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Abstract. A novel refinement measure for non-intrusive surrogate modelling of partial differential equations (PDEs) with uncertain parameters
is proposed. Our approach uses an empirical interpolation procedure, where the proposed refinement measure is based on a PDE residual and
probability density function of the uncertain parameters, and excludes parts of the PDE solution that are not used to compute the quantity of interest.
The PDE residual used in the refinement measure is computed by using all the partial derivatives that enter the PDE separately. The proposed
refinement measure is suited for efficient parametric surrogate construction when the underlying PDE is known, even when the parameter space
is non-hypercube, and has no restrictions on the type of the discretisation method. Therefore, we are not restricted to conventional discretisation
techniques, e.g., finite elements and finite volumes, and the proposed method is shown to be effective when used in combination with recently
introduced neural network PDE solvers. We present several numerical examples with increasing complexity that demonstrate accuracy, efficiency
and generality of the method.
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1. Introduction.
Uncertainty Quantification (UQ) has become increasingly important for complex engineering applications. Deter-
mining and quantifying the influence of parametric and model-form uncertainties is essential for a wide range of
applications: from turbulent flow phenomena [1, 2], aerodynamics [3], biology [4, 5] to design optimisation [6, 7, 8].

Numerical methods in UQ are often divided in two groups; intrusive and non-intrusive. We focus on non-intrusive
sampling methods, as they do not change the deterministic model and allow for the usage of black-box solvers. One
commonly used non-intrusive method is stochastic collocation [9], which uses a black-box to sample the deterministic
model several times in stochastic space, and interpolates these samples to construct a surrogate model. Commonly
used sets of interpolation nodes are the Gauss nodes [9] and Clenshaw-Curtis nodes [10]. The Gauss nodes possess
a high polynomial exactness, but are not nested, which makes them less attractive when the surrogate needs to be re-
fined. On the other hand, Clenshaw-Curtis nodes are nested and are suited for accurate surrogate modelling. However,
the number of samples increases exponentially with the number of dimensions of the stochastic space, i.e., the number
of uncertainties in the model. This phenomenon is known as the curse of dimensionality and limits the applicability
of stochastic collocation when the black-box is computationally expensive to sample from. As a remedy, alternatives
to the tensor based stochastic collocation were introduced, e.g., Leja-node stochastic collocation [11, 12], empirical
interpolation [13, 14, 15, 16], ‘best’ interpolation [17], and Smolyak sparse grids [18, 19]. These alternatives sample
the model adaptively in order to reduce the number of samples. Furthermore, empirical interpolation enhances adap-
tive sampling placement by incorporating knowledge from the underlying model in terms of the Partial Differential
Equation (PDE) residual, which is a measure of how well an approximation satisfies the model. Even though this
results in a significant decrease in the number of samples when compared to methods that do not take the model into
account, the method is still intractable for uncertainty propagation with a large number of uncertainties, as the empiri-
cal interpolation bases sample placement on the entire solution, rather than focusing on the Quantity of Interest (QoI).
Furthermore, when interested in the statistical properties of the QoI, e.g., mean and variance, using only the residual
as a measure for adaptive sampling placement is not efficient, as it does not utilise the Probability Density Function
(PDF), which is used in the calculation of these quantities.

In this work, an empirical interpolation procedure related to [14, 16, 17] is proposed, with the main differences
that: probability information is included in the sampling algorithm, fewer restrictions on the type of the PDE are
imposed, and the residual is based solely on the QoI and not on the entire PDE solution. A relation between the
error in the surrogate and the PDE residual is given, which justifies the residual as a refinement measure for surrogate
construction. Furthermore an alternative refinement measure, which incorporates the PDF, is proposed when interested
in the statistical properties of the QoI. Using both the residual and PDF as a measure for defining new sampling
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locations, leads to accurate statistical properties of the QoI, which converge significantly faster than the procedures in
[14, 16, 17]. Additionaly, it is shown that the proposed method is suited for efficient surrogate construction on complex
topologies, which is a common problem in the case of dependent input uncertainties. Our method does not require a
specific type of PDE discretisation, e.g., finite elements or finite volumes, and can therefore be used in combination
with new state-of-the-art neural network solvers [20]. A key part of our approach is the use of the PDE residual, which
is discussed later in more detail. In order to compute this residual, the black-box solver needs to give not only the
solution values, but also derivatives with respect to spatial/temporal coordinates. This introduces a small degree of
intrusiveness in the approach, although no changes to the model equations are necessary and our approach is therefore
still referred to as a non-intrusive approach. Finally, new methods for solving PDEs [20] can be used in combination
with our method without altering the black-box solver. As our approach is still considered to be non-intrusive and
uses a combination of the PDE residual and PDF of the uncertain parameters as a refinement measure, we refer to the
proposed method as Non-Intrusive PDE/PDF-informed Adaptive Sampling (NIPPAS).

This paper is outlined as follows: section 2 introduces the problem, section 3 introduces the new method and
proves that the proposed sampling procedure is suitable for accurate surrogate construction. After introducing the
proposed method, section 4 shows the individual steps of the method in more detail. Implementation details are
discussed in section 5, and section 6 demonstrates efficiency and accuracy of our method when applied to several
test-cases and compares the results with sparse grid interpolation and classical empirical interpolation.

2. Problem Description.
Quantifying the effects of parametric uncertainties in computational engineering typically is a three-step process

[21]; the input uncertainties are characterised in terms of a Probability Density Function (PDF); the uncertainties are
propagated through the model; and the outputs are post-processed, where the Quantity of Interest (QoI) is expressed
in terms of its statistical properties. In the present work we focus on the propagation step, and the input distributions
are assumed to be given. The underlying model is a PDE, which is assumed to be of the form

(2.1)
nl

∑
l=1

gl(z,x)Le
l (v

e;x) = S(z,x) , (x,z) ∈ D× Iz ,

which is supplemented with proper initial and boundary conditions. In (2.1), nl denotes the number of differential
operators in the PDE, z ∈ Iz ⊂ Rd a d-dimensional vector containing uncertain parameters with corresponding joint
PDF ρ(z), x ∈ D a vector containing spatial and/or temporal coordinates, Le

l are differential operators, gl are known
functions, S a source term, and ve(z,x) the exact solution of the PDE. This particular PDE-form assumes that the un-
certainties enter the equation via the source term S(z,x) and the functions gl(z,x) as parameters in front of differential
operators and allows the definition of a non-zero residual in the random space Iz. This PDE-form does not com-
prise all possible PDEs, but many PDEs with parametric uncertainties, e.g., isotropic diffusion equations, Newtonian
Navier-Stokes equations and advection-diffusion equations, may be rewritten in this form:

ve
t = z∆ve ,(2.2)

ve
t +(ve ·∇)ve =−∇pe

ρ
+ z∆ve ,(2.3)

ve
t + z1ve

x = z2ve
xx .(2.4)

Because the exact solution of (2.1) is often not available, a discrete solution vector v(z) is computed, e.g., via a
finite-difference method or finite-volume method, which satisfies a discretised form of (2.1) for z ∈ Iz:

(2.5)
nl

∑
l=1

Gl(z,X)Ll(v(z)) = S(z,X) , X ⊂ D,v ∈ RNPDE ,

where Ll : RNPDE →RNPDE are the discretised PDE operators, X = (x1, ...,xNPDE) is the computational grid in space and
time consisting of NPDE grid points, Gl ∈RNPDE×NPDE are diagonal matrices with diagonal entries Gl,ii(z,X)= gl(z,Xi),
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and S(z,X) ∈ RNPDE is the source term evaluated on the computational grid. The initial and boundary conditions are
comprised in the source term S. The uncertainties enter the equations via the source term and the matrices Gl , which
comprises the function gl evaluated on the computational grid X .

We are interested in the dependence of the QoI on the parameters z. The QoI u(z) is assumed to be a set of linear
combinations of the solution vector v, i.e., u(z) = Qv(z), where

(2.6) Q : RNPDE → RNQoI ,

is a matrix that maps the solution vector v to the QoI u. This assumption allows for a suitable refinement measure for
sampling, which is introduced later. By assuming linearity of Q we limit the space of possible QoIs, but this limitation
is not too severe as many quantities, e.g., integral quantities and mean quantities, can be written in this form.

The goal in this work is twofold: either construct an accurate surrogate for u(z) or calculate statistical properties
of the QoI with respect to the uncertain parameters z. Calculating statistical properties is achieved by constructing a
surrogate, which is used in combination with Monte-Carlo sampling to extract the statistical quantities. However if
we are only interested in the statistical properties of the QoI, the surrogate does not need to be accurate everywhere,
as some areas of the random space contribute little when calculating these statistical properties. Nevertheless, whether
we are interested in constructing an accurate surrogate to study the dependency of the QoI on the parameters z, or
whether we are interested in the statistical properties of the QoI, a surrogate needs to be constructed. We construct a
surrogate by applying a PDE-solver to (2.5) and by sampling values from the unknown u(z). We sample the QoI u(zi)
at N +1 locations {zi}N

i=0 in the random space Iz. The QoI evaluations u(zi) are calculated as follows

(2.7)
nl

∑
l=1

Gl(z,X)Ll(v(z)) = S(z,X)︸ ︷︷ ︸
solve PDE for z=zi

⇒ u(zi) = Qv(zi) .

The PDE-solver is assumed to be a black-box, which means that we supply inputs and receive outputs, without the
possibility to observe intermediate steps. After sampling, a surrogate model ũ(z) is constructed by means of polyno-
mial interpolation on the samples {(zi,u(zi))}N

i=0. The interpolant is constructed individually for each element of u,
such that:

(2.8) ũ j(z)≈ u j(z), for all z ∈ Iz , with ũ j(zi) = u j(zi) i = 0, ...,N ,

where u j corresponds to the j-th element of the vector u. The element-wise approximation for the entire QoI vector
u is denoted as ũ. Polynomial interpolation is used instead of polynomial regression as it allows for more efficient
adaptive refinement and has extensive theoretical grounding. When interpolating, placing a new sample ensures that
the new surrogate model is accurate in a neighbourhood around the newly added sample and has therefore immediate
impact on the surrogate in the sampled area. This ensures improved accuracy near the new sample location, something
which is not necessarily the case when using regression. Choosing proper sample locations zi is crucial for stable and
accurate interpolation and this will be the main focus of this paper.

Many UQ methods focus either on the PDF [9] or on the PDE residual [14] for adaptive sample placement.
The PDF indicates which values for z are likely to happen and are therefore important to sample. The PDE residual
however gives an indication where surrogate refinement is needed in order for the surrogate to satisfy the underlying
PDE. In this paper we propose a novel strategy, in which both the importance of the PDE and PDF is taken into account
in determining the sample locations. Finding a set of sample locations, which resembles the importance of both the
underlying PDE and the PDF, is the goal of this paper.

3. Non-Intrusive PDE/PDF-informed Adaptive Sampling.
The locations of the interpolation samples determine the accuracy and stability of the surrogate model. We construct

a set of interpolation nodes adaptively, by using knowledge from the underlying PDE as refinement measure.
3



Residual definition.
For this purpose we define the PDE residual, which indicates how well an approximate solution satisfies the discretised
PDE in the random space Iz. An intuitive definition of the residual can be obtained by first constructing approximations
˜Ll(v(z)) in the random space based on evaluations Ll(v(zi)), and substituting these approximations in the discretised

PDE (2.5):

(3.1) Rv(z) :=
nl

∑
l=1

Gl(z,X) ˜Ll(v(z))−S(z,X) .

The quantity Rv indicates how well the approximations ˜Ll(v(z)) satisfy the discretised PDE in the random space Iz.

Relation between residual and surrogate error.
The residual Rv(z) is a quantity that indicates the quality of a surrogate by substituting the surrogate into the discretised
PDE and by calculating the error. The next theorem states a relation between the residual Rv and the error in the
surrogate ũ for linear PDEs, which is used later to define a suitable refinement measure for placing new samples in the
random space.

THEOREM 3.1. Assume the following:
• Bounded 1D random space Iz = [zlb,zrb].
• Well-posed discretised linear PDE of the form

(3.2)
nl

∑
l=1

Gl(z,X)Ll(v(z)) = S(z,X) , X ⊂ D,v ∈ RNPDE .

• Ll are discretised linear differential operators, i.e., matrices satisfying:

(3.3) Ll(v+w) = Llv+Llw .

• Gl(z,X) are known matrices as functions of z and X.
• QoI vector can be written as u = Qv, where Q ∈ RNQoI×NPDE .

Then the following holds:

(3.4) Q

(
nl

∑
l=1

Gl(z,X)Ll

)−1

(Rv(z)) = ũ(z)−u(z) ,

where ũ is the interpolant in the random space Iz for each element of the vector u, based on the samples {(zi,u(zi)}N
i=0.

Proof. Interpolation in 1D is unique and for convenience we choose the Lagrange basis `i(z), where `i is the i-th
Lagrange basis polynomial defined as:

(3.5) `i(z) =
N

∏
k=0
k 6=i

z− zk

zi− zk
.

The approximations ˜Ll(v(z)) are then given by

(3.6) ˜Ll(v(z)) =
N

∑
i=0

`i(z)Ll(v(zi)) ,

which can be rewritten due to the linearity of L as

(3.7) ˜Ll(v(z)) = Ll(
N

∑
i=0

`i(z)v(zi)) = Ll(ṽ(z)) .

4



Substitution into (3.1) gives

(3.8) Rv(z) =
nl

∑
l=1

Gl(z,X)Ll(ṽ(z))−S(z,X) .

Subtracting equation (3.2), results in

(3.9) Rv(z) =
nl

∑
l=1

Gl(z,X)Ll(ṽ(z))−
nl

∑
l=1

Gl(z,X)Ll(v(z))︸ ︷︷ ︸
S(z,X)

.

This can be rewritten by using linearity of L as

(3.10) Rv(z) =
nl

∑
l=1

Gl(z,X)Ll(ṽ(z)−v(z)) .

Using well-posedness of the underlying discretised PDE, we can write

(3.11)

(
nl

∑
l=1

Gl(z,X)Ll

)−1

(Rv(z)) = ṽ(z)−v(z) ,

which can be multiplied by the matrix Q to obtain the desired result

(3.12) Q

(
nl

∑
l=1

Gl(z,X)Ll

)−1

(Rv(z)) = ũ(z)−u(z) ,

Theorem 3.1 states a relation between the residual and the error in the QoI surrogate. From this relation we can derive
the error bound stated in the following corollary.

COROLLARY 3.2. Assume the following:
• The conditions of theorem 1 are satisfied, such that (3.4) holds.

Then the error ‖ũ(z)−u(z)‖2 satisfies

(3.13) ‖ũ(z)−u(z)‖2 ≤ ‖Q‖2

∥∥∥∥∥∥
(

nl

∑
l=1

Gl(z,X)Ll

)−1
∥∥∥∥∥∥

2

‖Rv(z)‖2 ,

where ‖ · ‖2 is the vector 2-norm or its induced matrix norm.

Corollary 3.1 states an upper bound for the error in the surrogate in terms of the residual and the discretised differential
operator, which gives an indication where the surrogate ũ deviates significantly from the exact solution. Equation
(3.13) holds for any induced matrix norm. In this paper we adopt the 2-norm.

Refinement measure for adaptive sampling.
The goal is to sample the QoI in the random space Iz such that we can construct an accurate surrogate model for the
QoI by means of polynomial interpolation. Theorem 1 shows that a suitable refinement measure for a linear underlying
PDE, is given by

(3.14) R∗(z) = Q

(
nl

∑
l=1

Gl(z,X)Ll

)−1

Rv(z) ,

5



If samples are placed such that R∗ converges to zero, then the error in the surrogate also converges to zero. Using
polynomial interpolation for the approximations ˜Ll(v(z)) in Rv ensures that Rv is close to zero in the neighbourhood
of the interpolation samples. The quantity

(
∑

nl
l=1 Gl(z,X)Ll

)−1 is a function of z, but does not depend on the choice
of interpolation samples and therefore acts as a scaling function for the residual Rv. This justifies using a greedy
approach for placing new samples as follows:

(3.15) znew = argmax
z∈Iz
‖R∗(z)‖2 .

The construction of ˜Ll(v(z)) in Rv is a crucial step in the NIPPAS method and is therefore discussed in section 4 in
detail. However, when using R∗ as a refinement measure, there are two issues:

• The term
(
∑

nl
l=1 Gl(z,X)Ll

)−1 is a-priori unknown and expensive to compute.
• Equation (3.14) holds for linear PDEs only.

The inverse of the full discretisation matrix is unknown in general and cannot be used for adaptive sample placement,
as it is expensive to compute as a function of z. However, as this term only acts as a scaling function, omitting this
term may result in a compact refinement measure for the QoI, which is then computed as follows:

(3.16) R(z) := QRv(z) .

Notice that in comparison to R∗, R can be computed for both linear and non-linear PDEs. Intuitively, we might expect
that the refinement measure R(z) produces accurate and stable interpolants in combination with the greedy sample
placement, because large errors and/or instabilities in the surrogate would lead to large errors in the residual, which
then triggers new sample placement due to the greedy approach. A commonly used quantity that is used to indicate the
quality of a set of sample locations is the Lebesgue constant [22]. We note that our proposed greedy approach does not
necessarily result in sample locations with an optimal Lebesgue constant, but effectively uses the model information
to sample regions of interest, similar to other approaches [11, 14, 17, 23].

To summarise, R is our proposed refinement measure, as it is less expensive to compute and more generally
applicable when compared to R∗. A numerical comparison for both refinement measures is given in section 6 for a
case where R∗ can still be computed. Furthermore, the effectiveness of using R as a refinement measure for the case
of non-linear PDEs is demonstrated numerically in section 6.

Incorporating PDF in refinement measure.
Although using the residual R(z) as a refinement measure for adaptive sampling may result in stable and accurate
surrogate models, the sampling procedure may put too much resources in areas that contribute little to the statistical
quantities. Such areas are of little interest when we compute statistical quantities like the mean

(3.17) E[u] :=
∫

Iz
ρ(z)u(z)dz .

These statistical quantities are calculated by weighing the QoI with the PDF and integrating the resulting quantity
over the parameter space Iz. Areas of Iz where both the PDF and QoI are low, contribute little to the integral in
(3.17) and therefore an alternative refinement measure is proposed, which is especially suited when one is interested
in accurate statistical quantities rather than an accurate surrogate model. The proposed refinement measure is based
on the following theorem:

THEOREM 3.3. Assume the following:
• The conditions of theorem 1 are satisfied, such that (3.4) holds.
• E[ũ] and E[u] are finite.

Then the following holds:

(3.18) ‖E[ũ−u]‖2 ≤ (zrb− zlb) sup
z∈[zlb,zrb]

s(z)ρ(z)‖Q‖2‖Rv(z)‖2 ,
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where

(3.19) s(z) =

∥∥∥∥∥∥
(

nl

∑
l=1

Gl(z,X)Ll

)−1
∥∥∥∥∥∥

2

.

The proof of the theorem follows the proof of theorem 3.1 and bounds the integral by multiplying the domain length
(zrb− zlb) with a bound for the integrand. The full proof is not shown to avoid repetitiveness.

Theorem 3.3 states a relation between the residual and the error in the mean of the QoI. The theorem shows that
a proper refinement measure again includes the inverse of the full differentiation matrix. As stated before, this value
is unknown in general as a function of z and is expensive to sample. Therefore the proposed refinement measure for
calculating statistical quantities is given by

(3.20) Rρ(z) := ρ(z)QRv(z) = ρ(z)R(z) ,

and new samples are placed using the greedy approach

(3.21) znew = argmax
z∈Iz
‖Rρ(z)‖2 .

Refinement measure (3.20) will not place new samples in parts of the random space where the PDF is zero, but is
still able to place samples at “rare events” in the random space, i.e., parts where the PDF is small but where the PDE
residual is large.

A comparison of the refinement measures (3.16) and (3.20) for convergence of both surrogate construction and
statistical quantity calculation are given in section 6.

Overview of method.
Residual definitions (3.16) and (3.20) are used in the NIPPAS method to adaptively refine a surrogate model ũ(z). In
detail, the NIPPAS method comprises the following steps:

1. initial sample placement
2. refinement loop:

(a) compute residual R(z) or Rρ(z)
(b) check stopping criterion
(c) find znew = argmaxz∈Iz ‖R(z)‖2 or ‖Rρ(z)‖2
(d) sample model at znew

3. interpolate resulting samples
A schematic representation of the methodology is shown in figure 1. The choice of using either refinement measure
(3.16) or (3.20) depends on whether the interest is in constructing an accurate surrogate or calculating accurate sta-
tistical quantities. The individual steps of the proposed surrogate model construction are discussed in detail in the
next section. Before discussing the NIPPAS steps, the connection is shown between the NIPPAS method and general
empirical interpolation method.

The refinement measures were derived from theory, which holds for linear PDEs. We will show in section 6
that the proposed refinement measures also work for a non-linear underlying PDE. Stable polynomial interpolating
surrogates show clustering samples at the boundary of the domain [22]. Even though stability is not proven for the
proposed method, it follows intuitively from using the greedy approach in combination with the residual. If samples do
not cluster at the boundaries, then the approximations used to calculate the residual become unstable. These unstable
interpolants produce large errors near the boundary of the domain because of the Runge-phenomenon. This results in
large residual values, which leads to sample placement near the boundary of the domain. Lastly, note that the sample
locations from the NIPPAS are in general scattered, which complicates constructing an interpolant on these samples.
This aspect will be discussed in more detail in section 5

Connection with empirical interpolation.
Our NIPPAS procedure has similarities to the classical empirical interpolation procedure [14]. The main difference

7



initial sample placement interpolate samples
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compute residual
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find maximum

R

z
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II-cII-d

stopping criterion

II-bII-a III

Goal: construct surrogate for QoI based on smart sampling

yes

no

‖R‖2 < threshold

Fig. 1: Schematic representation of the methodology.

between general empirical interpolation and NIPPAS is the way in which the residual is constructed. In empirical
interpolation the residual is based on the entire spatial/temporal surrogate ṽ, rather than focussing on the QoI ũ.
Consequently, the residual in empirical interpolation is defined as

(3.22) REI(z) =
nl

∑
l=1

gl(z,X)◦Ll(ṽ(z)) ,

which has the advantage that one only needs to approximate a single term, i.e., ṽ(z), instead of constructing several ap-

proximations ˜Ll(v(z)). However, the disadvantage is that the refinement measure REI adds a degree of intrusiveness as
it assumes that the operators Ll are known completely [15], which is not always the case and restricts the applicability.

An advantage of the NIPPAS is that it focuses the sample placement on regions where ũ needs to be refined, rather
than where ṽ needs to be refined. The NIPPAS therefore focuses on areas in the parameter space that are most relevant
for constructing an accurate surrogate for u, which results in faster convergence. The disadvantage is that the NIPPAS
requires a small alteration of the black-box, which will be discussed in section 4.

4. NIPPAS surrogate construction.
The NIPPAS procedure when using refinement measure R is shown in this section; the procedure when using Rρ is

analogous. A schematic overview of the NIPPAS procedure is shown in figure 1.

I. Placement of one random initial sample.
The adaptive algorithm starts by performing initial sampling in the random space. Multiple initial sample configura-

tions can be considered. It is advised to start the method with a single Monte-Carlo sample in the random space. This
initialisation is used in the remainder of this paper. The initial sample location and corresponding model evaluation is
denoted as (Z0,U0) = (z0,u(z0)). More generic, a subscript i indicates the number of adaptively placed samples, i.e.,
Zi = {z j} j=i

j=0 and Ui = {u(z j)} j=i
j=0.

8



II-a. Non-intrusive computation of residual.
The refinement loop starts with computing the residual (3.16).

The residual requires the approximations ˜Ll(v(z)). These approximations can be easily constructed for a given
sample set Zi by applying an interpolation operator P (to be discussed in section 5) on the values {Ll(v(zi))}i

j=0.
However, the black-box solver in general only returns the solution values v(zi), and should be altered such that it also
returns the values of the individual discretised differential operators Ll(v(zi)). These discretised partial derivatives
are used to compute the solution values within the black-box and may be output alongside the solution when sampling
the black-box. This requires only a slight alteration of the black-box, without changing the underlying PDE, and
therefore keeps the methodology non-intrusive. To summarise, the approximations of the differential operator terms
are given by

(4.1) Ll(v(z))≈ ˜Ll(v(z)) = P[(Zi,(LlV )i] , l = 1, ...,nl ,

where

(4.2) (LlV )i = {Ll(v(z0)), ...,Ll(v(zi))} , l = 1, ...,nl ,

which are the values that should be returned by the black-box solver alongside the solution values v. After approxi-
mating each differential operator term in the random space through interpolation, the interpolants are substituted into
(3.16), which returns a function in the variable z. Notice that if the black-box solves (2.5) with negligible round-off
and iteration error, then we satisfy

(4.3) R(zi) = 0, i = 0, ..., i ,

which attains local maxima between the samples, as is shown in figure 1.

II-b. Stopping criterion based on the residual.
The refinement loop has to be terminated after a number of iterations.

For this purpose we need a stopping criterion, which reflects the quality of the surrogate model. Equation (3.13)
can be used as a stopping criterion. However, (3.13) does not hold for non-linear PDEs and computing the required
norms would be intractable in general. Ideally, the residual will show a similar convergence as the error in the sur-
rogate. If this is the case, the magnitude of the residual is not only useful to adaptively sample the black-box, but it
also serves as a reliable indication for the quality of the surrogate. Therefore, the refinement loop is stopped when the
following criterion is met:

(4.4) ‖R(z)‖2 < ε ,

where ε is a specified threshold.

II-c. Find the location where the residual attains maximum.
If criterion (4.4) is not met, the surrogate is refined by placing an extra sample according to (3.16). In other words, we
need to solve the following global optimisation problem in Iz:

(4.5) zmax = argmax
z∈Iz
‖R(z)‖2 .

The complexity of this global optimisation problem depends on characteristics of the objective function R(z). The
residual is in general not smooth and has multiple local maxima. Therefore, in order to solve (4.5), a particle swarm
method from the Global optimisation toolbox in Matlab is used, which is able to solve non-smooth global optimisation
problems.

The solution of the global optimisation problem (4.5) is denoted zmax and is used in the next step to refine the
surrogate.

9



II-d. Sample the model at the new sample location.
To refine the surrogate model, we add the new sample zmax to our current sample set Zi:

Zi+1 = Zi∪ zmax ,(4.6)
Ui+1 =Ui∪u(zmax) ,(4.7)

(LlV )i+1 = (LlV )i∪Ll(v(zmax)) , l = 1, ...,nl .(4.8)

The new sample set (LlV )i+1 is suited for constructing an improved approximation L̃l(v), see equation (4.1), which is
used in the next iteration of the refinement loop.

III Final surrogate is constructed by interpolation.
After the stopping criterion (4.4) is met, the refinement loop terminates and we end up with a sample set Zn and an
evaluation set Un. In order to construct the final surrogate, we apply the interpolation operator P on the final sample
set, leading to

(4.9) ũ(z) = P[(Zn,Un)] ,

where ũ is expected to be an accurate approximation to u. If wanted, statistical quantities like (3.17) can be computed
by using this surrogate to compute the desired integrals.

5. Implementation details.
In this section some implementation details are discussed.

Surrogate modelling by polynomial interpolation for scalar QoIs.
Interpolation for a scalar QoI is discussed here. Interpolation for a vector QoI is achieved by applying the interpolation

operator to each element of the QoI vector individually.
Assume we have a sample set Z = {zi}N

i=0 and corresponding QoI values U = {u(zi)}N
i=0. As mentioned in

section 4, we denote by P the interpolation operator which acts on the set (Z,U). Polynomial interpolation aims to
find a polynomial ũ, such that:

(5.1) ũ(zi) = P[(Z,U)](zi) = u(zi) .

The polynomial ũ serves as a surrogate for u(z). Finding ũ is straightforward in a 1D random space, but interpolation
in multi-dimensional random spaces is not unique, and the result is influenced by the choice of interpolation basis.
Additionally, the sample locations from our adaptive sampling are scattered, which further complicates the interpola-
tion procedure. In order to make the interpolation basis unique, graded lexicographic ordered Chebyshev polynomials
{φi(z)}N

i=0 are used, which are known for their stability when using them for interpolation [22]. The interpolant is
found by solving a Vandermonde system [9]:

(5.2)

 φ0(z0) . . . φN(z0)
...

...
φ0(zN) . . . φN(zN)


︸ ︷︷ ︸

A

 c0
...

cN

=

 u(z0)
...

u(zN)

 ,

which results in the interpolant

(5.3) ũ(z) =
N

∑
i=0

ciφi(z) .

The Vandermonde matrix A can become ill-conditioned when increasing the number of samples [24], which makes
solving (5.2) difficult. Nevertheless, other approaches that circumvent solving (5.2) [25, 26, 27] do not have the
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flexibility to reuse the inverse computations of previous iterations for solving the larger system at the current iteration.
This leads to a significant increase in computational expense as the adaptive sampling placement is done iteratively.
Therefore, Vandermonde interpolation is used in the NIPPAS method, and a robust procedure for solving the possibly
ill-conditioned system (5.2) should be used.

Several methods exist for solving such ill-conditioned systems of equations: regularisation [28], singular value
decomposition [29], pivoted LU-factorisation [30], and pseudo-inversion [31]. In practice, computing the pseudo-
inverse is often not advised due to its computational cost, which is O(N3). However, our adaptive sampling algorithm
requires the solution of multiple linear systems with the same Vandermonde matrix A at each iteration, which makes
the use of a pseudo-inverse beneficial. Nevertheless, computing the full pseudo-inverse at each iteration would be
inefficient and therefore Greville’s algorithm [32] is used to update the pseudo-inverse after adding a new row/column
to A. Consequently, interpolating polynomials can be constructed without solving the full linear system (5.2) and
without computing the full pseudo-inverse each time the interpolation operator P is applied. The implementation of
Greville’s algorithm is discussed in more detail in the next subsection.

Rank-one update of pseudo-inverse.
As mentioned before, when adding a new sample to the sample set, an extra row and column are appended to the
existing Vandermonde matrix (5.2). Therefore, a new pseudo-inverse needs to be determined for this new Vander-
monde matrix [32]. Instead of calculating the new entire inverse, Greville’s algorithm is used to iteratively compute
the pseudo-inverse of a given matrix A.

Assume we have a matrix A ∈ RN×N and its corresponding pseudo-inverse G. When a column is added to A, i.e.,

(5.4) A′ = [A a] ,

then Greville’s algorithm computes the pseudo-inverse of the new matrix A′ recursively. In more detail, the new
pseudo-inverse G′ of A′ is given by [33]

(5.5) G′ =
(

G−dbT

bT

)
,

where

a(1) = AGa , a(2) = a−a(1) ,(5.6)
d = Ga ,(5.7)

bT =

 (a(2))
H

(a(2))
H

a(2)
, if a(2) 6= 0 ,

(1+dT d)−1dT G , if a(2) = 0 ,

(5.8)

where the H denotes the conjugate transpose. Notice that our refinement loop adds both a row and a column to the
Vandermonde matrix (5.2), each time a new sample is added. Therefore the procedure described above has to be
performed twice, first adding a column A′ = [A c], then adding a column rT to the transpose of the resulting matrix,
i.e., (A′′)T = ((A′)T rT ).

A recursive algorithm for calculating the pseudo-inverse is necessary to reduce the algorithmic complexity of the
adaptive sampling procedure. For an N×N matrix, Greville’s algorithm performs an inverse update with complexity
O(8N2), while computing the full inverse directly has complexity O(N3) [32] and becomes infeasible quickly in high
dimensional spaces Iz, where the number of samples required for constructing an accurate surrogate is high.

Algorithmic complexity scales well for high dimensions.
The algorithmic complexity gives an estimate on how the computational effort scales with the number of samples and
the dimension of the random space.

The computational complexity is determined by the complexity of the individual parts; updating pseudo-inverse,
interpolation, and particle swarm optimisation. First we discuss the algorithmic complexity of a single iteration in the
refinement loop.
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Updating the pseudo-inverse is achieved by using Greville’s algorithm. Assume a row and column are added to
an existing pseudo-inverse of dimensions i× i. Using Greville’s algorithm, this can be done in O(8i2) operations [32]
(discussed in section 5).

The interpolation procedure is fairly cheap when the pseudo-inverse is available. In detail, when interpolating on
i sample locations, solving (5.2) only requires a matrix-vector multiplication of O(i2) operations.

The complexity of the particle swarm optimisation is determined by the number of particles used and the max-
imum number of iterations. In our case we use a particle swarm of Np particles and a maximum of Nit iterations.
Typical values for Np and Nit are 100dim(Iz) and 200dim(Iz), respectively. In the worst case, the number of maximum
iterations is reached and we have to evaluate the residual at NpNit locations, without the guarantee to have found an
optimum. Moreover, if we have i samples, then the residual is a polynomial of degree i−1 and can be evaluated with
Horner’s [24] method in O(i) operations. This results in a total cost of the particle swarm optimisation for a single
iteration of the surrogate construction of O(idim(Iz)

2nl), where nl is the number of terms in the PDE (2.5).
The total cost of each iteration in the refinement loop is now given by:

(5.9) O( i2︸︷︷︸
Greville

+ i2︸︷︷︸
interpolation

+ idim(Iz)
2nl︸ ︷︷ ︸

particle swarm optimisation

) .

Hence, if we run the refinement loop N times, a conservative upper bound for the total algorithm complexity becomes

(5.10) O(N3 +N2 dim(Iz)
2nl) .

Notice that the complexity depends quadratically on the dimension of the random space. However, the number of
samples necessary for achieving a specified accuracy in higher-dimensional random space will generally increase with
the number of dimensions, and computational cost will therefore increase faster than quadratic with the dimension of
the random space.

6. Results.
In this section we present multiple examples that illustrate the efficiency of our method. In order to study and

compare convergence properties, two error measures are defined, one for the error in the statistical quantities, i.e.,
mean, variance, etc., and one for the error in the surrogate.

The error in the k-th statistical moment is the 2-norm of the difference vector between the exact and the approxi-
mate statistical moment as computed in (3.17):

(6.1) e(k)ρ := ‖E[uk− ũk]‖2 =

∥∥∥∥∫Iz
ρ(z)(uk(z)− ũk(z))dz

∥∥∥∥
2
,

where the integral is calculated using numerical integration with negligible error, i.e., a tensor based Gauss quadrature
rule with 100 nodes in each direction. The uncertainties are assumed to be uniformly distributed, ρ(z) = 1, unless
stated otherwise.

Secondly, the error in the surrogate is computed as follows:

(6.2) e :=
1

NMC

NMC

∑
i=1
‖u(zi)− ũ(zi)‖2 ,

where the sum is taken over a large number of uniform Monte-Carlo samples (NMC) in the random space.
The first two test-cases consider a steady and unsteady advection-diffusion equation, respectively. They demon-

strate the difference between our approach and conventional empirical interpolation, effect of discretisation on error
convergence, difference between refinement measures (3.16) and (3.20), and applicability to non-hypercube domains.
The third and last test case considers the non-linear shallow water equations and demonstrates how our method can be
used in combination with a new state-of-the-art neural network based PDE solver.
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Steady-state advection-diffusion equation.
In this part we consider a test-case such that the assumptions in theorem 1 hold and we study the following:

• Comparison of refinement measure (3.16) and (3.14).
• Asymptotic sample distribution.
• Comparison between NIPPAS and conventional empirical interpolation.

The underlying PDE is the dimensionless steady state advection-diffusion problem given by:

(6.3) Re(z)vx− vxx = 0 , v(0,z) = 0, v(1,z) = 1, x ∈ [0,1] ,

where Re(z) is the Reynolds number, which is assumed to be uncertain and a function of z. The equations are dis-
cretised using a finite-difference approach on an equidistant grid with a resolution of ∆x with NPDE grid points. The
solution vector on the computational grid v(z) ≈ v(x), with xi = i∆x for i = 1, ...,NPDE , is obtained by solving the
following linear system:

(6.4) Re(z)L1v−L2v = S(z) ,

where

L1 =
1

2∆x


0 1
−1 0 1

. . . . . . . . .
−1 0 1
0 −1 0

 , L2 =
1

∆x2


−2 1
1 −2 1

. . . . . . . . .
1 −2 1
0 1 −2

(6.5)

S(z) =



0
...
...
0

−Re(z)
2∆x −

1
∆x2

 ,(6.6)

where the boundary conditions enter the discretised equation via the vector S. Notice that the discretised PDE satisfies
the assumptions of theorem 1. Example solutions for different Reynolds numbers are shown in figure 2.

v

x0 1

1

1

Re

5
10
100

Fig. 2: Example solutions for different Reynolds number. The solution are computed on a computational grid with ∆x = 10−3.

In order for the discretisation to produce stable results, the cell Reynolds number Re∆x = Re∆x should satisfy Re∆x < 2,
which is satisfied by picking ∆x sufficiently small, which is ∆x = 10−3 in our case (NPDE −1000).
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There is no significant difference in convergence between refinement measures R and R∗

The difference between refinement measures R and R∗ is the incorporation of the scaling term
(
∑

nl
l=1 Gl(z,X)Ll

)−1 in
R∗. This scaling term is in general expensive to compute as a function of z and is therefore often infeasible to incor-
porate in the refinement measure. However, for this simple test-case we can compute this scaling term as a function
of z and are able to study its effect on sample placement. In order to compare the two refinement measures R (3.16)
and R∗ (3.14), three different functional forms for Re(z) are used, where z is uniformly distributed between [0,1]. The
three different functional forms are given by:

Re1(z) = 99z+1 ,(6.7)

Re2(z) = 102z ,(6.8)

Re2(z) = 10−2(z−1) ,(6.9)

and are shown in figure 3. All three functions range from 1 to 100 for z ∈ [0,1], but have completely different shapes,
which influence the scaling function and therefore the sample locations when using refinement measure R∗.

A comparison between the two refinement measures R and R∗ is made by choosing Q = I, i.e., we are interested
in the entire solution u = v as a function of z. The adaptive sample placement starts by placing a single uniformly
distributed sample in the random space. The solution values and derivative values vx := L1v and vxx := L2v are sampled
at the sample location. These values are used to construct the interpolants which are required for computing Rv. The
convergence of the error in the surrogate ṽ(z) for both refinement measures and the different Rei is shown in figure 3.

10-15

10-10

10-5

105

10
0

#samples00 50

e

error in surrogate

refinement measure

z0 1

1
empirical CDF of sample distribution

C
D

F

z
1

1

100
Reynolds number functions

Re

Re1 Re2 Re3 R (27) R* (25)
Reynolds function

Fig. 3: The results for the steady-state advection diffusion equation for the two refinement measures R and R∗ and three different
Reynolds functions in the random space. The solutions are computed using ∆x = 10−3.

The error in the surrogate converges exponentially fast to machine precision for both refinement measures without any
significant difference. Samples are placed at similar locations for both refinement measures, which is shown in the
empirical CDF plot in figure 3. Regarding stability of the interpolant, a clustering of samples occurs at the boundaries
of the random space, which stimulates stable interpolation.

Refinement measure R∗ uses all the terms that depend on z and should be optimal for sample placement, see
equations (3.4) and (3.14). However, the error in the surrogate is not only determined by sample placement, but also
by the polynomial interpolation procedure. Consequently the best refinement measure does not necessarily lead to the
best convergence in the error. Including the scaling term in R∗ appears to have little effect on the sample placement,
at least for this simple test-case. In fact, for this test-case one could refine directly on ‖ũ−u‖2 (because u is explicitly
known), and this gives the same results as refining based on R∗. As there is no significant difference between the two
refinement measures, we use refinement measure R in the remainder of this paper, as it is more generally applicable.
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NIPPAS converges faster than conventional empirical interpolation depending on the QoI

We compare convergence of the surrogate for the NIPPAS based on (3.16) with the conventional empirical inter-
polation based on (3.22). The main difference (in absence of incorporation of the PDF) is the fact that empirical
interpolation places new adaptive samples based on a residual which is based on the entire solution v, whereas the
NIPPAS uses a residual based only on the QoI u. To compare both methods, the QoI is set to u = (v)500 (the solution
computed at the middle of the computational grid, with Q = (0, ...,0,1,0, ...,0)), and the Reynolds number is given by
Re1(z). The convergence comparison is shown in figure 4.

10-15

10-10

10-5
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#samples0 50

e

NIPPAS
empirical interpolation

Fig. 4: Convergence comparison for NIPPAS method and conventional empirical interpolation for the steady-state advection
diffusion equation.

The NIPPAS enhances the surrogate by focusing on locations that are relevant for the QoI. This leads to faster conver-
gence for the NIPPAS when compared to conventional empirical interpolation. However, in case more solution values
from the solution vector v would be incorporated, i.e., more non-zero entries in the columns of Q, the convergence
speed-up will decrease and eventually the convergence coincides with the one from empirical interpolation when the
QoI uses the entire solution vector v.

Unsteady advection-diffusion equation.
In the previous example we applied NIPPAS to a steady-state PDE for a 1D random space in order to compare refine-
ment measures and to compare with conventional empirical interpolation. In this section we study the following:

• The effect of the discretisation method applied to the PDE.
• The accuracy of NIPPAS for approximating statistical moments in a 2D random space.
• The construction of a surrogate model on non-hypercube domains.

Therefore, we thoroughly study the NIPPAS for an unsteady advection-diffusion equation with two parameter uncer-
tainties. We start with a 2D hypercube random space and then gradually increase the complexity of the test-case.

The underlying PDE is the 1D advection-diffusion equation, given by

(6.10) vt + z1vx = z2vxx ,

where the advection parameter z1 and the diffusion parameter z2 are assumed to be uncertain and uniformly distributed
between [0,2π]. For the problem (6.10) to be well-posed, initial and boundary conditions are required. A spectral
spatial discretisation method [34] is used for solving (6.10) and the boundary conditions are taken periodic for x ∈
[0,2π] and the initial condition is given by

(6.11) v(x,0) = v0(x) = sin(x) .

The spectral spatial discretisation is performed on an equidistant grid xi = (2πi)/Nx for i = 0, ...,Nx, where Nx = 256.
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This results in a solution vector v(t):

(6.12) v(t) =

 v0(t)
...

vNx(t)

 ,

where vi(t) is the approximate solution at grid point xi. Additionally, taking derivatives can be written in terms of a
matrix-vector multiplication

vx ≈ Dxv ,(6.13)

vxx ≈ (Dx)
2v ,(6.14)

where Dx is the spectral differentiation matrix [34]. As a result, the solution vector v(t) can be obtained by solving the
semi-discrete problem

(6.15) vt + z1Dxv = z2D2
xv ,

which can be rewritten in the form (2.5) by discretising the time-derivative and formulating the resulting set of equa-
tions in matrix form. Notice that this results in a block-diagonal system.

A surrogate is created for the quantity u(z1,z2) = vNx(1), which is the solution at the right boundary of the physical
domain at t = 1.

Effect of discretisation method is small

As we use a spectral method with a fine resolution for the spatial discretisation and the problem is linear, the time
discretisation error is expected to be dominant, and therefore the effect of the time discretisation method is studied.
The semi-discrete problem (6.15) is solved using different time discretisation schemes, i.e., backward-Euler, Crank-
Nicolson and fourth-order explicit Runge-Kutta (RK4), where we fix the time step at ∆t = 10−5.

To demonstrate the efficiency of the NIPPAS method, convergence is compared to a nested Smolyak grid [35]
on the Clenshaw-Curtis nodes. The errors in the surrogate for both the NIPPAS method and the Smolyak solution
are computed by using a Monte-Carlo reference solution based on 5000 samples. Notice that the reference solution
changes, depending on the time discretisation. The reference solution for a Crank-Nicolson time discretisation is
shown in figure 5.

1

-1

0

0

2π2π

v(
z 1, 

z 2)

u=1

u=-1
z2 z1

underlying PDE:

1 2t x xxvv z z v+ =

Fig. 5: Reference solution for the advection-diffusion equation for the quantity u(z1,z2) = vNx(1) based on 5000 samples.

The choice of the time discretisation method affects the accuracy of the black-box solver, and changes the shape of the
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surrogate slightly, as different time discretisations do not give the same QoI at the exact same location in random space.
As a result, when changing the discretisation, a new reference solution has to be computed to study convergence. To
further clarify, there is a difference between the exact/wanted surrogate, which is obtained by solving (2.1), and the
discrete exact surrogate, obtained by solving the discretised equations (2.5). This difference is shown in the following
equation:

(6.16) ‖u− ũNx‖2︸ ︷︷ ︸
error w.r.t. exact solution

≤ ‖u−uNx‖2︸ ︷︷ ︸
discretisation error

+ ‖uNx − ũNx‖2︸ ︷︷ ︸
error w.r.t. discrete solution

,

where u is the exact solution (solution of (2.1)), uNx is the discrete solution computed using Nx+1 grid points (solution
of (2.5)), and ũNx is the surrogate based on the discrete solutions. For this reason, we plot both the error in the surrogate
with respect to the exact solution and the discrete solution. The results are shown in figure 6.

backward-Euler
NIPPAS Smolyak

Crank-Nicolson
RK4

error w.r.t. discrete solution
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Fig. 6: Error (6.2) comparison between the Smolyak sparse grid surrogate and the NIPPAS surrogate for different time discreti-
sation methods with ∆t = 10−5 and Nx = 256. The errors are plotted with respect to both the discrete solution of (6.10) and the
exact solution of (6.15).

The error with respect to the discrete solution converges to zero, with a convergence rate that is significantly faster than
the Smolyak sparse grid. Convergence is non-monotonic, which is common for adaptive sampling methods [11]. The
error with respect to the exact solution stalls before machine precision is reached, which is due to the discretisation
error. To clarify, the error with respect to the discrete solution converges to zero and equation (6.16) therefore states
that the observed error after stalling is the discretisation error.

The convergence behaviour of the error with respect to the discrete solution is not dependent on the time discreti-
sation, which indicates that the performance of our method does not depend on the underlying discretisation.

Faster convergence for statistical quantities with PDF weighing

Next, to study the effect of the two different refinement measures (3.16) and (3.20), we now assume independent
β -distributed input uncertainties z1 and z2:

(6.17) ρ(z1,z2) = c · (2πz1)
α1(2πz2)

α2(1−2πz1)
β1(1−2πz2)

β2 ,

where (αi,βi) are parameters that characterise the PDF and the constant c is chosen such that the PDF has total
probability 1 on [0,2π]2. Convergence behaviour is studied as a function of the shape of the underlying PDF and
therefore we vary the PDF parameters as follows

(6.18) αi ∈ {1,2,3,4,5}, βi ∈ {1,2,3,4,5}, i = 1,2 ,
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which results in a total of 625 PDFs with totally different shapes. The convergence statistics of the mean, variance and
the entire surrogate are shown in figure 7.
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Fig. 7: Convergence in advection-diffusion surrogate, mean and variance for the two refinement measures (3.16) and (3.20). The
error in the surrogate is computed with (6.2) with 5000 Monte-Carlo samples. The errors in the mean and variance are calculated
with (6.1).

Figure 7 shows the average convergence behaviour taken over the 625 different PDFs. From the figure we may con-
clude that weighing the residual with the PDF results in slower convergence for the surrogate model, see equation
(6.2), but leads to faster convergence in both the mean and the variance, which are computed using (6.1). Furthermore,
the variation in convergence over all 625 different PDFs, given by the shaded area around the mean line, has similar
width for both refinement measures (3.16) and (3.20). The choice of refinement measures thus depends on the type of
convergence the user requires, i.e., convergence in the surrogate or convergence in the statistical quantities. Notice that
the shaded area for the convergence in the mean has a minimum that starts at 0 initially, which is due to the fact that
for some PDFs the exact mean is zero, and as the initial sample is placed at a location in the random space where the
response is also 0, we start with an approximate mean that is equal to the exact mean. However, the sample placement
does not stop immediately, as the stopping criterion (4.4) is not met.

Method shows fast convergence for non-hypercube domains

The 2D β -distribution (6.17) just discussed, comprises two independent uncertainties and therefore the space in which
we construct a surrogate is a hypercube. However, when dealing with dependent uncertainties, the space in which
the surrogate is constructed, is in general not a hypercube, and many existing UQ methods fail when dealing with a
complex random space.

To study the performance of the NIPPAS method on more general geometries, we assume a non-hypercube domain
D ⊂ Rd with associated uniform PDF ρ(z). In order to sample the model on the domain D, we restrict the residual
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(3.16) to D by multiplying it with an indicator function:

(6.19) RD(z) = R(z)ID(z) ,

where

(6.20) ID(z) =
{

1, if z ∈ D ,
0, otherwise .

After altering the residual definition slightly and placing an initial sample randomly in the non-hypercube random
space, the NIPPAS method can be applied straightforwardly. Note that the basis functions are the same for the hy-
percube case, which are given by the Chebyshev polynomials defined on the smallest hypercube that comprises D.
In order to show the efficiency of our method for non-hypercube domains, we again construct a surrogate for the
response shown in figure 5, but now on more complexly shaped domains. Three different geometries with different
characteristics are chosen:

• sharp corners:

(z2 ≥ 0)∩ (z2−
√

3z1 ≤ 0)∩ (
√

3z1 + z2 ≤ 2π
√

3) ,

• smooth boundary:

(z1−π)2 +(z2−π)2 ≤ π
2,

• domain with holes:

(z1,z2) ∈ [0,2π]2, but

¬
(
(z1−π)2 +(z2−π)2 ≤ π2

4

)
∪

¬
(
(z1−

π

3
)2 +(z2−

π

3
)2 ≤ π2

25

)
∪

¬
(
(z1−

5π

3
)2 +(z2−

5π

3
)2 ≤ π2

9

)
.

The convergence results are shown in figure 8.
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Fig. 8: Convergence of surrogate for three different non-hypercube domains.

The results show an exponential convergence behaviour for all three different geometries, but the convergence rates
slightly differ, which is likely caused by the choice of basis, which is suboptimal for all domains. Furthermore,
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weighing the residual with the PDF in case of a non-uniformly distributed uncertainties is again possible, but results
are similar to the results shown in figure 7 and are not shown for repetitiveness.

It has to be pointed out that the choice of a lexicographically ordered Chebyshev basis is far from optimal on
non-hypercube domains. Nevertheless, good convergence behaviour is still achieved.

Shallow water equations with dependent random inputs.
As last test-case, we study the performance of the NIPPAS method for a hyperbolic non-linear PDE with dependent
random inputs in a non-hypercube random space. In this test-case the underlying model is non-linear and comprises
three uncertain parameters which lie on a 2D triangular manifold in a 3D space and therefore combines the difficult
aspects from all previous test-cases. The underlying model is a system of conservation laws, namely the 1D shallow
water equations (SWEs). The SWEs describe inviscid fluid flow with a free surface, under the action of gravity, with
the thickness of the fluid layer small compared to the other length scales [36]:

(6.21)
∂

∂ t

(
h
hv

)
+

∂

∂x

(
hv

hv2 +gh2/2

)
= 0 ,

where h is the free surface height (thickness of the fluid layer), v the velocity, and g the acceleration of gravity.
Reflective boundary conditions are imposed at x = ±1 and the initial condition for the system of PDEs is given by a
Riemann problem:

(6.22)
(

h
v

)
(x, t = 0) =


(

hl
vl

)
, x≤ 0 ,(

1
0

)
, x > 0 ,

leading to a so-called dambreak problem. The three uncertain inputs are z1 = g, z2 = hl and z3 = vl , and are assumed
to jointly follow a Dirichlet distribution, which is the multivariate generalisation of the 1D β -distribution [37], and
is often used as a prior to a discrete categorical distribution in Bayesian statistics. The PDF of the 3D Dirichlet
distribution with shape parameters (α1,α2,α3) is given by:

(6.23) ρ(z1,z2,z3;α1,α2,α3) =
Γ(∑3

i=1 αi)

∏
3
i=1 Γ(αi)

3

∏
i=1

zαi−1
i ,

which is defined on the unit simplex

(6.24)
3

∑
i=1

zi = 1, and zi ≥ 0 ∀i .

For this specific test-case we scale/translate the unit simplex to a triangle with corner points

(6.25) (g,hl ,vl) = {(12,0.5,−0.5),(8,1.5,−0.5),(8,0.5,0.5)} .

For testing the efficiency of refinement measure (3.20), we consider the shape parameter set (α1,α2,α3) = (5,2,2).
This specific shape parameter set corresponds to an asymmetric PDF and is shown in figure 9.
The Dirichlet distribution is defined on a 2D triangular manifold in 3D space and is used for testing the NIPPAS
efficiency for non-hypercube random spaces. The interpolation basis is the set of Chebyshev polynomials defined on
the smallest hypercube that comprises the 2D manifold. As mentioned before, improvements on the interpolation basis
are possible, but are outside the scope of this paper. Furthermore, the QoI u(z1,z2,z3) is the free surface height h at
the left boundary x =−1 at t = 1.

The NIPPAS method samples the solution of the dambreak problem for multiple inputs in order to construct a
surrogate. A commonly used method for solving the SWEs is a Riemann solver based finite-volume discretisation
[38], which can determine accurate solutions efficiently. In this paper instead we demonstrate the effectiveness of the
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Fig. 9: Dirichlet PDF on the scaled unit simplex for (α1,α2,α3) = (5,2,2).

NIPPAS method in combination with a more recently developed numerical method. Instead of using a Riemann solver,
a neural network is used to solve the SWEs [20]. An advantage of using neural networks for solving PDEs is that the
solution is given in terms of a functional form, from which derivatives can be directly computed analytically. This
functional form allows us to calculate the residual, without requiring alterations to the code output. A multi-output
neural network with 7 hidden layers and 40 neurons in each hidden layer is used to solve the SWEs, which is trained
on a total of 105 collocation nodes in space and time, which are the places where the neural network tries to enforce
the PDE. This particular combination of number of hidden layers and neurons showed the best results and is therefore
used in this paper. The trained neural network produces a solution of the PDE. After the residual is computed and a
new sample location in random space is determined, the neural network is retrained to produce a solution of the PDE
for this new set of parameter values. Previously trained neural networks closest to the new sample location are used as
initial starting point for training the new neural network in order to significantly speed-up the training process.

hl

ul

g
interpolant (R(z), #samples=300) sample locations (R(z), #samples=50) sample locations (           , #samples=50)

hl

ul

g

hl

ul

g
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h(x=-1, t=1)

ρ( ) R   z

Fig. 10: (left) Surrogate model based on 300 samples for refinement measure (3.16). (right) Sample locations for refinement
measures (3.16) and (3.20), respectively.

The surrogate and sample locations for both refinement measures (3.16) and (3.20) are shown in figure 10. The sample
locations show clustering at the boundaries, to produce a stable interpolant. As mentioned before, if the surrogate tends
to become unstable and grows at the boundaries of the random space, the residual becomes large at the boundaries as
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well and causes refinement of the surrogate near the boundaries. However, at early stages of the refinement process
the surrogate can still show irregular oscillations, which is due to insufficient refinement at the boundaries, but these
disappear upon further refinement. When taking the PDF into account, clustering also occurs in the region of high
probability, as expected. This clustering deteriorates the accuracy of the surrogate in regions of low probabilities, but
leads to improved estimation of statistical quantities. Convergence comparison for refinement measures (3.16) and
(3.20) are shown in figure 11.

( )R z
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convergence of mean
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Fig. 11: Results for the dambreak problem with random inputs. The convergence plot shows a comparison of the two different
refinement measure (3.16) and (3.20). The error in the surrogate is computed with (6.2) with 5000 Monte-Carlo samples. The
errors in the mean and variance are calculated with (6.1).

The results show indeed faster convergence in statistical quantities when accounting for the PDF in the refinement
measure, which was also shown in figure 7.

7. Conclusion.
In this paper we have presented a novel approach for parametric surrogate construction when the underlying PDE
is known. Our technique, the Non-Intrusive PDE/PDF-informed Adaptive Sampling (NIPPAS), is suited for surro-
gate construction on non-hypercube parametric spaces. Non-hypercube parametric spaces occur when the underlying
PDF is dependent, e.g., Dirichlet-distributed, and significantly complicate surrogate construction when using com-
mon stochastic collocation methods, e.g., sparse grid interpolation. The key ingredient of the proposed empirical
interpolation procedure is refinement which is based on both the PDE-residual and the PDF. Sampling based on the
PDE-residual leads to stable interpolation, even on non-hypercube domains, due to sample clustering at the boundaries
of the domain. At the same time, the incorporation of the PDF in the refinement procedure samples the parametric
space in regions of high probability, which ensures fast convergence of statistical quantities. This combination makes
the NIPPAS method an efficient and flexible method that is applicable to a wide range of UQ problems.

The NIPPAS method has been applied to several numerical examples: 1D and 2D surrogate construction on a
hypercube with linear underlying PDE, 2D surrogate construction on complex domains, and 3D surrogate construction
with non-linear underlying PDE on a complex domain. In all cases, exponential convergence is obtained, leading to an
accurate surrogate model fast. This surrogate model can be directly used as a tool for uncertainty quantification (for
example with Monte-Carlo type methods), but it is also a great tool for the parametric solution of black-box models.

Currently, the interpolation basis for non-hypercube domains is a Chebyshev basis defined on the smallest hy-
percube that comprises the parametric space. Several improvements could be made, for instance by constructing a
suitable basis based on the sample locations [25]. Furthermore, the global minimisation problem to be solved at each
iteration does not scale well to high-dimensional random space, and alternatives for the particle swarm optimisation
may be used [39].
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