
On the discrepancy of random low degree set systems

Nikhil Bansal∗ Raghu Meka †

Abstract

Motivated by the celebrated Beck-Fiala conjecture, we con-

sider the random setting where there are n elements and m

sets and each element lies in t randomly chosen sets. In this

setting, Ezra and Lovett showed an O((t log t)1/2) discrep-

ancy bound in the regime when n ≤ m and an O(1) bound

when n � mt. In this paper, we give a tight O(
√
t) bound

for the entire range of n and m, under a mild assumption

that t = Ω(log logm)2. The result is based on two steps.

First, applying the partial coloring method to the case when

n = m logO(1) m and using the properties of the random set

system we show that the overall discrepancy incurred is at

most O(
√
t). Second, we reduce the general case to that of

n ≤ m logO(1) m using LP duality and a careful counting

argument.

1 Introduction

Let (V,S) be a set system with V = [n] and S =
{S1, . . . , Sm} a collection of subsets of V . For a two-
coloring χ : V → {−1,+1}, the discrepancy of a set
S is defined as χ(S) = |

∑
i∈S χ(i)|, and measures the

imbalance from an even-split of S. The discrepancy of
the system (V,S) is defined as

disc(S) = min
χ:V→{−1,+1}

max
S∈S

χ(S).

That is, it is the minimum imbalance of all sets in S
over all possible two colorings χ.

Discrepancy is a widely studied topic and has ap-
plications to many areas in mathematics and computer
science. For more background we refer the reader to the
books [6, 15, 7]. In particular, discrepancy is closely re-
lated to the problem of rounding fractional solutions to
a linear system of equations [13], and has found several
applications in approximation algorithms and optimiza-
tion.

An important problem, motivated by the rounding
fractional solutions to column-sparse linear systems, is
to understand the discrepancy of sparse systems where
each element i ∈ [n] lies in at most t sets. In a classic
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result, Beck and Fiala [4] showed that the discrepancy of
such systems is at most 2t−1. This bound was recently
improved by Bukh to 2t − log∗ t [5]. Improved bounds
with a better dependence on t, but at the expense of
dependence on n, are also known and after long line
of work the best such bound is O(t1/2(log n)1/2) due
to Banaszczyk [1]. These results have also been made
algorithmic in recent years [2, 3, 12].

It is a long-standing conjecture that the discrepancy
of such set systems is O(t1/2) [4]. Despite much work,
the problem is open even for very special cases such as
when the hypergraph corresponding to the set system is
simple, i.e. any two sets intersect in at most one element.
Another interesting question to get the tight O(t1/2)
bound in the case when we have the additional property
that the sets also size at most t. Here the best known
bound is O((t log t)1/2) based on a direct application of
the Lovász Local Lemma.

Random set system model. Recently, Ezra and
Lovett [8] consider the problem in a natural random
model, where there are n elements and m sets and each
element i ∈ [n] lies in exactly t random sets. That is,
the t-tuple of sets containing i is chosen uniformly at
random among the

(
m
t

)
possibilities. In the following,

by a random set system we refer to this model.
Ezra and Lovett [8] proved the following two results

in the random model. (i) For n ≤ m, the expected
discrepancy is O((t log t)1/2), and (ii) for n � mt,
the expected discrepancy is O(1). We remark that an
Ω(t1/2) lower bound on the expected discrepancy also
holds in the random model (e.g. when n = m = 2t,
as can be seen easily using the spectral lower bound
method [6]).

There are two natural questions left open from their
work. First, whether these results can be extended to
the entire range of n and m, i.e. when n ∈ [m,mt].
This is particularly interesting, as the result of [8] in the
regime when n ≤ m is based on Lovász Local Lemma,
which fails for inherent reasons1 when n � m. A
second natural question is whether their bound can be
improved to the optimum bound of O(t1/2), especially
for the important case of n = m. Again, the local
lemma inherently loses an additional (log t)1/2 factor

1As the average set size is nt/m� t.
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when n = Θ(m).

1.1 Our results and overview. Our main result
addresses both these questions, and is the following.

Theorem 1.1. Let (V,S) be a random set system on n
elements and m sets, where each element lies in t sets.
Then, for every n and m, the expected discrepancy of the
set system is O(t1/2), provided that t = Ω((log logm)2).

In particular, this gives the tight O(t1/2) bound
for the entire range of n and m, assuming t ≥
Ω((log logm)2). Moreover, the algorithm can be im-
plemented in randomized polynomial time. The result
is based on two main ideas.

Reduction of n to k. We show that the problem
with arbitrary n, m, t can be reduced to the case of
n ≤ k, where k = Cm log2m, with high probability, for
a fixed constant C. More precisely, let A be the m× n
incidence matrix of the random set system, and let ai
denote the i-th column of A. We start by applying the
Beck-Fiala theorem [4] to the elements {k + 1, . . . , n}
to find a {−1, 1} coloring χ′ with discrepancy at most
2t−1, i.e.‖

∑
i>k χ

′(i)ai‖∞ ≤ 2t−1. Let us denote this
discrepancy vector by b ∈ [−2t+ 1, 2t− 1]m.

We show that with high probability, there is a
fractional coloring χ′′ (i.e. with colors in [−1, 1]) of
the elements {1, . . . , k} with discrepancy exactly −b.
Together this gives a coloring χ with discrepancy 0,
where the elements k+ 1, . . . , n are colored ±1, but the
elements 1, . . . , k have colors in [−1, 1]. As the first k
columns are still random, this gives a “reduction” of the
random Beck-Fiala problem for general n to that for k.

The existence of the coloring χ′′ follows from the
following result of independent interest.

Theorem 1.2. For all c > 0, there exists a constant
C > 0 and c′ ∈ (0, 1) such that the following holds.
Let a1, . . . , ak ∈ {0, 1}m be random vectors with t ones.
Let P := {

∑
i aixi : xi ∈ [−1, 1]} ∈ Rm be the set of

discrepancy vectors achievable by fractional colorings of
a1, . . . , ak. Then for k ≥ Cm log2m, with probability
at least 1 − 1/mc, it holds that 2tBm∞ ⊂ P , where
Bm∞ = {y ∈ Rm : ‖y‖∞ ≤ 1} is the `∞ ball in Rm.

To prove Theorem 1.2, we use LP duality to give an
equivalent condition for the property 2tBm∞ ⊂ P . Next,
we use a counting argument to show that this condition
is satisfied with high probability for k random vectors.
We first prove a weaker bound of k = O(m4 logm)
using a standard ε-net argument. Later, we give a
much more careful argument to improve this bound to
to k = O(m log2m).

Partial Coloring. It remains to modify the frac-
tional coloring χ′′ on [k] to an integral {−1,+1} color-
ing, while incurring low discrepancy. To achieve this,
we apply the partial coloring procedure of Lovett and
Meka [14] over O(log k) iterations. The main issue here
is to ensure that the overall discrepancy stays bounded
by O(t1/2) over all the iterations. To this end, we use
the property that the starting set system on k columns
is random to control the potential used in the partial
coloring lemma of Lovett and Meka. However, as the
partial coloring method gives no control on which sub-
set of the original k columns remain after each iteration,
we incur a penalty due to a union bound over all subsets
of the original columns. This is where we require that
k is not too large relative to m. In particular, we show
the following.

Theorem 1.3. Let A be a random m× k matrix where
each column has t ones. Then, if t = Ω(log2(ek/m))
then with probability at least 1−exp(−t), the discrepancy
of A is O(t1/2).

Combining Theorems 1.2 and 1.3 directly gives
Theorem 1.1. In particular, the condition t =
Ω((log logm)2) arises as t = Ω(log2(ek/m)) and k/m =
logC m.

Limitations. By a more elaborate algorithm and
case analysis, the lower bound on t in Theorem 1.3
can be improved to t ≥ Ω̃(log logm), where Ω̃(·) hides
lower order factors. However, we do not describe these
more complex calculations here as t ≈ log logm is
a natural bottleneck for our methods. In particular,
k = Ω(m logm) is necessary for Theorem 1.2 to hold,
and in this setting, if t � log logm, then there exists
several ` × ` submatrices of A, where the average row
size is Ω(t), leading to a discrepancy of t1/2 that could
add up over the iterations.

1.2 Preliminaries. We will need the following prob-
abilistic tail bound.

Lemma 1.1. (Bernstein’s inequality.) For independent
real-valued random variables X1, X2, . . . , Xn with |Xi−
E[Xi]| ≤M , σ2

i = E[X2
i ]− E[Xi]

2,

Pr[
∑
i

(Xi − E[Xi]) > t] ≤ exp

(
−t2/2

(
∑
i σ

2
i +Mt/3)

)
The lower tail follows by replacing X by −X above.

Stochastic Dominance. For non-negative ran-
dom variables X and Y , we say that X stochastically
dominates Y if for all a > 0, Pr[X > a] ≥ Pr[Y > a].
We will use this as follows.
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Let X1, . . . , Xn be independent copies of X and let
Y1, . . . , Yn be independent copies of Y . Then for any
t > 0,

Pr[X1 + . . .+Xn ≥ t] ≥ Pr[Y1 + . . .+ Yn ≥ t].

Partial Coloring Lemma. The algorithmic par-
tial coloring lemma due to Lovett and Meka [14], takes
as input some fractional coloring and target discrepancy
bounds for each row, and finds another partial coloring
satisfying these row-wise discrepancy bounds and where
at least half the variables are set to −1 or +1.

Lemma 1.2. (Partial Coloring Lemma [14]). Let
v1, . . . , vm ∈ Rn, and x0 ∈ [−1, 1]n be a start-
ing point. Let c1, . . . , cm be parameters such that∑m
j=1 exp(−c2j/16) ≤ n/16, and let δ > 0. Then there

exists an efficient randomized algorithm that runs in
time O((m+ n)3 · δ−2 · log(nm/δ)) and with probability
at least 0.1 finds a point x ∈ [−1, 1]n such that

1. |〈x− x0, vj〉| ≤ cj‖vj‖2 for each j ∈ [m].

2. |xi| ≥ 1− δ for at least n/2 indices i ∈ [n].

Note that the probability of success can be boosted
by running the algorithm multiple times, and we will
assume that the probability of failure of the algorithm
is exponentially small. When |xi| ≥ 1 − δ, we say that
variable i is frozen and otherwise it is alive. Setting
δ = 1/n, rounding the frozen variables to the nearest
−1 or +1 at the end of the algorithm can lead to an
additional discrepancy of at most 1. So we will assume
henceforth that δ = 0.

1.3 Other recent Work. Very recently, two other
groups [11, 9] have independently obtained related
results. These results consider the regime where n� m,
and use fourier analytic methods to show that an O(1)
discrepancy can be achieved for random low degree
systems for n = Ω(m2) [11] and n = Ω(m3) [9]. Their
results are non-algorithmic.

2 Applying Partial Coloring

We now prove Theorem 1.3. We will in fact show a
strengthening of the theorem that gives small discrep-
ancy from any starting fractional coloring x(0) as will
be required in our reduction from Theorem 1.2.

Theorem 2.1. Let A be a random m× k matrix where
each column has t ones and x(0) ∈ [−1, 1]k. Then,
if t = Ω(log2(ek/m)) then with probability at least
1 − exp(−t), there exists χ ∈ {1,−1}k such that for
all rows vj of A, |〈vj , χ− x(0)〉| = O(

√
t).

2.1 The Algorithm. Our input consists of the ran-
dom matrix A(0) of at most n0 ≤ k columns, and some
fractional coloring x(0) ∈ [−1, 1]n0 .

We will apply the partial coloring lemma in several
iterations, where at least half the remaining variables
become frozen at each iteration. At the beginning of
iteration i, let ni denote the number of alive variables
and let A(i) and x(i) denote the matrix and fractional
coloring restricted to those columns. We use j to index
the rows.

The iterations of the algorithm can be divided into
three different phases: (i) i = 0, (ii) 1 ≤ i ≤ log t and
(iii) i > log t. We now describe each of these phases.

1. Phase 0. Here the input is A(0) and the starting
coloring x(0). We reduce the number of fractional
variables to n1 ≤ m, by picking any basic feasible
solution to the linear program

A(0)x = A(0)x(0) s.t. − 1 ≤ xi ≤ 1 for i ∈ [n0]

As A(0)x = A(0)x(0) consists of at most m linearly
independent constraints, the solution will have at
most m variables that are not set to −1 or 1.

Note that the resulting matrix A(1) is no longer
random. Nevertheless, we will be able to argue
that we can still bound the potential required in
the partial coloring lemma as will be shown via
Lemma 2.1.

For notational clarity, in subsequent iterations we
can assume that ni = m21−i (as A(1) is no longer
random we can add columns with all entries 0 if
necessary).

2. Phase 1. For each i = 1, . . . , log t, in iteration i we
apply the algorithm in Lemma 1.2 to A(i) and x(i)

with the discrepancy bound

cj‖vj‖2 = ct1/2/i2,

where c is some fixed constant that will be specified
later. If the condition

∑m
j=1 exp(−c2j/16) ≤ ni/16

in Lemma 1.2 is not satisfied, we declare fail and
abort the algorithm.

If the algorithm does not abort in any iteration,
clearly the over all discrepancy during these phases
is ct1/2

∑
i i
−2 = O(t1/2).

3. Phase 2. For i > log t, we apply partial color-
ing with cj = 0 for sets larger than ct1/2 and
cj = ∞ otherwise. Again, the algorithm aborts
if
∑m
j=1 exp(−c2j/16) ≤ ni/16 does not hold during

any iteration.

Assuming the algorithm does not abort, this phase
also adds at most O(t1/2) discrepancy as a set
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incurs zero discrepancy as long as its size exceeds
O(t1/2).

It is clear by the description of the algorithm that
the total discrepancy of any set is O(t1/2). So our
goal will be to show that the probability that the
algorithm aborts is at most exp(−t). If the algorithm
aborts, then we simply output the O(t) discrepancy
coloring given by the Beck-Fiala Theorem [4]. Clearly,
the expected discrepancy of the resulting algorithm is
O(t exp(−t)) +O(t1/2) = O(t1/2).

2.2 Analysis. We begin with a simple lemma that
we will use repeatedly later.

Lemma 2.1. Let M be some fixed r× ` submatrix of an
m× ` random matrix A where each column has t ones.
For s ≥ 2t`/m, let B(s) denote the event that each row
of M contains at least s 1’s. Then over the random
choice of A,

Pr[B(s)] ≤ exp(−rs log(sm/t`)/4)

Proof. For i ∈ [`], let Xi denote the number of 1’s
in column i of M . Each Xi is independent and has
the hypergeometric distribution H(m, t, r) with mean
E[Xi] = tr/m. Using the fact that H(m, t, r) is
more sharply concentrated around its mean than the
corresponding binomial distribution Bin(r, p) with p =
t/m ([10], page 395), we can bound the upper tail of∑`
i=1Xi by the upper tail of Bin(r`, p).

Moreover, as B(s) implies that
∑`
i=1Xi ≥ rs, we

have that Pr[B(s)] ≤ Pr[
∑`
i=1Xi ≥ rs]. By standard

Chernoff bounds, with µ = pr` and for any δ > 0

Pr[Bin(r`, p) ≥ (1 + δ)µ] ≤ exp(−(µδ log(1 + δ))/2)

Setting (1 + δ) = s/(p`) = sm/t` and as δ ≥ sm/(2t`)
by our assumption that sm/t` ≥ 2,

Pr[B(s) ≤ exp(−rs log(sm/t`)/4).

Let us first analyze the failure probability in phase
2.

Lemma 2.2. The probability that the algorithm fails
during phase 2 is at most exp(−t).

Proof. Consider some iteration i for i > log t. Let
` = ni = m21−i. The iteration i aborts if the number
of rows with size s > ct1/2 exceeds `/16. Call such rows
big and let r = `/16.

By Lemma 2.1 and a union bound such r × `
submatrices of A(0), this probability is at most(
k

`

)(
m

r

)
·Pr[B(s)] ≤

(
ek

`

)2`

·exp(−`s/64 log(sm/t`)).

Let us define the parameter γ = ek/m. Writing ek/` =
γ(m/`) and assuming c ≥ 256 (and hence s/128 ≥ 2t1/2,
this is at most

exp(2`(log γ + logm/`− s/128− log sm/t`))

≤ exp(−2`(2t1/2 − log γ − log t))

By the assumption in Theorem 1.3 that log γ ≤ t1/2,
this is at most exp(−`t1/2). As ` = m21−i in iteration
i and as the phase becomes trivial when ` ≤ 2t1/2, the
over all probability of failure is at most e−t.

We now analyze the failure probability during the
iterations of phase 1.

Proof. Let us fix an iteration i. We denote the discrep-
ancy bound by d = di where di = ct1/2/i2, and let
` = m1−i denote the number of variables. For a row j
of size s, note that cj = d/

√
s. We call a row small if

its size s ≤ s0, where s0 = d2/(16ci5) = ct/(16i5).
The contribution of small rows to the sum∑m

j=1 exp(−c2j/16) is at most

m exp(−d2/16s0) = m exp(−ci) ≤ m exp(−5i) ≤ `/32

It remains to show that with high probability that
contribution of large rows to

∑m
j=1 exp(−c2j/16) is also

at most `/32. To this end, we conservatively assume
that cj = 0 for big rows and hence we only need to
bound the probability that there are more than `/32
rows.

If we pick ` columns from the random matrix A(0),
the expected row size is µ = t`/m = t21−i. As
s0 = ct/16i5 and µ = t21−i, we can pick c large enough
so that s0 ≥ 2µ. By Lemma 2.1, the probability of
having more than `/32 rows of size at least s0 is bounded
by (

k

`

)(
m

`/32

)
Pr[B(s0)]

≤
(
ek

`

)2`

· exp(−`s0 log(s0m/t`)/128)

≤ exp(2`(log γ + logm/`)− `s0 log(s0m/t`)/128)

≤ exp(2`(log γ + i)− ` · Ω(t/i4)).

As log γ = O(t1/2), and as i ≥ log t we have ` =
m21−i ≥ m/t, this gives an over all failure probability
of exp(−Ω(m/ log4 t)).

3 Reducing the number of columns

In this section we prove Theorem 1.2.

3.1 Fractional Discrepancy Polytope. Let
a1, . . . , ak be arbitrary vectors in Rm. Consider the
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polytope P :=
{∑k

i=1 aixi : xi ∈ [−1, 1]
}

of dis-

crepancy vectors obtained by all possible fractional
colorings. The convex hull of P is given by its 2k

extreme points

pχ :=
∑
i

χiai for χ = (χ1, . . . , χk) ∈ {−1,+1}k.

For p ≥ 1, let Bmp = {y ∈ Rm : ‖y‖p ≤ 1} denote
the `p ball in Rm. For brevity, let Q := 2tBm∞. The
following lemma characterizes exactly when Q ⊂ P .

Lemma 3.1. Let A ∈ Rm×k be the matrix with columns
given by a1, . . . , ak. Then, Q ⊂ P iff ‖yTA‖1 > 2t, for
all y ∈ Bm1 .

Proof. Suppose Q 6⊂ P . As P and Q are convex,
by Farkas’ lemma, there exists a hyperplane given by
normal y, that separates some point q ∈ Q \ P from P .
As 0 ∈ P , we can assume that there is some s > 0 such
that yT q > s and yT pχ < s for each extreme point pχ
of P . As

max
χ∈{−1,1}k

yT pχ = max
χ∈{−1,1}k

k∑
i=1

(yTai)χi(3.1)

=

k∑
i=1

|yTai| = ‖yTA‖1,

this is same as saying that there is some s such that

yT q > s > ‖yTA‖1.

By scaling, we can assume that ‖y‖1 = 1 and as
Q = 2tB∞ we have maxq∈Q y

T q = 2t. This gives that
s < 2t, and thus there is some y with ‖y‖1 = 1 and
‖yTA‖1 < 2t; a contradiction.

Conversely if Q ∈ P , then no direction exists that
separates some point q ∈ Q from P , which implies
for each y with ‖y‖1, there is some pχ ∈ P such that
yT pχ > 2t, which by (3.1) gives that ‖yTA‖1 > 2t.

So to prove Theorem 1.2, it suffices to show that
with high probability, ‖yTA‖1 > 2t for every y ∈ Bm1 .

3.2 Counting Argument: Weak Bound. We
start by sketching a simple but weak bound of k =
O(m4 logm). Together with Theorem 1.3 this would
already imply the O(t1/2) discrepancy bound in Theo-
rem 1.1, but under the condition that t = Ω(log2m).

Theorem 3.1. Let A be a m× k random matrix where
each column has t ones and k = O(m4 logm). Then
with probability at least 1− exp(−m logm), it holds that
‖yTA‖1 > 2t for all y ∈ Bm1 with ‖y‖1 = 1.

Let δ > 0, and let Nδ be the set of points y′ ∈ Rm
such that each coordinate y′i of y′ is an integral multiple
of δ, and ‖y′‖1 ≤ 1. Clearly |N | ≤ (3/δ)m and for
any point y ∈ Bm1 there is some point y′ in Nδ with
|y − y′| ≤ mδ.

We fix δ = 3/km and note that |Nδ| ≤
exp(m log(km)). As ‖(y−y′)Ta‖ ≤ ‖y−y′‖1‖a‖∞ ≤ mδ
for any a ∈ Rm, to show Theorem 3.1 it suffices to
show that ‖yTA‖1 > 2t + kmδ for all y ∈ Nδ with
‖y‖1 ≥ 1−mδ ≥ 9/10.

Fix a vector y in the net Nδ with ‖y‖1 ≥ 9/10. Let
X denote the random variable |y · a|, where a ∈ {0, 1}m
is chosen randomly with exactly t ones. We assume
henceforth that t ≤ m/10, as for t = Θ(m), an O(m1/2)
discrepancy (even in the non-random case) follows from
the result of Spencer [16].

Lemma 3.2. For every y ∈ Bm1 , E[X] ≥ t/2m2 and
E[X2] ≤ 2t/m, assuming t ≤ m/10.

Proof. As 0 ≤ X ≤ 1, E[X] ≥ E[X2], so it suffices to
lower bound the second moment as follows.

E[X2] = E[(
∑
i

aiyi)
2]

=
∑
i

E[ai]y
2
i +

∑
i 6=j

E[aiaj ]yiyj

=
t

m

∑
i

y2
i + 2

∑
i6=j

t(t− 1)

m(m− 1)
yiyj

=
t(m− t)
m(m− 1)

∑
i

y2
i +

t(t− 1)

m(m− 1)
(
∑
i

yi)
2

≥ t/(2m)
∑
i

y2
i ≥

t

2m2
.

Similarly, using (
∑
i yi)

2 ≤ 1,

E[X2] =
t

m

∑
i

y2
i +

t(t− 1)

m(m− 1)
(
∑
i

yi)
2 ≤ 2t

m
.

As ‖yTA‖1 is the sum of k independent random vari-
ables X1, . . . , Xk distributed as X, using the lower
bound on E[X] and upper bound on E[X2] (and hence
on the variance), by Lemma 1.1,

Pr[X1 + . . .+Xk < k
t

2m2
− z] ≤ exp(

−z2/2

(2tk/m+ z/3)
)

Setting k = 2zm2/t and z = 10ctm2 logm, this gives

Pr[X1+. . . Xk < z] ≤ exp(−z/10m) = exp(−cmt logm)

As z � 4t and choosing c large enough, we have

|Nδ| exp(−cmt logm) � exp(m(log km− tc logm))

� exp(−m logm),

we obtain Theorem 3.1.
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3.3 A Stronger bound. The bound of k =
O(m4 logm) in Theorem 1.2, combined with Theo-
rem 1.3 implies O(t1/2) discrepancy bound when t =
Ω(log2m). So henceforth it is useful to think of t �
log2m. We will now prove a refined bound of k =
O(m(log(mt))O(1)).

It is easy to see that k must be at least m logm in
general. This holds even if we only require the condition
‖yTA‖1 > 2t to hold for y = e1, . . . , em. In particular,
for k � m logm, the expected number of ones in a row
is kt/m < t logm, and say for t = O(1), it is quite likely
that some row j in A will have fewer than 2t ones, and
hence violate ‖eTj A‖1 > 2t.

The idea. Consider the net Nδ with δ = 1/km
as before. By Theorem 3.1, we can assume that k ≤
m4 logm and hence δ = 1/m7 suffices.

For a point y ∈ Nδ, let Y be the random variable
|yTa|, where a is a random column with t ones. We
need to show that for each y in the net, the sum of
k independent copies of the corresponding Y random
variables is more than 4t. In the previous argument k
had to be large as the net |Nδ| is quite big and we were
taking a union bound over all elements of Nδ. While we
cannot reduce the size of the net much, the idea here is
to exploit the specific structure of the random vectors a
and the event that we care about. For instance, if y is
sparse, we get a not too small probability for Y being
small but there aren’t too many sparse vectors in the
net. We exploit such trade-offs below.

More precisely, we consider another random vari-
able X ≥ 0 that will be stochastically dominated by
Y , and the value of X will essentially only depend on
the values of a and only on the sign pattern of y in
certain specific coordinates (whose magnitudes are not
too small). This will lead to a much smaller loss in the
union bound. We now give the details.

3.3.1 The argument. Fix some y ∈ Nδ with ‖y‖1 ≥
1/2. We say that coordinate i lies in class j ∈
{0, 1, . . . , h}, for h = O(logm), if |yi| ∈ (2−j−1, 2−j ].
We say that i has positive sign if yi > 0 and negative
sign if yi < 0. We will not care about coordinates that
have value 0. Let us define the weight of class j of y as
wj(y) =

∑
i∈class j |yi|.

Define the class c(y) of y as a class j with the highest
weight. Let c−(y) and c+(y) denote c(y)−1 and c(y)+1
respectively (if they exist). As ‖y‖1 ≥ 1/2, class c(y)
has weight at least 1/2h. Let n(y) denote the number
of coordinates with class c(y), and we thus have

2c(y)/2h ≤ n(y) ≤ 2c(y).

As c(y) is the maximum weight class, we also that the

number of coordinates of class c+(y) and c−(y) is at
most 2n(y) each.

We now define the random variable X with the
desired properties.

The random variable X. Let i1, . . . , it denote
the t locations of 1 in a, that are picked from [m] without
replacement. We use the principle of deferred decisions,
and assume that the locations i1, . . . , it−1 have already
been revealed, and that the randomness is only in the
t-th choice.

Let v = yi1 + . . .+ yit−1
, and note that

Y = |yTa| = |v + yit |.

Our random variable X will satisfy the following prop-
erties.

1. For each y, a, X ≤ Y .

2. For every y, X is completely determined by
v, the sign pattern of coordinates in class
c−(y), c(y), c+(y), the location of it in these three
classes (if it falls in these classes), and on whether
any of {i1, . . . , it−1} fall in these three classes.

We now define the random variable X, based on a
few cases. The above properties are directly verified by
inspection.

Let us first assume that 10t < n(y) < m/10. The
remaining (corner) cases are handled easily later.

Balanced Case. We call class c(y) sign-balanced
if y has at least n(y)/4 coordinates in class c(y) with
positive and negative signs.

If v < 0, we define X = 2−c(y)−1 if it lies in class
c(y) and yit < 0. Otherwise, X = 0. Analogously, if
v > 0, then X = 2−c(y)−1 if it lies in class c(y) and
yit > 0. Otherwise, X = 0.

Note that we always have X ≤ Y . Moreover as
n(y) ≥ 10t, irrespective of the locations of i1, . . . , it−1,
the probability that it lies in class c(y) is at least
(9/10)n(y)/m. Finally, X = 2−c(y)−1 with probability
at least n(y)/8m and at most 3n(y)/4m, irrespective of
the value of v.

Unbalanced Case. Without loss of generality,
suppose that class c(y) has more than 3n(y)/4 positive
signs (the other case is symmetric). We consider two
further cases.

If v /∈ (−2−c(y)+1/2,−2−c(y)−3/2), we set X =
(1/4)2−c(y) if it falls in class c(y) and yit > 0. Oth-
erwise, X = 0.

Note that with the above definition X ≤ Y . For,
we either have v ≤ −2−c(y)+1/2, in which case

v + yit ≤ −2−c(y)+1/2 + 2−c(y) ≤ −(1/4)2−c(y)
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so that |v + yit | ≥ (1/4)2−c(y). Similarly, if v ≥
−2−c(y)−3/2, then

v + yit ≥ −2−c(y)−3/2 + 2−c(y)−1 ≥ (1/4)2−c(y)

so that |v + yit | ≥ (1/4)2−c(y).

Finally, note that given that it falls in class c(y),
yit > 0 with probability at least 1/2.

If v ∈ (−2−c(y)+1/2,−2−c(y)−3/2), we set X to 0
if it lies in any of the classes {c−(y), c(y), c + (y)}.
Otherwise, we set X = (1/16)2−c(y). We will still have
X ≤ Y because if it does not lie in any of the classes
{c−(y), c(y), c+(y)}, then (i) either |yit | < 2−c(y)−2 in
which case

|v+yit | > |v|−|yit | > 2−c(y)(1/2
√

2−1/4) ≥ (1/16)2−c(y);

or |yit | > 2−c(y)+1 in which case

|v+ yit | > |yit | − |v| > 2−c(y)+1 − 2−c(y)+1/2 ≥ 2−c(y)−1

. In either case, we have X ≤ Y .
Moreover, as n(y) ≤ m/10, there are at least m/2

coordinates other than these three classes, so that above
events happens with probability Ω(1).

Corner cases. We now consider the remaining
cases. If c(y) < 10t, we set X = 0 if some i1, . . . , it−1

already lies in {c−(y), c(y), c+(y)}. Otherwise, we
proceed as above depending on whether c(y) is balanced
or unbalanced; it is easy to check that the previous
arguments still hold.

Further, the probability that any of i1, . . . , it−1 land
in these three classes is at most O(t2/m)� 1.

We now consider the other corner case when c(y)
contains more than m/10 coordinates. In the balanced
case we proceed as previously. The problem arises in
the argument above when c(y) is unbalanced (since we
relied on the event that it falls outside the three classes
happens with decent probability). So instead we do the
following: Set X = 0 if less than t/20 i1, . . . , it−1 lie
inside c(y). Set X = 0 if |v| ≤ 10 · 2−c(y). Else, set
X = 2−c(y). Clearly, X ≤ Y as if |v| > 10 · 2−c(y), then
|v + yit | > |v| − |yit | ≥ 9 · 2−c(y).

Now, the probability that fewer than t/20 indices
i1, . . . , it−1, it lies inside c(y) is at most exp(−Ω(t)).
Further, if we condition at least t/20 i1, . . . , it−1 to lie
in c(y), then as c(y) is unbalanced, the chance that
|v| ≤ 10 · 2−c(y) is tiny.

3.3.2 The concentration argument. Fix a y and
consider the random variable X as defined above. Then,
E[X] ≥ (1/16)2−c(y) ·n(y)/m which is at least c/mh for
a fixed constant c > 0. Moreover, X is bounded by

2−c(y) ≤ 1/n(y). Therefore, by Bernstein’s bound, if we
choose k independent copies of X1, . . . , Xk of X, then
for µ = E[X] ≥ ck/2mh,

Pr[X1 + . . .+Xk < µ/2]

≤ exp

(
−µ2/8

(2µ/n(y)) + (µ/6n(y))

)
= exp(−Ω(n(y)µ)) = exp

(
−Ω

(
n(y)k

m logm

))
.

We now use our definition of the random variable
X and a union bound over what the random variable
X can depend on. There are about 2/δ choices of
v. Now, consider some y of class c(y). The behavior
of X is completely determined by the sign pattern on
O(n(y)) coordinates of y (corresponding to the sign-
pattern of y restricted to classes {c−(y), c(y), c+(y)}).
So in the union bound, we incur an additional loss of
exp(5n(y)) (as |c−(y)|, |c+(y)| ≤ 2n(y)). Further, we
have at most

(
m
n(y)

)
·
(

m
2n(y)

)
·
(

m
2n(y)

)
possibilities for

{c−(y), c(y), c+(y)}. Therefore, taking a union bound
over all possible random variables X, we get the failure
probability for a fixed n(y) to be at most

exp(−Ω(n(y)k/m logm)) · (em)5n(y)

� exp(−Ω(n(y)C logm)),

if we take k = Cm log2m for a sufficiently big constant
C. Adding over all values of n(y) we get that the
failure probability in Theorem 1.2 is at most m−Ω(C)

for k = Cm log2m for C sufficiently big. This finishes
the proof of Theorem 2.
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