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The cryptographic task of secure multi-party (classical) computation has re-
ceived a lot of attention in the last decades. Even in the extreme case where a
computation is performed between k mutually distrustful players, and security is
required even for the single honest player if all other players are colluding adver-
saries, secure protocols are known. For quantum computation, on the other hand,
protocols allowing arbitrary dishonest majority have only been proven for k = 2.
In this work, we generalize the approach taken by Dupuis, Nielsen and Salvail
(CRYPTO 2012) in the two-party setting to devise a secure, efficient protocol for
multi-party quantum computation for any number of players k, and prove security
against up to k − 1 colluding adversaries. The quantum round complexity of the
protocol for computing a quantum circuit of {CNOT,T} depth d isO(k ·(d+logn)),
where n is the security parameter. To achieve efficiency, we develop a novel public
verification protocol for the Clifford authentication code, and a testing protocol for
magic-state inputs, both using classical multi-party computation.

1 Introduction

In secure multi-party computation (MPC), two or more players want to jointly compute some
publicly known function on their private data, without revealing their inputs to the other play-
ers. Since its introduction by Yao [Yao82], MPC has been extensively developed in different
setups, leading to applications of both theoretical and practical interest (see, e.g., [CDN15] for
a detailed overview).

With the emergence of quantum technologies, it becomes necessary to understand its con-
sequences in the field of MPC. First, classical MPC protocols have to be secured against quan-
tum attacks. But also, the increasing number of applications where quantum computational
power is desired motivates protocols enabling multi-party quantum computation (MPQC) on
the players’ private (possibly quantum) data. In this work, we focus on the second task. In-
formally, we say a MPQC protocol is secure if the following two properties hold: 1. Dishonest
players gain no information about the honest players’ private inputs. 2. If the players do not
abort the protocol, then at the end of the protocol they share a state corresponding to the cor-
rect computation applied to the inputs of honest players (those that follow the protocol) and
some choice of inputs for the dishonest players.
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MPQC was first studied by Crépeau, Gottesman and Smith [CGS02], who proposed a k-
party protocol based on verifiable secret sharing that is information-theoretically secure, but
requires the assumption that at most k/6 players are dishonest. The fraction k/6 was subse-
quently improved to < k/2 [BOCG+06] which is optimal for secret-sharing-based protocols
due to no-cloning. The case of a dishonest majority was thus far only considered for k = 2
parties, where one of the two players can be dishonest [DNS10, DNS12, KMW17]1. These pro-
tocols are based on different cryptographic techniques, in particular quantum authentication
codes in conjunction with classical MPC [DNS10, DNS12] and quantum-secure bit commit-
ment and oblivious transfer [KMW17].

In this work, we propose the first secure MPQC protocol for any number k of players in
the dishonest majority setting, i.e., the case with up to k−1 colluding adversarial players.2 We
remark that our result achieves composable security, which is proven according to the standard
ideal-vs.-real definition. Like the protocol of [DNS12], on which our protocol is built, our pro-
tocol assumes a classical MPC that is secure against a dishonest majority, and achieves the same
security guarantees as this classical MPC. In particular, if we instantiate this classical MPC with
an MPC in the pre-processing model (see [BDOZ11, DPSZ12, KPR18, CDE+18]), our construction
yields a MPQC protocol consisting of a classical “offline” phase used to produce authenticated
shared randomness among the players, and a second “computation” phase, consisting of our
protocol, combined with the “computation” phase of the classical MPC. The security of the
“offline” phase requires computational assumptions, but assuming no attack was successful in
this phase, the second phase has information-theoretic security.

1.1 Prior work

Our protocol builds on the two-party protocol of Dupuis, Nielsen, and Salvail [DNS12], which
we now describe in brief. The protocol uses a classical MPC protocol, and involves two par-
ties, Alice and Bob, of whom at least one is honestly following the protocol. Alice and Bob
encode their inputs using a technique called swaddling: if Alice has an input qubit |ψ〉, she first
encodes it using the n-qubit Clifford code (see Definition 2.5), resulting in A(|0n〉 ⊗ |ψ〉), for
some random (n + 1)-qubit Clifford A sampled by Alice, where n is the security parameter.
Then, she sends the state to Bob, who puts another encoding on top of Alice’s: he creates the
“swaddled” state B(A(|0n〉 ⊗ |ψ〉)⊗ |0n〉) for some random (2n+ 1)-qubit Clifford B sampled
by Bob. This encoded state consists of 2n+ 1 qubits, and the data qubit |ψ〉 sits in the middle.

If Bob wants to test the state at some point during the protocol, he simply needs to undo the
Clifford B, and test that the last n qubits (called traps) are |0〉. However, if Alice wants to test
the state, she needs to work together with Bob to access her traps. Using classical multi-party
computation, they jointly sample a random (n+ 1)-qubit Clifford B′ which is only revealed to
Bob, and compute a Clifford T := (I⊗n ⊗B′)(A† ⊗ I⊗n)B† that is only revealed to Alice. Alice,
who will not learn any relevant information about B or B′, can use T to “flip” the swaddle,
revealing her n trap qubits for measurement. After checking that the first n qubits are |0〉, she
adds a fresh (2n+1)-qubit Clifford on top of the state to re-encode the state, before computation
can continue.

Single-qubit Clifford gates are performed simply by classically updating the inner key: if
a state is encrypted with Cliffords BA, updating the decryption key to BAG† effectively ap-

1In Kashefi and Pappa [KP17], they consider a non-symmetric setting where the protocol is secure only when
some specific sets of k − 1 players are dishonest.

2In the case where there are k adversaries and no honest players, there is nobody whose input privacy and
output authenticity is worth protecting.
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plies the gate G. In order to avoid that the player holding the inner key B skips this step,
both players keep track of their keys using a classical commitment scheme. This can be en-
capsulated in the classical MPC, which we can assume acts as a trusted third party with a
memory [BOCG+06].

CNOT operations and measurements are slightly more involved, and require both players
to test the authenticity of the relevant states several times. Hence, the communication com-
plexity scales linearly with the number of CNOTs and measurements in the circuit.

Finally, to perform T gates, the protocol makes use of so-called magic states. To obtain
reliable magic states, Alice generates a large number of them, so that Bob can test a sufficiently
large fraction. He decodes them (with Alice’s help), and measures whether they are in the
expected state. If all measurements succeed, Bob can be sufficiently certain that the untested
(but still encoded) magic states are in the correct state as well.

1.1.1 Extending two-party computation to multi-party computation

A natural question is how to lift a two-party computation protocol to a multi-party computa-
tion protocol. We discuss some of the issues that arise from such an approach, making it either
infeasible or inefficient.

Composing ideal functionalities. The first naive idea would be trying to split the k play-
ers in two groups and make the groups simulate the players of a two-party protocol, whereas
internally, the players run k

2 -party computation protocols for all steps in the two-party proto-
col. Those k

2 -party protocols are in turn realized by running k
4 -party protocols, et cetera, until

at the lowest level, the players can run actual two-party protocols.
Trying to construct such a composition in a black-box way, using the ideal functionality of a

two-party protocol, one immediately faces a problem: at the lower levels, players learn inter-
mediate states of the circuit, because they receive plaintext outputs from the ideal two-party
functionality. This would immediately break the privacy of the protocol. If, on the other hand,
we require the ideal two-party functionality to output encoded states instead of plaintexts,
then the size of the ciphertext will grow at each level. The overhead of this approach would
be O(nlog k), where n > k is the security parameter of the encoding, which would make this
overhead super-polynomial in the number of players.

Naive extension of DNS to multi-party. One could also try to extend [DNS12] to mul-
tiple parties by adapting the subprotocols to work for more than two players. While this ap-
proach would likely lead to a correct and secure protocol for k parties, the computational costs
of such an extension could be high.

First, note that in such an extension, each party would need to append n trap qubits to the
encoding of each qubit, causing an overhead in the ciphertext size that is linear in k. Secondly,
in this naive extension, the players would need to create Θ(2k) magic states for T gates (see
Section 2.5), since each party would need to sequentially test at least half of the ones approved
by all previous players.

Notice that in both this extension and our protocol, a state has to pass by the honest player
(and therefore all players) in order to be able to verify that it has been properly encoded.

1.2 Our contributions

Our protocol builds on the work of Dupuis, Nielsen, and Salvail [DNS10, DNS12], and like
it, assumes a classical MPC, and achieves the same security guarantees as this classical MPC.
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In contrast to a naive extension of [DNS12], requiring Θ(2k) magic states, the complexity of
our protocol, when considering a quantum circuit that contains, among other gates, g gates in
{CNOT,T} and acts on w qubits, scales as O((g + w)k).

In order to efficiently extend the two-party protocol of [DNS12] to a general k-party proto-
col, we make two major alterations to the protocol:
Public authentication test. In [DNS12], given a security parameter n, each party adds n qubits
in the state |0〉 to each input qubit in order to authenticate it. The size of each ciphertext is
thus 2n + 1. The extra qubits serve as check qubits (or “traps”) for each party, which can be
measured at regular intervals: if they are non-zero, somebody tampered with the state.

In a straightforward generalization to k parties, the ciphertext size would become kn +
1 per input qubit, putting a strain on the computing space of each player. In our protocol,
the ciphertext size is constant in the number of players: it is usually n + 1 per input qubit,
temporarily increasing to 2n + 1 for qubits that are involved in a computation step. As an
additional advantage, our protocol does not require that all players measure their traps every
time a state needs to be checked for its authenticity.

To achieve this smaller ciphertext size, we introduce a public authentication test. Our proto-
col uses a single, shared set of traps for each qubit. If the protocol calls for the authentication to
be checked, the player that currently holds the state cannot be trusted to simply measure those
traps. Instead, she temporarily adds extra trap qubits, and fills them with an encrypted ver-
sion of the content of the existing traps. Now she measures only the newly created ones. The
encryption ensures that the measuring player does not know the expected measurement out-
come. If she is dishonest and has tampered with the state, she would have to guess a random
n-bit string, or be detected by the other players. We design a similar test that checks whether a
player has honestly created the first set of traps for their input at encoding time.
Efficient magic-state preparation. For the computation of non-Clifford gates, the [DNS12]
protocol requires the existence of authenticated “magic states”, auxiliary qubits in a known
and fixed state that aid in the computation. In a two-party setting, one of the players can
create a large number of such states, and the other player can, if he distrusts the first player,
test a random subset of them to check if they were honestly initialized. Those tested states are
discarded, and the remaining states are used in the computation.

In a k-party setting, such a “cut-and-choose” strategy where all players want to test a suf-
ficient number of states would require the first party to prepare an exponential number (in k)
of authenticated magic states, which quickly gets infeasible as the number of players grows.
Instead, we need a testing strategy where dishonest players have no control over which states
are selected for testing. We ask the first player to create a polynomial number of authenti-
cated magic states. Subsequently, we use classical MPC to sample random, disjoint subsets
of the proposed magic states, one for each player. Each player continues to decrypt and test
their subset of states. The random selection process implies that, conditioned on the test of the
honest player(s) being successful, the remaining registers indeed contain encrypted states that
are reasonably close to magic states. Finally, we use standard magic-state distillation to obtain
auxiliary inputs that are exponentially close to magic states.

1.3 Overview of the protocol

We describe some details of the k-player quantum MPC protocol for circuits consisting of
classically-controlled Clifford operations and measurements. Such circuits suffice to perform
Clifford computation and magic-state distillation, so that the protocol can be extended to arbi-
trary circuits using the technique described above. The protocol consists of several subproto-
cols, of which we highlight four here: input encoding, public authentication test, single-qubit
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gate application, and CNOT application. In the following description, the classical MPC is
treated as a trusted third party with memory3. The general idea is to first ensure that initially
all inputs are properly encoded into the Clifford authentication code, and to test the encoding
after each computation step that exposes the encoded qubit to an attack. During the protocol,
the encryption keys for the Clifford authentication code are only known to the MPC.
Input encoding. For an input qubit |ψ〉 of player i, the MPC hands each player a circuit for
a random (2n + 1)-qubit Clifford group element. Now player i appends 2n “trap” qubits
initialized in the |0〉-state and applies her Clifford. The state is passed around, and all other
players apply their Clifford one-by-one, resulting in a Clifford-encoded qubit F (|ψ〉

∣∣02n〉) for
which knowledge of the encoding key F is distributed among all players. The final step is our
public authentication test, which is used in several of the other subprotocols as well. Its goal is
to ensure that all players, including player i, have honestly followed the protocol.
The public authentication test (details). The player holding the state F (|ψ〉

∣∣02n〉) (player i)
will measure n out of the 2n trap qubits, which should all be 0. To enable player i to measure a
random subset of n of the trap qubits, the MPC could instruct her to apply (E ⊗Xr)(I⊗Uπ)F †
to get E(|ψ〉 |0n〉)⊗|r〉, where Uπ permutes the 2n trap qubits by a random permutation π, and
E is a random (n + 1) qubit Clifford, and r ∈ {0, 1}n is a random string. Then when player i
measures the last n trap qubits, if the encoding was correct, she will obtain r and communicate
this to the MPC. However, this only guarantees that the remaining traps are correct up to
polynomial error.

To get a stronger guarantee, we replace the random permutation with an element from
the sufficiently rich yet still efficiently samplable group of invertible transformations over F2n,
GL(2n,F2). An element g ∈ GL(2n,F2) maybe be viewed as a unitary Ug acting on computa-
tional basis states as Ug |x〉 = |gx〉 where x ∈ {0, 1}2n. In particular, Ug

∣∣02n〉 =
∣∣02n〉, so if all

traps are in the state |0〉, applying Ug does not change this, whereas for non-zero x, Ug |x〉 = |x′〉
for a random x′ ∈ {0, 1}2n. Thus the MPC instructs player i to apply (E ⊗ Xr)(I⊗ Ug)F † to the
state F (|ψ〉

∣∣02n〉), then measure the last n qubits and return the result, aborting if it is not r.
Crucially, (E ⊗Xr)(I⊗Ug)F † is given as an element of the Clifford group, hiding the structure
of the unitary and, more importantly, the values of r and g. So if player i is dishonest and holds
a corrupted state, she can only pass the MPC’s test by guessing r. If player i correctly returns r,
we have the guarantee that the remaining state is a Clifford-authenticated qubit with n traps,
E(|ψ〉 |0n〉), up to exponentially small error.
Single-qubit Clifford gate application. As in [DNS12], this is done by simply updating en-
cryption key held by the MPC: If a state is currently encrypted with a Clifford E, decrypting
with a “wrong” key EG† has the effect of applying G to the state.
CNOT application. Applying a CNOT gate to two qubits is slightly more complicated: as they
are encrypted separately, we cannot just implement the CNOT via a key update like in the case
of single qubit Clifford gates. Instead, we bring the two encoded qubits together, and then run
a protocol that is similar to input encoding using the (2n + 2)-qubit register as “input”, but
using 2n additional traps instead of just n, and skipping the final authentication-testing step.
The joint state now has 4n+ 2 qubits and is encrypted with some Clifford F only known to the
MPC. Afterwards, CNOT can be applied via a key update, similarly to single-qubit Cliffords.
To split up the qubits again afterwards, the executing player applies (E1 ⊗ E2)F †, where E1
and E2 are freshly sampled by the MPC. The two encoded qubits can then be tested separately
using the public authentication test.

3The most common way to achieve classical MPC against dishonest majority is in the so called pre-processing
model, as suggested by the SPDZ [BDOZ11] and MASCOT [KOS16] families of protocols. We believe that these
protocols can be made post-quantum secure, but that is beyond the scope of this paper.
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1.4 Open problems

Our results leave a number of exciting open problems to be addressed in future work. Firstly,
the scope of this work was to provide a protocol that reduces the problem of MPQC to classical
MPC in an information-theoretically secure way. Hence we obtain an information-theoretically
secure MPQC protocol in the preprocessing model, leaving the post-quantum secure instantiation
of the latter as an open problem.

Another class of open problems concerns applications of MPQC. For instance, classically,
MPC can be used to devise zero-knowledge proofs [IKOS09] and digital signature schemes [CDG+17].

An interesting open question concerning our protocol more specifically is whether the
CNOT sub-protocol can be replaced by a different one that has round complexity indepen-
dent of the total number of players, reducing the quantum round complexity of the whole
protocol. We also wonder if it is possible to develop more efficient protocols for narrower
classes of quantum computation, instead of arbitrary (polynomial-size) quantum circuits.

Finally, it would be interesting to investigate whether the public authentication test we use
can be leveraged in protocols for specific MPC-related tasks like oblivious transfer.

1.5 Outline

In Section 2, we outline the necessary preliminaries and tools we will make use of in our proto-
col. In Section 3, we give a precise definition of MPQC. In Section 4, we describe how players
encode their inputs to setup for computation in our protocol. In Section 5 we describe our
protocol for Clifford circuits, and finally, in Section 6, we show how to extend this to universal
quantum circuits in Clifford+T.
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2 Preliminaries

2.1 Notation

We assume familiarity with standard notation in quantum computation, such as (pure and
mixed) quantum states, the Pauli gates X and Z, the Clifford gates H and CNOT, the non-
Clifford gate T, and measurements.

We work in the quantum circuit model, with circuits C composed of elementary unitary
gates (of the set Clifford+T), plus computational basis measurements. We consider those mea-
surement gates to be destructive, i.e., to destroy the post-measurement state immediately, and
only a classical wire to remain. Since subsequent gates in the circuit can still classically control
on those measured wires, this point of view is as general as keeping the post-measurement
states around.
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For a set of quantum gates G, the G-depth of a quantum circuit is defined as the minimal
number of layers such that in every layer, gates from G do not act on the same qubit.

For two circuits C1 and C2, we write C2 ◦ C1 for the circuit that consists of executing C1,
followed by C2. Similarly, for two protocols Π1 and Π2, we write Π2 � Π1 for the execution of
Π1, followed by the execution of Π2.

We use capital letters for both quantum registers (M , R, S, T, . . . ) and unitaries (A, B, U ,
V , W, . . . ). We write |R| for the dimension of the Hilbert space in a register R. The registers in
which a certain quantum state exists, or on which some map acts, are written as gray super-
scripts, whenever it may be unclear otherwise. For example, a unitary U that acts on register
A, applied to a state ρ in the registers AB, is written as UAρABU †, where the registers U † acts
on can be determined by finding the matching U and reading the grey subscripts. Note that
we do not explicitly write the operation IB with which U is in tensor product. The gray super-
scripts are purely informational, and do not signify any mathematical operation. If we want to
denote, for example, a partial trace of the state ρAB , we use the conventional notation ρA.

For an n-bit string s = s1s2 · · · sn, define U s := U s1 ⊗ U s2 ⊗ · · · ⊗ U sn . For an n-element
permutation π ∈ Sn, define Pπ to be the unitary that permutes n qubits according to π:

Pπ |ψ1〉 ... |ψn〉 =
∣∣∣ψπ(1)

〉
...
∣∣∣ψπ(n)

〉
.

We use [k] for the set {1, 2, . . . , k}. For a projector Π, we write Π for its complement I − Π.
We use τR := I/|R| for the fully mixed state on the register R.

Write GL(n, F ) for the general linear group of degree n over a field F . We refer to the
Galois field of two elements as F2, the n-qubit Pauli group as Pn, and the n-qubit Clifford
group as Cn. Whenever a protocol mandates handing an element from one of these groups, or
more generally, a unitary operation, to an agent, we mean that a (classical) description of the
group element is given, e.g. as a normal-form circuit.

Finally, for a quantum operation that may take multiple rounds of inputs and outputs, for
example an environment E interacting with a protocol Π, we write E � Π for the final output
of E after the entire interaction.

2.2 Classical multi-party computation

For multi-party computations where possibly more than half of the players are corrupted by
the adversary, it is well known that one cannot achieve fairness which asks that either all par-
ties receive the protocol output or nobody does. Cleve has shown [Cle86] that in the case of
dishonest majority there cannot exist MPC protocols that provide fairness and guaranteed out-
put delivery. In this setting, we cannot prevent a dishonest player from simply aborting the
protocol at any point, for example after having learned an unfavorable outcome of the pro-
tocol, before the honest player(s) have obtained their output(s). Hence, we have to settle for
protocols allowing abort.

Over the last years, the most efficient protocols for classical multi-party computation with
abort are in the so-called pre-processing model, as introduced by the SPDZ-family of protocols
[BDOZ11, DPSZ12, KPR18, CDE+18]4. These protocols consist of two phases: The first “of-
fline” phase is executed independently of the inputs to the actual MPC and produces authen-
ticated shared randomness among the players, for example in the form of authenticated mul-
tiplication triples [Bea92]. These triples are used in the second phase to run a very efficient

4 We refer to [ACR18, Section 5] for a recent overview of other models of active corruptions that tolerate a
dishonest majority of players, such as identifiable abort, covert security and public auditability.
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secure-function-evaluation protocol which is UC information-theoretically secure against active
corruptions of up to k − 1 players, see, e.g., [CDN15, Section 8.5].

At this point, we are unaware of any formal analysis of the post-quantum security of these
schemes. However, it should follow directly from Unruh’s lifting theorem [Unr10] (asserting
that classically secure protocols remain (statistically) secure in the quantum world) that the
UC security of the second (online) phase can be lifted to the post-quantum setting. As for the
pre-processing phase, there are two main types of protocols:

1. The SPDZ-family make use of the homomorphic properties of computationally-secure
public-key encryption systems to generate the authenticated multiplication triples. The
scheme in [DPSZ12] uses somewhat homomorphic encryption which is built from lat-
tice assumptions and might already be post-quantum secure. In addition, the players
provide non-interactive zero-knowledge proofs that they have performed these opera-
tions correctly. Those proofs are typically not post-quantum secure, but should be re-
placed by post-quantum secure variants like lattice-based zk-SNARGs [GMNO18] or zk-
STARKs [BBHR18].

2. The authors of MASCOT (Multi-party Arithmetic Secure Computation with Oblivious
Transfer) [KOS16] suggest a way to avoid the use of expensive public-key cryptography
altogether and propose to use oblivious transfer (OT) and consistency checks to gener-
ate authenticated multiplication triples. A large number of OTs can be obtained from
a few base OTs by OT extension-techniques such as [KOS15]. Those techniques have
very recently be proven secure in the QROM as well [BDK+20]. A post-quantum se-
cure base OT can be obtained from lattices [PVW08]. Recent even more efficient MPC
schemes [CDE+18] have followed this OT-based approach as well.

Establishing full post-quantum security of classical multi-party computation is outside the
scope of this paper. For the purpose of this paper, we assume that such a post-quantum se-
cure classical multi-party computation is available. According to the discussion above, it suf-
fices that a preprocessing phase has been successfully run in order to have UC information-
theoretically secure function evaluation (SFE). Unlike for general adversary structures [HMZ08],
in our case of threshold adversaries, one can obtain (reactive) MPC from SFE by outputting
shares of the overall state to the players and by asking the players to input them again in the
next phase, see [CDN15, Section 5.3.1].

Throughout this paper, we will utilize the following ideal MPC functionality as a black box:

Definition 2.1 (Ideal classical k-party stateful computation with abort). Let f1, ..., fk and fS
be public classical deterministic functions on k + 2 inputs. Let a string s represent the internal
state of the ideal functionality. (The first time the ideal functionality is called, s is empty.) Let
A ( [k] be a set of corrupted players.

1. Every player i ∈ [k] chooses an input xi of appropriate size, and sends it (securely) to the
trusted third party.

2. The trusted third party samples a bit string r uniformly at random.

3. The trusted third party computes fi(s, x1, ..., xk, r) for all i ∈ [k] ∪ {S}.

4. For all i ∈ A, the trusted third party sends fi(s, x1, ..., xk, r) to player i.

5. All i ∈ A respond with a bit bi, which is 1 if they choose to abort, or 0 otherwise.

6. If bj = 0 for all j, the trusted third party sends fi(s, x1, ..., xk, r) to the other players i ∈
[k]\A and stores fS(s, x1, ..., xk, r) in an internal state register (replacing s). Otherwise,
he sends an abort message to those players.
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|Φ〉

S′

S

T
U

{Π, I−Π} 0/1
F

T

Figure 1: The circuit for PauliFilterS
P(U) from Definition 2.2. By the definition of Π in Equation (1), the

choice of the set P determines which types of Paulis are filtered out by the measurement {Π, I − Π}. The
IdFilter and XFilter are special cases of this filter. Replacing |Φ〉 with a different initial state yields a wider
array of filters, e.g., the ZeroFilter.

2.3 Pauli filter

In our protocol, we use a technique which alters a channel that would act jointly on registers
S and T , so that its actions on S are replaced by a flag bit into a separate register. The flag is
set to 0 if the actions on S belong to some set P , or to 1 otherwise. This way, the new channel
“filters” the allowed actions on S.

Definition 2.2 (Pauli filter). For registers S and T with |T | > 0, let UST be a unitary, and
let P ⊆

(
{0, 1}log |S|

)2
contain pairs of bit strings. The P-filter of U on register S, denoted

PauliFilterSP(U), is the map T → TF (where F is some single-qubit flag register) that results
from the following operations:

1. Initialize two separate registers S and S′ in the state |Φ〉〈Φ|, where |Φ〉 :=
(

1√
2(|00〉+ |11〉)

)⊗ log |S|
.

Half of each pair is stored in S, the other in S′.

2. Run U on ST .

3. Measure SS′ with the projective measurement {Π, I−Π} for

Π :=
∑

(a,b)∈P

(
XaZb

)S
|Φ〉〈Φ|

(
ZbXa

)
. (1)

If the outcome is Π, set the F register to |0〉〈0|. Otherwise, set it to |1〉〈1|.

Figure 1 depicts the circuit for the Pauli filter. Its functionality becomes clear in the follow-
ing lemma, which we prove in Appendix B by straightforward calculation:

Lemma 2.3. For registers S and T with |T | > 0, let UST be a unitary, and let P ⊆
(
{0, 1}log |S|

)2
.

Write U =
∑
x,z(XxZz)S ⊗ UTx,z. Then running PauliFilterSP(U) on register T equals the map

T → TF :
(·)T 7→

∑
(a,b)∈P

UTa,b(·)U
†
a,b ⊗ |0〉〈0|

F +
∑

(a,b) 6∈P
UTa,b(·)U

†
a,b ⊗ |1〉〈1|

F

A special case of the Pauli filter forP = {(0log |S|, 0log |S|)} is due to Broadbent and Wainewright
[BW16]. This choice of P represents only identity: the operation PauliFilterP filters out any
components of U that do not act as identity on S. We will denote this type of filter with the
name IdFilter.
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|00〉⊗ log |S|

S′

S

T
U

{Π, I−Π}
F

T

=
|0〉⊗ log |S| S

T
U

{Π′, I−Π′}
F

T

Figure 2: The Pauli filter ZeroFilter, where the initial state |Φ〉 is replaced by |00〉log |S|. This filter, with
measurement Π := |00〉〈00|⊗ log |S|, is equivalent to the map which does not prepare the register S′, and
measures with Π′ := |0〉〈0|⊗ log |S|.

In this work, we will also use XFilterS(U), which only accepts components of U that act
trivially on register S in the computational basis. It is defined by choosing P = {0log |S|} ×
{0, 1}log |S|.

Finally, we note that the functionality of the Pauli filter given in Definition 2.2 can be gen-
eralized, or weakened in a sense, by choosing a different state than |Φ〉〈Φ|. In this work, we
will use the ZeroFilterS(U), which initializes SS′ in the state |00〉log |S|, and measures using
the projector Π = |00〉〈00|. It filters U by allowing only those Pauli operations that leave the
computational-zero state (but not necessarily any other computational-basis states) unaltered:

(·) 7→ UT0 (·)U †0 ⊗ |0〉〈0|
F +

∑
a6=0

UTa (·)U †a ⊗ |1〉〈1|
F ,

where we abbreviate Ua :=
∑
b Ua,b. Note that for ZeroFilterS(U), the extra register S′ can also

be left out (see Figure 2).

2.4 Clifford authentication code

The protocol presented in this paper will rely on quantum authentication. The players will
encode their inputs using a quantum authentication code to prevent the other, potentially ad-
versarial, players from making unauthorized alterations to their data. That way, they can
ensure that the output of the computation is in the correct logical state.

A quantum authentication code transforms a quantum state (the logical state or plaintext)
into a larger quantum state (the physical state or ciphertext) in a way that depends on a secret
key. An adversarial party that has access to the ciphertext, but does not know the secret key,
cannot alter the logical state without being detected at decoding time.

More formally, an authentication code consists of an encoding map EncM→MT
k and a de-

coding map DecMT→M
k , for a secret key k, which we usually assume that the key is drawn

uniformly at random from some key set K. The message register M is expanded with an ex-
tra register T to accommodate for the fact that the ciphertext requires more space than the
plaintext.

An authentication code is correct if Deck ◦ Enck = I. It is secure if the decoding map rejects
(e.g., by replacing the output with a fixed reject symbol ⊥) whenever an attacker tried to alter
an encoded state:

Definition 2.4 (Security of authentication codes [DNS10]). Let (EncM→MT
k , DecMT→M

k ) be a
quantum authentication scheme for k in a key set K. The scheme is ε-secure if for all CPTP

10



maps AMTR acting on the ciphertext and a side-information register R, there exist CP maps
Λacc and Λrej such that Λacc + Λrej is trace-preserving, and for all ρMR:

∥∥∥∥ E
k∈K

[Deck (A (Enck (ρ)))] −
(
ΛRacc(ρ) + |⊥〉〈⊥|M ⊗ TrM

[
ΛRrej (ρ)

])∥∥∥∥
1
6 ε.

A fairly simple but powerful authentication code is the Clifford code:

Definition 2.5 (Clifford code [ABOE10]). The n-qubit Clifford code is defined by a key set
Cn+1, and the encoding and decoding maps for a C ∈ Cn+1:

EncC(ρM ) := C(ρM ⊗ |0n〉〈0n|T )C†,

DecC(σMT ) := 〈0n|T C†σC |0n〉+ |⊥〉〈⊥|M ⊗ TrM

∑
x 6=0n

〈x|C†σC |x〉

 .
Note that, from the point of view of someone who does not know the Clifford key C, the

encoding of the Clifford code looks like a Clifford twirl (see Appendix A) of the input state
plus some trap states.

We prove the security of the Clifford code in Appendix C.

2.5 Universal gate sets

It is well known that if, in addition to Clifford gates, we are able to apply any non-Clifford gate
G, then we are able to achieve universal quantum computation. In this work, we focus on the
non-Clifford T gate (or π/8 gate).

In several contexts, however, applying non-Clifford gates is not straightforward for differ-
ent reasons: common quantum error-correcting codes do not allow transversal implementation
of non-Clifford gates, the non-Clifford gates do not commute with the quantum one-time pad
and, more importantly in this work, neither with the Clifford encoding.

In order to concentrate the hardness of non-Clifford gates in an offline pre-processing
phase, we can use techniques from computation by teleportation if we have so-called magic
states of the form |T〉 := T |+〉. Using a single copy of this state as a resource, we are able to im-
plement a T gate using the circuit in Figure 3. The circuit only requires (classically controlled)
Clifford gates.

|ψ〉

T |+〉 Xc Pc

c

T |ψ〉

Figure 3: Using a magic state |T〉 = T |+〉 to implement a T gate.

The problem is how to create such magic states in a fault-tolerant way. Bravyi and Ki-
taev [BK05] proposed a distillation protocol that allows to create states that are δ-close to true
magic states, given poly(log(1/δ)) copies of noisy magic-states. Let

∣∣∣T⊥〉 = T |−〉. Then we
have:

Theorem 2.6 (Magic-state distillation [BK05]). There exists a circuit of CNOT-depth ddistill(n) 6
O(log(n)) consisting of pdistill(n) 6 poly (n) many classically controlled Cliffords and computational-
basis measurements such that for any ε < 1

2

(
1−

√
3/7

)
, if ρ is the output on the first wire using
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input (
(1− ε) |T〉 〈T|+ ε

∣∣∣T⊥〉〈T⊥
∣∣∣)⊗n , (2)

then 1− 〈T| ρ |T〉 6 O
(
(5ε)nc), where c = (log2 30)−1 ≈ 0.2.

As we will see in Section 6, our starting point is a bit different from the input state required
by Theorem 2.6. We now present a procedure that will allow us to prepare the states necessary
for applying Theorem 2.6 (see Circuit 2.8). We prove Lemma 2.7 in Appendix D.

Lemma 2.7. Let VLW = span{Pπ(|T〉⊗m−w
∣∣∣T⊥〉w) : w 6 `, π ∈ Sm}, and let ΠLW be the

orthogonal projector onto VLW . Let Ξ denote the CPTP map induced by Circuit 2.8. If ρ is an
m-qubit state such that Tr(ΠLWρ) > 1− ε, then

∥∥∥Ξ(ρ)− (|T〉 〈T|)⊗t
∥∥∥

1
6 O

(
m
√
t

(
`

m

)O((m/t)c/2)
+ ε

)
,

for some constant c > 0.

Circuit 2.8 (Magic-state distillation). Given an m-qubit input state and a parameter
t < m:

1. To each qubit, apply Ẑ := PX with probability 1
2 .

2. Permute the qubits by a random π ∈ Sm.

3. Divide the m qubits into t blocks of size m/t, and apply magic-state distillation from
Theorem 2.6 to each block.

Remark. Circuit 2.8 can be implemented with (classically controlled) Clifford gates and mea-
surements in the computational basis.

3 Multi-party Quantum Computation: Definitions

In this section, we describe the ideal functionality we aim to achieve for multi-party quantum
computation (MPQC) with a dishonest majority. As noted in Section 2.2, we cannot hope to
achieve fairness: therefore, we consider an ideal functionality with the option for the dishonest
players to abort.

Definition 3.1 (Ideal quantum k-party computation with abort). Let C be a quantum circuit
on W ∈ N>0 wires. Consider a partition of the wires into the players’ input registers plus an
ancillary register, as [W ] = Rin

1 t · · · t Rin
k t Rancilla, and a partition into the players’ output

registers plus a register that is discarded at the end of the computation, as [W ] = Rout
1 t · · · t

Rout
k tRdiscard. Let IA ( [k] be a set of corrupted players.

1. Every player i ∈ [k] sends the content of Rin
i to the trusted third party.

2. The trusted third party populates Rancilla with computational-zero states.

3. The trusted third party applies the quantum circuit C on the wires [W ].

4. For all i ∈ IA, the trusted third party sends the content of Rout
i to player i.
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C

Π

P1 . . . P` A

E

ΠMPQC
C,A C

I

. . . S

E

IMPQC
C,S

(1) (2)

Figure 4: (1) The environment interacting with the protocol as run by honest players P1, . . . , P`, and an
adversary who has corrupted the remaining players. (2) The environment interacting with a simulator running
the ideal functionality.

5. All i ∈ IA respond with a bit bi, which is 1 if they choose to abort, or 0 otherwise.

6. If bi = 0 for all i, the trusted third party sends the content of Rout
i to the other players

i ∈ [k]\IA. Otherwise, he sends an abort message to those players.

In Definition 3.1, all corrupted players individually choose whether to abort the protocol
(and thereby to prevent the honest players from receiving their respective outputs). In reality,
however, one cannot prevent several corrupted players from actively working together and
sharing all information they have among each other. To ensure that our protocol is also secure
in those scenarios, we consider security against a general adversary that corrupts all players in
IA, by replacing their protocols by a single (interactive) algorithm A that receives the registers
Rin
A := R t

⊔
i∈IA R

in
i as input, and after the protocol produces output in the register Rout

A :=
Rt

⊔
i∈IA R

out
i . Here, R is a side-information register in which the adversary may output extra

information.
We will always consider protocols that fulfill the ideal functionality with respect to some

gate set G: the protocol should then mimic the ideal functionality only for circuitsC that consist
of gates from G. This security is captured by the definition below.

Definition 3.2 (Computational security of quantum k-party computation with abort). Let G
be a set of quantum gates. Let ΠMPQC be a k-party quantum computation protocol, parameterized
by a security parameter n. For any circuit C, set IA ( [k] of corrupted players, and adversarial
(interactive) algorithm A that performs all interactions of the players in IA, define ΠMPQC

C,A :
Rin
A t

⊔
i 6∈IA R

in
i → Rout

A t
⊔
i 6∈IA R

out
i to be the channel that executes the protocol ΠMPQC for

circuit C by executing the honest interactions of the players in [k] \ IA, and letting A fulfill the
role of the players in IA (See Figure 4, (1)).

For a simulator S that receives inputs in Rin
A, then interacts with the ideal functionalities

on all interfaces for players in IA, and then produces output in Rout
A , let IMPQC

C,S be the ideal
functionality described in Definition 3.1, for circuit C, simulator S for players i ∈ IA, and
honest executions (with bi = 0) for players i 6∈ IA (See Figure 4, (2)). We say that ΠMPQC is a
computationally ε-secure quantum k-party computation protocol with abort, if for all IA ( [k],
for all quantum polynomial-time (QPT) adversaries A, and all circuits C comprised of gates
from G, there exists a QPT simulator S such that for all QPT environments E,∣∣∣Pr

[
1← (E � ΠMPQC

C,A )
]
− Pr

[
1← (E � IMPQC

C,S )
]∣∣∣ 6 ε.

Here, the notation b ← (E � (·)) represents the environment E, on input 1n, interacting with
the (real or ideal) functionality (·), and producing a single bit b as output.
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Remark. In the above definition, we assume that all QPT parties are polynomial in the size
of circuit |C|, and in the security parameter n.

We show in Section 6.2 the protocol ΠMPQC implementing the ideal functionality described
in Definition 3.1, and we prove its security in Theorem 6.5.

4 Setup and encoding

4.1 Input encoding

In the first phase of the protocol, all players encode their input registers qubit-by-qubit. For
simplicity of presentation, we pretend that player 1 holds a single-qubit input state, and the
other players do not have input. In the actual protocol, multiple players can hold multiple-
qubit inputs: in that case, the initialization is run several times in parallel, using independent
randomness. Any other player i can trivially take on the role of player 1 by relabeling the
player indices.

Definition 4.1 (Ideal functionality for input encoding). Without loss of generality, let Rin
1 be a

single-qubit input register, and let dim(Rin
i ) = 0 for all i 6= 1. Let IA ( [k] be a set of corrupted

players.

1. Player 1 sends register Rin
1 to the trusted third party.

2. The trusted third party initializes a register T1 with |0n〉〈0n|, applies a random (n+1)-qubit
Clifford E to MT1, and sends these registers to player 1.

3. All players i ∈ IA send a bit bi to the trusted third party. If bi = 0 for all i, then the trusted
third party stores the key E in the state register S of the ideal functionality. Otherwise,
it aborts by storing ⊥ in S.

The following protocol implements the ideal functionality. It uses, as a black box, an ideal
functionality MPC that implements a classical multi-party computation with memory.

Protocol 4.2. (Input encoding) Without loss of generality, let M := Rin
1 be a single-qubit

input register, and let dim(Rin
i ) = 0 for all i 6= 1.

1. For every i ∈ [k], MPC samples a random (2n + 1)-qubit Clifford Fi and tells it to
player i.

2. Player 1 applies the map ρM 7→ F1
(
ρM ⊗

∣∣02n〉〈02n∣∣T1T2
)
F †1 for two n-qubit (trap)

registers T1 and T2, and sends the registers MT1T2 to player 2.

3. Every player i = 2, 3, ..., k applies Fi to MT1T2, and forwards it to player i + 1.
Eventually, player k sends the registers back to player 1.

4. MPC samples a random (n + 1)-qubit Clifford E, random n-bit strings r and s, and
a random classical invertible linear operator g ∈ GL(2n,F2). Let Ug be the (Clifford)
unitary that computes g in-place, i.e., Ug |t〉 = |g(t)〉 for all t ∈ {0, 1}2n.

5. MPC givesa

V := (EMT1 ⊗ (XrZs)T2)(I⊗ (Ug)T1T2)(Fk · · ·F2F1)†

to player 1, who applies it to MT1T2.
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6. Player 1 measures T2 in the computational basis, discarding the measured wires, and
keeps the other (n+ 1) qubits as its output in Rout

1 = MT1.

7. Player 1 submits the measurement outcome r′ to MPC, who checks whether r = r′. If
so, MPC stores the key E in its memory-state register S. If not, it aborts by storing
⊥ in S.

aAs described in Section 2.1, the MPC gives V as a group element, and the adversary cannot decompose
it into the different parts that appear in its definition.

If MPC aborts the protocol in step 7, the information about the Clifford encoding key E is
erased. In that case, the registers MT1 will be fully mixed. Note that this result differs slightly
from the ‘reject’ outcome of a quantum authentication code as in Definition 2.4, where the mes-
sage register M is replaced by a dummy state |⊥〉〈⊥|. In our current setting, the register M is
in the hands of (the possibly malicious) player 1. We therefore cannot enforce the replacement
of register M with a dummy state: we can only make sure that all its information content is
removed. Depending on the application or setting, the trusted MPC can of course broadcast
the fact that they aborted to all players, including the honest one(s).

To run Protocol 4.2 in parallel for multiple input qubits held by multiple players, MPC
samples a list of Cliffords Fi,q for each player i ∈ [k] and each qubit q. The Fi,q operations can
be applied in parallel for all qubits q: with k rounds of communication, all qubits will have
completed their round past all players.

We will show that Protocol 4.2 fulfills the ideal functionality for input encoding:

Lemma 4.3. Let ΠEnc be Protocol 4.2, and IEnc be the ideal functionality described in Defi-
nition 4.1. For all sets IA ( [k] of corrupted players and all adversaries A that perform the
interactions of players in IA with Π, there exists a simulator S (the complexity of which scales
polynomially in that of the adversary) such that for all environments E,

|Pr[1← (E � ΠEnc
A )]− Pr[1← (E � IEnc

S )| 6 negl (n) .

Note that the environment E also receives the state register S, which acts as the “output”
register of the ideal functionality (in the simulated case) or of MPC (in the real case). It is impor-
tant that the environment cannot distinguish between the output states even given that state
register S, because we want to be able to compose Protocol 5.4 with other protocols that use
the key information inside S. In other words, it is important that, unless the key is discarded,
the states inside the Clifford encoding are also indistinguishable for the environment.

We provide just a sketch of the proof for Lemma 4.3, and refer to Appendix E for its full
proof.

Proof sketch. We divide our proof into two cases: when player 1 is honest, or when she is
dishonest.

For the case when player 1 is honest, we know that she correctly prepares the expected state
before the state is given to the other players. That is, she appends 2n ancilla qubits in state |0〉
and applies the random Clifford instructed by the classical MPC. When the encoded state is
returned to player 1, she performs the Clifford V as instructed by the MPC. By the properties
of the Clifford encoding, if the other players acted dishonestly, the tested traps will be non-zero
with probability exponentially close to 1.

The second case is a bit more complicated: the first player has full control over the state
and, more importantly, the traps that will be used in the first encoding. In particular, she could
start with nonzero traps, which could possibly give some advantage to the dishonest players
later on the execution of the protocol.
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Figure 5: On the left, the adversary’s interaction with the protocol ΠEnc in case player 1 is the only honest
player. The R register contains side information for the adversary. We may assume that the adversarial
map consists of a unitary A followed by the honest protocol Fk · · ·F2 (see Appendix E). On the right, the
simulator’s interaction with JEnc. It performs the Pauli filter IdFilterMT1T2 on the adversary’s attack on the
encoded state.

In order to prevent this type of attack, the MPC instructs the first player to apply a random
linear function Ug on the traps, which is hidden from the players inside the Clifford V . If the
traps were initially zero, their value does not change, but otherwise, they will be mapped to a
random value, unknown by the dishonest parties. As such, the map Ug removes any advantage
that the dishonest parties could have in step 7 by starting with non-zero traps. Because any
nonzero trap state in T1T2 is mapped to a random string, it suffices to measure only T2 in order
to be convinced that T1 is also in the all-zero state (except with negligible probability). This
intuition is formalized in Lemma E.1 in Appendix E.

Other possible attacks are dealt with in a way that is similar to the case where player 1 is
honest (but from the perspective of another honest player).

In the full proof (see Appendix E), we present two simulators, one for each case, that tests
(using Pauli filters from Section 2.3) whether the adversary performs any such attacks during
the protocol, and chooses the input to the ideal functionality accordingly. See Figure 5 for a
pictorial representation of the structure of the simulator for the case where player 1 is honest.

4.2 Preparing ancilla qubits

Apart from encrypting the players’ inputs, we also need a way to obtain encoded ancilla-zero
states, which may be fed as additional input to the circuit. Since none of the players can be
trusted to simply generate these states as part of their input, we need to treat them separately.

In [DNS12], Alice generates an encoding of |0〉〈0|, and Bob tests it by entangling (with
the help of the classical MPC) the data qubit with a separate |0〉〈0| qubit. Upon measuring that
qubit, Bob then either detects a maliciously generated data qubit, or collapses it into the correct
state. For details, see [DNS12, Appendix E].

Here, we take a similar approach, except with a public test on the shared traps. In order
to guard against a player that may lie about the measurement outcomes during a test, we
entangle the data qubits with all traps. We do so using a random linear operator, similarly to
the encoding described in the previous subsection.

Essentially, the protocol for preparing ancilla qubits is identical to Protocol 4.2 for input
encoding, except that now we do not only test whether the 2n traps are in the |0〉〈0| state, but
also the data qubit: concretely, the linear operator g acts on 2n+ 1 elements instead of 2n. That
is,

V := (E ⊗ P )Ug(Fk · · ·F2F1)†.
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As a convention, Player 1 will always create the ancilla |0〉〈0| states and encode them. In
principle, the ancillas can be created by any other player, or by all players together.

Per the same proof as for Lemma 4.3, we have implemented the following ideal function-
ality, again making use of a classical MPC as a black box.

Definition 4.4 (Ideal functionality for encoding of |0〉〈0|). Let IA ( [k] be a set of corrupted
players.

1. The trusted third party initializes a register T1 with |0n〉〈0n|, applies a random (n+1)-qubit
Clifford E to MT1, and sends these registers to player 1.

2. All players i ∈ IA send a bit bi to the trusted third party. If bi = 0 for all i, then the trusted
third party stores the key E in the state register S of the ideal functionality. Otherwise,
it aborts by storing ⊥ in S.

5 Computation of Clifford and measurement

After all players have successfully encoded their inputs and sufficiently many ancillary qubits,
they perform a quantum computation gate-by-gate on their joint inputs. In this section, we
will present a protocol for circuits that consist only of Clifford gates and computational-basis
measurements. The Clifford gates may be classically controlled (for example, on the measure-
ment outcomes that appear earlier in the circuit). In Section 6, we will discuss how to expand
the protocol to general quantum circuits.

Concretely, we wish to achieve the functionality in Definition 3.1 for all circuits C that
consist of Clifford gates and computational-basis measurements. As an intermediate step, we
aim to achieve the following ideal functionality, where the players only receive an encoded
output, for all such circuits:

Definition 5.1 (Ideal quantum k-party computation without decoding). Let C be a quantum
circuit on W wires. Consider a partition of the wires into the players’ input registers plus an
ancillary register, as [W ] = Rin

1 t · · · t Rin
k t Rancilla, and a partition into the players’ output

registers plus a register that is discarded at the end of the computation, as [W ] = Rout
1 t · · · t

Rout
k tRdiscard. Let IA ( [k] be the set of corrupted players.

1. All players i send their register Rin
i to the trusted third party.

2. The trusted third party instantiates Rancilla with |0〉〈0| states.

3. The trusted third party applies C to the wires [W ].

4. For every player i and every output wire w ∈ Rout
i , the trusted third party samples a

random (n + 1)-qubit Clifford Ew, applies ρ 7→ Ew(ρ ⊗ |0n〉〈0n|)E†w to w, and sends the
result to player i.

5. All players i ∈ IA send a bit bi to the trusted third party.

(a) If bi = 0 for all i, all keys Ew and all measurement outcomes are stored in the state
register S.

(b) Otherwise, the trusted third party aborts by storing ⊥ in S.

To achieve the ideal functionality, we define several subprotocols. The subprotocols for
encoding the players’ inputs and ancillary qubits have already been described in Section 4.
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It remains to describe the subprotocols for (classically-controlled) single-qubit Clifford gates
(Section 5.1), (classically controlled) CNOT gates (Section 5.2), and computational-basis mea-
surements (Section 5.3).

In Section 5.5, we show how to combine the subprotocols in order to compute any polynomial-
sized Clifford+measurement circuit. Our approach is inductive in the number of gates in the
circuit. The base case is the identity circuit, which is essentially covered in Section 4. In Sec-
tions 5.1–5.3, we show that the ideal functionality for any circuit C, followed by the subproto-
col for a gate G, results in the ideal functionality for the circuit G ◦ C (C followed by G). As
such, we can chain together the subprotocols to realize the ideal functionality in Definition 5.1
for any polynomial-sized Clifford+measurement circuit. Combined with the decoding sub-
protocol we present in Section 5.4, such a chain of subprotocols satisfies Definition 3.1 for ideal
k-party quantum Clifford+measurement computation with abort.

In Definition 5.1, all measurement outcomes are stored in the state register of the ideal
functionality. We do so to ensure that the measurement results can be used as a classical control
to gates that are applied after the circuit C, which can be technically required when building
up to the ideal functionality for C inductively. Our protocols can easily be altered to broadcast
measurement results as they happen, but the functionality presented in Definition 5.1 is the
most general: if some player is supposed to learn a measurement outcome m`, then the circuit
can contain a gate Xm` on an ancillary zero qubit that will be part of that player’s output.

5.1 Subprotocol: single-qubit Cliffords

Due to the structure of the Clifford code, applying single-qubit Clifford is simple: the classical
MPC, who keeps track of the encoding keys, can simply update the key so that it includes the
single-qubit Clifford on the data register. We describe the case of a single-qubit Clifford that
is classically controlled on a previous measurement outcome stored in the MPC’s state. The
unconditional case can be trivially obtained by omitting the conditioning.

Protocol 5.2 (Single-qubit Cliffords). Let Gm` be a single-qubit Clifford to be applied on
a wire w (held by a player i), conditioned on a measurement outcome m`. Initially, player
i holds an encoding of the state on that wire, and the classical MPC holds the encoding key
E.

1. MPC reads result m` from its state register S, and updates its internally stored key
E to E((Gm`)† ⊗ I⊗n).

If m` = 0, nothing happens. To see that the protocol is correct for m` = 1, consider what
happens if the state E(ρ ⊗ |0n〉〈0n|)E† is decoded using the updated key: the decoded output
is

(E(G† ⊗ I⊗n))†E(ρ⊗ |0n〉〈0n|)E†(E(G† ⊗ I⊗n)) = GρG† ⊗ |0n〉〈0n| .

Protocol 5.2 implements the ideal functionality securely: given an ideal implementation IC for
some circuit C, we can implement Gm` ◦ C (i.e., the circuit C followed by the gate Gm`) by
performing Protocol 5.2 right after the interaction with IC .

Lemma 5.3. Let Gm` be a single-qubit Clifford to be applied on a wire w (held by a player i),
conditioned on a measurement outcome m`. Let ΠGm` be Protocol 5.2 for the gate Gm`, and IC

be the ideal functionality for a circuit C as described in Definition 5.1. For all sets IA ( [k]
of corrupted players and all adversaries A that perform the interactions of players in IA, there
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exists a simulator S (the complexity of which scales polynomially in that of the adversary) such
that for all environments E,

Pr[1← (E � (ΠGm` � IC)A)] = Pr[1← (E � IG
m`◦C
S )].

Proof sketch. In the protocol ΠGm` � IC , an adversary has two opportunities to attack: once
before its input state is submitted to IC , and once afterwards. We define a simulator that
applies these same attacks, except that it interacts with the ideal functionality IG

m`◦C .
Syntactically, the state register S of IC is provided as input to the MPC in ΠGm` , so that

the MPC can update the key as described by the protocol. As such, the output state of the
adversary and the simulator are exactly equal. We provide a full proof in Appendix F.

5.2 Subprotocol: CNOT gates

The application of two-qubit Clifford gates (such as CNOT) is more complicated than the
single-qubit case, for two reasons.

First, a CNOT is a joint operation on two states that are encrypted with separate keys. If we
were to classically update two keys E1 and E2 in a similar fashion as in Protocol 5.2, we would
end up with a new key (E1 ⊗ E2)(CNOT1,n+2), which cannot be written as a product of two
separate keys. The keys would become ‘entangled’, which is undesirable for the rest of the
computation.

Second, the input qubits might belong to separate players, who may not trust the authentic-
ity of each other’s qubits. In [DNS12], authenticity of the output state is guaranteed by having
both players test each state several times. In a multi-party setting, both players involved in
the CNOT are potentially dishonest, so it might seem necessary to involve all players in this
extensive testing. However, because all our tests are publicly verified, our protocol requires
less testing. Still, interaction with all other players is necessary to apply a fresh ‘joint’ Clifford
on the two ciphertexts.

Protocol 5.4 (CNOT). This protocol applies a CNOT gate to wires wi (control) and wj
(target), conditioned on a measurement outcome m`. Suppose that player i holds an en-
coding of the first wire, in register M iT i1, and player j of the second wire, in register M jT j1 .
The classical MPC holds the encoding keys Ei and Ej .

1. If i 6= j, player j sends their registers M jT j1 to player i. Player i now holds a (2n+2)-
qubit state.

2. Player i initializes the registers T i2 and T j2 both in the state |0n〉〈0n|.

3. For all players h, MPC samples random (4n + 2)-qubit Cliffords Dh, and gives them
to the respective players. Starting with player i, each player h applies Dh to M ijT ij12,a
and sends the state to player h+ 1. Eventually, player i receives the state back from
player i− 1. MPC remembers the applied Clifford

D := Di−1Di−2 · · ·D1DkDk−1 · · ·Di .

4. MPC samples random (2n+ 1)-qubit Cliffords Fi and Fj , and tells player i to apply

V := (Fi ⊗ Fj)CNOTm`
1,2n+2(E†i ⊗ I⊗n ⊗ E†j ⊗ I⊗n)D†.
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Here, the CNOT acts on the two data qubits inside the encodings.

5. If i 6= j, player i sends M jT j12 to player j.

6. Players i and j publicly test their encodings. The procedures are identical, we describe
the steps for player i:

(a) MPC samples a random (n+1)-qubit Clifford E′i, which will be the new encoding
key. Furthermore, MPC samples random n-bit strings si and ri, and a random
classical invertible linear operator gi on F2n

2 .
(b) MPC tells player i to apply

Wi := (E′i ⊗ (XriZsi)T i
2 )UT

i
12

gi F †i .

Here, Ugi is as defined in Protocol 4.2.
(c) Player i measures T i2 in the computational basis and reports the n-bit measure-

ment outcome r′i to the MPC.
(d) MPC checks whether r′i = ri. If it is not, MPC sends abort to all players. If it

is, the test has passed, and MPC stores the new encoding key E′i in its internal
memory.

aWe combine subscripts and superscripts to denote multiple registers: e.g., T ij
12 is shorthand for T i

1T i
2T j

1 T j
2 .

Lemma 5.5. Let ΠCNOTm` be Protocol 5.4, to be executed on wires wi and wj, held by players i
and j, respectively. Let IC be the ideal functionality for a circuit C as described in Definition 5.1.
For all sets IA ( [k] of corrupted players and all adversaries A that perform the interactions of
players in IA, there exists a simulator S (the complexity of which scales polynomially in that of
the adversary) such that for all environments E,∣∣∣Pr[1← (E � (ΠCNOTm` � IC)A)] = Pr[1← (E � ICNOTm`◦C

S )]
∣∣∣ 6 negl (n) .

Proof sketch. There are four different cases, depending on which of players i and j are dishonest.
In Appendix G, we provide a full proof by detailing the simulators for all four cases, but in
this sketch, we only provide an intuition for the security in the case where both players are
dishonest.

It is crucial that the adversary does not learn any information about the keys (Ei, Ej , E′i, E′j),
nor about the randomizing elements (ri, rj , si, sj , gi, gj). Even though the adversary learns
Wi,Wj , and V explicitly during the protocol, all the secret information remains hidden by the
randomizing Cliffords Fi, Fj , and D.

We consider a few ways in which the adversary may attack. First, he may prepare a non-
zero state in the registers T i2 (or T j2 ) in step 2, potentially intending to spread those errors
into M iT i1 (or M jT j1 ). Doing so, however, will cause Ugi (or Ugj ) to map the trap state to a
random non-zero string, and the adversary would not know what measurement string r′i (or r′j)
to report. Since gi is unknown to the adversary, Lemma E.1 (see Appendix E) is applicable in
this case: it states that it suffices to measure T i2 in order to detect any errors in T i12.

Second, the adversary may fail to execute its instructions V or Wi⊗Wj correctly. Doing so
is equivalent to attacking the state right before or right after these instructions. In both cases,
however, the state in M iT i1 is Clifford-encoded (and the state in T i2 is Pauli-encoded) with keys
unknown to the adversary, so the authentication property of the Clifford code prevents the
adversary from altering the outcome.

20



The simulator we define in Appendix G tests the adversary exactly for the types of attacks
above. By using Pauli filters (see Definition 2.2), the simulator checks whether the attacker
leaves the authenticated states and the trap states T i2 and T j2 (both at initialization and before
measurement) unaltered. In the full proof, we show that the output state of the simulator
approximates, up to an error negligible in n, the output state of the real protocol.

5.3 Subprotocol: Measurement

Measurement of authenticated states introduces a new conceptual challenge. For a random
key E, the result of measuring E(ρ ⊗ |0n〉〈0n|)E† in a fixed basis is in no way correlated with
the logical measurement outcome of the state ρ. However, the measuring player is also not
allowed to learn the key E, so they cannot perform a measurement in a basis that depends
meaningfully on E.

In [DNS10, Appendix E], this challenge is solved by entangling the state with an ancilla-
zero state on a logical level. After this entanglement step, Alice gets the original state while
Bob gets the ancilla state. They both decode their state (learning the key from the MPC), and
can measure it. Because those states are entangled, and at least one of Alice and Bob is honest,
they can ensure that the measurement outcome was not altered, simply by checking that they
both obtained the same outcome. The same strategy can in principle also be scaled up to k
players, by making all k players hold part of a big (logically) entangled state. However, doing
so requires the application of k − 1 logical CNOT operations, making it a relatively expensive
procedure.

We take a different approach in our protocol. The player that performs the measurement
essentially entangles, with the help of the MPC, the data qubit with a random subset of the
traps. The MPC later checks the consistency of the outcomes: all entangled qubits should yield
the same measurement result.

Our alternative approach has the additional benefit that the measurement outcome can be
kept secret from some or all of the players. In the description of the protocol below, the MPC
stores the measurement outcome in its internal state. This allows the MPC to classically control
future gates on the outcome. If it is desired to instead reveal the outcome to one or more of
the players, this can easily be done by performing a classically-controlled X operation on some
unused output qubit of those players.

Protocol 5.6 (Computational-basis measurement). Player i holds an encoding of the state
in a wire w in the register MT1. The classical MPC holds the encoding key E in the register
S.

1. MPC samples random strings r, s ∈ {0, 1}n+1 and c ∈ {0, 1}n.

2. MPC tells player i to apply

V := XrZsCNOT1,cE
†

to the register MT1, where CNOT1,c denotes the unitary
∏
i∈[n] CNOTci

1,i (that is, the
string c dictates with which of the qubits in T1 the M register will be entangled).

3. Player i measures the register MT1 in the computational basis, reporting the result
r′ to MPC.
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4. MPC checks whether r′ = r ⊕ (m,m · c) for some m ∈ {0, 1}.a If so, it stores the
measurement outcome m in the state register S. Otherwise, it aborts by storing ⊥ in
S.

5. MPC removes the key E from the state register S.

aThe · symbol represents scalar multiplication of the bit m with the string c.

Lemma 5.7. Let C be a circuit on W wires that leaves some wire w 6 W unmeasured. Let
IC be the ideal functionality for C, as described in Definition 5.1, and let Π be Protocol 5.6
for a computational-basis measurement on w. For all sets IA ( [k] of corrupted players and
all adversaries A that perform the interactions of players in IA, there exists a simulator S (the
complexity of which scales polynomially in that of the adversary) such that for all environments
E, ∣∣∣Pr[1← (E � (Π � IC)A)]− Pr[1← (E � I ◦C

S )]
∣∣∣ 6 negl (n) .

Proof sketch. The operation CNOT1,c entangles the data qubit in register M with a random
subset of the trap qubits in register T1, as dictated by c. In step 4 of Protocol 5.6, the MPC
checks both for consistency of all the bits entangled by c (they have to match the measured
data) and all the bits that are not entangled by c (they have to remain zero).

In Lemma H.1 in Appendix H, we show that checking the consistency of a measurement
outcome after the application of CNOT1,c is as good as measuring the logical state: any attacker
that does not know c will have a hard time influencing the measurement outcome, as he will
have to flip all qubits in positions i for which ci = 1 without accidentally flipping any of the
qubits in positions i for which ci = 0. See Appendix H for a full proof that the output state in
the real and simulated case are negligibly close.

5.4 Subprotocol: Decoding

After the players run the computation subprotocols for all gates in the Clifford circuit, all they
need to do is to decode their wires to recover their output. At this point, there is no need
to check the authentication traps publicly: there is nothing to gain for a dishonest player by
incorrectly measuring or lying about their measurement outcome. Hence, it is sufficient for all
(honest) players to apply the regular decoding procedure for the Clifford code.

Below, we describe the decoding procedure for a single wire held by one of the players. If
there are multiple output wires, then Protocol 5.8 can be run in parallel for all those wires.

Protocol 5.8 (Decoding). Player i holds an encoding of the state w in the register MT1.
The classical MPC holds the encoding key E in the state register S.

1. MPC sends E to player i, removing it from the state register S.

2. Player i applies E to register MT1.

3. Player i measures T1 in the computational basis. If the outcome is not 0n, player i
discards M and aborts the protocol.

Lemma 5.9. Let C be a circuit on W wires that leaves a single wire w 6 W (intended for
player i) unmeasured. Let IC be the ideal functionality for C, as described in Definition 5.1, and
let IMPQC

C be the ideal MPQC functionality for C, as described in Definition 3.1. Let ΠDec be
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Protocol 5.8 for decoding wire w. For all sets IA ( [k] of corrupted players and all adversaries
A that perform the interactions of players in IA, there exists a simulator S (the complexity of
which scales polynomially in that of the adversary) such that for all environments E,

Pr[1← (E � (ΠDec � IC)A)] = Pr[1← (E � IMPQC
C,S )].

Proof sketch. If player i is honest, then he correctly decodes the state received from the ideal
functionality IC . A simulator would only have to compute the adversary’s abort bit for IMPQC

C

based on whether the adversary decides to abort in either IC or the MPC computation in ΠDec.
If player i is dishonest, a simulator S runs the adversary on the input state received from

the environment before inputting the resulting state into the ideal functionality IMPQC
C . The

simulator then samples a key for the Clifford code and encodes the output of IMPQC
C , before

handing it back to the adversary. It then simulates ΠDec by handing the sampled key to the
adversary. If the adversary aborts in one of the two simulated protocols, then the simulator
sends abort to the ideal functionality IMPQC

C .

5.5 Combining Subprotocols

We show in this section how to combine the subprotocols of the previous sections in order to
perform multi-party quantum Clifford computation.

Recalling the notation defined in Definition 3.1, let C be a quantum circuit on W ∈ N>0
wires, which are partitioned into the players’ input registers plus an ancillary register, as [W ] =
Rin

1 t · · · tRin
k tRancilla, and a partition into the players’ output registers plus a register that is

discarded at the end of the computation, as [W ] = Rout
1 t · · · t Rout

k t Rdiscard. We assume that
C is decomposed in a sequence G1, ..., Gm of operations where each Gi is one of the following
operations:

• a single-qubit Clifford on some wire j ∈ [M ];

• a CNOT on wires j1, j2 ∈ [M ] for j1 6= j2;

• a measurement of the qubit on wire j in the computational basis.

In Sections 4 and 5.1–5.3, we have presented subprotocols for encoding single qubits and per-
form these types of operations on single wires. The protocol for all players to jointly perform
the bigger computation C is simply a concatenation of those smaller subprotocols:

Protocol 5.10 (Encoding and Clifford+measurement computation). Let C be a Clifford
+ measurement circuit composed of the gates G1, . . . , Gm on wires [W ] as described above.

1. For all i ∈ [k] and j ∈ Rin
i , run Protocol 4.2 for the qubit in wire j.

2. For all j ∈ Rancilla, run Protocol 4.2 (with the differences described in Section 4.2).

3. For all j ∈ [m]:

(a) If Gj is a single-qubit Clifford, run Protocol 5.2 for Gj .
(b) If Gj is a CNOT, run Protocol 5.4 for Gj .
(c) If Gj is a computational-basis measurement, run Protocol 5.6 for Gj .

4. For all i ∈ [k] and j ∈ Rout
i , run Protocol 5.8 for the qubit in wire j.
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Lemma 5.11. Let ΠCliff be Protocol 5.10, and ICliff be the ideal functionality described in
Definition 3.1 for the special case where the circuit consists of (a polynomial number of) Cliffords
and measurements. For all sets IA ( [k] of corrupted players and all adversaries A that perform
the interactions of players in IA with Π, there exists a simulator S (the complexity of which
scales polynomially in that of the adversary) such that for all environments E,

|Pr[1← (E � ΠCliff
A )]− Pr[1← (E � ICliff

S )| 6 negl (n) .

Proof. First notice that ICliff = IGm◦···◦G1◦Enc and ΠCliff = ΠDec � ΠGm � ... � ΠG1 � ΠEnc. For
simplicity, for some circuit C ′ composed of gates G′1, ...G′m′ , we write ΠC′ = ΠG′

m′ � ... � ΠG′1 .
We also denote by C ′r,s for 1 6 r 6 s 6 m′ the circuit composed by gates G′r, ..., G′s.

We start by proving by induction that for all i, the following holds for all environments E ′:∣∣∣Pr[1← (E ′ � ΠC �ΠEnc
A )]− Pr[1← (E ′ � ΠCi,m � IC1,i−1◦Enc

SEnc
)
∣∣∣ 6 i · negl (n) .

For the basis case i = 1, notice that from Lemma 4.3, there exists a simulator SEnc such
that for all E ′

|Pr[1← (E ′ � ΠEnc
A )]− Pr[1← (E ′ � IEnc

SEnc)| 6 negl (n) ,

therefore, in particular for every E ′′ we have that

|Pr[1← (E ′′ � ΠC �ΠEnc
A )]− Pr[1← (E ′′ � ΠC � IEnc

SEnc)| 6 negl (n) .

For the induction step, assume that our statement holds for some i > 1. Then if Gi+1 is a
single-qubit Clifford we have that

|Pr[1← (E ′ � ΠC �ΠEnc
A )]− Pr[1← (E ′ � ΠCi+1,m � IC1,i◦Enc

SEnc
)|

6 |Pr[1← (E ′ � ΠC �ΠEnc
A )]− Pr[1← (E ′ � ΠCi,m � IC1,i−1◦Enc

SEnc
)|

+ |Pr[1← (E ′ � ΠCi,m � IC1,i−1◦Enc
SEnc

)− Pr[1← (E ′ � ΠCi+1,m � IC1,i◦Enc
SEnc

)|
6 (i+ 1)negl (n) ,

where in the first step we use the triangle inequality and in the second step we use the induction
hypothesis and Lemma 5.3.

For the cases where Gi+1 is a CNOT or measurement, the same argument follows by using
Lemmas 5.5 and 5.7 accordingly.

Finally, by Lemma 5.9, we can also replace ΠDec by IDec, at the cost of negl (n). We note
that the m = poly (n) negligible functions we accumulated by the use of Lemmas 5.3, 5.5, 5.7
and 5.9 only depend on the type of operation and not on the position i. Therefore, the result
follows since m · negl (n) = negl (n).

6 Protocol: MPQC for general quantum circuits

In this section, we show how to lift the MPQC for Clifford operations (as laid out in Sections 4
and 5) to MPQC for general quantum circuits.

The main idea is to use magic states for T gates, as described in Section 2.5. Our main
difficulty here is that the magic states must be supplied by the possibly dishonest players
themselves. We solve this problem in Section 6.1 and then in Section 6.2, we describe the
MPQC protocol for universal computation combining the results from Sections 5 and 6.1.
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6.1 Magic-state distillation

We now describe a subprotocol that allows the players to create the encoding of exponentially
good magic states, if the players do not abort.

Our subprotocol can be divided into two parts. In the first part, player 1 is asked to create
many magic states, which the other players will test. After this step, if none of the players
abort during the testing, then with high probability the resource states created by player 1 are
at least somewhat good. In the second part of the subprotocol, the players run a distillation
procedure to further increase the quality of the magic states.

Protocol 6.1 (Magic-state creation). Let t be the number of magic states we wish to
create. Let ` := (t+ k)n.

1. Player 1 creates ` copies of |T〉 and encodes them separately using Protocol 4.2 (jointly
with the other players).

2. MPC picks random disjoint sets S2, . . . , Sk ⊆ [`] of size n each.

3. For each i ∈ 2, . . . , k, player i decodes the magic states indicated by Si (see Protocol
5.8), measures in the {|T〉 ,

∣∣∣T⊥〉}-basis and aborts if any outcome is different from
|T〉 .

4. On the remaining encoded states, the players run Protocol 5.10 for multi-party com-
putation of Clifford circuits (but skipping the input-encoding step) to perform the
magic-state distillation protocol described in Protocol 2.8. Any randomness required
in that protocol is sampled by the classical MPC.

We claim that Protocol 6.1 implements the following ideal functionality for creating tmagic
states, up to a negligible error:

Definition 6.2 (Ideal functionality for magic-state creation). Let t be the number of magic
states we wish to create. Let IA ( [k] be a set of corrupted players.

1. For every i ∈ IA, player i sends a bit bi to the trusted third party.

(a) If bi = 0 for all i, the trusted third party samples t random (n+ 1)-qubit Clifford Ej
for 1 6 j 6 t, and sends Ej(|T〉 ⊗ |0n〉) to Player 1.

(b) Otherwise, the trusted third party sends abort to all players.

2. Store the keys Ej, for 1 6 j 6 t in the state register S of the ideal functionality.

Lemma 6.3. Let ΠMS be Protocol 6.1, and IMS be the ideal functionality described in Defi-
nition 6.2. For all sets IA ( [k] of corrupted players and all adversaries A that perform the
interactions of players in IA with Π, there exists a simulator S (the complexity of which scales
polynomially in that of the adversary) such that for all environments E,∣∣∣Pr[1← (E � ΠMS

A )]− Pr[1← (E � IMS
S )

∣∣∣ 6 negl (n) .

We prove this lemma in Appendix I.
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6.2 MPQC protocol for universal quantum computation

Finally, we present our protocol for some arbitrary quantum computation. For this setting, we
extend the setup of Section 5.5 by considering quantum circuits C = Gm...G1 where Gi can be
single-qubit Cliffords, CNOTs, measurements or, additionally, T gates.

For that, we will consider a circuit C ′ where each gate Gi = T acting on qubit j is then
replaced by the T-gadget presented in Figure 3, acting on the qubit j and a fresh new T magic
state.

Protocol 6.4 (Protocol for universal MPQC). Let C be a polynomial-sized quantum cir-
cuit, and t be the number of T-gates in C.

1. Run Protocol 6.1 to create t magic states.

2. Run Protocol 5.10 for the circuit C ′, which is equal to the circuit C, except each T
gate is replaced with the T-gadget from Figure 3.

Theorem 6.5. Let ΠMPQC be Protocol 6.4, and IMPQC be the ideal functionality described in
Definition 3.1. For all sets IA ( [k] of corrupted players and all adversaries A that perform the
interactions of players in IA with Π, there exists a simulator S (the complexity of which scales
polynomially in that of the adversary) such that for all environments E,

|Pr[1← (E � ΠMPQC
A )]− Pr[1← (E � IMPQC

S )| 6 negl (n) .

Proof. Direct from Lemmas 5.11 and 6.3.

6.3 Round Complexity and MPC Calls

Recall that we are assuming access to an ideal (classical) MPC functionality defined in Defi-
nition 2.1. One MPC call can produce outputs to all players simultaneously. In this section,
we analyze the number of rounds of quantum communication, and the number of calls to the
classical MPC. The actual implementation of the classical MPC is likely to result in additional
rounds of classical communication.

In the way we describe it, Protocol 4.2 encodes a single-qubit input (or an ancilla |0〉 state)
using k rounds of quantum communication andO(1) MPC calls. Note that this protocol can be
run in parallel for all input qubits per player, simultaneously for all players. Hence, the overall
number of communication rounds for the encoding phase remains k, and the total number of
calls to the MPC is O(w) where w is the total number of qubits.

Protocol 5.2 for single-qubit Cliffords, Protocol 5.6 for measuring in the computational basis
and Protocol 5.8 for decoding do not require quantum communication and useO(1) MPC calls
each, whereas Protocol 5.4 for CNOT requires at most k+2 rounds of quantum communication,
and makes O(1) MPC calls. Overall, Protocol 5.10 for encoding and Clifford+measurement
computation requireO(dk) rounds of quantum communication andO(w+g) calls to the MPC,
where d is the CNOT-depth of the quantum circuit, and g is the total number of gates in the
circuit.

Protocol 6.1 for magic-state creation encodes ` := (t+ k)n qubits in parallel using k rounds
of quantum communication (which can be done in parallel with the actual input encoding)
and O((t + k)n) MPC calls. Then a circuit of size pdistill(n) and CNOT-depth ddistill(n) classi-
cally controlled Cliffords and measurements is run on each of the t blocks of n qubits each,
which can be done in parallel for the t blocks, requiring O(k · ddistill(n)) rounds of quantum
communication and O(tn · pdistill(n)) calls to the MPC.
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Eventually, all T-gate operations in the original circuit C are replaced by the T-gadget from
Figure 3, resulting in one CNOT and classically controlled Cliffords. Overall, our Protocol 6.4
for universal MPQC requires O(k · (ddistill(n) + d)) rounds of quantum communication and
O(tn · pdistill(n) + w + g) calls to the classical MPC, where d is the {CNOT,T}-depth of the
circuit, w is the total number of qubits and g is the total number of gates in the circuit.

We notice that instead of evaluating each Clifford operation gate-by-gate, we could evalu-
ate a general w-qubit Clifford using O(k) rounds of quantum communication, similarly to the
CNOT protocol. This could improve the parameter d to be the T depth of the circuit, at the cost
of requiring significantly more communication per round.
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Appendices

A Twirling

One of the techniques we use in this work is the twirl over a group G of unitary operators,
which maps a state (or channel) to its ‘G-averaged’ version. Specifically, the twirl of a state ρ is
defined

TG(ρ) := 1
|G|

∑
U∈G

UρU †,

and the twirl of a channel Λ is defined as

TG(Λ(·)) := 1
|G|

∑
U∈G

U †(Λ(U(·)U †))U.

We sometimes abuse notation for non-unitary groups: for example, throughout this work we
use TGL(2n,F2)(·) to denote a twirl over the unitary group {Ug | g ∈ GL(2n,F2)}, where Ug is
defined as the unitary that applies g in-place, i.e., Ug |t〉 = |g(t)〉 for all t ∈ {0, 1}2n.

Twirling a state over the n-qubit Pauli group is equivalent to encrypting the state under the
quantum one-time pad, and tracing out the encryption key. From the point of view of someone
without that encryption key, the resulting state is fully mixed:

Lemma A.1 (Pauli twirl of a state). For all n-dimensional quantum states ρ,

TPn (ρ) = τ.

Proof. Write ρ =
∑
i,j∈{0,1}n αij |i〉〈j|. For every i, j we have

TPn (|i〉〈j|) = E
x,z∈{0,1}n

XxZz |i〉〈j|ZzXx

= E
x,z∈{0,1}n

(−1)z(i⊕j) |i⊕ x〉〈j ⊕ x| .

Note that Ez∈{0,1}n(−1)z(i⊕j) = 0 whenever i 6= j (i.e., i⊕ j 6= 0), and that the term evaluates
to 1 whenever i = j. So

TPn (|i〉〈j|) =
{

Ex |i⊕ x〉〈i⊕ x| = τ if i = j
0 otherwise.

To conclude the proof, sum all terms of ρ and use Tr(ρ) =
∑
i αii = 1 to get

TPn(ρ) =
∑
i,j

αijTPn (|i〉〈j|) =
∑
i

αiiτ = τ.

Since the Pauli group is a subgroup of the Clifford group, Lemma A.1 also holds when
twirling over the n-qubit Clifford group.

On a channel, the Pauli twirl has a similar effect of transforming a superposition of attack
maps into a classical mixture of Pauli attacks. This transformation greatly simplifies analysis:

Lemma A.2 (Pauli twirl of a channel [ABOEM17, Lemma 5.1]). For all V AB =
∑
P∈Pn

PA⊗
V B
P ,

T APn
(V (·)V †) =

∑
P∈Pn

(P ⊗ VP )(·)(P ⊗ VP )†,

where the twirl is applied on the 2n-dimensional register A.
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B Proof of Lemma 2.3

Proof. Given an arbitrary state ρTR (for some reference system R), we calculate the result of
applying PauliFilterSP(U) to ρ. The state in TR corresponding to |0〉〈0| in the flag register F is:

TrSS′
[
ΠUST

(
|Φ〉〈Φ|SS

′
⊗ ρTR

)
U †
]

=
∑

(a,b)∈P
x,z,x′,z′

TrSS′
[
XaZb |Φ〉〈Φ|ZbXaXxZz |Φ〉〈Φ|Zz′Xx′

]
⊗ UTx,zρTRU

†
x′,z′

=
∑

(a,b)∈P
x,z,x′,z′

TrSS′
[
|Φ〉〈Φ|Xa⊕xZb⊕z |Φ〉〈Φ|Zb⊕z′Xa⊕x′

]
⊗ UTx,zρTRU

†
x′,z′ · (−1)b·(x⊕x′)

=
∑

(a,b)∈P
UTa,bρ

TRU †a,b.

The calculation for the |1〉〈1|-flag is very similar, after observing that

I−
∑

(a,b)∈P
XaZb |Φ〉〈Φ|ZbXa =

∑
(a,b)6∈P

XaZb |Φ〉〈Φ|ZbXa.

C Security of Clifford code

Lemma C.1 (Variation on [AM17, Theorem 3.7]). Let M , T , and R be registers with log |M | =
1 and log |T | = n > 0. Let UMTR be a unitary, and write U =

∑
x,z∈{0,1}n+1(XxZz)MT ⊗ URx,z.

Then for any state ρMR,∥∥∥∥∥∥T MT
Cn+1(U)

(
ρMR ⊗ |0n〉〈0n|T

)
−

UR0,0ρU †0,0 ⊗ |0n〉〈0n|T + TrM

 ∑
(x,z)6=(0,0)

URx,zρU
†
x,z

⊗ τMT

∥∥∥∥∥∥
1

6 negl (n) .

Proof. The proof is a straightforward application of the Clifford twirl [ABOEM17, Lemma 3.6],
which is similar to Lemma A.2, but for the Clifford group. Using this Clifford twirl in the first
step, and writing U =

∑
x,z(XxZz)MT ⊗ URx,z, we derive

T MT
Cn+1(U)(ρ⊗ |0n〉〈0n|)

=
∑
x,z

E
C

(CXxZzC† ⊗ Ux,z)(ρ⊗ |0n〉〈0n|)(C†XxZzC ⊗ U †x,z)

= UR0,0ρU
†
0,0 +

∑
(x,z)6=(0,0)

E
C

(CXxZzC† ⊗ Ux,z)(ρ⊗ |0n〉〈0n|)(C†XxZzC ⊗ U †x,z) (3)

= UR0,0ρU
†
0,0 +

∑
(x,z)6=(0,0)

E
(x′,z′)6=(0,0)

(Xx′Zz′ ⊗ Ux,z)(ρ⊗ |0n〉〈0n|)(Xx′Zz′ ⊗ U †x,z) (4)

≈negl(n) U
R
0,0ρU

†
0,0 +

∑
(x,z)6=(0,0)

URx,z

(
T MT

Pn+1(ρ⊗ |0n〉〈0n|)
)
U †x,z

= UR0,0ρU
†
0,0 +

∑
(x,z)6=(0,0)

TrM
[
URx,zρU

†
x,z

]
⊗ τMT .

In the step from Equation (3) to Equation (4), we used the fact that any non-identity Pauli is
mapped to a random non-identity Pauli by expectation over the Clifford group.
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Corollary C.2. The Clifford authentication code with n trap qubits is negl (n)-secure.

Proof. In the decoding procedure for the n-trap Clifford code, the register T is measured using
the two-outcome measurement defined by the projector Π := |0n〉〈0n|. Note that, given an
attack A,

E
k∈K

[Deck (A (Enck (ρ)))] = LΠ
(
TCn+1(A)

(
ρMR ⊗ |0n〉〈0n|T

))
,

where LΠ(X) := TrT [ΠXΠ] + |⊥〉〈⊥|M ⊗ TrMT [ΠXΠ]. Then apply Lemma C.1, and use the
fact that Tr[|0〉〈0|T τMT ] = 2−n. In the terminology of Definition 2.4, we may explicitly describe
Λacc := U0,0(·)U †0,0 and Λrej :=

∑
(x,z) 6=(0,0) Ux,z(·)U †x,z for A = U(·)U † and U decomposed as in

the proof of Lemma C.1.

D Proof of Lemma 2.7

For the rest of this section, fix a basis
∣∣∣0̂〉 := |T〉 and

∣∣∣1̂〉 :=
∣∣∣T⊥〉. For w ∈ {0, 1}m, we will let

|ŵ〉 := |ŵ1〉 . . . |ŵm〉 . Then the all-0s string in this basis represents m copies of |T〉. We analyze
Circuit 2.8. It is simple to verify that Ẑ =

∣∣∣0̂〉〈0̂
∣∣∣− ∣∣∣1̂〉〈1̂

∣∣∣ (up to a global phase). The first step

of the circuit is to apply Ẑ with probability 1
2 to each qubit, which has the effect of dephasing

the qubit, or equivalently, making the state diagonal, in the {
∣∣∣0̂〉 , ∣∣∣1̂〉} basis. More precisely, if

we let ρ =
∑
w,w′∈{0,1}m αw,w′ |ŵ〉 〈ŵ′|:

ρ 7→
∑

w,w′∈{0,1}m

αw,w′
m⊗
i=1

1
2
(
|ŵi〉

〈
ŵ′i
∣∣+ Ẑ |ŵi〉

〈
ŵ′i
∣∣ Ẑ) (5)

=
∑

w,w′∈{0,1}m

αw,w′
m⊗
i=1

1
2
(
|ŵi〉

〈
ŵ′i
∣∣+ (−1)wi+w′i |ŵi〉

〈
ŵ′i
∣∣) (6)

=
∑

w∈{0,1}m

αw,w |ŵ〉 〈ŵ| =: ρ′. (7)

Let Ξ′ denote the quantum channel given by steps 2–3 of Circuit 2.8. Note that Ξ′ is
symmetric: Given two inputs ρ and ρ′ = πρπ†, after step 2, either state will be mapped to∑
π′∈Sm

1
m!π

′ρπ′†. Thus, we can apply Theorem D.1 of [DNS12], which states the following:

Theorem D.1 ([DNS12]). Let σ be an m-qubit state, diagonal in the basis {|ŵ〉 : w ∈ {0, 1}m},
and suppose ΠLWσ = σ. Let Ξ′ be any CPTP map from m qubits to t qubits such that
Ξ′(πωπ†) = Ξ′(ω) for any n-qubit state ω and any π ∈ Sm. Then, letting δs = s

m :∥∥∥Ξ′(σ)− (
∣∣∣0̂〉〈0̂

∣∣∣)⊗t ∥∥∥
1
6 (m+ 1) max

s6`

∥∥∥∥Ξ′
((

(1− δs)
∣∣∣0̂〉〈0̂

∣∣∣+ δs
∣∣∣1̂〉〈1̂

∣∣∣)⊗m)− (
∣∣∣0̂〉〈0̂

∣∣∣)⊗t ∥∥∥∥
1
.

We can put everything together to prove Lemma 2.7.

Proof of Lemma 2.7. Let ρ′ be as in (7). We have

Tr(ΠLWρ
′) = Tr(ΠLWρ) > 1− ε.

Thus, write ρ′ = (1− ε)σ + εσ′ for σ = 1
1−εΠLWρ

′. Applying Theorem D.1, we get∥∥∥∥Ξ′(σ)−
(∣∣∣0̂〉〈0̂

∣∣∣)⊗t ∥∥∥∥
1
6 (m+1) max

s6`

∥∥∥∥Ξ′
((

(1− δs)
∣∣∣0̂〉〈0̂

∣∣∣+ δs
∣∣∣1̂〉〈1̂

∣∣∣)⊗m)− (
∣∣∣0̂〉〈0̂

∣∣∣)⊗t ∥∥∥∥
1
.
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On a symmetric state, Ξ′ is simply the state distillation protocol of [BK05], applied t times in
parallel to m/t qubits each time. Let Φ be one state distillation protocol distilling one qubit
from m/t (so Ξ′ acts as Φ⊗t on symmetric states). By Theorem 2.6, using δs = s

m 6
`
m , and

τ =
(
(1− δs)

∣∣∣0̂〉〈0̂
∣∣∣+ δs

∣∣∣1̂〉〈1̂
∣∣∣)⊗m/t ,

we have
1−

〈
0̂
∣∣∣Φ(τ)

∣∣∣0̂〉 6 O ((5δs)(m/t)c
)
6 O

((
5 `
m

)(m/t)c)
for c ≈ 0.2. Let δ = (5`/m)(m/t)c . Using the inequality between trace distance and fidelity,
‖ ρ− |ψ〉 〈ψ| ‖1 6 2

√
1− 〈ψ| ρ |ψ〉, we have∥∥∥∥Ξ′

((
(1− δs)

∣∣∣0̂〉〈0̂
∣∣∣+ δs

∣∣∣1̂〉〈1̂
∣∣∣)⊗m)− (

∣∣∣0̂〉〈0̂
∣∣∣)⊗t ∥∥∥∥

1

=
∥∥∥Φ(τ)⊗t − (

∣∣∣0̂〉〈0̂
∣∣∣)⊗t ∥∥∥

1

6 2
√

1− (
〈

0̂
∣∣∣Φ(τ)

∣∣∣0̂〉)t 6 2
√

1− (1− δ)t.

Since 1− x 6 e−x for all x, and e−2x 6 1− x whenever x 6 1/2, it follows that:

1− 2δt 6 e−2δt 6 (1− δ)t.

Thus ∥∥∥∥Ξ′
((

(1− δs)
∣∣∣0̂〉〈0̂

∣∣∣+ δs
∣∣∣1̂〉〈1̂

∣∣∣)⊗m)− (
∣∣∣0̂〉〈0̂

∣∣∣)⊗t ∥∥∥∥
1
6 2
√

2δt.

Thus, we have:∥∥∥Ξ(ρ)− (
∣∣∣0̂〉〈0̂

∣∣∣)⊗t ∥∥∥
1

=
∥∥∥Ξ′(ρ′)− (

∣∣∣0̂〉〈0̂
∣∣∣)⊗t ∥∥∥

1
=
∥∥∥ (1− ε)Ξ′(σ) + εΞ′(σ′)− (

∣∣∣0̂〉〈0̂
∣∣∣)⊗t ∥∥∥

1

6 (1− ε)(m+ 1)2
√

2δt+ ε = O
(
m
√
t(5`/m)(m/t)c/2 + ε

)
.

E Proof of Lemma 4.3

Before we prove Lemma 4.3, let us begin by zooming in on the test phase (steps 4–6): we show
in a separate lemma that, with high probability, it only checks out if the resulting state is a
correctly-encoded one.

For a projector Π on two n-qubit quantum registers T1T2, define the quantum channel LΠ

by

LΠ(X) := Π(X)Π + |⊥〉〈⊥|Tr
[
Π̄X

]
where |⊥〉 is a distinguished state on T1T2 with Π |⊥〉 = 0. Furthermore, for s ∈ {0, 1}n, define
the “full” and “half” projectors

Πs,F :=
{∣∣02n〉〈02n∣∣ if s = 0n

0 else
(8)

Πs,H := I⊗ |s〉〈s| . (9)

The following lemma shows that measuring Πs,F on the one hand, and applying a twirl TGL(2n,F2)
followed by a measurement of Πs,H on the other hand are equivalent as tests in the above pro-
tocol.
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Lemma E.1. For any s ∈ {0, 1}n, applying a random element of GL(2n,F2) followed by LΠs,H

is essentially equivalent to applying LΠs,F :∥∥∥LΠs,F − LΠs,H ◦ TGL(2n,F2)

∥∥∥
�
6 12 · 2−

n
2 = negl (n) .

Proof. First, observe the following facts about a random g ∈ GL(2n,F2). Of course, g0 = 0
by linearity. On the other hand, gx is uniformly random on F2n

2 \ {0} for x 6= 0. More
generally, x and y with x 6= 0 6= y are linearly independent if and only if x 6= y, and therefore
(gx, gy) is uniformly random on

{
(x, y) ∈

(
F2n

2 \ {0}
)2 |x 6= y

}
. In the following we abbreviate

T := TGL(2n,F2). We calculate for x, y ∈ F2n
2 \ {0} with x 6= y,

T (|0〉〈0|) = |0〉〈0|

T (|x〉〈x|) = I− |0〉〈0|
22n − 1

T (|x〉〈0|) =
(
22n − 1

)− 1
2 ∣∣+′〉〈0|

T (|x〉〈y|) =
(
22n − 1

)−1 (
22n − 2

)−1 ∑
z,t∈F2n

2 \{0}
z 6=t

|z〉〈t|

=
(
22n − 2

)−1
(∣∣+′〉〈+′∣∣− I− |0〉〈0|

22n − 1

)
=: S.

Here we have defined the unit vector

∣∣+′〉 :=
(
22n − 1

)− 1
2

∑
x∈F2n

2 \{0}
|x〉 .

We can now evaluate T on an arbitrary input density matrix,

T (ρT1T2E) =
∑

x,y∈{0,1}2n

T (|x〉〈y|)T1T2 ⊗ 〈x|T1T2
ρT1T2E |y〉T1T2

= |0〉〈0|T1T2
⊗ 〈0|T1T2

ρT1T2E |0〉T1T2
+ |0〉

〈
+′
∣∣
T1T2
⊗ 〈0|T1T2

ρT1T2E

∣∣+′〉T1T2

+
∣∣+′〉〈0|T1T2

⊗
〈
+′
∣∣
T1T2

ρT1T2E |0〉T1T2
+ I− |0〉〈0|

22n − 1 ⊗ TrT1T2 [(I− |0〉〈0|)T1T2ρT1T2E ]

+ S ⊗
∑

x,y∈F2n
2 \{0}

x 6=y

〈x|T1T2
ρT1T2E |y〉T1T2

. (10)

We calculate

‖Πs,H

∣∣+′〉 ‖2 6
√

2n
22n − 1 and

∥∥∥∥Πs,H
I− |0〉〈0|
22n − 1 Πs,H

∥∥∥∥
1
6

2n − 1
22n − 1 ,

where the first inequality is tight for s = 0 and the second inequality for s 6= 0. We also have

‖S‖1 =21−
(
22n − 1

)−1

22n − 2
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Using these quantities, we analyze Πs,HT (ρT1T2E)Πs,H term by term according to equation (10).
We have

Πs,H |0〉〈0|T1T2
Πs,H =

{
|0〉〈0|T1T2

s = 0
0 else,

(11)

∥∥∥Πs,H |0〉
〈
+′
∣∣
T1T2

Πs,H ⊗ 〈0|T1T2
ρT1T2E

∣∣+′〉T1T2

∥∥∥
1
≤
√

2n
22n − 1 , (12)∥∥∥∥Πs,H

I− |0〉〈0|
22n − 1 Πs,H ⊗ TrT1T2 [(I− |0〉〈0|)T1T2ρT1T2E ]

∥∥∥∥
1
≤ 2n

22n − 1 , and (13)

(14)

∥∥∥∥∥∥∥∥∥Πs,HSΠs,H ⊗
∑

x,y∈F2n
2 \{0}

x 6=y

〈x|T1T2
ρT1T2E |y〉T1T2

∥∥∥∥∥∥∥∥∥
1

≤

∥∥∥∥∥∥∥Πs,HSΠs,H ⊗
∑

x,y∈F2n
2 \{0}

〈x|T1T2
ρT1T2E |y〉T1T2

∥∥∥∥∥∥∥
1

+

∥∥∥∥∥∥∥Πs,HSΠs,H ⊗
∑

x∈F2n
2 \{0}

〈x|T1T2
ρT1T2E |x〉T1T2

∥∥∥∥∥∥∥
1

≤ 2
(
22n − 2

)−1
(∥∥Πs,H

∣∣+′〉〈+′∣∣Πs,H

∥∥
1 +

∥∥∥∥Πs,H
I− |0〉〈0|
22n − 1 Πs,H

∥∥∥∥
1

)
Tr
[((

22n − 1
) ∣∣+′〉〈+′∣∣+ I− |0〉〈0|

)
T1T2

ρT1T2E

]
≤ 2

(
22n − 2

)−1
( 2n

22n − 1 + 2n

22n − 1

)(
2
(
22n − 1

)]
≤ 8 2n

(
22n − 1

)
(22n − 1) (22n − 2)

≤ 2 2n

(22n − 2) . (15)

The first, second and fifth inequality use normalization of ρ and the third and fourth inequality
use the triangle inequality for the trace norm. The fifth inequality additionally uses Hölder’s
inequality. Using the observation that

Πs,FT (ρT1T2E)Πs,F =
{
|0〉〈0|T1T2

⊗ 〈0|T1T2
ρT1T2E |0〉T1T2

s = 0
0 else

, (16)
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together with Equations (10) and (11)-(15), we get that there exists a ρT1T2E such that∥∥∥LΠs,F − LΠs,H ◦ TGL(2n,F2)

∥∥∥
�

=
∥∥∥LΠs,F (ρ)− LΠs,H ◦ TGL(2n,F2)(ρ)

∥∥∥
1

≤
∥∥∥Πs,H |0〉

〈
+′
∣∣
T1T2

Πs,H ⊗ 〈0|T1T2
ρT1T2E

∣∣+′〉T1T2

∥∥∥
1

+
∥∥∥Πs,H

∣∣+′〉〈0|T1T2
Πs,H ⊗

〈
+′
∣∣
T1T2

ρT1T2E |0〉T1T2

∥∥∥
+
∥∥∥∥Πs,H

I− |0〉〈0|
22n − 1 Πs,H ⊗ TrT1T2 [(I− |0〉〈0|)T1T2ρT1T2E ]

∥∥∥∥
1

+

∥∥∥∥∥∥∥∥∥Πs,HSΠs,H ⊗
∑

x,y∈F2n
2 \{0}

x 6=y

〈x|T1T2
ρT1T2E |y〉T1T2

∥∥∥∥∥∥∥∥∥
1

≤2
√

2n
22n − 1 + 2n

22n − 1 + 8 2n

22n − 2
≤12 · 2−

n
2 ,

which is negligible.

Now that we have established that it suffices to measure only the T2 register (after applying
a random g ∈ GL(2n,F2)), we are ready to prove the security of Protocol 4.2:

Proof of Lemma 4.3. We consider two cases: either player 1 is honest, or she is corrupted.

Case 1: player 1 is honest. See Figure 5. For the setting where player 1 is honest, we prove
security in the worst case, where all other players are corrupted: IA = {2, 3, . . . , k}. If, instead,
some of these players are not corrupted, a simulator can simulate the actions of every honest
player h 6= 1 (by applying a random Clifford), and interleave these honest actions with the
adversarial maps of the corrupted players. The resulting map is a special case of the adversarial
map we consider below. Since the only task of the honest players h 6= 1 is to apply a random
Clifford, it is sufficient if the simulator samples this Clifford itself.

The corrupted players act as one entity whose honest action is to apply UH := FkFk−1 · · ·F3F2,
and return the state to player 1. Without loss of generality, assume that A is unitary by expand-
ing the side-information register R as necessary. Then, define an attack unitary A := U †HA, so
that we may write A = UHA. In other words, we establish that A consists of a unitary attack
A, followed by the honest unitary UH . Note that A may depend arbitrarily on its instructions
F2 through Fk

The simulator S has access to the ideal functionality only through the ability to submit
the bits bi for players i 6= 1. It does not receive any input from the environment, except for
a side-information register R. Define the simulator as follows (in terms of an adversarial map
A):

Simulator 1 (see right side of Figure 5). On input register R received from the environ-
ment, do:

1. Sample random F ′2, . . . , F
′
k ∈ C2n+1.a

2. Run IdFilterMT1T2(A) on the register R, using the instructions F ′2, F ′3, . . . , F ′k to de-
termine A. (See Section 2.3.)
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3. If the flag register is 0, set bi = 0 for all i 6= 1. Otherwise, set bi = 1 for all i 6= 1.
Submit the bits bi to the ideal functionality.

aWhenever a simulator samples random elements, it does so by running the ideal functionality for classical
MPC with the adversary it is currently simulating. If that ideal functionality aborts, the simulator will also
abort by setting bi = 1 for the adversarial players i. In that case, the simulated output state and the real
output state will be indistinguishable by security of the classical MPC. To avoid clutter in the exposition
of our simulators and proofs, we will ignore this technicality, and pretend that the simulator generates the
randomness itself.

We will consider the joint state in the output register Rout
1 = MT1, the state register S, and the

attacker’s side-information register R in both the real and the ideal (simulated) case. In both
cases, it will be useful to decompose the attack map A as

A =
∑

a,c∈{0,1}n+1

(XaZc)MT1 ⊗ARa,c.

We start by analyzing the ideal case. By Definition 4.1 of the ideal encoding functionality and
Lemma 2.3, and using P = {(0, 0)} with 0 as an abbreviation for 0n, the output state in MT1RS
in case of accept (setting all bi = 0) is

E
E
EMT1

(
AR0,0ρ

MRA†0,0 ⊗ |0n〉〈0n|
T1
)
E† ⊗ |E〉〈E|S . (17)

The output state in MT1RS in case of reject is (again by Definition 4.1 and Lemma 2.3)

T MT1
Cn+1

 ∑
(x,z)6=(0,0)

ARx,zρ
MRA†x,z ⊗ |0n〉〈0n|

T1

⊗ |⊥〉〈⊥|S (18)

= τMT1 ⊗
∑

(x,z) 6=(0,0)
Ax,zρRA

†
x,z ⊗ |⊥〉〈⊥|

S . (19)

Next, we consider the state in MT1RS after the real protocol is executed, and argue that it
is negligibly close to Equations (17)+(19). Again, we first consider the accept case. Following
the steps in Protocol 4.2 on an input state ρMR, and noting that(

F †1

)MT1T2
AMT1T2RF1

(
ρMR ⊗

∣∣∣02n
〉〈

02n
∣∣∣T1T2

)
F †1A

†F1 =
(
T MT1T2

C2n+1
(A)

) (
ρ⊗

∣∣∣02n
〉〈

02n
∣∣∣) ,

the output state in the case of accept is

E
E,r,s
〈r|T2 (E ⊗ XrZs) T T1T2

GL(2n,F2)

((
T MT1T2

C2n+1
(A)

) (
ρ⊗

∣∣∣02n
〉〈

02n
∣∣∣)) (E ⊗ XrZs)† |r〉 ⊗ |E〉〈E|S

= E
E
EMT1 〈0n|T2 T T1T2

GL(2n,F2)

((
T MT1T2

C2n+1
(A)

) (
ρ⊗

∣∣∣02n
〉〈

02n
∣∣∣)) |0n〉E† ⊗ |E〉〈E|S

≈negl(n) E
E
EMT1

〈
02n
∣∣∣T1T2 ((T MT1T2

C2n+1
(A)

) (
ρ⊗

∣∣∣02n
〉〈

02n
∣∣∣)) ∣∣∣02n

〉
E† ⊗ |E〉〈E|S , (20)

where the approximation follows from Lemma E.1. This is where the authentication property
of the Clifford code comes in: by Lemma C.1, only the part of A that acts trivially on MT1T2
remains after the measurement of T1T2. Thus, Eq. (20) ≈negl(n) Eq. (17).

The reject case of the real protocol is similar: again using Lemmas E.1 and C.1, we can see
that it approximates (up to a negligible factor in n) Eq. (19).

We conclude that, from the point of view of any environment, the real output state in
registers MT1SR (encoding, memory state, and side information) is indistinguishable from the
simulated state.

37



ρMR

R

M

∣∣02n〉
T1

T2

A

= UH,A

F1 F2 Fk · · ·F3

= V

(Fk · · ·F1)†
Ug

E

XrZs

= UH,B

B

R

M

T1

r′

MPC

F1, F3, . . . , Fk F2 V

Figure 6: Execution of the input-encoding protocol ΠEnc (see Protocol 4.2), where player 2 is the only honest
player (case 2).

Case 2: player 1 is dishonest. For the same reason as in the first case, we assume that the
only honest player is player 2, i.e., IA = {1, 3, 4, ..., k}.

In the real protocol, the adversary interacts with the honest player 2, and has two opportu-
nities to attack: before player 2 applies its Clifford operation, and after.

The adversaries’ actions before the interaction with player 2 can, without loss of generality,
be described by a unitary UH,A · A, that acts on the input state ρMR, plus the registers T1T2
that are initialized to zero. The unitary UH,A is player 1’s honest operation FMT1T2

1 .
Similarly, the adversaries’ actions after the interaction with player 2 can be described by

a unitary B · UH,B, followed by a computational-basis measurement on T2 which results in an
n-bit string r′. Again, UH,B is the honest unitary V Fk · · ·F4F3 that should be applied jointly
by players 3, 4, . . . , k, 1. See Figure 6.

For any adversary, described by such unitaries A and B, define a simulator as follows (see
Figure 7):

Simulator 2. On input register MR received from the environment, do:

1. Initialize bi = 0 for all i ∈ IA.

2. Sample random F1, F2, . . . , Fk ∈ C2n+1. Run ZeroFilterT1T2(A) on MR, using the
instructions Fi (for all i ∈ IA) to determine A. If the filter flag is 1, abort by setting
b1 = 1.

3. Input the M register into the ideal functionality, and receive a state in the register
MT1.

4. Run XFilterT2(B) on MT1R, using the instruction V := F †3F
†
4 · · ·F

†
k to determine B.

(This choice of V ensures that the honest action UH,B is identity.) If the filter flag is
1, abort by setting b1 = 1.

5. Submit all the bi to the ideal functionality.

Similarly to the previous case, we consider the output state in the registers MT1RS in both
the ideal (simulated) case, and the real case, as computed on an input state ρMR.

Again, we decompose the attack maps A and B as
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ρMR

R R

M

M

ZeroFilterT1T2(A)

F

T1

T1

M

M

XFilterT2(B)

F
or

bi

IEnc

F1, F3, . . . , Fk ← $

S

Figure 7: Interaction between the ideal functionality and the simulator S (see Simulator 2) for the case in
which only player 2 is honest (case 2). The simulator performs two filters, and sets the abort bit to 1 whenever
at least one of the flags F is set to 1.

A =
∑

a,c∈{0,1}2n

(XaZc)T1T2 ⊗AMR
a,c , (21)

B =
∑

b,d∈{0,1}n

(
XbZd

)T2 ⊗BMT1R
b,d . (22)

Note that the decompositions are taken over different registers for A and B. In the derivations
below, we will often abbreviate Aa :=

∑
cAa,c, and, in the subscripts, we will abbreviate 0 for

the all-zero string.
In the ideal or simulated case, one of three things may happen: the simulator sets b1 to 0

(signaling accept to the ideal functionality), or sets b1 to 1 in step 2, or sets b1 to 1 in step 4
(both signaling reject to the ideal functionality). The ideal output state is thus the sum of three
separate terms, which we will analyze separately.

We start with the the accept case, where both filters result in a |0〉〈0| flag. Using the
decompositions from Equations (21) and (22), we apply Lemma 2.3 to see that the resulting
state is

E
E

∑
d

BMT1R
0,d E

(
A0ρA

†
0 ⊗ |0n〉〈0n|

T1
)
E†B†0,d ⊗ |E〉〈E|

S . (23)

Here, E is the key that the ideal functionality samples (and stores in the register S) when it is
called to encode M .

Next, we consider the simulator choosing b1 = 1 already in step 2, the zero filter has failed.
In this case, the ideal functionality does not store the encoding key E in the register S. This
allows us to view the Clifford encoding as a twirl on the Clifford group. The output state is
(by Lemma 2.3) ∑

a6=02n,b,d

Bb,dT MT1
Cn+1

(
Aaρ

MRA†a ⊗ |0n〉〈0n|
T1
)
B†b,d ⊗ |⊥〉〈⊥|

S

=
∑

a6=02n,b,d

Bb,d
(
TrM

[
Aaρ

MRA†a

]
⊗ τMT1

)
B†b,d ⊗ |⊥〉〈⊥|

S . (24)

Note that in this case, the flag in the X filter does not influence the bit b1 (it is already set to
1). Therefore, both terms in Lemma 2.3 survive, and all pairs (b, d) are included in the sum.
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Finally, we look at the case where the zero filter does not result in changing b1, but the X
filter does, in step 4. If this happens, the key E is erased so we can again apply a Clifford twirl,
and the output state is (by Lemma 2.3)∑

b6=0n,d

Bb,dT MT1
Cn+1

(
A0ρ

MRA†0 ⊗ |0n〉〈0n|
T1
)
B†b,d ⊗ |⊥〉〈⊥|

S

=
∑
b6=0n

Bb,d
(
TrM

[
A0ρ

MRA†0

]
⊗ τMT1

)
B†b,d ⊗ |⊥〉〈⊥|

S . (25)

In summary, the output state in the ideal case is

Eq. (23) + Eq. (24) + Eq. (25).

In the real protocol, only one measurement is performed at the end. The output state in
the real case is thus a sum of only two terms: an accept and reject case. We will again analyze
these separately, and will show that the accept state is approximately equal to Equation (23),
while the reject state approximates Equations (24) + (25).

Following Protocol 4.2 on an input state ρMR, and canceling out the Fi and F †i terms that
are part of the honest actions, we first consider the state in case of accept. We abbreviate

σ :=E
g
EMT1UT1T2

g (A(ρ⊗
∣∣∣02n

〉〈
02n
∣∣∣)A†)U †gE†

= EMT1T T1T2
GL(2n,F2)(A(ρ⊗

∣∣∣02n
〉〈

02n
∣∣∣)A†)E†,

where we are allowed to view Eg Ug(·)U †g as a Twirling operation, since A and B are independent
of g. We decompose the attack B as in Equation (22), and derive the accept case

E
E,r,s
〈r|T2 B (XrZs)T2 σ (XrZs)†B† |r〉 ⊗ |E〉〈E|S (26)

= E
E,r,s
〈0|T2 (XrZs)†T2 B (XrZs)T2 σ (XrZs)†B† (XrZs) |0〉 ⊗ |E〉〈E|S

= E
E,r,s

∑
b,d,b′,d′

〈0|T2
((

XrZsXbZdXrZs
)
⊗Bb,d

)
σ
((

XrZsXb′Zd′XrZs
)
⊗B†b′,d′

)
|0〉 ⊗ |E〉〈E|S

(27)

=E
E

∑
b,d

〈b|T2 Bb,dσB
†
b,d |b〉 ⊗ |E〉〈E|

S (28)

=E
E

∑
b,d

Bb,dTrT2

[
ΠT2
b,HσΠ†b,H

]
B†b,d ⊗ |E〉〈E|

S , (29)

where Πb,H is defined in Equation (9). From Equation (27) to (28), we used the Pauli twirl
to remove all terms for which (b, d) 6= (b′, d′). This application of the Pauli twirl is possible,
because neither A nor B depends on r, s.

We continue with the accept case by expanding σ in Equation (29), and evaluate the effect
of the random GL2n,F2 element on T1T2 using Lemma E.1. It ensures that, if A altered the T1T2
register, then B cannot successfully reset the register T2 to the correct value r. It follows that

Eq. (29) ≈ E
E

∑
b,d

BMT1R
b,d EMT1TrT2

[
ΠT1T2
b,F A

(
ρ⊗

∣∣∣02n
〉〈

02n
∣∣∣)A†Π†b,F ]E†B†b,d ⊗ |E〉〈E|S (30)

= E
E

∑
d

BMT1R
0,d EMT1TrT2

[∣∣∣02n
〉〈

02n
∣∣∣A (ρ⊗ ∣∣∣02n

〉〈
02n
∣∣∣)A† ∣∣∣02n

〉〈
02n
∣∣∣]E†B†0,d ⊗ |E〉〈E|S

= E
E

∑
d

BMT1R
0,d EMT1

(
A0ρA

†
0 ⊗ |0n〉〈0n|

)
E†B†0,d (31)

= Eq. (23). (32)
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The difference in the approximation is bound by negl (n), since for each b we can use Lemma E.1
(and there is an implicit average over the bs because of the normalization factor induced by the
Bb,d operator). Essentially, the only way to pass the measurement test successfully is for A not
to alter the all-zero state in T1T2, and for B to leave T2 unaltered in the computational basis.
This is reflected in the simulator’s zero filter and X filter, respectively.

If the real protocol rejects, the MPC stores a dummy ⊥ in the key register S. The resulting
state can be derived in a similar way, up to Equation (30), after which the derivation becomes
slightly different. The output state in the case of reject approximates (up to a difference of
negl (n))

E
E

∑
b,d

BMT1R
b,d EMT1TrT2

[
(I−Πb,F )T1T2 A

(
ρ⊗

∣∣∣02n
〉〈

02n
∣∣∣)A† (I−Πb,F )†

]
E†B†b,d ⊗ |⊥〉〈⊥|

S

=
∑
b,d

BMT1R
b,d T MT1

Cn+1

(
TrT2

[
(I−Πb,F )T1T2 A

(
ρ⊗

∣∣∣02n
〉〈

02n
∣∣∣)A† (I−Πb,F )†

])
B†b,d ⊗ |⊥〉〈⊥|

S

(33)

=
∑
b6=0n

d,a,a′

BMT1R
b,d T MT1

Cn+1

(
TrT2

[
Aaρ

MRA†a′ ⊗ |a〉
〈
a′
∣∣])B†b,d ⊗ |⊥〉〈⊥|S

+
∑

a,a′ 6=02n

d

BMT1R
0,d T MT1

Cn+1

(
TrT2

[
Aaρ

MRA†a′ ⊗ |a〉
〈
a′
∣∣])B†0,d ⊗ |⊥〉〈⊥|S

=
∑

(b,a)6=(0n,02n)
d

BMT1R
b,d

(
TrM

[
Aaρ

MRA†a

]
⊗ τMT1

)
B†b,d ⊗ |⊥〉〈⊥|

S

= Eq. (24) + Eq. (25).

Tracing out register T2 ensures that the second half of a and a′ have to be equal; Twirling over
the Clifford group ensures that the first half (acting on register T1) of a and a′ have to be equal
(see the proof of Lemma A.1).

These derivations show that the output state that the environment sees (in registersMT1RS)
in the real protocol are negligibly close to the output state in the ideal protocol. This concludes
our proof for the second case, where player 1 is dishonest.

F Proof of Lemma 5.3

Proof. For the sake of clarity, assume again that there is only one wire, held by player 1 (who
might be honest or dishonest). Generalizing the proof to multiple wires does not require any
new technical ingredients, but simply requires a lot more (cluttering) notation.

In the protocol ΠGm` �IC , an adversary A receives a state ρMR from the environment (where
again, M := Rin

1 ). It potentially alters this state with a unitary map A, submits the result to
the ideal functionality, and receives the register MT1 = Rout

1 . The adversary may again act on
the state, say with a map B, and then gets a chance to submit (for all players i ∈ IA) bits bi
to IC , and b′i to ΠGm` ). If one or more of those bits are 1, the ideal functionality (or the MPC)
aborts by overwriting the state register S with ⊥.

In case all bits are 0, the output register MT1RS contains

E
E
BMT1REMT1

(
CM

(
AρMRA†

)
⊗ |0n〉〈0n|T1

)
E†B† ⊗

∣∣∣E((Gm`)† ⊗ I⊗n)
〉〈
E((Gm`)† ⊗ I⊗n)

∣∣∣S
=E
E
BMT1REMT1 (Gm`)M

(
CM

(
AρMRA†

)
⊗ |0n〉〈0n|T1

)
(Gm`)†E†B† ⊗ |E〉〈E|S , (34)
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where C(·) is the map induced by the circuit C.
In case not all bits are 0, the output register MT1RS contains

B′A′ρR(B′A′)† ⊗ τMT1 ⊗ |⊥〉〈⊥|S , (35)

where A′ and B′ are the reduced maps A and B on register R.
Define a simulator S as follows:

Simulator 3. On input ρMR from the environment, do:

• Run A on MR.

• Submit M to the ideal functionality for Gm` ◦ C, and receive MT1.

• Run B on MT1R, and note its output bits (bi, b′i) for all i ∈ IA. Submit max{bi, b′i}
to the ideal functionality for Gm` ◦ C.

From the point of view of the adversary, the state it receives from the ideal functionality is the
same: a Clifford-encoded state. Thus, the bits bi and b′i will not be different in this simulated
scenario. In fact, the output state is exactly Eq. (34) + Eq. (35).

G Proof of Lemma 5.5

Proof. There are four different cases, for which we construct simulators separately: both players
involved in the CNOT are honest (i, j 6∈ IA), both players are dishonest (i, j ∈ IA), only player
i is honest (i 6∈ IA, j ∈ IA), or only player j is honest (i ∈ IA, j 6∈ IA). Without loss of
generality, we will assume that all other players are dishonest (except in the second case, where
at least one of the other players has to be honest), and that they have no inputs themselves:
their encoded inputs can be regarded as part of the adversary’s side information R. Note that
these four cases also cover the possibility that i = j.

Case 1: player i and j are honest. In this case, the adversarial players in IA only have
influence on the execution of step 3 of the protocol, where the state is sent around in order for
the players to jointly apply the random Clifford D.

As in the first case of the proof of Lemma 4.3 for the encoding protocol ΠEnc (where the
encoding player is honest), define a simulator that performs a Pauli filter IdFilter on the attack
of the adversary. The simulator and proof are almost identical to those in Lemma 4.3, so we
omit the details here.

Case 2: player i and j are dishonest. Without loss of generality, we can break up the
attack of the adversary (acting jointly for players i, j and any other players in IA) into three
unitary operations, acting on the relevant register plus a side-information register. As in the
proof of Lemma 4.3, we may assume that the honest actions are executed as well, since each
attack may start or end with undoing that honest action. The first attack AM

ijR is executed
on the plaintexts, before any protocol starts. The second attack ÃM ijT ij

12R happens after step 2
of Protocol 5.4, on the output of IC and the initialized registers T ij2 . Finally, the third attack
˜̃AM ijT ij

12R happens toward the end of the protocol, right before the T ij2 registers are measured
in step 6c of Protocol 5.4. Note that ˜̃A may depend on the instructions V , Wi and Wj .
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It will be useful to decompose the second and third attacks as follows:

Ã =
∑

ai
1,a

i
2,a

j
1,a

j
2,c

i
1,c

i
2,c

j
1,c

j
2

(Xai
1Zci

1)M iT i
1 ⊗ (Xai

2Zci
2)T i

2 ⊗ (Xa
j
1Zc

j
1)MjT j

1 ⊗ (Xa
j
2Zc

j
2)T

j
2 ⊗ ÃR

aij
12,c

ij
12

(36)

˜̃A =
∑
b,d

(XbZd)T
ij
2 ⊗ ˜̃AM

ijT ij
1 R

b,d (37)

Whenever the order is clear from the context, we will abbreviate, for example, aij12 for the
concatenation ai1a

i
2a
j
1a
j
2, as we have done in the last term of Equation (36).

In terms of an arbitrary attack A, Ã, ˜̃A, define the simulator S as follows:

Simulator 4. On input ρM iMjR from the environment, do:

1. Initialize bi = 0.

2. Run A on M ijR.

3. Submit M ij to ICNOTm`◦C , and receive M ijT ij1 , containing an encodings of the M i

and M j registers of CNOTm`(C(ρ)), under some (secret) keys Ei, Ej .

4. Run ZeroFilterT
ij
2 (IdFilterM ijT ij

1 (Ã)) on R (see Section 2.3). If one of the filter flags is
1, set bi = 1.

5. Sample random V ′ ∈ C4n+2 and W ′i ,W ′j ∈ C2n+1, and run XFilterT
ij
2 ( ˜̃A) on M ijT ij1 R,

where ˜̃A may depend on V ′,W ′i ,W
′
j . If the filter flag is 1, set bi = 1.

6. Submit bi to the ideal functionality, along with all other b` = 0 for ` ∈ IA \ {bi}.

The simulator should also abort whenever the adversary signals abort during an interaction
with MPC. For simplicity, we leave out these abort bits in the simulator and proof. They are
dealt with in the same way as in the proof of Lemma 5.3.

As before, we derive the real and ideal output states in the registers Rout
i = M iT i1 and

Rout
j = M jT ji , the state register S, and the attacker’s side information R, and aim to show that

they are negligibly close in terms of the security parameter n.
In the ideal (simulated) case, there are two points at which cheating may be detected by

the simulator: once during the zero/identity filter of Ã, and during the X filter of ˜̃A. Thus,
there are three possible outcome scenarios: both tests are passed, the first test is passed but
the second is not, or the first test fails (in which case it does not matter whether the second
test is passed or not).

If both tests pass, then by three applications of Lemma 2.3, the simulated output state is

E
Ei,Ej

˜̃AM
ijT ij

1 R
0 ÃR0,0 (Ei ⊗ Ej)M

ijT ij
1

(
CNOTm`C

(
AρA†

)
CNOTm`† ⊗

∣∣∣02n
〉〈

02n
∣∣∣T ij

1

)
(Ei ⊗ Ej)† Ã†0,0 ˜̃A†0 ⊗ |Ei, Ej〉〈Ei, Ej |

S , (38)

where we write Ã0,0 to denote the attack
∑
cij

2
Ã0000,0ci

20cj
2

that passes through the zero/identity
filter, and ˜̃A0 to denote the attack

∑
d

˜̃A0,d that passes through the X filter.
If the first test is passed but the second test is not, then the storage register S gets erased,

so that we may view the Ei and Ej operations as Clifford twirls of the registers they encode.
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In that case, the (simulated) output state is

∑
b 6=0

˜̃AbÃ0,0T
M iT i

1
Cn+1

(
T M

jT j
1

Cn+1

(
CNOTm`C

(
AρA†

)
CNOTm`† ⊗

∣∣∣02n
〉〈

02n
∣∣∣)) Ã†0,0 ˜̃A†b ⊗ |⊥〉〈⊥|

S

(39)

=
∑
b 6=0

˜̃AbÃ0,0
(
TrM ij

[
AρM

ijRA†
]
⊗ τMT ij

1
)
Ã†0,0

˜̃A†b ⊗ |⊥〉〈⊥|
S . (40)

The Clifford twirls cause the data and trap registers to become fully mixed, thereby also nulli-
fying the effect of the CNOT and circuit C on the data.

Finally, we consider the third scenario, where already the first test (the zero / identity
filter) fails. As in the previous scenario, the storage register S is erased, allowing us to apply
the Clifford twirl again. By Lemma 2.3, the output state in this case is∑

b

∑
(aij

12,c
ij
1 )6=

(04n+2,02n+2)

˜̃AbÃaij
12,c

ij
1

(
TrM ij

[
AρM

ijRA†
]
⊗ τMT ij

1
)
Ã†
aij

12,c
ij
1

˜̃A†b ⊗ |⊥〉〈⊥|
S , (41)

writing Ã
aij

12,c
ij
1

:=
∑
cij

2
Ã
aij

12,c
ij
12

. Note that for the second test (the X filter), the terms for both
possible flag values remain: the cheating bit bi is already set to 1, regardless of the outcome of
this second test.

We move on to the analysis of the real protocol ΠCNOTm` � IC , and aim to show that the
output state is equal to Eq. (38) + Eq. (40) + Eq. (41). To do so, consider the output state of
the real protocol, right before the final measurement.

We continue to argue why the attacks are independent of Eij , E′ij , gij , rij and sij . The
intuition for this fact is that D is uniformly random and independent of Eij from the perspective
of the adversary. Therefore it “hides” all other information that is used to compile V , including
Fij . Therefore Fij are as random and independent as D from the perspective of the adversary,
i.e. given V . This allows for a similar argument for the Cliffords Wij , where now F hides all
the other information, i.e. E′ij , gij , rij and sij .

For the following more formal argument, we treat all the mentioned quantities as random
variables. Initially, Eij are uniformly random. D is the product of a number of Clifford group el-
ements, at least one of which is generated honestly and therefore sampled uniformly at random.
But for any group G, given two independent random variables ζ and η on G, where ζ is uni-
formly random, we have that ηζ is uniformly random and ηζ⊥η, where ⊥ denotes independence.
This implies that D is indeed a uniformly random Clifford itself. Using the same argument, V
is uniformly random and V⊥(Eij , Fij). The quantities E′ij , gij , rij and sij are sampled indepen-
dently and uniformly after V is handed to player i, so we even have V⊥(Eij , Fij , E′ij , gij , rij , sij).
After step 4. in Protocol 5.4, the adversary has a description of V , so when analyzing Wij , we
have to derive independence statements given V . But as shown before Fij are independent of
V , so the the group random variable property above we have Wij⊥(E′ij , gij , rij , sij)|V . Clearly,
Eij is independent of all the random variables used in Wij , and we have shown that Eij⊥V , so
Wij⊥(Eij , E′ij , gij , rij , sij)|V . In summary, we have

(V,Wij)⊥(Eij , E′ij , gij , rij , sij). (42)

According to the decomposition of the attack into attack maps A, Ã and ˜̃A, that we made
without loss of generality, the Clifford operations Fi, Fj , and D cancel again after having
fulfilled their task of hiding information, which allows us to utilize Equation (42) to carry out
the expectation values over various variables from the right hand side of that equation.
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The output state of the real protocol is

E
E′i,E

′
j ,gi,gj

ri,si,rj ,sj

˜̃AM ijT ij
12R

(
E′i ⊗ (XriZsi)T

i
2 ⊗ E′j ⊗ (Xrj Zsj )T

j
2

)(
U
T i

12
gi ⊗ U

T j
12

gj

)
CNOTm`σ CNOTm`†

(
U †gi
⊗ U †gj

) (
E′i ⊗ (XriZsi)⊗ E′j ⊗ (Xrj Zsj )

)† ˜̃A† ⊗
∣∣∣E′i, E′j〉〈E′i, E′j∣∣∣S ,

(43)

where (again writing C(·) for the map induced by the circuit C)

σ := E
Ei,Ej∈Cn+1

(
E†i ⊗ E

†
j

)
ÃM

ijT ij
12R

((
E
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1
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)(
C
(
AρM
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)
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)
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)
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Ã†10
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1 ⊗ τMjT j

1

+ TrM ij
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Ã
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(
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(
AρM
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1 , (44)

and

Ãpq :=
∑
aij

2 ,c
ij
2

ai
1c

i
1∈Sp

aj
1c

j
1∈Sq

(Xa
ij
2 Zc

ij
2 )T

ij
2 ⊗ ÃR

ai
12a

j
12,c

i
12c

j
12
.

for p, q ∈ {0, 1} and S0 := {02n+2}, S1 := {0, 1}2n+2 \ S0. The approximation follows by a
double application of Lemma C.1. We can twirl with the keys Ei and Ej , since none of the
attacks can depend on the secret encoding keys Ei, Ej , and the keys have been removed from
the storage register S, and replaced by the new keys E′i, E′j .

Having rewritten the state σ in this form, we consider the state in Equation (43) after
the T ij2 registers are measured in the computational basis, as in step 6c of Protocol 5.4. We
first consider the case where the measurement outcome is accepted by the MPC (i.e., the
measurement outcome is rirj). Using the same derivation steps as in Equations (26)–(33), we
see that the real accept state approximates (up to a negligible error in n)

E
E′i,E

′
j∈Cn+1

˜̃AM
ijT ij

1 R
0

(
E′i ⊗ E′j

)M ijT ij
1 Tr

T ij
2

[∣∣∣04n
〉〈

04n
∣∣∣T ij

12 CNOTm`σCNOTm`†
∣∣∣04n

〉〈
04n
∣∣∣]

(
E′i ⊗ E′j

)† ˜̃A†0 ⊗
∣∣∣E′i, E′j〉〈E′i, E′j∣∣∣S .

(45)
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To derive the above expression, we applied a Pauli twirl, which relies on the fact that the
adversary cannot learn ri, rj , si, sj . Furthermore, the derivation contains an application of
Lemma E.1 to expand the effect of measuring T ij2 to measuring both registers T ij12. To apply
this lemma, we use the aforementioned fact that gi and gj remain hidden from the adversary.

The second, third, and fourth terms of the sum in the approximation of σ (see Equa-
tion (44)) have negligible weight inside Equation (45), since the probability of measuring an
all-zero string in the T ij1 registers is negligible in n whenever one or both are in the fully mixed
state τ . Additionally, the only components in Ã00 that survive are those that act trivially in
the computational basis on T ij2 . Hence,

Eq. (45) ≈negl(n) Eq. (38).

In case the measurement outcome is rejected by the MPC (i.e., it is anything other than rirj),
the output state can be derived using the same steps that were used to obtain Equation (33) in
the proof of Lemma 4.3. Up to an error negligible in n, it approximates
∑
b

˜̃AM
ijT ij

1 R
b T M

iT i
1

Cn+1

(
T M

jT j
1

Cn+1

(
Tr

T ij
2

[
(I−Πb,F )T

ij
12CNOTm`σCNOTm`†(I−Πb,F )†

]) )
˜̃A†b ⊗ |⊥〉〈⊥|

S .

The encoding under the keys E′i, E′j in Equation (43) can be regarded as two Clifford twirls,
because these keys are removed from the storage register S, and because the attack maps also
cannot depend on them, since they are unknown by the adversary.

The next step is to substitute the expression for σ that was derived in Equation (44). We
distinguish between the case b 6= 0, where I − Πb,F = I and thus all terms of Equation (44)
remain, and the case b = 0, where one has to more carefully count which (parts of the) terms
remain. To do so, observe that the first term is projected to non-zero in T ij12 whenever a2

ij is
nonzero. The other three terms are always projected to non-zero, up to a negligible contribution
of the all-zero string in the fully mixed state τ . In summary, exactly those terms ÃR

aij
12,c

ij
12

remain

for which (aij12, c
ij
1 ) 6= (04n+2, 02n+1).

Because the two Clifford twirls map the M ij registers to a fully mixed state, the four terms
in Equation (44) can be combined, resulting in the following output state in the reject case∑

b 6=0

∑
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= Eq. (40) + Eq. (41).

We have shown that the sum of the three terms of the output state in the simulated case
(both tests accept, the first test accepts but the second rejects, and the first test rejects) is
approximately equal to the sum of the two terms of the output state in the real case (the MPC
accepts the measurement outcome, or the MPC rejects the measurement outcome).

Case 3: only player i is honest. At first, it may seem that this is just a special case of the
previous one, where both players are dishonest. While this is true in spirit, we cannot directly
use the simulator from the previous case. The reason is syntactical: a simulator would not have
access to the registers M iT i12, because they are held by honest player i. Thus, the simulator
needs to differ slightly from the previous case. However, it is very similar, as is the derivation
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of the real/ideal output states. We therefore omit the full proof, and instead only define the
simulator.

The adversary again has three opportunities to attack: an attack A on the plaintext and
side-information register M jR, which happens before the ideal functionality IC is called; an
attack Ã on the output of IC in registers M jT j1R (right before player j sends their state to
player i); and an attack ˜̃A on M jT j12R, after an honest application of Wj (which we may assume
to happen without loss of generality), but before the computational-basis measurement of T2.
Given these attacks, define the simulator as follows.

Simulator 5. On input ρMjR from the environment, do:

1. Initialize bj = 0.

2. Run A on M jR.

3. Submit M j to the ideal functionality ICNOTm`◦C , and receive M jT j1 , containing an
encoding under a secret key Ej . (Honest player i holds the other output, encoded
under Ei.)

4. Run IdFilterMjT j
1 (Ã) on R. If the filter flag is 1, then set bj = 1.

5. Sample random W ′j ∈ C2n+1, and run XFilterT
j
2 ( ˜̃A) on M jT j1R, where ˜̃A may depend

on W ′j . If the filter flag is 1, then set bj = 1.

6. Submit bj to the ideal functionality, along with all other b` = 0 for ` ∈ IA \ {bj}.

Intuitively, the simulator tests whether player j sent the actual outcome of IC without altering
it (step 4 of the simulator), and whether player j left the computational basis of T2 invariant
before measuring it (step 5 of the simulator).

Case 4: only player j is honest. Similarly to the previous case, we need to provide a
separate simulator for the case where player i is dishonest, player j is honest, and (without loss
of generality) all other players are dishonest.

The adversary has three opportunities to attack: an attack A on the plaintext and side-
information register M iR, which happens before the ideal functionality IC is called; an attack
Ã on registers M ijT ij12R that is applied on the outputs of the ideal functionality and on the
extra registers T2, right before D is applied; and an attack ˜̃A on M ijT ij12R, right before the
measurement on T i2 (as part of player i’s test) and the application of Wj (so right before sending
the appropriate registers to player j). Given these attacks, define the simulator as follows.

Simulator 6. On input ρM iR from the environment, do:

1. Initialize bi = 0.

2. Run A on M iR.

3. Submit M i to the ideal functionality ICNOTm`◦C , and receive M iT i1, containing an
encoding under a secret key Ei. (Honest player j holds the other output, encoded
under Ej .)

47



4. Run ZeroFilterT
ij
2
(

IdFilterM ijT ij
1 (Ã)

)
on R. If the filter flag is 1, then set bi = 1.

5. Sample random V,W ′i ∈ C2n+1, and run XFilterT i
2
(

IdFilterMjT j
12( ˜̃A)

)
on M iT j1R,

where ˜̃A may depend on V and W ′i . If the filter flag is 1, then set bi = 1.

6. Submit bi to the ideal functionality, along with all other b` = 0 for ` ∈ IA \ {bi}.

Intuitively, the simulator tests (in step 4) whether player i leaves the states received from
the ideal functionality and player j intact, as well as the traps in T ij2 that are initialized to∣∣02n〉〈02n∣∣. In step 5, it tests both whether player i executes the test honestly by not altering
the computational-basis value of T i2, and whether he would give the correct (uncorrupted) state
to player j.

H Proof of Lemma 5.7

The following lemma captures the fact that CNOT1,c makes it hard to alter the outcome of a
computational-basis measurement with a (Pauli) attack Xb if b does not depend on c. We will
use this lemma later in the security proof of the measurement protocol.

Lemma H.1. Let m ∈ {0, 1}, and let ρ be a single-qubit state. Let p : {0, 1}n+1 → [0, 1] be a
probability distribution, and un the uniform distribution on {0, 1}n. Then∥∥∥∥∥∥ E

b∼p
c∼un

〈m,m · c|XbCNOT1,c (ρ⊗ |0n〉〈0n|) CNOT†1,cXb |m,m · c〉 − p(0n+1) 〈m| ρ |m〉

∥∥∥∥∥∥
1

6 2−n.

Proof. By commutation relations between CNOT and X, we have that for all b and c,

XbCNOT1,c = CNOT1,cXb⊕(0,b1·c),

where b1 denotes the first bit of b. Furthermore, CNOT1,c |m,m · c〉 = |m, 0n〉. Using these two
equalities, we have

E
b∼p
c∼un

〈m,m · c|XbCNOT1,c (ρ⊗ |0n〉〈0n|) CNOT†1,cXb |m,m · c〉

= E
b∼p
c∼un

〈m, 0n|Xb⊕(0,b1·c) (ρ⊗ |0n〉〈0n|) Xb⊕(0,b1·c) |m, 0n〉 . (46)

Let us consider which values of b result in a non-zero term. In order for the last n qubits to be
in the |0n〉〈0n| state after Xb⊕(0,b1·c), it is necessary that b ⊕ (0, b1 · c) ∈ {(0, 0n), (1, 0n)}. By
considering the two possible cases b1 = 0 and b1 = 1, we see that the only two values of b for
which this is the case are b = (0, 0n) and b = (1, c). Thus Equation (46) equals

E
c∼un

p(0n+1) 〈m, 0n| (ρ⊗ |0n〉〈0n|) |m, 0n〉 +p(c) 〈m, 0n|X1,0n (ρ⊗ |0n〉〈0n|) X1,0n |m, 0n〉

= p(0n+1) 〈m| ρ |m〉 + E
c∼un

p(c) 〈m+ 1| ρ |m+ 1〉

≈2−n p(0n+1) 〈m| ρ |m〉 .

The last step follows from the fact that Ec p(c) = 2−n.
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We now move on to proving the security of Protocol 5.6 by showing that its outcome re-
sembles that of the ideal functionality.

Proof of Lemma 5.7. Let player i be the player holding (the encoding of) the state in wire w
(assume, for simplicity, that w is the only wire in the computation). If player i is honest, then
it is simple to check that the outcome is correct: the unitary V is designed so that, whatever
the first (data) qubit collapses to, all other qubits that appear in s measure to the same value.
In step 4, the MPC checks that this is indeed the case, and stores the measured value in the
state register.

For the rest of this proof, we will assume that player i is dishonest. The other players do
not play a role, except for their power to abort the ideal functionalities and/or MPC. We do
not fix which players in [k] \ {i} are honest: as long as at least one of them is, the encoding key
E will be unknown to the adversary.

In an execution of Π � IC , an adversary has two opportunities to influence the outcome:
before and after interacting with the ideal functionality for C. Before the adversary submits the
register M = Rin

i to IC , it applies an arbitrary attack unitary A to the register MR it receives
from the environment. (Recall that R is a side-information register.) Afterwards, it can act on
MT1 = Rout

i and R, and produces two bits (bi to signal cheating to IC , and b′i to signal cheating
to the MPC which is part of Π ), plus a bit string. We may assume, without loss of generality,
that the adversary first applies the honest unitary V , followed by an arbitrary (unitary) attack
B and subsequently by an honest computational-basis measurement of the registers MT1.

For any adversary, specified by the unitaries A and B, define a simulator S as follows:

Simulator 7. On input ρMR from the environment, do:

1. Run A on registers MR.

2. Sample a random F ∈ Cn+1 and a random r ∈ {0, 1}n+1.

3. Prepare the state F |r〉〈r|F † in a separate register XT1, and apply the map B to
XT1R, using the instruction F † instead of T .

4. Measure XT1 in the computational basis, and check that the outcome is r. If so,
submit M to I ◦C , along with a bit b = 0 (no cheating). Otherwise, submit M and
b = 1.

Throughout this proof, we decompose the attack B as

B =
∑

b,d∈{0,1}n+1

(
XbZd

)MT1 ⊗BR
b,d, (47)

and similarly as before, we abbreviate Bb :=
∑
dBb,d (and B0 for B0n+1).

We analyze the output state in registers RS (note that the MT1 registers are destroyed
by the measurement) in both the ideal and the real case, and aim to show that they are
indistinguishable, whatever the input ρMR was.

In the ideal (simulated) case, first consider the output state in case of accept. Write C (·)
for the map induced by the circuit C. Following the steps of the simulator, abbreviating
σ = AMRρMRA†, and decomposing B as in Equation (47), we see that the output in RS in
case of accept is
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∑
m∈{0,1}m

E
r
〈m|M CM

(
〈r|XT1 BXT1R

(
σ ⊗

(
F †F |r〉〈r|F †F

)XT1
)
B† |r〉

)
|m〉 ⊗ |m〉〈m|S

=
∑

m∈{0,1}

∑
b,d,b′,d′

E
r
〈m|M

(
CM

(
BR
b,dσB

†
b′,d′

)
⊗ 〈r|XbZd |r〉〈r|Zd′Xb′ |r〉XT1

)
|m〉 ⊗ |m〉〈m|S

=
∑

m∈{0,1}
〈m|M CM

(
BR

0 A
MRρMRA†B†0

)
|m〉 ⊗ |m〉〈m|S . (48)

The ideal reject case is similar, except we project onto I − |r〉〈r| instead of onto |r〉〈r|. The
output state is ∑

m∈{0,1}

∑
b 6=0n+1

〈m|M CM
(
BR
b A

MRρMRA†B†b

)
|m〉 ⊗ |⊥〉〈⊥|S

=
∑

b 6=0n+1

TrM
[
BR
b A

MRρMRA†B†b

]
⊗ |⊥〉〈⊥|S . (49)

In the real protocol, the unitary T does not reveal any information about c, so the attack
B is independent of it. This allows us to apply Lemma H.1, after performing a Pauli twirl to
decompose the attack B. Again abbreviating σ = AρA†, the state in the accept case is

=E
c

∑
m

〈r ⊕ (m,m · c)|MT1 BMT1RXrZsCNOT1,cE
†E
(
CM (σ)⊗ |0n〉〈0n|T1

)
E†ECNOT†1,cZsXrB† |r ⊕ (m,m · c)〉 ⊗ |m〉〈m|S

= E
c

∑
m,b

〈m,m · c|XbCNOT1,c
(
CM

(
BR
b σB

†
b

)
⊗ |0n〉〈0n|

)
CNOT†1,cXb |m,m · c〉 ⊗ |m〉〈m|

S

≈2−n Eq. (48).

For the last step, observe that the probabilities p(b) in the statement of Lemma H.1 are part of
Bb.

Similarly, the real reject state is

E
c

∑
m,b

∑
x6=(m,m·c)

〈x|MT1 XbCNOT1,c
(
CM

(
BR
b σB

†
b

)
⊗ |0n〉〈0n|T1

)
CNOT†1,cXb |x〉 ⊗ |⊥〉〈⊥|

S

≈2−n Eq. (49).

In summary, we have shown that the output state in the real case is close to Eq. (48) + Eq. (49),
for any input state ρMR provided by the environment E .

I Proof of Lemma 6.3

Before proving Lemma 6.3, we discuss the task of sampling in the quantum world.
Classically, some properties of a bit-string can be estimated just by querying a small fraction

of it. For instance, in order to estimate the Hamming weight w of a n-bit string x, one could
calculate the Hamming weight wS of a subset S of the bits of x and we have that w ∈ [wS −
δ, wS + δ] except with probability O(2−2δ2|S|).

Such a result does not follow directly in the quantum setting, since the tested quantum state
could, for instance, be entangled with the environment. However, Bouman and Fehr [BF10]
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have studied this problem in the quantum setting, and they showed that such sampling argu-
ments also hold in the quantum setting, but with a quadratic loss in the error probability. A
corollary of their result that will be important in this work is the following.

Lemma I.1 (Application of Theorem 3 of [BF10]). Let |φAE〉 ∈ (C2)⊗n ⊗ HE be a quantum
state and let B = {|v0〉 , |v1〉} be a fixed single-qubit basis. If we measure k random qubits of
TrE(|φAE〉〈φAE |) in the B-basis and all of the outcomes are |v0〉, then with probability 1 −
O(2−δ2k), we have that

|φAE〉 ∈ span
(
(Pπ |v0〉⊗n−t |v1〉⊗t)⊗ |ψ〉 : 0 6 t 6 δn, π ∈ Sn, |ψ〉 ∈ HE

)
).

We now proceed to the proof of Lemma 6.3.

Proof of Lemma 6.3. The simulator for ΠMS is similar to the composed simulator for ΠDec �
ΠC � ΠEnc, where C is the Clifford circuit of Protocol 2.8. The difference is that the input is
now chosen by player 1 instead of being given by the environment, and that each player tests if
the decoded qubit is correct. We make a small modification for each of the following cases:

Case 1: player 1 is honest. In this case, the simulator only needs to also set bi = 1 whenever
the adversary aborts after it receives the output of the ideal quantum computation in Step 3 of
Protocol 6.1. Otherwise, the simulator is exactly the same as the composed one.

Case 2: player 1 is dishonest. In this case, the simulator also tests if the decoded qubits
by the (simulated) honest players in [k] \ IA are indeed magic states of the correct form. More
concretely, the simulator also measures all the qubits that the simulated players receive in the
{|T〉 ,

∣∣∣T⊥〉} basis, and sets bi = 1 if any of the outcomes is
∣∣∣T⊥〉. Otherwise, the simulator

replaces the qubits in [`] \
(⋃

26i6k Si
)

by true magic-states |T〉, re-encodes them, and continues
the composed simulation. Notice that this change makes the simulator abort with the same
probability that an honest player would abort in Step 3.

We now argue that when there is no abort, the output of ΠMS is exponentially close to
that of IMS . Notice that picking the disjoint S2, ..., Sk ⊆ [`] uniformly at random is equivalent
to first picking {Si}i∈IA from [`], and then picking {Si}i 6∈A from the remaining [`] \ (

⋃
i∈A Si)

elements. From this perspective, if the honest players do not abort in Step 3, then Lemma I.1
implies that the state created by player 1 in the other positions [`]\

(⋃
i 6∈A Si

)
is O(2ε2(k−|IA|)n)-

close to the the subspace span
(

(Pπ |T〉⊗tn−j
∣∣∣T⊥〉⊗j) : 0 6 j 6 εtn, π ∈ Stn

)
. If we choose ε 6

1
2

(
1−

√
3/7

)
, by Lemma 2.7 and the union bound, the output of the distillation procedure is

O (tε)n
c

-close to |T〉⊗t. In this case, the output of ΠMS will be negl (n) close to encodings of
|T 〉⊗t, which is the output of IMS in the no-abort case.
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