more general recursions.
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4.3.1 Tail estimates on the area under the first return
time/regeneration cycle

The goal here is to provide tail asymptotics for the area under the first return
time and the regeneration cycle. To be precise, let

τd = inf{n ≥ 1: |Xn| ≤ d} (4.3.1)

denote the first return time of Xn to the set [−d, d], where d is such that
[−d, d]∩ supp(π) 6= ∅. Moreover, let {rn}n≥0 be the sequence regeneration times
of {Xn}n≥0. We denote the area under the first return time and the regeneration
cycle by

B =

τd−1∑
n=0

Xn and R =

r1−1∑
n=0

Xn, (4.3.2)

respectively. As a preparatory result for our main theorems, we derive the tail
asymptotics of B and R. Let Z = X0 +

∑∞
k=1Bke

−Sk . Finally, let C+,∞ and
C−,∞ be the constants satisfying

P

( ∞∑
k=0

eSk > u

)
∼ C+,∞u

−α, and P

( ∞∑
k=0

eSk < −u

)
∼ C−,∞u−α,

(4.3.3)
respectively.

Theorem 4.3.1. Suppose that Assumption 4.2.1 holds.

1. First

lim
u→∞

uαP(B > u) = C+,∞Eα[(Z+)α1{τd=∞}]

and lim
u→∞

uαP(B < −u) = C−,∞Eα[(Z−)α1{τd=∞}].

2. If Assumption 4.2.2 holds additionally, then

lim
u→∞

uαP(R > u) = C+ and lim
u→∞

uαP(R < −u) = C−,

where C+ = C+,∞Eα[(Z+)α1{r1=∞}] and C− = C−,∞Eα[(Z−)α1{r1=∞}].
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4.3.2 One-sided large deviations

The aim of Sections 4.3.2 and 4.3.3 is to establish limit theorems for P(X̄n ∈ A)
as n→∞ under two different settings, for some general measurable set A.

In this section, we consider the case where B1 is nonnegative and C+ as in
Theorem 4.3.1 is strictly positive. To deal with the dependence structure of the
Markov chain within the regeneration cycle, we consider in this section the M ′1
metric space. To be precise, define the extended completed graph Γ′ξ of ξ by

Γ′ξ = {(x, t) ∈ R× [0, 1] : x ∈ [ξ(t−) ∧ ξ(t), ξ(t−) ∨ ξ(t)]},

where ξ(0−) = 0. Define an order on the graph Γ′ξ by saying that (x1, t1) ≤ (x2, t2)

if either (i) t1 < t2 or (ii) t1 = t2 and |ξ(t−1 )− x1| ≤ |ξ(t−2 )− x2|. Let Π′(ξ) be
the set of parametric representations of ξ ∈ D, i.e., (u, v) ∈ Π′(ξ) if (u, v) is a
continuous nondecreasing function mapping [0, 1] onto Γ′ξ. For any ξ1, ξ2 ∈ D,
the M ′1 metric is defined by

dM ′1(ξ1, ξ2) = inf
(ui,vi)∈Π′(ξi)

i∈{1,2}

‖u1 − u2‖∞ ∨ ‖v1 − v2‖∞.

From now on, in case it is not mentioned specifically, we consider the metric
space (D, dM ′1) by default.

For the one-sided large deviations result, we need the following elements. We
say that a function ξ ∈ D is piecewise constant, if there exist finitely many time
points ti such that 0 = t0 < t1 < · · · < tm = 1 and ξ is constant on the intervals
[ti−1, ti) for all 1 ≤ i ≤ m. For ξ ∈ D, define the set of discontinuities of ξ by

Disc(ξ) = {t ∈ [0, 1] : ξ(t) 6= ξ(t−)}, (4.3.4)

where ξ(0−) = 0. Define, for j ≥ 0,

D6j = {ξ ∈ D : ξ piecewise constant and nondecreasing, |Disc(ξ)| ≤ j}.

For z ∈ R, define

Dz6j = {ξ ∈ D : ξ = z · id+ ξ′, ξ′ ∈ D6j}, for j ≥ 0. (4.3.5)

For each constant γ > 1, let νγ(x,∞) = x−α, and let νjγ denote the restriction

(to Rj↓+ = {x ∈ Rj : x1 ≥ · · · ≥ xj > 0}) of the j-fold product measure of νγ .
Let Cz0 be the Dirac measure concentrated on the linear function zt. For j ≥ 1,
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define a sequence of Borel measures Czj ∈M(D \ D6j−1) concentrated on D6j−1

as

Czj ( · ) = E

[
νjα

{
x ∈ (0,∞)j : z · id+

j∑
i=1

xi1Ui ∈ ·

}]
, (4.3.6)

where α is as in Assumption 4.2.1 and the random variables Ui, i ≥ 1, are i.i.d.
uniform distributed on [0, 1]. For E ⊆ D and z ∈ R, define

J ↑z (E) = inf{j : E ∩ Dz6j 6= ∅}. (4.3.7)

Setting µ = EB1/(1−EA1), we state below the main theorem for the one-sided
case.

Theorem 4.3.2. Suppose that Assumptions 4.2.1 and 4.2.2 hold. Moreover, let
B1 ≥ 0 and C+ as in Theorem 4.3.1 be strictly positive.

1. For each j ≥ 0,

nj(α−1)P(X̄n ∈ · )→ (C+Er1)jCµj ( · ),

in M(D \ Dµ6j−1) as n→∞.

2. Suppose that E is a measurable set. If J ↑µ (E) <∞ and E is bounded away
from D6J ↑µ (E)−1, then

lim
n→∞

P(X̄n ∈ E)

n−J
↑
µ (E)(α−1)

≥ (C+Er1)J
↑
µ (E)Cµ

J ↑µ (E)
(E◦)

and lim
n→∞

P(X̄n ∈ E)

n−J
↑
µ (E)(α−1)

≤ (C+Er1)J
↑
µ (E)Cµ

J ↑µ (E)
(E−).

4.3.3 Two-sided large deviations

In this section, we consider the case where B1 is a general R-valued random
variable, and hence, can take negative values as well. Similarly as in Section 4.3.2,
we need the following elements. Define the set of step functions with less than j
discontinuities by

D�j = {ξ ∈ D : ξ piecewise constant, |Disc(ξ)| < j}, for j ≥ 0.

For z ∈ R, define

Dz�j = {ξ ∈ D : ξ = z · id+ ξ′, ξ′ ∈ D�j}, for j ≥ 0. (4.3.8)
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Let Cz0,0 be the Dirac measure concentrated on the linear function zt. For each
(j, k) ∈ Z2

+ \ {(0, 0)}, define a measure Czj,k as

Czj,k( · ) = E

[
νj+kα

{
(x, y) ∈ (0,∞)j+k : z · id+

j∑
i=1

xi1Ui −
j∑
i=1

xi1Vi ∈ ·

}]
,

(4.3.9)
where the random variables Ui, Vi are i.i.d. uniform distributed on [0, 1]. For
E ⊆ D and z ∈ R, define

Jz(E) = inf{j : E ∩ Dz�j 6= ∅}. (4.3.10)

Recalling µ = EB1/(1−EA1), we state below the main theorem for the two-sided
case.

Theorem 4.3.3. Suppose that Assumptions 4.2.1 and 4.2.2 hold. Let E|B1|m <
∞ for every m ∈ Z+. Moreover, let C+, C− be as in Theorem 4.3.1 such that
C+C− > 0.

1. For each j ≥ 0,

nj(α−1)P(X̄n ∈ · )→ (Er1)j
∑

(l,m)∈I=j
(C+)l(C−)mCµl,m( · ),

in M(D \ Dµ�j) as n→∞, where I=j = {(l,m) ∈ Z2
+ : l +m = j}.

2. Suppose that E is a measurable set. If Jµ(E) <∞ and E is bounded away
from D�Jµ(E), then

lim
n→∞

P(X̄n ∈ E)

n−Jµ(E)(α−1)
≥ (Er1)Jµ(E)

∑
(l,m)

(C+)l(C−)mCµl,m(E◦)

and lim
n→∞

P(X̄n ∈ E)

n−Jµ(E)(α−1)
≤ (Er1)Jµ(E)

∑
(l,m)

(C+)l(C−)mCµl,m(E−),

where the summations are over all (l,m) that belong to the set I=Jµ(E).

4.3.4 Extension to general recursions

In this section we extend the results in Sections 4.2–4.3.3 to the case where
Xn, n ≥ 0, is defined by more general recursions. To be precise, consider the
nondegenerate Markov chain Xn, n ≥ 0, satisfying

Xn+1 = fn+1(Xn), n ≥ 0, (4.3.11)
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where {fn}n≥1 are i.i.d. copies of a random function f , which we make precise
below. Let π denote the stationary solution to (4.3.11). We say that f satisfies
the Lipschitz condition (L), if there exists a nonnegative random variable L with
E logL < 0 such that

sup
x1 6=x2

|f(x1)− f(x2)|
|x1 − x2|

= L, (L)

where E[| logL| + log+ |f(x0)|] < ∞, for some x0 ∈ supp(π). Moreover, we
say that f satisfies a cancellation condition (C), if there exists a nonarithmetic
random variable A ∈ [0,∞) and a random vector (B,B) ∈ R2 such that, for all
x ∈ supp(π),

Ax+B ≤ f(x) ≤ Ax+B. (C)

We need the following assumption on f .

Assumption 4.3.1. Let f satisfy the conditions L and C and be monotone
increasing, i.e., f(x1) ≤ f(x2) almost surely for x1 ≤ x2. Moreover, for the
random vector (A,B,B) as in (C) we have the following.

1. A ≥ 0 a.s. and the law of logA conditioned on {A > 0} is nonarithmetic.

2. There exists α ∈ (1,∞) such that EAα = 1, E|B|α + E|B|α < ∞, and
EAα log+A <∞.

Without introducing any new notations, let τd denote the first return time
of Xn to the set [−d, d], let rn, n ≥ 1, denote the sequence of regeneration times
of Xn associated with C0 as in Assumption 4.2.2. Let

B =

τd−1∑
n=0

Xn and R =

r1−1∑
n=0

Xn

be the area under the first return time and the regeneration cycle, respectively.
Let Zn = e−SnXn with Sn =

∑n
i=1 logAi and let Z be the almost sure limit—

whose existence is shown in the proof of Theorem 4.3.4 below—of Zn. Finally,
let C+,∞ and C−,∞ be as in (4.3.3).

Theorem 4.3.4. Suppose that Assumption 4.3.1 holds.

1. First

lim
u→∞

uαP(B > u) = C+,∞Eα[(Z+)α1{τd=∞}]

and lim
u→∞

uαP(B < −u) = C−,∞Eα[(Z−)α1{τd=∞}].
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2. If Assumption 4.2.2 holds additionally, then

lim
u→∞

uαP(R > u) = C+ and lim
u→∞

uαP(R < −u) = C−,

where C+ = C+,∞Eα[(Z+)α1{r1=∞}] and C− = C−,∞Eα[(Z−)α1{r1=∞}].

Let µ =
∫
R xπ(dx) denote the expectation of the stationary distribution of

Xn, n ≥ 0. Recall that Dz6j , Czj (·), J ↑z (·), Dz�j , Czj,k(·) and Jz(·) were defined in
(4.3.5), (4.3.6), (4.3.7), (4.3.8), (4.3.9), and (4.3.10), respectively. The following
theorems are extensions of Theorems 4.3.2 and 4.3.3 above.

Theorem 4.3.5. Suppose that Assumptions 4.3.1 and 4.2.2 hold. Moreover,
assume that fn([0,∞)) ⊆ [0,∞) for fn as in (4.3.11) and C+ as in Theorem 4.3.4
is strictly positive.

1. For each j ≥ 0,

nj(α−1)P(X̄n ∈ · )→ (C+)jCµj ( · ),

in M(D \ Dµ6j−1) as n→∞.

2. Suppose that E is a measurable set. If Jµ(E) <∞ and E is bounded away
from D6Jµ(E)−1, then

lim
n→∞

P(X̄n ∈ E)

n−Jµ(E)(α−1)
≥ (C+)jCµJµ(E)(E

◦)

and lim
n→∞

P(X̄n ∈ E)

n−Jµ(E)(α−1)
≤ (C+)jCµJµ(E)(E

−).

Theorem 4.3.6. Suppose that Assumptions 4.3.1 and 4.2.2 hold. Let E|B1|m +
E|B1|m <∞ for every m ∈ Z+. Moreover, let C+, C− be as in Theorem 4.3.4
such that C+C− > 0.

1. For each j ≥ 0,

nj(α−1)P(X̄n ∈ · )→
∑

(l,m)∈I=j
(C+)l(C−)mCµl,m( · ),

in M(D \ Dµ�j) as n→∞, where I=j = {(l,m) ∈ Z2
+ : l +m = j}.
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2. Suppose that E is a measurable set. If J ′µ(E) <∞ and E is bounded away
from D�J ′µ(E), then

lim
n→∞

P(X̄n ∈ E)

n−J
′
µ(E)(α−1)

≥
∑

(l,m)
(C+)l(C−)mCµl,m(E◦)

and lim
n→∞

P(X̄n ∈ E)

n−J
′
µ(E)(α−1)

≤
∑

(l,m)
(C+)l(C−)mCµl,m(E−),

where the summations are over all (l,m) that belong to the set I=J ′µ(E).

4.4 An application in barrier option pricing

In this section we consider an application that arises in the context of financial
mathematics; in particular we consider a down-in barrier option (see Section 11.3
of [111]).

Let the daily log return of some underlying asset be modelled by an AR(1)
process Xn, n ≥ 0, as in (4.2.2). Let Assumptions 4.2.1 and 4.2.2 hold. Let
E|B1|m <∞ for every m ∈ Z+. For real numbers a− and a+, we are interested
in providing sharp large-deviations estimates for P(En) as n→∞, where

En =

{
X̄n ≥ a+, min

0≤k≤n
X̄k ≤ −a−

}
,

a+ > max{µ, 0}, and a− > max{−µ, 0}. This choice of (a−, a+) leads to the
case where the rare event is caused by two big jumps, and hence, is particularly
interesting. Note that the probability of En can be interpreted as the chance of
exercising a down-in barrier option. Defining

E =

{
ξ ∈ D : ξ(1) ≥ a+, inf

t∈[0,1]
ξ(t) ≤ −a−

}
,

we obtain P(En) = P(X̄n ∈ E). Obviously, we have Jµ(E) = 2, where Jµ
was defined in (4.3.10). Hence, to apply Theorem 4.3.3, we need to show
dM ′1(E,Dµ�2) ≥ r for some r > 0. To see this, we assume that dM ′1(E,Dµ�2) < r
for all r > 0. Therefore, for any ε > 0, there exists ξ1 ∈ E and ξ2 with
ξ2(t) = µt + x1[y,1](t), x ∈ R, and y ∈ [0, 1] such that dM ′1(ξ1, ξ2) < r + ε. By
the definition of the M ′1 metric, for any δ1 > 0, there exists (ui, vi) ∈ Π′(ξi),
i ∈ {1, 2}, such that

‖u1 − u2‖∞ ∨ ‖v1 − v2‖∞ < dM ′1(ξ1, ξ2) + δ1 < r + ε+ δ1. (4.4.1)
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By (4.4.1), we have that

|a+ − (µ+ x)| = |u1(1)− u2(1)| ≤ ‖u1 − u2‖∞ ∨ ‖v1 − v2‖∞ < r + ε+ δ1.

Letting ε, δ1 → 0, we obtain that x ≥ (a+ − µ) − r > 0 for sufficiently small
r. On th other hand, by the fact inft∈[0,1] ξ1(t) ≤ −a−, for any δ2 > 0, there
exsits t′ ∈ [0, 1] such that ξ1(t′) < −a− + δ2. Let s be such that v1(s) = t′. Let
t′′ = v2(s). Again using (4.4.1), we obtain that

|ξ1(t′)−(µt′′+x1[y,1](t
′′))| = |u1(s)−u2(s)| ≤ ‖u1−u2‖∞∨‖v1−v2‖∞ < r+ε+δ1,

and hence,

µt′′ + x1[y,1](t
′′) < ξ1(t′) + (r + ε+ δ1) < −a− + r + ε+ δ1 + δ2. (4.4.2)

Combining (4.4.2) with the fact that x > 0, we obtain that

µ1(−∞,0)(µ) ≤ µt′′ ≤ µt′′ + x1[y,1](t
′′) < −a− + r + ε+ δ1 + δ2. (4.4.3)

Letting ε, δ1, δ2 → 0, we see that (4.4.3) is contradictory to a− > max{−µ, 0} ≥
0. In view of the above discussion, we proved dM ′1(E,Dµ�2) ≥ r for some r > 0,
and hence, we are in the framework of Theorem 4.3.3.

Next we determine the preconstant in the asymptotics. Define m, π1 : D→ R
by m(ξ) = inft∈[0,1] ξ(t), and π1(ξ) = ξ(1). Note that π1 and m (cf. [117,

Lemma 13.4.1]) are continuous. Thus, E = m−1(−∞,−a−] ∩ π−1
1 [a+,∞) is a

closed set. Recall, for z ∈ R, that Czj,k was defined in (4.3.9). Since Cµ2,0(E) =

Cµ0,2(E) = 0, it remains to consider Cµ1,1(E◦) and Cµ1,1(E). Combining the

fact that m−1(−∞,−a−) ∩ π−1
1 (a+,∞) ⊆ E with the discussion after [105,

Theorem 3.2], we conclude that E is a Cµ1,1-continuous set. Therefore, applying
Theorem 4.3.3 we obtain

P(En) ∼ Cµ1,1(E)C+C−n
−2(α−1)

as n→∞. In particular, the probability of interest is regularly varying of index
2− 2α.

4.5 Proofs of Section 4.2

Proof of Proposition 4.2.1. Note that part 1) and part 2) are already proved in
[26, page 22], for the case where x0 6= 0. Hence, we will concentrate on showing
part 2) (for the case x0 = 0) and part 3).
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Part 2): We focus on the case where x0 = 0. Fix a Borel set E. In view of
(4.2.3) we observe that

P (x,E) = E[1A1x+B1∈E ] ≥ c0
∫
I1

∫
I2

1{ax+b∈E}dbν0(da)

= c0

∫
I1

∫
E

1{z−ax∈I2}dzν0(da).

Let
E0 = (b1 + ε(|a0 − δ| ∨ |a0 + δ|), b2 − ε(|a0 − δ| ∨ |a0 + δ|)).

The set E0 is not empty if we choose ε < (b2 − b1)/(2(|a0 − δ| ∨ |a0 + δ|)). Note
that if x ∈ Bε(0), z ∈ E0, and a ∈ I1, then |ax| < ε(|a0 − δ| ∨ |a0 + δ|) and
z − ax ∈ I2. Hence, we have that

P (x,E) ≥ c0
∫
I1

∫
E∩E0

dzν0(da) ≥ c0ν0(I1)|E ∩ E0|.

The constant c0ν0(I1) is strictly positive since a0 belongs to the support of ν0.
Part 3): Pick ε so that −1/c /∈ Bε(x0). Suppose that c > 0 and x0 ≥ 0.

Note that, for any x ∈ Bε(x0)

P (x,E) = E[1A1x+B1∈E ] ≥ c0(1/c+ x0 + ε)−1

∫
E

1{z/(x+1/c)∈I1}dz.

Let

E0 =

{
((a0 − δ)/(1 + (x0 + ε)c), (a0 + δ)/(1 + (x0 − ε)c)) for a0 ≥ 0,

((a0 − δ)/(1 + (x0 − ε)c), (a0 + δ)/(1 + (x0 + ε)c)) for a0 < 0.

Observe that if x ∈ Bε(x0) and z ∈ E0 then z/(x+ 1/c) ∈ I1 = (a0 − δ, a0 + δ)
for δ sufficiently small. Hence, we have that

P (x,E) ≥ c0(1/c+ x0 + ε)−1

∫
E∩E0

dz ≥ c0(1/c+ x0 + ε)−1|E ∩ E0|.

This proves the result for the case where c > 0 and x0 ≥ 0; the proofs for the
other cases are analogous.

Proof of Lemma 4.2.1. First we claim that [−M,M ] is a petite set (cf. [89, page
124]) for any M > 0. To see this, note that [−M,M ] ⊆

⋃
x∈[−M,M ] Bε(x), where
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ε is as in (4.2.4). Combining this with the facts that [−M,M ] is compact and

Bε(x) is open, there exists a finite N such that [−M,M ] ⊆
⋃N
i=1 Bε(xi). By

Theorem 5.2.2 of [89], Bε(xi) is a small set, and hence, is petite. Therefore there
exists a finite subcover of petite sets. By Proposition 5.5.5 of [89], the interval
[−M,M ] is petite. Now we turn back to proving the statement of Lemma 4.2.1.
By Theorem 15.2.6 of [89], any bounded set is h-geometrically regular with h(x) =
|x|ε + 1, ε ∈ (0, 1]. Thus, from the definition of h-geometrical regularity (cf. page

373 of [89]), there exists t = t(h, C0) such that supx∈E1
E[
∑τC0−1

k=0 h(Xk)tk |X0 =
x] <∞. In particular,

χ1(t) = sup
x∈E1

E[tτC0 |X0 = x] <∞, (4.5.1)

since h ≥ 1. On the other hand, supx∈C0 E[tτC0 |X0 = x] <∞. In particular,

χ2(t) = sup
x∈C0

E[tτC0 |X0 = x,X1 ∼ (P (x, ·)− φ( · ))/(1− θ)] <∞, (4.5.2)

where θ and φ are as in (M). From the regeneration scheme as described in
Remark 4.2.1, we obtain that

sup
x∈E1

E[tr1 |X0 = x] ≤ χ1(t)

(
θ +

∞∑
n=1

θ(1− θ)n(χ2(t))n

)
. (4.5.3)

By (4.5.2) and the dominated convergence theorem, χ2(t) ↓ 1 as t ↓ 1. Thus, we
have that χ2(t) < (1− θ)−1 for sufficiently small t > 1. For this choice of t, the
r.h.s. of (4.5.3) converges by (4.5.1).

Proof of Lemma 4.2.2. By Assumption 4.2.1, the set [M,∞) is attainable for
the process {|Xn|}n≥0 for sufficiently large M . Hence, by Theorem 8.3.6 of [89],
Lemma 4.2.2 is proved once we show

Pα(|Xn| ≥M, for all n ≥ 1 | |X0| ≥ 2M) > 0.

Note that

|Xn| = eSn

∣∣∣∣∣X0 +

n∑
i=1

Bie
−Si

∣∣∣∣∣ ≥ eSn
(
|X0| −

n∑
i=1

|Bi|e−Si
)

≥ eSn
(
|X0| −

∞∑
i=1

|Bi|e−Si
)
.

102



CHAPTER 4. LARGE DEVIATIONS FOR MARKOV ADDITIVE PROCESSES

Combining this with the fact that Eα logA1 > 0, we conclude that P(exp(Sn) ≥
1, for all n ≥ 1) = P(Sn ≥ 0, for all n ≥ 1) > 0, and hence, the first statement
is proved. The second statement follows from the fact that the random walk
−Sn has a negative drift under the α-shifted measure.

Proof of Lemma 4.2.3. Let G be an open set bounded away from C so that
G ⊆ (S\C)−γ for some γ > 0. For a given δ > 0, due to the assumed asymptotic
equivalence, P(Xn ∈ S \ C)−γ , d(Xn, Yn) ≥ δ) = o(εn). Therefore,

lim
n→∞

ε−1
n P(Yn ∈ G)

≥ lim
n→∞

ε−1
n P(Xn ∈ G−δ, d(Xn, Yn) < δ)

= lim
n→∞

ε−1
n {P(Xn ∈ G−δ)−P(Xn ∈ G−δ, d(Xn, Yn) ≥ δ)}

≥ lim
n→∞

ε−1
n {P(Xn ∈ G−δ)−P(Xn ∈ (S \ C)−γ , d(Xn, Yn) ≥ δ)}

= lim
n→∞

ε−1
n P(Xn ∈ G−δ) ≥ ν(G−δ).

Since G is an open set, G =
⋃
δ>0G

−δ. Due to the continuity of measures,

limδ→0 ν(G−δ) = ν(G), and hence, we arrive at the lower bound

lim
n→∞

ε−1
n P(Yn ∈ G) ≥ ν(G)

by taking δ → 0. Now, turning to the upper bound, consider a closed set F
bounded away from C so that F ⊆ (S \ C)−γ for some γ > 0. Given a δ > 0, by
the equivalence assumption, P(Yn ∈ S\C)−γ , d(Xn, Yn) ≥ δ) = o(εn). Therefore,

lim
n→∞

ε−1
n P(Yn ∈ F )

= lim
n→∞

ε−1
n {P(Yn ∈ F, d(Xn, Yn) < δ) + P(Yn ∈ F, d(Xn, Yn) ≥ δ)}

≤ lim
n→∞

ε−1
n {P(Xn ∈ Fδ) + P(Yn ∈ F, d(Xn, Yn) ≥ δ)}

= lim
n→∞

ε−1
n P(Xn ∈ Fδ) ≤ ν(Fδ)

as long as δ is small enough so that Fδ is bounded away from C. Note that
{Fδ} is a decreasing sequence of sets, F =

⋃
δ>0 Fδ (since F is closed), and

ν ∈ M(S \ C) (and hence ν is a finite measure on S \ Cr for some r > 0 such
that Fδ ⊆ S \ Cr for some δ > 0). Due to the continuity (from above) of
finite measures, limδ→0 ν(Fδ) = ν(F ). Therefore, we arrive at the upper bound
limn→∞ ε−1

n P(Yn ∈ F ) ≤ ν(F ) by taking δ → 0.
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4.6 Proofs of Section 4.3.1

This section provides the proof of Theorem 4.3.1. Before turning to technical
details, we briefly describe our strategy for proving the tail asymptotics of B,
while a similar idea is behind the proof for R. Defining

T (u) = inf{n ≥ 0: |Xn| > u}, Kγ
β (u) = inf{n > T (uβ) : |Xn| ≤ uγ}, (4.6.1)

we write

B =

T (uβ)−1∑
n=0

Xn +

Kγ
β (u)−1∑

n=T (uβ)

Xn +

τd−1∑
n=Kγ

β (u)

Xn. (4.6.2)

where 0 < γ < β < 1. The proof of Theorem 4.3.1 (1) is based on the following
fact.

• On the event {T (uβ) < τd}, the first and the last term on the right hand
side (r.h.s.) of (4.6.2) are negligible in contributing to the tail asymptotics.
Proposition 4.6.1 proves such properties. Lemma 4.6.1 is useful in showing
Proposition 4.6.1.

• In view of the last bullet, the second term on the r.h.s. of (4.6.2) plays
the key role in P(B > u). Our analysis relies on the fact that the Markov
chain Xn resembles a multiplicative random walk in the corresponding
regime. Proposition 4.6.2 proves such asymptotics. Lemmas 4.6.2, 4.6.6,
and 4.6.3 are helpful for proving Proposition 4.6.2.

As mentioned above, the following propositions are useful in proving Theo-
rem 4.3.1.

Proposition 4.6.1. Suppose that Assumption 4.2.1 holds. Then there exists
0 < γ < β < 1 such that

P

∣∣∣∣∣∣
T (uβ)−1∑
n=0

Xn

∣∣∣∣∣∣ > u, T (uβ) < τd

 and P

∣∣∣∣∣∣
τd−1∑

n=Kγ
β (u)

Xn

∣∣∣∣∣∣ > u, T (uβ) < τd


are of order o(u−α) as u→∞.

Proposition 4.6.2. Suppose that Assumption 4.2.1 holds. Then there exists
0 < γ < β < 1 such that

lim
u→∞

uαP

Kγ
β (u)−1∑

n=T (uβ)

Xn > u, T (uβ) < τd

 = C+,∞Eα[(Z+)α1{τd=∞}]
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and lim
u→∞

uαP

Kγ
β (u)−1∑

n=T (uβ)

Xn < −u, T (uβ) < τd

 = C−,∞Eα[(Z−)α1{τd=∞}].

Proof of Theorem 4.3.1 (1). Recalling T (uβ) = inf{n ≥ 0: |Xn| > uβ} for β ∈
(0, 1), we can write

P(±B > u) ≤ P(±B > u, T (uβ) < τd) + P(|B| > u, T (uβ) ≥ τd). (4.6.3)

Since P(τd > n) decays geometrically in n, we have that

P(|B| > u, T (uβ) ≥ τd) ≤ P

(
τd−1∑
n=0

|Xn| > u, T (uβ) ≥ τd

)
≤ P(uβτd ≥ u) = P(τd ≥ u1−β) = o(u−α). (4.6.4)

Using (4.6.3) and (4.6.4), we can focus on analyzing the first term on the r.h.s. of
(4.6.3). For 0 < γ < β < 1, recall Kγ

β (u) = inf{n ≥ T (uβ) : |Xn| ≤ uγ}. Using
the decomposition in (4.6.2), we obtain that, for ε ∈ (0, 1),

P(B > u, T (uβ) < τd) ≤ P

∣∣∣∣∣∣
T (uβ)−1∑
n=0

Xn

∣∣∣∣∣∣ > εu

2
, T (uβ) < τd


+ P

Kγ
β (u)−1∑

n=T (uβ)

Xn > (1− ε)u, T (uβ) < τd


+ P

∣∣∣∣∣∣
τd−1∑

n=Kγ
β (u)

Xn

∣∣∣∣∣∣ > εu

2
, T (uβ) < τd

 , (4.6.5)

and

P(B > u, T (uβ) < τd) ≥ −P

∣∣∣∣∣∣
T (uβ)−1∑
n=0

Xn

∣∣∣∣∣∣ > εu

2
, T (uβ) < τd


+ P

Kγ
β (u)−1∑

n=T (uβ)

Xn > (1 + ε)u, T (uβ) < τd


−P

∣∣∣∣∣∣
τd−1∑

n=Kγ
β (u)

Xn

∣∣∣∣∣∣ > εu

2
, T (uβ) < τd

 . (4.6.6)
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Moreover, we can use similar estimates to “sandwich” the quantity P(B <
−u, T (uβ) < τd). Thus, using Propositions 4.6.1 and 4.6.2 above, we prove
Theorem 4.3.1 (1).

We need the following propositions to prove Theorem 4.3.1 (2).

Proposition 4.6.3. Suppose that Assumptions 4.2.1 and 4.2.2 hold. Then there
exists 0 < γ < β < 1 such that

P

∣∣∣∣∣∣
T (uβ)−1∑
n=0

Xn

∣∣∣∣∣∣ > u, T (uβ) < r1

 and P

∣∣∣∣∣∣
τd−1∑

n=Kγ
β (u)

Xn

∣∣∣∣∣∣ > u, T (uβ) < r1


are of order o(u−α) as u→∞.

Proposition 4.6.4. Suppose that Assumptions 4.2.1 and 4.2.2 hold. Then there
exists 0 < γ < β < 1 such that

lim
u→∞

uαP

Kγ
β (u)−1∑

n=T (uβ)

Xn > u, T (uβ) < r1

 = C+

and lim
u→∞

uαP

Kγ
β (u)−1∑

n=T (uβ)

Xn < −u, T (uβ) < r1

 = C−,

where C+ = C+,∞Eα[(Z+)α1{r1=∞}] and C+ = C+,∞Eα[(Z−)α1{r1=∞}].

Proof of Theorem 4.3.1 (2). Using similar arguments as in (4.6.3) and (4.6.4),
we can focus on P(±R > u, T (uβ) < r1). Combining the similar “sandwich”
technique as in (4.6.5)–(4.6.6) with Proposition 4.6.3, it remains to analyze

uαP

Kγ
β (u)−1∑

n=T (uβ)

Xn > u, T (uβ) < r1

 .

Using Proposition 4.6.4, we conclude the proof.

Next we prove Proposition 4.6.1. For this, we need the following lemma. Let
{Yn}n≥0 be the R+-valued Markov chain defined by Yn+1 = An+1Yn + |Bn+1|,
for n ≥ 0, and τ = inf{n ≥ 1: Yn ≤ d}.
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Lemma 4.6.1. Suppose that Assumption 4.2.1 holds. Let L > 0, and let ε > 0
be such that bα− εc ≥ 1. Then there exists a positive constant c such that, for
sufficiently large x,

E[τα+L |Y0 = x] ≤ cxbα−εc.

In particular E[τα+L |Y0 = x] = O(x).

Proof of Proposition 4.6.1. To begin with, note that

P

∣∣∣∣∣∣
T (uβ)−1∑
n=0

Xn

∣∣∣∣∣∣ > u, T (uβ) < τd

 ≤ P

T (uβ)−1∑
n=0

|Xn| > u, T (uβ) < τd


≤ P(uβτd > u) = P(τd > u1−β),

which decays exponentially. It remains to show the second claim. Define

E1(u) = {∃n ∈ {Kγ
β (u),Kγ

β (u) + 1, . . . , τd} : |Xn| ≥ uρ}.

Note that

P

∣∣∣∣∣∣
τd−1∑

n=Kγ
β (u)

Xn

∣∣∣∣∣∣ > u, T (uβ) < τd


≤ P

 τd−1∑
n=Kγ

β (u)

|Xn| > u, T (uβ) < τd,E1(u)


+ P

 τd−1∑
n=Kγ

β (u)

|Xn| > u, T (uβ) < τd, (E1(u))c

 ,

where the second term in the last equation is bounded by P(τd > u1−ρ), and
hence is of order o(u−α). It remains to analyze the first term, which is bounded
by P(T (uβ) < τd,E1(u)). Our goal here is to show that

P(T (uβ) < τd,E1(u)) = o(u−α), as u→∞. (4.6.7)

To begin with, note that, under the dual change of measure D we have Kγ
β (u) <

∞ almost surely. Moreover, |XKγ
β (u)+n| ≤ Y ′n, for all n ≥ 0, where {Y ′n}n≥0 is

the AR(1) process that is defined by

Y ′0 = uγ , Y ′n+1 = AKγ
β (u)+n+1Y

′
n + |BKγ

β (u)+n+1|, for n ≥ 0.

107



4.6. PROOFS OF SECTION 4.3.1

Hence, by defining τ ′ = inf{n ≥ 1: Y ′n ≤ d}, we have that

P(T (uβ) < τd,E1(u)) = ED [e−ST (uβ)1{T (uβ)<τd}1E1(u)]

= ED [e−ST (uβ)1{|Xn|>d,∀n≤T (uβ)}1E1(u)]

≤ ED [e−ST (uβ)1{|Xn|>d,∀n≤T (uβ)}1{∃n≤τ ′ : Y ′n≥uρ}].

Now using the strong Markov property we obtain that

P(T (uβ) < τd,E1(u)) ≤ ED [e−ST (uβ)1{|Xn|>d,∀n≤T (uβ)}]P(∃n ≤ τ ′ : Y ′n ≥ uρ)
= P(T (uβ) < τd)P(∃n ≤ τ ′ : Y ′n ≥ uρ),

where P(T (uβ) < τd) ∼ cu−αβ (cf. Corollary 4.2 of [36]). It remains to analyze
the asymptotic behavior of

P(∃n ≤ τ ′ : Y ′n ≥ uρ) = P(∃n ≤ τ : Yn ≥ uρ |Y0 = uγ), as u→∞,

where Yn+1 = An+1Yn + |Bn+1|, for n ≥ 0, and τ = inf{n ≥ 1: Yn ≤ d}. Once
again we adopt the idea of dual change of measure. To be precise, setting
T = inf{n ≥ 1: Yn ≥ uρ}, we apply the α-shifted change of measure over the
time interval [1, T ]. By doing this we obtain that

uα(ρ−γ)P(T < τ |Y0 = uγ) = uα(ρ−γ)Eα
[
e−αST 1{T<τ}

∣∣Y0 = uγ
]

= Eα

[(
YT
uρ

)−α(
YT

eST uγ

)α
1{T<τ}

∣∣∣∣∣Y0 = uγ

]

≤ Eα

[(
YT

eST uγ

)α
1{T<τ}

∣∣∣∣Y0 = uγ
]
.

Now it is sufficient to show that

lim
u→∞

Eα

[(
YT

eST uγ

)α
1{T<τ}

∣∣∣∣Y0 = uγ
]
<∞, (4.6.8)

since once it is proved we can set β + ρ− γ > 1 so that P(T (uβ) < τd,E(u)) =
o(u−α). Note that

YT
eST uγ

= e−ST u−γ

(
eST uγ + eST

T∑
k=1

|Bk|e−Sk
)

= 1 + u−γ
T∑
k=1

|Bk|e−Sk .
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Thus, we have that

YT
eST uγ

1{T<τ} ≤ 1 + u−γ
T∑
k=1

|Bk|e−Sk1{T<τ} ≤ 1 + u−γ
∞∑
k=1

|Bk|e−Sk1{k<τ},

and hence,

Eα

[(
YT

eST uγ
1{T<τ}

)α ∣∣∣∣Y0 = uγ
]1/α

≤ Eα

[(
1 + u−γ

∞∑
k=1

|Bk|e−Sk1{k<τ}

)α ∣∣∣∣∣Y0 = uγ

]1/α

≤ 1 +

∞∑
k=1

Eα
[
u−αγ |Bk|αe−αSk1{k<τ}

∣∣Y0 = uγ
]1/α

(4.6.9)

= 1 + u−γ
∞∑
k=1

Eα
[
e−αSk |Bk|α1{k<τ}

∣∣Y0 = uγ
]1/α

= 1 + u−γ
∞∑
k=1

E
[
|Bk|α1{k<τ}

∣∣Y0 = uγ
]1/α

= 1 + u−γ
∞∑
k=1

(E|Bk|α)1/αP(τ > k |Y0 = uγ)1/α

≤ 1 + u−γ(E|B1|α)1/αE[τα+L |Y0 = uγ ]

∞∑
k=1

k−(α+ε)/α,

for some L > 0, where in (4.6.9) we used the Minkowski inequality. Using
Lemma 4.6.1 above, we prove (4.6.7), (4.6.8), and hence, Proposition 4.6.1.

The following lemmas are useful in proving Proposition 4.6.2. Let C+,∞ be
as in (4.3.3). Set

G+(u) = u(1−β)αPD

Kγ
β (u)−1∑

n=T (uβ)

Xn > u

∣∣∣∣∣∣FT (uβ)

(XT (uβ)

uβ

)−α
1{Z

T (uβ)
>0},

(4.6.10)
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and

G−(u) = u(1−β)αPD

Kγ
β (u)−1∑

n=T (uβ)

Xn > u

∣∣∣∣∣∣FT (uβ)

∣∣∣∣XT (uβ)

uβ

∣∣∣∣−α 1{ZT (uβ)
≤0}.

(4.6.11)

Lemma 4.6.2. Suppose that Assumption 4.2.1 holds. Under the measure Pα,

G+(u)
a.s.−−→ C+,∞1{Z>0} and G−(u)

a.s.−−→ 0, as u→∞.

Moreover, G+(u) and G−(u) are bounded in u by some constants almost surely.

Recall that Zn, τd, and T (u) are defined in (4.2.7), (4.3.1), and (4.6.1),
respectively.

Lemma 4.6.3. Suppose that Assumption 4.2.1 holds. The random variables
Z+
T (uβ)

1{T (uβ)<τd} and Z−
T (uβ)

1{T (uβ)<τd} are bounded by

Z̄ = |X0|+
∞∑
n=1

|Bn|e−Sn1{n<τd}.

Moreover, Eα[Z̄α] <∞.

Proof of Proposition 4.6.2. We focus on deriving the first asymptotics, since the
second one follows using similar arguments. Note that

uαP

Kγ
β (u)−1∑

n=T (uβ)

Xn > u, T (uβ) < τd


= uαP

Kγ
β (u)−1∑

n=T (uβ)

Xn > u,XT (uβ) > 0, T (uβ) < τd


+ uαP

Kγ
β (u)−1∑

n=T (uβ)

Xn > u,XT (uβ) < 0, T (uβ) < τd


= (I.1) + (I.2). (4.6.12)

We start considering the first term on the r.h.s. of (4.6.12). Applying the dual
change of measure D together with Result 4.2.2, we obtain that

(I.1) = ED [gτd−1(X0, . . . , Xτd−1)1{X
T (uβ)

>0}e
−αS

T (uβ)1{T (uβ)<τd}],
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where we recall that gτd−1 is the projection of the function

g(X0, X1, . . .) = 1, if
∑Kγ

β (u)−1

n=T (uβ)
Xn > u,

onto its first τd − 1 coordinates. Recall Zn = Xne
−Sn = X0 +

∑n
k=1 e

−Sk was
defined in (4.2.7). Note that

(I.1) = uαED
[
gτd−1(X0, . . . , Xτd−1)1{X

T (uβ)
>0}e

−αS
T (uβ)1{T (uβ)<τd}

]
= uαED

[
gτd−1(X0, . . . , Xτd−1)|XT (uβ)|−α

|XT (uβ)|α1{XT (uβ)
>0}e

−αS
T (uβ)1{T (uβ)<τd}

]
= ED

[
(Z+

T (uβ)
)α1{T (uβ)<τd}G+(u)

]
, (4.6.13)

for all n ≥ 0. Using Lemma 4.6.2, Lemma 4.6.3, the dominated convergence
theorem and the fact that T (uβ)→∞ as u→∞, we obtain that

lim
u→∞

(I.1) = lim
u→∞

ED
[
(Z+

T (uβ)
)α1{T (uβ)<τd}G+(u)

]
= lim
u→∞

Eα
[
(Z+

T (uβ)
)α1{T (uβ)<τd}G+(u)

]
= Eα

[
lim
u→∞

(Z+
T (uβ)

)α1{T (uβ)<τd}G+(u)
]

= Eα
[
(Z+)α1{τd=∞}C+,∞

]
= C+,∞Eα

[
(Z+)α1{τd=∞}

]
.

Analogously, we have that

(I.2) = ED
[
(Z−

T (uβ)
)α1{T (uβ)<τd}G−(u)

]
→ 0, as u→∞, (4.6.14)

where G−(u) was defined in (4.6.11). Using (4.6.12), (4.6.13), and (4.6.14), we
prove the first asymptotics in Proposition 4.6.2. The second one can be shown
analogously.

We need the following lemmas to prove Proposition 4.6.3. Let Yn+1 =
An+1Yn + |Bn+1| and let r − 1 be the first time that (Yn, ηn) returns to the set
[−d, d]× {1}.
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Lemma 4.6.4. Suppose that Assumptions 4.2.1 and 4.2.2 hold. Let ε > 0, and
let L > 0 be such that bα− εc ≥ 1. Then there exists a positive constant c such
that, for sufficiently large x,

E[rα+L |Y0 = x] ≤ cxbα−εc.

In particular, E[rα+L |Y0 = x] = O(x).

Lemma 4.6.5. Suppose that Assumptions 4.2.1 and 4.2.2 hold. We have that

lim
u→∞

uαP(T (u) < r1) = E
[
e−αX

]
Eα
[
|Z|α1{r1=∞}

]
,

where X is the positive random variable such that logXT (u) − log u converges in
distribution to X as u→∞ under Pα.

Proof of Proposition 4.6.3. By replacing τd with r1, the proposition can be
shown using almost identical arguments as in the proof of Proposition 4.6.1.
Nonetheless, we need to show that

• P(T (uβ) < r1) ∼ cu−αβ for some constant c, and that

• E[rα+ε|Y0 = x] = O(x), where Yn+1 = An+1Yn + |Bn+1| and r − 1 is the
first time that (Yn, ηn) returns to the set [−d, d]× {1}.

For this, we use Lemmas 4.6.4 and 4.6.5 above.

Proof of Proposition 4.6.4. Using Lemma 4.6.2, Lemma 4.6.3, the dominated
convergence theorem and the fact that T (uβ) → ∞ as u → ∞, one can prove
the first asymptotics. The second one follows by a similar analysis.

Next we provide the proofs of all lemmas in this section. To show Lemma 4.6.1,
we introduce a result on bounding functionals of passage times for Markov
chains. Let {Vn}n≥0 be an {Fn}-adapted stochastic process taking values in
an unbounded subset of R+. Let {Un}n≥0 be another {Fn}-adapted stochastic
process taking values in an unbounded subset of R+ such that for any n ≥ 0,
Un is integrable. Let τd = inf{n ≥ 0: Vn ≤ d} be the first time Vn returning to
the set (−∞, d].

Result 4.6.1 (Theorem 2.2′ of [10]). Suppose there exists a positive real number
d and positive on (d,∞) functions g, h such that for any n ≥ 0, Un ≤ h(Vn) and

E[Un+1 − Un | Fn] ≤ −g(Vn) on {τd > n}.
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Then for any convex in a neighborhood of ∞ function f ∈ G satisfying

lim
y→∞

f(2y)

f(y)
≤ cf ,

for some positive constant cf , and

lim inf
y→∞

g(y)

f ′ ◦ f−1 ◦ h(y)
> 0,

there exists a positive constant c such that, for all x ≥ d

E[f(τd) |V0 = x] ≤ ch(x).

Morever, the following lemma is useful in proving Lemma 4.6.1. Define

Eγ2(u) = {|Bn| ≤ uγ ,∀1 ≤ n < Kγ
β (u)}. (4.6.15)

Lemma 4.6.6. Suppose that Assumption 4.2.1 holds. Let v be fixed such that
|v| > 1. For any β + γ > 1 and any ε > 0 there exists an u0 sufficiently large so
that, for all u ≥ u0,

P((Eγ2(u))c |X0 = vuβ) ≤ ε|v|u−(1−β)α.

Proof of Lemma 4.6.1. We want to apply Result 4.6.1. Set f(y) = yα+L, h(y) =
yα with α = bα− εc, and Un = h(Yn). Using the binomial formula, we have that

E[Un+1 − Un | Fn] ≤ (E[A
α
1 ]− 1)Y αn + c1Y

α−1
n , on {Yn ≥ 1},

for some positive constant c1 depending on the first (α− 1)-st moments of both
A1 and B1. Using the fact that α < α and the moment generating function of
logA1 is convex, we have E[A

α
1 ] < 1. Thus, there exists a sufficiently large d′

such that, on {Yn > d′},

E[Un+1 − Un | Fn] ≤ (E[A
α
1 ]− 1)Y αn + c1Y

α−1
n ≤ −c2Y αn = −g(Yn),

where g(y) = c2y
α = c2h(y), and c2 is a positive constant depending on d′.

Obviously, f ∈ G is convex, and f(2y)/f(y) ≤ 2α+L. Moreover, setting ᾱ = α+L
we have that

g(y)

f ′ ◦ f−1 ◦ h(y)
=

c2h(y)

ᾱh(y)(ᾱ−1)/ᾱ
=
c2
ᾱ
h(y)1−(ᾱ−1)/ᾱ →∞,
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since ᾱ > α > 1. In view of these, we can apply Result 4.6.1 and obtain that

E[τ̃α+L |Y0 = x] ≤ c3xbα−εc, for all x ≥ d′, (4.6.16)

for some positive constant c3, where τ̃ = inf{n ≥ 1: Yn ≤ d′}. W.l.o.g. we
assume that d′ ≥ d. Using Minkowski’s inequality we obtain that

E[τα+L |Y0 = x]1/(α+L)

= E[(τ̃ + τ − τ̃)α+L |Y0 = x]1/(α+L)

≤ E[τ̃α+L |Y0 = x]1/(α+L) + E[(τ − τ̃)α+L |Y0 = x]1/(α+L)

≤ E[τ̃α+L |Y0 = x]1/(α+L) + sup
y∈[0,d′]

E[τα+L |Y0 = y]1/(α+L)

≤ E[τ̃α+L |Y0 = x]1/(α+L) + sup
y∈[0,d′]

E[tτ |Y0 = y]1/(α+L) +O(1),

as x → ∞, where, by following the arguments as in the proof of Lemma 4.2.1
above, t can be chosen such that

sup
y∈[0,d′]

E[tτ |Y0 = y]1/(α+L) <∞.

For this choice of t, we have that

E[τα+L |Y0 = x]1/(α+L) ≤ E[τ̃α+L |Y0 = x]1/(α+L) +O(1), as x→∞.
(4.6.17)

Using (4.6.16) and (4.6.17), there exists a c > 0 such that E[τα+L |Y0 = x] ≤
cxbα−εc for sufficiently large x.

Proof of Lemma 4.6.2. We prove first the statements associated with G+(u). As

1{Z
T (uβ)

>0}
a.s.−−→ 1{Z>0} under Pα, it is sufficient to show that

lim
u→∞

u(1−β)αP

Kγ
β (u)−1∑

k=T (uβ)

Xk > u

∣∣∣∣∣∣ XT (uβ)

uβ
= v

 = C+,∞v
α, for v > 1.

Noting∣∣∣∣ Xn

Xn−1

∣∣∣∣ ≤ An +
|Bn|
|Xn−1|

< An + |Bn|u−γ , for T (uβ) < n < Kγ
β (u),
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we obtain that, for δ > 0 and v ≥ 1

P

Kγ
β (u)−1∑

k=T (uβ)

Xk > u

∣∣∣∣∣∣ XT (uβ)

uβ
= v


≤ P

( ∞∑
k=0

eS
(u)
k >

u1−β

v

)
= P

( ∞∑
k=0

eSk +

∞∑
k=0

eS
(u)
k −

∞∑
k=0

eSk >
u1−β

v

)

≤ P

( ∞∑
k=0

eSk >
u1−β

v
− δ

)
+ P

( ∞∑
k=0

eS
(u)
k −

∞∑
k=0

eSk > δ

)
, (4.6.18)

where S
(u)
n =

∑n
i=1 log(Ai + |Bi|u−γ). Note that

P

( ∞∑
k=0

eSk >
u1−β

v
− δ

)
∼ C+,∞

(
u1−β

v

)−α
. (4.6.19)

Moreover, using the Markov’s inequality and the fact that S
(u)
n ≥ Sn we obtain

that

u(1−β)αP

( ∞∑
k=0

eS
(u)
n −

∞∑
k=0

eSn > δ

)

≤ δ−1u(1−β)αE

[ ∞∑
k=0

eS
(u)
n −

∞∑
k=0

eSn

]

= δ−1u(1−β)α

( ∞∑
k=0

E[A1 + |B1|u−γ ]k −
∞∑
k=0

E[A1]k

)

= δ−1u(1−β)α

(
1

1−EA1 − u−γE|B1|
− 1

1−EA1

)
= δ−1u(1−β)α

(
u−γE|B1|

(1−EA1 − u−γE|B1|)(1−EA1)

)
= O(u(1−β)α−γ),

where in the final step we use the fact that EA1 < 1. By choosing β sufficiently
close to 1 so that (1− β)α < γ, we have that

P

( ∞∑
k=0

eS
(u)
k −

∞∑
k=0

eSk > δ

)
= o(u−(1−β)α). (4.6.20)
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Using (4.6.18)–(4.6.20), an upper bound is given by, for v > 1

lim
u→∞

u(1−β)αP

Kγ
β (u)−1∑

k=T (uβ)

Xk > u

∣∣∣∣∣∣ XT (uβ)

uβ
= v

 ≤ C+,∞v
α. (4.6.21)

Next we show the corresponding lower bound. By the Markov property we
obtain that

P

Kγ
β (u)−1∑

k=T (uβ)

Xk > u

∣∣∣∣∣∣ XT (uβ)

uβ
= v

 = P

Kγ
β (u)−1∑
k=0

Xk > u

∣∣∣∣∣∣ X0

uβ
= v

 .

(4.6.22)
Note that, on the event {X0 ≥ uβ}∣∣∣∣ Xn

Xn−1

∣∣∣∣ ≥ (An − |Bn|
|Xn−1|

)+

> (An − u−γ |Bn|)+, (4.6.23)

for all n < Kγ
β (u). This implies that

e
S

(u)

K
γ
β
(u) ≤

∣∣∣∣∣XKγ
β (u)

X0

∣∣∣∣∣ ≤ uγ−β

v
, where S(u)

n =

n∑
i=1

log(Ai − u−γ |B∗i |)+,

and hence

Kγ
β (u) ≥ inf{n ≥ 1: S(u)

n ≤ − log v − (β − γ) log u} = K ′(u). (4.6.24)

Recall that Eγ2(u) = {|Bn| ≤ uγ ,∀1 ≤ n < Kγ
β (u)}. In view of (4.6.22)–(4.6.24),

we have that, for δ > 0,

P

Kγ
β (u)−1∑

k=T (uβ)

Xk > u

∣∣∣∣∣∣ XT (uβ)

uβ
= v


= P

Kγ
β (u)−1∑
k=0

Xk > u

∣∣∣∣∣∣ X0

uβ
= v


≥ P

Kγ
β (u)−1∑
k=0

Xk > u, Eγ2(u)

∣∣∣∣∣∣ X0

uβ
= v
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≥ P

Kγ
β (u)−1∑
k=0

eS
(u)
k >

u1−β

v
, Eγ2(u)

∣∣∣∣∣∣ X0

uβ
= v


≥ P

Kγ
β (u)−1∑
k=0

eS
(u)
k >

u1−β

v

∣∣∣∣∣∣ X0

uβ
= v


−P

(
Eγ2(u)c

∣∣∣∣ X0

uβ
= v

)

= P

Kγ
β (u)−1∑
k=0

eS
(u)
k >

u1−β

v

∣∣∣∣∣∣ X0

uβ
= v

+ o(uα(1−β))vα,

where in the last inequality we have used Lemma 4.6.6 above. Thus, it is sufficient
to consider

P

Kγ
β (u)−1∑
k=0

eS
(u)
k >

u1−β

v

 ≥ P

K′(u)−1∑
k=0

eS
(u)
k >

u1−β

v


≥ P

( ∞∑
k=0

eS
(u)
k >

u1−β

v
+ δ

)
−P

 ∞∑
k=K′(u)

eS
(u)
k > δ


≥ P

( ∞∑
k=0

eS
(u)
k >

u1−β

v
+ δ

)
− δ−1E

 ∞∑
k=K′(u)

eS
(u)
k


= P

( ∞∑
k=0

eS
(u)
k >

u1−β

v
+ δ

)
− δ−1E

[
eSK′(u)

∞∑
k=0

e
S

(u)

k+K′(u)−S
(u)

K′(u)

]

≥ P

( ∞∑
k=0

eS
(u)
k >

u1−β

v
+ δ

)
− uγ−β

δv
E

[ ∞∑
k=0

eS
(u)
k

]

≥ P

( ∞∑
k=0

eS
(u)
k >

u1−β

v
+ δ

)
− uγ−β

δ
E

[ ∞∑
k=0

eS
(u)
k

]
, (4.6.25)

where in the last inequality we use the fact that 1 < v = X0/u
β . For the second

term in (4.6.25), we have that

E

[ ∞∑
k=0

eS
(u)
k

]
≤ E

[ ∞∑
k=0

eSk

]
<∞,
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and hence,

u(1−β)αδ−1uγ−βE

[ ∞∑
k=0

eS
(u)
k

]
= o(1), for β > (α+ γ)/(α+ 1). (4.6.26)

Therefore, it remains to consider the first term in (4.6.25). Note that

P

( ∞∑
k=0

eS
(u)
k >

u1−β

v
+ δ

)

≥ P

( ∞∑
k=0

eSk >
u1−β

v
+ 2δ

)
−P

( ∞∑
k=0

eSk −
∞∑
k=0

eS
(u)
k > δ

)

≥ P

( ∞∑
k=0

eSk >
u1−β

v
+ 2δ

)
− δ−1E

[ ∞∑
k=0

eSn −
∞∑
k=0

eS
(u)
n

]

= P

( ∞∑
k=0

eSk >
u1−β

v
+ 2δ

)

− δ−1

( ∞∑
k=0

(EA1)k −
∞∑
k=0

(E(A1 − u−γ |B∗1 |)+)k

)

= P

( ∞∑
k=0

eSk >
u1−β

v
+ 2δ

)

− δ−1

(
1

1−EA1
− 1

1−E(A1 − u−γ |B1|)+

)
≥ P

( ∞∑
k=0

eSk >
u1−β

v
+ 2δ

)
− δ−1 EA1 −E(A1 − u−γ |B1|)+

(1−EA1)(1−E(A1 − u−γ |B1|)+)

≥ P

( ∞∑
k=0

eSk >
u1−β

v
+ 2δ

)
− δ−1 u−γE|B1|

(1−EA1)(1−E(A1 − u−γ |B1|)+)
.

(4.6.27)

In view of (4.6.25)–(4.6.27), we have that

lim inf
u→∞

u(1−β)αP

Kγ
β (u)−1∑

k=T (uβ)

Xk > u

∣∣∣∣∣∣ XT (uβ)

uβ
= v

 ≥ C+,∞v
α.

118



CHAPTER 4. LARGE DEVIATIONS FOR MARKOV ADDITIVE PROCESSES

Combining this with (4.6.21) we have that

lim
u→∞

u(1−β)αP

Kγ
β (u)−1∑

k=T (uβ)

Xk > u

∣∣∣∣∣∣ XT (uβ)

uβ

(XT (uβ)

uβ

)−α
= C+,∞,

Pα-almost surely.
Next we show the boundedness of G+(u). Using (4.6.21), for ε > 0, there

exists U(ε) (independent of v) such that

(
u(1−β)

v

)α
P

Kγ
β (u)−1∑

k=T (uβ)

Xk > u

∣∣∣∣∣∣ XT (uβ)

uβ
= v

 ≤ C+,∞ + ε,

for all u(1−β) ≥ vU(ε). Moreover, for all 0 < u(1−β) < vU(ε)

u(1−β)αP

Kγ
β (u)−1∑

k=T (uβ)

Xk > u

∣∣∣∣∣∣ XT (uβ)

uβ
= v

 ≤ u(1−β)α ≤ vαU(ε)α. (4.6.28)

Thus

u(1−β)αP

Kγ
β (u)−1∑

k=T (uβ)

Xk > u

∣∣∣∣∣∣ XT (uβ)

uβ
= v

 ≤ max{C+,∞ + ε, U(ε)α}vα,

for all u > 0. This implies that G+(u) ≤ max{C+,∞ + ε, U(ε)α} <∞.
Finally, we show the statements involved with G−. By the Markov property,

it is sufficient to show that, for any arbitrary ε > 0 and v < −1

lim
u→∞

u(1−β)αP

Kγ
β (u)−1∑
k=0

Xk > u

∣∣∣∣∣∣ X0

uβ
= v

 ≤ ε|v|α.
Recall

Eγ2(u) = {|Bn| ≤ uγ ,∀1 ≤ n < Kγ
β (u)},

was defined in (4.6.15). We have that

P

Kγ
β (u)−1∑
k=0

Xk > u

∣∣∣∣∣∣ X0

uβ
= v
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≤ P

Kγ
β (u)−1∑
k=0

Xk > u, Eγ2(u)

∣∣∣∣∣∣ X0

uβ
= v

+ P
(
Eγ2(u)c

∣∣X0 = vuβ
)

= P
(
Eγ2(u)c

∣∣X0 = vuβ
)

= o(u−(1−β)α)|v|,

thanks to Lemma 4.6.6. The boundedness of G−u follows using similar arguments
as in (4.6.28).

Remark 4.4. Using similar arguments as in the proof of Lemma 4.6.2, one can
show that

lim
u→∞

u(1−β)αPD

Kγ
β (u)−1∑

n=T (uβ)

|Xn| > u

∣∣∣∣∣∣FT (uβ)

∣∣∣∣XT (uβ)

uβ

∣∣∣∣−α = C+,∞.

As a consequence of this result, we have that

uαP(

r1−1∑
n=0

|Xn| > u)→ C+,∞Eα[|Z|α1{r1=∞}

as u→∞.

Proof of Lemma 4.6.3. Note that Z+
T (uβ)

1{T (uβ)<τd} and Z−
T (uβ)

1{T (uβ)<τd} are

bounded by |ZT (uβ)1{T (uβ)<τd}|, for which we have that

|ZT (uβ)1{T (uβ)<τd}| ≤ |X0|+
T (uβ)∑
n=1

|Bn|e−Sn1{T (uβ)<τd}

≤ |X0|+
∞∑
n=1

|Bn|e−Sn1{n<τd} = Z̄.

Moreover, using Minkowski’s inequality we have that

Eα[Z̄α]1/α ≤ |X0|+
∞∑
n=1

Eα
[
|Bn|e−αSn1{n<τd}

]1/α
= |X0|+

∞∑
n=1

E
[
|Bn|1{n<τd}

]1/α
= |X0|+ (E|B1|)1/α

∞∑
n=1

P(τd > n)1/α <∞,
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where in the last inequality we use the fact that P(τd > n) decays exponentially
in n.

Proof of Lemma 4.6.4. Recall that τ = inf{n ≥ 1: Yn ≤ d}. Using Minkowski’s
inequality we obtain that

E[rα+L |Y0 = x]1/(α+L) = E[(τ + r − τ)α+L |Y0 = x]1/(α+L)

≤ E[τα+L |Y0 = x]1/(α+L) + E[(r − τ)α+L |Y0 = x]1/(α+L)

≤ E[τα+L |Y0 = x]1/(α+L) + sup
y∈[0,d]

E[rα+L |Y0 = y]1/(α+L)

≤ E[τα+L |Y0 = x]1/(α+L) + sup
y∈[0,d]

E[tr |Y0 = y]1/(α+L) +O(1),

as x→∞, where, by following the arguments as in the proof of Lemma 4.2.1, t
can be chosen such that supy∈[0,d] E[tr |Y0 = y] < ∞. For this choice of t, we
have that

E[rα+L |Y0 = x]1/(α+L) ≤ E[τα+L |Y0 = x]1/(α+L) +O(1), as x→∞.

Finally, using Lemma 4.6.1 above we have E[rα+L |Y0 = x] ≤ cxbα−εc for
sufficiently large x.

Proof of Lemma 4.6.5. Note that both |ZαT (u)|1{T (u)<r1} and |Zαn |1{n≤r1} are
bounded by

Z̄ = |X0|+
∞∑
n=1

|Bn|e−Sn1{n<r1},

whose α-th moment is finite thanks to Lemma 4.6.3. Moreover, note that
{Xn}n≥0 is transient in the α-shifted measure (cf. Lemma 4.2.2 above), and
hence, T (u) <∞ a.s. Applying a change of measure argument, we obtain that

uαP(T (u) < r1)

= uαEα[e−αST (u)1{T (u)<r1}] = Eα

[
|ZT (u)|α

∣∣∣∣XT (u)

u

∣∣∣∣−α 1{T (u)<r1}

]

= Eα

[
|Zn|α1{n≤T (u)}1{n≤r1}E

α

[∣∣∣∣XT (u)

u

∣∣∣∣−α
∣∣∣∣∣Fn

]]

+ Eα

[(
|ZT (u)|α1{T (u)<r1} − |Zn|

α
1{n≤T (u)}1{n≤r1}

) ∣∣∣∣XT (u)

u

∣∣∣∣−α
]
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= (III.1) + (III.2),

where {Fn}n≥0 is the natural filtration. Since (XT (u)/u)−α ≤ 1 and T (u)→∞
a.s. as u→∞,

lim
n→∞

lim
u→∞

(III.2)

≤ lim
n→∞

lim
u→∞

Eα
[
|ZT (u)|α1{T (u)<r1} − |Zn|

α
1{n≤T (u)}1{n≤r1}

]
= lim
n→∞

Eα
[

lim
u→∞

(
|ZT (u)|α1{T (u)<r1} − |Zn|

α
1{n≤T (u)}1{n≤r1}

)]
= lim
n→∞

Eα
[
|Z|α1{r1=∞} − |Zn|α1{n≤r1}

]
= 0.

It remains to consider (III.1). Note that, given Fn, n ≤ T (u), the random
variable log |XT (u)| − log u converges in distribution to some positive random
variable X—which is independent of Fn, n ≤ T (u)—as u → ∞, under the
α-shifted measure (cf. e.g. Theorem 3.8 of [36]). Hence we have that

lim
u→∞

Eα

[∣∣∣∣XT (u)

u

∣∣∣∣−α
∣∣∣∣∣Fn

]
1{n≤T (u)} = E

[
e−αX

]
.

Moreover, using the dominated convergence theorem and the fact

1{n≤T (u)}E
α[|XT (u)/u|−α | Fn] ≤ 1,

we obtain that

lim
n→∞

lim
u→∞

(III.1)

= lim
n→∞

Eα

[
|Zn|α1{n≤r1} lim

u→∞
Eα

[∣∣∣∣XT (u)

u

∣∣∣∣−α
∣∣∣∣∣Fn

]
1{n≤T (u)}

]
= E

[
e−αX

]
lim
n→∞

Eα
[
|Zn|α1{n≤r1}

]
= E

[
e−αX

]
Eα
[
|Z|α1{r1=∞}

]
.

Proof of Lemma 4.6.6. To begin with, we write, for some δ > 0,

P((Eγ2(u))c|X0 = vuβ) = P(∃n < Kγ
β (u) : |Bn| > uγ |X0 = vuβ)

≤ P(∃n < τd : |Bn| > uγ |X0 = vuβ)

≤ P(∃n ≤ uδ : |Bn| > uγ) + P(τd ≥ uδ|X0 = vuβ)
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= (II.1) + (II.2).

To bound (II.1), we have that

(II.1) ≤ uδP(|B1| > uγ) ≤ uδ−αγE|B1|α = o(u−(1−β)α),

for (1 − β)α + δ − αγ < 0. Since (II.2) ≤ u−(α+L)δE[τα+L
d |X0 = vuβ ], it is

sufficient to bound E[τα+L
d |X0 = vuβ ]. Recall {Yn}n≥0 is the R+-valued Markov

chain defined by Yn+1 = An+1Yn+|Bn+1|, for n ≥ 0, and τ = inf{n ≥ 1: Yn ≤ d}.
Note that E[τα+L

d |X0 = vuβ ] ≤ E[τα+L|Y0 = |v|uβ ]. Combining this with
Proposition 4.6.1, we conclude that there exist c and u0 such that

(II.2) ≤ u−(α+L)δE[τα+L|Y0 = |v|uβ ] ≤ c|v|uβu−(α+L)δ, ∀u ≥ u0.

Thus, the proposition is proved by setting L = L(δ, α, β) be sufficiently large.
Combining the estimates above we conclude the proof.

4.7 Proofs of Sections 4.3.2 and 4.3.3

Again, we briefly describe our strategy of proof before diving into the technicali-
ties. Define X̄ ′n = {X̄ ′n(t), t ∈ [0, 1]}, where

X̄ ′n(t) =
1

n

N(nt)∑
i=1

X ′i and X ′i =

ri−1∑
j=ri−1

Xj , (4.7.1)

where {ri}i≥0 is the sequence of regeneration times as in Remark 4.2, and

N(s) = sup{j ≥ 0: rj − 1 ≤ s}. (4.7.2)

Thanks to Theorem 4.1 of [105] and Theorem 4.3.1 above, we are able to establish
an asymptotic equivalence between X̄ ′n and some random walk W̄n that will be
specified below. This allows us to provide a large deviations result for X̄ ′n. In
both the one-sided and the two-sided case, we will show that the residual process
X̄n − X̄ ′n is negligible in an asymptotic sense.

We state here three lemmata that will play key roles in the proofs of Theo-
rems 4.3.2 and 4.3.3. Let W̄n = {W̄n(t), t ∈ [0, 1]} be such that

W̄n(t) =
1

n

bnt/Er1c∑
i=1

X ′i, (4.7.3)
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where X ′i is as in (4.7.1). We begin with stating an asymptotic equivalence
between X̄ ′n and W̄n, however, w.r.t. the J1-topology, which is stronger than the
M ′1-topology introduced in the beginning of Section 4.3.2. Let dJ1 denote the
Skorokhod J1 metric on D, which is defined by

dJ1(ξ1, ξ2) = inf
λ∈Λ
||λ− id||∞ ∨ ||ξ1 ◦ λ− ξ2||∞, ξ1, ξ2 ∈ D,

where id denotes the identity mapping, || · ||∞ denotes the uniform metric,
that is, ‖x‖∞ = supt∈[0,1] |x(t)|, and Λ denotes the set of all strictly increasing,
continuous bijections from [0, 1] to itself. Moreover, for j ≥ 0, define

Dµ6j = {ξ ∈ Dµ6j : ξ(0) = 0} and Dµ�j = {ξ ∈ Dµ�j : ξ(0) = 0}.

Lemma 4.7.1. Consider the metric space (D, dJ1). Suppose that Assump-
tions 4.2.1 and 4.2.2 hold. For any j ≥ 0, the following holds.

1. If B1 ≥ 0 and C+ as in Theorem 4.3.1 is strictly positive, then the stochastic
process X̄ ′n is asymptotically equivalent to W̄n w.r.t. n−j(α−1) and Dµ6j−1.

2. If C+ and C− as in Theorem 4.3.1 satisfy C+C− > 0, then the stochastic
process X̄ ′n is asymptotically equivalent to W̄n w.r.t. n−j(α−1) and Dµ�j.

Proof. We only show part 2), since part 1) can be proved by a similar argument.
By Definition 4.2.1, it is sufficient to show, for any δ > 0 and γ > 0,

lim
n→∞

nj(α−1)P(X̄ ′n ∈ (D \ Dµ�j)
−γ , dJ1(X̄ ′n, W̄n) ≥ δ)

= lim
n→∞

nj(α−1)P(W̄n ∈ (D \ Dµ�j)
−γ , dJ1(X̄ ′n, W̄n) ≥ δ) = 0. (4.7.4)

To prove (4.7.4), it is convenient to consider the space of paths on a longer
time horizon [0, 2]. Let W̄n denote the stochastic process {W̄n(t), t ∈ [0, 2]}
over the time horizon [0, 2], and Dµ;[0,2]

�j denote the space of step functions on

[0, 2] that corresponds to Dµ�j . Let d
[0,2]
J1

denote the Skorokhod J1 metric on

D[0,2] = D([0, 2],R).

Note that dJ1(W̄n,Dµ�j) ≥ γ implies that d
[0,2]
J1

(W̄
[0,2]
n ,Dµ;[0,2]

�j ) ≥ γ, and

dJ1(X̄ ′n,D
µ
�j) ≥ γ implies that either d

[0,2]
J1

(W̄
[0,2]
n ,Dµ;[0,2]

�j ) ≥ γ or 2n/Er1 ≤
N(n). Therefore, (4.7.4) is implied by

lim
n→∞

nj(α−1)P(d
[0,2]
J1

(W̄ [0,2]
n ,Dµ;[0,2]

�j ) ≥ γ, dJ1(X̄ ′n, W̄n) ≥ δ) = 0. (4.7.5)
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To prove (4.7.5), we adopt the construction of a piecewise linear non-decreasing
homeomorphism λ̄n from [105, the proof of Theorem 4.1]. Let t0 = 0 and ti
be the i-th jump time of N(n·) and tL be the last jump time of N(n·). Let
L = (bn/Er1c−1)∧N(n). Define λ̄n in such a way that λ̄n(t) = Er1N(nt)/n on
t0, . . . , tL, λ̄n(1) = 1, and λ̄n is a piecewise linear interpolation in between. For
such λ̄n, W̄n(λ̄n(t)) = X̄ ′n(t) for all t ∈ [0, tL], and hence, ‖W̄n ◦ λ̄n − X̄ ′n‖∞ =
supt∈[tL,1] |W̄n ◦ λ̄n(t)− X̄ ′n(t)|. Therefore,

dJ1(W̄n, X̄
′
n) = inf

λ∈Λ
‖λ− id‖∞ ∨ ‖W̄n ◦ λ− X̄ ′n‖∞

≤ ‖λ̄n − id‖∞ ∨ ‖W̄n ◦ λ̄n − X̄ ′n‖∞
= ‖λ̄n − id‖∞ ∨ sup

t∈[tL,1]

|W̄n ◦ λ̄n(t)− X̄ ′n(t)|. (4.7.6)

Note that the second term can be bounded (with high probability) as follows.
For an arbitrary ε > 0, consider two cases: bn/Er1 − nεc < N(n) < bn/Er1c
and bn/Er1c ≤ N(n) ≤ bn/Er1 + nεc. Set

Wn =

bn/Er1c∑
i=1

X ′i.

If bn/Er1 − nεc < N(n) < bn/Er1c, by the construction of λ̄n,

sup
t∈[tL,1]

|W̄n ◦ λ̄n(t)− X̄ ′n(t)| ≤ sup
s,t∈[1−ε,1]

|W̄n(s)− W̄n(t)|. (4.7.7)

On the other hand, if bn/Er1c ≤ N(n) ≤ bn/Er1 + nεc,

sup
t∈[tL,1]

|W̄n ◦ λ̄n(t)− X̄ ′n(t)| ≤ sup
s,t∈[1,1+ε]

|W̄n(s)− W̄n(t)|. (4.7.8)

From (4.7.7) and (4.7.8), we see that on the event {bn/Er1 − nεc < N(n) ≤
bn/Er1 + nεc},

sup
t∈[tL,1]

|W̄n ◦ λ̄n(t)− X̄ ′n(t)| ≤ sup
s,t∈[1−ε,1+ε]

|W̄n(s)− W̄n(t)|. (4.7.9)

Using (4.7.6) and (4.7.9), we obtain that

P(d
[0,2]
J1

(W̄ [0,2]
n ,Dµ;[0,2]

�j ) ≥ γ, dJ1(X̄ ′n, W̄n) ≥ δ)

≤ P

(
d

[0,2]
J1

(W̄ [0,2]
n ,Dµ;[0,2]

�j ) ≥ γ, sup
s,t∈[1−ε,1+ε]

|W̄n(s)− W̄n(t)| ≥ δ

)
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+ P({bn/Er1 − nεc < N(n) ≤ bn/Er1 + nεc}c) + P(‖λ̄n − id‖∞ ≥ δ).
(4.7.10)

Thanks to Cramér’s theorem, the second term in (4.7.10) decays geometrically.
Moreover, for the last term in (4.7.10), we have that

P(‖N(n · )/n− · /Er1‖∞ > δ)

= P

(
sup
t∈[0,1]

|N(nt)/n− t/Er1| > δ

)

= 1− lim
m→∞

P

(
sup

0≤l≤2m

∣∣∣∣N(nl/2m)

n
− l

Er12m

∣∣∣∣ ≤ δ)
= 1− lim

m→∞
P

(∣∣∣∣N(nl/2m)

n
− l

Er12m

∣∣∣∣ ≤ δ, ∀0 ≤ l ≤ 2m
)

= 1− lim
m→∞

P

(
N(nl/2m)

n
∈
[

l

Er12m
− δ, l

Er12m
+ δ

]
,∀l ≤ 2m

)
.

Let ∆i = ri − ri−1. Using the fact that N(n) < k ⇐⇒
∑k
i=1 ∆i > n, we obtain

that

P(‖N(nt)/n− t/Er1‖∞ > δ)

= 1− lim
m→∞

P

b(l/(Er12m)−δ)nc+1∑
i=1

∆i ≤ nl/2m <

b(l/(Er12m)+δ)nc+1∑
i=1

∆i,∀0 ≤ l ≤ 2m


= 1−P

 sup
t∈[0,1]

b(t/Er1−δ)nc+1∑
i=1

∆i − nt ≤ 0, inf
t∈[0,1]

b(t/Er1+δ)nc+1∑
i=1

∆i − nt > 0


≤ 1−P

 sup
t∈[0,1]

b(t/Er1−δ/2)nc∑
i=1

∆i − nt < 0, inf
t∈[0,1]

b(t/Er1+3δ/2)nc∑
i=1

∆i − nt > 0


= 1−P

(
sup

t∈[0,1/Er1−δ/2]

1

n

bntc∑
i=1

∆i − nEr1t− nEr1δ

 < 0,

inf
t∈[δ,1/Er1+3δ/2]

1

n

bntc∑
i=1

∆i − nEr1t+ nEr1δ

 > 0

)
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= 1−P

(
sup

t∈[0,1/Er1−δ/2]

1

n

bntc∑
i=1

∆i −Er1t < Er1δ,

inf
t∈[δ,1/Er1+3δ/2]

1

n

bntc∑
i=1

∆i −Er1t > −Er1δ

)
→ 0,

as n→∞, at an exponential rate by Mogulskii’s theorem.
For the first term in (4.7.10), we have that (see [105, page 21])

lim
n→∞

nj(α−1)P

(
d

[0,2]
J1

(W̄ [0,2]
n ,Dµ;[0,2]

�j ) ≥ γ,

sup
s,t∈[1−ε,1+ε]

|W̄n(s)− W̄n(t)| ≥ δ

)
≤ cε

for some c > 0, where the intuition behind the asymptotics above is that, given

the rare event takes place, the random walk W̄
[0,2]
n must have j big jumps and

one of them has to occur in the time interval [1− ε, 1 + ε]. Since the choice of
ε > 0 was arbitrary, (4.7.4) is proved by letting ε→ 0.

The next two lemmata are useful for future purposes.

Lemma 4.7.2. For ξ, ζ ∈ D, we have that dM ′1(ξ, ζ) ≤ dJ1(ξ, ζ).

Recall that Disc(ξ) is the set of discontinuities of ξ ∈ D and was defined in
(4.3.4).

Lemma 4.7.3. If dM ′1(ξn, ξ)→ 0 as n→∞, then, for each t ∈ Disc(ξ)c

lim
δ↓0

lim
n→∞

sup
t1∈Bδ(t)∩[0,1]

|ξn(t1)− ξ(t1)| = 0.

Proof. Let t ∈ Disc(ξ)c. We first prove the statement for the case where t ∈ (0, 1).
Let ε > 0 be fixed. Choose δ = δ(ε) > 0 such that

|ξ(t1)− ξ(t)| < ε, for t1 ∈ Bδ(t) ⊆ (0, 1). (4.7.11)

By the definition of the M ′1 convergence, for the given ε, there exists n0, such
that dM ′1(ξn, ξ) < (δ ∧ ε)/8 for all n ≥ n0. Moreover, for each fixed n ≥ n0, one
can find (un, vn) ∈ Γ′(ξn) and (u, v) ∈ Γ′(ξ) such that

‖un − u‖∞ ∨ ‖vn − v‖∞ < (δ ∧ ε)/4. (4.7.12)
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Let s, s, s be such that v(s) = t− δ/2, v(s) = t and v(s) = t+ δ/2. Moreover,
by (4.7.12) we have that vn(s) < t− δ/4 and vn(s) > t+ δ/4. Thus, for all t1 ∈
(t− δ/4, t+ δ/4) there exists sn ∈ (s, s) such that (un(sn), vn(sn)) = (ξn(t1), t1).
Combining this with (4.7.11) and (4.7.12), we obtain that

|ξn(t1)− ξ(t1)| ≤ |ξn(t1)− ξ(t)|+ |ξ(t1)− ξ(t)|
= |un(sn)− u(s)|+ |ξ(t1)− ξ(t)|
≤ |un(sn)− u(sn)|+ |u(sn)− u(s)|+ ε

≤ (δ ∧ ε)/2 + ε+ ε < 3ε.

Finally, the case where t ∈ {0, 1} can be dealt with similarly.

The reminder of this section is split into two parts that deal with Theo-
rems 4.3.2 and 4.3.3 respectively.

4.7.1 Proofs of Theorem 4.3.2

We consider the case where B1 is nonnegative. Let us give the “roadmap” of
proving Theorem 4.3.2.

• In Corollary 4.7.1 below we establish a sample-path large deviations result
for the aggregated process X̄ ′n (see (4.7.1) above) by considering a suitably
defined random walk together with utilizing Theorem 4.1 of [105]. For the
M-convergence in Corollary 4.7.1 we need Lemma 4.7.4 below.

• In Proposition 4.7.1 we show the asymptotic equivalence between the
aggregated process X̄ ′n and the original process X̄n. Again, one technical
lemma, see Lemma 4.7.5 below, is needed.

• Part 1) of Theorem 4.3.2 follows by combining Corollary 4.7.1 with Propo-
sition 4.7.1. Part 2) is a direct consequence of part 1).

Lemma 4.7.4. For all j ≥ 0 and all z ∈ R, the set Dz6j is closed w.r.t. (D, dM ′1).

Recall that Czj was defined in (4.3.6) for z ∈ R.

Corollary 4.7.1. Suppose that Assumptions 4.2.1 and 4.2.2 hold. Moreover,
let B1 ≥ 0 and C+ as in Theorem 4.3.1 be strictly positive. For any j ≥ 0,

nj(α−1)P(X̄ ′n ∈ · )→ (C+Er1)jCµj ( · ),

in M(D \ Dµ6j−1) as n→∞.
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Proposition 4.7.1. Suppose that Assumptions 4.2.1 and 4.2.2 hold. If B1 ≥ 0
and C+ as in Theorem 4.3.1 is strictly positive, then X̄n is asymptotically
equivalent to X̄ ′n w.r.t. (nP(X ′1 ≥ n))j and Dµ6j−1.

Proof of Theorem 4.3.2. Part 1) follows by combining Corollary 4.7.1 with
Proposition 4.7.1. Part 2) is a direct consequence of part 1).

Proof of Lemma 4.7.4. We give the proof for the case where z = 0, while the
proof for z 6= 0 follows using the same arguments. The statement is trivial for
D60 = {0}, we focus on the case where j ≥ 1. Let ξn, n ≥ 1, be a sequence
such that ξn ∈ D6j , for all n ≥ 1, and limn→∞ dM ′1(ξn, ξ) = 0 for some ξ ∈ D.
Our goal is to prove that ξ ∈ D6j . Note that by Lemma 4.7.3 above, for every
t ∈ Disc(ξ)c ∪ {1},

lim
n→∞

ξn(t) = ξ(t). (4.7.13)

We first show that ξ has at most j discontinuity points. Assume that |Disc(ξ)| ≥
j + 1. Then there exists 0 ≤ t1,− < t1,+ < · · · < tj+1,− < tj+1,+ ≤ 1 such that
ti,−, ti,+ ∈ Disc(ξ)c ∪ {1}, and |ξ(ti,−)− ξ(ti,+)| > 0, for all i ∈ {1, . . . , j + 1}.
By (4.7.13), there exists N ′ such that |ξN ′(ti,−) − ξN ′(ti,+)| > 0 for all i ∈
{1, . . . , j + 1}. This leads to the contradiction that |Disc(ξN ′)| ≤ j. Now let
t < t be two neighbouring discontinuity points of ξ. We claim that ξ is constant
on (t, t). To see this, assume that the opposite statement holds. Then there
exists t1 < tj+2 such that t < t1 < tj+2 < t and ξ(t1) 6= ξ(tj+2). W.l.o.g.
we assume that ξ(t1) < ξ(tj+2). Since ξ is continuous on (t, t), there exists
t1 < t2 < · · · < tj+2 such that

ξ(t1) < ξ(t2) < · · · < ξ(tj+2) with ε′ = min
i∈{1,...,j+1}

ξ(ti+1)−ξ(ti). (4.7.14)

On the other hand, for any ε > 0, by (4.7.13) there exists N = N(ε) such that

ξN (ti) ∈ (ξ(ti)− ε, ξ(ti) + ε), for all i ∈ {1, . . . , j + 2}. (4.7.15)

In view of (4.7.14) and (4.7.15), by choosing ε < ε′ we conclude that ξN
has at least j + 1 discontinuity points, which leads to the contradiction that
|Disc(ξN )| ≤ j. Thus we conclude that ξ is constant between any two neighbour-
ing discontinuity points. Similarly one can show that ξ(t+)− ξ(t−) > 0 for every
t ∈ Disc(ξ).

Proof of Corollary 4.7.1. Note that Dµ6j = Dµ6j ∪ {ξ ∈ D : ξ(0) > 0, ξ − ξ(0) ∈
Dµ6j−1}. In particular, Dµ6j ⊆ D

µ
6j . Using Lemma 4.7.2, Corollary 4.7.1 is a

consequence of Lemma 4.7.1 and Theorem 4.1 in [105].
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The following lemma is essential in the proving Proposition 4.7.1. Recall X̄ ′n
was defined in (4.7.1). Define

Rn = {Rn(t), t ∈ [0, 1]}, where Rn(t) =
1

n

bntc−1∑
i=rN(n)

Xi. (4.7.16)

Lemma 4.7.5. Suppose that Assumptions 4.2.1 and 4.2.2 hold. Moreover, let
B1 ≥ 0 and C+ as in Theorem 4.3.1 be strictly positive. The following holds for
any δ > 0, γ > 0, and j ≥ 0.

1. First we have that

P(X̄ ′n ∈ (D \ Dµ6j−1)−γ , Rn(1) ≥ δ) = o((nP(X ′1 ≥ n))j+1), as n→∞.

2. Moreover, we have that

P(Rn ∈ (D \ D61)−γ) = o((nP(X ′1 ≥ n))j), as n→∞.

Proof of Proposition 4.7.1. To begin with, for ε > 0, define

Eε3(n) = {N−ε (n) < N(n) ≤ N+
ε (n)}, (4.7.17)

where N−ε (n) = bn/Er1 − nεc and N+
ε (n) = bn/Er1 + nεc. Using Cramér’s

theorem, it is easy to see that P(Eε3(n)c) decays exponentially to 0 as n→∞.
Defining ∆i = ri − ri−1, we have that

{dM ′1(X̄n, X̄
′
n) ≥ 2δ} ⊆ {∃ i ≤ N(n) s.t. ∆i ≥ nδ} ∪ {Rn(1) ≥ δ} . (4.7.18)

First we show that for any j ≥ 0, δ > 0, and γ > 0,

lim
n→∞

(nP(X ′1 ≥ n))−jP(X̄ ′n ∈ (D \ Dµ6j−1)−γ , dM ′1(X̄n, X̄
′
n) ≥ 2δ) = 0.

By (4.7.18) we have that

P(X̄ ′n ∈ (D \ Dµ6j−1)−γ , dM ′1(X̄n, X̄
′
n) ≥ 2δ)

≤ P(∃ i ≤ N(n) s.t. ∆i ≥ nδ) + P(X̄ ′n ∈ (D \ Dµ6j−1)−γ , Rn(1) ≥ δ)

= P(∃ i ≤ N(n) s.t. ∆i ≥ nδ) + o((nP(X ′1 ≥ n))j), (4.7.19)

where in (4.7.19) we used Lemma 4.7.5 (1) above. It remains to analyze the first
term in (4.7.19). Note that

P(∃ i ≤ N(n) s.t. ∆i ≥ nδ)
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≤ P(∃ i ≤ N(n) s.t. ∆i ≥ nδ,Eε3(n)) + P(Eε3(n)c)

= P(∃ i ≤ N(n) s.t. ∆i ≥ nδ,Eε3(n)) + o((nP(X ′1 ≥ n))j)

≤ P (∃ i ≤ bn/Eτ1 + nεc s.t. ∆i ≥ nδ) + o((nP(X ′1 ≥ n))j)

≤ bn/Er1 + nεcP(r1 ≥ nδ) + o((nP(X ′1 ≥ n))j)

= o((nP(X ′1 ≥ n))j),

for any j ≥ 0. Next we show that

lim
n→∞

(nP(X ′1 ≥ n))−jP(X̄n ∈ (D \ Dµ6j−1)−γ , dM ′1(X̄n, X̄
′
n) ≥ 2δ) = 0.

In view of the estimation right above, it is sufficient to show that

lim
n→∞

(nP(X ′1 ≥ n))−jP(X̄n ∈ (D \ Dµ6j−1)−γ , X̄ ′n ∈ (Dµ6j−1)ρ, Rn(1) ≥ δ) = 0,

for some ρ > 0. Note that

P(X̄n ∈ (D \ Dµ6j−1)−γ , X̄ ′n ∈ (Dµ6j−1)ρ, Rn(1) ≥ δ)
= P(X̄n ∈ (D \ Dµ6j−1)−γ , X̄ ′n ∈ (Dµ6j−1)ρ ∩ (D \ Dµ6j−2)−ρ, Rn(1) ≥ δ)

+ P(X̄n ∈ (D \ Dµ6j−1)−γ , X̄ ′n ∈ (Dµ6j−1)ρ ∩ (Dµ6j−2)ρ, Rn(1) ≥ δ)
≤ P(X̄ ′n ∈ (D \ Dµ6j−2)−ρ, Rn(1) ≥ δ)

+ P(X̄n ∈ (D \ Dµ6j−1)−γ , X̄ ′n ∈ (Dµ6j−2)ρ)

= P(X̄n ∈ (D \ Dµ6j−1)−γ , X̄ ′n ∈ (Dµ6j−2)ρ) + o(n−j(α−1)).

Thus, it remains to consider the first term in the last equation. Combining
Lemma 4.7.5 (2) above with the fact that

P(X̄n ∈ (D\Dµ6j−1)−γ , X̄ ′n ∈ (Dµ6j−2)ρ) ≤ P(Rn ∈ (D\D61)−ρ)+o(n−j(α−1)),

for ρ small enough, we conclude the proof.

Proof of Lemma 4.7.5. Part 1): We start showing the first equivalence. Defining

X̄ ′6k,n = {X̄ ′6k,n(t), t ∈ [0, 1]} by X̄ ′6k,n(t) = 1/n
∑N(nt)∧k
i=1 X ′i, we have that

P(X̄ ′n ∈ (D \ Dµ6j−1)−γ , Rn(1) ≥ δ)

≤ P

X̄ ′n ∈ (D \ Dµ6j−1)−γ ,

rN(n)+1−1∑
i=rN(n)

Xi ≥ nδ, Eε3(n)

+ P(Eε3(n)c)
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=

N+
ε (n)∑

k=N−ε (n)

P(X̄ ′n ∈ (D \ Dµ6j−1)−γ , X ′N(n)+1 ≥ nδ, N(n) = k)

+ o((nP(X ′1 ≥ n))j+1)

=

N+
ε (n)∑

k=N−ε (n)

P(X̄ ′6k,n ∈ (D \ Dµ6j−1)−γ , X ′k+1 ≥ nδ, N(n) = k)

+ o((nP(X ′1 ≥ n))j+1)

≤
N+
ε (n)∑

k=N−ε (n)

P(X̄ ′6k,n ∈ (D \ Dµ6j−1)−γ , X ′k+1 ≥ nδ) + o((nP(X ′1 ≥ n))j+1)

=

N+
ε (n)∑

k=N−ε (n)

P(X̄ ′6k,n ∈ (D \ Dµ6j−1)−γ)P
(
X ′k+1 ≥ nδ

)
+ o((nP(X ′1 ≥ n))j+1)

≤ P(X ′1 ≥ nδ)
N+
ε (n)∑

k=N−ε (n)

P(X̄ ′n ∈ (D \ Dµ6j−1)−γ/2) + o((nP(X ′1 ≥ n))j+1)

≤ 2εnP(X ′1 ≥ nδ)P(X̄ ′n ∈ (D \ Dµ6j−1)−γ/2) + o((nP(X ′1 ≥ n))j+1). (4.7.20)

It remains to consider the first term in (4.7.20). Using Corollary 4.7.1, we have
that

lim
n→∞

(nP(X ′1 ≥ n))−(j+1) 2εnP(X ′1 ≥ nδ)P(X̄ ′n ∈ (D \ Dµ6j−1)−γ/2) ≤ cε,
(4.7.21)

for some c > 0 independent of ε. Part (1) is proved using (4.7.20) and (4.7.21),
together with letting ε→ 0.

Part 2): Note that

P
(
Rn ∈ (D \ D61)−γ

)
= P

(
Rn ∈ (D \ D61)−γ ,

rN(n) + 1

n
> ρ

)
+ P

(
Rn ∈ (D \ D61)−γ ,

rN(n) + 1

n
≤ ρ
)
,

where the first term equals zero for sufficiently large ρ ∈ (0, 1). Hence, it is
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sufficient to consider the second term which is bounded by

P

(
rN(n) + 1

n
≤ ρ
)
≤ P

(
rN(n) ≤ nρ

)
≤ P

(
rN(n) ≤ nρ, Eε3(n)

)
+ P (Eε3(n)c)

= P

N(n)∑
i=1

∆i ≤ nρ, Eε3(n)

+ o((nP(X ′1 ≥ n))j)

≤ P

N−ε (n)∑
i=1

∆i ≤ nρ

+ o((nP(X ′1 ≥ n))j)

≤ P

N−ε (n)∑
i=1

∆i

N−ε (n)
≤ ρ

1/Er1 − ε

+ o((nP(X ′1 ≥ n))j).

(4.7.22)

Note that, for every ρ ∈ (0, 1) there exists a sufficiently small ε > 0 such that
ρ/(1/Er1 − ε) < Er1. For this choice of ε, the first term in (4.7.22) decays
exponentially thanks to Cramér’s theorem.

4.7.2 Proofs of Theorem 4.3.3

We consider the case where B1 is a general random variable taking values in R.
The idea behind the proof of Theorem 4.3.3 is similar to the one in the one-sided
case.

• In Corollary 4.7.2 below we establish a sample-path large deviations result
for the aggregated process X̄ ′n (see (4.7.1) above).

• In Proposition 4.7.2 we show the asymptotic equivalence between the
aggregated process X̄ ′n and the original process X̄n. In Lemma 4.7.7 we
deal with the technical issues appearing in Proposition 4.7.2.

• Part 1) of Theorem 4.3.3 follows by combining Corollary 4.7.2 with Propo-
sition 4.7.2. Part 2) is a direct consequence of part 1).

Lemma 4.7.6. For all j ≥ 0 and all z ∈ R, the set Dz�j is closed w.r.t. (D, dM ′1).

Recall Czj,k was defined in (4.3.9). Let C+, C− be as in Theorem 4.3.1.

133



4.7. PROOFS OF SECTIONS 4.3.2 AND 4.3.3

Corollary 4.7.2. Suppose that Assumptions 4.2.1 and 4.2.2 hold. If C+C− > 0,
then for any j ≥ 1

nj(α−1)P(X̄ ′n ∈ · )→ (Er1)j
∑

(l,m)∈I=j
(C+)l(C−)mCµl,m( · ),

in M(D \ Dµ�j) as n→∞, where I=j = {(l,m) ∈ Z2
+ : l +m = j}.

Proposition 4.7.2. Suppose that Assumptions 4.2.1 and 4.2.2 hold. If C+C− >
0, then the following hold for all j ≥ 0:

1. First

lim
n→∞

nj(α−1)P(X̄ ′n ∈ (D \ Dµ�j)
−γ , dM ′1(X̄n, X̄

′
n) > δ) = 0.

2. Assume additionally that E|B1|m <∞ for every m ∈ Z+. Then

lim
n→∞

nj(α−1)P(X̄n ∈ (D \ Dµ�j)
−γ , dM ′1(X̄n, X̄

′
n) > δ) = 0.

In particular, X̄n is asymptotically equivalent to X̄ ′n w.r.t. n−j(α−1) and
Dµ�j.

We need the following lemma to prove Proposition 4.7.2. Set

Rp,n(t) =
1

n

brp+1tc−1∑
i=rp

Xi.

Let T1(u) = T (u) = inf{n ≥ 0: |Xn| > u} and

Ti+1(u) = inf{n ≥ Ti(u) : − sign(XTi(u))Xn > u}, i ≥ 1.

Define X̄i,n = {X̄i,n(t), t ∈ [0, 1]} and X̄ ′i,n = {X̄ ′i,n(t), t ∈ [0, 1]} by

X̄i,n(t) =
1

n

bntc∧ri−1∑
l=ri−1

Xl, and X̄ ′i,n(t) =
X ′i
n
1[ri/n,1](t). (4.7.23)

respectively.

Lemma 4.7.7. Suppose that Assumptions 4.2.1 and 4.2.2 hold. Moreover,
assume that E|B1|m <∞ for every m ∈ Z+. Let C+, C− be as in Theorem 4.3.1
such that C+C− > 0.
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1. For any i ≥ 1, j ≥ 2, ε > 0, and δ > 0, there exists c1, c2 and n1, n2

(independent of i) respectively such that

P(dM ′1(X̄i,n, X̄
′
i,n) ≥ δ) ≤ c1n−(2−ε)α, for all n ≥ n1,

and P(X̄i,n ∈ (D \ D�j)−δ) ≤ c2n−(j−ε)α, for all n ≥ n2.

2. For any j ≥ 1, X̂n is asymptotically equivalent to X̄ ′n w.r.t. n−j(α−1) and
Dµ�j.

3. For any i ∈ {N−ε (n), . . . , N+
ε (n)}, j ≥ 1, δ > 0, and ε > 0, there exists c

and n0 (independent of i) such that

P(Ri,n ∈ (D \ D�j)−δ) ≤ cn−(j−ε)α, for all n ≥ n0.

Remark 4.5. Without the additional assumption E|B1|m <∞ for every m ∈ Z+,
one can still show that P(T2(nβ) < r1) = o(n−α), by following the arguments
as in the proof of Lemma 4.7.7. Hence, under Assumptions 4.2.1 and 4.2.2,
uniformly in i,

lim
n→∞

nαP(dM ′1(X̄i,n, X̄
′
i,n) ≥ δ) = 0.

Proof of Proposition 4.7.2. To begin with, recall that, for ε > 0

Eε3(n) = {N−ε (n) ≤ N(n) ≤ N+
ε (n)},

where N−ε (n) = nb1/Er1−εc and N+
ε (n) = nb1/Er1+εc. Moreover, P((Eε3(n))c)

decays exponentially to 0 as n → ∞. Let Rn be as in (4.7.16). Recalling
∆i = ri − ri−1, we have that

{dM ′1(X̄n, X̄
′
n) > δ} ⊆

{
∃ i ≤ N(n) s.t. dM ′1(X̄i,n, X̄

′
i,n) ≥ δ

}
∪ {‖Rn‖∞ ≥ δ} .

(4.7.24)
To see (4.7.24), we assume that the opposite statement holds. Given that

the event {dM ′1(X̄i,n, X̄
′
i,n) < δ} takes place, there exist (ui1, v

i
1) ∈ Γ′(X̄i,n) and

(ui2, v
i
2) ∈ Γ′(X̄ ′i,n) such that ‖ui1 − ui2‖∞ ∨ ‖vi1 − vi2‖∞ < δ + η. W.l.o.g. we

assume that

{s : vi1(s) = ri−1/n, u
i
1(s) = 0} ∩ {s : vi2(s) = ri−1/n, u

i
2(s) = 0} 6= ∅, (4.7.25)

as well as

{s : vi1(s) = ri/n, u
i
1(s) = X ′i/n} ∩ {s : vi2(s) = ri/n, u

i
2(s) = X ′i/n} 6= ∅.
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We give here the reasoning for (4.7.25), where the second equation can be
obtained by following same arguments. Let s1 ∈ {s : vi1(s) = ri−1/n, u

i
1(s) = 0}

and s2 ∈ {s : vi2(s) = ri−1/n, u
i
2(s) = 0}. When s1 = s2, we are done. We

assume s1 < s2, otherwise one can change the role of s1 and s2. Define a new
parametric representation (ūi2, v̄

i
2) ∈ Γ′(X̄ ′i,n) by

v̄i2(s) =


v1(s), for s ∈ [0, s1],

v1(s1), for s ∈ (s1, s2),

v2(s), for s ∈ [s2, 1],

ūi2(s) =


0, for s ∈ [0, s1],

0, for s ∈ (s1, s2),

u2(s), for s ∈ [s2, 1].

It is easy to check that indeed (ūi2, v̄
i
2) is a parametric representation of Γ′(X̄ ′i,n).

Moreover, ‖ui1 − ūi2‖∞ = ‖ui1 − ui2‖∞ < δ + η,

|vi1(s)− v̄i2(s)| = |vi1(s)− vi1(s1)| ≤ vi1(s2)− vi1(s1) = vi1(s2)− vi2(s2) < δ + η,

for s ∈ (s1, s2), and hence, ‖vi1− v̄i2‖∞ < δ+η. In view of the construction above,
we can replace vi2 by v̄i2, so that (4.7.25) holds. For the similar reasoning, on

the event {‖Rn‖∞ < δ} ⊆ {dM ′1(Rn, 0) < δ}, there exist (u
N(n)+1
1 , v

N(n)+1
1 ) ∈

Γ′(Rn) and (u
N(n)+1
2 , v

N(n)+1
2 ) ∈ Γ′(0) such that

‖uN(n)+1
1 − uN(n)+1

2 ‖∞ ∨ ‖vN(n)+1
1 − vN(n)+1

2 ‖∞ < δ + η,

and the intersection of

{s : v
N(n)+1
1 (s) = rN(n)/n, u

N(n)+1
1 (s) = 0}

and
{s : v

N(n)+1
2 (s) = rN(n)/n, u

N(n)+1
2 (s) = 0}

is an empty set. Now, we pick s1
− = 0, s

N(n)+1
+ = 1,

si+ ∈ {s : vi1(s) = ri/n, u
i
1(s) = X ′i/n} ∩ {s : vi2(s) = ri/n, u

i
2(s) = X ′i/n},

for i ∈ {1, . . . , N(n)}, and

si− ∈ {s : vi1(s) = ri/n, u
i
1(s) = 0} ∩ {s : vi2(s) = ri/n, u

i
2(s) = 0},

for i ∈ {2, . . . , N(n) + 1}. W.l.o.g. we assume that si+ = si+1
− , otherwise

one can apply a strictly increasing, continuous bijection from [0, 1] to itself
to the corresponding parametric representation, which preserves the uniform
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distance between parametric representations. Finally, we define parametric
representations (u1, v1) ∈ Γ′(X̄n) and (u2, v2) ∈ Γ′(X̄ ′n) by vi(s) = vji (s), and

ui(s) = uji (s) +
∑j−1
k=1X

′
k, for s ∈ [sj−, s

j
+], j ∈ {1, . . . , N(n) + 1}, and i ∈ {1, 2}.

It is easy to check that ‖u1−u2‖∞∨‖v1−v2‖∞ < δ+η, and hence, d(X̄n, X̄
′
n) ≤

‖u1 − u2‖∞ ∨ ‖v1 − v2‖∞ < δ + η. Letting η → 0 leads to the contradiction of
dM ′1(X̄n, X̄

′
n) > δ.

Part 1): For γ > 0 and j ≥ 1, define

Dγ>j = {ξ ∈ D : |Discγ(ξ)| ≥ j}, Discγ(ξ) = {t ∈ Disc(ξ) : |ξ(t)− ξ(t−)| ≥ γ}.
(4.7.26)

Note that (cf. the proof of Lemma 2 in [29]), for any L > 0, there exists a
γ̄ = γ̄(γ, L) > 0 sufficiently small such that

P(X̄ ′n ∈ (D \ Dµ�j)
−γ ∩ (Dγ̄>j)

c) = o(n−L). (4.7.27)

Thus, it suffices to show that for any j ≥ 1 and any δ > 0

lim
n→∞

nj(α−1)P(X̄ ′n ∈ D
γ̄
>j , dM ′1(X̄n, X̄

′
n) ≥ 2δ) = 0.

By (4.7.24) we have that

P(X̄ ′n ∈ D
γ̄
>j , dM ′1(X̄n, X̄

′
n) ≥ 2δ)

≤ P(X̄ ′n ∈ D
γ̄
>j , ∃ i ≤ N(n) s.t. dM ′1(X̄i,n, X̄

′
i,n) ≥ δ)

+ P(X̄ ′n ∈ D
γ̄
>j , ‖Rn‖∞ ≥ δ)

= (IV.1) + (IV.2),

where

(IV.1) = P(X̄ ′n ∈ D
γ̄
>j , E

ε
3(n), ∃ i ≤ N(n) s.t. dM ′1(X̄i,n, X̄

′
i,n) ≥ δ)

+ o(n−j(α−1)).

For p ∈ Z+, let P(E, p) denote the set of all p-permutations of a discrete set E.
Using Lemma 4.7.7 (1) and the fact that the blocks {Xri−1

, . . . , Xri}, i ≥ 1 are
mutually independent, we obtain that

P(X̄ ′n ∈ D
γ̄
>j , E

ε
3(n), ∃ i ≤ N(n) s.t.dM ′1(X̄i,n, X̄

′
i,n) ≥ δ)

≤ P(∃(i1, . . . , ij) ∈ P({1, . . . , N+
ε (n)}, j) s.t.

dM ′1(X̄i1,n, X̄
′
i1,n) ≥ δ, |X ′ip | ≥ nγ̄,∀2 ≤ p ≤ j)
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= O(nj)P(dM ′1(X̄i1,n, X̄
′
i1,n) ≥ δ)P(|X ′ip | ≥ nγ̄)j−1

= O(nj)o(n−α)O(n−(j−1)α) = o(n−j(α−1)),

where P(dM ′1(X̄i1,n, X̄
′
i1,n

) ≥ δ) is of order o(n−α) thanks to Remark 4.5. Re-

calling X̄ ′6m,n = {1/n
∑N(nt)∧m
i=1 X ′i, t ∈ [0, 1]}, we have that

(IV.2) ≤ P

X̄ ′n ∈ Dγ̄>j , rN(n)+1−1∑
i=rN(n)

|Xi| ≥ nδ, Eε3(n)

+ P(Eε3(n)c)

=

N+
ε (n)∑

m=N−ε (n)

P

X̄ ′n ∈ Dγ̄>j , rN(n)+1−1∑
i=rN(n)

|Xi| ≥ nδ, N(n) = m


+ o(n−j(α−1))

≤
N+
ε (n)∑

m=N−ε (n)

P

(
X̄ ′6m,n ∈ D

γ̄
>j ,

rm+1−1∑
i=rm

|Xi| ≥ nδ

)
+ o(n−j(α−1))

= P

(
r1−1∑
i=0

|Xi| ≥ nδ

) N+
ε (n)∑

m=N−ε (n)

P(X̄ ′6m,n ∈ D
γ̄
>j) + o(n−j(α−1))

≤ P

(
r1−1∑
i=0

|Xi| ≥ nδ

) N+
ε (n)∑

m=N−ε (n)

P(X̄ ′n ∈ D
γ̄
>j) + o(n−j(α−1))

≤ P

(
r1−1∑
i=0

|Xi| ≥ nδ

)
2εnP(X̄ ′n ∈ D

γ̄
>j) + o(n−j(α−1))

= 2εnO(n−α)O(n−j(α−1)) = o(n−j(α−1)),

where P(
∑r1−1
i=0 |Xi| ≥ nδ) is of order O(n−α) due to Remark 4.4.

Part 2): In view of part (1), it is sufficient to show that

P(X̄n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ (Dµ�j)ρ/3) = o(n−j(α−1)),

for some ρ > 0. Noting X̂n(t) = (1/n)
∑(bntc∧rN(n))−1

i=0 Xi for t ∈ [0, 1], we have
that

{X̄n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ (Dµ�j)ρ/3}
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⊆ {X̄ ′n ∈ (Dµ�j)ρ/3, X̂n ∈ (D \ Dµ�j)
−ρ} ∪ {X̄n ∈ (D \ Dµ�j)

−γ , X̂n ∈ (Dµ�j)ρ}

⊆ {X̄ ′n ∈ (Dµ�j)ρ/3, X̂n ∈ (D \ Dµ�j)
−ρ}

∪ {X̄n ∈ (D \ Dµ�j)
−γ , X̂n ∈ (Dµ�j−1)ρ}

∪ {X̄n ∈ (D \ Dµ�j)
−γ , X̂n ∈ (Dµ�j)ρ ∩ (D \ Dµ�j−1)−ρ}.

Iterating this procedure j + k times, we obtain that

{X̄n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ (Dµ�j)ρ/3}

⊆ {X̄ ′n ∈ (Dµ�j)ρ/3, X̂n ∈ (D \ Dµ�j)
−ρ} ∪ {X̄n ∈ (D \ Dµ�j)

−γ , X̂n ∈ (Dµ0 )ρ}

∪
j+k−1⋃
i=1

{X̄n ∈ (D \ Dµ�j)
−γ , X̂n ∈ (Dµ�j+1−i)ρ ∩ (D \ Dµ�j−i)

−ρ}. (4.7.28)

Now, note that

{X̄ ′n ∈ (Dµ�j)ρ/3, X̂n ∈ (D \ Dµ�j)
−ρ}

⊆ {X̂n ∈ (D \ Dµ�j)
−ρ, dM ′1(X̄ ′n, X̂n) ≥ ρ/3}. (4.7.29)

Moreover, for ρ > 0 sufficiently small, we have that

{X̄n ∈ (D \ Dµ�j)
−γ , X̂n ∈ (Dµ0 )ρ} ⊆ {Rn ∈ (D \ D�j)−ρ}, (4.7.30)

and that

{X̄n ∈ (D \ Dµ�j)
−γ , X̂n ∈ (Dµ�j+1−i)ρ ∩ (D \ Dµ�j−i)

−ρ}

⊆ {X̂n ∈ (D \ Dµ�j−i)
−ρ, Rn ∈ (D \ D�i)−ρ}, (4.7.31)

for all i ∈ {1, . . . , j + k − 1}. In view of (4.7.28)–(4.7.31), we have that

P(X̄n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ (Dµ�j)ρ/3)

≤ P(X̂n ∈ (D \ Dµ�j)
−ρ, dM ′1(X̄ ′n, X̂n) ≥ ρ/3) + P(Rn ∈ (D \ D�j)−ρ)

+

j+k−1∑
i=1

P(X̂n ∈ (D \ Dµ�j−i)
−ρ, Rn ∈ (D \ D�i)−ρ), (4.7.32)

where the first term in the previous inequality is of order o(n−j(α−1)) due to
Lemma 4.7.7 (2) above. Turning to estimating the summation in (4.7.32), we
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define Rp,n = {Rp,n(t), t ∈ [0, 1]} by

Rp,n(t) =
1

n

brp+1tc−1∑
i=rp

Xi.

Using the facts that RN(n),n(t) = Rn(rN(n)+1t/n) and rN(n)+1/n > 1 a.s., we
have that

Rn ∈ (D \ D�i)−ρ ⇒ RN(n),n ∈ (D \ D�i)−ρ/2. (4.7.33)

Define X̄6p,n = {X̄6p,n(t), t ∈ [0, 1]} by X̄6p,n(t) = (1/n)
∑(bntc∧rN(n)∧p)−1

i=0 Xi.
In view of (4.7.33), we have that

P(X̂n ∈ (D \ Dµ�j−i)
−ρ, Rn ∈ (D \ D�i)−ρ)

≤ P(X̂n ∈ (D \ Dµ�j−i)
−ρ, RN(n),n ∈ (D \ D�i)−ρ/2)

≤ P(X̂n ∈ (D \ Dµ�j−i)
−ρ, RN(n),n ∈ (D \ D�i)−ρ/2, Eε3(n)) + P(Eε3(n)c)

=

N+
ε (n)∑

p=N−ε (n)

P(X̂n ∈ (D \ Dµ�j−i)
−ρ, RN(n),n ∈ (D \ D�i)−ρ/2, N(n) = p)

+ o(n−j(α−1))

=

N+
ε (n)∑

p=N−ε (n)

P(X̄6p,n ∈ (D \ Dµ�j−i)
−ρ, Rp,n ∈ (D \ D�i)−ρ/2, N(n) = p)

+ o(n−j(α−1))

≤
N+
ε (n)∑

p=N−ε (n)

P(X̄6p,n ∈ (D \ Dµ�j−i)
−ρ)P(Rp,n ∈ (D \ D�i)−ρ/2) + o(n−j(α−1))

≤ P(X̂n ∈ (D \ Dµ�j−i)
−ρ/2)

N+
ε (n)∑

p=N−ε (n)

P(Rp,n ∈ (D \ D�i)−ρ/2) + o(n−j(α−1))

= O(n−(j−i)(α−1))2εO(n−i(α−1)) + o(n−j(α−1)),

where in the final step we use Lemma 4.7.7 (2)–(3). Letting ε→ 0, we prove that
the summation in (4.7.32) is of order o(n−j(α−1)). Similarly, it can be shown
that P(Rn ∈ (D \ D�j)−ρ), and hence, P(X̄n ∈ (D \ Dµ�j)−γ , X̄ ′n ∈ (Dµ�j)ρ/3)

are of order o(n−j(α−1)).
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Proof of Lemma 4.7.7. Let Ds denote the set of all step functions in D. Let Ds,↑
denote the set of all non-decreasing step functions in D. Define the mapping
Ψ↑ : Ds → Ds,↑ by ζ = Ψ↑(ξ) and

ζ(t) = inf{ζ ′(t) ∈ R : ζ ′ ∈ Ds,↑, ζ ′ ≥ ξ}, for all t ∈ [0, 1]. (4.7.34)

Basically, Ψ↑(ξ) is the least possible nondecreasing step function such that
Ψ↑(ξ) ≥ ξ.

Part 1): First we show that P(dM ′1(X̄i,n, X̄
′
i,n) ≥ δ) ≤ P(T2(nβ) < r1) +

o(n−(2−ε)α), for any β ∈ (0, 1). To begin with, setting β0 = (1− β)/2 we have
that

P(dM ′1(X̄i,n, X̄
′
i,n) ≥ δ) ≤ P(dM ′1(X̄i,n, X̄

′
i,n) ≥ δ, ri − ri−1 ≤ nβ0)

+ P(ri − ri−1 > nβ0)

= P(dM ′1(X̄i,n, X̄
′
i,n) ≥ δ, ri − ri−1 ≤ nβ0)

+ o(n−(2−ε)α).

Hence, it is sufficient to show that

P(dM ′1(X̄i,n, X̄
′
i,n) ≥ δ, ri − ri−1 ≤ nβ0) ≤ P(T2(nβ) < r1). (4.7.35)

Note that dM ′1(X̄i,n, X̄
′
i,n) ≥ δ implies ‖X̄i,n − X̄ ′i,n‖∞ ≥ δ, and hence,

δ ≤ sup
k≤ri∧n

∣∣∣∣∣∣ 1n
k−1∑

j=ri−1

Xj

∣∣∣∣∣∣ ≤ sup
k≤ri

∣∣∣∣∣∣ 1n
k−1∑

j=ri−1

Xj

∣∣∣∣∣∣ .
It is sufficient to show that sup

k≤ri

∣∣∣∣∣∣ 1n
k−1∑

j=ri−1

Xj

∣∣∣∣∣∣ ≥ δ, dM ′1(X̄i,n, X̄
′
i,n) ≥ δ, ri − ri−1 ≤ nβ0


is a subset of {T2(nβ) < r1}. We distinguish between the cases

1. supk≤ri
1
n

∑k−1
j=ri−1

Xj ≥ δ,

2. infk≤ri
1
n

∑k−1
j=ri−1

Xj ≤ −δ,
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and focus on 1), since 2) can be dealt with by replacing Xi by −Xi. Note that

sup
k≤ri∧n

k−1∑
j=ri−1

Xj ≥ δn, ri − ri−1 ≤ nβ0

implies the existence of k1 ∈ {ri−1, . . . , ri − 1} such that Xk1 > n1−β0 > nβ .
Now, suppose that Xk ≥ −nβ for all k ∈ {ri−1, . . . , ri − 1}. Then the following
statements must hold.

(i) For n sufficiently large, we have

sup
t∈[0,1]

Ψ↑(X̄i,n)(t)− sup
t∈[0,1]

X̄ ′i,n(t) ≤ n−1(ri − ri−1)nβ ≤ nβ+β0−1 ≤ δ/3,

and hence,

sup
t∈[0,1]

X̄ ′i,n(t) ≥ sup
t∈[0,1]

Ψ↑(X̄i,n)(t)− δ/3 ≥ 2/3δ > 0.

Moreover, both Ψ↑(X̄i,n) ∈ Ds,↑ and X̄ ′i,n ∈ Ds,↑ are nonnegative functions

in D. Combining these with ri − ri−1 ≤ nβ0 , we have that, for sufficiently
large n,

dM ′1(Ψ↑(X̄i,n), X̄ ′i,n)

≤

{
sup
t∈[0,1]

Ψ↑(X̄i,n)(t)− sup
t∈[0,1]

X̄ ′i,n(t)

}
∨ (ri − ri−1)/n ≤ δ/3.

(ii) For n sufficiently large,

dM ′1(Ψ↑(X̄i,n), X̄i,n) ≤ ‖Ψ↑(X̄i,n)− X̄i,n‖∞
≤ n−1(ri − ri−1)nβ ≤ nβ+β0−1 ≤ δ/3.

In view of (i) and (ii), we have that

dM ′1(X̄i,n, X̄
′
i,n) ≤ dM ′1(X̄i,n,Ψ

↑(X̄i,n)) + dM ′1(Ψ↑(X̄i,n), X̄ ′i,n) ≤ 2δ/3,

which leads to the contradiction of dM ′1(X̄i,n, X̄
′
i,n) ≥ δ. Hence, we prove (4.7.35).

Next we show that P(X̄i,n ∈ (D \ D�k)−δ) = P(Tk(nβ) < r1) + o(n−(k−ε)α)
for any β ∈ (0, 1). First we claim that

d(ξ,D�k) > δ ⇒
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∃(t0, . . . , tk) s.t. 0 ≤ t0 < t1 < · · · < tk ≤ 1, |ξ(ti)− ξ(ti−1)| > δ, i = 1, . . . , k.
(4.7.36)

To see this, assume that the opposite holds. Set s0 = 0 and

si = sup{t ∈ (si−1, 1] : |ξ(t)− ξ(si−1)| ≤ δ},

for i = 1, . . . , k. Define ζ ∈ D by ζ(t) = ξ(si) for si ≤ t < si+1. Due to the
assumption, we have ζ ∈ D�k, d(ξ, ζ) ≤ δ, and hence, d(ξ,D�k) ≤ δ. This leads
to the contradiction of d(ξ,D�k) > δ. Thus, we proved (4.7.36). Using the fact
that P(r1 > nδ/2) decays exponentially, we are able to restrict ourselves to the
case where r1 ≤ nδ/2. Let (t0, . . . , tk) be as in the r.h.s. of (4.7.36). Using the
fact that, under the M ′1 topology, jumps with the same sign “merge” into one
jump in case they are “close”, we conclude that sign(ξ(ti))sign(ξ(ti−1)) = −1 for
i ∈ {1, . . . , k}. Combining this with the fact that P(r1 > n(1−β)) = o(n−(k−ε)α)
we obtain that

P(X̄i,n ∈ (D \ D�k)−δ)

= P(X̄i,n ∈ (D \ D�k)−δ, r1 ≤ n(1−β)) + P(r1 > n(1−β))

= P(Tk(nβ) < r1) + o(n−(k−ε)α) (4.7.37)

for any β ∈ (0, 1).
Now, it remains to show that P(Tk(uβ) < r1) = O(u−(k−ε)α) as u→∞. We

prove this by induction in k. For the base case we need to show P(T2(nβ) <
r1) = O(n−(2−ε)α). Recalling Kγ

β (u) = inf{n > T (uβ) : |Xn| ≤ uγ}, we have
that

P(T2(uβ) < r1) = P(T2(uβ) < Kγ
β (u)) + P(T1(uβ) < Kγ

β (u) < T2(uβ) < r1)

= P(T2(uβ) < Kγ
β (u)) +O(u−(2β−γ)α), (4.7.38)

where P(T1(uβ) < Kγ
β (u) < T2(uβ) < r1) = O(u−(2β−γ)α) can be deduced by

following the arguments as in the proof of Proposition 4.6.1. Applying the dual
change of measure D over the time interval [0, T1(uβ)], we obtain that

u(2β−γ)αP(T2(uβ) < Kγ
β (u))

= u(2β−γ)αED
[
e−αST (uβ)1{T (uβ)<r1}P

D(T2(uβ) < Kγ
β (u) | FT (uβ))

]
= ED

[
1{T (uβ)<r1}u

(β−γ)αPD(T2(uβ) < Kγ
β (u) | FT (uβ))

∣∣∣∣ XT (uβ)

uβZT (uβ)

∣∣∣∣−α
]
.

(4.7.39)
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Recalling Eγ2(u) = {|Bn| ≤ uγ ,∀1 ≤ n < Kγ
β (u)}, we have that, for |v| ≥ 1

PD(T2(uβ) < Kγ
β (u) |XT (uβ) = vuβ)

≤ PD(|Bn| ≤ uγ ,∀T (uβ) < n < r1, T2(uβ) < Kγ
β (u) |XT (uβ) = vuβ)

+ PD(∃T (uβ) < n < r1 s.t. |Bn| > uγ |XT (uβ) = vuβ)

= P((Eβ2 (u))c |X0 = vuβ) = o(u−(β−γ)α)v, (4.7.40)

where the tail estimate in (4.7.40) is obtained by following the arguments in the
proof of Lemma 4.6.6 and taking advantage of the additional assumption that
E|B1|m < ∞ for every m ∈ Z+. Plugging (4.7.40) into (4.7.39) and using the
dominated convergence theorem, we obtain that

u(2β−γ)αP(T2(uβ) < Kγ
β (u)) = o(1). (4.7.41)

In view of (4.7.35), (4.7.38), and (4.7.41),

P(T2(nβ) < r1) = O(n−(2β−γ)α) = O(n−(2−ε)α)

by choosing β = 1− ε/3 and γ = ε/3. Turning to the inductive step, suppose
that P(Tk(uβ) < r1) = O(u−(k−ε)α). Note that

P(Tk+1(uβ) < r1)

= P(Tk(uβ) < Kγ
β (u) < Tk+1(uβ) < r1) + P(Tk+1(uβ) < Kγ

β (u)),

where for the first term in the previous sum we have that

P(Tk(uβ) < Kγ
β (u) < Tk+1(uβ) < r1)

≤ P(Tk(uβ) < r1)P(T (uβ) < r1|X0 = uγ)

= O(u−(k−ε′)α)O(u−(β−γ)α) = O(u−(k+1−ε)α),

for suitable choice of β and γ. Hence, it remains to bound P(Tk+1(uβ) < Kγ
β (u)).

Applying the dual change of measure D over the time interval [0, T1(uβ)], we
obtain that

u((k+1)β−γ)αP(Tk+1(uβ) < Kγ
β (u))

= ED

[
1{T (uβ)<r1}u

(kβ−γ)αPD(Tk+1(uβ) < Kγ
β (u) | FT (uβ))

∣∣∣∣ XT (uβ)

uβZT (uβ)

∣∣∣∣−α
]
.

(4.7.42)
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Moreover, we have that, for |v| ≥ 1,

PD(Tk+1(uβ) < Kγ
β (u) |XT (uβ) = vuβ)

≤ PD(∃T (uβ) < n1 < · · · < nk < r1 s.t. |Bni | > uγ , ∀i ≤ k |XT (uβ) = vuβ)

= P(∃0 < n1 < · · · < nk < r1 s.t. |Bni | > uγ , ∀i ≤ k |X0 = vuβ)

= P(∃0 < n1 < · · · < nk < r1 s.t. |Bni | > uγ , ∀i ≤ k)

= o(u−(kβ−γ)α), (4.7.43)

where the tail estimate in (4.7.43) is obtained by following the arguments in
the proof of Lemma 4.6.6 and taking advantage of the additional assumption
that E|B1|m <∞ for every m ∈ Z+. Combining (4.7.42) and (4.7.43) with the
fact that |XT (uβ)/u

β | ≤ 1 we obtain that P(Tk+1(uβ) < Kγ
β (u)), and hence,

P(Tk+1(uβ) < r1) are of order O(u−(k+1−ε)α).
Part 2): By a similar reasoning as in proving part (1) of Proposition 4.7.2,

we have that

P(X̄ ′n ∈ (D \ Dµ�j)
−γ , dM ′1(X̄ ′n, X̂n) ≥ δ)

≤ P(X̄ ′n ∈ D
γ̄
>j , ∃ i ≤ N(n) s.t. dM ′1(X̄i,n, X̄

′
i,n) ≥ δ) + o(n−j(α−1))

= o(n−j(α−1)),

where Dγ̄>j is defined as in (4.7.26). It remains to show that, for any j ≥ 1,
γ > 0, and δ > 0, there exists some ρ > 0 so that

P(X̂n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ (Dµ�j)ρ, dM ′1(X̄ ′n, X̂n) ≥ δ) = o(n−j(α−1)),

as n → ∞. Recall, for γ > 0 and j ≥ 1, Dγ>j = {ξ ∈ D : |Discγ(ξ)| ≥ j},
where Discγ(ξ) = {t ∈ Disc(ξ) : |ξ(t) − ξ(t−)| ≥ γ}. Defining Dρ=j = {ξ ∈
D : |Discγ(ξ)| = j} for j ∈ Z and ρ > 0, we have that

P(X̂n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ (Dµ�j)ρ, dM ′1(X̄ ′n, X̂n) ≥ δ)

≤ P(X̄ ′n ∈ D
ρ0
>j−1, dM ′1(X̄ ′n, X̂n) ≥ δ)

+ P(X̂n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ (Dρ0>j−1)c)

≤ P(X̄ ′n ∈ D
ρ0
>j−1, dM ′1(X̄ ′n, X̂n) ≥ δ)

+

j−1∑
i=1

P(X̂n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ D

ρ0
=j−i−1)
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= P(X̄ ′n ∈ D
ρ0
>j−1, dM ′1(X̄ ′n, X̂n) ≥ δ) +

j−1∑
i=1

P(Ej(i)). (4.7.44)

Note that

P(X̄ ′n ∈ D
ρ0
>j−1, dM ′1(X̄ ′n, X̂n) ≥ δ)

≤ P(X̄ ′n ∈ D
ρ0
>j−1, ∃ i ≤ N(n) s.t. dM ′1(X̄i,n, X̄

′
i,n) ≥ δ) + o(n−j(α−1))

= P(X̄ ′n ∈ D
ρ0
>j−1, E

ε
3(n), ∃ i ≤ N(n)s.t. dM ′1(X̄i,n, X̄

′
i,n) ≥ δ) + o(n−j(α−1))

≤ P(∃(i0, . . . , ij−2) ∈ P({1, . . . , N+
ε (n)}, j − 1) s.t.

dM ′1(X̄i0,n, X̄
′
i0,n) ≥ δ, |X ′ip | ≥ nρ0,∀1 ≤ p ≤ j − 2)

= O(nj−1n−(2−ε)αn−(j−2)α) + o(n−j(α−1)) = o(n−j(α−1)), (4.7.45)

where in (4.7.45) we use Lemma 4.7.7 (1) together with the fact that the blocks
{Xri−1

, . . . , Xri}, i ≥ 1, are mutually independent, and the final equivalence is
obtained by setting ε < 1/α. In view of the above computation, it remains to
analyze P(Ej(k)), k ∈ {1, . . . , j − 1} as in (4.7.44).

Let I∗ = {i ≤ N(n) : dM ′1(X̄i,n, X̄
′
i,n) ≥ ρ1}. Note that

P(X̂n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ D

ρ0
=j−k−2)

= P(X̂n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ D

ρ0
=j−k−2, |I

∗| ≥ (k + 2) ∧ (j − k − 2))

+ P(X̂n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ D

ρ0
=j−k−2, 1 ≤ |I∗| < (k + 2) ∧ (j − k − 2))

+ P(X̂n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ D

ρ0
=j−k−2, |I

∗| = 0)

= (V.1) + (V.2) + (V.3).

Suppose that k ≤ j/2− 2, where the case k > j/2− 2 can be dealt with similarly.
Note that

(V.1) ≤ P(X̄ ′n ∈ D
ρ0
=j−k−2, |I

∗| ≥ k + 2, Eε3(n)) + o(n−j(α−1))

≤ P(∃(i1, . . . , ij−k−2) ∈ P({1, . . . , N+
ε (n)}, j − k − 2) s.t.

dM ′1(X̄ip,n, X̄
′
ip,n) ≥ ρ, ∀1 ≤ p ≤ k + 2,

|X ′iq | ≥ nρ0,∀k + 3 ≤ q ≤ j − k − 2)

+ o(n−j(α−1))

= O(nj−k−2n−(k+2)(2−ε)αn−(j−2k−4)α) + o(n−j(α−1))

= O(n−j(α−1)n−(k+2)+(k+2)εα) + o(n−j(α−1)) = o(n−j(α−1)),
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if ε < 1/α. Moreover, we have that (V.3) = o(n−j(α−1)) for ρ0 sufficiently small.
Let I ′ = {i ≤ N(n) : X̄ ′i,n ≥ ρ0}. Turning to bounding (V.2) we have that

(V.2) = P(X̂n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ D

ρ0
=j−k−2, 1 ≤ |I∗| ≤ k + 1)

=

k+1∑
k1=1

k1∑
k2=0

P(X̂n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ D

ρ0
=j−k−2,

|I∗| = k1, |I ′ ∩ I∗| = k2, E
ε
3(n))

+ o(n−j(α−1)).

Defining J = {(l′1, . . . , l′k1) : 1T (l′1, . . . , l
′
k1

) < k + 2 + k2}, it is now sufficient to
consider

P(X̂n ∈ (D \ Dµ�j)
−γ , X̄ ′n ∈ D

ρ0
=j−k−2, |I

∗| = k1, |I ′ ∩ I∗| = k2, E
ε
3(n))

≤ P

(
∃(i1, . . . , ij−k−2−k2+k1) ∈ P({1, . . . , N+

ε (n)}, j − k − 2− k2 + k1) s.t.

(X̄i1,n, . . . , X̄ik1 ,n
) ∈

( ⋃
(l1,...,lk1 )∈J

k1∏
p=1

Dlip
)−ρ2

,

|X ′iq | ≥ nρ0, ∀k1 + 1 ≤ q ≤ j − k − 2− k2 + k1

)

+ P

(
X̂n ∈ (D \ Dµ�j)

−γ , X̄ ′n ∈ D
ρ0
=j−k−2, |I

∗| = k1, |I ′ ∩ I∗| = k2, E
ε
3(n),

∃(i1, . . . , ij−k−2−k2+k1) ∈ P({1, . . . , N+
ε (n)}, j − k − 2− k2 + k1)

s.t. (X̄i1,n, . . . , X̄ik1 ,n
) ∈

( ⋃
(l1,...,lk1 )∈J

k1∏
p=1

Dlip
)
ρ2
,

|X ′iq | ≥ nρ0, ∀k1 + 1 ≤ q ≤ j − k − 2− k2 + k1

)
= (V.2.a) + (V.2.b).

Since 0 ≤ k2 ≤ k1 ≤ k + 1 we have that

(V.2.a) ≤ O(nj−1)O(n−(k+2+k2−k1δ)α)O(n−(j−k−2−k2)α)
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= O(n−j(α−1)nk1δα−1) = o(n−j(α−1)),

for δ < 1/((k + 1)α). It remains to show that (V.2.b) = o(n−j(α−1)). To see
this, for ε > 0 there exists

(ζ1, . . . , ζk1) ∈
⋃

(l1,...,lk1 )∈J

k1∏
p=1

Dlip (4.7.46)

such that d(X̄ip,n, ζip) ≤ ρ2 + ε, for all 1 ≤ p ≤ k1. Hence, we have that

d

X̂n, X̄
′
n −

∑
i∈I′∩{i1,...,ik1}

X̄ ′i,n +

k1∑
p=1

ζip

 ≤ ρ1 ∨ (ρ2 + ε). (4.7.47)

For any c > 0, define Φc : D→ D by

Φc(ξ)(t) =
∑

s∈[0,t]∩Disc(ξ,c)

(ξ(s)− ξ(s−)), for t ∈ [0, 1], (4.7.48)

where Disc(ξ, c){t ∈ Disc(ξ) : ξ(t)− ξ(t−) ≥ c}. Now we claim that

‖X̄ ′n − Φρ0(X̄ ′n)− µ · id‖∞ > ρ3. (4.7.49)

To see this, suppose ‖Φρ0(X̄ ′n)− µ · id‖∞ ≤ ρ3. Hence,

d

X̄ ′n − ∑
i∈I′∩{i1,...,ik1}

X̄ ′i,n +

k1∑
p=1

ζip , µ · id +

k1∑
p=1

ζip +
∑

i∈I′\{i1,...,ik1}

X̄ ′i,n


≤

∥∥∥∥∥X̄ ′n −∑
i∈I′

X̄ ′i,n − µ · id

∥∥∥∥∥
∞

= ‖X̄ ′n − Φρ0(X̄ ′n)− µ · id‖∞ ≤ ρ3. (4.7.50)

In view of (4.7.47) and (4.7.50) we obtain that

d

X̂n, µ · id +

k1∑
p=1

ζip +
∑

i∈I′\{i1,...,ik1}

X̄ ′i,n

 ≤ ρ1 ∨ (ρ2 + ε) + ρ3,

where

µ · id +

k1∑
p=1

ζip +
∑

i∈I′\{i1,...,ik1}

X̄ ′i,n ∈ D
µ
�j
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due to (4.7.46). This leads to the contradiction of X̂n ∈ (D\Dµ�j)−γ by choosing
ρ1, ρ2 and ρ3 small enough. In view of (4.7.49) we have that

(V.2.b) ≤ P

(
X̄ ′n ∈

{
ξ ∈ D : ξ(t)− sup

t∈[0,1]

∣∣∣∣∣Φρ0(ξ)(t)− µt

∣∣∣∣∣ > ρ3

})
= o(n−j(α−1)),

by choosing ρ0 and ρ3 such that ρ3/ρ0 /∈ Z and dρ3/ρ0e > j.
Part 3): Since

P(ri+1 − ri > riδ) ≤ P(ri+1 − ri > (n− ε′)δ) + P(ri ≥ n− ε′),

P(ri+1−ri > riδ) decays exponentially, for i ∈ {N−ε (n), . . . , N+
ε (n)}. Combining

this with (4.7.36), we are able to utilize the argument as in (4.7.37) and obtain
that

P(Ri,n ∈ (D \ D�j)−δ) = P(Tj(n
β) < r1) + o(n−(j−ε)α)

for any β ∈ (0, 1). Since P(Tj(u
β) < r1) = O(u−(j−ε)α) for a suitable choice of

β, the proof is completed.

4.8 Proofs of Section 4.3.4

Proof of Theorem 4.3.4. First we generalize the preliminaries in Section 4.2 to
the current setting. Note that, thanks to Assumption 4.3.1, Result 4.2.1 and
Lemma 4.2.1 can be extended to the current setting. By (C), it is not difficult
to see that Lemma 4.2.2 (1) holds for Xn as in (4.3.11). We want to show that

Zn
a.s.−−→ Z as n→∞. For n > m we have

Zn − Zm = e−Snfn(Xn−1)− e−SmXm ≤ e−Sn−1Xn−1 +Bne
−Sn − e−SmXm

≤ e−SmXm +

n∑
j=m+1

Bje
−Sj − e−SmXm =

n∑
j=m+1

Bje
−Sj ,

and similarly

Zn − Zm ≥
n∑

j=m+1

Bje
−Sj .
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Thus we have that

|Zn − Zm| ≤
n∑

j=m+1

(|Bj | ∨ |Bj |)e−Sj .

Using the fact that Sn has a positive drift under the α-shifted measure and
E|B|α + E|B|α < ∞, we conclude that |Zn − Zm|

a.s.−−→ 0 as n, m → ∞. This

implies that Zn
a.s.−−→ Z for some real-valued random variable Z.

To show Theorem 4.3.4, we need to extend the results in Section 4.6. This
can be achieved by using Assumption 4.3.1, especially by utilizing the facts that
Xn is monotone in its initial state and is bounded from both below and above
by two AR(1) processes.

Proof of Theorems 4.3.5 and 4.3.6. The proofs are omitted since they are almost
identical to the proofs of Theorems 4.3.2 and 4.3.3.
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Chapter 5

Importance sampling of
iterated functions

5.1 Introduction

We consider an R-valued Markov chain {Zn}n∈N defined by

Zn+1 = Ψn+1(Zn), (5.1.1)

where {Ψn}n∈N is a sequence of independent and identically distributed (i.i.d.)
positive random Lipschitz functions (see (5.3.8) below); Z0 ∈ R is independent
of the sequence {Ψn}n∈N. Under mild conditions (see Assumption B1 below),
the stationary solution to (5.1.1) has the same distribution as the almost sure
limit Z of the sequence {Ψ1 ◦ · · · ◦Ψn(Z0)}n∈N (for details see [50]). We assume
that Ψn is such that Ψ1 ◦ · · · ◦Ψn(Z0) is increasing in n. This chapter develops
efficient simulation methods for estimating the tail probability of Z, i.e. we
are interested in computing P(Z > x) = P(T (x) < ∞) for large x, where
T (x) = inf{n ≥ 0 : Ψ1 ◦ · · · ◦Ψn(Z0) > x}.

There are two examples that are of particular interest in this setting. The
first example is the so-called stochastic perpetuity. More precisely, consider the
random difference equation, where Ψn(z) = Anz + Bn. The recursion (5.1.1)
can be written as

Zn+1 = An+1Zn +Bn+1, (5.1.2)

where {(An, Bn)}n≥0 is a sequence of i.i.d. R-valued random vectors, indepen-
dent of the initial random variable Z0. Moreover, noting T (x) = inf{n ≥
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0:
∑n
k=0Bk+1e

Sk > x}, the objective here is to estimate P(Z > x), for which
we have the identity P(Z > x) = P(T (x) < ∞) in case Bn is positive. Perpe-
tuities occur in the context of ruin problems with investments, in the study of
financial time series such as ARCH-type processes (see e.g. [54]), in tail asymp-
totics for exponential functionals of Lévy processes (see e.g. [88]), etc. Although
some particular cases exist that allow for an explicit analysis (see e.g. [116]),
it is hard to come up with exact results for the distribution of Z in general.
Thus, Monte Carlo simulation arises as a natural approach to deal with the
analysis of stochastic perpetuities, including the large deviations regime where x
in P(Z > x) is large, which is the focus of this chapter.

Another example of (5.1.1) is the Lindley recursion that describes the waiting
time of a customer in a single-server queue. More precisely, we consider (5.1.1)
with Ψn(z) = max{0, z +Xn}, where Xn, n ∈ N, is a sequence of i.i.d. R-valued
random variables. It is well known (see e.g. [61]) that the stationary solution
of the Markov chain Zn+1 = max{0, Zn +Xn+1}, n ∈ N, has as representation
of the all-time supremum of a random walk, denoted by supn≥0 Sn, where

Sn =
∑n
i=1Xi. A similar connection holds of course between eZn and eZn+1

in this context. The exponentiated form of the Lindley recursion is actually
more suitable for our purposes: by developing a connection between iterated
random functions (perpetuities) and the supremum of a random walk, we utilize
rare-event simulation techniques for estimating P(supn≥0 Sn > x) to construct
efficient simulation algorithms for estimating the tail probability of the stationary
solutions to (5.1.1) and (5.1.2), in a heavy-tailed setup.

Before we give a more precise description of our results, we first mention
some related work. In the more general context of iterated random functions,
the tail behavior of Z has been studied, for example, in [66], where sufficient
conditions of Ψn are given for which P(Z > x) behaves like a power law. A more
recent study in this direction is [93]. The main result of [50], which is the most
related one to the chapter, states that the tail of Z is slowly varying under the
same setting as this chapter (see Assumptions A1–A2 and Assumptions B1–B2
below). The result in [50] is an extension of a classical result on the supremum
of random walks by [98] and [115].

Turning to the special case of stochastic perpetuities, sufficient conditions for
P(Z > x) to decay at an exponential rate have been established in [67], where
it is assumed that |A1| is bounded by 1, and the moment generating function
of B1 exists in a neighborhood of the origin. On the other hand, [81] and later
on [66] assumed that E|A1|α = 1 and E|B1|α <∞ for some α > 0, and proved
that Z has a power law with exponent α. Moreover, the result of [69], which
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was generalized by [68], states that the tail of Z is regularly varying of some
index, say −α, if B1 is regularly varying of the same index −α and EAα1 < 1.
For a more extensive overview of the literature on this topic see e.g. [26] and
references therein.

A study on rare-event simulation that is of primary interest to us is [16],
where the authors designed an algorithm for estimating the tail probability of
the all-time supremum of heavy-tailed random walks. A major contribution of
this chapter is that the algorithm of [16] is extended to the more general setting
of [50]. Another study on rare-event simulation for perpetuities and iterated
random functions is [7], in which deterministic interest rates are considered. In
[23], the authors estimate the tail probability of perpetuities with deterministic
premiums (Bn). Later, [20] develops simulation algorithms for perpetuities in
the setting where both the discounting factor and premiums are driven by a
Markov chain. Furthermore, [34] provides simulation estimators for the tail
distribution of Z as in (5.1.1) with Ψn(z) = An max{z,Dn}+Bn.

The contributions of this chapter are the following. For stochastic perpetuities,
we propose a strongly efficient simulation algorithm for estimating P(Z > x).
For this, we need to make several assumptions (see Assumptions A1–A5 below).
We illustrate the generality of these assumptions by giving examples as well as
sufficient conditions in Remarks 5.3–5.7 below. We construct an upper bounding
random walk for the stochastic perpetuity, which leads to an asymptotic result
for the tail probability of Z under a heavy-tailed assumption on log max{A1, B1}.
Note that Z is defined over an infinite horizon, and hence, requires an infinite
amount of computational effort for generating each sample when using a crude
Monte Carlo sampling approach. A natural approach to address such an issue
is to work with approximations by finite-time truncation. We study the bias
introduced by such approximations and show that our estimator has a vanishing
relative bias as x → ∞. By making a slightly stronger, but not restrictive
assumption (see Assumption A5 below), we are able to identify the rate at
which the bias decays w.r.t. the truncation time. Applying the bias elimination
technique studied in [106], we then propose strongly efficient and unbiased
estimators for P(Z > x). We finally extend these results to the more general
setting as in (5.1.1). In Section 5.3.2, we make a couple of extra assumptions
(see Assumptions B0–B1 below) on Ψn. Our setting is almost identical to the
ones in [66], [37], and [50]. In Remark 5.9 below, we give examples that satisfy
our assumptions.

The most important idea behind our results is the following. We connect our
class of iterated random function to the supremum of a random walk. To illustrate
this idea consider (5.1.2) with Bn = 1. We now connect the stochastic perpetuity
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with the supremum of random walk by observing that, for γ ∈ (0,−ES1)

Z =

∞∑
n=0

exp{Sn + nγ} exp(−nγ) ≤ exp

{
max
n≥0

(Sn + nγ)

}
1

1− e−γ
, (5.1.3)

where Sn =
∑n
i=1 logAi. The upper bounding random walk constructed in

(5.1.3) allows us to construct a coupling and leverage the importance sampling
algorithm designed in [16]. It turns out that we can extend this idea to the
general setting of (5.1.1) by constructing a slightly more involved upper bounding
random walk. Note that our extension of (5.1.3) leads to a shorter proof of the
asymptotic upper bound given in [50] which we believe to be of independent
interest.

The rest of the chapter is organized as follows. Section 5.2 deals with basic
background information and notation required to state our contributions. Our
main results are stated in Section 5.3, where we start with the case of stochastic
perpetuity and then extend all results to the iterated function setting. Numerical
results are presented in Section 5.4. All proofs can be found in Section 5.5.

5.2 Notations and preliminary results

In this section we will start first with a list of notations that will be employed in
this chapter, then we will recall some preliminary results from the literature.

For (x, y) ∈ R2, let x ∧ y , min{x, y} and x ∨ y , max{x, y}. For x ∈ R, let
x+ = x ∨ 0 denote the positive part of x and let log+ x = 0 ∨ log x = log (x ∨ 1).
Let c ∈ R ∪ {±∞}, let f(x) and g(x) be non-negative real-valued functions.
We write f(x) ∼ g(x), f(x) = o(g(x)), and f(x) = O(g(x)), as x → c, if
limx→c f(x)/g(x) = 1, limx→c f(x)/g(x) = 0, and lim supx→c f(x)/g(x) < ∞,
respectively.

To describe the efficiency of a rare-event simulation algorithm, we adopt a
widely applied criterion (for a discussion of efficiency in rare-event simulation,
see e.g. [5]). Suppose that we are interested in a sequence of rare events E(x) that
become more rare as x→∞. Let L(x) be an unbiased estimator of the rare-event

probability P(E(x)). L(x) is said to be strongly efficient if EL(x)
2

= O(P(E(x))2)
as x→∞. In particular, strong efficiency implies that the number of simulation
runs required to estimate the target probability to a given relative accuracy is
bounded w.r.t. x.

As we have mentioned in the introduction, a state-dependent importance
sampling scheme will be used in this chapter. We recall the following result that
will be very useful in validating our new estimator.
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Result 5.2.1. [65, Section 3.9] Let Yn, n ∈ N, be a sequence of random variables
on the probability space (Ω,F ,P). Let Mn, n ∈ N, be a non-negative martingale
that is adapted to Yn for which EM0 = 1. Let Γ be a stopping time adapted
to Yn. Define a sequence of probability measures as Pn(A′) = E1A′Mn, for
A′ ∈ Fn , σ(Y1, . . . , Yn). Then there exists a probability measure P̃, such
that P̃(A′) = Pn(A′), for A′ ∈ Fn and n ∈ N. Furthermore, we have that
E1{Γ<∞} = Ẽ1{Γ<∞}M

−1
Γ .

Next, we recall a simulation algorithm proposed in [16], where the authors
develop an efficient state-dependent importance sampling strategy for estimating
the tail probability of a random walk crossing a certain level. Before we go
through the details of the simulation algorithm, we introduce the following
definition.

Definition 5.2.1. Let Y be a random variable on R. Let the integrated tail of
Y , as a function of x, be defined by

x 7→ 1 ∧
∫ ∞
x

P(Y > t)dt.

We say that Y is long tailed, if for every c ∈ R, we have that

P(Y > t+ c) ∼ P(Y > t), as t→∞.

We say that Y is subexponential, if

P(Y +
(1) + Y +

(2) > t) ∼ 2P(Y + > t), as t→∞,

where Y(1) and Y(2) are independent copies of Y . Moreover, we say that Y is
strongly subexponential, or Y belongs to the class S∗, if

2EY +P(Y > t) ∼
∫ t

0

P(Y > t− s)P(Y > s)ds, as t→∞.

Remark 5.1. If Y belongs to S∗, both the distribution of Y and its integrated
tail are subexponential (cf. [82, Theorem 3.2]) and, in particular, long-tailed.

Consider a random walk {Sn}n∈N generated by a sequence of i.i.d. random
variables {Xn}n∈N, i.e., Sn =

∑n
i=1Xi. Assume that EX1 < 0 and X1 belongs

to S∗. Let P (y, dz) denote the transition kernel of the random walk {Sn}n∈N.
Define a non-negative random variable W that is independent of {Xn}n∈N with
tail probability

P(W > y) , min

[
1,− 1

EX1

∫ ∞
y

P(X1 > t)dt

]
.
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Fix x > 0. To estimate P(supn≥0 Sn > x) = P (τ(x) <∞), where τ(x) =
inf{n ≥ 0 : Sn > x}, Blanchet and Glynn suggest in [16] simulating the random
walk via another transition kernel

Qa∗(y, dz) , P (y, dz)
v(z + a∗)

w(y + a∗)
, ∀y ∈ (−∞, x], z ∈ R, (5.2.1)

where

v(z) , P(W > −(z − x)), w(y) , P(X1 +W > −(y − x)), (5.2.2)

and a∗ is such that, for fixed δ ∈ (0, 1)

− δ ≤ v2(y)− w2(y)

P(X1 > −y)w(y)
, ∀y ≤ x+ a∗. (5.2.3)

Let PQa∗ and EQa∗ denote respectively the probability measure and the expec-
tation w.r.t. the random process {Sn}n∈N having a one-step transition kernel
Qa∗(y, dz) as in (5.2.1). In the following result, we give the simulation estimator
proposed in [16], which will prove to be useful in our context.

Result 5.2.2. [16, Theorem 3] Suppose that EX1 < 0 and X1 belongs to S∗.
Let v and w be defined as in (5.2.2). For fixed δ ∈ (0, 1), there exists an
a∗ = a∗(δ) ≤ 0 such that (5.2.3) holds. Then

Lτ (x) = 1{τ(x)<∞}

τ(x)∏
k=1

w(Sk−1 + a∗)

v(Sk + a∗)

is an unbiased estimator of P(supn≥0 Sn > x) under PQa∗ ; moreover, it is
strongly efficient, i.e.,

sup
x>0

EQa∗L2
τ (x)

P
(
supn≥0 Sn > x

)2 <∞.
Remark 5.2. The existence of such an a∗ as in Result 5.2.2 is guaranteed by the
fact (for details see [16, Proposition 3]) that

w(y)− v(y) = o( P(X1 > −y) ), as y → −∞. (5.2.4)

We will extend this algorithm to the setting of (5.1.1). Unfortunately, it is
not straightforward to generate our estimator, say, L such that EL = P(Z > x)
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in a finite computer time. However, there exists a sequence Ln, n ∈ N, of L2

approximations (i.e., E[(Ln − L)2] → 0, as n → ∞) that can be generated
exactly in a finite time. This kind of situation has been considered in [106]. We
recall here one of the main results in [106], which will prove to be crucial for our
purposes.

Result 5.2.3. [106, Theorem 2] Let Ln and L be such that E[(Ln − L)2]→ 0,
as n→∞. Let N be a non-negative integer-valued random variable, independent
of Ln, n ∈ N, such that P(N ≥ n) > 0 for all n ≥ 0. If

∞∑
n=1

E[(Ln − L)2]

P(N ≥ n)
<∞,

then L̄ defined by

L̄ ,
N∑
n=0

Ln − Ln−1

P(N ≥ n)

(with L−1 = 0) is an unbiased estimator of EL, and

E[L̄2] =

∞∑
n=0

E[(Ln−1 − L)2]−E[(Ln − L)2]

P(N ≥ n)
<∞.

In order to apply Result 5.2.3 in our context, we conclude this section with the
following extension of Result 5.2.2, which basically says the algorithm proposed
in [16] gives us an estimator with bounded relative (2 + ε)-th moment, for some
ε > 0. The proof of this lemma together with other results presented in this
chapter can be found in Section 5.5 below.

Lemma 5.2.1. Let Sn =
∑n
i=1Xi be a random walk. Suppose that EX1 < 0

and X1 belongs to S∗. Let v and w be defined as in (5.2.2). For any fixed ε > 0
and δ ∈ (0, 1), there exists an a∗ = a∗(ε, δ) ≤ 0 such that

−δ ≤ v2+ε(y)− w2+ε(y)

P(X1 > −y + x)w1+ε(y)
, ∀y ≤ x+ a∗.

Let

Lτ (x) , 1{τ(x)<∞}

τ(x)∏
k=1

w(Sk−1 + a∗)

v(Sk + a∗)
.

Then, EQa∗Lτ (x) = P(supn≥0 Sn > x) and

sup
x>0

EQa∗L2+ε
τ (x)

P(supn≥0 Sn > x)2+ε
<∞.
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5.3 Main results

In this section we present the main results of this chapter. In Section 5.3.1 we
consider the stochastic perpetuity as in (5.1.2). Recall that Zn, n ∈ N, was
defined by

Zn+1 = An+1Zn +Bn+1, for n ∈ N.

Recalling Z =
∑∞
n=0Bn+1e

Sn and Sn =
∑n
i=1 logAi, we are interested in

estimating P(Z > x), where x is large. For this, several assumptions need to be
made (see Assumptions A1–A5 below). We will discuss the generality of these
assumptions by giving examples as well as sufficient conditions in Remarks 5.3–
5.7 below. To construct our simulation estimator, we will find a stochastic upper
bound that can be written as a functional of a suitable random walk Sn(γ).
Then, using this upper bound we define a crossing level s(x) and a stopping
time τγ(x) = inf{n ≥ 0 : Sn(γ) > s(x)}, such that {Z > x} ⊆ {τγ(x) < ∞}.
Since the change of measure proposed in [16] is strongly efficient for estimating
the tail probability of the supremum of heavy-tailed random walks, a natural
strategy is to keep track of the random process Sn(γ), n ∈ N, while simulating
the sequence

∑n
k=0Bk+1e

Sk , n ∈ N, until the stopping time τγ(x). By doing
this, we can construct a state-dependent change of measure using the path of
the random walk until τγ(x) according to the method introduced in Section 5.2.
Then we continue to simulate the path of the random walk after τγ(x) under the
original measure. Based on this idea, we will propose a simulation algorithm for
estimating P(Z > x) and discuss its properties such as strong efficiency in the
rest of Section 5.3.1. In Section 5.3.2 we extend the results from Section 5.3.1 to
the general setting, where Zn, n ∈ N, was defined in (5.1.1) as

Zn+1 = Ψn+1(Zn), for n ∈ N,

and {Ψn}n∈N is a sequence of i.i.d. random functions that is independent of Z0.
Note that all the proofs of the results in this section are given in Section 5.5
below.

5.3.1 Stochastic perpetuity

We consider the Markov chain Zn, n ∈ N, given by (5.1.2). Recall that

Zn+1 = An+1Zn +Bn+1, n ∈ N.

To guarantee the positive recurrence of {Zn}n∈N, we assume the following.
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Assumption A1. a) A1 > 0 a.s., E logA1 < 0 and E log+ |B1| <∞.

b) E log+(A1 ∨B1) <∞.

c) P(A1 > x,B1 ≤ −x) = o(P(A1 ∨B1 > x)).

Recall that, under Assumption A1, the unique stationary distribution of this
Markov chain exists, has right-unbounded support and has the same distribution
as the random variable Z ,

∑∞
n=0Bn+1e

Sn , where Sn =
∑n
i=1 logAi; see, for

example, [66] or Chapter 2 of [26] for more detail. As mentioned in the beginning
of Section 5.3, we start with developing a connection between perpetuities and
the supremum of a random walk. More precisely, we construct an upper bound
for Z that can be written as a functional of a suitable random walk Sn(γ). We
formulate the result in the following lemma.

Lemma 5.3.1. Let Assumption A1 hold. There exists a constant γ2 such that

E
[
(log+B+

1 − γ2) ∨ logA1

]
< 0.

Moreover, there exists a constant γ1 ∈ (0,−E[logAi ∨ (log+B+
1 − γ2)]) such that

Z ≤ exp

{
sup
n≥0

Sn(γ)

}
eγ2

1− e−γ1
<∞, (5.3.1)

where Sn(γ) = Sn(γ1, γ2) =
∑n
i=1[logAi ∨ (log+B+

i − γ2) + γ1] and ES1(γ) < 0.

Now from (5.3.1) we can define s(x) , log x−γ2 + log(1− e−γ1) and τγ(x) ,
inf{n ≥ 0 : Sn(γ) > s(x)}, such that the following holds:

{Z > x} ⊆
{

sup
n≥0

Sn(γ) > s(x)

}
. (5.3.2)

As we will see in the proof of Theorem 5.3.2, the asymptotic behavior
of P(Z > x) as x → ∞ will be useful in establishing the strong efficiency
of our estimator. Thus, we derive a tail estimate for Z in Theorem 5.3.1
below. To be precise, we are interested in finding a function f(x) such that
P(Z > x) = O(f(x)) as x → ∞. Moreover, we focus on the case, where the
following assumption holds.

Assumption A2. The integrated tail (see Definition 5.2.1 above) of log(A1∨B1),
denoted by F̄I , is subexponential.

159



5.3. MAIN RESULTS

Remark 5.3. As mentioned in the introduction, the focus of this chapter is to
propose Monte-Carlo estimators for P(Z > x), which is slowly varying as x→∞.
Indeed, P(Z > x) is slowly varying under Assumptions A1–A2. A proof can
be found e.g. in [50]; in Theorem 5.3.1 (and Theorem 5.3.5) below we give an
independent proof for the asymptotic upper bound of P(Z > x) (under a general
setting, see Assumptions B1–B2).

Theorem 5.3.1. If Assumptions A1 and A2 hold, then

lim sup
x→∞

P(Z > x)

F̄I(log(x))
≤ − 1

E logA1
.

By constructing the upper bound as in Lemma 5.3.1 above, we have es-
tablished a connection between perpetuities and the supremum of a random
walk. This connection will allow us to utilize rare-event simulation techniques
for estimating P(supn≥0 Sn > x) in designing an efficient simulation estimator
for P(Z > x). To construct our simulation estimator of P(Z > x), define a
non-negative random variable Wγ that is independent of {(An, Bn)}n∈N with
tail probability

P(Wγ > t) , min

[
1 ,

−1

ES1(γ)

∫ ∞
t

P(S1(γ) > s)ds

]
,

define

vγ(z) , P(Wγ > −(z − s(x))), and wγ(y) , P(S1(γ) +Wγ > −(y − s(x))).
(5.3.3)

Let P γ(y, dz) denote the transition kernel of the random walk {Sn(γ)}n∈N. For
fixed a∗, let EQγa∗ denote the expectation w.r.t. the stochastic process {Sn(γ)}n∈N
having a one-step transition kernel

Qγa∗(y, dz) =

P
γ(y, dz)vγ(z + a∗)wγ(y + a∗)

−1, for n ≤ τγ(x),

P γ(y, dz), for n > τγ(x).
(5.3.4)

We propose an estimator and show its strong efficiency in Theorem 5.3.2 below.
We make a slightly stronger assumption on the tail asymptotics of log(A1 ∨B1):

Assumption A3. The distribution of log(A1 ∨B1) belongs to the class S∗.

Remark 5.4. Assumption A3 is not restrictive in the sense that the class S∗ of
strongly subexponential random variables includes regularly varying, lognormal
and Weibull-type distributions, among many others. For more properties of
strongly subexponential distributions we refer to Section 3.4 of [60].
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Theorem 5.3.2. Let Assumptions A1 and A3 hold. Let vγ and wγ be defined
as in (5.3.3). For fixed δ ∈ (0, 1), there exists an a∗ = a∗(δ) ≤ 0 such that

− δ ≤
v2
γ(y)− w2

γ(y)

P(X1 > −y + s(x))wγ(y)
, ∀y ≤ s(x) + a∗. (5.3.5)

Let

LT (x) , 1{T (x)<∞}

τγ(x)∏
k=1

wγ(Sk−1(γ) + a∗)

vγ(Sk(γ) + a∗)
. (5.3.6)

Then LT (x) is an unbiased and strongly efficient estimator of P(Z > x), i.e.,

sup
x>1

EQγa∗L2
T (x)

P(Z > x)2
<∞.

The estimator derived in Theorem 5.3.2 requires the computation of 1{Z>x},
and hence, is unbiased only if we can generate Z in finite time. Generating a
perfect sample from Z in our current setting is not straightforward. To address
this issue, we will apply the bias elimination technique introduced in [106]. The
plan for the rest of this section can be described as follows. First we propose
a family of simulation algorithms by approximating the path {Zn}n>τγ(x) with
{Zn}τγ(x)<n≤τγ(x)+M for a fixed and sufficiently large M ; we show that the
latter family of simulation algorithms gives biased estimators with vanishing
relative bias as x→∞; consequently, we are able to apply the bias elimination
technique and obtain an unbiased estimator that is strongly efficient and runs in
finite time. To begin with, note that

Z =

τγ(x)∑
n=0

Bn+1e
Sn + eSτγ (x)

∞∑
n=τγ(x)+1

Bn+1e
Sn−Sτγ (x)

︸ ︷︷ ︸
,Z′

,

where Z ′ is independent of
∑τγ(x)
n=0 Bn+1e

Sn and eSτγ (x) , and has the same
distribution as Z. A natural choice for approximating the distribution of Z ′ is a
truncated sum. More precisely, letting M ∈ N be fixed, our modified estimator
takes the form

L∆
T (x,M) = 1{τγ(x)<∞,

∑τγ (x)+M

n=0 Bn+1eSn>x}

τγ(x)∏
k=1

wγ(Sk−1(γ) + a∗)

vγ(Sk(γ) + a∗)
. (5.3.7)

We give a simulation algorithm for generating one sample of L∆
T (x,M).
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Algorithm 5 Generating one sample of L∆
T (x,M)

1: fixed δ ∈ (0, 1)
2: a∗ ← a∗(δ) ≤ 0 satisfying (5.3.5)
3: m← 1, n← 0, Z ← 0, Sn(γ)← 0, LT (x)← 1
4: while n < τγ(x) do
5: Sn+1(γ)← Sn(γ) +Xn+1(γ) .
Xn+1(γ) ∼ P(· |Xn+1(γ) +W > s(x)− Sn(γ)− a∗

6: Sample (An+1, Bn+1) conditional on the value of Xn+1(γ)
7: LT (x)← LT (x)wγ(Sn(γ) + a∗)vγ(Sn+1(γ) + a∗)

−1

8: Z ← Z +Bn+1

∏n
i=1 Ai

9: n← n+ 1

10: while m ≤M do
11: Sample (Aτγ(x)+m, Bτγ(x)+m) under the original measure

12: Z ← Z +Bτγ(x)+m

∏τγ(x)+m
i=1 Ai

13: m← m+ 1

14: if Z > x then return L∆
T (x,M)

15: else return 0

Remark 5.5. In Step 6 of Algorithm 5, sampling (An+1, Bn+1) conditionally on
Xn+1(γ) under the change of measure is equivalent to sampling it conditionally
on Xn+1(γ) under the original measure. To see this, note that, for n+ 1 ≤ τγ(x)
and any measurable set C ⊆ R2

EQγa∗ [1(An+1, Bn+1)∈C |Si(γ), i ≤ n,Xn+1(γ)]

= E

[(
n+1∏
i=1

wγ(Si−1(γ) + a∗)

vγ(Si(γ) + a∗)

)∣∣∣∣∣Si(γ), i ≤ n,Xn+1(γ)

]−1

·E

[
1(An+1, Bn+1)∈C

(
n+1∏
i=1

wγ(Si−1(γ) + a∗)

vγ(Si(γ) + a∗)

)∣∣∣∣∣Si(γ), i ≤ n,Xn+1(γ)

]

=

(
n+1∏
i=1

wγ(Si−1(γ) + a∗)

vγ(Si(γ) + a∗)

)−1

·

(
n+1∏
i=1

wγ(Si−1(γ) + a∗)

vγ(Si(γ) + a∗)

)
E
[
1(An+1, Bn+1)∈C

∣∣Si(γ), i ≤ n,Xn+1(γ)
]

= E
[
1(An+1, Bn+1)∈C

∣∣Si(γ), i ≤ n,Xn+1(γ)
]

= P ((An+1, Bn+1) ∈ C |Xn+1(γ)) .
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Next we will analyze the performance of our modified estimator. We show in
Theorem 5.3.3 below that, under the following assumption,

EQγa∗L∆
T (x,M)/P(T (x) <∞)→ 1

as x→∞, establishing that the relative bias of L∆
T vanishes.

Assumption A4. B1 ≥ 0 a.s.

Remark 5.6. Under Assumption A4, Assumption A1 c) is redundant.

Theorem 5.3.3. Under Assumptions A1, A3 and A4, L∆
T (x,M) as in (5.3.7)

is asymptotically unbiased as x→∞, i.e.,

lim
x→∞

EQγa∗L∆
T (x,M)/P(T (x) <∞) = 1,

uniformly in M ∈ N.

We are now ready to apply the bias elimination technique in Result 5.2.3
to the estimators proposed in (5.3.7) as mentioned in the paragraph above
Algorithm 5. By analyzing the asymptotic behavior of the relative bias as
M → ∞ for fixed x (see Lemma 5.5.2 in Section 5.5), we are able to apply
the bias elimination technique and obtain an unbiased estimator for P(Z > x).
We introduce the following assumption; the unbiased estimator is then given in
Theorem 5.3.4 below.

Assumption A5. a) The Markov chain {Zn}n∈N given by (5.1.2) is irreducible
and aperiodic.

b) There exists q ≥ 2 such that E| logA1|q + E| logB+
1 |q <∞.

Remark 5.7. Assumption A5a) is satisfied, for example, if (A1, B1) has a Lebesgue
density (see [26, Lemma 2.2.2]).

Theorem 5.3.4. Let Assumptions A1 and A3–A5 hold. Let vγ and wγ be defined
as in (5.3.3). For fixed δ ∈ (0, 1) and β ∈ (0, 1), there exists an a∗ = a∗(δ) ≤ 0
satisfying

−δ ≤ v
2−β
1−β
γ (y)− w

2−β
1−β
γ (y)

P(X1 > −y + s(x))w
1

1−β
γ (y)

, ∀y ≤ s(x) + a∗.
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Moreover, it is possible to construct a random variable N independent of x, such
that

∞∑
n=0

EQγa∗ (L∆
T (x, 2n−1)− LT (x))2

P(Z > x)2P(N ≥ n)
<∞,

and hence, the estimator LRGT (x) defined by

LRG
T (x) ,

N∑
n=0

L∆
T (x, 2n)− L∆

T (x, 2n−1)

P(N ≥ n)

with L∆
T as in (5.3.7) is unbiased and strongly efficient.

Remark 5.8. As we will see in the proof of Theorem 5.3.4, one possible choice is
to sample N with P(N ≤ n) = 1 − (1 − p)n for n ≥ 1, where p < 1 − 2−(q−1)

and q is as in Assumption A5 b). In general, the bias elimination scheme of
[106] is not guaranteed to produce non-negative estimators, which might not be
ideal in the context of estimating (rare-event) probabilities. However, in our
case, L∆

T (x,M) increases w.r.t. M by Assumption A4, and hence, the resulting
unbiased estimator LRGT (x) is always non-negative.

5.3.2 Iterated random functions

We consider the Markov chain {Zn}n≥0 with Zn+1 = Ψn(Zn), where Ψn satisfies
the following assumption. For similar settings of analyzing Markov chains that
are generated by iterated random functions, see e.g. [66], [37], and [50].

Assumption B0. {Ψn}n∈N is a sequence of i.i.d. random Lipschitz functions
with

Lip(Ψn) , sup
z1 6=z2

∣∣∣∣Ψn(z1)−Ψn(z2)

z1 − z2

∣∣∣∣ . (5.3.8)

Moreover, there exists a sequence of i.i.d. random vectors {(An, Bn, Dn)}n∈N
such that

Anz +Bn −Dn ≤ Ψn(z) ≤ Anz+ +B+
n +Dn, for all z ∈ R. (5.3.9)

In addition, we can sample Ψn from the conditional distribution given (log+(B+
n +

Dn)− γ2) ∨ logAn, for γ2 as in Lemma 5.3.2 below.

The goal of this section is to extend the results from Section 5.3.1 to the
setting as described above. To achieve this, we will introduce a list of additional
assumptions that are extensions of Assumptions A1–A5. To begin with, we
consider an extension of Assumption A1.
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Assumption B1. Assume that (5.3.9) holds and (A1, B1, D1) satisfies the
following conditions:

a) A1, D1 > 0 a.s., E logA1 > −∞, and E log Lip(Ψ1) < 0. Moreover, E log+

|B1 +D1| <∞ and E log+ |B1 −D1| <∞.

b) E log+(A1 ∨B1) <∞.

c) Let the following tail behaviors hold

P(max(A1, B1 +D1) > x) ∼ P(max(A1, B1) > x),

P(max(A1, B1 −D1) > x) ∼ P(max(A1, B1) > x),

and
P(A1 > x,B1 −D1 ≤ −x) = o(P(max(A1, B1) > x)).

Define
Ψ1:n(z) , Ψ1 ◦Ψ2 ◦ · · · ◦Ψn(z)

for each z ∈ R, and Z , limn→∞Ψ1:n(Z0). Recall that (cf. [50, Theorem 3.1]),
under Assumption B1, the unique stationary solution to (5.1.1) exists, is finite,
has the same distribution as Z and has right-unbounded support. Moreover, the
distribution of Z does not depend on the initial condition Z0. Thus, w.l.o.g. we
set Z0 = 0. Note that Z can be bounded from above by a stochastic perpetuity
Z̄ that is given by

Z̄ ,
∞∑
n=0

B̄n+1e
Sn ,

where B̄n , max (B+
n +Dn, 1) and Sn =

∑n
i=1 logAi. Analogously to the

previous section, we construct an upper bound for Z̄ (and thus for Z) that can
be written as a functional of the supremum of a suitable random walk Sn(γ).
We claim the following lemma.

Lemma 5.3.2. Under Assumption B1, there exists a constant γ2 such that

E
[
max

(
log+

(
B+

1 +D1

)
− γ2, logA1

)]
< 0.

Moreover, there exists a constant γ1 ∈ (0,−E[logAi ∨ (log+B1 − γ2)]) such that

Z ≤ exp

{
max
n≥0

Sn(γ)

}
eγ2

1− e−γ1
<∞, (5.3.10)

where Sn(γ) = Sn(γ1, γ2) =
∑n
i=1[logAi ∨ (log+(B+

i +Di)− γ2) + γ1].
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Let Sn(γ) be as in Lemma 5.3.2. Now from (5.3.10) we can define s(x) ,
log x−γ2+log(1−e−γ1) and τγ(x) , inf{n ≥ 0 : Sn(γ) > s(x)}, such that (5.3.2)
holds. Thanks to [50], under subexponentiality assumptions on the random
variable log(A1 ∨B1), the tail asymptotics can be described using the integrated
tail function of log(A1 ∨B1). However, the upper bound we derived in Lemma
5.3.2 yields a shorter proof for the asymptotic upper bound in [50, Theorem 3.1].

Assumption B2. The integrated tail of log(A1 ∨B1), denoted by F̄I , is subex-
ponential.

Theorem 5.3.5. If Assumptions B1 and B2 hold, then

lim sup
x→∞

P(Z > x)

F̄I(log(x))
≤ − 1

E logA1
.

For fixed a∗ ≤ 0, vγ and wγ as in (5.3.3), recall that PQγa∗ and EQγa∗ denote
respectively the probability measure and the expectation w.r.t. the stochastic
process {Sn(γ)}n∈N having a one-step transition kernel Qγa∗ as in (5.3.4). Given
the asymptotic behavior of P(Z > x), we are able to show the strong efficiency
(under PQγa∗ ) of our estimator in Theorem 5.3.6 below.

Assumption B3. The distribution of log(A1 ∨B1) belongs to the class S∗.

Theorem 5.3.6. Let Assumptions B1 and B3 hold. Let vγ and wγ be as in
(5.3.3). For fixed δ ∈ (0, 1), one can choose a∗ = a∗(δ) ≤ 0 such that (5.3.5)
holds. Let

LT (x) , 1{T (x)<∞}

τγ(x)∏
k=1

wγ(Sk−1(γ) + a∗)

vγ(Sk(γ) + a∗)
.

Then LT (x) is a strongly efficient estimator of P(Z > x) under PQγa∗ .

Recall that Ψ1:n(z) , Ψ1 ◦Ψ2 ◦ · · · ◦Ψn(z) for each z ∈ R. Define

L∆
T (x,M) , 1{τγ(x)<∞,Ψ1:τγ (x)+M (Z0)>x}

τγ(x)∏
k=1

wγ(Sk−1(γ) + a∗)

vγ(Sk(γ) + a∗)
. (5.3.11)

As in Section 5.3.1, we approximate LT (x) by L∆
T (x,M). Analogously to Theo-

rem 5.3.3, we show that the estimator as in (5.3.11) is asymptotically unbiased
in Theorem 5.3.7 below.

Assumption B4. For each z, Ψ1:n(z) is increasing in n.
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Theorem 5.3.7. Under Assumptions B1, B3, and B4, L∆
T (x,M) in (5.3.11) is

asymptotically unbiased as x→∞, i.e.,

lim
x→∞

EQa∗L∆
T (x,M)

P(T (x) <∞)
= 1,

uniformly in M ∈ N.

Applying again Result 5.2.3, we construct an unbiased estimator for esti-
mating P(Z > x) in Theorem 5.3.8 below. To do this, we need the following
assumptions.

Assumption B5. a) The Markov chain {Zn}n∈N given by (5.1.1) is irreducible
and aperiodic.

b) There exists q ≥ 2 such that E| logA1|q + E| logB+
1 |q + E| logD1|q <∞.

Assumption B6. There exists z such that Ψn([z,∞)) ⊆ [z,∞) and Ψn is
bijective on [z,∞) almost surely.

Remark 5.9. Assumptions B4 and B6 are satisfied if, for instance, the stochastic
equation is given by

Zn+1 =
√
An+1Z2

n +Bn+1Zn + Cn+1.

This corresponds to a second-order random polynomial equation, which is
studied in [66]. Other examples are, for instance, Ψn(z) = max{Anz,Bn}
and Ψn(z) = An max{z,Bn}+ Cn.

Theorem 5.3.8. Let Assumptions B1 and B3–B6 hold. Let vγ and wγ be as
in (5.3.3). For fixed δ ∈ (0, 1) and β ∈ (0, 1), there exists an a∗ = a∗(δ) ≤ 0
satisfying

−δ ≤ v
2−β
1−β
γ (y)− w

2−β
1−β
γ (y)

P(X1 > −y + s(x))w
1

1−β
γ (y)

, ∀y ≤ s(x) + a∗.

Then it is possible to construct a random variable N independent of x, such that

∞∑
n=0

EQγa∗ (L∆
T (x, 2n−1)− LT (x))2

P(Z > x)2P(N ≥ n)
<∞,
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and hence, the estimator LRGT (x) defined by

LRG
T (x) ,

N∑
n=0

L∆
T (x, 2n)− L∆

T (x, 2n−1)

P(N ≥ n)

with L∆
T (x,M) as in (5.3.11) is unbiased and strongly efficient.

Remark 5.10. As in Remark 5.8, N can be chosen such that P(N ≤ n) =
1− (1− p)n for n ≥ 1, where p < 1− 2−(q−1) and q is as in Assumption B5 b).

5.4 Numerical results

Here we investigate our algorithm numerically based on a stochastic perpetuity

with Bn = 1. We consider the increment logAn
D
=W−3/2 whereW is a random

variable with Weibull distribution:

P(W > t) = exp
(
−2t1/2

)
.

For the algorithmic parameters, we choose a∗ = −10, γ = 0.5. Moreover, we
use a geometrically distributed random truncation index with parameter 0.5.
Figure 5.1 shows the change of the estimated probability with respect to the
various choices of M for 4 different values of x = 108, x = 1016, x = 1032, and
x = 1064 in each of the four plots. One can see that the estimated probability
stabilizes as M grows, which confirms that our estimator is consistent as M →∞.
Comparing the four plots, one can also tell that the initial bias for small M
decreases as x increases, which is consistent with the conclusion of Theorem
5.3.3 (vanishing relative bias). Table 5.1 reports the estimated probabilities,
their 95%-confidence intervals and the estimated coefficients of variation, that is,
the estimated standard deviation divided by the sample mean (based on 200000
samples), for different values of x and M . In the last column, we present the
results produced with the unbiased algorithm as introduced in Theorem 5.3.4.
We can see that, on the one hand the ratio between the estimated probability
and the standard deviation stays roughly constant over a range of x values
and M values; on the other hand, the estimated probability using the fixed
truncation method tends to converge to the estimated probability produced with
the unbiased algorithm as M grows. These observations illustrate the strong
efficiency (Theorems 5.3.2 and 5.3.4) of our estimators.
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Figure 5.1: Estimated probabilities for different values of M . The y-axis values indicate the
estimated rare-event probabilities and the vertical bars indicate the 95% confidence intervals.
The x-axis values indicate the truncation index M .

Est
CI
CV

M = 22 M = 24 M = 26 M = 28 RG

x = 108
1.083× 10−3

±0.009× 10−3

2.06

1.117× 10−3

±0.010× 10−3

2.10

1.120× 10−3

±0.010× 10−3

2.10

1.120× 10−3

±0.010× 10−3

2.10

1.119× 10−3

±0.013× 10−3

2.70

x = 1016
4.271× 10−5

±0.041× 10−5

2.17

4.373× 10−5

±0.042× 10−5

2.22

4.383× 10−5

±0.043× 10−5

2.22

4.383× 10−5

±0.043× 10−5

2.22

4.375× 10−5

±0.053× 10−5

2.76

x = 1032
3.583× 10−7

±0.035× 10−7

2.25

3.646× 10−7

±0.037× 10−7

2.28

3.650× 10−7

±0.037× 10−7

2.29

3.650× 10−7

±0.037× 10−7

2.29

3.663× 10−7

±0.045× 10−7

2.81

x = 1064
4.079× 10−10

±0.037× 10−10

2.05

4.120× 10−10

±0.037× 10−10

2.06

4.123× 10−10

±0.038× 10−10

2.06

4.123× 10−10

±0.038× 10−10

2.06

4.115× 10−10

±0.041× 10−10

2.27

Table 5.1: Estimated rare-event probability and 95% confidence intervals.
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5.5 Proofs

In this section we provide proofs of the results presented in this chapter. Let
ṽ(z) , P(W > −z), w̃(z) , P(X1 +W > −z), and

Q̃(y, dz) , P (y, dz)ṽ(z)/w̃(y).

For y ≤ 0, let EQ̃
y denote the expectation operator associated with S̃n , y + Sn

having the transition kernel Q̃, conditionally on S̃0 = y. Let Γ = inf{n ≥
0: S̃n > 0}.

Lemma 5.5.1. Let ε > 0 be given. Suppose that there exist constants δ1, δ2 > 0
and a finite-valued function h : R −→ [δ1,∞) such that

w̃1+ε(y)

∫
ṽ(z)h(z)P (y, dz) ≤ h(y)ṽ2+ε(y), (5.5.1)

for y ≤ 0. If h(z) ≥ 1 for z > 0 and ṽ(z) ≥ δ2 > 0 for z > 0, then we have that

EQ′

y 1{Γ<∞}

Γ∏
k=1

w̃2+ε(S̃k−1)

ṽ2+ε(S̃k)
≤ δ−1

1 δ
−(2+ε)
2 ṽ2+ε(y)h(y), for y ≤ 0.

Proof of Lemma 5.5.1. Let Ey denote the expectation operator associated with

{S̃n}n≥0 having the transition kernel P , conditionally on S̃0 = y. Recall Theorem
2 (iii) of [16], where it is proved that if there exists a finite-valued non-negative
function h̃ such that

(Kh̃)(y) ≤ h̃(y)− η(y), for y ≤ 0,

where

(Kh̃)(y) =

∫
(−∞,0]

h̃(z)
w̃1+ε(y)

ṽ1+ε(z)
P (y, dz) and η(y) =

∫
(0,∞)

w̃1+ε(y)

ṽ1+ε(z)
P (y, dz),

then

Ey1{Γ<∞}

Γ∏
k=1

w̃1+ε(S̃k−1)

ṽ1+ε(S̃k)
≤ h̃(y), for y ≤ 0. (5.5.2)

Define h̃(·) = δ−1
1 δ
−(2+ε)
2 h(·)v2+ε(·). Note that

δ−1
1 δ
−(2+ε)
2 w̃1+ε(y)

∫
ṽ(z)h(z)P ′(y, dz)
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= δ−1
1 δ
−(2+ε)
2 w̃1+ε(y)

(∫
(−∞,0]

+

∫
(0,∞)

)
ṽ(z)h(z)P (y, dz)

= (Kh̃)(y) + δ−1
1 δ
−(2+ε)
2 w̃1+ε(y)

∫
(0,∞)

ṽ(z)h(z)P (y, dz).

Thus, (5.5.1) is equivalent to

(Kh̃)(y) ≤ h̃(y)− δ−1
1 δ
−(2+ε)
2 w̃1+ε(y)

∫
(0,∞)

ṽ(z)h(z)P (y, dz). (5.5.3)

On the other hand, we have that

η(y) =

∫
(0,∞)

w̃1+ε(y)

ṽ1+ε(z)
P (y, dz)

≤ δ−(2+ε)
2 w̃1+ε(y)

∫
(0,∞)

ṽ(z)P (y, dz)

≤ δ−1
1 δ
−(2+ε)
2 w̃1+ε(y)

∫
(0,∞)

h(z)ṽ(z)P (y, dz). (5.5.4)

Using (5.5.3) and (5.5.4), (5.5.1) implies that

(Kh̃)(y) ≤ h̃(y)− η(y).

From Theorem 2 (iii) of [16], we conclude that (5.5.2) holds, which is the desired
result.

Proof of Lemma 5.2.1. We first find h that satisfies (5.5.1) in Lemma 5.5.1.
Define

h(y) = 1− δ1(y > −a∗).
We will find a suitable a∗ ≤ 0 later. Note that (5.5.1) in this case can be written
as

w̃(y + a∗)
−1Eṽ(X1 + y + a∗)h(X + y) ≤ h(y)

(
ṽ(y + a∗)

w̃(y + a∗)

)2+ε

≤
(
ṽ(y + a∗)

w̃(y + a∗)

)2+ε

, (5.5.5)

for y ≤ 0. Here we use the fact that h(y) = 1 for y ≤ 0. By the definition of ṽ,

Eṽ(X1 + y + a∗)h(X1 + y)
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= E
[
E[1(W > −X1 − y − a∗)|X1]

]
− δE

[
E[1(W > −X1 − y − a∗)|X1]1(X1 + y > −a∗)

]
= P(W +X1 > −y − a∗)− δP(W +X1 > −y − a∗, X1 + y > −a∗).

Since w̃(y + a∗) = P(X1 +W > −y − a∗), (5.5.5) is equivalent to

1− δP(X1 + y > −a∗|W +X1 > −y − a∗) ≤
ṽ2+ε(y + a∗)

w̃2+ε(y + a∗)
,

which is equivalent to

− δ ≤ ṽ2+ε(y + a∗)− w̃2+ε(y + a∗)

P(X1 > −y − a∗)w̃1+ε(y + a∗)
, for all y ≤ 0,

⇔ − δ ≤ v2+ε(x+ y + a∗)− w2+ε(x+ y + a∗)

P(X1 > −y − a∗)w1+ε(x+ y + a∗)
, for all y ≤ 0,

⇔ − δ ≤ v2+ε(y)− w2+ε(y)

P(X1 > −y + x)w1+ε(y)
, for all y ≤ x+ a∗. (5.5.6)

Using the definition of w and the non-negativity of W , (5.2.4) implies that
w(y) − v(y) = o(w(y)), and hence v(y) ∼ w(y), as y → −∞. Therefore, there
exists an a∗ satisfying (5.5.6), and hence, (5.5.1). Since infz≥0 ṽ(z + a∗) =
P(W > −a∗), Lemma 5.5.1 applies to give

E1{τ̃(0)<∞}

τ̃(0)∏
k=1

w̃1+ε(S̃k−1 + a∗)

ṽ1+ε(S̃k + a∗)
≤ δ−1P(W > −a∗)−(2+ε)ṽ2+ε(y), for y ≤ 0.

Recall the Pakes-Veraverbeke’s theorem ([115], [118]):

P

(
sup
n≥0

S̃n > 0

)
∼ − 1

EX1

∫ ∞
−y
P(X1 > t)dt, (5.5.7)

as y → −∞. This implies that, for any fixed y

P

(
sup
n≥0

S̃n > 0

)
∼ ṽ(y), as y → −∞.

Combining this with the fact that P
(

supn≥0 S̃n > 0
)
/ṽ(y) is bounded as a

function of y on compact sets, we obtain that

sup
y<0

P

(
sup
n≥0

S̃n > 0

)−2

E1{τ̃(0)<∞}

τ̃(0)∏
k=1

w̃1+ε(S̃k−1 + a∗)

ṽ1+ε(S̃k + a∗)
<∞,
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which is equivalent to

sup
x>0

EQa∗L2+ε
τ (x)

P(supn≥0 Sn > x)2+ε
<∞.

Proof of Lemma 5.3.1. Note that max{((log+B1−γ′2)∨logA1), 0} ≤ | log+B1∨
logA1|, and min{((log+B1 − γ′2) ∨ logA1), 0} is bounded from above and non-
increasing w.r.t. γ′2. Since (log+B1 − γ′2) ∨ logA1 = max{((log+B1 − γ′2) ∨
logA1), 0}+min{((log+B1−γ′2)∨logA1), 0}, we can apply bounded convergence
for the maximum and monotone convergence for the minimum to get

lim
γ′2→∞

E[(log+B1−γ′2)∨logA1] = E lim
γ′2→∞

(log+B1−γ′2)∨logA1 = E logA1 < 0.

Therefore, there exists a γ2 such that E[(log+B1 − γ′2) ∨ logA1] < 0.
Now we have that

Z ≤
∞∑
n=0

max (Bn+1, 1) eSn = eγ2
∞∑
n=0

e(log+ Bn+1−γ2)+Sn ≤ eγ2
∞∑
n=0

eS
′
n , (5.5.8)

where S′n = S′n−1 + (log+Bn − γ2) ∨ logAn. Note that the last inequality can

be checked by comparing S′n+1 with (log+Bn+1 − γ2) + Sn for each n—i.e.,(
log+Bn+1 − γ2

)
+ Sn

=
(
log+Bn+1 − γ2

)
+

n∑
k=1

logAk

≤ (log+Bn+1 − γ2) ∨ logAn+1 +

n∑
k=1

(log+Bk − γ2) ∨ logAk

= S′n+1.

Now let γ1 ∈ (0,−E
[
(log+B1 − γ2) ∨ logA1

]
) be fixed. From (5.5.8), we observe

that

Z ≤ eγ2
∞∑
n=0

eS
′
n = eγ2

∞∑
n=0

exp{S′n + nγ1} exp(−nγ1)

≤ exp

{
max
n≥0

Sn(γ)

}
eγ2

1− e−γ1
,

173



5.5. PROOFS

where γ = (γ1, γ2), S′n = S′n−1 + (log+Bn − γ2) ∨ logAn and Sn(γ) = S′n + nγ1.
Note that ES1(γ) < 0 by the choice of γ1. Hence supn≥0 Sn(γ) is finite a.s.

Proof of Theorem 5.3.1. From the upper bound we constructed in Lemma 5.3.1,
we know that

P(Z > x) ≤ P

(
sup
n≥0

Sn(γ) > s(x)

)
. (5.5.9)

Due to Assumption A2, we know that the integrated tail of log+(A1 ∨ B+
1 ) is

also subexponential. Moreover, it is straightforward to check that

log+(A1 ∨B+
1 )− γ2 ≤ log

(
max

{
A1, e

−γ2B+
1 , e

−γ2
})
≤ log+(A1 ∨B+

1 ).

Therefore, the increments of the random walk Sn(γ) have a subexponential
integrated tail. Using the Pakes-Veraverbeke theorem we get the following
relationship for the r.h.s. of (5.5.9), namely

P

(
sup
n≥0

Sn(γ) > s(x)

)
∼ − 1

E[(log+B+
1 − γ2) ∨ logA1] + γ1

F̄I(log(x)).

(5.5.10)
Thus, we have that

lim sup
x→∞

P(Z > x)

F̄I(log x)
≤ − 1

E[(log+B+
1 − γ2) ∨ logA1] + γ1

.

Now, letting γ2 →∞ and γ1 → 0 we obtain the result.

Proof of Theorem 5.3.2. Let

M−1
n =

n∏
k=1

wγ(Sk−1(γ) + a∗)

vγ(Sk(γ) + a∗)
.

Obviously, {Mn}n∈N is a martingale, and therefore, {Mn∧τγ(x)}n∈N is also a
martingale. Since τγ(x) ≤ T (x) we can apply Lemma 5.2.1 to get

EQγa∗LT (x) = P(T (x) <∞) = P(Z > x).

For the strong efficiency we have that

EQγa∗L2
T (x)

P(Z > x)2
=

EQγa∗1{Z>x}M
−2
τγ (x)

P(Z > x)2
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≤
EQγa∗1{supn≥0 Sn(γ)>s(x)}M

−2
τγ (x)

P(Z > x)2

=
EQγa∗1{supn≥0 Sn(γ)>s(x)}M

−2
τγ (x)

P
(
supn≥0 Sn(γ) > s(x)

)2
(

P
(
supn≥0 Sn(γ) > s(x)

)
P (Z > x)

)2

, (5.5.11)

where the first term in the last equation is guaranteed to be bounded over
x ∈ (1,∞) due to Result 5.2.2. Hence, only the latter term remains to be
analyzed. From [50, Theorem 3.1] we have that

lim inf
x→∞

P(Z > x)

F̄I(log(x))
≥ − 1

E logA1
. (5.5.12)

Since by assumption the integrated tail F̄I is subexponential, it is in particular
long-tailed. Combining (5.5.10) and (5.5.12) we obtain that

lim sup
x→∞

P
(
supn≥0 Sn(γ) > s(x)

)
P(Z > x)

≤ E logA1

E[max(B̄1 − γ2, logA1)] + γ1
. (5.5.13)

Using the fact that the l.h.s. of (5.5.13) is bounded over a compact interval, we
obtain the result.

Proof of Theorem 5.3.3. Note that the Markov chain that has been considered
in Section 5.3.1 is a special case of (5.1.1). Thus, for details we refer to the proof
of Theorem 5.3.7 below.

Proof of Theorem 5.3.4. We wish to apply Result 5.2.3 to L∆
T (x, 2n), n ∈ N.

Therefore, we should check the existence of a random variable N such that

∞∑
n=0

EQγa∗ [(L∆
T (x, 2n−1)− LT (x))2]−EQγa∗ [(L∆

T (x, 2n)− LT (x))2]

P(N ≥ n)P(Z > x)2
<∞.

(5.5.14)
We will bound

EQγa∗ (L∆
T (x, 2n)− LT (x))2

P(Z > x)2
(5.5.15)

by a geometrically decreasing function of n that does not depend on x. For
β ∈ (0, 1), using Hölder’s inequality we get that

EQγa∗ (L∆
T (x, 2n)− LT (x))2

P (Z > x)2
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=
EQγa∗1{τγ(x)<∞,

∑τγ (x)+2n

k=0 Bk+1e
Sk≤x,Z>x}(M

−1
τγ (x))2

P(Z > x)2

= EQγa∗

(
1{τγ(x)<∞,

∑τγ (x)+2n

k=0 Bk+1e
Sk≤x,Z>x}M

−1
τγ (x)

)β
×
(
1{T (x)<∞}M

−1
τγ (x)

)2−β /
P(Z > x)2

≤

(
EQγa∗1{τγ(x)<∞,

∑τγ (x)+2n

k=0 Bk+1e
Sk≤x,Z>x}M

−1
τγ (x)

)β
P(Z > x)β

×

(
EQγa∗1{T (x)<∞}M

−1
τγ (x)

2−β
1−β

)1−β

P(Z > x)2−β

=

EQγa∗1{τγ(x)<∞,
∑τγ (x)+2n

k=0 Bk+1e
Sk≤x,Z>x}M

−1
τγ (x)

P(Z > x)


︸ ︷︷ ︸

,(II)

β

×

EQγa∗L
2−β
1−β
T (x)

P(Z > x)
2−β
1−β


︸ ︷︷ ︸

,(I)

1−β

.

Now we analyze terms (I) and (II). Using the same argument around (5.5.11)
in the proof of Theorem 5.3.2, to bound (I), it is sufficient to analyze

P (τγ(x) <∞)
−(2+ε)

EQγa∗L2+ε
τγ (x).

From Lemma 5.2.1, we see that P(τγ(x) < ∞)−(2+ε)EQγa∗L2+ε
τγ (x) is bounded

w.r.t. x; therefore, (I) is also bounded w.r.t. x. Turning to (II), we claim that it
can be bounded by κ2−n(q−1), for some constant κ > 0. To see this, note that

(II) =
P
(
τγ(x) <∞,

∑τγ(x)+2n

k=0 Bk+1e
Sk ≤ x, Z > x

)
P(Z > x)

= P(x)

(∑τγ(x)+2n

k=0
Bk+1e

Sk ≤ x, Z > x

)
︸ ︷︷ ︸

,(III)

P(τγ(x) <∞)

P(Z > x)
,
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where P(x) (·) denotes the conditional distribution P( · | τγ(x) <∞). Hence, it
is sufficient to analyze the behavior of (III) w.r.t. M . Note that

Z =

τγ(x)∑
k=0

Bk+1e
Sk

︸ ︷︷ ︸
,B′x

+ eSτγ (x)︸ ︷︷ ︸
,A′x

∞∑
k=1

Bτγ(x)+ke
Sτγ (x)+k−Sτγ (x)

︸ ︷︷ ︸
,Z′

, (5.5.16)

and

τγ(x)+M∑
k=0

Bk+1e
Sk = B′x +A′x

M∑
k=1

Bτγ(x)+ke
Sτγ (x)+k−Sτγ (x)

︸ ︷︷ ︸
,Z′(M)

. (5.5.17)

Combining (5.5.16), (5.5.17) with Assumption A4, we obtain that

(III) =

∫
1{

Z′(M)≤ x−B
′
x

A′x
,Z′>

x−B′x
A′x

}dP(x)

=

∫
P(x)(Z ′

(M) ≤ y, Z ′ > y)dP(x)((x−B′x)/A′x ≤ y)

=

∫ {
P(x)(Z ′ > y)−P(x)(Z ′

(M)
> y)

}
dP(x)((x−B′x)/A′x ≤ y).

Using the strong Markov property we have that Z ′
(M) D

=
∑M
k=0Bk+1e

Sk and

Z ′
D
= Z under P(x). Hence, we have that

(III) =

∫ {
P(x)(Z > y)−P(x)

(
M∑
k=0

Bk+1e
Sk > y

)}
dP(x)

(
x−B′x
A′x

≤ y
)
.

Combining this with the fact that the backward iteration
∑M
k=0Bk+1e

Sk has
the same distribution as ZM defined in (5.1.2), we obtain that

(III) =

∫
{P (Z > y)−P (ZM > y)} dP(x)((x−B′x)/A′x ≤ y) ≤ dTV (ZM , Z),

(5.5.18)
where dTV denotes the total variation distance. To get a handle on this quantity,
we apply the Lyapunov criterion in [77, Theorem 3.6], which implies a polynomial
convergence rate of the M -step transition kernel to the invariant distribution in
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the total variation norm. In view of Lemma 5.5.2 below, there exists a constant κ
such that (III) ≤ dTV (ZM , Z) ≤ κM−(q−1), for all M ∈ N. It should be noted
that an exact expression for the constant κ can be obtained in a few special
cases—see e.g. [44], [79] and the references therein. By choosing N such that
P(N ≤ n) = 1− (1− p)n for n ≥ 1 with p < 1− 2−(q−1), we conclude that the
left-hand-side of (5.5.14) is bounded; and hence, by applying Result 5.2.3, we can
get rid of this constant and obtain an unbiased, strongly efficient estimator.

Lemma 5.5.2. Let Zn be a Markov chain as in (5.1.2) such that Assumption
A5 holds. Then there exists a constant κ such that dTV (Zn, Z) ≤ κn−(q−1).

Proof of Lemma 5.5.2. W.l.o.g. we can assume q ≥ 2 is an integer; otherwise
one can take the greatest integer q′ such that q′ < q and Assumption A5 holds
for q′. We wish to apply Theorem 3.6 in [77]. In order to establish the Lyapunov
condition as in (5.5.20) below, let V (x) = 1∨(log x)q and PV (x) , EV (A1x+B1).
Note that V (x) = (log x)q1{x>e} + 1{x≤e} and hence the binomial expansion
gives

PV (x)

= E (log (A1x+B1))
q
1{A1x+B1>e} + P(A1x+B1 ≤ e)

≤ E
(
log
(
A1x+B+

1

))q
1{A1x+B1>e} + P(A1x+B1 ≤ e)

= E

(
log

A1x+B+
1

x
+ log x

)q
1{A1x+B1>e} + P(A1x+B1 ≤ e)

= E(log x)q1{A1x+B1>e}

+

q∑
i=1

(
q

i

)
(log x)q−iE

(
log

A1x+B+
1

x

)i
1{A1x+B1>e}

= E[(log x)q](1{A1x+B1>e} + 1{x>e} − 1{x>e}) + 1{x≤e} − 1{x≤e}

+

q∑
i=1

(
q

i

)
(log x)q−iE

(
log

A1x+B+
1

x

)i
1{A1x+B1>e}

+ P(A1x+B1 ≤ e)
= V (x) + E(log x)q(1{A1x+B1>e} − 1{x>e}) + P(A1x+B1 ≤ e)− 1{x≤e}

+ q(log x)q−1E

(
log

A1x+B+
1

x

)
1{A1x+B1>e}

+

q∑
i=2

(
q

i

)
(log x)q−iE

[(
log

A1x+B+
1

x

)i
1{A1x+B1>e}

]
.
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For x > e,

PV (x) ≤ V (x) + P(A1x+B1 ≤ e)

+ q(log x)q−1E

(
log

A1x+B+
1

x
1{A1x+B1>e}

)
+

q∑
i=2

(
q

i

)
(log x)q−i E

[(
log

A1x+B+
1

x

)i
1{A1x+B1>e}

]
.

Note that

logA1 ≤ log
A1x+B+

1

x
≤ log(A1 +B+

1 )

≤ log(2(A1 ∨B+
1 )) = log(A1 ∨B+

1 ) + log 2

= (logA1) ∨ (logB+
1 ) + log 2

≤ | logA1|+ | logB+
1 |+ log 2,

and hence ∣∣∣∣log
A1x+B+

1

x

∣∣∣∣ ≤ | logA1|+ | logB+
1 |+ log 2. (5.5.19)

Moreover, the right-hand-side of (5.5.19) does not depend on x and has finite
q-th moment. Thus, there have to be constants ci, i ≥ 1, such that

q∑
i=2

(
q

i

)
(log x)q−i E

[(
log

A1x+B+
1

x

)i
1{A1x+B1>e}

]

≤
q−2∑
i=0

ci(log x)i ≤ ε(log x)q−1

for sufficiently large x. On the other hand, note that log
A1x+B+

1

x 1{A1x+B1>e}
converges to logA1 almost surely as x→∞, and hence, by dominated conver-
gence

E

(
log

A1x+B+
1

x

)
1{A1x+B1>e} → E logA1 < 0.

Therefore, for any fixed ε > 0,

q(log x)q−1E

(
log

A1x+B+
1

x
1{A1x+B1>e}

)
≤ (qE logA1 + ε)(log x)q−1
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for sufficiently large x. Choosing ε so that qE logA1 + 3ε < 0 and noting that
P(A1x + B1 ≤ e) → 0 as x → ∞, as well as (log x)q−1 =

(
(log x)q1{x>e} +

1{x≤e}
)(q−1)/q

for x > e, we conclude that there exists K such that

PV (x) ≤ V (x) + ε(log x)q−1 + (qE logA1 + ε)(log x)q−1 + ε(log x)q−1

≤ V (x)− cV (q−1)/q(x)

for x > K, where c = −(qE logA1 + 3ε) > 0. Finally, since PV (x), V (x) and
V (q−1)/q(x) are bounded on [0,K], there exists a constant b such that

PV (x) ≤ V (x)− cV (q−1)/q(x) + b1[0,K], (5.5.20)

which is the sufficient condition in [77, Theorem 3.6] for polynomial ergodicity.
Thus we obtain the result.

Proof of Lemma 5.3.2. Recall that Z can be bounded by a stochastic perpetuity
Z̄ that is given by

Z̄ ,
∞∑
n=0

B̄n+1e
Sn ,

where B̄n , max (B+
n +Dn, 1) and Sn =

∑n
i=1 logAi. Applying the same

technique as in the proof of Lemma 5.3.1 to Z̄, we obtain the result.

Proof of Theorems 5.3.5 and 5.3.6. We omit the details here, since they can be
proved analogously as Theorems 5.3.1 and 5.3.2.

The following lemma is useful in proving Theorem 5.3.7.

Lemma 5.5.3. Consider the sets E
(1)
n , E

(2)
n , and E

(3)
n as in the proof of Theorem

5.3.7. Then, for ν, ε > 0, there exists K > 0, such that

P

⋂
n≥1

(
E(1)
n ∩ E(2)

n ∩ E(3)
n

) ≥ 1− ε.

Proof of Lemma 5.5.3. In the proof of Theorem 1 in [99], the authors state that
for any ν > 0 and any i.i.d. sequence {Yn}n≥0 with E

[
log+ |Y1|

]
<∞, it holds

that
P
(
|Yj | ≤ eνj+K , j ≤ n

)
→ 1,
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as K →∞ uniformly w.r.t. n. Using this argument we conclude that P
(
E

(3)
n

)
→

1 as K → ∞ uniformly w.r.t. n. Further, combining this fact with the SLLN
for {Sn}n≥0 and {Sn(γ)}n≥0 (for details see e.g. [9, Lemma 3.1]), we can always
take K large enough such that

P
(
E(1)
n ∩ E(2)

n ∩ E(3)
n

)
≥ 1− ε,

for all n ∈ N. Finally, since the sequence of sets E
(1)
n ∩ E(2)

n ∩ E(3)
n , n ≥ 0 is

decreasing in the sense of inclusion, we obtain the result.

Proof of Theorem 5.3.7. Recall that Ψ1:n(Z0) , Ψ1 ◦ Ψ2 ◦ · · · ◦ Ψn(Z0). Due
to the fact that {τγ(x) < ∞,Ψ1:τγ(x)+M (Z0) > x} ⊆ {T (x) < ∞}, in order to
prove the vanishing relative bias result, it is sufficient to show that

lim inf
x→∞

P
(
τγ(x) <∞,Ψ1:τγ(x)+M (Z0) > x

)
P (T (x) <∞)

≥ 1. (5.5.21)

Recall that Sn =
∑n
i=1 logAi and Sn(γ) = nγ1 +

∑n
i=1[(log+(B+

i +Di)− γ2) ∨
logAi]. Let µ , −ES1 and µγ , −ES1(γ). For ν,K > 0 consider the sets

E(1)
n = E(1)

n (K, ν) = {Sj ∈ (−j (µ+ ν)−K,−j(µ− ν) +K) , j ≤ n} ,

E(2)
n = E(2)

n (K, ν) = {Sj(γ) ∈ (−j(µγ + ν)−K,−j(µγ − ν) +K) , j ≤ n} ,

and
E(3)
n = E(3)

n (K, ν) =
{
|Bj | ≤ eνj+K , j ≤ n

}
,

where Bj = Bj −Dj . Define

En = E(1)
n ∩ E(2)

n ∩ E(3)
n ∩ {Ψn+2(Z0) > ν}

∩
{

max
(
An+1, Bn+1

)
> xen(µ+ν)+L+K , Bn+1 ≥ −xen(µ−ν)−K

}
,

where L > 0 is chosen to be large enough, such that the sets {En}n≥1 are disjoint.
The existence of such an L is guaranteed by the fact that En ⊆ {τγ(x) = n+ 1}
(see below). Now, we show that En ⊆ {τγ(x) = n+ 1,Ψ1:τγ(x)+1(Z0) > x}. To
see En ⊆ {τγ(x) = n+ 1}, note that {Sj(γ)}j≤n is bounded by K, µ > µγ—due
to the fact that S1 ≤ S1(γ)—and

Sn+1(γ) = Sn(γ) + log
(
max

(
B̄n+1e

−γ2 , An+1

))
+ γ1
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> −n (µγ + ν)−K + log
(
max

(
Bn+1, An+1

))
− γ2 + γ1

> log x+ n (µ− µγ) + L− γ2 + γ1

> log x+ L− γ2 + γ1 > s(x),

for sufficiently large L that does not depend on x. Thus, we conclude that
τγ(x) = n + 1 < ∞ by taking x sufficiently large. To see En ⊆ {τγ(x) =

n+1,Ψ1:τγ(x)+1(Z0) > x}, note that Ψ1:n(z) ≥
∑n−1
k=0 Bk+1

∏k
j=1Aj+z

∏n
j=1Aj

from (5.3.9) and Assumption B4. Moreover, |Bk+1|
∏k
j=1Aj = |Bk+1|eSk ≤

eν(k+1)+Ke−k(µ−ν)+K = e−k(µ−2ν)+2K+ν on En, and hence,

Ψ1:τγ(x)+1(Z0) = Ψ1:n+2(Z0) = Ψ1:n(Ψn+1:n+2(Z0))

≥
n−1∑
k=0

Bk+1

k∏
j=1

Aj +
(
Bn+1 + Ψn+2(Z0)An+1

) n∏
j=1

Aj

≥ −
n−1∑
k=0

|Bk+1|
k∏
j=1

Aj +
(
Bn+1 + xen(µ−ν)−K + Ψn+2(Z0)An+1

) n∏
j=1

Aj

− xen(µ−ν)−K
n∏
j=1

Aj

≥ − e2K+ν

1− e−µ+2ν
+
(
Bn+1 + xen(µ−ν)−K + νAn+1

) n∏
j=1

Aj − x

≥ − e2K+ν

1− e−µ+2ν
+ min(ν, 1) max

(
An+1, Bn+1 + xen(µ−ν)−K

)
e−n(µ+ν)−K − x

≥ − e2K+ν

1− e−µ+2ν
+ min(ν, 1) max

(
An+1, Bn+1

)
e−n(µ+ν)−K − x

≥ − e2K+ν

1− e−µ+2ν
+ min(ν, 1)xeL − x > x,

for sufficiently large L that does not depend on x. Note that from Lemma 5.5.3
above,

P(En) = P(E(1)
n ∩ E(2)

n ∩ E(3)
n ) ·P(Ψn+2(Z0) > ν)

·P
(

max
(
An+1, Bn+1

)
> xen(µ+ν)+L+K , Bn+1 ≥ −xen(µ−ν)−K)

= P(E(1)
n ∩ E(2)

n ∩ E(3)
n ) ·P(Ψ1(Z0) > ν)

·P
(

max (A1, B1) > xen(µ+ν)+L+K , B1 ≥ −xen(µ−ν)−K)
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≥ (1− ε) P(Ψ1(Z0) > ν)

·
{

P
(

max (A1, B1) > xen(µ+ν)+L+K
)

−P
(

max (A1, B1) > xen(µ+ν)+L+K , B1 < −xen(µ−ν)−K)}
≥ (1− ε) P(Ψ1(Z0) > ν)

·
{

P
(

max (A1, B1) > xen(µ+ν)+L+K
)

−P
(
A1 > xen(µ+ν)+L+K , B1 < −xen(µ−ν)−K)}.

Moreover, since En ⊆ {τγ(x) < ∞,Ψ1:τγ(x)+M (Z0) > x}, and En, n ≥ 1 are
disjoint, we have that

P
(
τγ(x) <∞,Ψ1:τγ(x)+M (Z0) > x

)
≥
∑
n≥0

P(En)

≥ (1− ε)P(Ψ1(Z0) > ν)
∑
n≥0

{
P(max (A1, B1) > xen(µ+ν)+L+K)

−P(A1 > xen(µ+ν)+L+K , B1 < −xen(µ−ν)−K)
}
.

(5.5.22)

From Assumption B1c) we conclude that, for any ε′ > 0, by taking sufficiently
large x,

P
(
A1 > xen(µ+ν)+L+K , B1 < −xen(µ−ν)−K

)
≤ P

(
A1 > xen(µ−ν)−K , B1 < −xen(µ−ν)−K

)
≤ ε′P

(
max (A1, B1) > xen(µ−ν)−K

)
.

Combining this with (5.5.22), we obtain that

P
(
τγ(x) <∞,Ψ1:τγ(x)+M (Z0) > x

)
≥ (1− ε)P(Ψ1(Z0) > ν)∑

n≥0

{
P
(

max (A1, B1) > xen(µ+ν)+L+K
)

− ε′P
(

max (A1, B1) > xen(µ−ν)−K
)}

. (5.5.23)
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For a given ε′′ > 0, let y be sufficiently large so that∣∣∣∣1− P(log max(A1, B1) > y)

P(log max(A1, B1) > y)

∣∣∣∣ ≤ ε′′.
Since P (max (A1, B1) > y) is decreasing in y,∑

n≥0

P
(

max (A1, B1) > xen(µ+ν)+L+K
)

≥
∑
n≥0

1

µ+ ν

∫ log x+L+K+(n+1)(µ+ν)

log x+L+K+n(µ+ν)

P (log max (A1, B1) > y) dy

≥
∑
n≥0

1− ε′′

µ+ ν

∫ log x+L+K+(n+1)(µ+ν)

log x+L+K+n(µ+ν)

P (log max (A1, B1) > y) dy

=
1− ε′′

µ+ ν
F̄I(log x+ L+K),

and that ∑
n≥0

P
(

max (A1, B1) > xen(µ−ν)−K
)

≤
∑
n≥0

1 + ε′′

µ− ν

∫ log x−K+n(µ−ν)

log x−K+(n−1)(µ−ν)

P (log max (A1, B1) > y) dy

≤
∑
n≥0

1 + ε′′

µ− ν

∫ log x−K+n(µ−ν)

log x−K+(n−1)(µ−ν)

P (log max (A1, B1) > y) dy

=
1 + ε′′

µ− ν
F̄I(log x−K − µ+ ν).

Moreover, using the fact that F̄I is long-tailed, we obtain from (5.5.23) that

P
(
τγ(x) <∞,Ψ1:τγ(x)(Ψτγ(x)+1:τγ(x)+M (Z0)) > x

)
≥ (1− ε)P(Ψ1(Z0) > ν)

(
1− ε′′

µ+ ν
F̄I(log x+ L+K)

− ε′(1 + ε′′)

µ− ν
F̄I(log x+ L+K − µ+ ν)

)
∼ (1− ε)P(Ψ1(Z0) > ν)

(
1− ε′′

µ+ ν
− ε′(1 + ε′′)

µ− ν

)
F̄I(log x)
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∼ µ(1− ε)P(Ψ1(Z0) > ν)

(
1− ε′′

µ+ ν
− ε′(1 + ε′′)

µ− ν

)
P(T (x) <∞), (5.5.24)

where in (5.5.24) we use [50, Theorem 3.1]. Recall that the distribution of
the stationary solution to (5.1.1) does not depend on the initial condition Z0,
and hence, w.l.o.g. we can set Z0 = 0. Noting that Ψ1(0) ≥ 0 and hence
P(Ψ1(Z0) > ν) → 1 as ν → 0, we let ε, ε′, ε′′, ν → 0 to obtain (5.5.21). This
implies that the relative bias converges to 0, since the numerator in (5.5.21) is
always smaller than the denominator.

The following lemma is useful in proving Theorem 5.3.8.

Lemma 5.5.4. Let Zn be a Markov chain as in (5.1.1) such that Assumption
B5 hold. Then there exists a constant κ such that dTV (Zn, Z) ≤ κn−(q−1).

Proof of Lemma 5.5.4. Let V (x) = 1 ∨ (log x)q and PV (x) , EV (Ψ1(x)). By
noting that

PV (x) , E(log(Ψ1(x)))q1{Ψ1(x)>e} + P(Ψ1(x) ≤ e)
≤ E(log(A1x+B+

1 +D1))q1{Ψ1(x)>e} + P(Ψ1(x) ≤ e),

the rest follows immediately from similar arguments as in the proof of Lemma
5.5.2.

Proof of Theorem 5.3.8. Note that this result can be proved by following similar
arguments as in the proof of Theorem 5.3.4, hence we only give a sketch of the
proof. Recall that, in the context of iterated random functions, the estimator
L∆
T (x,M) is given by

L∆
T (x,M) , 1{τγ(x)<∞,Ψ1:τγ (x)+M (Z0)>x}

τγ(x)∏
k=1

wγ(Sk−1(γ) + a∗)

vγ(Sk(γ) + a∗)
.

Analogously to the proof of Theorem 5.3.4, we wish to bound

EQγa∗ (L∆
T (x, 2n)− LT (x))2

P(Z > x)2
(5.5.25)

by a decreasing function of n independent of x. Again, by using Hölder’s
inequality it is sufficient to bound

(I’) ,
EQγa∗1{τγ(x)<∞,Ψ1:τγ (x)+M (Z0)≤x,Z>x}M

−1
τγ (x)

P(Z > x)
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= P(x)
(
Ψ1:τγ(x)(Ψτγ(x)+1:τγ(x)+M (Z0)) ≤ x,Ψ1:τγ(x)(Z

′) > x
)︸ ︷︷ ︸

,(II’)

P(τγ(x) <∞)

P(Z > x)
,

where Z ′ , limM→∞Ψτγ(x)+1:τγ(x)+M (Z0)
D
= Z and P(x) (·) denotes the condi-

tional distribution P( · | τγ(x) <∞). Since Ψn is Lipschitz and bijective, Ψ−1
1:τγ(x)

is either strictly increasing or strictly decreasing. W.l.o.g. we assume that
Ψ−1

1:τγ(x) is strictly increasing, since the case of Ψ−1
1:τγ(x) being strictly decreasing

can be dealt with similarly. Using the strong Markov property we obtain that

(II’) =

∫
{P(Z > y)−P(ZM > y)} dP(x)(Ψ−1

1:τγ(x)(x) ≤ y) ≤ dTV (ZM , Z).

By Lemma 5.5.4 above we obtain the result.
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in exponential lévy models. Finance and Stochastics, 9(3):299–325, Jul
2005.
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[67] C. M. Goldie and R. Grübel. Perpetuities with thin tails. Advances in
Applied Probability, 28(2):463–480, 1996.

192



BIBLIOGRAPHY

[68] D. R. Grey. Regular variation in the tail behaviour of solutions of random
difference equations. The Annals of Applied Probability, 4(1):169–183,
February 1994.
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heavy-tailed Lévy processes and random walks. eprint arXiv:1606.02795,
2016.

195



BIBLIOGRAPHY

[106] C.-H. Rhee and P. Glynn. Unbiased estimation with square root conver-
gence for SDE models. Articles in Advance, pages 1–18, 2015.

[107] G. Rubino and B. Tuffin. Rare event simulation using Monte Carlo methods.
John Wiley & Sons, 2009.
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Summary

Heavy tails: asymptotics, algorithms, applications

My research has been mainly focusing on large deviations theory and rare-event
simulation in heavy-tailed settings. The starting point of the dissertation is a
heavy-tailed sample path large deviations (SPLD) result recently established by
Rhee, Blanchet, and Zwart [105]. By utilizing this result, we develop a simulation
algorithm for a general class of rare events. We test the developed simulation
algorithm on several applications. Moreover, we extend the result in [105] to the
setting where the increments are no longer independent. Finally, we consider
a rare event simulation problem, where the underlying processes possess super
heavy-tailed features.

In the first part of the dissertation (Chapters 2 and 3), we propose a class
of strongly efficient rare event simulation estimators for random walks and
compound Poisson processes with regularly varying increments in a general
large deviations regime. Our estimator is based on an importance sampling
strategy that hinges on the heavy-tailed SPLD result in [105]. The estimators
are straightforward to implement and can be used to systematically evaluate the
probability of a wide range of rare events with bounded relative error. They are
“universal” in the sense that a single importance sampling scheme applies to a
very general class of rare events that arise in heavy-tailed systems. In particular,
our estimators can deal with rare events that are caused by multiple big jumps
as well as multidimensional processes such as the buffer content process of a
queueing network.

At the end of Chapter 2, as well as, in Chapter 3, we illustrate the versatility of
our approach with several applications that arise in the context of mathematical
finance, actuarial science, and queueing theory.

In Chapter 4, we extend the result in [105] to stochastic processes with
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increments that are driven by an autoregressive process. To relate our problem
to the one in [105], we first identify a sequence of regeneration times and split the
Markov chain into i.i.d. blocks. By aggregating the trajectory over regeneration
cycles, we obtain a regenerative process with i.i.d. jump distributions and the
regeneration times as renewals. Under a set of classical assumptions, we adapt a
large deviation change of measure argument and further establish that the area
under a typical regeneration cycle has an asymptotic power law. This approach
brings us close to the framework of [105] and allows us to derive an SPLD result
for the aggregated process. Finally, by showing that the residual process is
negligible, we state an SPLD result for the original process.

In Chapter 5, we consider the stationary solution of an autoregressive process,
which is also called stochastic perpetuity. We propose a strongly efficient
simulation algorithm for estimating the tail probability of the perpetuities. Our
most important idea behind these results is to connect the perpetuities to the
maximum of a random walk. This allows us to construct a coupling and leverage
an existing importance sampling algorithm. Since the stationary distribution is
defined over an infinite horizon, it requires an infinite amount of computational
effort for generating each sample when using a crude Monte Carlo sampling
approach. To address this issue, we work with approximations by finite-time
truncation. We study the bias introduced by such approximations and show
that our estimator has a vanishing relative bias. Moreover, by making a slightly
stronger assumption and applying a bias elimination technique, we propose
strongly efficient and unbiased estimators.

We generalize the results in Chapters 4 and 5 to the case where the associated
Markov chain is defined via a sequence of i.i.d. iterated random functions.
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